FISH AND SEAFOOD CONSUMPTION IN AUSTRALIA

A CONSUMER SURVEY
 1976-77

Fish and Seafood Consumption in Australia

A Consumer Survey 1976-77

FISHERIES DIVISION
DEPARTMENT OF PRIMARY INDUSTRY
aUstralian governiment publishing service
CANBERRA 1978

Foreword

The impending declaration of a 200 mile fishing zone and rising fish prices both in Australia and overseas offer wide scope for further development of the Australian fishing industry. In particular, there is identifiable scope for replacing imported fish on the domestic market.
The Commonwealth Government, in co-operation with the States, has devoted considerable effort to find and prove new fishing grounds in recent years. But, as pointed out in this report, much more needs to be done in this area.
The survey reported here represents a concurrent effort to assist marketers of Australian fish. It provides information about the fish eating habits of Australians and is a base from which more detailed marketing analyses may be undertaken.
The study was requested initially by the Victorian Ministry for Conservation which asked that the Commonwealth carry out a survey of Melbourne consumers. At a meeting in 1975 Ministers responsible for fisheries in all States and the Commonwealth asked that the survey be extended to cover all capital cities. This was to enable a working group on mercury in fish to assess the importance of fish in the Australian diet.
Tenders were called late in 1975 and PA Consulting Services was the successful applicant. Survey interviews commenced in June 1976 and continued over four quarters.
The survey reported here covered a sample of 6000 households in all capital cities except Darwin. Darwin was not included because it is a relatively small market for fish, would have been expensive to survey and at the time of planning the survey was recovering from the destruction caused by Cyclone Tracey.
Additionally, information was collected on the attitudes and opinions of.consumers in Melbourne towards fish and other seafood. A separate report on that study will shortly be released.
Data were also obtained from a further 1500 'heavy' fish eaters for use by the working group on mercury in fish.
A number of people contributed to the successful conclusion of this survey. The staff and officers of PA Consulting Services were thorough and painstaking in planning the survey and in the-collection and analysis of data. In particular I wish to thank Messrs C. D. A. Maddocks, P. A. Murphy and Ms J. E. Hocking who were responsible for the conduct of the survey.
The consultants received advice and assistance from a number of sources; officers of the Victorian Division of Fisheries and Wildlife, the working group on mercury in fish and a steering group of Commonwealth officers who oversighted the project.

Finally, I would like to express my appreciation to the great number of people who gave their time to provide the information in this report and the other studies.

E. A. Purnell-Webb
First Assistant Secretary

Fisheries Division
CANBERRA
March 1978

For further information concerning this survey contact Mr C. Keating, Fisheries Division Phone Canberra 725388.

Contents

Page
1
1 Highlights
2 Introduction 3
2.1 Survey coverage 4
2.2 Classification of fish and seafood 5
2:3 Survey method 5
2.4 Characteristics of the sample 6
2.5 Interpretation of results
10
3 Detailed findings
13
3.1 Consumption of fish and seafood per person
17
17
3.2 Frequency of consumption of fish and seafoafood
3.2 Frequency of consumption of fish and seafoafood 19
3.4 Species of fish and seafood 25
3:5 Source of supply of fish and seafood 26
3.6 Days of the week on which fish and seafood were served 27
3.7 Meals at which fish and seafood were served 28
3.8 Cooking methods for fish and seafood 30
3.9 Other factors influencing fish consumption
4 Discussion 39
4.1 Marketing implications 48
4.2 Level of consumption 51
4.3 Misnaming of fish and seafood
Appendixes 53
I Glossary of terms used 54
II Sample methodology 56
III Estimation of survey sampling errors 64
IV Relationship between trade names and other names for fish
Index of Tables 8
1 Sample details by quarter percentage of total households2 Characteristics of the sample in each capital city-percentage of total9
households
10
10
3 Annual per capita consumption of fish and seafood in capital cities
11
11
4 Per capita consumption of each form of fish and 12
6 Percentage distribution of fish and seafood coasumed-grams per person14
weekly

Page

7. Individuals never eating fish by age group in each capital city-percentage of consumers
8 Non-consumption of seafood by total income: all cities-percentage of households in each group
8. Non-consumption of seafood by age: all cities percentage of households'in each group .
10 Frequency of serving all forms of fish: all cities percentage of consumers and average times serves.
11 Frequency of serving all forms of seafood: all cities-percentage of consumers and average times served
12 Frequency of serving fresh fish in each capital city percentage of consumers

14 Species of fish consumed in different situations: all cities-proportion of consumption occasions
15 Species of fish served most often in each city percentage of consumption occasions2016 Species of fish eaten at home by form when obtained all cities-percentage of.consumption occasions

17 Species of fish served at home in each city percentage of consumption occasions
18 Species of fish bought cooked from takeaway outlets in each citypercentage of consumption occasions
19 Species of fish eaten when dining out in each city proportion of consumption occasions
20 Species of seafood served at home in each city proportion of consumption occasions
21 Species of seafood consumed from takeaway outlets in each city-as a percentage of consumption occasions
22 Species of seafood eaten when dining out in each city-as a percentage of 24 consumption occasions.
23 Source of supply of each form of fish for home consumption: all citiespercentage of occasions each form bought
24 Source of supply of fresh fish for home consumption in each city-percentage of households buying each form .
25 Source of supply of each form of seafood for consumption at home: all cities-percentage of occasions each form bought June quarter, 1976
26 Day of the week each form of fish served at home: all cities-thousands of 26 occasions and percentage of consumption occasions percentage of occasions.
29 Meal at which each form of seafood was served at home: all cities-thousands and percentage of occasions
30 Cooking method for each form of fish served at home all cities-thousands 29 and percentage of occasions

31 Cooking method for each form of seafood served at home: all citiesthousands and percentage of occasions
32 Annual per capita consumption of fish and seafood: by total household income all capital cities
33 Annual per capita consumption of fish and seafood by household
composition: all capital cities times per week.
35 Percentage distribution of households by household composition and according to age of respondent
36 Annual per capita consumption of fish and seafood by age group: all capital cities
37 Annual per capita consumption of fish and seafood by country of origin: all capital cities . 38 Percentage of households with members who go fishing each capital city and total
39 Annual per capita consumption of fish and seafood by city-all persons and those eating fish for dietary reasons
40 Percentage distribution of fish and weekly
Food serving establishments: 1968-69 and 1973-74 number and value of
41 Food serving establishments: 1968-69 and 1973- 41 Retail Sales. \dot{d}. $975-76$
42 Average weekly household expenditure-fish and seafood 50
43 Market size: selected fish products: tonnes, edible weight.

1 Highlights

Australians in capital cities ate 10.1 kg of fish and seafood per head annually over the survey period 1976-77. This comprised 7.8 kg of fish and 2.3 kg of seafood. (See pages
$10-13$ inclusive.)
In Sydney 11.7 kg of fish and seafood were eaten.
$\cdot 10.4 \mathrm{~kg}$ were eaten in Brisbane
9.5 kg were eaten in Perth

- 8.9 kg were eaten in Melbourne
. 8.0 kg were eaten in Canberra
- 7.7 kg were eaten in Adelaide
- 7.2 kg were eaten in Hobart

Some 38% of individuals had not eaten either fish or seafood in the week preceding the interview. A further one third ate the equivalent of less than 10 kg annually. But 6% ate more than 26 kg annually and 2% consumed more than 40 kg .
Theafood was prepared and was prepared and eaten at home, but only one third of seafood was prepared and eaten at home.
On average some form of fish was eaten just over once a week per household. (pages Fresh fish was faten was eaten more often than any other form- 28 times per year. 8 times per year. Prawns were the year and cooked fish from takeaway outlets was eaten Households with higher income common type of seafood served. not strong. (page 30.)
Households with adult mas any other group. (page 32.) They ate muched about twice as much fish and seafood as outlets.

Persons eating fish for dietary reasons also ate about twice as much fish and seafood than other groups. (page 37.)
Country of origin of the respondent had little effect on overall average fish and seafood consumption. (page 35.) But it had a marked influence on the kind of fish and seafood eaten. Where the householder was of 'Mediterranean' origin, average consumption of Generally, younger householders ate more fish than the average of other households. factor was closely related to income. (page 33.) Supermarkets were the main overall
varied for fresh fish where the retail fish source of supply for fish. (page 25.) This pattern important sources of supply and leisure fishing ($\%$) and fish market (18%) were more supply of fresh fish. About one third of househ accounted for a further quarter of the recreation. (page 36.)
weekend. (page 26.)

Físh and seafood were eaten mainly at the evening meal and rarely for breakfast. (page 27.) Tinned fish was mostly consumed at lunchtime

On about 40% of eating occasions, fish was not cooked but served 'straight'-this was mainly tinned fish. Frying was the predominant method of cooking. (page 28.)

2 Introduction

This report presents the results of a survey of Fish and Seafood Consumption in the Australian capital cities. The survey was conducted by P.A. Consulting Services Pty. Ltd. for the Commonwealth Department of Primary Industry and provides information on how much fish and seafood of different forms is eaten by consumers in the capital cities.
The specific objective of the survey was to provide statistical data on the level and pattern of fish and seafood consumption in Australian capital cities and to provide more detailed information on the differences in fish and seafood consumption from State to State, according to socio-economic and demographic groups.
The study was commissioned with the requirements of a number of potential users in mind. First the working group on mercury in fish set up by the Australian Fisheries Council in 1975 required accurate information on the level and distribution of fish consumed by Australians. In particular, the group was interested in establishing whether certain individuals or groups were eating large quantities of fish or seafood. Second, the Commonwealth Department of Primary Industry and the Victorian Ministry for Conservation sought information on the attitudes of consumers to particular forms of fish and seafood. The results of that survey have been published in another report. ${ }^{1}$
Third, it was expected that the results of the survey would be used by other Government bodies concerned with the administration of Australian fisheries and the marketing of the catch. Finally, it was hoped that the results contained in this report, along with other data collected, would be of considerable use to those individuals and organisations engaged in the catching and marketing of fish and seafood.

2.1 Survey Coverage

The survey was based on 6000 household interviews in seven capital cities over four quarters.
Household fish and seafood consumption data from 6000 households were collected in four rounds of 1500 interviews, each at the following times:

$$
\begin{array}{ll}
\text { 1st Quarter } & \text { June, 1976 } \\
\text { 2nd Quarter } & \text { September, } 1976 \\
\text { 3rd Quarter } & \text { December, 1976 } \\
\text { 4th Quarter } & \text { February, 1977 }
\end{array}
$$

Interviewing extended over three weeks of each quarter.
The interviews were conducted over four quarters in order to take into consideration seasonal variations in the fresh fish catch and different eating patterns throughout the year which might be expected to produce seasonal variations in consumption patterns.

[^0]The following number of household interviews were conducted in each capital city:

Sydney	400 per quarter $=1600$
Melbourne	360 per quarter $=1440$
Brisbane	180 per quarter $=720$
Adelaide	180 per quarter $=720$
Perth	160 per quarter $=640$
Canberra	120 per quarter $=480$
Hobart	100 per quarter $=400$
Total	1500 per quarter $=6000$

From 30% of sample households in each city and each quarter, additional information was obtained on the weight of fish and seafood eaten outside the home by individuals fifteen years old and over.

