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NON TECHNICAL SUMMARY 

99/225 The development of a model of the spread of the pilchard fish kill  
 events in southern Australian waters 
 
 
PRINCIPAL INVESTIGATOR Dr A. G. Murray 
ADDRESS CSIRO Marine Research 
 Castray Esplanade 
 PO Box 1538 
 Hobart    TAS    7001 
 Telephone: 03 6232 5326      Fax: 03 6223 5000 
 
 
OBJECTIVES  

1. We will construct a 1-D SIR (Susceptible, Infected, Removed) model of the spread of the pilchard 
mass mortality events of 1995 and 1998/9. 

 
2. We will produce a literature review of similar mass mortalities and the modelling approaches used 

to analyse them. 
 
3. We will refine the SIR model to include different transmission process functions and data obtained 

by other pilchard mortality study projects, in particular the Fisheries WA lead study on viral 
transmission. 

 
4. We will review the observations, including those obtained in concurrent studies, to provide the 

tightest possible constraints on the ranges of model parameters. 
 
5. We will analyse the effects of fisheries management strategies on pathogen transmission, in 

particular we will test the viability of a 'fire break' policy. 
 
6. We will construct a simple model of the recovery of the fishery to investigate the period required for 

the stocks to become vulnerable to renewed mortality. 
 
7. We will development a Graphical User Interface (GUI) to display the local and geographical spread 

of pathogens. 
 
8. We will produce an initial report detailing the approaches used both by us and other modellers of 

epidemics. 
 
9. We will produce a final report detailing the final form of the model produced and incorporating 

analysis of model structure, parameters and results. 
 
10. We will present this work at a nationally significant scientific meeting in 2000. 
 
The pilchard mass mortalities of 1995 and 1998/9 were unprecedented in their rate and geographical scale 
of spread.  Waves of mortality spread from South Australia to Western Australia and to Queensland at a 
rate of 10-40 km d -1.  In many cases, stocks were reduced by over 60%.  The cause of this mortality was 
certainly a herpesvirus, although as it has proved difficult to infect fish with this virus Koch’s postulate 
remains unfulfilled. 
 
We have developed a range of models looking at disease transmission from the school to the national 
level.  These models enable us to determine which parameters control the transmission of disease. 
 



 

 

At the school level we conclude that small-scale fish mixing patterns do not play a dominant part in the 
local development of disease.  Hence we are able to model the larger scale transmission without 
considering lower level population details. 
 
At the larger scale we produce models that generate realistic epidemic waves.  The model we have 
produced differs from standard forms in that it uses fixed length latent and infectious periods, rather than 
continuous turnover between these phases.  Using analytical methods we find that three parameters 
control the epidemic wave’s geographical spread: the rate of disease transmission, the length of the latent 
period, and diffusion coefficient. 
 
We also use the observed local pattern of mortality to constrain the model.  Initially, in South Australia, 
there is recurrent mortality over days or weeks.  Later, when the epidemic is matured, mortality occurs 
over a few days at any given location. 
 
The epidemic wave’s speed is least sensitive to the rate of disease transmission, however this parameter 
could vary by orders of magnitude, so weak sensitivity does not necessarily mean low importance in 
explaining variation in the wave’s speed.  A large decline in the number of virus-containing lesions in the 
gills of sick fish was observed between 1995 and 1998.  This would indicate reduced viral transmission.  
At large values of the viral transmission rate the wave’s speed becomes increasingly less sensitive, so 
there is a value beyond which wave speed becomes independent of this parameter. 
 
The transmission rate is multiplied by population density in our standard model, however, population 
density has not varied by orders of magnitude (although it has off Japan) and so the epidemic wave speed 
is only very weakly sensitive to changes in population density.  Alternatively, because schooling 
effectively keeps population density constant, the viral transmission may be population density 
independent, in which case population density has no effect on the epidemic’s speed. 
 
Large values are inconsistent with the large wave speeds observed and small values produce unrealistic 
initial epidemic behaviour, so values of around 4 days give the best results.  If this parameter could be 
experimentally evaluated the model would be very strongly constrained. 
 
The diffusion coefficient is the parameter that reflects the large-scale spatial transmission of the virus.  
The diffusion coefficients generated by fis h swimming patterns appear to be quite sufficient to explain the 
observed rate of spread of the epidemic.  Indeed diffusion coefficients larger than those which fish can 
generate (perhaps as a result of bird transmission) result in mortality patterns that are inconsistent with 
the observations: several days of similar levels of mortality.  This inadmissibility of very large diffusion 
coefficients does not rule out vector transmission, but it does make it far less likely that vectors are 
involved.  Change in diffusion is the most likely process to explain the large difference in speed between 
east and west bound waves in a single epidemic.  
 
The model generates very high levels of infection, in excess of 90% for realistic mortality distribution 
patterns.  This means the critical parameter for determining the epidemic’s longer-term impact is the 
proportion of those infected fish which survive infection.  A model of post-epidemic population recovery 
indicates that this should be fairly rapid, even with high levels of epidemic mortality.  However, the same 
model shows that persistently elevated mortality, even to a small degree, leads to serious decline in fish 
stocks. 
 
Because of weak sensitivity to adult population levels, fisheries management strategies based on the 
manipulation of populations are very unlikely to succeed.  Control of vectors is also unlikely to be 
effective.  Juvenile pilchards appear to be confined to embayments their populations do not mix easily.  
This makes the preservation of as many nursery sites as possible the best means of protecting stocks from 
epidemics.  As yet, the origin of the virus is unknown.  In the longer term, exploitation of the adult 
population's strong degree of mixing may make it possible to inoculate the population with low mortality 
virus. 
 
 
 
KEYWORDS: Pilchard, Herpesvirus, Modelling, Epidemiology. 
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The development of a model of the spread of the pilchard fish 
kill events in southern Australian waters 

BACKGROUND 

In 1995, and again in 1998/9, mass mortalities of Australian pilchard occurred 
throughout their entire range – some 3000 km of southern Australian coast.  The 1995 
mass mortalities necessitated the short-term closure of the fishery (for public health 
reasons), caused serious damage to stocks, and had impacts on other fisheries (such as 
lobster) and the environment (such as little penguin breeding success).  Three and a half 
years later similar mass mortality is recurring with similar results.  If such events recur 
then stable exploitation of the pilchard resource will be made difficult and the economic 
impact may become more severe if this fishery grows.  The mass mortality travelled as 
a wave originating in South Australia and terminating, in 1995, less than three months 
later in both WA and Queensland;  the current kill front is travelling a little more 
slowly. 
 
No environment factors are coincidental with the kills, lack of environmental cause is 
underlined by the winter 1995 and summer 1998/9 timing of the two events.  The wave 
pattern is however typical of an epidemic and a herpes virus has been found in 
association with all the pilchard deaths.  Proof that the virus is the cause of the mortality 
has not been obtained, but an associated transmission study will shortly address this 
issue. 
 
As part of a combined proposal we propose to model the spread of this kill event.  Other 
studies will look at viral transmission, including transmission by fish-eating bird 
vectors, and at the genetic characteristics of the herpes virus.  Extensive ongoing 
monitoring of the cur rent epidemic will also produce data valuable to the modelling. 

NEED 

The mass mortality events are very economically and ecologically damaging.  
Economic damage occurs acutely in the short-term due to the need to close the fishery 
during events and damage also occurs in the longer term owing to the removal of large 
numbers of fish during the event. 
 
No model exists of the spatial propogation of a viral epidemic in an exploited fish 
population, we will derive such a model.  This model will be aimed less at predicting 
the spread of a particular mass mortality event and more at the understanding of the 
dynamics of the event.  Using the model we will be able to assess hypotheses 
concerning the factors which control the mass mortality and hence focus future study on 
the most sensitive processes.  The model will show the conditions under which these 
events may recur.  We will also be able to assess the potential for management 
intervention to halt an ongoing epidemic or prevent further outbreaks.  The model will 
also integrate all the aspects of the spread of the mass mortality events, showing 
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linkages within the existing data and showing those areas for which adequate data is 
lacking. 
 
It should also be noted that damaging epidemics among wild caught and farmed marine 
fisheries are not infrequent and that modified versions of the model may have future 
applications to other fisheries 

OBJECTIVES 

1. We will construct a 1-D SIR (Susceptible, Infected, Removed) model of the spread 
of the pilchard mass mortality events of 1995 and 1998/9. 

 
2. We will produce a literature review of similar mass mortalities and the modelling 

approaches used to analyse them. 
 
3. We will refine the SIR model to include different transmission process functions 

and data obtained by other pilchard mortality study projects, in particular the 
Fisheries WA lead study on viral transmission. 

 
4. We will review the observations, including those obtained in concurrent studies, to 

provide the tightest possible constraints on the ranges of model parameters. 
 
5. We will analyse the effects of fisheries management strategies on pathogen 

transmission, in particular we will test the viability of a 'fire break' policy. 
 
6. We will construct a simple model of the recovery of the fishery to investigate the 

period required for the stocks to become vulnerable to renewed mortality. 
 
7. We will development a Graphical User Interface (GUI) to display the local and 

geographical spread of pathogens. 
 
8. We will produce an initial report detailing the approaches used both by us and other 

modellers of epidemics. 
 
9. We will produce a final report detailing the final form of the model produced and 

incorporating analysis of model structure, parameters and results. 
 
10. We will present this work at a nationally significant scientific meeting in 2000. 

METHODS 

A 1 D SIR (Susceptable, Infected, Removed) model will be developed to describe the 
spread of the mass mortality event around the southern Australian coast.  The model 
will be prototype in BASIC (for convenient application on a PC) and the final version 
implemented in Java allowing portability.  A modular approach to programming will 
allow modelled processes to be modified as data becomes available.  This will include 
long-term runs in which the pilchard population recovery mass mortality is modelled 
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Model results will be compared statistically with observations.  The best confirmed 
observation is the speed of the kill front and replication of this will be highest priority.  
Its dependence on parameters will be examined by model analysis and experimentation.  
Model tests will include different functional forms of the model, particularly the 
inclusion/exclusion of bird vector transmission.  Effects of different management 
strategies will be analysed under model forms and parameter values which produce 
realistic results. 

RESULTS/DISCUSSION 

1 The Pilchard Epidemics, a Brief Overview 
 
In March 1995 strandings of massive numbers of dead pilchards (Sardinops sagax) 
were first reported from the beaches of South Australia (Whittington et al. 1997).  Three 
months later these deaths had spread to the extreme northern limits of pilchard 
distribution in both Western Australia (Fletcher et al. 1997) and Queensland, which are 
some 2500 km along the coastline from the origin, respectively west and east.  Similar 
mortality events also occurred in New Zealand in June to September (Whittington et al. 
1997).  
 
In October 1998 a second outbreak of mortality began; again it started in South 
Australia (Ward et al. 1999).  This mortality lasted until la te May; again ceasing only 
when the wave of mortality had reached the limits of the pilchard's distribution.  The 
mortality patterns were similar to those of the first event.  However the mortality wave 
travelled at about half the speed of 1995 and at times seemed to disappear.  Levels of 
mortality may have been even higher than in 1995.  Although local mass deaths of 
pilchards and other fish have been reported previously, nothing on this scale appears to 
have occurred before 1995 (Fletcher et al. 1997).  According to indigenous oral 
tradition, prior to European settlement pilchards disappeared from the Canadian Pacific 
for some years and then returned (Hart 1933).  This temporary disappearance could 
indicate a massive die off possibly due to infection.  However, sudden large population 
changes can have other causes, such as recruitment failure (Wada and Jacobson 1998). 
 
The rates of spread of these epidemics were phenomenal.  The wave travelled at over 
30 km d-1 in 1995, while the second 1998/9 epidemic travelled at about half this speed.  
As a comparison, the Black Death travelled at about 0.5-1 km d-1 (Murray 1993).  It has 
been argued that a vector, such as the population of piscivorous birds, is required to 
account for this extreme speed, we will use the models to examine this theory. 
 
Mortality only lasted a few days, at most, at any given site.  There was an exception 
near the South Australian point of origin where mortality persisted for weeks (Ward et 
al. 1999).  This short period of mortality leads to very little scatter in the distribution of 
mortality about the space/time regression line (Whittington et al. 1997, Fletcher et al. 
1997).  By comparison the mass mortality induced by the seal virus PDV overlapped 
throughout its range of spread.  Significant seal mortality was still occurring at its initial 
focus in Denmark when the epidemic had already reached Ireland, where it terminated 
(Swinton et al. 1998).  The period of significant mortality was defined as the time over 
which 90% of local recorded mortality occurred. 
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Mortality showed no relationship with physical oceanographic factors (Griffin et al. 
1997) or with toxic phytoplankton (Whittington et al. 1997, Fletcher et al. 1997).  
Indeed the 1995 and 1998/9 events occurred at different times of year and covered the 
entire Australian southern coast with environments that ranged from the edge of the 
tropics in Queensland to cold temperate waters in southern Tasmania.  The only 
universal factor appeared to be the development of a herpesvirus in the pilchards’ gills 
up to 4 days prior to death (Whittington et al. 1997, Fletcher et al. 1997). 
 
A Polymerase Chain Reaction analysis of the virus's genes showed that the 1995 and 
1998/9 viruses were related (AAHL 1999).   The test only involved 180 base pair and so 
is not specific enough to prove that the viruses were identical on the two occasions.  
Few other fish died in association with the epidemics, and those fish that were found 
dead in association with the pilchard mass mortalities that were tested for the virus did 
not return positive results (AAHL 1999).  It has proven very difficult to experimentally 
transmit the virus in tanks (Jones 1999).  This difficulty makes a formal proof of the 
virus as the cause of mortality difficult to achieve under Koch's postulates. 
 
Disease is the cause of substantial mortality among many fish populations (Munro et al. 
1983). Disease agents will persist if they can produce new infections faster than infected 
hosts die off.  If this production of new infections exceeds the rate at which new hosts 
become available then the disease will be epidemic. If production of infection lies 
between these extremes of pathogen extinction and epidemic disease, a stable endemic 
level of disease results (Reno 1998).  Viruses that cause disease in fish include 
birnaviruses, notably IPNV which causes substantial mortality in farmed salmon (Hill 
1982) and whirling disease in wild Atlantic menhaden (Stephens et al. 1980).  
Lymphocytosis virus causes endemic disease in North Sea estuarine flounder 
(Lorenzen et al. 1991) and over 100 other species (Möller and Anders 1986). Viruses 
are also associated with mass mortality in Caribbean herring (Williams and Bunkley-
Williams 1990) and mortality of wild salmon (des Clers 1993).   
 
Viral diseases of Australian fish have recently been reviewed by Mundy and Owens 
(1998).  Viral diseases have been associated with mass mortality in Australian 
barramundi (Mundy et al. 1994) and epidemics in Australian red-fin perch 
(Whittington et al. 1996).  A double stranded DNA herpes virus is the apparent cause of 
mass mortality of the Australian pilchard (Whittington et al. 1997). 
 
The pilchard (Sardinops sagax) is a small (∼20 cm) planktiverous clupeoid fish found in 
large numbers in warmer temperate coastal waters throughout the southern hemisphere 
and also in the northern Pacific (Parish et al. 1988).  Pilchards are found all along the 
southern coast of Australia from roughly the tropic of Capricorn in both Western 
Australia and Queensland to 43o S in eastern Tasmania (Fletcher et al. 1997).  
Distribution is largely restricted to the narrow continental shelf.   
 
Like other clupeoid fish, pilchards travel in large dense schools (Blaxter and Hunter 
1982).  These constantly change shape and composition as they form and disperse.  A 
group of schools forms a shoal.  Pilchards feed on both phytoplankton and zooplankton 
(van der Lingen 1998) and seek out zooplankton swarms that are separated by a few 
km.  However, they then depart rapidly owing to the enhanced risk of predation within 
these swarms (Nonacs et al. 1994, 1998).  The exact nature of the schooling and 
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swimming behaviour of the pilchards has very specific implications for pathogen 
transmission, which will be considered in more detail later. 
 
In summary, a continental scale mass mortality of pilchards occurred in Australia and 
New Zealand in 1995 and a second such event occurred in 1998/9 (although New 
Zealand was not affected).  The scale and speed of these epidemics is unique.  Pilchards 
are commercially fished and form a critical food-chain link; as such, these epidemics 
are of very great importance to both fisheries and ecosystems. 
 
 
2 The Aims, Limitations and Structure of the Modelling  
 Project 
 
It is the aim of this project to produce a range of models that give scientists and 
managers an understanding of the processes and parameters that controlled the 
transmission of the 1995 and 1998/9 pilchard herpesvirus epidemics.  Models and their 
analysis will show the key parameters controlling the epidemic and the degree of 
uncertainty of this role and of the actual values of the parameters.   Using this 
knowledge we can predict the response, if any, of the epidemic to changes in the 
environment, including to management actions. 
 
Our approach is to use a range of models to fulfil different functions.  These models 
include very simple classical epidemic models, which prove to be useful illustrations of 
the basic processes driving the epidemic, but which prove to have flaws in their 
replication of some of the observations.  More complex models still allow the derivation 
of analytical solutions of the basic processes controlling the rate of spread of the 
epidemic.  Such analytical solutions are a powerful tool that allows us to rapidly 
determine the parameters and processes controlling basic steady-state behaviour of the 
system (Murray and Parslow 1999). Dynamic solutions of these models allow us to 
investigate the initiation of the epidemic and some of its other properties for which 
analytical solutions are not available.  The dynamic models can also incorporate non-
linear processes and varying behaviours, for which the analytical solution is not 
obtainable. 
 
We develop models that cover the different spatial scales of processes involved in the 
spread of the epidemic.  These scales are the local transmission of infection within a 
school; the movement of infected fish between schools in a shoal; and the large-scale 
intermixing of schools. 
 
Our ability to refine the modelling is limited by the available data.  The data sets 
available are very good.  The reported mass-mortalities do give a clear indication of 
where the epidemic had spread to at a given time.  As two similar but different 
epidemics have occurred we have replication and differences between the epidemics are 
a valuable source of insight into processes and parameters.  Even these data sets do have 
some problems.  They were not collected by the same method; instead they are based 
upon different reporting system ranging from systematic surveys involving ships and 
aircraft to public reporting.  This variation in sampling allows for mortality to be missed 
in under-populated areas or non-epidemic coincidental mortality to be misreported. 
Similarly, most reports are of beached fish, offshore mortality being only occasionally 



The development of a model of the spread of the pilchard fish kill events in southern Australian waters 12 

_______________________________________________________________________________________________ 

 

reported from survey ships or fishing boats.  Because the pilchards may have drifted for 
a short time before beaching and because their presence may not be detected 
immediately, there is some uncertain difference between the reported mortality with 
respect to the actual time and place of death.  However, the data set represents an 
extremely good record of an epidemic in a wild population. 
 
More seriously, we have a lack of data on processes behind the epidemic.  Attempts to 
infect captured pilchards or goldfish (AAHL 1999) with the disease have not been 
successful.  Pilchards exposed to virus in food did eventually die (Jones 1999), but PCR 
analysis did not detect the virus in these dead pilchards.  We can use some physiological 
evidence to support our understanding of the epidemic.  In particular the formation of 
lesions in the gills of the pilchards a few days before their death (Whittington et al. 
1997) may be taken as proof that the fish are infected for this period.  The evidence 
available contains valuable clues as to the epidemic behaviour, but it does not provide 
direct answers to many of the questions raised in modelling processes. 
 
Given that two epidemics have occurred, we are able to investigate commonalities and 
differences behind both epidemics.  This comparison gives considerable insight into 
basic processes driving the epidemics.  But we are not able to predict the behaviour of a 
future epidemic.   
 
The data available is thus exceptionally good, but it does contain uncertainties.  
Uncertainty in the data inevitably leads to uncertainty in model predictions. However, 
the models are able to use the range of observations from many different fields to 
constrain model behaviours, allowing theories concerning the epidemic to be tested 
quite rigorously.   
 
We must use the data efficiently to obtain maximum insight into underlying processes, 
so we do not necessarily use the simplest possible model. The simplest model of these 
epidemics is a linear regression of location of mortality against time.  This gives a very 
good prediction of where the mortality front will be at a given moment.  But it tells us 
nothing, nothing at all, about the processes driving the epidemic. 
 
Even if there were no other data than the record of the time series of the place of peak 
mortality, a simple epidemiological model would tell us the potential roles of diffusion 
and local transmission in the spread of the epidemic.  We will begin by exploring such 
models as valuable illustrations of the processes underlying the spread of epidemics. 
 
In fact, of course, there is much more data than just the timing of the peak of mortality 
at a given location.  There is evidence such as scatter of mortality about this peak - this 
turns out to be very limited and that proves a powerful constraint on the model.  There 
is the initial development of the epidemic, there are gaps in the evidence of progress of 
the epidemic (which may or may not be valid), and there is physiological and 
experimental evidence.  There are also clues from the study of other diseases.  We use 
all this data to constrain and develop the model. Note that the model development and 
assessment process proves a powerful means of integrating a diverse range of 
observations concerning the epidemic. 
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We should not complicate the model by including too many untestable processes.  
Sometimes the inclusion of different forms of the model, which produce no detectable 
change in the validity of the performance may be reasonable - this is after all negative 
evidence that both the underlying theories could be valid.  These different formulations 
may lead to substantially different predictions of response to environmental or 
evolutionary changes.  But complication takes away from the understandability of the 
model and may make it dependent on parameters whose value cannot be independently 
assessed. 
 
In the following chapters we will explore the development of the model from simple 
standard epidemic models to a form tailored to the description of these pilchard 
herpesvirus epidemics.  We will discuss ana lytical solution of the wave speeds from 
these models.  We will then present a detailed description of the dynamic model that is 
used to describe the model, followed by presentation of the results of the analysis of this 
model. We then summarise the implications of the results of model, and the modelling 
process, for our understanding of the disease's behaviour and the possibilities of 
management. 
 
We start by analysing the available observations in order to derive the processes and 
parameters required for the modelling. 

 

3 Available Data and the Characterisation and  
 Parameterisation of the Epidemic's Spread in Space and 
 Time 
 
There is a considerable amount of data available on the two epidemics of 1995 and 
1998/9.  Most importantly there are the reports of mass mortalities, which give a very 
good indication of the epidemics spread in space and time.  There are also physiological 
and experimentally obtained data which allow us to constrain certain aspects of the 
epidemic's development.  We use this data to describe the epidemic's basic properties.  
We derive a priori constraints on model parameters which we use when we evaluate the 
model's sensitivity in the next chapter. 

3.1 Spread of the Epidemic 

In order to understand the spread of the epidemic better we plot the reported mortalities 
against time and space.  We have the time data immediately available.  Spatial position 
must be calculated relative to some initial point.  The simplest, and most unambiguous, 
way to do this is to plot the locations of these events relative to an origin point, eastward 
spread being defined as negative (Fig. 3.1). 
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Figure 3.1   Simple Radial Spread of mortality about origin 

 
From this radial plot we note that for a considerable period (about 2 to 4 weeks) the 
epidemic remains at the origin before splitting into eastbound and westbound waves. 
 
However, this radial spread pattern does not give the speed of advance of the front 
because it becomes distorted when the waves are not advancing directly away from the 
origin.  This distortion becomes a particular problem as the waves leave the south coast 
and advance along the east and west coasts of the continent; this motion is at right 
angles to the origin. 
 
We need to describe the location of the front with respect to the distance the epidemic 
has actually advanced along the coast.  Here we come across serious problems relating 
to the exact route and timing of spread.  Coastal indentations, such as Spencer Gulf, add 
considerably to coastal length, but probably have no effect on the motion of offshore 
pilchards.  The timing between first mortality occurring at point and a point some 
distance ahead is not necessarily the same time as that between the first detection of 
mortality at these points and hence front speed may be miscalculated if the data is 
incomplete. 
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Figure 3.2   Location of mortality with time as minimum coastal travel distance from origin 
 
Initially mortality remains in the South Australia region for a considerable period and 
only after about four weeks does the epidemic split into two waves travelling in separate 
directions (Fig. 3.2).  Once it is established, the front speed is fairly constant, as we 
expect from the epidemiological models so far discussed, i.e. it is a typ ical epidemic.  
The eastbound wave seems to be faster and less constant than the westbound wave.  
This relatively constant speed is similar to the results obtained from the analyses carried 
out by Whittington et al. (1997) and Fletcher et al. (1997).   
 
The simple regressions of the west and eastbound lines are 30 and 50 km d-1, with R2 of 
0.85 and 0.91.  However, such regressions are problematical and probably not a valid 
analysis (Whittington et al. 1997).  If we exclude the South Australian data (points 
within 1200 km of the origin) from the figure we get regressions of 22 km d-1 west 
bound (r2 = 0.97) and 49.5 km d-1

 (r2 = 0.95) eastbound (including Tasmania).  Because 
the initial mortality was quite widely scattered, however, the speed required to get from 
the initial observation to the final observation of mortality is 36 km d-1

 east and 22 kmd -1
 

west. 
 
Eastbound expansion appears to have been somewhat variable in speed.  If we exclude 
the Victorian and Tasmania data we obtain a gradient of 40 km d-1

 with r2 of 0.97, and a 
similar gradient applies to the data for the Victoria and Tasmania data.  The region 1500 
to 2000 (Bass Strait only) has a gradient of 26 km d-1. A sudden leap of 400 km in 5 
days appears as a break in the records between Lakes Entrance in Victoria and Sydney 
in New South Wales.  It is this leap which gives the overall gradient of 50 km d-1

 for 
eastbound expansion. 
 
The 1995 westbound expansion proceeds at an average of 21 km d-1, but has a temporal 
hiatus, from mid May until nearly June as the epidemic slowly rounds the south western 
Cape Leeuwin area of Western Australia.  This area also marks the boundary between 
two distinct pilchard populations (Fletcher et al. 1997).  Gradients before and after this 
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point are both around 24 km d-1. This is similar to the rate in Bass Strait, but much 
slower than the eastern average. 
 
