67 results
Adoption
PROJECT NUMBER • 2014-405
PROJECT STATUS:
COMPLETED

Oysters Australia IPA: Australian edible oyster RD&E investment via Oysters Australia strategic plan 2014-2019

This report describes the outcomes from a five-year Industry Partnership Agreement (IPA) between Fisheries Research and Development Corporation (FRDC) and Oysters Australia (OA). The primary objective of the IPA was to coordinate oyster R&D funded through FRDC and other sources.
ORGANISATION:
Oysters Australia Ltd
Industry
PROJECT NUMBER • 2019-208
PROJECT STATUS:
COMPLETED

2020-2025 Strategic Plan for the Australian Oyster Industry

The primary purpose of this plan is to coordinate oyster industry research, development, and extension (RD&E) across Australia to ensure that usable outputs are provided to oyster businesses. The plan outlines a set of RD&E programs and a list of priority projects for which research...
ORGANISATION:
Oysters Australia Ltd
People
PROJECT NUMBER • 2008-777
PROJECT STATUS:
COMPLETED

Seafood CRC: Australian Oyster Industry Supply Chain Analysis & Improvement Strategy

Australian oyster growers have a greater level of understanding about how their product moves through the supply chain from when they produce to when it is purchased by consumers. This knowledge will allow growers to be better informed and so allow them to make better business decisions in how they...
ORGANISATION:
Pinnacle Agribusiness
Industry
PROJECT NUMBER • 2021-097
PROJECT STATUS:
COMPLETED

Environmental risk factors that may contribute to vibrio outbreaks - A South Australian case study

Vibrios are naturally occurring bacteria that are ubiquitous in fresh, estuarine and marine environments. Many Vibrio species are non-pathogenic, but some can cause disease in animals, and others are pathogenic to humans. People can contract vibriosis by consuming raw, undercooked or...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
Industry
PROJECT NUMBER • 2010-734
PROJECT STATUS:
COMPLETED

Seafood CRC: oyster over-catch: cold shock treatment

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such...
ORGANISATION:
Tasmanian Oyster Research Council Ltd
Industry
PROJECT NUMBER • 2017-203
PROJECT STATUS:
COMPLETED

Risk from Diarrhetic Shellfish Toxins and Dinophysis to the Australian Shellfish Industry

This study first examined DSTs in spiked and naturally contaminated shellfish - Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS ...
ORGANISATION:
University of Technology Sydney (UTS)

Assessing occurrence of pathogenic species of the marine bacteria Vibrio in Tasmanian oysters from St Helens

Project number: 2015-042
Project Status:
Completed
Budget expenditure: $29,520.38
Principal Investigator: Tom Madigan
Organisation: SARDI Food Safety and Innovation
Project start/end date: 29 Feb 2016 - 29 Jun 2016
Contact:
FRDC

Need

This is the first time that an illness associated with Vibrio has been traced-back to Tasmanian oysters. Regrettably, this incident occurred in the only major harvesting area in Tasmania that has not been impacted by the current Pacific oyster mortality event.

In Australia the control of Vibrio is currently limited to temperature controls during storage or transport. Pre-harvest controls used by the shellfish quality assurance programs are predicated on controlling risk posed by faecal contamination and biotoxins and are not suitable for controlling risk from these naturally occurring bacteria. Although the recent implementation of the Codex Standard for pathogenic marine vibrios suggests risk in bivalve growing areas should be assessed to ascertain the risk to public health, there has been limited research undertaken in Australia. The studies undertaken to date have generally been short in nature with no comprehensive longitudinal studies being undertaken and methodologies have now progressed significantly, whereas New Zealand has been undertaking a long-term survey to understand the risk posed by these pathogens (Cruz, Hedderley & Fletcher 2015). This issue may become a risk in accessing key markets that are active in monitoring or who regulate for these pathogens.

There is an immediate need to collect information on prevalence for the remainder of the summer period to understand the risk and evaluate if there is a relationship to salinity, temperature and toxic strains. This information will be immediately useful for developing appropriate management plans in this growing region.

This illness outbreak will likely result in Tasmanian Shellfish Quality Assurance Program and the other state programs having to consider how to manage risk in the growing areas and establish what is an acceptable level. The work proposed here could be used as a framework for future work that assesses risk across the bivalve industry Australia-wide.

Objectives

1. Assess for the prevalence of pathogenic Vibrio species in the St Helens harvesting region
2. Assess for the presence of genes associated with virulence in Vibrio parahaemolyticus
3. Evaluate if a relationship exisits that between prevalance and sea water temperature and salinity

Final report

ISBN: 978-1-921563-92-8
Authors: Tom Madigan Kate Wilson Gayle Smith and Alison Turnbull
View Filter

Species