2.2 Classification of Fish and Seafood

In preliminary investigations, it was found that consumers distinguished clearly between the eating of fish and other seafood because each was perceived to play a different role in the diet. For ease and accuracy of data collection, consumption of seafood was therefore classified into two broad categories:

Fish and Seafood
Fish were defined to cover all species of fresh-water and sea-water FIN FISH including sharks, rays and eels
Seafoods were defined to include all species of crustacea (e.g. lobsters and prawns) and molluscs (e.g. oysters and squid).
Fish were then classified according to their form at the time they were obtained, whether fresh and frozen (unpackaged) fish, frozen packaged fish, fish fingers, tinned fish, smoked fish and other fish. 'Frozen Packaged Fish' was defined to exclude frozen fish fingers and frozen fish cakes. Fish fingers were considered sufficiently important to have their own classification and fish cakes, along with rollmops, caviar, dried and salted fish were included in the 'other fish' category.
Similarly, seafoods were categorised as either fresh and frozen (unpackaged), frozen (packaged), tinned or other seafood. Other seafood included jars of seafood such as oysters and mussels and also dried and cured seafood.
Species identification of fish and seafood had to depend on the descriptions used by respondents. Preliminary investigations showed that species identification was less of a problem for regular fish eaters than non-fish eaters or occasional fish eaters. Nevertheless, many commonly used names are not precise. Also if a species of fish had been sold under a name other than its true name, the results will reflect the species name by which the fish was sold.
Species identification problems were most evident in describing fish eaten away from home. On a significant number of occasions when cooked fish was bought at takeaway food outlets, the respondent did not know the species of the 'piece of fish'. In addition, many species were sold under popular names such as whiting, snapper or cod, although they may in fact have been other species.
Similarly, the favourable image of 'barramundi' in the restaurant, club and hotel trade, resulted in many species being sold under this name and consequently reported in this study.
Some foodstuffs were excluded from the study because of the small quantities of seafood ingredients and the difficulty in estimating weight.

These include:
Fish paste
Fish soup
Seafood pizza
Spaghetti marinara
Fried rice.

2.3 Survey Method

Extensive desk research of available literature contributed to the development of the questionnaire. This literature search was supported by preliminary discussions with groups and individual consumers, as well as trade interviews. Preliminary developmental interviews were used with around 500 respondents.
Home interviews were conducted with the person responsible for the purchase and preparation of food in the household. The questionnaire reviewed the general frequency of eating all forms of fish and seafood, whether at home or outside the home.
Fish and seafood eaten outside the home included that bought cooked from takeaway outlets and other occasions of eating out; for example, at restaurants, clubs, hotels and at friends' homes.
After establishing the general patterns of consumption, the respondents were asked to review all the main meals and other eating occasions of the previous week and to report each instance when fish and seafood were consumed. Questions on consumption behaviour covered the species and quantity of fish and seafood consumed over the past seven days. They also covered the methods by which fish and seafood were prepared or cooked and the day of the week and the meal at which they were served. So that the consumption patterns could be related to catch or sales statistics for various forms of fish and seafood, the sources of supply and aspects of purchasing behaviour were also determined during the interview.
Purchasing behaviour covered the form in which fish and seafood was purchased, for example, whether it was fresh, frozen or tinned. It also covered the frequency of fish and seafood purchases.
Information was also obtained on recreation fishing habits and occupational influences on fish and seafood consumption, in addition to selected demographic and socio-economic characteristics of the households.
Copies of the questionnaire may be obtained on request from the Department of Primary Industry, Canberra.

2.4 Characteristics of the Sample

The 6000 households interviewed were weighted to represent the 2693000 households in the capital cities. Sample design is shown in Appendix II.

2.4.1 Variations in the Sample by Quarter

While the contribution of each city was constant in each quarter, there were some variations in the composition of the sample when examined, according to such variables as household composition, total household income and age groups of respondents as shown in Table 1.

2.4.2 Variations in the Sample by City

The characteristics of the sample households for each capital city can also be
compared on such bases as household composition, total household income and age.of the respondent. These variations are shown in Table 2.
Households consisting of adults only, comprised 56% of the sample while the 44% with children included 11% with three or more children. These proportions were fairly constant between cities, although the proportion of households with children was higher in Canberra (54%).
There were considerable variations both in stated household income levels between cities and also in the willingness of respondents to report income. Qver all capitals 21% of respondents either could not or would not give total household income. It was estimated that 18% earned less than $\$ 6000$ per annum, 46% earned between $\$ 6000$ and $\$ 12000$ per annum while 15% earned over $\$ 15000$ per annum.
The age of respondents was spread basically across three age groups. Most (43%) were in the 20-39 age groups, 34% in the $40-59$ age group while 21% were 60 years of age or over. Just under 2% of respondents were both below 20 years of age and also responsible for the purchase and preparation of food for the household.
Sydney households tended to be very similar in composition to the total sample of households. In Melbourne 18% of the population had incomes estimated at over $\$ 15000$ per annum, which was above the average, and the proportion of households with children, 41% was lower.
Brisbane incomes were lower with 20% earning less than $\$ 6000$ per annum and only 10% earning over $\$ 15000$ per annum, while there was also more reluctance to discuss income at 23% of respondents. Although the proportion of households with children was similar to the total estimated for the population at 45%, there was a higher proportion of elderly respondents comprising 28% of the population.
Household composition in Adelaide was close to the average for all cities of those with children and those without, but within these overall groupings there was a tendency for there to be more adult couples than single adults and for families to be smaller. They tended also to be more middle aged (40-59) and middle income with less reluctance to discuss income (only 13% did not state income).
Perth respondents, by contrast were highly reluctant to discuss income (30% not stated). There was a higher proportion than average of young families in Perth.
Hobart households were also inclined not to discuss income and their population also appeared to be older (26% over 60 years old).
Canberra had the highest population of family households (only 9% single person households and 54% with children). It was also the youngest population (56% in the 20-39 year age group) with low reluctance to discuss income (only 13% not stated) and generally higher income, (36% total household incomes in excess of $\$ 15000$).

2.5 Interpretation of Results

In interpreting the results of any sample survey there are bound to be differences in estimates based on that sample from the results that would have been obtained by collecting information from the total population.
These differences are called sampling errors. Their effects can be estimated and allowed for in the interpretation of results.
The scale of sampling error is related to total sample size and in the case of respondents having certain attributes, the proportion of respondents holding a particular attribute. To compensate for their small populations, the sample of households drawn in Canberra and Hobart were chosen to be disproportionately large relative to Sydney
and Melbourne. For example, 400 Hobart households were interviewed out of a total of 6000 households in all capital cities, compared to 92 which would have been interviewed on an allocation of sample households proportional to the total number of households in all cities. The allocation of 400 households to Hobart was to reduce
proportions or estimates of numbers of households For given survey values, proporion in consuming particular forms of Ersh,

Appendix III-Esting non-sampling errors which may include:

There are also always non-sampling errors which may include:

- errors in reporting by respondents or in recording by interviewers;
\square biases which are introduced when non-responding households have different characteristics to households that did respond;
\square processing errors in coding or computing.
Considerable effort was made to minimise these errors by careful attention to sampling and survey procedures including careful questionnaire design, intensive training and supervision of interviewers and extensive editing and checking for quality control at all stages of data processing. (See also Appendix II-Sample Methodology).
The above comments could apply to any survey, but there were some special features of this study which introduced further complexities.
There are few groups of food products which are more complex in their variety of species or forms in which they maly be obtained than fish and other seafood. In many of the forms the consumer did not know the weight of the fish consumed and consequently it had to be estimated.
Desk research showed that studies of fish consumption conducted overseas encountered all of these problems of species identification, estimation of weight of the products and the allocation of the edible weight to different members of the household
at a meal.
In order to overcome these problems, particular attention was paid to visual aids and questionnaire design. Visual aids, such as cards and balsa wood models, which related portion sizes to weight, were used to aid in the estimation of weight of fish on the plate, especially fish eaten outside the home, whether from a takeaway outlet or restaurant. The Victorian Ministry of Conservation provided recovery weighting factors which related the edible weight of different species to their caught or live weight. These factors were used when the respondent only knew the size of the fish.
Based on earlier research, the average weight of fish in a piece of cooked fisli from a takeaway food outlet was recorded as 85 grams. Any other minor assumptions and qualifications are discussed either in the course of the text or in the Appendixes which are attached.
Preliminary studies also showed that species of fish consumed were sometimes not known, but that respondents who were more frequent consumers of fish were more knowledgeable about species than those who ate fish less often and who genuinely did not know the species and responded in those terms.
Some inflation of estimates has been found in consumption studies where a recall period is used because respondents may be less than accurate in determining the cut off dates. In this study collection of data was based on both general frequency of eating and also a recall of meals during the seven days previous to the interview.
Again preliminary studies showed that fish and seafood were less frequent items in the diet of most Australians than other food groups, for example, meat, and were more
easily remembered. Nevertheless, strong emphasis was placed on establishing exactly with respondents the seven days previous to the interview in order to reduce the chances of the inclusion of days prior to the reference period.
Households formed the basic sampling unit for the survey and the respondent was the Housen responsible for food purchase and preparation. This respondent gave information relating to the household consumption of fish and seafood at home and his or her individual consumption when eating out at restaurants completed by all households, in each cluster of ten, additional questionnaing to their out of home fish and

Institutions (i.e. non-private dwellings) were not ine Statistical Divisions of the seven
The sample of households was selected from the Stive of the 65% of the Australian capital cities. The results are therefore represent consequently be assumed that the population who live in these capitals. It can Australian population, i.e. capital city results can be applied to represent other urban and rural areas.
residents together with ref fores were calculated by averaging the results of the four All annual consumption figures wultiplied by fifty-two to obtain an annual estimate. survey periods which were then in some tables in this report the individual statistics may Finally, it should be noted that in some table of rounding of figures when transferring them
not sum exactly to the computer printout.

0

3 Detailed Findings

3.1 Consumption of Fish and Seafood Per Person

3.1.1 Consumption per Person in Capital Cities

Over the seven capital cities the average weight of all fish and seafood consumed annually per person was 10.1 kg (Table 3). This comprised 7.1 kg of fish and 1.7 kg of seafood either consumed within the household unit or known by the respondent to have been eaten outside the home. However, account was also taken of consumption by other family members outside the home which was estimated to have been an additional 1.3 kg of fish and seafood per head.
Between cities consumption per person ranged from about 7 kg in Hobart to about 12 kg in Sydney.
There were differences in the relative contributions of fish or seafood to total consumption in each city. For example, although Sydney had the highest consumption of both types, Brisbane and Perth had a high consumption of total fish and seafood because of the relatively high proportion of seafood eaten.

Table 3 Annual Per Capita Consumption of Fish and Seafood in Capital Cities

Table 3 Annual	Fish kg	Seafood kg	Total kg
City	8.35	3.34	11.69
Sydney	7.66	1.28	8.94
Melboume	8.02	2.34	10.36
Brisbane	6.36	1.33	9.59
Adelaide	7.30	2.24	7.15
Perth	5.55	1.60	8.02
Hobart	5.88	2.14	10.07
Canberra	7.80	2.27	
All Cities			

All tables are based on four-quarter summary figures unless otherwise noted.