In detail it appears from the data that the epidemic had an initial establishment period of 
about a month, when it remained restricted to South Australian water.  After this the 
epidemic started to expand westward at 21 km d-1, a speed which was largely 
maintained, but may be slightly faster with a period of slow spread in late May.  
Expansion also occurred eastward at about 40 km d-1, with a sudden break between 
western Victoria and Sydney, in 5 days advancing nearly 400 km.  This kink is readily 
apparent in the graph and appears to be real because slopes both before and after this 
lead have regressions of about 40 km d-1.  The total eastbound slope, including this leap, 
has a regression of around 50 km d-1.  It is possible that there is a lower background 
eastward expansion rate of about 25 km d-1, with advective leaps in position.  And this is 
similar to the speed of the west-bound wave, allowing for a delay at Cape Leeuwin. 
 
The 1998/9 epidemic broke out in Spencer Gulf, South Australia (Ward et al. 1999).  
This is close to the origin of the 1995 epidemic, but is a few hundred kilometres to the 
east. In South Australian waters the epidemic showed the same pattern as in 1995, 
recurring several times at some locations over the course of weeks.  Persistence about 
the origin is a little longer, some 40 days as opposed to 28 days in 1995.  However, 
many of the later mortality event involved juvenile pilchards and, as these did not start 
to die until after the adults this may be regarded as almost a separate epidemic.  The rate 
of spread was significantly slower, only being of order 10 km d-1.   
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Figure 3.3   The pattern of mortality in 1999 from South Australia (Ward et al. 1999), Western Australia 
(Gaugin, Fisheries WA), Victoria (Neira, MAFRI), New South Wales (Geoff Gordon, NSW Fisheries) 
and Tasmania (Sherman, Tasmania DPI). 
 
We have extended the analysis to include the Western Australian 1998/9 data (provided 
by Daniel Gaugin of Fisheries WA).  We present the rate of spread of this epidemic 
front (fig. 3.3).  The pattern of spread was similar to that obtained in 1995 with a gap at 
about 2000 km from the origin as the epidemic passed round Cape Leeuwin.  However 
the speed of expansion of the second epidemic was much slower at 10.7 km d-1.  This 
speed is about half that of the western rate of expansion of the 1995 epidemic and about 
a third of its overall average speed.  There is little variation within the 1998/9 epidemic 
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around this average speed and so this regression is statistically highly significant 
(r2 = 0987).  There is still evidence of variation as the epidemic first reaches Western 
Australia with more scatter about the regression. 
 
We have also incorporated MAFRI's data on Victorian waters (provided to the Pilchard 
Scientific Working group by Francisco Neira), the reported mortality from Newcastle 
NSW and the Hobart area of south east Tasmania.  From this we generated a similar 
east-bound epidemic wave.  The wave travelled at a very similar speed to the 
westbound wave, of 10 km d-1 (r2 = 0.982) in the eastern states.  However, two very 
isolated points, Newcastle and Hobart, provide all the data that lies beyond Victorian 
waters.  If the Hobart data is treated as a single point instead of five separate points then 
the wave speed is 20 km d-1.  The distance from Bass Strait to Hobart could be 
underestimated, since the epidemic may not have spread by the shortest route.   Wave 
speed within Bass Strait is about 20 km d-1.  These data points are extremely valuable in 
that they show that the epidemic, while undetected, remained and was travelling at a 
similar rate to that which was earlier apparent. 
 
The two westbound waves are quite similar in many features, apart from travelling at 
different speeds.  Both terminate at around the same point, around 29oS and if we plot 
the position of these waves relative to the same initial point and normalise time to the 
total time elapsed we can see the waves share features in common (Fig. 3.4).  In an 
initial phase observed mortality is scattered and irregular, this is much more severe in 
1995, for which the epidemic's point of origin is nearer to Western Australia.  There 
then follows a period of fairly constant expansion as the wave advances along the south 
coast.  At about the 2000 km point there is a period of low mortality as the epidemic 
rounds Cape Leeuwin, an area which forms the boundary between two pilchard 
populations.  The epidemic then reappears on the west coast and makes a final 
reappearance near Geraldton.  The 1995 epidemic shows more sign of variation in speed 
than the 1998/9 epidemic. 
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Figure 3.4   Pattern of the 1995 and 1998/9 epidemic mortality in Western Australia. 
 
No such recurrent patterns exist for the two eastbound epidemics.  In 1995 the epidemic 
resulted in extensive mortality in northern Tasmania, no such mortality was reported in 
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1998; however mortality occurred of Hobart in 1999, where none occurred in 1995.  
Extensive mortality was reported in New South Wales and Queensland in 1995.  In 
these states, only a single outbreak near Newcastle was reported in 1999. 
 
The available data gives a very detailed account of the spread of the epidemic.  
However, it is not perfect.  Reportage of mortality depends upon different search 
programs in which different levels of effort were invested and so is recorded to a 
different level of detail and reliability on different occasions.  Mortality may go 
completely undetected in areas of low (human) population, or when currents lead to the 
fish being transported offshore.  Even where extensive aerial surveys have been carried 
out, mass mortality events may be missed (false negative) or may be incorrectly 
reported (false positive), on one occasion cuttle bones are believed to have been 
misreported as dead pilchard from an aerial survey (Ward et al. 1999). 

3.2 Duration of Infection in a Population 

Locally, reported pilchard mortality events are confined to a short period, except in 
South Australia.  This is reflected in the low level of scatter around the regression in 
figure 3.4.  In the Storm Bay and adjacent areas of south-eastern Tasmania, for 
example, mortality events that were reported to the Tasmanian Department of Primary 
industries were, with one exception, reported over a five day period, with half the 
reports applying to mortality detected on 1 day (Fig. 3.5). Reported strandings reflect 
not only the time of mortality but also the processes, which transport the pilchards 
before they were detected, and so detection is likely to be extended over a longer period 
than is the mortality itself. 
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Figure 3.5   Pilchard mortality events reported in the South Eastern Tasmania (Storm Bay, Frederick 
Henry Bay and Derwent Area) in January 1999 (Data supplied Sharon Sherman, Senior Technical 
Officer, Tasmanian DPI). 
 
Likewise, in 1995, duration of mortality in Western Australia was reported as being 
restricted to 1 or 2 days in each location (Fletcher et al. 1997). 
The duration of local mortality events for 1995 has been plotted as the number of days 
between the first and last recorded mortality event within 250 km intervals along the 
coastline (Fig. 3.6).  Coast stretches with 1 or zero observations are ignored.  Those 
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stretches of coastline within 1000 km of the origin experienced mortality for over 
10 days, and at the origin mortality persisted for over 30 days.  Further away from the 
origin mortality persisted for less than 10 days, and given that the epidemic takes about 
a week to traverse 250 km and pilchards may be detected some time after death, this 
means local duration of the infection is very brief.  There is an exception, off central 
Western Australia mortality persisted for 14 days, however this duration is due to a 
single event occurring 10 days after other mortality events.  If this event is included the 
regression is still good with an r2 of 0.67, but its exclusion brings the r2 to 0.83. 
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Figure 3.6   Days that mortality persisted between first and last observed events on 250 km stretches of 
coastline.  The log regression line -9.96ln(x)+27.05 has r

2
 = 0.83. 

3.3 A Priori Constraints on the Diffusion Coefficient 

We use a diffusive model to describe the dispersal of fish.  The diffusive model is 
simple to implement and parameterise.   In this section we explore some limits to the 
parameter which derive from fish behaviour and from the patterns of detected mortality. 
 
This diffusion model assumes random swimming patterns.  Migration in a particular 
fixed direction can generate much larger mass movement.   Pilchards do show such 
large-scale movement patterns off South America (Torres et al. 1985) and these patterns 
are sensitive to season and climatic factors such as El Niño.  While we can use the 
model to investigate the effects of different specific swimming patterns on the 
epidemic's progress, a predictive model of fish swimming patterns is beyond the 
capacity of this project and there is a lack of data on these patterns in the field.  With 
reference to the Telegraph Model we do show that diffusion is a good description of 
motion, provided fish do change direction at intervals. 
 
Only diffusion of infected individuals affects this spatial/temporal smearing of 
mortality.  This is also the case for the epidemic wave's speed (see chapter 7).  So it is 
the behaviour of infected fish that controls the behaviour of the epidemic. 
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3.3.1 Pilchard Swimming 

We can use pilchard biology to obtain some constraints on the diffusion parameter, 
assuming fish dispersion accounts for this diffusion.   
 
The rate of dispersal of an organism depends upon both its speed and its pattern of 
movement.  If fish swim in legs of a given random direction for a distance L over a time 
T then: 
 
 D = L2/2T         (3.1) 
 
Dispersal of pilchards thus depends on both their speed and swimming pattern.   
 
The pilchards must have a maximum sustained swimming speed of over 40 km d-1 or 
1.66 km h-1

 in order to account for the observed rate of spread of the epidemic of this 
speed (Whittington et al. 1997), if bird vectors are not responsible.  Beamish (1984) 
recorded maximum pilchard swimming speed of about 3 km h-1.  However, 
Fletcher et al. (1997) note rather faster speeds for pilchards - 3 km h-1

 being the average 
speed for pilchard schools while some schools moved at 2.5 times this or 7.5 km h-1. 
Such speeds easily exceed the epidemic front's speed.  Because we use this data, 
specifically obtained from observation of Australian pilchards in situ, our estimates of 
D (Fig. 3.7) are somewhat larger than our earlier estimates (Murray 1999).  If bird 
vectors account for dispersal then much larger diffusion coefficients are possible.  
However, very high diffusion rates may not be consistent with the brief observed 
duration of mortality. 
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Figure 3.7   Diffusion coefficients generated by 4 different swim leg lengths for swimming speeds of 1.25 
to 7.5 km h
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The 1995 front advanced 400 km from Lakes Entrance to Sydney over 5 days 
(Section 3.1).  This is evidence of the potential for sustained movement of 80 km d-1 or 
3.3 km h-1.  We attribute this movement to migration of fish because this is the only way 
to have the epidemic advance so rapidly as a coherent front.  Other factors, such as 
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increased bird activity, could lead to increased diffusion, which could induce large 
velocities but would also result in mortality that was smeared out along the coast. 
If the pilchards seek out zooplankton patches in which to feed, then their appropriate 
swimming pattern will be determined by the separation of these patches.  Such patches 
are separated by distances of a few km (2.5 km in the model of Nonacs et al. 1994, 
1998).  If pilchards swim distances of this order before changing direction diffusion will 
depend upon swimming speed and the distance travelled before changing direction. 
The length of the legs that are swum by the fish can be derived for a given value of D 
and a specific swimming speed (Eq. 3.1).  The maximum swimming speed is at least 
1.45 km h-1

 if the epidemic spreads at 35 km d-1
 (Whittington et al. 1997), and our 

estimate is slightly higher.  Appropriate swimming leg lengths fit most closely with 
diffusion coefficients of 20 to 400 km2 d-1, while very long, but not impossible leg 
lengths of 10 km generate diffusion coefficients in the high hundreds of km2 d-1.  We 
later rule out such large diffusion coefficients by reference to the local pattern of 
mortality (see next section). 
 
The average diffusive displacement of pilchards in 1 dimension is √(2Dt) (Berg 1993).  
So with D of 50 to 400 km2 d-1

 the daily mean movement is 10 – 28 km, which is 
generally less than the speed of this front.  Because this displacement is related to the 
square root of time it declines with time, over 4 days the average pilchard’s movement 
would be only 5 – 14 km d-1 and over 100 days just 1 – 2.8 km d-1.  Small numbers of 
pilchards move larger distances, 1% of the population moves 2.58 times the average and 
0.1% moves 3.39 times the average displacement.  The latent period by delaying the 
formation of new infections acts as a substantial break on the epidemic's spread.  The 
rates of average and outlier movement just noted are consistent with movements of 
tagged pilchards discussed by Fletcher et al. (1997).  Non-random movement can lead 
to somewhat larger displacement, particularly over longer time periods.  It is due to the 
difference between average displacement and maximum movement that net fish 
movements, particularly over longer periods, may give a very misleading picture as to 
the potential role of the fish themselves in spreading the mortality.  Given a relatively 
short period between infection and death or recovery, it is only required that some 
individuals show efficient short-term dispersion for the epidemic to spread at maximum 
rate. 

3.3.2 Mortality Distribution as a Limit to Diffusion 

The brief local duration of the epidemic provides another limit on D.  Dispersal must 
not be too large following infection if the pattern of intense local mortality over a short 
period is to be maintained.  This dispersal depends upon both D and the length of the 
latent period and may constrain both these parameters. 
 
Dispersion occurs over the period between infection and death.  Due to this dispersion 
the observed mortality occurring at a point will be composed of individuals that were 
infected within a region whose size is dependent on this dispersion.  Even if infection 
were instantaneous at a given point in space, because the individuals dying at that point 
were infected at a range of different points in space, the mortality would be spread out 
in time at any give location.  This effect can be used to estimate limits on dispersal 
given that local mortality occurs over a few days. 
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The standard deviation of dispersion is √(2Dt) in 1 dimension (Berg 1993).  Thus 
dispersion depends upon diffusion coefficient and the time over which diffusion occurs.  
The minimum t is about 4 days, the period over which lesions exist (Whittington et al. 
1997), but an incubation period of four or even 8 days before symptoms occur may also 
exist giving t values of 8 or 12.  With  ±1.65σ we will obtain 90% of the mortality, this 
is 3.3 times the standard deviation.  For a wave speed of 40 km d-1, 90% of mortality 
occurs in a time equivalent to approximately 0.0825 days per km of the standard 
deviation.  From this we see that diffusion coefficients in excess of 400 km2 d-1 will 
result in mortality persisting for over five to 8 days, even if infection is instantaneous at 
a given point.  This value therefore represents a maximum D consistent with observed 
mortality patterns.   
 
The maximum value of D consistent with observed mortality distributions is 
comparable to the larger values generated from analysis of pilchard swimming patterns.  
Thus it is possible that pilchard swimming unaided by vectors could account for 
epidemic's spread, although it is equally impossible to rule out a role for these vectors 
without a better knowledge of pilchard swimming patterns. 
 
Table 3.1   Standard deviation of mortality following instantaneous infection with D of 50 to 800 km

2
 d

-1
 

and infection persistence times of four to 12 days. 
 

D t= 4  t = 8  t = 12  
 s 90% s 90% S 90% 

50 20 1.7 28 2.3 34 2.8 
100 28 2.3 40 3.3 49 4.0 
200 40 3.3 56 4.6 69 5.7 
400 56 4.6 80 6.6 98 8.1 
800 80 6.6 113 9.3 138 11.4 

 
Patterns of distribution generated under large diffusion coefficients are inconsistent with 
the observed short duration of the epidemic at a given locality.  Thus high diffusion 
coefficients, which could be generated by bird-based transmission, are not appropriate.  
Inefficient bird-base transmission, generating low diffusion coefficients, comparable to 
pilchard-swimming generated diffusion coefficients cannot be ruled out.  As discussed 
in the next sub-section, such bird-based transmission does not affect the epidemic's 
behaviour, but may alter its response to changing viral virulence. 
 
We later show that these limits on diffusion coefficients do correspond to limits in the 
dynamic model that correspond with maximum levels of dispersal consistent with 
observations of brief local mortality.  However the wave speed is shown to depend 
largely upon diffusion coefficient, latent period length and the rate infection spreads.  
For a given D if we increase the latent period we must also increase infection rate if we 
are to maintain the wave's velocity.  This means that the effect of the latent period on 
local duration of mortality is effectively counteracted and is much weaker than this 
simple analysis predicts. 
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3.3.3 Diffusion and Telegraph Models 

Diffusion is a measure of dispersal, not of actual motion.  Diffusion in Fick’s equations 
is a continuous process and speed is infinite, instantaneously some organisms or 
materials diffuse throughout the range.  However, the numbers of individuals moving 
large distances are very small.  Most epidemics in nature travel at a rate that is far less 
than their potential maximum speed and so the individuals which undergo extreme 
dispersion are not important.  For example, rabies is spread by foxes at 30-60 km y-1 

(Murray 1993), obviously foxes can travel at many times this speed.  In such cases 
diffusion describes the epidemic’s spread well.  However, the pilchard herpes virus (in 
1995) spread at a rate approaching the maximum swimming speed of its hosts.  
Increasing βS0 in a diffusion-based model can cause the velocity V to exceed the actual 
swimming speed of the fish.  Clearly this is not realistic and does not give a realistic 
prediction of what would occur if the disease were to become more virulent. 
 

0

2

4

6

8

10

12

1 7 13 19 25 31 37 43 49

rD

w
av

e 
sp

ee
d

5 km
D
10 km

  
 
Figure 3.8   Daily progress of an epidemic wave calculated by diffusion- (D) and telegraph-based Fisher 
models with two maximum swimming speeds (5 and 10 km d -1). 
 
An alternative transmission is the telegraph model (Holmes 1993).  Under this model 
the velocity of the wave’s spread is limited to the maximum movement of the organism.  
The model is: 
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where ? is the frequency with which the organism changes direction, γ is the organism’s 
finite velocity, and r (or βS0) is the intrinsic rate of population increase.  Holmes (1993) 
analysed this model using the logistic growth equation for the function F(S).  This is the 
telegraph equivalent of the Fisher equation.  She derived the following relationship 
between diffusion and telegraph velocities: 
 
 Ct/Cd = 1/(rD/γ2 + 1)         (3.3) 
 
As the wave speed calculated by diffusion (2√rD) approaches maximum swimming 
speed the telegraph wave reaches 0.8Cd, ( = 1/[0.25 +1]).  As r becomes larger the 
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telegraph speed drops as a fraction of the diffusion speed; in fact the telegraph wave’s 
speed is approaching the constant γ (Fig. 3.8).  At epidemic wave speeds that are close 
to the maximum pilchard swimming velocity the diffusion-based model can lead to 
distorted estimates. 
 
For birds flying at 10 km h-1 and with a D of 110 km2 d-1, for which the appropriate value 
of βS0 is 21 d-1 (Murray 1999), there is only a small difference (<4%) between the 
solutions of the diffusion and telegraph equations.  Faster flying speeds will tend to 
reduce the discrepancy further.  
 
The model may respond differently to changes in the disease’s infectivity or the host's 
population depending upon what animal is responsible for transporting the virus.  For 
fish the speed of the epidemic wave is close to their maximum swimming speed, while 
birds can fly far faster than the wave travels.  If fish are the major cause of spread then 
increase in virulence may have less effect on the wave’s speed than will be the case for 
bird-borne viruses for which the standard diffusion model applies.  The exact effect 
depends upon how close the epidemic wave’s speed is to the pilchard’s maximum 
swimming speed.  The current epidemic certainly can be modelled using standard 
diffusion equations, the 1995 epidemic probably can also be so modelled, a more 
virulent epidemic than 1995’s would require application of the telegraph model. 
 
In conclusion, provided the fish can swim significantly faster than the epidemic's rate of 
spread (which they can) then a simple diffusion model should be capable of reproducing 
disease transmission - if this is due to the fishes' motion and this is non-migratory. 

3.4 Constraints on Viral Transmission Rate 

There are relatively few observations that we can use to constrain the rate of viral 
transmission β.  In particular the maximum value may be very large because infected 
pilchards produce vast numbers of viral particles from their gill.  Any of these viruses 
can, at least in theory, cause a new infection. 
 
These is a lower limit to β , infection must be rapid because mortality  at a given 
location occurs over a very short period.  Processes such as dispersion tend to increase 
this minimum required value. 
 
At a single site in an SIR model, a value of βS of 1 d-1

 will lead to 50% of the infection 
occurring over 2.2 days, but with 90% of the infection over 4.5 days, while a value of 2 
gives 50% in 1 day and 90% over 2.3 days.  This latter is consistent with the observed 
pattern of mortality near Hobart.  It is probably the minimum time that can be 
associated with the very short time scale over which mortality was locally reported.  
Dispersion of live fish post infection and of corpses will tend to spread mortality over 
longer periods at a given location. 
 
In the SEIR models larger β  values are required owing to the weakened feedback.  
However the value depends upon the strength of this feedback (the length of the latent 
period) and so a priori analysis is difficult.  In particular, the dependence on β  is 
complex in the fixed periods for phase duration model (Murray 1999). 
 



The development of a model of the spread of the pilchard fish kill events in southern Australian waters 25 

_______________________________________________________________________________________________ 

 

Once we add the spatial element restrictions become more complex because following 
infection the infected individuals are dispersed from their point of infection.  This 
prolongs the period over which mortality occurs at a given location and reduces the 
local peak of intensity.  Conversely, the invasion of infected individuals accelerates the 
development of infection. 
 
The a priori constraints on β  are weak, we can be fairly confident that it is greater 
than s1.  The principle constraint is provided by the co-constraint of the known 
epidemic wave speed and other parameters for which uncertainty is less (see Chapter 8). 

3.5 Pilchard Population Structure and Density 

The Australian pilchard's population was described as consisting of three separate sub-
populations as early as 1951 (Blackburn 1951) on a morphological basis.  Blackburn 
identified populations in New South Wales, Victoria and southern Western Australia.  
Subsequently Syahailatua (1992) identified a fourth population off west coast Western 
Australia.  Genetic studies have also identified four semi- independent but contiguous 
populations (Dixon et al. 1993).   A gap in pilchard egg distribution also shows in the 
region between southern and western WA (Fletcher et al. 1997). 
 
The populations are further subdivided into local aggregations.  For example the 
southern coast of Western Australia has three such aggregations at Albany, Bremer Bay 
and Esperance (Cochrane 1999).  However, these local aggregations do not appear to 
affect the rate of spread of the epidemic. 
 
Notably, the boundaries of these populations are associated with the anomalies that can 
be identified in the epidemic's rate of spread.  A slowing in spread rate between the 
southern and western WA populations is explicable in terms of weakened contact across 
the boundary.  However, the rapid spread from Victoria to mid New South Wales does 
not seem to be explicable in terms of population boundaries, quite the reverse would be 
expected.  A possible explanation is that there is a migration from the Bass Strait region 
to the New South Wales region caused by the approach of winter.  Pilchards have been 
shown to undertake seasonal migrations off South America (Torres et al. 1985).  This 
response could be exaggerated if sick fish sought out warmer waters (Fletcher et al. 
1997). 
 
Spawning of different populations of pilchards occurs at different times of the year, 
such that among these different populations some pilchards are spawning on any given 
month (Fletcher et al. 1997).  Even in Western Australia, for which the front exhibited a 
near uniform speed of progression, a complete range of breeding states (pre, post and 
current) existed among local pilchards at the time of the passage of the 1995 epidemic.  
We do not expect breeding related behaviour to explain differences in the transmission 
of the epidemic front. 
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Table 3.2  Breeding Seasons of Australian Pilchards at locations along the Australian Coast (Data from 
Fletcher et al. 1997). 
 
Location Spawning Season 
Western WA August and February-March 
Albany July and December to January 
Bremer Bay June to July 
Eastern WA and Great Australian Bight April to July 
South Australia February to March 
Victoria November 
New South Wales Summer, progressing northwards 
 
Pilchard populations have been estimated from the Albany region using catch and effort 
data and a computer model (Fletcher 1992).  Using subsequent data (1991-5) to refine 
the estimate, this population is now estimated to vary from 12,000 to 25,000 tonnes.  
Use of daily egg production method (DEPM) produced an estimated range of 15,000 to 
31,000 for the same period.  So regional population numbers, and hence density, varies 
by a factor of 2 in time.  Population off Albany peaked in 1994 and declined to about 
50% in 1997.  Population was therefore at this location about half during the 1998/9 
epidemic what it had been during the 1995 epidemic.  We will later show that models 
show only a very weak dependence upon the pilchard's population density.  Pilchard 
populations off Japan have shown changes of three orders of magnitude due to changes 
in recruitment success (Wada and Jacobson 1998), so large changes are possible. 
 
We normalise the model population to the average pilchard population.  Thus we do not 
need to know the exact value of this population, only relative variation about this mean.  
As the model is very insensitive to variation in population density, even the issue of 
relative population level proves only of limited importance. 
 
The pilchard sub-populations are all of the same species and sub-species.  Indeed the 
global pilchard population is now considered to consist of a single species without 
genetically distinct sub-species (Parish et al. 1988).  

3.6 The Virus 

The viruses associated with the mortality of pilchards in 1995 and 1998/9 were 
herpesviruses (Whittington et al. 1997).  Herpesviruses are large double stranded DNA 
viruses (Cann 1997).  They are similar in struc ture to phytoplankton viruses, which are 
robust and capable of surviving marine environmental stresses for hours or days 
(Murray and Jackson 1992).   Since pilchard schools are constantly moving, while 
viruses do not, it is the physical separation of viruses from potential hosts, not their 
destruction, which leads to viruses ceasing to become an effective source of infection.  
In a similar situation, when Pacific herring are kept in cages hemorrhagic septicemia 
virus numbers are able to build up and infection becomes widespread 
(Hershberger et al. 1999). 
 
The viruses associated with the two epidemics are similar.  A comparison of DNA using 
PCR methods found that the 1995 virus tested positive to a test developed for the 
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1998/9 epidemic, but this test is not very specific as it consists of only 180 nucleic acid 
base pairs (AAHL 1999).   
 
Virus numbers in the gills of fish appear to be much lower in the 1998/9 epidemic than 
was the case in 1995 (AAHL 1999).  Electron microscopy could not always detect virus 
in individual gill filament of infected fish in 1998/9.  This reduced presence of virus in 
the fishes' gills suggests a very large reduction in the value of the viral transmission rate 
parameter β .  In spite of the low sensitivity of wave speed to β  under models with fixed-
length latent periods (see chapters 7 and 8), this change could be large enough to lead to 
a substantial reduction in the wave speed.  

3.7 Length of the Infection in a Single Individual 

Lesions containing viral particles appear on the fishes' gills some 2 to 4 days before 
mortality occurred (Whittington et al. 1997).  The lesions are clinically different prior to 
the coming of the mortality wave to their condition within the mortality wave 
(Fletcher et al. 1997).  This shows that the lesions developed over about 4 days 
(Whittington et al. 1997).   We thus can be certain the fish were infected several days 
before they died.  We earlier assumed that the lesions released viruses and represented 
an infectious stage (Murray et al. 1999).  However it is only at the time of mortality that 
extensive exudation is detected (Fletcher et al. 1997).  It is possible that the lesions are 
only relatively briefly a source of new infection when exudation increases just before 
the fish dies.  Later modelling results do support a relatively brief period of exudation if 
the model is to replicate the pattern of the initial phase of the epidemic (see Chapter 9). 
 