3.1.2 Form of Fish and Seafood Consumed per Person

Consumers were asked how often all forms of fish and seafood were eaten in three situations:

- At home;
- Bought ready to eat from takeaway food outlets;

Out at restaurants, clubs, hotels, friends' homes.
The weight of fish consumed at home accounted for three quarters of all fish eaten. The seafood eaten at home accounted for 45% of seafood consumption. (Table 4).
On average, each person annually ate about 6 kg of fish at home of which fresh fish served accounted for about half and tinned fish nearly another third.

The weight of seafood served at home was one sixth the weight of fish served at home and was predominantly fresh seafood. Tinned and frozen seafood were eaten in small quantities only.
Cooked fish bought from takeaway outlets accounted for 14% of the total weight of fish eaten per person and a further 10% of all fish consumed was eaten when dining out.
A considerable quantity of seafood eaten was not cooked in the home; about one quarter was bought from takeaway outlets and one third was eaten at restaurants or other dining establishments.
Although the total weight of seafood consumed was small compared to fish (less than a third) almost the same weight of seafood per person was eaten out as of fish.

Table 4 Per Capita Consumption of Each Form of Fish and Seafood: All Cities

Forms of Fish and Seafood	Fish	Seafood	Total
	kg	kg	kg
Fresh and frozen	2.90	0.80	3.70
Fish fingers	0.66	-	0.66
Frozen packaged	0.30	0.09	0.39
Tinned	1.81	0.12	1.93
Smoked	0.24	$-\overline{2}$	0.24
Other	0.04	0.02	0.06
Total at Home	5.96	1.03	6.99
Takeaway	1.10	0.54	1.64
Eaten out	0.82	0.70	1.52
Total	7.88	2.27	10.14

3.1.3 Consumption According to City and Form

There were significant variations between cities in the consumption of each form of fish and seafood, as shown in Table 5.
Fresh fish consumption was highest in Brisbane where one third of the fresh fish eaten was caught or gift. Canberra, the only inland city surveyed, had the lowest per capita consumption of fresh fish.
Adelaide respondents had the highest consumption of tinned fish per person (2.3 kg per annum) of the capital cities. This consumption may be influenced by historical factors as well as the availability and promotion of tinned fish associated with the presence in that State of Australia's largest tuna canning firm. Consumption of tinned fish was lowest in Hobart at 0.7 kg per person annually. Melbourne consumers ate the most cooked fish from takeaway outlets per person (1.3 kg per annum). The consumption of cooked fish from takeaways was lowest in Canberra (0.6 kg per annum).
Although the highest per capita consumption of seafood was in Sydney, Perth households ate the largest amount of seafood per head at home. This was largely a result of the high consumption of fresh seafood in Perth (1.4 kg per annum). This is consistent with the concentration of prawn and rock lobster fishing in Western Australia and the popularity of fishing as a recreation there (see Tablé 34).
Canberra consumers had the lowest consumption of fresh seafood (0.4 kg per innum) per person as they had of fresh fish.

N

Table 5 Annual Per Capita Consumption by City and Form		Sydney	Melbourne	Perth	Brisbane	Adelaide	Cunberra	Hobart
	Total							kg
	kg 1.80	kg 2.50						
FISH: (At Home)	2.90	3.16	2.71	2.70	3.49 0.50	2.49 0.63	0.65	0.47
Fresh	0.66	0.75	0.66	0.52	0.51	0.27	0.26	0.20
Fish Fingers	0.30	0.28	0.35	0.38 1.64	1.53	2.26	1.83	0.73 0.21
Frozen Packaged	1.82	1.99	1.68	1.64 0.27	0.26	0.21	0.25	0.21 0.07
Tinned Fish	0.24	0.29	0.21 0.02	0.08	0.26	0.10	-	0.07
Smoked Fish	0.04	0.03	0.02	0.08				4.18
Other Fish				5.59	5.99	5.96 0.96	4.79 0.59	4.18 0.92
	5.96 1.10	6.50 1.06	5.63 1.26	1.04	1.10 0.93	0.96 0.44	0.50	0.45
Cooked from Takeaway Oullets:	1.10 0.74	0.79	0.77	0.67	0.93	0.4		5.55
Eaten Outside the Honte:	0.74		7.66	7.30	8.02	6.36	5.88	5.55
	7.80	8.35	7.66					
Tomal lish								
						0.75	0.38	0.69
SEAFOOD: (At Home)	0.80	0.93	0.46	1.37	0.97 0.02	0.13	0.07	0.09 0.04
Fresh	0.09	0.13	0.06	0.07 0.08	0.05	0.09	0.12	0.04
Frozen	0.12	0.12	0.16 0.03	0.08 0.01	0.04	0.03	:0.05	
Timned	0.02	0.01						0.82
Other				1.53	1.08	1.00	0.62 0.55	0.31
	1.03 0.54	1.19 0.96	0.71 0.20	0.37	0.61 0.65	0.12 0.21	0.55 0.97	0.47
Cooked from Takeaway Oullets:	0.54 0.70	1.19	0.37	0.34	0.65			160
Eaten Ouside the Home:	0.70			2.24	2.34	1.33	2.14	1.60
	2.27	3.34	1.28					7.15
Teral Scafood					10.36	7.69	8.02	
-.. - - - - -	10.07	11.69	8.94	9.54				

Fotal I ish and Scatood

The proportion of seafood eaten when dining outside the home was particularly high in Sydney and Canberra. In Sydney it equalled the amount eaten at home and in Canberra exceeded it. Canberra respondents dined out more frequently than elsewhere, individually their incomes were higher, and there was a greater proportion of households with more than one income earner.

3.1.4 Distribution of Fish and Seafood Consumption

Average estimates of consumption often conceal marked variations between individuals. An indication of these variations in this survey are shown in Table 6 which presents a distribution of the percentage of individuals falling into selected consumption levels in the week before the interview. The table does not include consumption by individuals outside the home of which the respondent was unaware.
Some 38% of individuals had not eaten fish or seafood in the week before the interview. The proportion in Hobart was 50%.
A further one third of persons ate less than 201 grams of fish and seafood in the survey week-equivalent to less than 10 kg on an annual basis. At the other end of the scale, about 6% of individuals ate more than 500 grams over the week prior to the survey (26 kg annually) and 2% consumed in excess of 750 grams (almost 40 kg annually). About 9% of Sydney consumers ate more than 500 grams during the survey week as against less than 5% in Canberra and Hobart.
The quantity of fish and seafood consumed is a function of the frequency of eating and the weight of each portion served. The following two sections present some survey findings on each of these aspects.

3.2 Frequency of Consumption of Fish and Seafood

Frequency of consumption was ascertained on the basis of both the household as the consuming unit and also the individual members. However, some people 'never' ate fish or seafood. A person was classed as never eating a particular form of fish or seafood if he could not recall consuming it for at least two years before the interview.

3.2.1 Households and Persons Never Eating Fish

When the household is considered as the consuming unit, there were very few households indeed where no form of fish or seafood was ever served (Table 10). In just under 5% of total households, fish was never served in any form. There were higher proportions not consuming particular forms of fish, e.g. 13% of households never served tinned fish, 18% never served fresh fish, 35% never ate cooked fish from takeaway outlets, 40% never ate fish when dining out, rising to 74% of households who claimed never to serve frozen packaged fish.
When considering individuals instead of households, the proportion of people who never ate fish was 7.8% across all capital cities (Table 7). This proportion varied strongly with age. The younger age groups were more likely not to eat fish. This was especiadly noticeable (and not unexpected) with the very young as nearly a third of the $0-2$ years age group never ate fish. The other individuals under 20 years of age were also more likely to be in the 'never eat fish' category than the average.
Sydney was the only capital city where a much higher than average proportion of individuals never served fish (11%). It was especially noticeable that a high percentage of younger people (up to 19 , years) in Sydney were not eating fish.

Table 6 Percentage Distribution of Fish and Seafond Consum Melbourne						Perth	Hobart	Canberra
Grams per Week	Total	Sydney $\%$	$\begin{gathered} \text { Melbourne } \\ \% \end{gathered}$	Brisbune \%	$\begin{gathered} \text { Adelaide } \\ \% \end{gathered}$	\%	\%	\%
			37.6	40.7	36.6	34.1	49.5	19.0
None consumed in past week 110100 grams	37.8 17.9	37.6 16.4	37.6 19.4	16.0	17.2	21.9 18.6	17.9 15.1	16.8
	17.9	16.6	17.8	17.1	19.6	11.0	6.3	8.8
101 to 200 grams	10.9	11.6	10.7	9.9 5.8	11.3 6.2	5.4	4.8	4.9
201 to 300 grams301 to 400 grams401 to 500 grams	6.1	6.2	6.2	5.8	3.1	3.7	2.1	3.6
	3.4	3.7	2.9	3.3	4.1	3.5	2.9	2.9
	4.2	4.9	3.7 1.5	4.4 2.6	4.2 1.9	2.0	1.1	1.2
50110750 grams Over 750) grams	2.2	3.0	1.5	2.6	1.9			100.0
			100.0	100.0	100.0	100.0	100.0	100.0
Total	100.0	100.0	100.0					

Table 7 Individuals Never Eating Fish by Age Group in Each Capital City Percentage of Consumers

Age Group	Total Persons	Sydney	Melb.	Brisb.	Adel.	Perth	Hobart	Canberra
	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$
Total	7.8	10.7	6.1	7.5	5.9	6.2	5.8	5.6
Over 60	7.6	9.6	5.7	7.7	6.9	6.4	12.9	3.5
$40-59$	4.9	6.9	3.5	6.3	2.3	4.4	1.7	2.6
$20-39$	5.7	8.9	3.9	4.3	3.8	4.9	3.3	3.1
$15-19$	9.5	14.7	6.5	8.1	4.9	7.9	2.9	3.2
$10-14$	8.7	13.4	5.0	10.3	5.9	4.8	2.9	5.3
$3-9$	7.8	8.7	7.8	6.2	9.1	5.4	5.3	9.9
$0-2$	31.3	35.0	31.5	26.1	26.7	26.1	38.8	30.4

3.2.2 Households and Persons Never Eating Seafood

Almost 20% of households in the sample never served any form of seafood (Table 11). There was a strong relationship between total household income and propensity not to serve seafood. In about 5% of households with an income of $\$ 18000$ or more, seafood was never served whereas the proportion was 39% where the income was $\$ 4000$ or less. Differences between cities were quite marked; some 10% of households never served seafood in Canberra compared with 23% in Melbourne and Adelaide.
Older respondents came more frequently into the category of non-seafood eaters than younger respondents. Some 41% of persons over 60 years old never ate seafood; these tended to be persons with relatively low incomes (Table 9).
3.2.2 Frequency of Eating Fish and Seafood fish and seafood was served is shown in The number of times per week each form of fish and statistics presented in these tables
Tables 10 and 11. It should be borne in ming All Cities Percentage of Households in Each Group

Table 8 Non-Consumption of Seafood by Total Income: All Cities Percentage	
Total Income	Never Serve Seafood
S	$\%$
Under 4000	38.8
$4000-5999$	23.4
$6000-7999$	23.8
$8000-9999$	18.3
$10000-11999$	11.5
$12000-14999$	11.6
$15000-17999$	5.2
18000 and over	4.9
Not stated	22.1
All households	19.4

Average limes per annum
do not necessarily relate to frequency of purchase. For example, one purchase occasion for forms of tinned fish and fish fingers may be sufficient for two or more servings.
During the week preceding the interview, some form of fish was served in the home by 60% of households. Cooked fish from takeaway outlets. was eaten by 15% of households and 11% of respondents ate fish when dining out. Some 24% of households consumed seafood in the one week either at home or when eating out.
Tinned fish was eaten more frequently than any other form of fish or seafood. It was served by 37% of households in the survey week compared with fresh fish which was eaten by 26% of households.
Tinned fish was consumed much more frequently than fresh fish yet the total weight of tinned fish eaten was only about two-thirds the edible weight of fresh fish (Table 5). The reason for this apparent contradiction is that the portion size served of tinned fish was approximately one third that of fresh fish. The next section of this report relating to portion sizes and weight of fish consumed will show these relationships in greater detail.
Seventy-four per cent of respondents claimed to never serve packaged frozen fish. Frozen fish was served with the same frequency as smoked fish-about twice a year.
Fresh fish was eaten at home once a week, or more often, in 26% of households in the capital cities (Table 12). Fresh fish was served at home most frequently in Brisbane (21 times per year) and least frequently in Canberra (11 times per year).
Fresh seafood was eaten in 8% of households in all capital cities during the survey week. Between cities this percentage ranged from about 10% in Perth and Sydney to just under 5% in Canberra. Seafood was bought ready to eat from takeaway outlets by 6% of households and 10% of respondents ate some seafood when dining out in the survey week.
Fish was more frequently prepared and eaten at home (80% of occasions) rather than away from home. However, from an examination of more detailed tables, it was clear that certain fish had important roles in eating out. For example, John Dory and barramundi were very important in the restaurant trade, but were not often cooked at home.
By contrast, other seafoods were more frequently eaten out (51% of occasions), but some forms had important roles in home consumption. For example, prawns were often served at home as a part of household celebrations, as well as being eaten out at restaurants.
Species eaten are discussed in more detail in Section 3.4.

3.3 Weight of an average serving of fish and seafood

Servings for different forms of fish and seafood covered a wide range from titbits to whole fish or lobsters. Average serving sizes were derived by dividing the weight consumed for each form of fish by the number of times served. These are set out in Table 13.
Different average weights of servings produced some variations in the generally strong relationship berween the frequency and the weight of fish and seafood consumed. For example, an average serving of fresh fish weighed almost three times that of an average serving of tinned fish. An average portion of fresh seafood weighed four times that of an average serving of tinned seafood.
The quantity of 'other' types of seafood consumed was too small to reliably estimate an average portion size.

Table 12 Frequency of Serving Fresh Fish in Each Capial		Sydney	Melbournc	Brisbane	Adclaide	Perth	Hobart	Canberra
	Total					250	42	56
		937	864	261	283	250	\%	\%
Total Respondents (000)	2693	\%	\%	\%	18.7	20.5	14.4	15.5
	18.0	17.8	18.8	13.9 57.0	56.8	57.2	64.0	66.4 18.2
Never Serve in pas week	56.3	54.6	56.6 24.6	29.1	24.4	22.3	21.7	
Serve but not in past week	25.7	27.6	24.6	29.			15.9	15.0
$\%$ Houscholds serving of which:			18.6	20.7	18.8	15.8 5	15.9 4.8	2.7
Times served in past week:	19.3	21.1	18.6 4.2	6.2	4.7	5.2 0.8	0.5	0.2
Once Twice	4.7	4.8 0.9	4.2	1.4	0.5	0.8	0.3	-
Twice	1.0	0.9 0.6	1.3 0.3	0.4	0.3	0.3	0.3	0.2
Three Four	0.4	0.6 0.2	0.3 0.2	0.4	0.1			
Four Five or over	0.3	0.2		0.42	0.32	0.31	0.29	0.22
	0.35	0.38	0.33			16.1	15.1	11.4
Average limes per week	182	19.8	17.2	21.8	16.6	16.1		
Average times per annum	18.2						1	

It was assumed that one piece of cooked fish bought from takeaway outlets weighed 85 grams. Thus, the average serving was slightly more than one piece.

Table 13 Weight of an Average Serving of Each Form of Fish and Seafood: All Cities

Form of Fish	Average Weight	Form of Seafood	Average Weight
Fresh and frozen fish	168 gram	Fresh and frozen seafood	152 gram
Fish fingers	89 gram	Packaged frozen seafood	86 gram
Packaged frozen fish	15 gram	Tinned seafood	38 gram
Tinned fish	68 gram	Other seafood	n.e.
Smoked fish	120 gram	Seafood from takeaways	113 gram
Other fish	80 gram	Seafood eaten out	43 gram
Cooked fish	88 gram		
Fish eaten out	157 gram		

3.4 Species of fish and seafood

As noted earlier in section 2.2, names which are used in this report to describe fish and seafood purchased and consumed are the names which respondents used in describing their purchases or catch. The various species of fish which may be included under one common name are discussed in Appendix V.

3.4.1 Species of Fish Consumed in Different Situations

Only 2% of respondents considered they did not know the type of fish served at home. There was a greater uncertainty about the species consumed out of the home, whether when dining out (20% did not know species consumed) or bought from a takeaway outlet (16% did not know species).
The share of occasions on which each species was consumed varied greatly by the different eating situations as can be seen in Table 14.

Table 14 Species of Fish Consumed in Different Situations: All Cities Proportion of Consumption Occasions

	Cooked Fish From Takeaway	Fish Served at Home	Fish Eaten Out
Species	0	$\%$	$\%$
Whiting	7.6	4.6	17.1
Snapper	10.9	3.5	7.8
Bream	12.1	3.6	5.6
Flathead	4.0	3.4	1.1
Flounder	2.8	3.0	10.5
Tuna	-	18.4	4.0
Salmon	-	16.9	5.1
Fish Fingers ${ }^{a}$	0.1	9.4	0.6
Sardines	-	7.9	0.4
Flake	27.0	1.2	2.3
Cod	2.4	6.3	2.1
Butterfish	4.7	0.3	0.1
Other	12.3	19.7	23.6
Don't Know	16.1	2.1	19.7
Total	-	100.0	100.0

[^1]Table 15 Species of Fish Served Most Often in Each City Percentage of Consumption Occasions

	Cooked Fish from rakeaway outlets		Fish served at home		Fish served at home (excluding tinned)		Fish eaten when Dining Out	
All Cities	Flake	\% 27.1	Tuna	$\begin{gathered} \% \\ 18.4 \end{gathered}$	Bream	$\begin{aligned} & \% \\ & 11.3 \end{aligned}$	Whiting	$\begin{gathered} \% \\ 17.1 \end{gathered}$
All Cins	Don't Know	16.1						12.8
Sydney	Bream Don't Know	$\begin{aligned} & 31.0 \\ & 38.4 \end{aligned}$	Salmon	20.9	Bream	6.7	Bream	12.8
Melbourne	Flake	65.4	Tuna	18.8	Whiting	6.2	Whiting	27.6 17.5
Perth	Snapper	67.2	Tuna	14.1	Herrings	7.1	Dhufish	26.5
Brisbanc	Cod	21.1	Salmon	17.6	Mullet	7.5	Barramundi	26.4
	Don't Know	28.9		26.8	Whiting	8.0	Whly ing	46.4
Adelaide	Butterfish Garfish	$\begin{aligned} & 42.0 \\ & 21.2 \end{aligned}$	Tuna	26.8	Shing			11.1
Canberra	Bream	34.8	Tuna	27.2	Bream	4.6	Barramundi	1.1
Hobart	Don't Know Flake	33.2 50.8	Salmon	14.7	Flathead	6.5	Flounder	48.0

Where the name was stated, 12 varieties of fish accounted for 70% or more of all species named by respondents as eaten out at restaurants etc., 80% of fish served at home and 85% of cooked fish bought from takeaway outlets.
In fact the concentration was greater when certain species were eliminated from certain situations. For example, tuna, salmon, sardines and fish fingers are very rarely purchased from takeaway outlets and eight varieties of fish accounted for 85% of those known and named.
Table 15 highlights differences between cities in the main fish varieties served in various eating situations.

3.4.2 Species of Fish Served at Home

Tuna was the species of fish most frequently served at home because of its dominance among tinned fish and was served on 18% of the occasions when fish was eaten at home. Tinned salmon (17%) was served with almost the same frequency.
Other processed fish types were eaten considerably more frequently than individual species of fresh and frozen fish. Fish fingers were eaten on some 9% of occasions and tinned sardines on 8% compared with fresh and frozen species such as whiting, snapper, bream, flathead and flounder which each had between 3% and 5% share of occasions.
For each form of fish served at home, the varieties most commonly reported caten were:

Tinned fish:	Tuna Salmon Fresh fish:
	Sardines
	Bream
	Snapper
	Flathead
	Whiting

Fish Fingers:	Cod
Frozen Packaged fish:	Whiting Flounder
Smoked fish:	Cod
Other fish:	Herrings

Herrings

The proportion of each species consumed by form is shown in Table 16 and the subsequent Table 17 examines differences by citięs.
Table 16 Species of Fish Eaten at Home By Form when Obtained: All Cities Percentage of Consumption Occasions

Species	Total	Fresh and Frozen	$\begin{gathered} \text { Fish } \\ \text { Fingers } \end{gathered}$	Frozen Packaged Fish	Tinned Fish	Smoked Fish	Other Fish
						\% 0.4	$\%$ $\%$ 2.4
	\% 18.4	\% 0.7	\% 0.4	1.7	38.1	0.4 4.1	2.4 1.1
Tuna	16.9	1.0	0.3	$\stackrel{-}{-}$	34.8	4.1	1.1
Salmon	18.9 9.4	0.2	69.7	-	16.	0.6	17
Fish Fingers	7.9	0.8	-	-	16.1	36.4	-
Sardines	1.3	-	-	9	-	10.7	5.4
Cod-Smoked -Other	5.0	2.6	24.8	12.9	-	1.7	-
	4.6	10.2	0.7	35.3	0.1	-	
Whiting	3.5	11.0	-	2.1	-		
Snapper	3.6	11.3	0.1	1.0	-	-	-
Bream	3.4	10.6	0.1	1.8	-	0.6	
Flathead,	3.0	6.6	0.2	23.8	0.1	1.1	-
Flounder	2.1	6.3	-	0.9	2.8	5.8	47.3
Mullet Herrings . .	2.3	0.9 38.5	3.7	$\overline{20.5}$	8.0	40.3	42.1
Herring Other (mainly Fresh Fish)	18.6	38.5	3.7			100	100
Total	100	100	100	100	100	100	

3.4.3 Species of Fish Bought Cooked from Takeaway Outlets

The problems of fish naming and identification were already discussed in Section 2.2, where it was noted that this was particularly acute for fish bought from takeaway outlets. This subject is also covered in Appendix IV.
Bearing these shortcomings in mind, Table 18 shows the relative popularity of various fish types in the different capital cities. Consumers reported flake to be the most common species of cooked fish purchased largely because of its predominance in Melbourne and Hobart.