The disease may incubate for some time before symptoms occur, and this period, plus 
any period over which lesions are not a source of infection, forms the latent period. We 
lack the data to determining the length of this latent period.  This data was hoped to be a 
result of transmission trials, however these trials do not appear to have succeeded in 
transmitting viable virus (AAHL 1999).  Because during the incubation period the 
infected individuals lack symptoms it is difficult to determine if fish are incubating in 
the field.  We therefore have little data to support any particular value.  
 
We do have some suggestive data however.  The initial period of mortality, in South 
Australia, shows clumping of mortality events.  After the first three reports on 22 and 
23rd of March there was a gap of about 8 days before the mortality broke out again 
(Fig. 3.9).  This was followed by reduced mortality, followed by further peaks at eight-
day intervals; the waves becoming less distinct with time.  This is suggestive of a gap 
between infectious periods, i.e. a latent period, of 8 days.  However, such a long latent 
period proves to be inconsistent with very high velocities of the 1995 epidemic. 
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Figure 3.9   Reports of pilchard mortality events in the early part (from 22 March) of the 1995 epidemic.  
Note a possible tendency to peak at 8 day intervals. 
 
Similar data from the initial month (October) of the 1998/9 epidemic (Ward et al. 1999) 
shows similar gaps in the initial build up of that epidemic (Fig. 3.10).  This data appears 
to show peaks in mortality at a slightly shorter time interval of about 6 days.  Records of 
mass mortality are much denser for the 1998 period than for 1995, possibly due to better 
reporting.  If so there may be much missing data from 1995.  It is also possible that the 
gap is due to the spread of the disease from relatively isolated Spencer Gulf into the 
Southern Ocean. 
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Figure 3.10   Reports of pilchard mortality events in the early part (from 1 October) of the 1998/9 
epidemic.  Note a possible tendency to peak at 6 day intervals. 
 
A fairly long latent period would also be consistent with delayed mortality of caged 
pilchards, although this may well not be due to the virus (AAHL 1999) and therefore 
irrelevant.   It is also consistent with the observation of lesions in small numbers of 
pilchards considerably in advance of the active front and the identification as PCR 
positive of a pilchard isolated from advance of the front (AAHL 1999).  However, the 
available evidence concerning the length of the incubation period remains weak.  Mild 
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lesions were apparent 13 days after exposure to viruses of pilchards in tanks 
(Jones 1999), which may indicate that the incubation period was just ending.  However, 
these pilchards did not test positive for virus (AAHL 1999), so this is very doubtful 
evidence for the length of the latent period.  
 
As we have already noted, these longer latent periods allow fish to disperse following 
infection and this is difficult to reconcile the brief local duration of the infection in the 
mature wave.  Although these observations of gaps are interesting, they are very 
inconclusive evidence, while the brief duration of local infection away from the origin 
is clearly demonstrated. 
 
Actual infection takes place some time before the deaths occur.  The length of this 
period is equal to the sum of the lengths of the infective and latent periods.  This gives a 
total period of 4 to 12 days and the front progresses during this time.  If the front is 
travelling at 35 km d-1 then the infection is actually occurring at least 140 km in 
advance of the current position of the mortality front, possibly over 400 km in advance 
of the apparent front.  This must be borne in mind for the development of any control 
strategy and is in line with the isolation of infected pilchards far in advance of the 
observed mortality (AAHL 1999). 

3.8 Survivorship and Mortality 

Estimates of the proportions of the adult pilchard population that was killed by the 
herpesvirus are very variable in space and between the two epidemics.   
 
In 1995 the estimate for pilchard mortality in Western Australia was around 10-15% of 
the population (Whittington et al. 1997).  Estimates for mortality in Western Australia 
following the 1998/9 epidemic are of the order of 60% (Jones, personal 
communication), some local mortality is estimate at 40 - 90% at Bremer Bay (Gaughan, 
personal communication).  However, the pilchard population at Albany only appeared 
to receive 2% mortality, such a large difference is unlikely to be the case - indicating 
that there are major uncertainty in the mortality estimates.   
 
In South Australia, mortality of 60% was estimated for the 1995 epidemic on the basis 
of fish stock estimates for 1995 and 1996 (Ward et al. 1999).  A similar decline 
occurred in South Australia following the epidemic of 1998 (Jones 2000). 
 
 It is difficult to explain how large proportions of the adult population could avoid the 
disease if schools interact at realistic rates (see chapters 8.4) and in any case, the high 
1999 mortality ind icates that a large proportion of the host population is exposed to the 
virus.  This is particularly the case since the pathology indicates more viruses were 
present in the gills of the pilchards in 1995 than was the case in 1998/9 (AAHL 1999) 
and the disease spread more rapidly in space in 1995.  This would suggest that the 1995 
epidemic was more easily spread than the 1998/9 one.  Therefore a significant 
proportion of the hosts in 1995 must have been exposed and yet survived that infection, 
if the Western Australian mortality levels of 1995 were correctly estimated.  
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3.9 Conclusions 

The epidemics of 1995 and 1998/9 were similar with extremely rapid spread and brief 
local duration.  But they had significant differences, including differences between the 
east and west bound spread of the 1995 epidemic.  Our estimates of the rate and nature 
of the spread of the 1995 epidemic are similar to those of Whittington et al. (1997). 
 
From these observations we draw the following constraints upon the model.  The 
epidemic wave speed in 1995 was 40 km d-1

 east-bound and 21 km d-1
 west-bound, 

while in 1998/9 the speed was around 11 km d-1. Our estimates of the rate and nature of 
the spread of the 1995 epidemic are similar to the 35 km d-1

 of Whittington et al. (1997), 
except that we emphasise the differences in speed between the two fronts.  These rates 
are 2.4 and 4.6 m s-1, very similar to the 0.3 - 0.5 m s-1 estimated by Griffin et al. (1997). 
 
The value of D is constrained to a range of 20 - 400 km2 d-1

 this is a very important 
constraint upon the model.  On occasions pilchards may exhibit non-diffusive 
movement.  The value of β  is only weakly constrained to values >1.  It is later 
constrained with reference to other parameters and the epidemic wave speed.  The 
length of the infection must be at least 2 - 4 days, because of observational evidence 
based on lesion formation.  However, these lesions may not be a source of infection 
until they are mature so the infectious period may be shorter (but not longer) than this.  
The length of the latent period is highly uncertain.  Some, weak, evidence suggests 
periods of up to 8 days, but other constraints suggest a short latent period.  This lack of 
data on the latent period is the most significant gap in direct data constraining the 
model.  We later use the initial behaviour of the epidemic to indirectly investigate latent 
and infective periods. 

 

4 Local Epidemic Models 
 
Epidemics travel and develop in both space and time.  We start our analysis by 
considering the development of the epidemic at a single point in space.  We use very 
simple models of the spread of an epidemic in a single population, the local school and 
in an interacting shoal of schools.  In the following chapters (6+) we consider the effect 
of large spatial scales on the epidemic's development. 
 
Simple epidemic models were reviewed as an initial stage in the development of the 
modelling project (Murray 1999, Murray et al. 1999).  However, it is worth 
summarising these simple models again.  This summary is useful for a development of 
understanding of the basic modelling process and because there have been further 
developments in our use of simple models to describe the pilchard herpesvirus 
epidemics. 

4.1 Continuous Turnover 

The simplest epidemic model is the susceptible- infected model.  In this model a 
population of initially susceptible individuals is exposed to a small number of infected 
individuals.  These infected individuals spread infection to the susceptible individuals  
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increasing the number of these infectious individuals.  Meanwhile infected individuals 
recover or die - joining an implicit or explicit pool of individuals that are removed from 
the infection (see Anderson and May 1979). 
 
 dS/dt = -SIβ         (4.1) 
 
 dI/dt = SIβ  - Iα        (4.2) 
 
 dR/dt = Iα         (4.3) 
 
Because of the extremely rapid spread of the pilchard herpesvirus and the short duration 
of mortality at a particular location, other slower processes such as population growth 
and non-disease based mortality can be neglected from the modelling of the epidemic. 
 
This model has a critical threshold value of S = β/α.  If S is less than this threshold then 
production of new infections is less than their removal rate and hence the disease will 
decline. 
 
In practice, infected individuals do not immediately become sources of new infection.  
A latent phase E must be added between the S and I phases.  Due to the very rapid 
transmission and spread of the pilchard herpesvirus it is likely that any delays due to 
period for which infection is in this latent phase play a critical role in the disease's 
dynamics. 
 
 dS/dt = -SIβ         (4.4) 
 
 dE/dt = SIβ  - Eσ        (4.5) 
 
 dI/dt = Eσ - Iα        (4.6) 
 
 dR/dt = Iα         (4.7) 
 

4.2 Fixed Infection Phase Period Lengths 

These simple models are extremely valuable for interpreting the behaviour of 
epidemics, and we will use them in the analysis of the pilchard herpesvirus' spread.  
However, for the replication of the pattern of mortality inflicted by the pilchard 
herpesvirus these models exhibit a fundamental flaw.  Observed mortality induced by 
the herpesvirus was extremely rapid, with vast numbers of fish dying over a short time.  
This sudden coincidental death resulted in the observed mass strandings, which for a 
given location usually occurred over a very short period (see later).  This mortality 
occurred about 4 days after lesions indicated the fish had become infective (Whittington 
et al. 1997). 
 
The pattern of mortality that the SIR and SEIR model generates (Fig. 4.1) is rather 
different to these observed sharp peaks of mortality.  Modelled mortality is spread over 
a period of several of days, even if infection is instantaneous.  This modelled mortality 
only occurs on average 4 days after infection and is spread over many days while the 
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number of individuals that were infected at a given time decays exponentially.  Further, 
the highest probability of mortality occurs immediately after infection developed, 
observed infection (lesions) is apparent for days before mortality begins.  Death under 
the SEIR model includes this spread due to continuous mortality plus a further spread 
due to the variable delay in the onset of the infectious period caused by the latent 
period; although mortality in this model does peak some time after the initiation of 
infection.   
 
The pattern of development of infection that is generated by these standard models is 
not biologically reasonable.  There must be some finite time required for an infection to 
develop and become infectious.  It will be some time after infection that there will be a 
maximum probability of the infection developing to the infectious stage - and there is 
zero probability of this occurring immediately following infection.  The same applies to 
mortality or recovery, it takes time for the fish to fight off or succumb to the disease and 
so the probability of death or recovery will vary as the infection develops.  For example, 
when shrimp are infected with the virulent viruses White Spot Syndrome Virus or 
Yellow Head Virus no mortality occurs for 4 or 8 days respectively.  High levels of 
mortality then follows over the course of 3 or 4 days and after this, if there are any 
survivors, mortality ceases (Lightner et al. 1998).  The pattern of pilchard mortality 
suggests that mortality occurs over an even briefer period. 
 
The real probability pattern for phase changes in a developing infection thus has some 
sort of distribution clustered about a time of maximum mortality.  But we have no 
information on the distribution of probability about the time of maximum mortality, 
except that it must be highly concentrated around that peak given the short duration of 
observed mortality.  For numerical modelling it is thus much easier to simply use an 
infection period of a fixed length.  We have adapted such a model from the work of 
Dwyer and Elkington (1983). 
 
 dS/dt = -SIβ         (4.8) 
 
 dE/dt = SIβ  – St-bIt-bβ       (4.9) 
 
 dI/dt = St-bIt-bβ  – St-cIt-cβ         (4.10) 
 
 dR/dt = St-cIt-cβ        (4.11) 
 
In this case the infective period is of length b and the latent period is of length c - b, the 
total infection being of length c.  The pattern generated by this model is of a spike of 
mortality at a fixed interval after infection (Fig. 4.1).  Since infection is non-
instantaneous, mortality will in practice be spread over a finite period even under this 
model. 
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Figure 4.1   Distribution of mortality, normalised to maximum, following infection under the SIR, SEIR 
and [S][E][I][R] models and mortality of prawns caused by White Spot Syndrome Virus.  The first two 
models result in mortality that is either spread over a long period or occurs immediately after infection. 
The fixed infection length model results in a peak after an interval; observed mortality inflicted by WSSV 
is of this pattern, although with some spread about the maximum. 
 
The standard continuous turnover SEIR (or SIR) model does not work well as a 
description of the brief burst of mortality occurring after a delay as occurs in these 
pilchard herpesvirus epidemics or in the WSSV mortality of prawns.  However, in most 
other epidemics mortality is spread over a long period because the infection builds up 
over a relatively long period.  Most epidemics incorporate several cycles of infection 
before burning out.  It makes little difference to the pattern of mortality generated 
whether this mortality is modelled as occurring at a fixed time after infection or at a 
constant rate following infection.  Hence the more mathematically tractable continuous 
turnover models are acceptable in other cases. 
 
Another feature of the fixed period phase- length model is that mortality may occur as a 
series of peaks, particularly if c < 2b, i.e. the length of the latent period is longer than 
the infectious period.  These peaks are generated because of the time gap between 
infection and mortality.  Such peaks appear to occur at the initial focus of the disease 
near Adelaide, where mortality peaked, with intervening gaps, about three times before 
the epidemic started to spread spatially (see later).  Continuous turnover models cannot 
reproduce this pattern of gaps in the mortality, which stems naturally from the fixed-
period phase length model.  We will look at the pattern of initiation of the epidemic in 
spatially explicit models in more detail later. 

4.3 Effect of Schools on Transmission 

Disease dynamics are usually modelled on the basis of the random interaction of 
infected and susceptible organisms.  However, most organisms have a tendency to 
aggregate  (Okubo 1980) and hence do not interact randomly.   
 
The effect on epidemics of spatial variation in host population density has been 
examined extensively.  This spatial variation may consist of regionally varying 
population density as in the fox hosts of rabies  (Murray et al. 1986) or of interacting 
patches as in the case of seals subject to phocine distemper virus (Swinton et al. 1998).  
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In patchy populations, the epidemic spreads both within and between patches 
(Ball et al 1997).  At the local level, the spread of rabies is also patchy, due to higher 
degrees of interaction among related foxes (Thulke et al. 1999).  The population 
structure of the model may thus depend upon the level of spatial resolution required by 
a model, which depends upon the problem being investigated. 
 
Many fish populations form large shoals that are subdivided into schools.  In this case 
variation is not spatial, the schools in a shoal do not have a specific spatial relationship 
to each other and interact randomly (see Blaxter and Hunter 1993).  This is different 
from the continuous interactions of individual members of households (Ball et al. 1997) 
or patches (Swinton et al. 1997) with their neighbouring household or patch; the 
interaction of schools occurs as a discrete mass interaction. 
 
Within schools the population density is fixed and independent of school size, the fish 
maintain a constant spacing from their neighbours.  Clupeoid fish, for example, occupy 
a volume equivalent to approximately (body- length)3 (Blaxter and Hunter 1993).  
Therefore, as the shoal’s population increases the size and/or number of the schools can 
increase and the reverse applies as population declines, but the density of fish in these 
schools does not change.   
 
We analyse transmission of disease at the levels of the school, shoal and larger spatial 
scales.  We use this analysis to derive a numerical model encompassing both school and 
shoal scale transmission and consider the larger scale transmission of epidemic waves. 
 
In the creation of this model we are hampered by a lack of knowledge of the details of 
behaviour in the interaction of individuals within and between schools.  We therefore 
aim to make models that are not sensitive to assumptions of patterns of behaviour and to 
note and describe the areas that are sensitive to unknown behaviours. 

4.4 Transmission at the School Level 

There are basically two mechanisms by which fish diseases can be transmitted: directly 
by close contact with infected individuals, and indirectly through the medium of the 
water.  The two mechanisms lead to substantially different responses of epidemics to 
changes in school sizes.  The mechanisms are respectively density dependent and 
density independent, or more strictly, school population dependent and school 
population independent. 
 
The simplest mechanism is direct contact, requiring susceptible fish to come into close 
proximity to an infected fish.  In this case transmission is density independent, since the 
infected fish has the same number of neighbours regardless of the size of the schools.  
The identity of these neighbours can, and almost certainly will, vary with time.  There is 
an exception in that individuals on the edge of the school have fewer neighbours, and 
the proportion of the population at the edge of the school does decrease as the school 
size increases, but (except for very small schools) the number of these fish is 
insignificant.  Transmission (at the school level) is 
 
 
 βz Iz Sz /Nz         (4. 12) 
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where β  is the contact rate, I the infected population, S the susceptible population and N 
the total population.  Subscript z indicates that these are the school populations.  Note 
that these are populations, not densities, since the school density is independent of the 
population.  It is however often convenient to normalise these populations to a standard 
total shoal population, i.e. N = 1/Z where Z is the number of schools in the shoal. 
 
This patch (school) size independent transmission approach was used by 
Swinton et al. (1998) to model the transmission of PDV between seals.  Transmission of 
the disease occurred when seals rested at communal haulouts due to interaction between 
immediate neighbours; the number of which was independent of haulout size. 
 
If the water is a major conduit for transmission within the school then transmission 
efficiency can increase with school size.  At the simplest, the virus mixes through the 
whole school and so the number of susceptible fish that encounter the virus increases 
with the school size 
 
 βz Iz Sz         (4.13) 
 
This is the simplest classical form of the disease transmission model (Anderson and 
May 1979).  However, non-random mixing within the school complicates school size 
dependent transmission.  Non-random mixing in the water in a school, such as 
concentration of viruses in trails immediately behind infected fish, may lead to a 
dependence of transmission rate on a power of school size (Murray 1999).  Under 
water-bourne transmission, if fish are immobilised then viral numbers can accumulate 
allowing for more transmission within a trapped population (Hershberger et al. 1999). 
 
To reproduce the full range of complete independence of transmission from school size 
to linear dependence, we can use the formula 
 
 βz Iz Sz [Nz

x
 /Nz]        (4.14) 

 
Where x lies between 0 and 1, and hence the extremes of school size independent 
(x = 0) and school size dependent transmission (x =1) are brought into a single formula.   
 
Notice, however, if the number of schools increases with population density, so that the 
size of individual schools is constant, then transmission at the school level does not 
change with the shoal's total population size whatever the value of x.  Maintaining 
constant school size is a second means of introducing density independence to local 
transmission. 

4.5 Transmission between Schools 

Like individuals, schools interact.  Unlike spatially fixed patches or populations, the 
schools do not have fixed neighbours and so interact randomly with other schools in the 
shoal.  The rate at which schools come into contact depends both upon the probability 
of contact and the number of schools within the shoal.  So the number of schools 
containing infected individuals contacts individuals consisting entirely of susceptible 
individuals is 
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 γZi Zs         (4.15) 
 
If, on encounter the fish exchange some proportion of their populations then infected 
individuals will be spread through the population.  So if infected individuals are 
introduced into one school then random encounters will lead to infected fish reaching 
all other schools at a rate controlled by school encounter rate.  As the number of schools 
containing infected fish increases, the rate of the spread of infection to uninfected 
schools increases; and then declines as the number of uninfected schools become 
limiting. 
 
The shoal itself may increase in density as numbers increase, or it may be of constant 
density and the schools spread over a larger area as their numbers increase.  In the latter 
case the encounter rate between two particular schools may drop as total population 
increases, although this is counteracted by the increased number of schools. 
 
The interaction between infected and clean schools is thus similar to the interaction 
between infected and susceptible individuals.  There is a difference, however, in that 
infection can persist in schools for longer than in individuals.  Infected schools can 
contain uninfected individuals and these act as a target for new infections, allowing the 
disease to persist.  For the whole period infection lasts within the school then school 
may act as a source of new infection to other schools. 
 
At the start of infection in a shoal a small number of infected individuals will be 
introduced to one of the schools.  The source will be an adjacent shoal or, if the 
epidemic is starting then a local source of a novel mutant, introduced virus or 
resurrected virus (e.g. viable virus released from sediments) will similarly introduce the 
virus to one of the schools. 
 
At the initial stage of the epidemic within a school the rate of production of new 
infections per infected fish is at its most rapid because the population of the initially 
infected school is still mostly susceptible and any other school the school may 
encounter will consist entirely of susceptible fish.  The rate of production of new 
infections per infected fish from then on declines, although with temporary increases as 
new untouched schools are encountered. 
 
In the next chapter we develop these ideas on viral transmission and pilchard schooling 
into a formal model which we analyse to determine the effect of schooling the local 
development of an epidemic. 
 

5       A Numerical Model of Intra- and Inter- School Transmission 

To analyse the interaction of school and shoal level effects that we discussed in the 
previous chapter we derive a model including both intra-school and and inter-school 
level activity. 
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5.1 The Model Structure 

5.1.1 The school-level models 

At the local level, transmission is modelled using a standard SEIR model (Fig. 5.1) 
based on the methods described by Anderson and May (1979) 
 
 dSz/dt = -βzSzIz [Nz

x
 /Nz]       (5.1) 

 
 dEz/dt = βzSzIz [Nz

x
 /Nz] - σEz      

 (5.2) 
 

 dIz/dt = σEz – αIz        (5.3) 
 
 dRz/dt = αIz         (5.4) 
 
The subscript z denoting that this is the local school population.  The epidemic in 
question persisted at most sites (apart from its origin) for only a few days.  Therefore 
factors such as birth and non-disease death of the pilchards are not included in the 
model. 
 
Such SEIR models also have problems in replicating the short duration of mortality 
observed at any given location.  They tend to spread the mortality over a long period 
even if infection is near instantaneous. 
 

S E RI
βIS σE αI

 
 

Figure 5.1   The SEIR model's structure 
 
In order to produce a short period of high mortality, as is observed for the pilchard 
epidemics (Fletcher et al. 1997) we also use a version of the model with fixed infection 
period lengths.  This model has the same structure as before (Fig. 5.1) and approximates 
to 
 
 dSz/dt = -βzSztIzt [Nzt

x
 /Nzt]       (5.5) 

 
 dEz/dt = βzSztIzt [Nzt

x
 /Nzt] -βzSzt-bIzt-b [Nzt-b

x
 /Nzt-b]    (5.6) 

 
 dIz/dt = βzSzt-bIzt-b [Nzt-b

x
 /Nzt-b] -βzSzt-cIzt-c [Nzt-c

x
 /Nzt-c]   (5.7) 

 
 dRz/dt = βzSzt-cIzt-c [Nzt-c

x
 /Nzt-c]      (5.8) 
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Similar models have been used by Dwyer and Elkington (1993) to study viral epidemics 
in moth populations.  We will refer to this as the [S][E][I][R] model because the phases 
of infection persist for periods of fixed length.   
 
Implementation of this model can present a computational problem because of the need 
to keep track of exactly when infection occurred.  If the model were simply 
implemented with short time steps then E and I could require to be specified as 
hundreds or thousands of sub-variables and these would be required in each school in 
the model; this could present very large computation overheads.   
 
To avoid such vast numbers of model components, we implement the basic model with 
fewer categories integrating the infection occurring over a given period.  Typical 
periods are 0.05 to 0.2 days, thus for each day that the phase E or I persists we require 5 
to 20 variables.  The model then acts as a conveyer belt, inputs for the period are place 
in the initial variable subcomponent of the school (e.g. Ez1) continuously.  Once the time 
interval is complete these are transferred to the next subcomponent so that infection in 
category Ez1 is transferred Ez2 which in turn is transferred Ez3; where Ezt is the infection 
in school z which occurred at time t. 
 
When the transfer is between different phases of the infection, for example when the 
contents of the last E are transferred to the first I, there is a potential problem of sudden 
influx if updating were done on this longer-term basis.  To ameliorate this problem the 
transfer is continuously between categories S -> E, E -> I and I -> R, implemented with 
short time steps the model requires.  Indeed it is precisely because of the high rates of 
infection and so rapid transmission from S to E within schools, that the model needs to 
use short time steps. 
 
This hybrid mechanism of occasional updates within infection phases and continuous 
updates between infection phases works well.  It can produce problems when 
transmission is extremely fast if the updating interval is too long, these problems may 
occur at the end of the infection when I is already large and therefore the epidemic is 
already reaching its final phase.  Even if numerical problems do occur, they have little 
effect on earlier phases of the development of infection.  Hence, to avoid any possible 
numerical problems, we tend to use infection rather than mortality as a measure of the 
epidemic's behaviour.  Defining mortality is in any case problematic since α includes 
both mortality and recovery from infection.  Sensitivity analysis shows no effect of the 
length of the update period for periods of less than 0.2 days. 
 
One other problem with the hybrid mechanism is that it is not easily analysed.  Indeed, 
the values of E or I can mean quite different things for the development of the epidemic 
depending upon how these are distributed between their sub-categories.  However, it 
generally behaves in a similar manner to the SEIR model, and so this forms a good 
basis for initial analysis. 

5.1.2 Stochastic Interaction between Schools 

The number of schools in a shoal is variable and may be large, but it is small enough 
that interaction of these schools is not continuous, instead it is governed by chance.  
This is particularly true in the initial and final phases of the spread of infection between 
the schools.  The initially infected school may simply not interact with any other school 
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for a long period of time, alternatively it may rapidly come into contact with a second 
school.  Once the initial exchange has occurred the probability of the two schools that 
now carry infections coming into contact with another school is almost doubled.  Thus 
it would seem that stochastic interaction between schools in the initial phase of the 
epidemic may shape its development. 
 
The schools interact at random with the probability of any two schools coming into 
contact being defined by a parameter, the event being determined stochastically.  On 
contact the schools exchange a fixed proportion of their populations of all the classes. 
 
 Σcxy(Xx – Xz) x = 1 to Z       (5.9) 
 
 ≤ p, cx = 1         (5.10) 
 
 ζ > p, cx = 0         (5.11) 
 
The parameter y is the proportion of populations exchanged by schools that come into 
contact, X is the set of S, E, I and R contained in a school x or z.  Exchange over a given 
time occurs at random if the stochastic variable ζ (lying between 0 and 1) is less than 
the probability p of contact.  If schools tend to merge and split on contact, this is 
equivalent to large values of y. 