3.4.4 Species of Fish Eaten when Dining Out

There were considerable differences also in the species of fish eaten out in each city as shown in Table 19.

Table 19 Species of Fish Eaten When Dining Out in Each City Proportion of Consumption Occasions

	Total	Sydney	Mel- bourne	Perth	Bris bane	Adel- aide	Can- berra	Hobart
	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$
Don't Know	19.7	29.4	10.5	28.8	36.1	2.3	16.7	2.0
Whiting	17.1	4.3	27.6	2.5	8.3	46.4	9.7	6.1
Flounder	10.5	6.9	16.6	5.0	2.8	6.1	8.3	48.0
Snapper	7.8	11.2	5.5	13.7	1.4	4.7	8.4	2.0
Bream	5.6	12.8	2.0	-	4.2	-	9.7	2.0
Tinned Salmon	5.1	6.4	4.5	8.7	4.2	1.1	2.8	-
Barramundi	4.9	2.7	4.5	-	26.4	-	11.1	-
Tinned Tuna	4.0	1.1	6.0	2.5	-	11.4	2.8	1.9
Dhufish	1.9	0.5	-	17.5	-	-	1.4	4.0
Others	23.4	24.7	22.8	21.3	16.6	28.0	29.1	34.0
Total		100	100	100	100	100	100	100

About 20% of respondents did not know the variety of fish they ate in a number of di:ing out situations. For example, where it might have been served at a friend's home, at a barbecue, ordered by someone else or sold as a 'fisherman's basket' without further identification.
Whiting reportedly dominated fish purchases in Adelaide and Melbourne restaurants and was important in several other cities. Flounder was by far the most important species in Hobart and was important in Melbourne and to a lesser extent other cities; and in Brisbane barramundi dominated restaurant purchases. Other species named were more evenly spread across cities. Canberra and Sydney consumers reported eating a wider range of species when dining out than did residents of the other cities.

3.4.5 Species of Seafood

Prawns were by far the most common variety of seafood eaten either at home or outside the home in all cities (Tables 20, 21 and 22). Prawns accounted for almost half of the seafood served at home, 60% of cooked seafood bought at takeaway outlets and 40% of seafood eaten out. Seafood cocktails were the next most common form in which seafood was eaten out and these usually contain some prawns.
Lobsters was also important when dining out, being eaten on 18% of occasions-the proportion was particularly high in Hobart and Adelaide.

Total
Species of Seafood Eaten when Dining Out in each City as a Percentage of Consumption

Occasions	Total	Sydney	Melbourne	Perth	Bris- bane	Adelaide	Canberra	Hobart
Species					\%	\%	\%	\%
	\%	\%	\%	\% 38.6	41.8	39.1	48.9	1.7
Prawns	40.1	46.0	28.1 3.4	38.6 4.2	8.6	1.9	15.0	52.3
	2.6	1.3	22.5	19.0	9.8	26.7	18.7	4.2
Crabs Lobster/Craytish	18.0	14.7	22.5	10.3	9.8	11.8	1.0	0.8
Lobster/Craytish Oysters	11.0	10.3	12.5 0.2	0.2	0.3	1.2	1.0	-
Oysters Smoked Oysters	0.2	$0 \cdot$	0.7	0.5	0.9	0.3	2.5	12.1
Smoked Oysters	0.4	0.4	8.3	-	0.9	0.6	2.2	-
Mussels	3.7	3.1	8.3 2.9	7.7	$\overline{-7}$	6.2 12	12.4	6.7
Scallops	2.8	1.6	2.9 21.0	18.0	27.7	12.3	12.4	0.2
Squid	20.8	22.5	21.0 0.4	1.5	1.1	-		
Seafood Cocktail All Others	0.4	0.1	0.4			100	100	100
	100	100	100	100				

Total
from other respondents in that
and Hobart consumers differed markedly from other respondentakealway Melbourne and far the most imporrant species of seafood pere by far he: they mainly ate
scallo outlets. Hobart consumers

3.5 Sources of Supply of Fish and Seafood

3.5.1 Fish

Sources of supply of fish and seafood varied more according to the form in which the food was obtained than by city.
Almost all tinned fish (95%), fish fingers (93%) and frozen packaged fish $(78 \%$) were obtained from supermarkets. Fresh fish was generally bought from a retail fish shop (39%) or fish market (18%), although leisure fishermen were also an important source of supply. Fish which was caught or received as a gift accounted for 27% of supply. The main sources of supply for each form of fish are shown in Table 23.

Table 23 Source of Supply of Each Form of Fish for Home Consumption: All Cities Percentage of Occasions each Form Bought

| | Fresh
 Fish | Fish
 Fingers | Frazen
 Packaged
 Fish | Tinned
 Fish | Smoked
 Fish | Other
 Fish | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| '000 of Occasions | 2208 | 1357 | 691 | 2349 | 1025 | 131 | 7761 |
| | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| Fish Market | 18.1 | 0.1 | 1.6 | - | 4.4 | 2.3 | 6.0 |
| Retail Fish Shop | 38.6 | 0.7 | 4.6 | 0.2 | 16.1 | 4.6 | 13.8 |
| Supermarket | 7.3 | 92.9 | 78.3 | 95.0 | 37.0 | 41.2 | 59.7 |
| Delicatessen | 1.7 | 1.0 | 2.2 | 1.2 | 19.6 | 29.8 | 4.3 |
| Caught/Gift | 27.1 | 0.1 | 2.6 | 0.2 | 1.4 | 1.5 | 8.2 |
| Other | 7.1 | 5.2 | 10.7 | 3.2 | 21.6 | 20.0 | 8.0 |
| Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

Although the dominant position of supermarkets in the sale of certain forms of fish did not vary greatly according to city, the importance of each of the sources of supply for fresh fish did vary by city (Table 24).

Table 24 Source of Supply of Fresh Fish for Home Consumption in Each City Percentage of Households Buying Each Form

	Sydney	Mel- bourne	Perth	Bris- bane	Adel- aide	Can- berra	Hobart	Total
'000 of households	770	702	199	225	230	46	36	2208
	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$	$\%$
Retail Fish Shop	52.5	29.0	26.1	36.0	35.0	58.0	13.9	38.7
Caught/Gift	22.2	22.8	46.7	33.2	29.6	24.9	52.9	27.0
Fish Market	17.1	29.0	9.5	6.2	11.7	6.4	13.9	18.1
Others	8.2	19.5	17.6	24.9	23.5	10.6	19.4	16.2
Total	34.9	31.8	9.0	10.2	10.4	2.1	1.6	100.0

Fish caught by the respondent or received as a gift was a major source of fresh fish especially in Perth and Hobart, where it comprised about half of all fresh fish eaten. It was estimated that over a third of all capital city households included leisure fishermen and the proportions were particularly high in Canberra, Perth and Hobart Recreational fishing is discussed further in section 3.9.6.
The proportion of fish caught by leisure fishermen varied over the seasons. It was highest (32%) in the summer month-February and lowest (22%) in the winter month-August. This decline in August, 1976, was especially noticeable in Perth where
the category 'caught or gift' fell from being the source of supply of fresh fish on 51% of ccasions in June, 1976, to 35% of occasions in August, 1976. This drop coincided with a marked fall in the weight of fresh fish consumed in Perth in the second quarter of the survey.

3.5.2 Seafood

The great bulk of frozen and tinned seafood eaten at home wàs purchased through supermarkets (Table 25). Retail fish shops (46%) were the principal source of fresh seafood although fish markets (23%) were also significant. About 16% of fresh seafood was caught or obtained as a gift.
Table 25 Source of Supply of Each Form of Seafood for Consumption At Home: All Cities Percentage of Tacrasions each Form Bought June Quarter, 1976

Occasions each	Total	Fresh	Frozen	Tinned	Other
Source					33
	12.8	23.2	2.5	0.3 0.3	3.3 17.1
Fish market	12.8 25.8	45.6	8.3	91.5	7.2
Retail fish shop	40.0	3.7	70.1 4.6	3.2	13.3
Supermarket	3.1	2.1	4.6 2.8	0.7	16.8
Delicatessen	9.2	15.6	2.8 11.7	4.1	42.3
Caught/gift	9.1	- 9.8	11.7		
Other sources		1000	100.0	100.0	100.0
	100.0	100.0			

Total

3.6 Days of the week on which fish and seafood was served

3.6.1 Fish

Friday was the day on which fish was most often served and accounted for just over a fifth of all servings. It was served least often on Sunday and with virtually constant frequency on the other five days of the week (Table 26). Canberra varied from this total pattern in that fish was most frequently served on Wednesday.
Table 26 Day of the W'eek Each Form of Fish Served at Home: All Cities Thousands of Occasions and
Table 26 Day of the Week Each Form of Fish Ser
Percentage of Consamption Occasions

In all cities, the elderly and households with three or more children were more likely to follow the tradition of eating fish on Friday. Friday accounted for a quarter of all occasions of serving fish for these groups.
Of all forms of fish, the predominance of Friday meals was most obvious for fresh fish. Fresh fish was eaten twice as often on Friday as on any other day of the week.
The incidence of serving tinned fish was constant for each of the weekdays, but dropped on the weekend. As will be shown in the following section, tinned fish was mainly eaten at lunchtime so the steady frequency of consumption from Monday to Friday probably resulted from its use in sandwiches for school or work and in home lunches.
Each of the other forms of fish were also eaten most often on Friday.

3.6.2 Seafood

Table 27 shows the percentage of households serving seafood on each day. Some caution is advised in interpreting some of the figures as they are based on very small numbers, especially in the case of frozen and tinned seafood.

Table 27 Day of the Week Each Form of Seafood was Served at Home: All Cities Thousands of Occasions and Percentage of Consumption Occasions

		Totals	Fresh Seafood	Frozen Seafood	Tinned Seafood	Other Seafood
Friday	000	81	52	6	20	3
Saturday	$\%$	18.3	20.4	17.5	14.9	15.3
	000	99	56	8	31	3
Sunday	$\%$	22.2	21.9	24.3	22.7	17.6
	000	87	51	6	28	2
Monday	$\%$	19.6	20.0	17.9	20.4	12.1
	000	44	25	2	15	3
Tuesday	$\%$	9.9	9.8	-4.6	10.8	15.9
	000	39	22	3	13	2
Wednesday	$\%$	8.9	8.7	7.6	9.4	9.6
	000	37	18	4	12	2
Thursday	$\%$	8.3	7.1	11.3	9.0	12.5
No Answer	000	55	31	6	15	3
	00	12.3	12.1	16.9	10.9	16.5
Totals	0	0	-	-	2	-1.8
	0.6	0.0	0.0	1.8	0.6	

Seafood was served most often on the weekend-Saturday and Sunday. Friday was the third highest day for seafood consumption.
As with fresh fish, fresh seafood was served more often on Friday than the other forms of seafood.

3.7 Meals at which fish and seafood were served

3:7.1 Fish

Fish was eaten at the evening meal on just over half of the occasions when it was served (Table 28). On 39% of all occasions it was served at midday and only on 5% of

Which Each Form of Fish Served at Home: All Cities Thousands and Percentages of Occasions

Meal		Totals	Fresh Fish	Fish Fingers	Frozen Fish	Tinned Fish	Smoked Fish	Other Fish
					5	65	15	3
Breakfast	000	157	33	36 8.9	4.5	- 4.5	14.3	9.7 13
	\%	5.2	3.5 154	106	17	883	23	38.2
Mid-day	000	1196	15.4	26.3	15.0	61.3	21.8	16
Evening	\%	39.4 1592	751	255	89	419	59.0	46.1
	000	52.4	79.8	63.0	78.5	74	5	2
Other	000	94,	3	8 19	2 1.9	5.1	4.9	6.0
	\%	3.1	. 3	1.9				
Total	000	3040	942	406	$\begin{aligned} & 113 \\ & 100 \end{aligned}$	1440 100	100	100
	\%	100	100	100				

occasions for breakfast. Fresh and frozen fish was served for the evening meal on about 80% of occasions compared with 52% for all fish.
Tinned fish was eaten mainly at lunchtime. On a number of occasions smoked fish (14%) and fish fingers (9%) were eaten at breakfast.

3.7.2 Seafood

Seafood was usually served at the evening meal and almost never at breakfast. Seafood was eaten for lunch on almost a quarter of occasions (Table 29).
Table 29 Meal at Which Each Form of Seafood was Served at Home: All Cities Thousands and Percentage of

Occasions					
Meal	Totals	Fresh Seafood	Frozen Seafood	Tinned Seafood	Other Seafood
				1	
Breakfast	2	1		1.0\%	0.6\%
	0.5\%	0.3\%	0.0\%	32	6
	103	59	16.2\%	23.8\%	32.8\%
Mid-day	23.3\%	23.2\%	16.2% 26	62	63.1\%
Evening	271	176 68.8%	75.9\%	46.1\%	33.1%
Other	$\begin{gathered} 60.9 \% \\ 68 \end{gathered}$	68.8% 20	75.9 3 8.0	$\begin{gathered} 39 \\ 29.1 \% \end{gathered}$	$\begin{gathered} 6 \\ 33.5 \% \end{gathered}$
	$\begin{gathered} 68 \\ 15.3 \% \end{gathered}$	7.7\%	8.0\%	29.1\%	
	445	. 255	35 100.0%	$\begin{gathered} 136 \\ \cdot 100.0 \% \end{gathered}$	$\begin{gathered} 19 \\ 100.0 \% \end{gathered}$
Totals	100.0\%	100.0\%	100.0\%		

Seafood, especially tinned, was often eaten at other times such as snacks or supper.

3.8 Cooking methods for fish and seafood

3.8.1 Fish

On 40% of occasions fish, mainly tinned, was served 'straight' i.e. without cooking, mainly for sandwiches and salads (Table 30). There was little variety in the methods of cooking fish at home. On a third of occasions, the fish was fried. Fish was infrequently served grilled, baked, boiled, as mornay or other methods.

Table 30 Cooking Method for Each Form of Fish Served At Home: All Cities Thousands and Percentage of Occasions

Cooking			Totals	Fresh Fish	Fish Fingers	Frozen Packaged	Tinned Fish	Smoked Fish
Fried		000	997	563	308	66	44	6
Fish								

3.8.2 Seafood

The many ways in which seafood was presented required 'cooking' to be defined as any further preparation in the home. Although most seafood was obtained in forms which allowed it to be eaten as it was, some further preparation was involved to serve it, e.g. as oysters mornay, prawn quiche etc. Most seafood was not cooked or further prepared at home, but rather was eaten 'straight' i.e. without further cooking as shown in Table 31. This was particularly so with tinned seafood which was served 'straight' on over threequarters of occasions. This included tinned prawns and smoked oysters eaten with biscuits.

Table 31 Cooking Method for Each Form of Seafood Served At Home: All Cities Thousands and Percentage of Occasions

Cooking Method		Totals	Fresh Seafood	Frozen Seafood	Tinned Seafood	Other Seafood
Fried	000	67	40	16	10	1
	\%	15.1	15.7	46.8	7.3	4.1
Boiled	000	46	41	1	4	
	\%	10.3	15.9	4.0	2.7	0.0
Straight	000	249	116	10	106	18
	\%	56.1	45.5	28.3	78.1	91.6
Other	000	81	58	7	15	1
	\%	18.2	22.5	20.9	11.4	4.3
No Answer	000	2	1		1	
	\%	0.4	0.4	0.0	0.4	0.0
Totals	000	445	255	35	136	19
	\%	100.0	100.0	100.0	100.0	100.0

Fresh seafood served 'straight' also included prawns and lobsters purchased from the fish shop and served without further preparation.
Seafood was quite often fried, for example when frozen prawns were used in fried rice or fresh prawns were crumbed or breaded and fried. Seafood was also used in casseroles and mornays.

3.9 Other factors influencing fish consumption

Prior to the survey a number of factors suggested themselves as being likely to influence differences in household consumption patterns for fish and seafood. Some of these were expected to arise from variations in supply and distribution in different parts of Australia and from household location (coast or inland).
In addition to these geographically based supply factors, other demographic, socioeconomic and behavioural characteristics of the households and the persons living in them were expected to influence consumption including:
\square City of residence
\square Household income
\square Occupation
Education
Household composition
Age of respondent
Country of origin
Religion of respondent
Recreation fishing habits
\square Dietary considerations
Information has already been presented in earlier sections on differences between the weight and frequency of fish and seafood consumed between households and individuals according to city of residence. The following sections show variations between average household consumption according to the more important of the other factors listed above.

3.9.1 Total Household Income

In general, education, occupation and income classifications were quite closely related. This would appear to suggest some relationship between these three factors for individual consumers; in other words persons with particular educational qualifications were more likely to fall into certain occupational categories and broadly similar income levels. However, the separate effect of each of these three factors has yet to be calculated and this will form part of more detailed analyses to be conducted by the Department of Primary Industry.
However, it would seem that income, and in particular total household income, would be more important than the other two factors in explaining differences between households in total consumption of fish and seafoods although for particular items, occupation and education may be important influences on consuming behaviour.
Table 32 sets out consumption of each form of fish and seafood according to total household income.

In general, persons from households with higher total incomes ate more fish and seafood than those from lower income households. This trend was not strong and is not clear from the eight groupings in Table 32. For example, average consumption of three of these groups was less than the average for groups with incomes immediately lower than them. However, the trend becomes clearer when the eight groups are amalgamated into four as follows:

Income Group	Consumption per Person of Fish and Seafood
less than $\$ 6000$	8.9 kg
$\$ 6000$ to $\$ 9999$	9.6 kg
$\$ 10000$ to $\$ 14999$	10.6 kg
$\$ 15000$ and over	11.5 kg

The group of consumers in households with total income greater than $\$ 18000$ had the highest average consumption of most forms of fish and seafood. This was especially marked in the case of seafood eaten outside the home, tinned seafood and fresh and smoked fish.

Other notable differences between income groups were:
\square Fish fingers were eaten mainly by lower and middle income groups, those in the $\$ 4000$ to $\$ 11999$ range.
\square Differences between income groups in average tinned fish consumption was relatively small.
\square Cooked fish was largely eaten in higher income households, but it was notable that those with incomes of \$18000 or more on average, ate significantly less than those between $\$ 12000$ and $\$ 17999$.

3.9.2 Composition of Household

Households comprising only adult males ate considerably more fish and seafood per person than any other group (see Table 33). Their average consumption per person at some 17 kg annually was almost twice the average of the other households. This high consumption was largely because this group ate much more fish and seafood at meal serving establishments and from takeaway outlets. They also had a relatively high consumption of convenience foods such as fish fingers and frozen packaged fish.
However, it will be recalled from Table 1 that households with adult males only, represented just under 5% of all households in the estimated population. The largest single grouping of households, adult males and females with no children (40% of the total), were also relatively high eaters of fish and seafood-about 12 kg annually per person. They also ate above average quantities of fish and seafood when dining out.and were high consumers of fresh fish.

Couples with children had relatively low average consumption of fish and seafood per person and the larger the family, the lower the amount eaten per head. Fish fingers was the only form of fish which was eaten in greater quantities per person as family size increased.

However, the calculation of consumption per person takes account of all persons in a household, including small children. It would seem reasonable to suppose that children might have had relatively small servings of fish and seafood. Evidence to support this is
presented in Table 34 which shows the frequency of serving fish according to household composition and provides a comparison between groups which excludes size of individual servings. Generally, this shows that couples with children ate fish more frequently than other household groups. This was most noticeable in the case of fish fingers and tinned fish and seafood.

Table 33 Annual Per Capita Consumption of Fish and Seafood By Household Composition: All Capital Cities

				Families with		
	Adult Male Only	Adult Female Only	Male and Female	One Child	Two Children	Three or More Children
	kg	kg	kg	kg	kg	kg
Fish			3.66	2.95	2.33	2.35
Fresh	3.09 0.79	2.33 0.55	3.66 0.47	0.55	0.78	0.91
Fish fingers .	0.79 0.49	0.55 0.31	0.47 0.39	0.29	0.28	0.16
Frozen Packaged	0.49 1.59	0.31 2.21	0.39 2.05	0.29 1.38	1.64	1.53
Tinned Smoked	1.59 0.19	2.21 0.34	0.33	0.25	0.21	0.10
Smoked Other	0.12	0.34	0.05	0.02	0.02	0.04
	6.27	5.74	6.95	5.94	5.26	5.09
Sub Total Cooked from takeaway	2.84	0.99	1.06	0.96	1.13	1.12
Cooked from takeaway outlets Eaten outside the home	2.84 2.25	0.9 1.09	1.11	0.70	0.42	0.32
		7.82	9.12	7.60	6.81	6.53
Total Fish	11.36	7.82	9.12			
Seafood ${ }^{-}$	0.55	0.28	0.86	1.00	0.86	0.57
Fresh Frozen	0.04	0.04	0.10	0.06	0.02	0.02
Frozen	0.15	0.08	0.02	0.02	0.09	0.07
Other	0.01	0.01	0.03	0.01	0.03	-
		0.41	1.01	1.09	1.00	0.66
Sub Total Cooked from takeaway	0.75 1.00	0.41 0.26	0.53	0.73	0.66	0.23
Cooked from takeaway outlets	1.00	0.26 0.84	0.53 1.02	0.50	0.62	0.13
Eaten outside the home	3.96	0.84	1.02	0.50		
Total Seafood	5.71	1.51	2.56	2.32	2.28	1.02
Total Fish and Seafood	17.07	9.33	'11.68	9.92	9.09	7.55

3.9.3 Age of Respondent

Age of respondent was closely related to household composition (Table 35). Also a high proportion (62%) of the age group 60 years and over were persons on low incomes-less than $\$ 6000$ annually. Consumers from households where the respondent was in the younger age groups (15 to 39) ate 10.2 kg of fish and seafood annually per person compared with an average of 8.5 kg for older groups (Table 36). Younger consumers ate significantly more fish and seafood when dining out and from takeaway outlets. They also ate more tinned fish and seafood, fish fingers and fresh seafood.