5.1.3 Model Parameters 

The model therefore has 6 parameters, the within-school βz, σ and α plus between 
school contact probability p, exchange quantity y and the number of schools, Z.  The 
phase lengths b and c-b are the logical equivalents of σ and α.  Note, however that βz is 
the local infection rate within a school.  The value of β at the shoal population level (and 
higher levels) emerges from this value and the interaction of the schools. 
 
We have observational evidence with regards to α (or c-b) that this turnover of the 
infectious phase occurs over less than 2 – 4 days, although we experiment with periods 
of up to 6 days.  It is in this period that viral containing lesions are present in the fishes' 
gills (Whittington et al. 1997), but these may not be a source of viruses until they 
mature (see Chapter 9).  We assume that σ (or b) is of the same order, but lack direct 
evidence and so experiment with a larger range of 1 -10 days, σ = 0.1 - 1 d-1. 
 
The value of βz is uncertain, but it must be high enough to allow for rapid development 
of infection within a school if mortality is to occur over a short period.  The value 
required for this depends upon the within-school model used.  The value of β  derived 
from βz must be consistent with the observed epidemic wave speed, this relationship can 
be found directly for SEIR models, but not the [S][E][I][R] version.  From the analysis 
of Murray et al. (1999) the appropriate range of β  in the SEIR model was 20 - 200 d, 
implying 600 - 6000 d for βz with 32 schools; higher values of β  are valid only for very 
low D values. 
 
The mixing parameters are highly uncertain, but schools in a shoal interact frequently, 
so a rate which allows for, on average, the daily contact of all schools within a shoal, 
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1 d-1, seems reasonable particularly if schools dissolve overnight and reform at random.  
Schools do dissolve at night in the case of some clupeoid fish species (Blaxter and 
Hunter 1982).  We experiment with a range of rates of contact of 0.125 to 2 d-1.  
Similarly the amount of exchange of population on contact is uncertain and we look at 
the range of 1 - 10% exchange of population per contact. 
 
We also have the choice of school size independent or school size-dependent virus 
transmission within the school; this we can attain by varying x from 0 to 1.  This factor 
is only important if we are varying the sizes of the schools. 
 
Table 5.1   Model parameter values 

 
Parameter Default Min Max Units Function 
βz 1000 250 4000 d-1 Infection rate 
α 0.25 0.166 1 d-1 Mortality/recovery rate 
σ 0.25 0.1 1 d-1 Infectivity onset rate 
p 1 0.125 2 d-1 School contact probability 
y 0.05 0.01 0.1  Proportional exchange 
x 1 0 1  Densisty dependence factor 
 

5.1.4 Evaluating the Model Output 

We need a means of comparing runs with a few simple statistics.  The model produces a 
very large number of raw outputs in the form of S, E, I and R time series and these must 
somehow be condensed.   
 
One good measure of the length of the epidemic is the number of days over which 
infection of 50% of the population occurs.  This is not the days from the start of the 
epidemic, but rather the number of days around the peak of the epidemic.  We find this 
by sorting the infection calculated at 0.01 day intervals and summing until we have 
reached a total population in excess of 50% have been or are infected.  The value of the 
length of time over which modelled infection occurs is that it can related to observations 
of mortality, whereas the time required for the infection to reach its peak cannot since 
the time of the initial arrival of infected individuals cannot usually be known. 
 
Another interesting, although less compact, measure of the effect of schooling on the 
models is apparent β .  By this we mean the value of β  that can be calculated from S, I 
and the rate at which new infections are created at the shoal level, relative to the βz 
value actually used in the model at the school level. 

5.2 Model Results 

5.2.1 Overall Parameter Sensitivity of Infection Transmission 

The period over which 50% of the susceptible hosts become infected that occurred in 
the SEIR and [S][E][I][R] models after a 20 day run is plotted in figure 5.2 for a range 
of parameter values.  The values plotted are the means of five runs, however only under 



The development of a model of the spread of the pilchard fish kill events in southern Australian waters 41 

_______________________________________________________________________________________________ 

 

conditions of low contact probability or low numbers of schools was their much 
stochastic variation. 
 
Unsurprisingly, the period required to induce 50% infection of the pilchards is highly 
sensitive to the infection rate parameter in both the SEIR and [S][E][I][R] models. 
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Figure 5.2   Parameter sensitivity of the period required for 50% infection in the SEIR and [S][E][I][R] 
models. βz =[250, 500, 1000, 2000, 4000 d

-1

], p=[12.5, 25, 50, 100, 200% d
-1

], y =[1.25, 2.5, 5, 10%],  
E = [1, 2, 3, 4, 5, 6, 7, 8, 10 d], I =[1, 2, 3, 4, 5, 6 d], Z =[1, 2, 4, 8, 16, 32 schools] density independent 
(or school size constant). 
 
The effect of changes in contact rate of schools is significant only for low contact rates.  
If contact rate between any pair of schools is less than about 50% per day then the 
infection peak is increasingly spread over a long period as contact rate drops.  However, 
for higher rates of contact there is no effect of increase in the contact rate.  This lack of 
response is highly significant since it suggests that the details of the dynamics of inter-
school interact may not be important provided interaction is reasonably frequent. 
 
The period over which infection occurs does show some sensitivity to the proportion of 
fish that exchange between two schools following interschool contact.  This effect of 
this is generally less than changes to the contact rate and is only significant if exchange 
is very small (<2.5% per contact).  This lack of effect at higher exchange levels means 
that the wholesale merging (and splitting) of schools would not change the epidemics 
dynamics, because this is simply equivalent to high values of y. 
 
Intuitively, reducing the number of schools into which the population is divided would 
be expected to have a major impact on the epidemic, since this reduces the frequency of 
contact but increases the proportion of the population exposed as each new school 
receives infected individuals.  Note that we reduce βz as the number of schools declines, 
in order to maintain the value of β .  On the whole, there is remarkably little effect in 
changing the number of schools.  When the population is combined into one school 
infection spreads very rapidly, as expected.  With two schools the period over which 
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infection spreads is prolonged.  This is because, with only two schools, contact is 
infrequent and so infection in one school is likely to be advanced before contact occurs 
with the second school, this leads to prolonged low levels of infection.  At larger 
numbers of schools reduced transmission within the schools is counteracted by more 
frequent contact between schools and so transmission rate does not change with the 
number of schools.   If there are few schools then the model's behaviour between runs is 
highly variable, but at larger numbers the runs are all similar.  This lack of dependence 
on the number of schools provided their number is not small, like the lack of 
dependence on contact rate, suggests that details of the schooling behaviour can be 
neglected.   
 
The lack of effect of school numbers on transmission tends to support the use of 
transmission models that are population independent at the larger scale.  This applies 
regardless of whether transmission is dependent on population size at the school level or 
not if the total population tends to break up into more schools as population rises.  
Breakup into more schools is very likely to be the case if there is an optimal school size 
for feeding and defence.  We will explore the effect of the number of schools in more 
detail later. 
 
We might expect the behaviour of the SEIR and [S][E][I][R] models to differ over their 
response to changes in the length of the latent and infective periods, since it is the 
representation of the exchange between these stages that is the specific difference 
between the two models.   This is indeed the case (but is not related to schooling 
behaviour). 
 
The effect of latent period length on the SEIR model is largely linear, because changes 
in σ change the rate at which infection develops and hence the period over which 
mortality is spread.  Under the [S][E][I][R] model there are two phases to the response 
to the length of E.  Initially increase in E increases the period over which mortality 
occurs.  This is because at low E there is a rapid development of I and hence feedback 
of new infections occurs.  Once E is sufficiently long, the initial infected of individuals 
(as discussed before) drives infection and lacking feedback from new infections the 
process is independent of E.   
 
The models are both less sensitive to changes in I than in E and respond qualitatively 
differently.  Under the SEIR model increased I (reduced α) reduces the period of over 
which infection occurs because more transmission occurs if the infective stage lasts 
longer, the effect is quite weak.  Under the [S][E][I][R] model the spread of infection is 
largely independent of the length of I, but low levels reduce the length slightly by 
delaying this until feedback can occur. 
 
As described earlier, the exchange between infection stages in the [S][E][I][R] model 
was carried out at discrete intervals.  Test model runs updated at intervals of 0.01 to 
0.2 d showed no variation at all, we therefore conclude the model is not numerically 
sensitive to this process at the default level of resolution of 0.05 d. 
 
As a general conclusion we see that the model is largely independent of the details of 
inter-school transmission, provided the number of schools and their interaction rates are 
not small.  Schools of many clupeoid fish, such as pilchards, do indeed appear to be 
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numerous and continuously interacting (Blaxter and Hunter 1982).  The initial analysis 
also indicates that infection in the SEIR and [S][E][I][R] models shows similar 
dependence upon parameters, but with important exceptions, largely relating to the 
nature of the feedback between infection and further infection in the two models.   We 
can expect largely similar behaviours in the two models. 
 
We examine the effects of contact probability and the number of schools on the details 
of the epidemic's regional behaviour in more detail in the following section. 

5.2.2  Transmission Between Schools 

The random encounters between schools lead to changing rates of contact between 
infected and uninfected schools as the proportion of schools carrying infection changes 
(Fig. 5.3).  Initially the average time required to spread the infection to another school is 
long because there is only one infected (source) school.  Stochastic events are also 
important for the same reason.  Once infected school numbers build up the frequency of 
encounters between schools containing infected individuals and schools completely 
clean of infection increases, peaking when 50% of schools contain infected individuals.  
The frequency of encounters then drops because of a lack of 'clean' schools, until the 
last school without any infected members is equally unlikely to encounter infected 
individuals as the first school containing infected individuals was to encounter an 
uninfected school. 
 
Despite the low probability of encounter with the last clean school it cannot serve as a 
refuge because the probability of avoiding contact is equally low as was the probability 
of propagation of the disease to a second school after it was initially introduced to the 
shoal.  Therefore, only if there is a high chance of the disease failing to transmit initially 
is there a significant possibility for refuge popula tions to avoid infection.  The rapid and 
smooth observed propagation of the epidemic along the Australian coast indicates that 
transmission is not weak.  Further, there is only one initially infected school and if the 
infection dies out in this school the epidemic ceases locally and must be reintroduced.  
The final school is only safe from infection once the epidemic has burnt out in all the 
other schools in the shoal. 
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Figure 5.3   Average time required for the I

th
 of 32 schools  to become infected at 1 contact for each  

pair of schools  per day. 
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The probability of transmission between schools depends upon both the contact 
probability and the number of schools.  The dependence is relatively simple and is close 
to linear, i.e. if we take four times the number of schools with a quarter the contact rate 
we have to similar contact patterns to the original situation (Figure 5.4).  The initial 
phase of the infection is prolonged as is the transmission of infection to the last of the 
schools, but the exposure of the bulk of the population occurs at the same rate in both 
situations (p = 1, schools = 8 and p = 0.25, schools = 32). 
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Figure 5.4   Time required for a given proportion of the fish population to be exp osed to the risk of 
infection (i.e. in schools containing infected individuals). 32 or 8 schools (Z) with contact probabilities of 
1 or 0.25 d

-1
. 

 
The rapid mixing of infected and clean schools which occurs in the midpart of the 
curves (Fig. 5.4) means tha t the bulk of the mixing of infected and uninfected schools 
occurs over a relatively short period.  Hence the effect of schooling may be to delay the 
initiation of the epidemic, but it does not dilute its force when it arrives under even 
moderate rates of mixing.  The population even though it is divided into schools is 
effectively well-mixed for the critical phase of transmission of infection, except at very 
low rates of interaction or numbers of schools.  Pilchard shoals appear to consist of 
abundant and frequently interacting schools. 

5.2.3 Transmission Efficiency and the Spread of Infection 

We are interested in how schooling affects transmission at all stages of the epidemic as 
this develops.  To look at this we examine the apparent value of β  versus S for these 
runs.  The apparent value of β  is the value of β calculated from the rate at which 
infection spreads averaged over the whole shoal's population relative to S and I, again 
over the whole shoal. 
 
In the SEIR model we see that initially (when S = 1) all β values are the same, at the 
value close to that one would expect from uniformly distributed I (Fig. 5.5).  This is 
because initially I is very small and so infection rate is close to maximum.  The rate is 
close to maximum, but not quite there because the initial I is not zero, particularly as a 
proportion of the school.  The infection rate rapidly drops off as a large proportion of 
individuals in the initial school become infected.  This decline in infection is 
counteracted by mixing to other schools, but β  can remain substantially depressed when 
contact between schools is limited. In this early phase stochastic influences may be 
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important.  As S falls, the values of β begin to increase and, at very low S values, β  is 
again back to the perfectly mixed value (1000/32 schools = 31.25).  At high mixing 
rates apparent β  is always close to the value of β  predicted for a perfectly mixed 
population.  At lower mixing rates, apparent β  may actually overshoot the predicted 
uniform population β  value just before returning to this value.  The overshoot occurs 
because, if contact rate is low, then by the time the epidemic spreads to the last of the 
schools it has already burnt itself out in some schools which received infection early on.  
These schools mostly consist of R individuals.  As a result S and I are both relatively 
concentrated in the schools that received infection later and hence contact rate is higher 
than expected from averaged population.  
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Figure 5.5   SEIR model apparent β, the infection rate in the population as a whole, versus the proportion 
of the total population that are susceptible to infection under three inter-school daily contact probabilities. 
 
We also apply the analysis of apparent β  versus S to the [S][E][I][R] model (Fig. 5.6) 
obtaining results that are similar in general principles, but different in detail.  The model 
starts off and ends with the uniform effective β  value.  However, rates drop off rapidly, 
then recover to a fairly constant level, and only at extremely low S do they finally 
recover completely.  At very high mixing rates the constant value of apparent β  reached 
rapidly is the value expected for uniform population with 1/32nd of the transmission rate 
(= 31.25 d-1).  At lower school contact rates the intermediate apparent β  value is 
proportional to mixing and so is strongly impacted by inter-school mixing.  The general 
sensitivity analysis (Fig. 5.2) indicates that only as p falls below 0.25 d-1 (25%) does this 
parameter have any effect on transmission, so at p = 0.1 d-1 there is only a small 
deviation from the well mixed situation.  However, there is a large decline in β  if 
mixing is further inhibited.  A population whose subgroups interacted at, on average, 
greater than 10 day intervals would not be considered a coherent shoal. 
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Figure 5.6   [S][E][I][R] model apparent β, the infection rate in the population as a whole, versus the 
proportion of the total population that are susceptible to infection under three inter-school contact 
probabilities. 
 
Neither model gives a significant threshold value for a minimum S.  Given the very 
rapid local transmission rate of the virus, the much lower mortality/recovery rate of 
infected fish a minimal threshold would be expected: St = α/β  = 0.008 or 0.00025 in 
each school (Anderson and May 1979).  The decoupling between infection and the end 
of that infection, enhanced by the E phase, leads to an overshoot of the threshold so 
infection does not cease until virtually all susceptible fish have been infected.  This 
overshoot is more extreme under the [S][E][I][R] model. 
 
The critical point about both the SEIR and [S][E][I][R] models is that both initially, 
when S is large, and finally, when S is small, contact rates are similar to those predicted 
under uniform population with the within-school transmission rate βz divided by the 
number of schools.  If mixing within the school is density independent then the patterns 
in apparent β  still apply, it is just that β  = βz when S is close to 1 or 0.  The apparent 
value of β  when S -> 1 determines speed of transmission of the epidemic front.  
Suppression of apparent β  for intermediate values of S only occurs to a large extent at 
low levels of interaction. 

5.3 Discussion 

We have developed a simple dynamic model to explore the effect of the interaction 
within a shoal of schooling fish.  We apply models of the effect on transmission of both 
the local interactions within the school and of the interaction between the schools of a 
shoal.  Our approach has been to develop a robust model with stochastic interactions 
which allows us to look at different local model structures and extents of interschool 
interaction. 
 
The results from this model are highly significant for our understanding of the effect of 
interaction at local and regional levels on the spread of epidemics and in particular the 
spread of herpesvirus among pilchards.   
 
Firstly, epidemic wave speeds do not depend upon mixing processes between schools. 
Epidemic wave speeds are calculated by linearising equations at the point where S0 = 1 
(Murray 1993), i.e. at the time when very small numbers of infected individuals are 
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initially introduced.  The initial infection rate is independent of inter-school contact rate 
(Fig. 5.4), so the speed of the epidemic wave does not depend upon the nature of the 
interaction between schools.   
 
Secondly, schooling does not provide a refuge for avoidance of infection as the 
epidemic draws to a close.  As S tends to zero, the apparent infection rate increases back 
up to the uniform populations mixing rate (the overshoot is illuminating of the 
processes, but does not have much effect on infection).  This recovery of the infection 
rate means that schooling does not provide any refuge for susceptible fish to escape 
infection.  Since apparent β  is the same as S tends to 1 and S tends to 0, avoidance of 
infection by the last clear school is only possible if there is a significant possibility of 
infection not escaping from the first infected school.  This is inconsistent with the easy 
transmission of the virus to adjacent shoals that the rapid spread of the epidemic shows 
(Whittington et al. 1997).  
 
Small schools could form a refuge, if transmission were school size dependent and the 
schools were persistent.  But this would be balance by higher exposure in larger 
schools.  Variation in school size will increase variation in the rate of spread of the 
infection, but not alter the epidemic's basic properties.  In any case, because β  is much 
larger than α, the schools would have to be very small indeed for threshold to 
significantly impact transmission 
 
Between these extremes of low initial levels of infection and high late-stage infection, 
schooling may potentially weaken viral transmission at intermediate levels of infection.  
This weakening of transmission could result in a less intense but more prolonged 
epidemic.  However, when intermediate numbers of schools contain infected fish, the 
rate of contact between infected and uninfected schools is at its peak.  This means that 
mixing of infected individuals into the population is highly efficient and hence any 
suppression of transmission is strongly mitigated, unless β  is very large and c is very 
small.  For the pilchard herpesvirus β  is very large (Murray 1999), but there is still a 
lack of dependence on c and y.  This indicates that for other diseases, with lower 
transmission rates, the effect on transmission of subdivision of local populations is 
likely to be weak if these interact on reasonably frequent time scales. 
 
Schooling does tend to make disease transmission less population density dependent.  
The individual schools may be of a similar size even if the total population changes.  If 
so, transmission rates may not change with total population, and instead transmission 
may depend upon the proportion of hosts infected, rather than their numbers.  Even if 
school size does change with shoal size, it is possible that local transmission is 
independent of the school size anyway, this too would mean density dependent shoal-
level transmission.  Density independent transmission would mean that the speed of 
long-distance propagation of epidemic waves would be independent of apparent 
population density at the larger spatial scale.  Explicit modelling of schools is not 
required to reproduce this effect of schooling. 
 
Schooling may affect the effective value of viral transmission β  as a function of the 
actual local transmission rate βz because their values are related by the number of 
schools in the shoal.  However, we estimate β  directly from the epidemic's observed rate 
of spread and so it is the value of βz that we are uncertain of owing to our lack of 
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knowledge of the school structure.  If we dispense with modelling the school- level 
structure, uncertainty in this parameter is not important.  
 
The initial input of infected individuals is in the form of I.  If these individuals were 
input in their E phase of infection then mixing into other schools would occur before 
they became a source of new infections.  This pre- infectious mixing would further 
weaken the effect of schooling on transmission. 
 
These conclusions do not appear to be dependent upon the structure of the model 
adopted.  Details may be different owing to the role of the E phase and fixed period 
length versus continuous turnover in delaying feedback between the occurrence of one 
infection and the initiation of further infection from this infected individual.  However 
the generally limited role of schooling is apparent in all model forms for realistic school 
interaction rates. 
 
We can think of models under which the interaction among schools is nonrandom, 
effectively adding another layer of population organisation to the model.  Juvenile 
pilchards school separately from adults, and this may explain an observed relatively low 
vulnerability in this age group (Fletcher et al 1997).  Adult pilchards do form separate 
breeding populations, but these seem to intermingle spatially.  There is no evidence that 
the adult population within a region is subdivided into mutually exclusive groups.  
Relatively low levels of mortality (10-15%) recorded for 1995 in Western Australia 
(Fletcher et al. 1997) appear to have been replaced by very high levels of mortality (up 
to 90%) in 1999.  Unless the mixing behaviour within the shoals has changed 
substantially, this high mortality would not support the concept of internally separate 
populations.  
 
Our overall conclusion is that, in the case of the pilchard epidemic, we can dispense 
with the direct modelling of schooling behaviour.  Transmission rate at the shoal and 
larger levels is likely to be independent of the shoal's size.  Since we lack adequate data 
to model schools and their interactions in detail, this lack of dependence greatly reduces 
uncertainty in our model results. 
 

6 Modelling Large Scale Dispersion in a Spatially 
Structured Dynamic Model 

 
The 1995 and 1998/9 pilchard herpesvirus epidemics spread along some 5000 km of 
coastline.  The spread of infection at this scale cannot be considered as a single well-
mixed population and so an explicit large-scale spatial structure must be incorporated 
into the model.   

6.1 The Models 

We therefore developed 2 basic dynamic model structures - one for the SEIR model and 
the other for the [S][E][I][R] version.  Other structures have also been experimented 
with, including a model with a fixed length latent period but with continuous turnover 
of infectious phase.  This model is used to derive an analytical solution of the wave 
speed (next chapter), which we are able to apply to it and to the [S][E][I][R] model to 
determine the wave's parameter sensitivity.  



The development of a model of the spread of the pilchard fish kill events in southern Australian waters 49 

_______________________________________________________________________________________________ 

 

 
The basic equations of these models are those described before, with the addition of 
diffusive transport. 
 
Continuous Turnover Model 
 
 ∂S/∂t = -βIS + D ∂2S/∂x2       (6.1) 
 
 ∂E/∂t = βIS - σE + D ∂2E/∂x2      (6.2) 
 
 ∂I/∂t = σE - αI + D ∂2I/∂x2       (6.3) 
 
 ∂R/∂t = pαI + D ∂2R/∂x2       (6.4) 
 
 ∂D/∂t = (1-p)αI         (6.5) 
 
Fixed latent period 
 
 ∂S/∂t = -SIβ  + D ∂2S/∂x2       (6.6) 
 
 ∂E/∂t = SIβ  – St-xIt-xβ + D ∂2E/∂x2     (6.7) 
 
 ∂I/∂t = St-xIt-xβ  – αI + D ∂2I/∂x2      (6.8) 
 
 ∂R/∂t = pαI + D ∂2R/∂x2       (6.9) 
 
 ∂D/∂t = (1-p)αI         (6.10) 
 
Fixed latent and infection, the [S][E][I][R] model, periods 
 
 ∂S/∂t = -SIβ  + D ∂2S/∂x2       (6.11) 
 
 ∂E/∂t = SIβ  – St-xIt-xβ + D ∂2E/∂x2      (6.12) 
 
 ∂I/∂t = St-xIt-xβ  – St-yIt-yβ + D ∂2I/∂x2     (6.13) 
 
 ∂R/∂t = pSt-yIt-yβ  + D ∂2R/∂x2      (6.14) 
 
 ∂D/∂t = (1-p)St-yIt-yβ        (6.15) 
 
Analytical solutions allow the speed at which the epidemic expands to be evaluated; this 
greatly speeds model analysis.  However they do not describe the dynamical nature of 
the epidemic's spread, particularly at its origin.  They cannot be used to describe non-
linear features of the epidemic and must be re-evaluated for every different model 
structure. 
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6.2 Model Implementation 

The models have to be implemented as a computer program before it can be fully used.  
Programming is a complex process involving a large range of implementation decisions 
from basic design strategy to output formats (see Murray et al. in press).  We will not 
describe the coding process in detail, but we will describe some of the major strategies 
and problems involved in programming and describe the use of the program. 

6.2.1 Program Design 

The pilchard mortality model has been coded in Java.  The program used is Object 
Orientated with five separate files, which contain classes describing: the main program 
plus output routines, parameter values, the fish population structure, records of model 
fluxes and the output file stream (Fig. 6.1).  These classes hold major data objects and 
associate processing routines. 
 

SeirD2
main program

Dpara
program + model 

parameters

population
S, E, I and R

fluxes
model fluxes 

XlocalIO
output stream

Message2
input file

outputdata
output file

 
Figure 6.1   Basic class structure of the pilchard epidemic model showing input and output files. 
 
The main program SeirD2 creates instances of the other four classes and then initialises 
their values.  It then inserts an initial infection at a spatial point in the population 
packages.  The program then calls an internal routine which calculates model process 
for a day, this routine being called as many times as the days model is to run for.  
 
For each daily time step the model routine calls a routine handling local processes in 
each spatial box.  It then calls a routine within the population class which handles 
diffusion between the boxes.  If an update stage is completed the model updates the sub-
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stages of the E and I variables (see next section). Finally, it selects between 5 output 
routines, if conditions are appropriate.  These routines are held in XlocalIO and their 
functioning is described in subsection C. 
 
The Dpara class holds all the parameter values.  It handles their input from the 
parameter file.  Time sensitive rates parameters are adjusted to fit the model time step 
and the diffusion rate is also adjusted to fit the spatial structure adopted.  This internal 
conversion enables standard parameter files with fixed units of days and km to be used.  
Parameter values are recorded via XlocalIO in the output file.  Numerical issues are 
discussed in the next subsection. 
 
The population class holds the spatial and infection stage (S, E, I or R) and substage 
structure of the model.  It handles the updating of the substages and diffusion between 
the spatial boxes and is adjusted in response to local fluxes calculated in SeirD2.  It also 
contains a routine to find the size and location of the largest number of infected 
individuals, this is used in the output of epidemic wave location with time, allowing 
calculation of wave speeds. 
 
The detailed structure of the population E and I sub-stages is hidden from outside 
routines.  This means the population class can be switched with those holding other 
population structures in the most straightforward possible manner. 
 
The flux packages stores the model fluxes: infection, onset of infectious phase (E to I) 
and recovery plus mortality.  Data is stored on both the instantaneous (as rates per day) 
and summed total values.  This data may be used by program output routines. 
 
Output is to a file handled in class XlocalIO, which is initialised to the file 
"outputdata.txt" by the main routine in class SeirD2.  This class records model 
parameters on input.  It also records outputs as selected by the SeirD2 class, reaching 
into the data classes population or fluxes to obtain the values for output. 

6.2.2 Numerical Issues 

The models are solved on a fixed grid of time and space using simple Eulerian 
integration methods.  These temporal and spatial grids are set up at model initialisation 
using parameters.  The model's parameters are in units of days, km and normalised fish 
population density.  Rates are converted within the program of the model to rates per 
time-step.  Diffusion is divided by the time step size and the square of the space step 
size to create a proportional exchange between adjacent boxes. 
 
The E and I variables are subdivided into sub-phases.  The fixed period length model is 
required to keep track of when infection occurred, so it can update phases at the 
appropriate time.  This means keeping separate variables containing the individuals that 
received infection at a given time.  If a new variable were created for each model time-
step this could lead to very large numbers of variables, leading to inefficient 
computation.  To avoid this problem, the model  is implemented using the same 
approach to time stepping as was used in the schooling model (chapter 5).  The phases 
of infection E and I are subdivided into sub-phases which are N time-steps long.  Only 
after N time-steps are the phases updated and infection is transferred among the 
subphases.  Interaction between the first or last sub-phases and other model phases are 



The development of a model of the spread of the pilchard fish kill events in southern Australian waters 52 

_______________________________________________________________________________________________ 

 

handled at the level of the model's fine time steps.  These interactions with outer sub-
phases are infection from S to E(1), onset of infectivity from E(last) to I(1), and the 
removal phase I(last) to R or D. 
 
A potential numerical problem could occur if the number of time steps per day were 
such that there was not an exact integer number per model update time.  On initial input 
of parameters, the model checks that these values are consistent and, if not, alters the 
number of time-steps to a value such that there are an integer number per update time.  
If the number of time-steps per day is less than the number of phase updates, the model 
adjust the time step length so that it equals that of phase updates. 
 
A second numerical problem may emerge if the spatial scale used is too fine relative to 
the diffusion coefficient and time scales.  In this case the diffusive flux can become 
large and ultimately it may lead to values > 0.5, which results in diffusion more than 
equilibrating the concentration gradient, analogous to water flowing up hill.  If the flux 
value exceeds 1 it can lead to negative quantities being produced.  The program detects 
this situation and gives a warning message and aborts the run if the flux exceeds 0.25.  
The flux varies with the inverse square of the spatial scale and so when this is reduced 
flux may increase rapidly.  Excess flux can be avoided by decreasing the model time 
step or increasing the spatial scale.  Since there are two option, the computer aborts the 
run allowing the user to select which to adjust. 
 
Another numerical issue related to the spatial scale is that the initial dose of infection is 
described as a concentration at a particular location.  If the spatial scale is adjusted the 
initial dose is also adjusted.  This does not affect the ultimate development of infection, 
but it may delay its initial development. 
 
The use of a fixed time scale is problematic but probably unavoidable.  Because of the 
close link between infection processes and diffusion, particularly once the wave starts 
moving, we need to use the same time step for all boxes.  Experimentally, we have 
found the model can be numerically sensitive to box sizes of > 4 km, which is not 
surprising considering wave speeds are of the order of 10 km d in 1998/9.  This means 
we use a spatial scale of 2 km.  As discussed earlier this use of a relatively fine spatial 
structure requires small time steps in order to avoid numerical problems with diffusion.  
The model is not sensitive to changes in sub-phases lengths of around 0.2 day or less, 
we use 0.1 day as standard.    
 
Results obtained from the model agree strongly with analytical predictions (Chapter 7 
and 8) and therefore are not subject to numerical errors. 

6.2.3 Using the Model 

The model is quite simple to operate it has only one input file and produces output to an 
output file or that is viewed on the screen.  Shell scripts have been set up which select 
different input files and directing the output to a common file.  This allows multiple 
model runs. 
 
The input file contains a column of input numbers and a column of descriptive text.  
There are 15 input parameters that control the model and the program's operation.  
These parameters are the infection rate, the diffusion coefficient and a switch describing 
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linear (standard) or quadratic (see chapter 11) infection.  The pilchards' spatial range in 
km and the spatial scale are then input.  From this the model derives a spatial structure.  
The lengths of the I (infectious) and E (latent) periods, in days, together with an update 
resolution (per day) are used to calculate the numbers of I and E sub-phases in the 
infection periods.  There then follows the initial dose of infected individuals, which is 
<=1, and the site at which infection first occurs.  This is usually box 0, but for 
investigation of the initial stages of the epidemic a central box should be used.  There 
then follow some program control parameter, the length of the run (in days) the time 
steps per day, the interval between I/O events, a parameter used to define the limits of 
I/O option 3, and the selection of I/O options.  These will be detailed shortly. 
 
Rate parameters are adjusted to the model time step on input.  A diffusive flux is 
calculated from the diffusion coefficient on the basis of the inverses of the time step and 
the square of the spatial scale.  If sub-phase update resolution time-step is not an integer 
number of the main model time step size then this latter is adjusted.  Problems with 
diffusion are also detected.  The details are as described in the previous sub-section. 
 
The model has 5 output options.  The first four are exercised at an interval determined 
by the output resolution parameter.  The first is simply a dump of all the S, E, I and R 
values; E and I being the sums of their sub-phases.  The second is an output of the 
current wave location, as determined by the site with the maximum value of the sum of 
local I.  The third option is the size and location of the wave of mortality, with 
sensitivity limits describing the spatial envelope within which mortality rate exceeds a 
specified level.  The fourth output option is the wave shape which is dumped at the I/O 
resolution and at intervals of 0, 0.25, 0.5 and 0.75 along the spatial scale.  The fifth 
output option is spatial, not temporal and is not controlled by the I/O resolution 
parameter.  This option detects the time at which the wave of I reaches target milestones 
that are spaced at intervals 0.1 of the spatial resolution.  This is used for evaluating the 
epidemic wave's speed. 

6.3 Analytical Solution of the Model's Wave Speeds 

The results of the model depend upon the parameter values that it is given.  We 
investigate the model's dependence upon parameters by means of analytical solutions 
which can give us strong insights into the basic behaviour of the model (Murray and 
Parslow 1999). 
 
Epidemics travel as a wave.  The epidemic stars at a source location and spreads out, 
but behind this front the epidemic dies down and may die out.  In certain simple models 
the epidemic wave has a surprisingly simple dependence upon a few parameters.  These 
include local transmission terms and also long distance dispersal (D).  Dispersal 
depends upon the concentration gradient and this dispersal term, for example the 
dispersal of infected individuals in 1-dimension depends on D∂I/∂x.   
 
Epidemic wave speed speeds are found by linearising the differential equations around 
the origin, where I tends to zero (Murray 1993), i.e. at the point when the first few 
infected individuals are introduced.  We will not detail the derivation of these wave 
speeds, we have discussed them in more detail elsewhere (Murray 1999). 
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In a simple SIR (susceptible infected, removed) model described by Murray (1993) to 
look at the spread of the Black Death, the following (1-dimensional) velocity of the 
epidemic is derived: 
 
 V = 2√(βS0D)√[1 – α/βS0]       (6.16) 
 
In this case α is the mortality/recovery rate of infected individuals. 
 
For a more complex model presented by Yachi et al. (1989), to describe (one-
dimensional) fox rabies and involving a latent phase, the following velocity speed was 
derived. 
 
 V = √(2D{√[(σ – α)2 + 4σβK)] –   (σ + α +2a)})    (6.17) 
 
In this case σ is the rate at which animals with latent infection develop into the full 
blown infectious state, K is population maximum, equivalent to S0, and a is the non-
disease mortality.  The 1-dimensional model is particularly appropriate to pilchards, 
which inhabit a strip along the relatively narrow Australian continental shelf 
(Fletcher et al. 1997).  There are some simplifications that can be made for the fish 
disease.  If σ and α are small, as they are in fast developing disease, the (σ - α)2 is very 
small, particularly if the two are similar.  The value of a is also small relative to α.  
Allowing for these corrections leaves the simplified equation: 
 
 V = √(2D{√[4σβS0)] –  (σ + α)})      (6.18) 

 
As just discussed, the rate of transmission, per infected fish, is at its highest when the 
infection is first introduced.  This means that transmission rate is high when I tends to 0 
and hence the linear approximations of travelling wave solutions apply.   
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Figure 6.2   The speed of the wave front calculated from the modified version of Yachi et al. (1986)  
model and the wave speed as determined by the numerical SEIR model. 
 
Experimentally, we find that the modified Yachi formula provides a very good 
description of the numerically generated wave speeds (Fig. 6.2). 
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These analytical solutions allow us to rapidly assess the sensitivity of the model's wave 
speed to parameterisation and so to concentrate upon more detailed analysis of other 
features such as the duration of mortality at a given point. 
 
In the next chapter a method is developed which allows solutions of the fixed latent 
period length model to be determined analytically.  The solution of the model is very 
insensitive to the turnover of the infectious phase.  The fixed latent and fixed infectious 
period lengths version of the model turns out to have very similar solutions, we are thus 
able to use  the analytical method as a tool to investigate both models in the relevant 
region of parameter space. 
 
7 A Tractable Deterministic Multiple Diffusion Coefficient 

Model With Latent Period For Virus Epidemics In 
Pilchards 

7.1 Introduction 

Having demonstrated by simulation work that the existence of a latent period implies 
that the effect of schooling on the spread of disease may be neglected, we exhibit in this 
chapter a tractable deterministic model with a fixed length latent period and different 
diffusion coefficients for healthy fish as compared to infected fish and show how we 
may obtain analytic formulae for both the population threshold for the onset of an 
epidemic and the speed of the resulting infection front. 

7.2 The Model 

Let us assume that the virus has a latent period and let 
 
 ),(,),(,),(,),(,),( txMMtxRRtxIItxEEtxSS =====  
 
be the densities of susceptibles, latent, infectives, recovered and dead, respectively. If 
the latent period is a constant duration b for every infected fish then we obtain a system 
of equations thus 
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subject to the initial conditions  
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where 
 

=β transmission rate, 
 

=α recovery rate for infectives, 
 

=µ death rate for infectives, 
 
B, D are diffusion coefficients. Here we have allowed for the possibility that infected 
fish may, due to some panic or terror reaction to the virus, dart about more quickly than 
do normal healthy fish, or even move more slowly, but we assume that upon recovery 
they return to normal behaviour. However, in order to get the solution set out below, we 
must assume that latent hosts behave similarly to infectives. We assume also that 
schooling plays no significant part affecting the speed of progress of the disease through 
the inhabited space and may be neglected. 
 
Unfortunately, the above system of differentio-functional equations is quite beyond our 
powers of analysis in the form given. However, if we modify the postulate of a fixed 
latent period to one in which it shows random variation then we may find the resulting 
system of differential equations tractable. 
 
Replacing equation (7.2) for the latent phase by a differential equation with input to the 
phase at a rate SIβ  and transference to the infective phase at a rate Eσ , say, gives the 
deterministic equivalent of a model in which the time spent in the latent phase is a 
random variable with a negative exponential distribution with parameter σ . This then 
becomes tractable but at the cost of realism because the negative exponential 
distribution favours small values of the variate far too much to accord with the reality of 
a latent period which is nearly constant. 
 
We will instead reformulate the model with the latent phase represented artificially as a 
concatenation of distinct though similar subphases. The model then becomes the 
deterministic equivalent of one in which the latent period is a random variable with 
reasonably realistic distribution. Ultimately, in fact, we make its variance extremely 
small while keeping its mean fixed so as to obtain, for all practical purposes, behaviour 
indistinguishable from that of the above model. 
 
Let us suppose that the density of latent hosts decomposes thus 
 
 ).,(...),(),(),( 21 txEtxEtxEtxE n+++=      (7.7) 
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and replace the system (7.1)-(7.6) with 
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subject to the initial conditions 
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The system (7.7)-(7.14) is the deterministic equivalent of a model in which the latent 
period is random with distribution that of the sum of n independent variates each having 
a negative exponential distribution with parameter σ . In other words, it is as if the 

latent period has a Gamma distribution with mean σ
n  and variance 2σ

n . See, for 

example, Feller (1965, pp 8-10). 
 
We do not postulate that the latent phase consists physically of a concatenation of 
distinct though similar subphases. This is merely a mathematical device to give the 
latent phase’s duration a realistic distribution and thus achieve both realism and 
tractability. 

7.3 Travelling Wave Solutions 

Introducing a variable ctxz −= where c is a constant velocity, we seek travelling 
wave-form solutions of the form 
 
 )(,)(,)(,)(),(,)( zMMzRRzIIzEEzEEzSS ii ======  
 
whereupon (7.8) – (7.14) transform to the ordinary system 



The development of a model of the spread of the pilchard fish kill events in southern Australian waters 58 

_______________________________________________________________________________________________ 

 

 
 ''' DSSIcS +−=− β         (7.15) 
 
 ''' 111 BEESIcE +−=− σβ        (7.16) 
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 ''' DRIcR +=− α         (7.19) 
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subject to the conditions 
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Now, making 1−iE the subject, we can represent (7.17) as 
 
 ii EDE 11 =−          (7.21) 
 
where 1D is a linear differential operator with constant coefficients. Similarly, making 

nE the subject, we can represent (7.18) as 
 
 IDEn 2=          (7.22) 
 
where 2D  is a  linear differential operator with constant coefficients. 
 
Also, as ∞→z , we have 0SS ββ → so, making I the subject, we can represent (7.16), 
asymptotically as ∞→z , as 
 
 13EDI ≈          (7.23) 
 
where 3D  is also a linear differential operator with constant coefficients. 
 
Now, appealing to the associativity of linear differential operators, we find recursively 
from equation (7.21) 
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Then, taking the first and last members of (7.24) and substituting first for nE from (7.22) 
and then for I from (7.23) we get 
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Similarly, beginning with (7.23) and substituting for 1E from (7.24) 
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Similarly from (7.22) 
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And, finally, from (7.21) 
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Looking now at equations (7.25)-(7.28), taking the first and the last member in each 
case, and comparing the equations using the commutativity of differential operators, we 
see that I  and all of the iE  satisfy, asymptotically as ∞→z one and the same linear 
differential equation with constant coefficients. Therefore, recalling that 

0,0 →→ iEI as ∞→z for ni ,...,1= , we see that those variables must each be 
asymptotic to a multiple of one and the same exponential function corresponding to the 
real negative eigenvalue closest to zero. Hence we can write 
 
 niEI ii ,...,1, =≈ γ         (7.29) 
 
for some constants 0>iγ , ni ,...,1=  which are now to be determined. 
 
We deduce from (7.29) that 
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Substituting into (7.16), (7.17), (7.18) from (7.29), (7.30) and rearranging the terms we get 
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respectively, which three equations must share at least one real negative eigenvalue. Their 
discriminants must therefore be equal and so we must have 
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This immediately means that 
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say, for some 0>ρ . So we may write 
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and, in particular, 
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But, substituting from (7.35) into (7.34) now gives 
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which reduces to 
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Taking just the first and last members of (7.34) gives 
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and, substituting into that from (7.37), (7.38), (7.39) gives 
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or, more usefully, 
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For reasons to become clear later σ will be sufficiently large that the quantity in square 
brackets will be positive. 
 
According to the principle established by Kolmogorov et al (1937) the system can 
represent an epidemic if and only if the discriminants of equations (7.31)-(7.33) can, as 
c is varied, possibly become negative so that the equations admit some oscillating 
solutions, requiring simply that the members of (7.34) be positive. Fisher (1937) 
showed, by considering the random motion of individuals near the wavefront, that in 
such a case waveform solutions will travel with a speed c chosen so as to render those 
discriminants zero and thus be given by 
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Clearly then, the existence of an epidemic requires that 
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which in turn requires that 0S  satisfy the threshold criterion 
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Recall now that the model is the deterministic equivalent of a model in which the latent 
period is a random variable with a Gamma type probability density, actually given 
specifically by 
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viz e.g. Feller (1965 pp 8-10), with mean value σ
n  and variance 2σ

n . 

 
To approximate to the model expressed in equations (7.1)-(7.6) we assign to the latent 
period of this second model a mean value of b and a variance v, say, the latter having 
some quite small value. 
 
Thus, setting 
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we can solve to obtain 
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Substituting in (7.42) for n,σ  from (7.49), (7.50) we obtain 
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Thus, from (7.43), we can say that if the latent period is a Gamma variate with mean 
b and variance v  then the speed of waveform solutions will be 
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where ρ is the unique root of (7.51). 
 
To use Newton’s method to solve (7.51) we let, say, 
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from which 
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and, taking 1=ρ  as an initial estimate, we successively replace ρ by )('
)(

ρ
ρρ f

f−  

until the process converges. Because a small percentage error in the value of ρ leads to 
a much larger percentage error in the value of  c it is necessary to compute the former to 
very high accuracy. 
 
By arbitrarily choosing the variance v to be quite small we may obtain the front speed 
for a system which, for all practical purposes, is indistinguishable from the system 
described in (7.1)-(7.6). We verify this solution in the next chapter with respect to the 
numerical model. 
8 Parameter Sensitivities of the Speeds and Duration of 

Model Mortality Waves 
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Perhaps the single most significant model outcome is the speed of the wave generated 
from a model run.  This is a single clear result which can be tested against observations.  
The wave's speed can be found numerically or by the analytical solution methods 
described earlier in chapters 6 and 7.   
 
Observed values of the wave-speed were discussed earlier (chapter 3).  These varied 
substantially between eastern and western bound waves in 1995, between the two 
epidemics and probably between the two waves of the 1998/9 epidemic.  Maximum 
sustained speed was about 40 km d-1, while the minimum was about 10 km d-1.  We also 
consider the intermediate speed of 20 km d-1 for analysis as this is close to the speed of 
the westbound 1995 wave and of the eastbound 1998 wave.  Analysis of the parameter 
sensitivities indicated by the models will give us insight into the factors controlling the 
variation in this speed. 

8.1 Wave Speed 

We earlier derived an analytical solution of the continuous turnover model based on 
work by Yachi et al. (1989) 
 
 V = √(2D{√[4σβS0)] –  (σ + α)})      (8.1) 
 
As we showed earlier, this formula gives a very good description of the wave's speed as 
generated numerically in this model.  
 
We thus are able to see exactly what parameters this model's predicted wave speed 
depends upon.  Essentially it depends upon the square root of D, and the fourth roots of 
βS0 and σ the rates of infection of susceptible and of the onset of the infectious period 
among infected individuals.  This indicates that inclusion of the latent period gives a 
much lower sensitivity to transmission rate and population density than in simple SIR 
models. 
 
In the previous chapter we derived an analysis method which allows rapid evaluation of 
the wave speed generated by the model version containing a fixed latent period length.  
In this chapter we use this method to show how the wave speed depends upon 
parameter values.  We then compare the results obtained by the analytical method to 
those obtained numerically to analyse models with a fixed latent and infectious period 
lengths and show that the analysis works well for the parameter ranges appropriate to 
the pilchard epidemic.  
 
In chapter 3 we showed that the epidemic wave's observed speed varies from about 
10 to 40 km d-1.  We wish to find an appropriate parameter space for waves with 
velocities in this range based on the three parameters singled out above.  The analytical 
solution depends only upon the latent period length, b, the rate of turnover of infectious 
individuals, α, infection rate β  and susceptible population S0 and upon diffusion. 
 
The wave velocity is largely independent of the rate of turnover of infected individuals 
(mortality or recovery).  We used the analytical solution to find the effect of varying α 
+ µ from 0.125 to 0.5 d-1 that is an infective period of 8 to 2 days, which is the extremes 
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of what might be consistent with the observed timing of lesion formation.  We found the 
wave speed varied from 31.8 to 31.1, about 2%.   Effects of changes in these parameters 
become larger for small values of b, but at such small values of b produce unrealistic 
local patterns of mortality (see 8.2). 
 
The epidemic wave's development is independent of the fate of fish post infection.  
Whether infected fish eventually recover or die is unimportant at this stage, although 
this of course determines the longer term impact.  We therefore set p equal to 0, so that 
all infected fish die.  This means model mortality results presented here describe 
mortality not as a fraction of population but of total mortality.  In terms of population, 
the mortality must be multiplied by p, which lies between 0.6 and 0.15. 
 
Because the wave speed shows little variation with the parameterisation of the turnover 
rate of infected individuals it may also be independent of the formulation of that 
turnover.  Since we are also interested in models with fixed infection period length, we 
have also tested the wave speeds generated from that model against the analytical 
method in the hope that we will be able to use it to analyses this model.  As we show in 
the next three figures the analytical solution does indeed turn out to describe the fixed 
infection period length model very well although it was not developed for this version 
of the model. 
 
As demonstrated in the previous chapter, the wave speed depends only upon the rate of 
diffusion of infected individuals, not uninfected ones.  We confirmed this in the 
numerical model by turning off diffusion in S and R fish.  There was, as predicted, no 
change in the speed of propagation of the epidemic front.  However for this analysis we 
use a single diffusion coefficient, since behaviour of uninfected fish has no effect on the 
epidemic wave's properties we do not need to consider these parameters separately and 
lack the data to do so. 
 
We use a model population that is normalised to the average initial population 
N0 (N0 = S0 =1) and also normalise β  to the average population density, so these two are 
essentially a combined parameter.  We have no means of evaluating b independently, 
and thus must evaluate it for current population.  Although variation in the population 
may affect the wave, we do not need to explicitly determine the average population. 
 
Thus the critical parameters to which epidemic wave speed is sensitive are D, β  and b.  
Using the analytical method we find that the parameter values D = B = 200 km2 d-1, 
β  = 200 d-1, and b = 4 d and α + µ =0.25 d-1 gives a wave speed of 31.5 km d-1.  We 
use this as our initial point for our extended sensitivity analysis and investigation of the 
applicability of the analytical solution. 
 
Our first test of the model is of the calculated epidemic wave speed against the infection 
transmission efficiency β .  The analytical solution fits both numerical solutions very 
closely over four order of magnitude of β  and a factor of 4 change in wave speed 
(Fig. 8.1).  It is an effective analysis tool.  The wave speed is only weakly dependent on 
β , increasing at a rate slightly less than proportional to the log of β .  We are very 
uncertain about the range of β , the weakness of the wave's dependency on this 
parameter means that uncertainty in this parameter does not translate into large 
uncertainties in the model results.  If transmission per se were very efficient then there 
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would be a maximum limit imposed by the rate of mixing of schools at some large but 
unknown value.  Because of the saturation in response to change in β  for large β  the 
existence of such a maximum value is not a problem that could affect the model results.  
At very low values of β  the wave speed becomes much more sensitive to β 's value. 
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Figure 8.1   Analytical solution (solid diamonds) and numerical solution (open squares) of the epidemic 
wave speed versus infection transmission β for the fixed latent period length model.  Also shown is the 
fixed latent plus fixed infectious period lengths (open triangles) model's wave speed. 
 
It must be emphasised that the transmission efficiency is normalised to the average 
population density.  Because of this, the rate of transmission of the disease depends on 
population density in the same way that it depends upon the actual transmission 
efficiency.  Hence the wave's speed will respond significantly to changes in population 
density only if these are very large and will only cease if these changes are of several 
orders of magnitude.  While changes of three orders of magnitude have occurred in 
Japanese pilchard populations following recruitment failure (Wada and Jacobson 1998), 
changes in Australian waters have been much smaller.  Changes of the order of 50% 
may have occurred off Albany between the two epidemics and not driven by the mass 
mortality (Fletcher 1992, Cochrane 1999). 
 
The model solutions show a much stronger relationship with the diffusion coefficient.  
The relationship is linear with the square root of the diffusion coefficient (Fig. 8.2); this 
is the same relationship as exhibited by all the other standard epidemic wave models 
(Murray 1999).  In fact, as discussed in the previous chapter, it is the diffusion of 
infected individuals which control the wave's speed.  To test this, we have run the 
numerical model with D set to zero, while the value of B is maintained.  As predicted, 
this was found to have no effect on wave speed as predicted under the analytical 
method. 
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Figure 8.2   Analytical solution (solid diamonds) and numerical solution (open squares) of the epidemic 
wave speed versus the square root of diffusion coefficient D (= B) for the fixed latent period length 
model.  Also shown is the fixed latent plus fixed infectious period lengths (open triangles) model's wave 
speed. 
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Figure 8.3   Analytical solution (solid diamonds) and numerical solution (open squares) of the epidemic 
wave speed versus the inverse of the square root of the latent period for the fixed latent period length 
model.  Also shown is the fixed latent plus fixed infectious period lengths (open triangles) model's wave 
speed. 
 
The final parameter that the model wave speed is strongly sensitive to is the length of 
the latent period (Fig. 8.3).  The model wave speed depends linearly on the inverse of 
its square root.  Because of the dispersion of infected fish, large values of b are not 
consistent with the observed restricted period of mortality at any given location (see 
section 8.3) so we have a relatively restricted range for this parameter.  If the latent 
period is reduced towards zero (not shown) the wave speed tends towards 400 km d-1.  
This is the wave speed predicted from a simple SIR model which the model is in this 
case equivalent to.  The numerically calculated speed of an SIR model is, as discussed 
earlier, 2√(Dβ).  
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Figure 8.4    Speed of epidemic waves calculated using β as shown and D of 50, 100, 150, 200, 250, 300, 
350 or 400 km2 d-1.  Default latent period is 4 days; ranges shown by empty lines indicate the effect of 
varying latent period from 2 (faster) to 6 (slower) days.  Bold lines mark the 10 and 40 km d -1 limits of 
observed wave speeds. 
 
We bring this information together to show how the wave speed varies with the three 
parameters acting in combination.  As can be seen from Fig. 8.4 even over large 
changes of β  there is little change in wave speed.  Change in latent period, b, seems to 
be not enough to account for the large changes in wave speed on it own.  For large D 
and/or β  (i.e. for fast waves) the wave speed becomes more sensitive to b.  Only D 
seems to be able to vary enough and the wave speed is sensitive enough for this 
parameter to be able to account for the observed variation in wave speed on is own.  
 