Table 34 Average Frequency of Serving Fish and Seafood By Household Composition Times per Week

Form of Fish and Seafood	Household Composition					
				Families With		
	Adult Males Only	Adult Females Only	Adult Male and Female - •	One Child	Two Children	Three or More Children
Fish						
Fresh	0.24	0.21	0.39	- 0.36	0.32	0.43
Fish Fingers	0.11	0.11	0.10	0.14	0.23	0.29
Frozen Packaged	0.03	0.03	0.05	0.04	0.05	0.03
Tinned	0.26	0.39	0.51	0.61	0.63	0.17
Smoked	0.02	0.03	0.05	0.04	0.04	0.03
Other	0.02	-	0.02	0.01	0.01	0.02
Total prepared at home	0.68	0.77	1.12	1.20	1.28	1.47
Cooked from takeaway outlets	0.78	0.31	0.86	1.03	0.72	0.75
Eaten outside the home	0.25	0.14	0.21	0.15	0.25	0.13
Total Fish	1.71	1.22	2.19	2.38	2.25	2.35
Seafood						
Fresia	0.05	0.04	0.10	0.13	0.12	0.11
Frozen Packaged	0.01	0.01	0.02	0.03	-	0.02
Tinned	0.03	0.02	0.05	0.08	0.07	0.05
Other	-	-	0.01	-	0.01	-
Total prepared at home	0.09	0.07	0.18	0.24	0.20	0.18
Cooked from takeaway outlets	0.10	0.02	0.08	0.15	0.15	0.07
Eaten outside the home	0.24	0.09	0.14	0.25	0.24	0.13
Total Seafood	0.43	0.18	0.40	0.64	0.59	0.38
Tolal Fish and Seafood	2.14	1.40	2.59	3.02	2.84	2.73

Table 35 Percentage Distribution of Households by Housethold Composition and According to Age of Respondent

| | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |

Table 36 Annual Per Capita Consumption of Fish and Seafood By Age Group: All Capital Cities

Total Fish and Seafood

3.9.4 Country of Origin

Table 37 sets out average consumption per person according to the country of origin of the respondent. This was not necessarily the country of origin of all members of the household. However, as the respondent was the person responsible for food purchase or preparation, meals eaten frequently reflected her or his preferences or cooking ability. In some instances, the respondent's country of origin may has where the influence on consumption by other family persons of different ethnic backgrounds other family members were dieting, where , ived together and where meals were usually eaten out.
Generally, it would seem that the country of origin of the respondent had no Generally, it would seem
discernible effect on the overall amount of fish and seafood consumed by the various discernibs. However, it had a marked influence on the form of fish and seafood eaten. Persons from households where the respondent was born in Greece (for convenience these will be referred to as 'Greek households'), ate almost twice as much fresh fish as those from predominañtly 'British households', i.e. where the respondent was born in Australia, the U.K. or New Zealand. Consumption of fresh fish was also high in 'Italian households'.
On the other hand 'British households' ate more fish fingers, packaged frozen and tinned fish than other households. They also ate considerably more cooked fish and fish outside the home than their 'Mediterranean' counterparts.

As with fish, 'Mediterranean households' ate more fresh seafcod thaseholds' ate households'-on average about twice as milds' ate more cooked seafood than any more seafood out of home, 'Greek households seafood from takeaway outlets.

3.9.5 Religion

There appeared to be no relationship between religion and and consumption patterns seafood eaten. While there was some tendency for religonound, were linked to religion to be related, overriding factors, especially etion itself as an influence.

Table 38 shows the proportion of households in each their fresh fish was either caught or compared with the proportion of households where their fresh fish was either caught or received as a gift. Generally there was a fairly close relationship fresh fish which was caught or received as with leisure fishermen and the proportion of fresh inland city surveyed, where just over a gift. A notable exception was Canberra, hen fishing, but only a quarter of fresh fish half of all households had a member caught or obtained as a gift.
eaten was caught or Leisure fishing appeared to aged 15 to 19 had a member who went fishing. the proportion was 45% in the 20 to 39 age group and fell to 14% in the 60 and over group.

Table 38 Percentage of. Houscholds with Members who go Formin

Total
Country of origin of the respondent also appeared to be related to leisure fishing. Some 46% of 'Greek households' had a member who went fishing whereas the proportion for 'Italian households' was 25%. Persons from 'Greek households' were with 4% from fequent fishermen-just over 10% fished once a week or more comp all households.

3.9.7 Dieting

 Some 2.7% of persons covered by the survey said they were eating fish and seafood primarily for dietary reasons, for example, to lose weight, orage for all persons (just ate about twice as much fish and seafood (17.2 kg) not include consumption by family under 8 kg). This is illustrated in Table 39 , and does was unaware. members outside the home of which the red for dietary reasons consumed just over The top 25% of persons eating fish and seafood 0 grams weekly (about 25 kg per person 29 kg each on average and all ate more than persons eating fish for dietary reasons annually)-see Table 40. About 2% of persons this could represent close to 5000 consumed more than 50 kg per persons out of 8.7 million.Table 39 Annual Consumption per Person of Fish and Seafood': By City All Persons and Those Eating Fish for

Dietary Reasons									
		Total kg	Sydney kg	Melbourne kg	Brisbane kg	Adelaide kg	Perth kg	Hobart kg	Canberra kg
Persons	7.7	8.4	7.2	7.6	7.7	7.7	5.7	6.3	
All persons Persons eating fish for dietary reasons	17.2	16.8	15.5	16.9	22.0	21.8	15.2	12.1	

[^2]

4 Discussion

This Section discusses some of the survey findings which would seem to have policy implications for those connected with the fishing industry. It covers some of the broader marketing implications which could be drawn from the survey and other information, the problems associated with the misnaming of fish and it attempts to reconcile the relatively high consumption figures found in the survey with published statistics.

4.1 Marketing Implications

4.1.1 Introduction

In the conduct of this survey some views were formed as to the long term marketing requirements of the fishing industry. Many of these will be familiar to persons connected with the industry but there could be some benefit in restating them against the background of the findings of this and other consumer surveys.

4.1.2 Is Increased Consumption Desirable?

In discussion with industry personnel on marketing issues an unstated assumption was that on the domestic market a major objective of the Australian fishing industry is (or ought to be) to increase consumption of Australian fish. It is important to observe that this need not necessarily be so. The basic objective of any business is to produce profitably and at the extremes this can be achieved by selling relatively cheap product in volume or by selling to a small and specialist market at higher prices.
To aim for increased volume at the expense of profits has been a mistake committed by many sectors of the food industry over the past 15 years. The term 'profitless prosperity' was coined in the 1960 's to describe the situation in industries such as margarine and ice cream where sales increased steadily but many firms incurred substantial losses.
Very generally, the marketing of Australian fish in the past has been directed towards satisfying a small volume market. The industry has largely concentrated on supplying more expensive fresh fish and seafood with relatively little increase in the quantity sold. Canned fish has been a notable exception to this general statement. Generally over this period the industry has been relatively prosperous.
At this point it is important to make it clear that marketing strategies cannot be discussed in isolation from biological and economic considerations. If the potential catch is restricted either because the resource is insufficient or for commercial reasons, marketing strategies have to adapt accordingly.
For example, Australian seafood production is not expected to increase markedly and this sector of the industry can be expected to continue to direct its produce mainly to the more expensive markets.
This cannot be said with confidence of fish production. Although exploratory work suggests that fish resources around the Australian coast are not abundant there would
seem to be scope for increased production. Although part of the increased catch could be sold on the more expensive end of the market, a very large proportion would have to be disposed of in the cheaper fried and frozen fish segmenfidence that this latter dominated by imported fish. It cannot be asserted with colly or for Australia. For course would be the best for the fishing industry face greater competition from example, those presently in the industry could sectors), other Australian food newcomers (both in the catching and markensumption and so on. It is an area industries could suffer from increased fish
requiring detailed research on which inform ence increased consumption of Australian
However it is considered here that, on balance increased for the fishing industry. The fish would be desirable on broad economic grounds section have been framed around recommendations w
this basic objective.

4.1.3 Marketing Recommendations

In the discussion which follows on ways to increase consumption of fish and seafood, the primary emphasis has been on fish. Thismption apply also to seafood. A more recommendations made for increased fish consuming increased seafood consumption in important consideration was that factors hinderis difficult to justify greater domestic Australia are relatively easy to define but it is consumption of the principal seafoods pron restricting the sale of more seafood market diversification. The main reason this is set by overseas markets. For those domestically is its price, and to a large extent squid and mussels, lack of resources and seafoods which are relatively cheap such as squ factors to greater consumption. The low awareness by consumers are the limiting facest that it would be relatively easy to results of this survey and other investigations suggest-provided the supplies were sell more of these seafoods on the domestic market-provided available.
Increased consumption of Australian caught fish requires the fulfilment of one or both of the following marketing objectives:

- to improve the industry's capacity to supply frozen fish to the institutional and catering markets; and
- to endeavour to establish fish as an 'everyday' food item in the hom tesearch to The objectives are relatively easy to state on the basis of involve changes which may be achieve them are often complex, expensiachieve. Also it is not possible to measure with politically and institutionally difficult to policies to achieve these objectives because not confidence the impact of alternative policies marketing system, the interrelationship enough is known of the structure of the curren and elasticities for the different fisheries of forms and groupings within it and the deareas.
products. More research is needed in These two broad objectives are examined in consumption of Australian-caught fish emphasis on the factors hindering incre recommendations are put forward as to how in the fresh and frozen m
these might be overcome.

4.1.4 Improve the Industry's Capacity to Supply Frozen Fish to the Institutional and Catering Markets

4.1.4.1 Eating Out This survey has shown that about 40% of fresh and frozen fish eaten in Australia is consumed as a 'takeaway' food or whe dining ough these outlets. estimates of the proportion of imported retailers in all capital cities it would seem However from discussions with a number of retallers in all
that the bulk of fried fish sold through 'take away' outlets is imported fish, although this was not the case in all capitals. (Melbourne and Hobart being exceptions). The more expensive restaurants appear to serve mainly fresh fish but imported fish dominate the lower end of the market (small cafes, self-service cafeterias etc.).
There has been a steady rise in the quantity and value of food eaten out and this trend appears likely to continue. Increased eating out has been associated with greater affluence, a higher proportion of older women in the workforce and changing lifestyles, especially those brought about by greater mobility. Developments in the fast food industry have also played an important part. Australian capital cities was on food In 1975-76 about 20% of food expenditure in Aut 9%. A breakdown of 1975-76 eaten out, ten years earlier it had been abed between 'take away' foods and meals expenditure showed that it was equally in eating outside the home is provided in the eaten out. An illustration of the
following table.