We summarise wave speed parameter sensitivity.  As Yachi et al. (1989) determined, 
the presence of a latent period makes wave speed far less sensitive to the local rate of 
spread of the infection than in simple SIR models.  But we also show that by making 
this latent period of a fixed length the sensitivity is even further reduced.  This weak 
sensitivity applies particularly for large β , as is the case of the pilchard herpesvirus.   
Sensitivity to the latent period is greatly increased from the fourth root (Yachi et al. 
1989) to the square root of turnover time.  All versions of the model are sensitive to the 
square root of the diffusion coefficient.  As demonstrated in the previous chapter, it is 
the diffusion of infected animals only that affects the wave's speed, so any change in 
their behaviour may be very important to the spread of an epidemic. 

8.2 Duration of Mortality Waves 

Observed mortality in the mature epidemic wave lasted for only about a day or two at 
any given location  (Fletcher et al. 1997).  It is possible that small amounts of mortality 
are going undetected before or after this peak.  However, we would expect one or 2 
days to exhibit significantly higher rates of mortality than occur on other days.  
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We can look at wave shapes directly by using the numerical model.  Using a diffusion 
coefficient of 200 km2 d-1 and a range of latent periods b of 1 to 4 days, we use the 
analytical method to select a β  value that produces a 40 km d-1 wave velocity (Fig. 8.5).  
We then record total the daily mortality at a point 1500 km from the start of the run 
(similar records were made at 500 and 1000 km to verify that the wave shape was 
constant).  Over this considerable range of b and β  we find the wave's shape to be 
remarkably similar.  The time required for initialisation of the wave increases as 
incubation period increases.  The wave's speed is the same because it has been so 
parameterised.  There is a slight increase in the length of time over which the peak 
arises as b increases, and a slight decline in peak size.  However, in all cases 50% of 
mortality occurs in <2 days and 80% in <4, so this level of diffusion is consistent with 
observations.  Therefore, for a given wave velocity, D is the critical parameter for 
determining the wave's shape.  This is perhaps not too surprising because, for a given 
value of D, the wave must maintain the same slope if diffusive flux and hence the rate 
of motion is to remain the same. 
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Figure 8.5   Distribution of mortality for 40 km d -1 waves at a point (1500 km from origin) for model runs 
with diffusion coefficients of 200 km2 d-1.   Runs have been executed for latent periods of 1, 2, 3 and 4 
days with β values of 13.9, 102, 750 and 5527 d -1 which gives a 40 km d -1 velocity. 
 
A similarly weak dependence on incubation period length, over the range in this 
parameter of 1 to 4 days, has been derived for waves with velocities of 10 and  
20 km d-1. 
 
Since the critical parameter determining wave shape at a given velocity is the diffusion 
coefficient, we therefore carried out a series of tests of the effect of diffusion coefficient 
on wave shape (Fig. 8.6).  The result is an increasingly prolonged wave as D rises and β  
falls.  For D of 50 km2 d, most mortality occurs within 1 day and >80% over a 2 day 
period.  The period over which 80% mortality occurs rises to about 3 and 4 days and 
50% in less than 2 days for D of 100 to 200 km2 d-1, which is still consistent with 
observations.  However, for D of 400 km2 d-1 80% mortality is spread over 5 days, and 
this is beginning to become inconsistent with observed short- lived mortality.  Also the 
days with the two highest rates of mortality are not much greater than mortality on the 
third highest day, and only a little higher than that occurring on the fourth highest day.  
This value is similar to the simple estimate of the maximum limit for D that was made 
in Chapter 3. 
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Figure 8.6   Distribution of mo rtality for 40 km d -1 waves at a point (1500 km from origin) for model runs 
with diffusion coefficients of 50 to 400 km2 d-1.   Runs have been executed for latent periods of 1 day 
with β values of 2945, 123, 13.9 and 3.24 d -1 which gives a 40 km d -1 velocity. 
 
Therefore, for a given wave velocity, D is the critical parameter for determining the 
wave's shape.  A maximum value of of less than 400 km2 d-1 seems consistent with 
observed patterns of mortality.  This maximum value is well within the possible 
maximum value due to pilchard swimming and therefore vectors such as birds are not 
necessary to account for the observed transmission.  This does not mean they can be 
ruled out.  Surprisingly the length of the latent period has little effect on wave's shape, 
given that diffusive dispersion depends upon √(Dt).  However, for a given diffusion 
coefficient the epidemic wave must have the same gradient to maintain the same 
velocity.  Hence the latent period and transmission coefficient tend to counterbalance 
and result in a similar distribution of mortality. 
 
Westbound, the epidemic travelled at about 20-25 km d-1.  The eastbound 1998 
epidemic appears to have travelled at a similar speed; we use 20 km d-1 as a reference 
point midway between the slowest and fastest observed wave speeds (Fig. 8.7).  By 
about D= 150 km2 d-1 the model is unable to produce the observed brief duration of 
mortality, mortality being fairly evenly spread over several days.  Thus for the 1995 
epidemic westbound diffusion is less than 200 km2 d-1.  It is greater than 10 km2 d-1, 
since β  must be very large to produce an epidemic speed of 20 km when D is  
<20 km2 d-1 (see next section).  In any case, such values of D are at the low end of those 
predicted from an analysis of pilchard behaviour (Chapter 3). 
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Figure 8.7   Distribution of mortality for 20 km d-1 waves at a point (1500 km from origin) for model runs with diffusion coefficients 
of 50 to 200 km 2 d-1.   Runs have been executed for latent periods of 1 day with β values of 13.9, 3.24, 1.75 and  

1.22 d-1 which gives a 20 km d-1 velocity. 
 
The westbound 1998/9 epidemic travelled at a little over 10 km d-1.  There was little 
scatter of mortality about the regression line and this is only explicable in terms of low 
diffusion coefficients (Fig. 8.8).  Even 50 km2 d-1 results in mortality being smeared 
across a period of around 10 days, which is incompatible with the observations.  A D of 
about 30 km2 d-1 appears to be the upper limit, as by this level of dispersion mortality is 
already spread over several days. 
 
The only way to obtain the 1995 epidemic's rate of spread with this level of diffusion 
(30 km2 d-1) is to use very short latent periods, < = 2 days.  The response of the wave's 
velocity to increase β  is effectively saturated.  We have no direct evidence to constrain 
the parameterisation of the latent period, but some finite time is required for infection to 
mature.  Such brief latent periods result in a single continuous wave which differs little 
between the origin and at distance from the origin, this does not reproduce differences 
in persistence (see next chapter).  So change in D seems likely to have been an 
important driver of differences in wave speed, particularly given the difference between 
eastern and western spread of the 1995 epidemic. 
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Figure 8.8   Distribution of mortality for 10 km d-1 waves at a point (1500 km from origin) for model runs with diffusion coefficients 
of 10 to 50 km2 d-1.   Runs have been executed for latent periods of 1 day with β  values of 25.6, 4.87, 2.41 and 1.22 d-1 which gives 
a 10 km d-1 velocity. 
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8.3 A Maximum Limit on Latent Period Length 

We have been able to limit the value of D by reference to the observed local duration of 
infection.  Wave speed at a given value of D depends essentially upon the transmission 
coefficient β  and the latent period b.  However, the modelled wave velocity becomes 
very weakly dependent on β  as this parameter becomes large.  We can combine these 
two facts to find a maximum reasonable length for the latent period. 
 
The maximum epidemic wave speed appears to be up to 40 km d-1.  We apply the 
analytical method with a binary search algorithm to find β  values which generate this 
wave speed given D and b values (Fig. 8.9).   Because of the weak dependence on β  for 
large β  there is, for a given latent period, a value of D at which increase in β  fails to 
offset further change in D.   Thus if D = 200 km2 d-1, it is almost impossible to generate 
a 40 km d-1 wave if the latent period is much more than 4 days long. 
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Figure 8.9   Values of β and D required to generate wave speeds of 40 km d -1 for latent periods of 1 to  
11 days (4 days = treble line, 8 days = double line) 
 
The 20 km d-1 westward rate of expansion appears to be consistent for a latent period of 
up to four times that of the 40 km d-1 wave with a given diffusion rate (Fig. 8.10).  This 
is expected from the linear sensitivity to the inverse square root of the latent period 
shown in the earlier sensitivity analysis.  This velocity of wave is consistent with D of 
up to 100 km2 d-1.  This would place an absolute maximum limit on the latent period of 
about 8 days, double that of the 40 km d-1 wave's maximum b.  However, we do not 
expect the disease to be significantly different between two waves of the same 
epidemic. 
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Figure 8.10  Values of β and D required to generate wave speeds of 20 km d -1 for latent periods of 1 to 11 
days (4 days = treble line, 8 days = double line) 
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Figure 8.11  Values of β and D required to generate wave speeds of 10 km d -1 for latent periods of 1 to 11 
days (4 days = treble line, 8 days = double line).  Note change in D scale. 
 
 
The 10 km d-1 1998/9 epidemic speed with a D of < 30 km2 d-1 is consistent with latent 
periods of up to about 12 days, thereafter the transmission rate β  value's effect on wave 
speed begin to saturate (Fig. 8.11).  It is quite possible that the disease changed the 
length of its latent period substantially between the 1995 and 1998/9 epidemics.  
However, the diseased fish exhibited substantially more virus containing lesions in 1995 
than in 1998/9.  We therefore would not expect the incubation period to have increased 
by so much that β  had to rise to obtain the observed wave speed. 

8.4 Levels of Infection and Mortality 

In most model runs the proportion of the host that is subjected to infection is in excess 
of 90%.  Exceptions can occur for runs in which β  is small, but in these runs infection 
develops too slowly resulting in unrealistically prolonged periods of mortality.  
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Infection levels are reduced if the length of the infectious phase is cut.  This reduction is 
small unless β  is small.   
 
We have tabulated the levels of infection obtained for the waves analysed in figures 
10.6 to 10.8, but with an infectious period of only 1 day instead of 4 days in order to 
find maximum levels of infection (Table 8.1).  The value of β  is adjusted slightly to 
maintain the wave speed.  Except for the 10 and 20 km d-1 waves with the lowest β , 
which produced unrealistic mortality wave shapes, the levels of infection exceed 90%.   
Under the runs with an infectious period of 4 days length, all the infection levels 
exceeded 98%.  The level of infection generated is the same regardless of wave speed, 
and hence D, for a given β  value, provided that the infectious period is of the same 
length. 
 
Table 8.1   Levels of infection obtained under model conditions used to generate figure 8.6 to 8.8, with 
infectious period cut to 1 day. 
 

40 km 
         β                Infection 

20 km 
         β                Infection 

10 km 
        β                  Infection 

 3213  100.00%  18.57  100.00%  32.58  100.00% 
 144  100.00%  5.18  98.07%  7.31  99.56% 
 18.57  99.99%  3.17  90.53%  4.08  95.61% 
 5.18  98.03%  2.44  81.14%  2.44  81.22% 
 
The high levels of infection generated by the model mean that lower observed levels of 
mortality must be due to the survival of significant fractions of the infected hosts.  The 
relatively low mortality in Western Australia in 1995 occurs under conditions of higher 
wave speeds and larger β  (more lesions) than 1999.  Under these conditions the model 
predicts higher levels of infection (as would all standard model formulations).  Because 
all model runs generate high levels of infection the critical parameter for determining 
the long-term impact of the epidemic is thus the fraction of infected individuals which 
go on to die.  The data indicates that this lies between 0.15 and 0.6, but the cause of 
variation in this parameter is uncertain.  This uncertainty leads to uncertainty in the 
impact of an epidemic and makes prediction of the effect of any future epidemics 
difficult. 

8.5 Conclusions 

The model wave's speed is well described by the analytical solution; the existence of 
this solution greatly speeds up the process of model analysis.  The speed is sensitive to 
three parameters: the length of the latent period (b), the infection spread rate (β), and the 
diffusion coefficient D, or rather to the diffusion of sick fish only.  There is very little 
sensitivity to the turnover of infectious fish (mortality + recovery).  For this reason the 
analytical solution applies to the fixed infectious period length model too.  
 
Analysis shows that sensitivity of the epidemic wave speed to infection's rate of spread 
is relatively weak.  Sensitivity to further change declines as this parameter becomes 
larger.  This weak response also means the epidemic's spread is not very sensitive to 
population density because the transmission rate is normalised to average population 
density, and it is the only parameter for which this applies.  Thus changing population 
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density and changing infection spread rates are equivalent and only very large changes 
in this affect the epidemic. 
 
The model is strongly sensitive to the latent period, depending upon the inverse square 
root of this parameter.  This is far more sensitive than the equivalent continuous model, 
for which sensitivity depends upon the fourth root of the rate of turnover of the latent 
phase infection (Yachi et al. 1989). 
 
The model's epidemic wave speed also depends upon the square root of the diffusion 
coefficient.  All of the waves generated in the standard epidemic models do so.  We 
have been able to derive some rough limits on the diffusion coefficient by observing the 
effect of high diffusion coefficients upon the stabilised for of the epidemic wave.  Large 
diffusion coefficients lead to long wavelength waves, such waves are not consistent 
with the brief observed mortality at any given location. 
 
Because the model depends almost entirely on three parameters, we have devised 
diagrams to show the entire possible parameters space for waves of a given velocity.  
These consist of plots of diffusion coefficient versus infection, for a given latent period 
length.  We use these plots to locate the diffusion coefficient at which the model 
becomes very insensitive to increase in β .  Because we have derived a maximum value 
of D for any epidemic velocity and we can use the diagrams to derive minimum values 
of D that are compatible with a given latent period, we derive maximum possible latent 
period lengths. 
 
In the next chapter we examine the observed and predicted behaviour of the epidemic at 
its point of origin in South Australia to find further constraints upon the model.  
 

9 The Initialisation and Stabilisation of Wave Speeds 

There are substantial differences between the initial behaviour of the epidemic and its 
mature form.  Locations near the origin of the disease may be revisited by episodic 
infection over prolonged periods, whereas at a distance from the source the epidemic 
strikes only once and for a brief period before moving on.   
 
The model also exhibits differences in behaviour at its origin and when it matures.  This 
is because epidemic waves coalesce from several peaks at the origin to a single peak as 
the wave matures.  The process is controlled by the lengths of the latent and infectious 
periods and by the transmission rate. 

9.1 Wave Speed and Stability under Different Latent Periods 

One aspect of wave speed that cannot be found analytically, is the nature of the unstable 
initial development phase of the wave from a localised infection.  The initial 
development phase is of particular importance for the pilchard herpes virus epidemic, 
given the relatively short duration of the mortality.  It also has the potential to provide 
clues about appropriate model parameterisation which are not apparent once the wave 
has stabilised. 
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Figure 9.1   Mortality wave shape at 1500 km for D = 400 under a range of latent periods, b days, and 
appropriate infection transmission β  to generate a wave velocity of 40 km d -1.  A period of 40 days (in 
which no mortality occurs at 1500 km) has been removed from the start of the time series) 
 
In the previous chapter we looked at the shape of waves that existed after a long period 
of stabilisation.  Specifically we examined the wave shape after the wave had travelled 
1500 km and we ensured this was the stable form by checking the wave shapes were the 
same at 500 and 1000 km from the origin.  We found that, for a given D (or rather B) 
value, the wave's shape was similar over a range of b and β  values that gave a speed of 
40 km d-1 (Fig. 9.1).  However, as we increase the latent period, b, we find that wave 
shape at 1500 km deforms.  Using D = 400 km2 d-1 we find that the wave shape changes 
little for b = 2, 4 or 6, from that described in the previous chapter (at b = 1).  However, 
at b = 8 a quite different wave with two peaks emerges. 
 
The reason that the wave shape is different at b = 8 days is that the wave has not yet 
stabilised.  As a result quite different wave patterns are present at 500, 1000 and 
1500 km from the origin (Fig. 9.2).  In this chapter we will investigate the pattern of 
mortality generated by the model in the vicinity of the South Australian origin point and 
the origin of the wave.  
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Figure 9.2  Mortality wave shape at 500, 1000 and 1500 km from the epidemic's origin for 
D = 400 km2 d-1, b = 8 days and β (3540 d -1) is selected to give a wave velocity of 40 km d -1. 
 
Even though the wave form has not stabilised for b = 8 days, the wave still travelled at 
40 km d-1, as is predicted from the analytical solution for the stable wave's velocity.  
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This means that we can use the analytical solution to predict appropriate parameters for 
a given average velocity of the unstable wave. 
 
We can also see that the wave does not take off immediately, there is a delay in 
reaching 500 km which is far longer than the period required for mortality to transfer 
from 500 to 1000 or 1000 to 1500 km.  This is in line with the observed occurrence of 
mortality is South Australian waters for several weeks before the wave develops and 
spreads to other states. 

9.2 The Initial Formation of the Epidemic 

The mortality pattern at the point of origin in South Australia differs from that in the 
mature wave.  In 1995 mortality was observed to persist and recur near the point of 
origin for several weeks (Whittington et al. 1995).  In 1998 mortality again recurred 
over the course of several weeks in areas of South Australia near the point of origin.  
Although the epidemic did not recur at its point of origin in Spencer Gulf it did persist 
for some time in nearby waters (Ward et al. 1999). 
 
We follow the development of the epidemic at the origin by plotting mortality (at 
0.1 day intervals) in the spatial point of the initiation of the epidemic.  We cannot use 
point zero for this initial location of the infection in the model because the initiation of 
the epidemic is affect by dispersal both to the east and west of the original location 
(although this effect is relatively weak).  The behaviour depends both quantitatively and 
qualitatively upon the latent period and transmission efficiency (Fig. 9.3). 
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Figure 9.3   Mortality at the origin of the epidemic.  D = 30 km2 d-1, infectious period (c-b) 4 days.  Latent 
period (b) 1, 4 or 8 days with appropriate β (2.4, 29 and 821 d-1) for a 10 km d -1 wave speed.  Note the 
initial blip 4 days after the run begins, it is then that the initial group of infected individuals die. 
 
When the latent period is short, mortality shows a smooth increase and then decrease 
with time.  The wave is similar to the steady state wave and so mortality would be  
 
expected to be detected over a similarly short period as occurs away from the origin.  
Mortality was observed for several weeks at or near the origin. 
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Too long a latent period requires that the infection rate be rapid to produce the observed 
wave speed.  We are using the maximum D value that is consistent with mortality wave 
shape, so this parameter cannot be increased.  This high value of β  means that infection 
is near instantaneous, and thus so is mortality.  The result is isolated intense peaks of 
mortality.  Although the mortality observations do hint at peaks, they are not the 
occasional isolated peaks but rather slight increases and decreases in reported mortality. 
 
The observed pattern is best replicated by an intermediate latent period of about 4 days.  
This produces mortality over a period of about a week. 
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Figure 9.4    Mortality at the origin of the epidemic.  D = 30 km2 d-1, Latent period (b) 4 days.  infectious 
period (c-b) 1, 2 or 4 days with appropriate β (29 d -1) for a 10 km d -1 wave speed. 
 
The duration of mortality at the origin can be enhanced if the length of the infectious 
period is cut (Fig. 9.4).  This parameter has only a small effect on the wave's stabilised 
speed (see previous Chapter).  In this case infection has less time to spread and so each 
generation of infection (and hence peak of mortality) is smaller.  The result is 
prolongation of the mortality.  The pattern generated under an infectious period of 
2 days and latent period of 4 days is strongly reminiscent of the observations, although 
mortality appears to persist near the origin for longer than predicted.  An infectious 
period of 1 day results in large isolated peaks, which would not appear to be consistent 
with observations.  Such isolated peaks occur whenever the infectious period is 
substantially shorter than the latent period. 
 
We need a systematic way of looking at the effect of latent and infectious periods on the 
length of time that infection persist at the origin of the epidemic.  We have therefore 
plotted the time between the first time mortality exceeds 5% and the last time this 
occurs in a systematic search of parameter space of the 10 km d-1 wave with  
D = 30 km2 d-1 (Fig. 9.5).  This method is not perfect, the difference to the figure 
caused by a small peak of about 4%, rather than 5% may be substantial, but is not 
important.  We generate an overall pattern of lengths of mortality periods but the value 
in individual cases may not be significant.  We have used latent periods of 1 to 5 days 
and β  values appropriate to generate 10 km d-1 waves. 
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Figure 9.5   Time between first and last instances of mortality at rates of >5% day at the point of origin 
for a 10 km d -1 wave, D = 30 km2 d-1, for a range of latent (E) and infectious (I) period lengths. 
 
The result of this analysis is to show that waves are short lived when E < I and that 
there are two areas of prolonged wave persistence.  The first is for very short latent and 
infectious periods; the second is for long latent periods with short infectious periods.  
To distinguish between these we look at the time series generated both at the origin and 
some distance from this. 
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Figure 9.6   Development of mortality waves at 0, 500 and 1000 km from the origin of the epidemic.  
Thick line = 1 day latent period, thin line = five day latent period. 
 
We can see that there are very different time series patterns under the two latent periods 
(Fig. 9.6).  These time series strongly support the long latent period parameter value.  
The short latent period produces a wave which shows hardly any difference between the 
origin and the more distant locations.  This cannot be consistent with the observations 
of prolonged mortality at the origin and a brief phase of mortality once the wave has 
matured.  The long latent period, by contrast, shows an evolution from several peaks of 
mortality scattered over a long period towards a single peak.  In any case the very short 
latent, very short infectious period model would appear to be inconsistent with the 
observed presence of viral lesions up to 4 days prior to mortality.  This result does 
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indicate that our initial assumption, that viral lesions were a sign of infectiousness is not 
true.  Viral release appears to occur only at a late stage of lesion formation when 
inflammatory exudates appear (Fletcher et al. 1997). 
 
Runs for which the latent period is shorter or equal to the infectious period had 
essentially only one peak.  Under long latent periods in excess of 3 days the peak can 
show some distortion.  Multiple (>2) peaks in excess of 5% mortality, were a feature of 
runs with infectious periods of one or 2 days and with longer latent periods.  Long latent 
and infectious periods produce two brief peaks of mortality at the origin.  These require 
very high β  values to produce appropriate wave speeds, and so the infection is very 
rapidly spread.  The runs with only one peak can be ruled out, this peak propagates 
unchanged and so cannot account for the initial long persistence of mortality while at 
the same time producing a short- lived mature wave.  The two intense peaks produced 
under longer infectious and latent periods would appear to be unlikely, the observations 
do not indicate mortality events to be this isolated.  An intermediate form with moderate 
to long latent (2 - 4 days) plus a brief infectious period (1 - 2 days) appear most in line 
with the observations. 
 
We also apply the model to the origin of a (1-p)αI wave.  If we systematically analyse 
the persistence of the initial infection, as days between first and last incidence of 5% d-1 
mortality (Fig. 9.7), we find a similar pattern to the persistence of mortality to that 
obtained under the 10 km d-1 wave.  The persistence is somewhat lower than for the 
1998/9 wave, which is in line with observations.    
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Figure 9.7   Time between first and last instances of mortality at rates of >5% day at the point of origin 
for a 20 km d -1 wave, D = 100 km2 d-1, for a range of latent (E) and infectious (I) period lengths. 
 
The pattern of wave peaks is also similar to that found under the 10 km d-1 wave.  That 
is, there is a single peak when the infectious period is equal or longer than the latent 
period, isolated brief peaks when the latent and infectious periods are both long, and 
multiple peaks when I is one or two and less than E. 
 
Faster waves, with larger infection rates tend to produce one or two intense pulses of 
mortality at the point of initiation.  This is not in line with observations, but if the initial 
speed of the 1995 epidemic were 20 km d-1, and it subsequently speeded up as it 
travelled towards the east the fast waves are not relevant to initial behaviour. 
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We have found that if we change only D, leaving infection and latent periods 
unchanged to replicate the east and west bound waves of the 1995 epidemic, then there 
are only small differences in the initial behaviour of the epidemic.  The development of 
infection at the origin largely depends upon local processes. 
 
We are able to obtain, under this model, a period of relatively prolonged mortality 
consisting of a number of peaks that occur over a period of up to two weeks.  This is 
considerably less than the persistence of the observed mortality in South Australia, but 
it is qualitatively the correct behaviour.  Our estimate of the persistence of mortality is 
perhaps excessive.  The residual from linear regression that was obtained at the origin 
by Fletcher et al. (1997) was 20 days, reasonably close to the model results.  Our 
estimate of residual of 30 days (Figure 3.5) is based rather crudely on 250 km stretches 
of coastline.  The 1998 epidemic appears to have persisted for even longer, up to 
40 days, within a short distance from its origin.  However, many of the later, and none 
of the early, mortality incidents involved juvenile pilchards (Ward et al. 1999).  A delay 
in the spread of the epidemic from adults to juveniles may have increased the to local 
persistence of mortality.  As we will discuss in the next section, oscillating waves will 
recur within a short distance of the origin so the total period of the epidemic may be 
prolonged. 
 
The model tends to support an infectious period that is a little shorter than we expected 
from the pathological evidence.  Possibly lesions only become significant sources of 
virus as they mature and so the lesions observed up to 4 days before mortality occurs 
were not initially contributing to new infections. 
 
The observed prolonged infection at one point at the origin of the epidemic supports a 
relatively low rate of transmission of infection, β  < 100 d-1.  Larger rates lead to one or 
two brief and isolated peaks of mortality.  That pattern does not accord with the 
observations. 

9.3 The Initial Formation of Epidemic Waves 

The epidemic starts at a point, but develops as waves travelling respectively east and 
west.  We look at the initial nature of the wave that arises within a short distance of the 
origin. 
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Figure 9.8   Peak level of mortality with time under the 10 km d -1 waves, D = 30 km2 d-1,  
infectious period = 1 day, latent period 1 or 5 days. 
 
We see that in the model run for which both latent and infectious periods are short, and 
similar, the model rapidly reaches a constant maximum level of mortality.  This reflects 
the smooth development of the wave as discussed earlier.  Peaks persist within the run 
for which the latent period is much longer than the infectious period, producing strong 
oscillations.  These are extreme versions, when the latent period is only moderately 
longer than the infectious period the waves will run together.  Even under this extreme 
the wave is showing signs of coalescing into a single wave, as was apparent in Fig 9.6.  
If the infectious period length is increased, or the latent period cut, the wave will 
coalesce more rapidly. 
 
The persistence of the oscillation when the infectious period is much shorter than the 
latent period would appear to put a limit on the shortness of the infectious period I.  If 
this is much shorter than the latent period E then the waves will persist as brief isolated 
mortality events for longer than observations would indicate.  These persistent 
oscillations would appear to limit the extent to which rapid travelling waves can be 
explained by very short infectious periods.  It is possible that variation in the incubation 
period length could smear waves together, while allowing for short infectious periods. 
 
We look at how the mortality wave originates under the two parameter sets.  With a 
short latent period the model smoothly develops a narrow wave of mortality with a 
constant period of time over which mortality exceeds 5% per day occurs at any given 
location (Fig. 9.9).  The oscillating wave shows short-term variation in speed, but on 
average it travels at the speed that the stabilised wave will settle at (Fig. 9.10).  These 
short-term variations in speed are unlikely to be distinguishable from a constant wave 
speed. 
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Figure 9.9   Development of 10 km d-1 waves with a 1 day latent period in the vicinity of the origin of the 
epidemic, thick line is the centre of the wave, thin lines show 5% mortality envelope (D = 30 km day-1, 
b = 1 day, b-c = 1 day). 
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Figure 9.10   Development of 10 km d-1 waves with a 5 day latent period in the vicinity of the origin of the epidemic, 
thick line is the centre of the wave, thin lines show 5% mortality envelope (D = 30 km day -1, b = 5 days, b-c = 1 day). 
 
We see that, even though the wave moves away from the origin after about 2 weeks, it 
takes a similar period for the 5% mortality envelope (the region in which mortality 
exceeds 5% day) to reach 250 km from the origin.  Mortality could occur within 100 km 
of the origin for a period of over 20 days.  This is very much in accordance with the 
observations, particularly if currents or net fish movements lead to the focus of the 
epidemic waves being moved relative to the coast.  We cannot take this argument too 
far however, because if such movements were important, the mature waves would 
exhibit more distortion.  Both model versions are quite similar in average behaviour.  
However, the regular peaks and troughs of mortality should be detectable and indeed 
the evidence suggests that the epidemic recurs over a substantial period. 
 
While oscillations persist the epidemic wave's speed varies, but from the moment it 
starts to move the wave speed averages 10 km d-1, as predicted analytically.  Because 
variation is very short term and the average speed is constant it is difficult to distinguish 
between the model versions. 
 
The short- latent, short- infectious period model resembles the continuous turnover 
models.  In this version of the model there are no oscillations.  Even a very long latent 
period does not produce significant oscillations (Fig. 9.11).  The wave develops 
smoothly without prolongation of the epidemic around the origin relative to later 
waveforms.  Note also the very low maximum mortality (and resultant long time scale 
of mortality) caused by the gradual mortality of infected individuals in the continuous 
turnover versions of the model.  This prolonged mortality is made worse by the 
adoption of a long latent period. 
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Figure 9.11   Maximum daily mortality in a continuous turnover SEIR model with eight day latent period 
(0.125 d -1 turnover).  D = 50 km2 d-1 and β = 500 d -1 to give a 40 km d-1 wave. 
 
This pattern of oscillation in mortality levels that the fixed period- length models 
produce does appear to resemble the observed initial pattern of reported epidemic 
mortality.  Gaps of several days occurred between the first reports of mortality and 
subsequent reports.  A six day oscillation may well be consistent with the 1998/9 
epidemic.  However the 1995 epidemic appeared to show a gap of about 8 days between 
the first and second peaks.  A latent period of this length is inconsistent with the speed 
of the subsequent epidemic wave.  A latent period of 4 days would be consistent with 
the epidemic disappearing, and possibly the second peak was then missed - the model 
predicts the initial peaks to be intense but brief so it is quite possible that a peak could 
have been missed.   

9.4 Conclusions 

At their point of origin, the epidemics persisted for several days before waves 
developed and travelled away to east and west.  This persistence was for considerably 
longer than the time that mature waves lasted at a given location.  There is also some 
evidence of gaps between initial recurring mortality events.  
 
It does not appear that fish or current motions can explain this persistence, because 
otherwise the position of the epidemic wave would show similar distortion at distance 
from the origin.  It may be that pilchard populations are isolated in the complex 
topography of the central South Australian coast.  In 1998, mortality was most 
persistent around the complex Gulf St Vincent, Kangaroo Island, Victor Harbour area; 
but the area of most persistent mortality in 1995 was the western Eyre Peninsula, which 
provides few obstacles to the mixing for pilchard populations.  In 1998, pilchards died 
in Port Phillip Bay only 3 days after deaths occurred at the entrance to that semi-
enclosed bay (Neira, personal communication).  We therefore expect that the recurring 
early epidemic behaviour is, at least in part, an intrinsic part of the epidemic's initiation. 
 
The most realistic versions of the model appear to be moderate to long fixed-length 
latent-period with a short infectious period.  This produces a wave with near constant 
speed and a short-lived peak after a long initial period of irregular mortality at the 
origin.  The nature of this initial behaviour depends partly upon initialisation conditions.  
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The short latent period version produces a wave of constant speed but has similar 
mortality patterns at the origin and at distance from the epidemic, not consistent with 
the evolving wave.  Traditional continuous turnover epidemic models produce similar 
results, again failing to reproduce the evolution of the epidemic waveform. 
 
If the latent period is made too long relative to the infectious period, this leads to very 
intense isolated mortality events.  These regular oscillations in the mortality events 
persist if the ratio is large.  Observed mortality appears to rapidly become more spread 
out.  This limits the possible ratio of the two period lengths. 
 
The results challenge our earlier interpretation of the presence of lesions as being 
indicative of the infection having reached an infectious stage.  It may only be in the later 
stages of their development that they become a significant source of new infection.  
However, the lesions, as they contain viruses, are certain evidence that infection has 
occurred and therefore the total infectious plus latent periods must be at least 4 days, the 
duration of the lesions. 
 
We are thus able to use the initial observations to provide evidence for the most 
appropriate model structure and to further constrain parameters.  The existence of a 
latent period allows the epidemic to recur over a prolonged period at the origin while 
coalescing into a single wave later.  The period of recurring outbreaks is less than 
observed, but it is qualitatively reproduced by this form of the model - and not by other 
model formulations. 
 

10 Non-Linear Transmission and the Epidemic Spread 

In this chapter we consider a non-linear transmission of infection model.  This model 
has major implications for the origin of the epidemic since it requires a large initial dose 
of infection to induce the epidemic, whereas under the standard model any dose may 
induce an epidemic provided the environment is suitable. 
 
Viral transmission may depend on a threshold concentration of viruses that is required 
to induce infection.  The immune systems of hosts that are exposed to small numbers of 
viruses may be able to fight this off, but a massive dose is another matter.  This appears 
to be the case for IPNV for which a minimum challenge dose of virus may be required 
to trigger infection (Hill 1982).   Confinement of Pacific herring in cages allowed 
VHSV (viral hemorrhagic septicemia virus) to build up in the water and thus an 
epidemic to take off (Hershberger et al. 1999).  Free herring, from which the caged 
stock was taken, did not develop disease at this time.  This may be an effect of linearly 
higher infection probability caused by the local retention of the fish in the vicinity of 
accumulating virus numbers, but it is suggestive of the minimum viral dose effect. 
 
If there is such a dependence of infection on high viral density then infection may 
depend upon a higher power of I, perhaps βSI2 (Liu et al. 1986).  Infectivity, the rate at 
which new infections are produced per infected host, is low both when I is low and 
when it is high because then S is low as a proportion of the population. This situation 
means that there is a minimum product of both susceptible and infective host 
populations required for an epidemic to take off (Fig. 10.1).  Under the standard linear 
model the number of infections produced per infected individual is only low when I is 
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high and hence S is small.  The actual number of infections produced when I is low is 
also low, but the infections produced per infected host are then maximal. 
 

 [SI]t = α/β         (10.1) 
 

This relationship of infection rate to I has particular significance for the origin of the 
epidemics.  Under the quadratic (I2) model a locally stressed host population may have 
an infection induced by this stress that can then spread freely to adjacent unstressed 
populations.  A localised environmental shock could thus be the trigger of a wide-
ranging epidemic.  However, the presence of a small amount of virus in an unstressed 
host population will not trigger disease.  This is in contrast to the standard linear model, 
under which any presence of virus will trigger the disease, provided the initial host 
population exceeds the threshold. 
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Figure 10.1   Infectivity (normalised to maximum infectivity) under βIS and βI2S models (while R and  
E = 0).  The dashed line gives an example threshold population for net infection.  The maximum 
infectivity = βS0 under βIS and 0.25βS0 under βI2S model. 
 
There is no evidence of any environmental shock that could have initiated an infection 
of the non- linear transmission type.  There was a cold upwelling prior to the 1995 
epidemic, but events on a similar scale occur every three-four years (Griffin et al. 
1997).  No upwelling occurred prior to the 1998/9 epidemic (Ward et al. 1999). 
 
The transmission of the epidemic to caged pilchards, physically isolated from the wild 
stock, is evidence supporting the linear transmission model since it is unlikely that very 
large number of viruses would be transmitted to this isolated population.  Similarly, the 
coincidental outbreak in New Zealand in 1995 supports the linear model.  It would be 
unsurprising if the disease were transported to New Zealand given its then prevalence in 
Australia, but it would be less likely that a similar environmental shock occurred 
coincidentally in the same year and not in some other year.  
 
The linear model is the form of transmission that is almost invariably used to model 
epidemics (e.g. Anderson and May 1979). However, because of the significant 
differences between the two models, both linear and quadratic transmission we examine 
the latter formulation here as well 
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We can apply the quadratic version of non-linear infection (i.e. infection dependent on 
I2) to the spatially resolved model.  We can thus generate waves of infection which are 
similar to those generated under the linear model.  However, with the initial intrusion of 
the wave of infection I is small and I2 is very small.  This means, in the quadratic model 
the forward front of the infection is an area of low production of infection.  The speed 
of the wave is driven by the area of high production, when I becomes large and where S 
is still not small.  But by this point the relative gradient of the distribution of I has 
declined and so diffusive flux is weakened.  Hence the epidemic wave progresses more 
slowly.  The dispersal of E and I still limits maximum diffusion rates consistent with 
observations.  Hence, for a given latent period, the value of β  selected must be much 
larger than under the linear model. 
 
We lack an analytical solution of the quadratic model, but we have been able to find 
curves for various latent periods under the two speeds by fitting the value of β  required 
to produce the appropriate wave speed (Fig. 10.2).  These waves are of constant speed.  
However, longer latent periods result in the need for even higher infection rates.  The 
high infection rates results in waves that mature very rapidly, hence these waves depart 
from the origin only a few days after infection.  Indeed the wave forms only a couple of 
days after the first mortality, which occurs at 4 days after the infection is introduced.  
Mortality does continue at the origin for a short while. 
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Figure 10.2   Development of 10 and 40 km d -1 waves under quadratic infection.  For the 10 km d -1 waves 
D = 20 km2 d-1 and b = 1 β = 100, b = 2 β = 1000, b = 4 β = 40000.  For the 40 km d waves D = 200 and 
b = 1 β = 1000, b  = 2 β = 20000. 
 
The quadratic model also produces a similar mature wave shape (Fig. 12.3) to that 
obtained under the linear mortality model.  Mortality is spread over a few days, as 
observed.  There are similar peaks for the two diffusion coefficients to the values 
obtained under the linear infection model. 
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Figure 10.3   Shape of stable 10 and 40 km d -1 waves under quadratic infection.  For the 10 km d -1 waves 
D = 20 km2 d-1 and b = 1 β = 100, b = 2 β = 1000, b = 4 β = 40000.  For the 40 km d waves D = 200 and 
b = 1 β = 1000, b = 2 β = 20000. 
 
The quadratic infection model can also produce oscillations similar to those obtained 
under the linear model.  However, due to the relatively short latent periods that in this 
model are compatible with the observed wave speeds, given limits to diffusion imposed 
by the short-lived pattern of mortality in the mature waves, only brief periods of 
oscillation occur (Figs. 10.4, 10.5).  For latent periods of 1 day, these peaks are spaced 
at daily intervals and so would be undetectable given the necessary limits to the 
resolution of observational data, except possibly as initially high mortality.  Only the 
slower waves can be made compatible with a significant gap between first and 
secondary mortality events. 
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Figure 10.4   Initial development of the 10 km d -1 quadratic epidemic wave under three latent period 
lengths. 
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Figure 10.5   Initial development of the 40 km d -1 quadratic epidemic wave under two latent period 
lengths. 
 
The quadratic model appears less compatible with the evidence than is the standard 
linear model.  It can be made to produce stable epidemic waves whose behaviour is 
identical to those obtained under linear infection models, although higher transmission 
coefficients are required.  However, the initial persistence at the origin under this model 
is too short lived.  This occurs because of the requirement for rapid viral transmission 
rates.  Initial gaps or oscillations in the observed mortality also cannot be reproduced, 
except for the slower wave speeds because long incubation periods are not consistent 
with observed wave speeds.  The quadratic model would be entirely ruled out in its 
current form if it were shown that latent periods do exceed two to 3 days. 
 
Because quadratic infection spreads more rapidly as the number of infected individuals 
increases it gives an inherent tendency for epidemics to take off suddenly and so not to 
persist near the origin as was observed. 
 
The difference between the linear and quadratic models is largely in their implications 
for the origin of the epidemic.  Under the linear model any initial dose of viable virus 
can lead to the epidemic taking root.  The quadratic model requires a large initial viral 
dose and so is less easy to introduce.  Since it is precisely the behaviour at the origin 
that the quadratic model fails to reproduce the linear model would appear to be a better 
choice. 
 

11 Discussion of the Modelling, Impacts and Management 
 of Epidemics 

11.1 General Discussions on the Modelling 

We have developed a new approach to modelling the pilchard epidemics of 1995 and 
1998/9, which gives a better replication of the observations than existing models, 
particularly at the point of origin of the epidemic.  We are able to derive several 
important conclusions derived from the model we have developed.  Analysis has been 
greatly simplified by the development of an analytical method for finding wave speed. 
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Traditional continuous turnover models do not work as a description of the pilchard 
epidemic.  Such models generate continuous mortality over long periods; the observed 
pattern is quite different.  Lesions are apparent up to 4 days before mortality occurs and 
this mortality then occurs suddenly over a short period.  The continuous models would 
predict mortality would begin at the same time as the first lesions became apparent and 
would tail off slowly as the number of infected fish gradually declined.  Alternatively, if 
mortality were very rapid then there could be a very rapid die off, if infection were even 
more rapid.  If this turnover were rapid then infected fish would not be present in 
significant numbers, as evidenced by lesions, days prior to detected mortality.  The 
lesions present in fish sampled ahead of the front are qualitatively different from those 
at the front (Fletcher et al. 1997).  This means that they are at an earlier pre- lethal stage 
of development, not simply that there are a few infected fish with mortality going 
undetected.  Such a rapidly turning over epidemic would develop a mature waveform 
rapidly.  The epidemic would not persist near the origin for much longer than the 1 or 
2 days that the mature epidemic wave persists. 
 
We therefore adopted another model based on fixed length periods of infection.  This 
model can generate sharp mortality events and have infection apparent in the form of 
lesions for days prior to these events.  The model is also biologically reasonable in that 
infection must take time to develop, no fish will die the instant it is infected, the disease 
must develop first.  But continuous models predict this is possible and indeed in the SIR 
model the most probable time of death is immediately after infection, the probability 
then drops since dead animals cannot die again. 
 
We split the time course of the development of infection into an infectious period and a 
latent period while the disease develops within the fish but it does not act as a 
significant source of new infection.  The latent period is a standard component of 
disease models.  In this case it appears to be necessary that the infectious period is quite 
short in order to reproduce the behaviour of the epidemic at its point of origin. 
 
A method of solving the wave speed from this model analytically has been developed.  
This is a major advance in that it enables wave speeds for a given parameter set to be 
determined almost instantaneously.  When combined with a binary search algorithm, 
the method can be used to find an unknown parameter value required to generate a 
specific wave speed, if two of the diffusion coefficient, transmission coefficient and 
latent period length are specified.  This enables a systematic search of parameter space 
to be conducted in minutes, a process that would take days under the numerical model. 

11.2 What Controls Epidemic Behaviour? 

Model epidemic wave speed has been found to depend essentially on three parameters: 
the infection rate, the diffusion coefficient and the length of the latent period.  Two 
other factors have surprisingly little effect on wave speed.  These are the duration of the 
infectious phase and population density.  

11.2.1 Infectious Period 

Duration of the infection has little effect on the mature waves speed, although it has 
significant effects on its initiation.  The effect is so small that the analytical solution 
derived under a continuous turnover of infected individuals works just as well for the 
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version with a fixed length infectious period.  The infectious period length does become 
a significant constraint when β  is small.   The model has provided unexpected evidence 
that the infectious period only applies to a short period towards the end of the infection.  
This has significant effect on the pattern of origin of the epidemic. 

11.2.2 Population Density 

Change in population density actually has as much effect on wave speed as do changes 
in viral transmission rate in the model.  However, changes of an order of magnitude are 
required to have large effects on wave velocity, and while this may be possible for viral 
transmission rate such large changes are not consistent with known changes in 
population density in Australia.  One need only examine the near constant rate of spread 
of either epidemic in Western Australia to see how constant the speed is over a couple 
of thousand km, a range in which there must surely be variation in population density.  
Populations in Western Australia declined between 1994 and 1997, for reasons other 
than the epidemics (Cochrane 1999). 
 
It is also possible that transmission is population density independent, in which case 
there would be no response at all to changes in population density. 
 
Because of non-linear effects of population density it is possible that the degree of 
dispersal of the pilchard population could impact on the averaged rate of transmission.  
A population that was denser in some local areas and less dense in others would be less 
effective at transmission than would a population that travelled across all areas.  The 
weak response to population density means this effect is likely to be small, but in other 
epidemics which are more responsive to population density, this factor could be 
significant. 

11.2.3 Viral Transmission Rate 

The model wave speed shows a weak but significant dependence on the viral 
transmission rate β .  Sensitivity declines as the transmission rate increases.  At large 
values of this parameter wave speed almost ceases to respond to further increases in 
transmission rate. 
 
The viral transmission rate is only weakly constrained and so may vary by orders of 
magnitude; indeed there is evidence that it does so vary in that the lesions on infected 
fish's gills in 1998/9 were much fewer than in 1995.  So it may remain a significant 
control on changes in the epidemic's behaviour provided it is not very large.  
 
The population mixing rate does not affect moderate viral transmission rates but it does 
impose an ultimate cap on the maximum value of the transmission rate.  The value of 
the cap depends upon fish behaviour and so is unknown.  Sensitivity analysis shows that 
the rate at which the epidemic wave propagates in this model becomes increasingly 
insensitive to the transmission coefficient as this becomes large.  Therefore our 
ignorance as to the exact value of the maximum transmission is not important even 
when transmission rate is large, so long as the maximum is large.   
 
Behaviour at the origin is probably a much stronger constraint on the viral transmission 
parameter.  Large values of this parameter are inconsistent with mortality occurring at 
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intervals near the origin for two-three weeks.  Low values produce a single smooth 
peak, which is similar to the mature wave.  Again, this is inconsistent with a long initial 
period of mortality. 

11.2.4 Diffusion Coefficient 

The model wave speed responds strongly to the diffusion coefficient, in fact response is 
controlled by the diffusion of infected fish alone.  The control of epidemic speed by the 
behaviour of infected individuals is an important insight that is applicable epidemic 
models in general.  However, we have generally used a single diffusion coefficient for 
this model.  We have no data to separate the behaviours of infected and uninfected fish 
and as no detectable effects occur when diffusion is at a different rate for uninfected fish 
 
Diffusion coefficient can be constrained with reference the briefness of local mortality 
in the stabilised epidemic wave.  We are able to find a maximum diffusion coefficient 
because as this becomes large infected fish spread out before dying.  The degree to 
which this occurs is surprisingly insensitive to the latent period over the range of 1 to a 
few days.  We find that the 40 km d-1 eastbound 1995 wave has a maximum D of about 
200 km2 d-1, the 20 km d-1 westbound wave a D of 100 km2 d-1 and the 10 km d-1 1998/9 
wave has a maximum D of only 30 km2 d-1.   
 
The movement of fish alone can easily generate these values and so no vector is 
required to explain them.  The pattern of infection, killing adults but usually avoiding 
juveniles, also suggests that it is fish-to-fish contact which spreads the disease.  
However, the fact that D can be generated without a vector does not mean that birds or 
other organisms do not sometimes transport the virus. 

11.2.5 The Latent Period 

Epidemic wave speed in this model with its fixed length latent period is far more 
sensitive to the length of the latent period than is the model with a continuous turnover 
formulation.  This model responds to the square root of the latent period, while the 
traditional model responds to the fourth root (Yachi et al. 1988). 
 
Because wave speed becomes essentially independent of β  for large β , we have a 
maximum latent period that is consistent with the maximum diffusion coefficient and 
wave speed.  For the 40, 20 and 10 km d-1 waves this latent period is four, eight or 
12 days.  However, we lack direct data for the length of the latent period and infectious 
period other than observed lesions present for two to 4 days before mortality 
(Whittington et al. 1997).  Direct data should be obtainable experimentally, and if it 
were available it would be a highly valuable test of, and constraint on, the model. 
 
The latent period is a major factor in the pattern of recurrent persistent mortality during 
the initial phase of the epidemic.  This recurrence pattern would tend to support latent 
periods of around the 4 days that can still reproduce the observed wave speed. 
 
The existence of the latent period gives time for infected fish to mix among schools 
before they become infectious.  As a result the details of the mixing of fish populations 
are of less importance as a control on the epidemic's spread than is fish-to-fish infection.  
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This result greatly simplifies modelling, since we can dispense with models of the local 
structure and dynamics of the fish population. 

11.2.6 Mortality 

The proportion of mortality, as opposed to recovery, of infected individuals does not 
impact on the epidemic's behaviour in terms of the speed and local persistence of the 
mortality.  It is of great significance for its longer-term impact (see 11.4).  The model 
produces very high levels of infection and so the epidemic's long-term impact is largely 
controlled by the fraction of those infected individuals that die.  We do not have a good 
handle on this value.  The average value in Western Australia varied from 15% in 1995 
to 60% in 1999 and showed very large local variation.  In 1995 in South Australia 
mortality was 60% of the population.  This figure is the fraction of the population 
killed, but with infection levels of over 90% the fraction of the population killed is not 
very different from the fraction of infected fish killed. 

11.3 Differences Between and within Epidemics 

The eastbound waves of both epidemics travelled at twice the speed of the coincident 
westbound epidemic wave in both 1995 and 1998/9.  There is considerable uncertainty 
in the speed of the eastbound wave, which showed variation in 1995 and for which few 
data points are available beyond Victoria in 1999.  The two waves of the 1998/9 
epidemic travelled at less than half the speed of that occurring in 1995. 
 
There are three possible explanations for the differences between the eastern and 
western wave speeds, physical advection leading to an eastward drift, changes in 
diffusion due to differences in the behaviour of the fish or vectors, or there could be 
changes in the properties of the virus and infection.  Only the last two, changes in 
diffusion or properties of the infection, could apply to the interannual differences.  
These processes could apply under any model formulation and indeed the effects of 
changes in advection or diffusion would be exactly the same under any considered 
model formulation.  These are thus robust conclusions. 

11.3.1 Physical Advection 

Net east flowing currents could lead to advection towards the east leading to a reduction 
in the rate of westward flow and an increase in the rate of eastward flow of the 
epidemic.  Thus the 1995 epidemic could be characterised by a 30 km d-1 wave 
combined with a 10 km d-1 eastward advection, while the 1998/9 epidemic would 
require a 15 km d-1 wave and 5 km d -1 advection.  Since the flux would be in a 
consistent direction this motion would not lead to no excess diffusion and hence no 
change in the wave's shape. 
 
This model is simple and consistent.  However, if pilchards had a net movement that 
were consistently in one direction the entire Australian pilchard population would 
gradually move east.  Clearly this is impossible.  It is possible that infected fish are 
unable to swim as efficiently as uninfected fish and therefore are carried by the current.  
However, the infected fish do not appear to show any behavioural differences from 
uninfected fish until a few minutes before death (Whittington et al. 1997).   
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There are also problems with assuming a constant east-flowing current.  The epidemic 
wave speed, if driven by advection, would respond linearly to changes in current speed.  
The very limited variation from the linear regression of the epidemic's progress in 
Western Australia shows that there were no such distortions.  Propagation rate was 
unaffected by several storms (Fletcher et al. 1997), surely these events would lead to 
variation in advection rate.   The rapid northward development of the epidemic along 
the eastern coast of Australia appears to be directly against the prevailing current 
(Griffin et al. 1997).  In 1999 rapid expansion of the epidemic occurred simultaneously 
north to Newcastle and south to Hobart, which presents obvious problems for this 
theory.  
 
The speed of the advection would have to have halved between 1995 and 1998/9.  This 
process would only lead to the differences in the speeds of the two wings of the 
epidemic.  It can not explain the difference in the total rate of spread between the two 
epidemics. 

11.3.2 Viral Evolution 

Two parameters, viral transmission rate and the latent period of the infection, may be 
changed resulting in changes in the wave speed.  The epidemic wave speed is very 
sensitive to these parameters, particularly to the latent period's length.  Evolution of 
viruses can occur over a few generations if selective pressures are strong  (Ebert 1998). 
 
Evolution in the virus's properties almost certainly did occur between the two 
epidemics.  Viral lesions were much less abundant in the 1998/9 epidemic than they 
were in 1995 (AAHL 1999).  Therefore the production of viruses, and hence probably 
β , seems to have dropped. 
 
It would seem strange for the virus to evolve such that one wing of a single epidemic 
travelled at twice the speed of the other, while these epidemic wings were internally 
highly consistent in speed.  There would have to be some environmental difference to 
drive such evolution.  In any case the major difference in the appearance of lesions 
between the two epidemics would suggest major differences would be apparent in 
pathology. 
 
Such viral evolution is very likely to be a cause of differences between the speed of the 
two epidemics, but it is questionable that it explains the large differences within the 
epidemics. 
 
Changes in the viral transmission rate cannot alone account for the variation in the wave 
speed.  This is because the slower wave speed is only consistent with low diffusion 
coefficients, while faster wave speeds are not consistent with such low diffusion 
coefficients, for a given latent period.  The initial behaviour of both epidemics seems to 
be consistent with a longer four or more days latent period length.  Extreme changes in 
latent period length do not appear appropriate, but the wave speed is very sensitive this 
parameter, so small changes may have significant effects.  The transmission rate and 
latent period could evolve in parallel. 
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11.3.3 Differences in Diffusion due to changes in Fish or Vector Behaviour 

All epidemic models considered produce epidemic wave speeds that respond to the 
square root of diffusion.  A change in this parameter by a factor of four leads to a 
change in speed by a factor of two. 
 
The final option is thus that there is some difference between fish (or vector) behaviour 
east and west.  This would result in changes in the diffusion coefficient, which would 
have to be some four times greater towards the east.  This explanation would be 
consistent between the epidemics.  However, the cause of any such difference must be 
explained.   
 
The evidence suggests that pilchard movement, not that of vectors, is responsible for the 
epidemic's spread.  Diffusion coefficients are within the values that can easily be 
generated by pilchards – large diffusion coefficients are not consistent with the tightly 
focus mortality wave observed.   Mortality only occasionally affects juvenile pilchards, 
which suggests fish to fish mixing rather than vectors at least some of which would be 
likely to feed on adults or juveniles with less discrimination.  
 
Pilchard movement on the east coast of Australia may be less inhibited by boundaries 
than on the west coast.  Indeed the evidence appears to show a very rapid progression 
between the Bass Strait and east coast populations.  Towards the west, Cape Leeuwin 
forms a strong boundary to the mixing of pilchard populations.   
 
Pilchards off South America exhibit substantial differences in their patterns of 
movement between El Niño years and other years (Torres et al. 1984).  It is therefore 
quite possible that the behaviour of pilchards could be different in different 
environments in the west and east.  Long migrations exhibited by South American 
(Torres et al. 1984) and southern African (Newman 1970) pilchards appear quite 
different from the behaviour of Western Australia where populations and sub-
population (Cochrane 1999) appear to be restricted to well defined localities. The 
eastern Australian population is divided into two populations (Bass Strait and east 
coast) but it is quite possible that they are more mobile.  Yardin et al. (1998) noted a 
high degree of mixing in south eastern Australian pilchard stocks. Their distribution 
varies with time (Hobday 1992, Neira et al. 1999), so these populations are mobile.  
Mortality patterns also indicate a mobile population, on both occasions mortality 
occurred at similar locations in Western Australia while in the east mortality occurred in 
quite different areas, such as northern Tasmania in 1995 but not 1999, and south-east 
Tasmania in 1999 but not 1995.  It is therefore possible that eastern Australia's pilchards 
could behave quite differently to those in the west. 
 
Inter-annually, 1995 was at the end of an El Niño year and this was associated with low 
rainfall leading to low nutrient inputs and hence low production in coastal waters such 
as Port Phillip Bay (Neira et al. 1999).  This could have lead to fish searching for food 
over larger distances, hence leading to higher diffusion rates. 
 
Small diffusion coefficients maintain the sharply focused wave of mortality in the 
advancing front.  It is possible that in 1998 the diffusion in the eastbound wave is too 
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large relative to lower production in the second epidemic, causing the wave to become 
dispersed and thus only rarely detectable once it was mature. 
 
The epidemic advanced up the east coast less regularly than the western advance.  In 
1998/9 the epidemic was only apparent irregularly.  This could be evidence that 
diffusion was larger and involved larger scale movements of the fish, leading to 
dispersal of peaks and random advective components to the movement; this advection is 
due to the motion of fish not the water.  Dispersion of peaks by strong diffusion could 
lead to low continuous rates of mortality that might be undetectable if scavengers 
removed the small numbers of dead fish. 

11.3.4 Conclusions 

There are two explanations for the differences between epidemics waves to the east and 
west.  Under one model, there is a 10 km advection in 1995 and 5 km advection in 
1998/9.  The alternative explanation is that diffusion coefficients in the east are 
inherently four times larger than those in the west.  The properties of the epidemic are 
unlikely to be very different within a single outbreak.  The population density has only a 
minimal effect on the epidemic's speed. 
 
Which cause is more likely?  If advection drove the differences in wave speed then this 
would respond linearly to changes in advection, it seems unlikely that advection would 
be constant for months and yet change in speed by a factor of two in different years.  
The very high degree of constancy of the westbound propagation rate would show any 
fluctuations in current speed if advection were important.  On the east coast the currents 
run against the epidemic in spite of rapid advance along that coast (Griffin et al. 1997).  
 
The diffusion explanation relies on fundamentally different behaviour in pilchard 
populations.  This is certainly possible.  Pilchard population in Western Australia 
appears to consist of specific populations and sub populations which, while mixing, live 
in restricted areas.  On the other hand, South American and southern African pilchards 
migrate over 100s or even 1000s of kms on a regular basis.  Therefore other pilchard 
populations behave quite differently and it is perfectly possible that the eastern 
pilchards are more mobile than those in the west are.  The wave speed only responds to 
the square root of diffusion, so small changes would have little effect on the wave's 
speed.  This would allow the highly constant advance of the westbound wave. 
 
Interannual variation is due either a drop in the diffusion coefficient by a factor of four, 
or a large increase in β  combined with an increase in the latent period.  Advection 
cannot affect the speed in both directions in the same way; increase in one direction 
must lead to decrease in the other.  The large change in the abundance of lesions in 
infected fish between 1995 and 1998 indicates that transmission efficiency has changed, 
so this is at least part of the explanation for the interannual change in the epidemic.  
Changes in the nature of the infection could be combined with changes in diffusion.  
Since 1995 was the end of a severe El Niño it is possible that low nutrients, leading to 
increased movement of pilchards as they searched for more isolated food sources. 
 
In conclusion, we attribute difference between the eastern and western behaviours of the 
epidemic are due to differences in diffusion owing to different fish behaviours in 
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different populations.  Interannual variation is due to changes in viral properties, 
probably with further changes in diffusion coefficient. 

11.4 Longer Term Impacts of the Epidemics 

Very high levels of infection are generated under all model scenarios and this is 
consistent with the observations.   The level of mortality inflicted is thus largely 
controlled by the fraction of infected individuals that die rather than recover.  Regional 
average mortality levels have been estimated for Western Australia as 15 and 60%.  
There is thus a substantial variation in the degree of mortality inflicted, and the effect of 
a subsequent epidemic could be quite different. 
 
Population recovery following the epidemics depends upon the production of the 
pilchards (Wada and Jacobson 1998).  The recruitment of clupeoids is extremely 
variable and difficult to predict (Cole and McGlade 1998).  These fish do have variable 
populations and may be well adapted to recovering from sudden negative impacts such 
as the epidemics.  Reduced population may reduce competition, and even cannibalism, 
and hence improve survival (Cole and McGlade 1998).  However, pilchard populations 
in some areas appear to be declining, particularly near Albany, even without the 
epidemics and it is possible that pilchards could be replaced by some other small 
planktiverous fish that competes for this resource (Cochrane 1999, Kawasaki 1982).  If 
such a replacement were to happen population changes are likely to be very long term. 
 
We have developed a simple model of the pilchard population, based on a model 
developed by Fletcher (1992).  This model illustrates recovery from the effects of the 
epidemic.  The basic structure of the model is: 
 
 dP/dt = µA/(A + ra) - mP       (11.1) 
 
Where P is the pilchard population, A is the adult pilchard population, µ is the 
population growth rate and m is mortality rate. Typical annual mortality m is 0.4-0.5 y-1 
(Fletcher 1997, McCall 1979).  Parameter ra is a Beverton-Holt parameter which allows 
production to saturate as the population becomes large.  We use a value of 1. 
 
Existing data suggests that the pilchard populations recovered rapidly from the 
mortality inflicted by the epidemics.  Adult population estimates for South Australia 
are, in thousands of tonnes): 1995, 59; 1996 18; 1997 59; 1998 95; and 1999 38 
thousand tonnes (Jones 2000).  This shows the ability to triple population in one year - 
net growth.  Allowing for mortality we use a gross growth µ of 7 y-1.  This is at odds 
with the records from California, from which a maximum population growth of 8.5% y-

1 was deduced (McCall 1979).  However, there is a lot of scatter about the average 
growth rate. 
 
The model divides the population into nine year classes, reflecting the maximum nine 
year lifespan of pilchards (Fletcher et al. 1997).  The first year class consists of sexually 
immature juveniles into which new recruits are placed, while other year classes are 
breeding adults.  Equations are solved with an annual time step.  Individuals in the 
oldest year class die.  This is obviously a simplified simulation; in reality breeding may 
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take place twice a year and occurs at different times at different locations (Fletcher et al. 
1997).  
 
We have run this model until the population structure is stable and then imposed an 
additional epidemic mortality on one year (Fig. 11.1), populations are normalised to the 
stable population.  The background mortality rate is 0.4 y-1 and with an epidemic 
mortality of 0.15 or 0.6 y-1 the total mortality in the epidemic year is 0.49 or 0.76 y-1.  
We find that when subjected to such epidemics the model shows a fairly rapid recovery, 
even under the extreme case biomass recovers from 40% to 80% within three years.  
Observed recovery is even faster, but this may reflect the large degree of stochasticity in 
the recruitment (Cole and McGlade 1998, Wada and Jacobson 1998).  A second 
epidemic three years after the first causes a further decline in population, but recovery 
remains rapid. 
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Figure 11.1   Populations of pilchards under background mortality of 0.4 y -1 (solid line) or 0.5 y -1 (dashed 
line) subjected to epidemic mortality of 15% (squares) or 60% (triangles) after year 3.  Line with crosses 
shows the effect of repeated 60% epidemic mortality on a population with 40% background mortality.  
Bold line shows effect of switching from 40% to 50% background mortality. 
 
The fish stocks can recover from large levels of epidemic mortality and are hardly 
affected by small levels of mortality.  This leads to the question - can the stocks sustain 
high levels of exploitation?  Increases in catch equivalent to the 15% epidemic mortality 
increases the background mortality from 40 to 50% y-1.  To this increase in mortality the 
population reacts quite differently, falling to 64% of its original biomass over about 
five years; at 76% mortality the population is cut to only 12.8% of the original.  This 
high degree of sensitivity to increase in catch mortality is the same behaviour as found 
by Fletcher (1992).  At this low biomass, the model shows a similar relative response to 
epidemics, with a slightly more rapid recovery than under lower background mortality. 
 
This model is a simple model adapted from the work of Fletcher (1992).  It is not 
intended to give an accurate description of the speed of recovery of the population 
following a particular epidemic.  Stochastic effects are likely to be very large and 
therefore exact recovery time is unpredictable.  The model is intended to illustrate the 
difference in response of the pilchard's population to one off (even repeated at intervals) 
and consistent levels of mortality. 
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Pilchards are a major food source for larger fish, seabirds and mammals (reviewed by 
Murray 1999, Ward and Jones 1998).  A species that shows a particular dependence is 
the little penguin (Hobday 1992).  Low stocks of pilchards are likely to result in low 
recruitment of their predators.  However, provided the epidemic is not so severe, and 
alternative food sources are unavailable, as to cause adults to die of starvation, the 
impact of short- lived events on long lived large predator populations is likely to be 
moderate if the pilchard population can recover.  If starvation of adults does occur, then 
the populations of these large predators may take a very long time to recover, resulting 
in persistent instability in the ecosystem. 

11.5 Management Options 

Because the pilchard is a highly mobile schooling fish it seems inherently vulnerable to 
disease. Unstable populations are a hallmark of many schooling clupeoid fish (Blaxter 
and Hunter 1982, Wada and Jacobson 1998).  The disease appears to exist in its host for 
several days before killing it, this means that it can disperse freely.   Such a virulent 
disease can be transmitted effectively even at low population density, a fact enhanced 
by schooling, which maintains high contact rates at low densities. 
 
Manipulation of the adult population does not appear to be a practical management 
option.  Even if very low densities can be maintained, the disease is still transmitted 
quite effectively as transmission is only very weakly dependent on population density.  
Firebreak management is unlikely to be effective.  Note that, even if it is effective, the 
actual position of the epidemic front is far ahead of the point of high mortality because 
in the time taken for the disease to develop the epidemic front moves on.  The 
unlikelihood of a successful firebreak is consistent with the propagation of disease 
around Cape Leeuwin, in spite of low local populations (Fletcher et al. 1997). 
 
Juvenile pilchards found close to infected adult pilchards may avoid infection 
(Whittington et al. 1997), even though, at least in 1998/9, the juveniles were vulnerable 
to the disease (Ward et al. 1999).  Juveniles and adults do not shoal together.  This 
suggests exchange of population is required for effective transmission between schools. 
 
If birds, or other predators, acted as a vector for the disease we would expect to see it 
spread as a matter of course between adult and juvenile populations.  Very high 
diffusion coefficients, consistent with bird movements, also appear to produce mortality 
distribution patterns at odds with the observations.  This appears to mean such vectors 
lack a critical role in transmission and that the culling of birds, mammals or large fish is 
unlikely to be an effective means of limiting the spread of the pilchard herpesvirus. 
 
The disease's spread is much more sensitive to patterns of movement than it is to 
population density.  If pilchard movement through specific areas could be discouraged 
this would be more likely to contain the disease.  However, no mechanism exists for 
this.  If a barrier could be formed, then vectors might be able to transport the virus over 
the barrier, even if they are not normally important in transmission. 
 
Juvenile pilchards appear to live in coastal embayments (Neira et al. 1999).  This would 
argue much weaker mixing of populations is possible than for shelf- living adults.  
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Mortality of juveniles either does not occur or is limited in spread.  Preservation and 
separation of juvenile stocks would appear to be the most effective means of ensuring 
rapid pilchard recovery.  This may be achievable by limiting fisheries based on 
juveniles, currently such a fishery occurs in Port Phillip Bay and Spencer Gulf 
(Jackson et al. 1999), and by ensuring as many pilchard nursery areas as possible are 
preserved as healthy environments.  It is better, for this purpose, to preserve many 
ecosystems in reasonable condition than a few in pristine condition. 
 
Populations appear to recover quite robustly following even high levels of epidemic 
mortality.  Repeated large epidemics increase the impact on populations to a moderately 
large level.  However, sustained increase mortality at even moderate levels leads to a 
large decline in fish populations.  Failure of recruitment, as observed off Japan, has the 
largest impact of all; the disease has less impact on juvenile than adult populations and 
therefore it does not prevent recruitment. 
 
Inoculation may, in the long-term be a possible route to achieve protection.  Since 
isolation is unlikely to succeed probably the most effective strategy for preservation of 
pilchards may be to take advantage of their well-mixed populations.  The model shows 
that few adult fish can avoid infection, hence survivors must be resistant individuals.  
The 1995 epidemic in Western Australia appears to have caused only moderate levels of 
mortality and to have spread far faster than the 1998/9 epidemic; part of this change in 
speed must be due to different fish movement patterns, but part is due to increased viral 
production.  Had it been possible to introduce the 1995 virus ahead of the 1998/9 virus 
and if it caused immunity to the latter, then mortality levels could have been drastically 
reduced.  Ideally a third virus with the elevated transmission of the 1995 epidemic, but 
inflicting lower levels of mortality could potentially be used to immunise the population 
in the event of a subsequent epidemic.  We would need to know much more about why 
the virus kills (high levels of mortality were recorded in South Australia in 1995) before 
such a strategy is even remotely practicable.  It will also be noted that currently we have 
no effective means of assessing mortality until the epidemic is well developed, in that 
case we cannot tell if the 'cure' is more deadly than the 'disease'.  We would also need to 
ensure the virus induces immunity and that surviving pilchards have not evolved 
immunity to the older viral strain, thus preventing its spread.  This requires more 
experimentation on pilchards and tissue cultures, but has a lot of long-term potential. 
 
More data is required on the epidemic in order to constrain the model.  The disease has 
to be propagated in vivo in order to allow the evaluation of the lengths of the latent and 
infectious phases.  Such information should be obtainable experimentally and would 
strongly constrain the model.  Tagging experiments could be used to determine whether 
there are large differences in the behaviour of different pilchard populations. 
 
The recommendations therefore, are maintain vigilance against introduction of viruses, 
and protect the juveniles' habitat and populations.  In the longer term, the high rate of 
spread of the 1995 epidemic may be used to produce a low mortality inoculum.  
Reduction of the fish population and culling of birds are specifically ruled out as 
effective controls by the results of the model. 
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12 Benefits, Future Developments and Conclusions of 
 Research 

12.1 Benefits 

The research has lead to the development of a series of models which provide insight 
into the epidemiology of the pilchard herpesvirus and the behaviour of the pilchard.  
Exploitation of these results is of benefit to researchers and managers. 
 
The most direct benefit is in the demonstration that the epidemic cannot be controlled 
by controlling sea birds or by adoption of ‘fire-breaks’ or other forms of fishing down 
the pilchard population.  The epidemic’s spread is shown to be consistent with pilchard 
movements, and local development of the epidemic is inconsistent with very high 
dispersal that could result from bird-based transmission. The impracticality of fire-
breaks is due to the very high efficiency of transmission and the resultant extremely low 
threshold and due to the latent period of infection, which means that effective 
transmission is occurring some considerable distance in front of the detectable 
mortality. 
 
Maintenance of juvenile pilchard stocks is recommended to speed the post-epidemic 
recovery. 
 
The model also shows that pilchard stocks mix very freely and that degrees of large-
scale mixing are different in different areas.  This difference has implications for 
fisheries management in different parts of Australia. 
 
The model thus provides managers with evaluations of several control and recovery 
strategies for managing epidemics.  Experimental evaluation of these strategies would 
be extremely expensive and only partial.    
 
The model is also of value to researchers.  This model is the first to investigate the 
spatial spread of an epidemic in a fish stock and generates an evolving epidemic wave 
whose properties change with time, which is a novel feature of this epidemic.  Since 
diseases are of increasing concern to marine environmental scientists (Harvell et al. 
1999).  This model may be of use in evaluating spread in this growing number of 
reported diseases.  Disease spread is also of increasing importance to the aquaculture, 
and models may be adaptable to the needs of this industry. 
 
The initial phase of the modelling has been presented at the conference MODSIM 99 
(Murray et al. 1999), which resulted in an invitation to publish this work internationally 
(Murray et al. 2000b).  Putting a dollar value on this scientific outcome is even harder, 
but given the scale of the emerging disease problem and the limited scope for 
experiments, formal modelling and analysis is of very great value.  Models can be used 
to combine observations from the field with process rates derived experimentally and to 
suggest the areas of research where experimental analysis is most cost effective. 
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12.2 Future Developments 

The model presented here is potentially strongly constrained by data on the 
development of disease.  Unfortunately, there is a lack of experimental data which could 
be used to characterise latent period and the total length of infection in more detail.  If 
these parameters were strongly constrained by observation, then the other parameters 
involved in the epidemics spread (D and β) could also be restricted more strongly.  This 
would allow the model to be investigated in more detail, particularly the origin and 
evolution of the epidemic.  We therefore appeal for support for the continued 
experimental evaluation of disease transmission. 
 
Post epidemic recovery of the pilchard population could be investigated in more detail 
using the model presented in this report.  With only two epidemics we were not in a 
position to confirm modelled description of the population’s recovery in any detail.  
However, this model of the interaction of epidemic mortality with background mortality 
could be extended and developed as a theoretical analysis of the interaction of disease 
with other forms of mortality. 
 
Application and adaptation of the existing model to other diseases awaits the acquisition 
of future data sets, unfortunately a quite likely occurrence. 
 
Further peer reviewed publication of the existing model is intended and has been 
discussed with the PSWG members.  Particularly, the model of school level 
transmission and of the analytical solution of wave speeds, already have been submitted 
as a manuscript and the main model will also be developed for scientific publication.  
Further publication may be possible. 

12.3 Conclusions 

The project 99/225 objectives have been met or exceeded in most cases.  The original  
objectives are described below with a description of how these objectives were met.  
This includes an analysis of local transmission, which was formally dropped but was 
fulfilled anyway. 
 

1 We will construct a 1-D SIR (Susceptible, Infected, Removed) model of the spread 
of the pilchard mass mortality events of 1995 and 1998/9. This has been met, a 
model of the epidemic has been developed, also see objective 4. 

 

2 We will analyse the effect of different modes of local transmission on the mass 
mortality's dynamics.  This objective was dropped as a result of the cut in available 
funding.  However, we do include an analysis of the local inter- and intra- school 
transmission in chapters 4 and 5 of the final report. 

 

3 We will produce a literature review of similar mass mortalities and the modelling 
approaches used to analyse them.  This was completed at an early stage, and was 
incorporated in the initial report. 

 
4 We will refine the SIR model to include different transmission process functions 

and data obtained by other pilchard mortality study projects, in particular the 
Fisheries WA lead study on viral transmission.  The model has been refined to 
incorporate an incubation phase in infection, fixed length phase structures, and the 
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option of non-linear transmission.  We have used observations, particularly the 
initial behaviour of the epidemic to select the model structure; however 
transmission data was not available.  The resultant model is substantially novel 
and we have derived a formal method for its analytical solution.  

 

5 We will review the observations, including those obtained in concurrent studies, to 
provide the tightest possible constraints on the ranges of model parameters.  We 
review the observations (chapter 3) and use them to refine the model (chapters 8 
and 9). 

 

6 We will analyse the effects of fisheries management strategies on pathogen 
transmission, in particular we will test the viability of a 'fire break' policy.  We 
included an analysis of the effectiveness of fire breaks in the initial report.  We 
further analyse management options in chapter 11 of the final report in the light of 
the results of the full model. 

 

7 We will construct a simple model of the recovery of the fishery to investigate the 
period required for the stocks to become vulnerable to renewed mortality.  Such a 
model has been derived from a model developed by Fletcher and is used to 
investigate post-epidemic recovery patters (chapter 11). 

 

8 We will development a Graphical User Interface (GUI) to display the local and 
geographical spread of pathogens.  A GUI has been derived that allows model 
output to be plotted on a map.  However, the nature of the epidemic, a sharp focus 
at a single location at a given time, means that there is little spatial pattern and so 
we have used a variety of other graphical display tools to present model outputs.  

 

9 We will produce an initial report detailing the approaches used both by us and other 
modellers of epidemics.  This initial report was presented to the PSWG last year. 

 

10 We will produce a final report detailing the final form of the model produced and 
incorporating analysis of model structure, parameters and results.  This report has 
just been provided to the PSWG. 

 

11 We will present this work at a nationally significant scientific meeting in 2000.  
The modelling was discussed at the conference MODSIM 99.  Three scientific 
papers on the modelling have been prepared, in excess of the plans for extension of 
results. 

 

As an extra objective that was also discussed in the planned extension of results, a www 
page has been set up on the CSIRO Marine Research projects pages. 
 

Our initial objectives have thus been largely achieved of exceeded.  This has been in 
spite of problems with the experimental transmission trials, which deprived us of data 
that could have strongly constrained the model.  We identified this possibility as a 
serious risk at the start of the study and designed our study to be able to take advantage 
of the existing data in the absence of further transmission data.  The model actually 
suggests a possible reason for this failure of transmission trials, that there may only be a 
relatively narrow window for infection during the development of the disease. 
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APPENDIX 1 

Intellectual Property and Valuable Information 

 
 
The principle outcomes of this project are novel epidemiology models based on a fixed 
length infection.  These models, which are described in this text, include: 
 
 A series of simple epidemiological models adapted to describe the epidemic. 
 
 Interaction of schools and the local level spread of infection 
 
 The main model detailing continental scale spread of infection 
 
 The analytical method of determining the epidemic’s speed of spread 
 
 A model describing post- epidemic population recovery 
 
Further valuable outcomes include 
 
 A collected data set describing the spread of the 1995 and 1998/9 epidemics 
 
 A review of epidemiological models (presented to the JPSWG) 
 
The model produced several valuable outcomes.  Some of these are negative but this 
does not prevent their being important outcomes which can inform management of 
future epidemics: 
 
 Discounted the role of vectors in virus transmission, making control irrelevant.  

This was certainly not obvious a priori. 
 
 The very high transmission efficiency required shows ‘fire-break’ control 

methods to be impracticable.  There was considerable doubt a priori, but this 
formal evaluation which confirmed these doubt was still valuable. 

 
 The model showed the value of maintaining juvenile stocks to ensure recovery. 
 
 The model indicates that the pilchards in eastern Australia are more mobile 

than those found in the west.  This has important implication for the scale of 
management of stocks. 
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APPENDIX 3 

Algorithm to find the wave speed of an epidemic with a fixed length latent 
period 

 
 
Michael O'Callaghan derived this algorithm on the basis of the analysis described in 
chapter 7. 
 
'Set model parameters (in units of km and days) 
set Die ' Diffusion coefficient for E and I phase  
set b ' Latent period length 
set α ' Turnover rate of infective phase 
set S0 ' Initial population, default value is 1 
set β  ' Transmission coefficient 
 
'Set control criteria 
v = .1  'variance of latent period (day2) 
crit = .0001  'convergence criterion 
 
 
'Begin algorithm to compute wave speed 
 
relerr = 2 × crit     'ensures we perform loop first time 
a = 1 - α × v / b 
n = b2 / v 
rhs = β  × S0 × v / b 
ρ = 1 
WHILE relerr > crit 
  numer = ρ - a - rhs / ρn 
  denom = n + 1 - n × a / ρ 
  δ = numer / denom 
  ρ = ρ - δ 
  relerr = ABS(δ / ρ) 
WEND 
 
 
' Finish by computing speed 
 
Speed  = 2 × √(Die × b × (ρ - 1) / v) 
 
' End of algorithm 
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