The growth in number and sales over the five years to 1973-74 was greatest among takeaway outlets. This period also coincided with the entry of fast food outlets promoting a specific image (Pizza Hut, Kentucky Fried Chicken etc.).
All available evidence suggests that the growth in eating out has continued, and perhaps accelerated, over the past few years. Certainly the number of higher priced restaurants and 'image' fast food outlets has risen sharply.
4.1.4.2 Role of Fish in Eating Out The Australian fishing industry has played little part in this growth and this has been particularly noticeable in the fast food segment. Fish as a 'takeaway' food item has found itself under increasing competailers during chicken, other meats and other fast foods. To competed cheaper imported fish for the 1960's and early 1970's increasingly subsusceptible to seasonal variations in Australian products. Imports were also less sur the past two years there have been supply and were more uniform in quality. On and Australian fish has become more sharp increases in the price of im
On the other hand, Australian fish may have increased sales through the more expensive restaurants and more specialist seafood restaurants have been opened in all capital cities.
Despite increasing sales to the lucrative restaurant trade, the failure of the industry to
share in the growth of 'fast food' sales must be viewed with concern. This is paricularly

[^3]May 1971, 'Consumer Survey Reveals Household Spend
so given the likelihood of continued growth in this sector of the food market at the expense of home prepared foods.
Developments in the Australian catering industry have mirrored those in the United States with a lag of some years. Currently about one third of food expenditure in the United States is spent on products prepared outside the home compared with about 18% in Australia. It is notable that in the United States, over the past few years, 'fast food' outlets selling mainly fish increased their value of sales significantly more than other outlets. This has been attributed to sophisticated marketing coupled with consumer concern about nutrition and desire for a change in-diet. These consumer attitudes have also been reflected in the report on attitudes towards fish in Melbourne ${ }^{2}$. However, as noted, the performance of the fishing industry in both countries has been quite different in meeting the needs of this market.
4.1.4.3 Needs of the Catering Trade Any examination of the failure of the Australian industry to meet the needs of the catering trade has to start by looking at the requirements of caterers generally and especially 'fast food' operators who are supplying an important segment of the population. These requirements can be identified as:

J- relatively cheap product. Fast food outlets work to fine margins both in the image sector and among the more traditional outlets. However cheapness of product is not an overriding factor and can be offset by other considerations such as:
continuity of supply. Unless a product is in regular supply it will be supplanted by some other food product;
suitable for 'fast food' operations. Product has to be in a form suitable for handling in bulk and subdivided into smaller units, be easily stored and capable of being cooked and reheated rapidly;
acceptable to the consumer. In the case of fish this implies that the product meet certain minimum specifications. For example, it should contain very little bone, and preferably none at all-the Melbourne survey findings showed 70% of respondents agreed that bones concerned them when eating fish.
Imported fish have generally fulfilled those requirements better than Australian fish. They have been in fairly continuous supply throughout the year and acceptable to both fast food operators and their customers. They have also been cheaper although as noted earlier their cost has risen rapidly over the past couple of years.
The rising cost of imports hias encouraged the belief that the Australian industry will, because of its improved competitiveness, be able to increasingly substitute for them. However, cost is only one element in the requirements of 'fast food' operators and the other factors listed above could be equally important. Unless the Australian fishing industry can satisfactorily meet these non-price requirements, 'fast food' outlets will increasingly turn from fish to other products.
Meeting these requirements could involve improvements in both fish catching and their sale to 'fast food' outlets.
First, Australian fishermen need to catch more of the fish preferred by fast food operators. Shark is an example of a species suited to the fast food trade, but supplies are limited because of controls on catching due to its mercury content. Other fish suitable, but not in sufficient supply, include gemfish, snapper, morwong and bream.

[^4]especially tables 17 and 18 .

Much more research is needed by Government and industry to establish the stocks of these and other fish.
Second, fish distribution and selling need to be co-ordinated to ensure that the product sold is of acceptable quality and not subject to marked variations in supply or price owing to seasonal and other factors. The present industry structure is not geared to do this effectively and alternative marketing policies which will stabilise prices and ensure uniformity of product quality may need to be adopted. For example, this could involve:
\square the selling by fishermen to processing firms or co-operatives at a fixed price to be negotiated. These firms or co-operatives would process the catch, store it and sell to wholesalers or direct to 'fast food' operators at a predetermined price. This form of marketing has been the basis for the success of the Australian canned tuna industry;
\square fostering the development of large integrated enterprises owning their own processing facilities, storage plants and boats or which have boats supplying them on contract. Such enterprises need not necessarily be in conflict with the traditional smaller scale fishing industry which could continue to supply the more expensive fresh fish market.
These examples indicate the kinds of marketing developments which will need to precede any successful attempt by the Australian fishing industry to share in the growth being experienced by catering outlets generally, and not just the more expensive restaurant.
Finally, an important factor in consumer lack of confidence in fish products, particularly those bought from takeaway outlets is the practice of misnaming fish. This is discussed in greater detail in section 4.3.

4.1.5 To Endeavour to establish Fish as an 'Everyday' Food Item in the Home

4.1.5.1 Fish Eaten At Home On average, Australians eat fish at home about once a week and only 5% of the capital city population never or rarely eat fish. Thus, Australians are familiar with fish as a food item in the home but there would seem to be considerable scope for increasing consumption.
In discussing ways to increase fish consumption it is necessary to treat tinned fish separately from other forms. This is largely because tinned fish are directed towards a different market (lunchtime sandwiches, snacks etc.) and have different competing foods (other sandwich spreads, other tinned foods). More importantly, the fish used for canning in Australia up to now-tuna and Australian salmon-are not generally suited to consumption as fresh, frozen, smoked or other forms. Generally these forms of fish other than tinned compete with one another for the same market and for supplies of fish.
Also, smoked and dried fish are not discussed separately because the suggestions made for increasing fresh and frozen fish consumption apply with equal force for these forms.
4.1.5.2 Tinned Fish Consumption of Australian tinned fish has grown markedly over the past decade and canned tuna consumption has more than doubled. Much of this performance can be attributed to good marketing although the marketing environment (rising incomes, increasing price of overseas products) has been favourable.
Nevertheless there would seem to be scope for further consumption increases should supplies be available. For example, there is no inherent reason why consumption in Adelaide is so high (see Table 5 of this report) other than consistent availability and
promotion of tuna (the principal canning fish) in the past. If consumption in other capital cities could be raised to the Adelaide level total consumption of tinned fish would rise by over 20%.
One of the most important contributors to the relatively high Adelaide consumption has been the greater promotion of canned fish (especially tuna). This promotion has been primarily in the form of point of sale demonstrations and the distribution of recipes. A result is that Adelaide consumers are more adventurous in their use and cooking of canned fish. They are also more familiar with tinned fish-fewer Adelaide respondents never or rarely served tinned fish and significantly more served it once a week.
There would therefore seem to be little doubt that consumption in other capital cities could be increased by the adoption of long term promotional measures-and some canners are promoting in selected cities. Generally consumers are likely to be receptive to such promotion as the purchase of canned fish is fairly evenly spread through all age groups and is served more in higher income households. Rising incomes and a continued increase in the number of households with more than one income earner are likely to establish a favourable environment for greater canned fish consumption.
Offsetting these factors is a potential shortage of supplies of Australian caught canned fish either because of a diversion of tuna to overseas markets or insufficient resources to keep pace with current demand-as is occurring with Australian salmon and could occur with tuna.
Thus it is likely that the species which have provided the impetus for greater consumption of Australian canned fish will become scarcer, more expensive and cater increasingly for the more expensive end of the market.
Accordingly, there could be an expansion in the cheaper segment of the tinned fish market, currently supplied mainly by imported sardines, herrings etc. As these are also becoming more expensive there would seem to be some scope for the development of an Australian based industry. Such an industry could be based on the canning of pilchards, anchovies or other fish. Studies need to be undertaken into the feasibility of canning these and other fish taking into consideration the availability of the resource, the eating qualities of the canned product and the likely cost of production. In this later context the most important consideration would seem to be the price which it would be necessary to pay to make fishing these species economic at assured levels of catch rate and boat operations.
4.1.5.3 Fresh and Frozen Fish The great bulk of fresh and frozen fish eaten in the home is believed to be of Australian origin, and imported frozen fish is becoming relatively more expensive.
There are a number of reasons which would suggest that fresh and frozen fish offer the greatest potential for increased consumption of Australian fish. There appear to be unexploited fish resources available for further development and as noted earlier most consumers are familiar with fresh and frozen fish, serving it at some time during the year. For example, 82% of survey respondents claimed to serve fresh and frozen fish reasonably frequently compared with 50% for fish fingers and 26% for frozen packaged fish.
Additionally, consumers appear to be favourably disposed towards fresh fish. The Melbourne attitudinal survey revealed that some 72% of respondents 'liked' fish in varying degrees, 11% 'disliked' it and 17% neither 'liked' nor 'disliked' it.
Thus there would seem to be a favourable climate for the expansion of consumption and for Australian fish to form an increasing part of this consumption.

However, the fishing industry is part of a highly competitive food market. Also results the fishing industry is part few years together with discussions with retailers and other fish marketers indicate a number of specific concerns which have held back consumption of fresh and frozen fish and are likely to continue to do so unless advanced to overcome them.
Availability In the Melbourne survey of consumer attitudes, declining availability was the single most important reason cited by respondents whose consumption of fresh and frozen fish had declined compared with the previous year. That survey also disclosed that consumers rated fresh and frozen fish significantly lower than fish fingers and frozen packaged fish in availability. There is no reason to expect that these results would be greatly different in other cities. \quad urchased comes from retail fish shops and About half of all fresh and frozen fish purchased 10% of purchases are made from almost a quarter from a fish market. Just fingers and packaged frozen fish are sold supermarkets. By contrast almost all through supermarkets. trend towards one stop shopping and the relative net decline in the number of fresh fish According to trade sources there has been a net ded a shift by retailers from fresh fish shops over recent years. Much of the fall represer foods. This fall has not been uniform sales to cooked takeaway sales of fish and elsewhere.
in all capitals, being less in Sydney than elsewhere. The decline in fresh fish outlets does not appear to specialise in fresh fish generally appear factors. Those outlets which have continued to spe a highly skilled business requiring to be prosperous. However, selling fresh fish is a selling. The number of people with expertise in fish purchasing, processing, storage an formally training people to take this expertise is limited and there is no proviontion of some form of apprenticeship over existing outlets or open new ones. The adoportant requirements of the industry. training would seem to be one of the more imprelling good quality fish but also on the Emphasis in such training would be not only on seld.
quality of the surroundings in which they numbers there has been an increasing trend Together with the decline in fresh fish shop numbers or large supermarket. Relatively towards one-stop shopping at a shopping complex for reasons indicated above, and to few shopping complexes have specialist fish shops on frozen packaged fish rather than fresh date supermarkets have concentrated largely displayed has usually been restricted to a few and frozen fish. The fish which has and with poor visual appeal.
especially fresh fish, it would seem almost Given the current level of demand for fish, especarry Australian fish over the next few inevitable that supermarkets will increasingly cany discussed elsewhere ${ }^{3}$ but they can years. The requirem
guaranteed continuity of supply; Not only must product be regularly predictable shopping for customers. Noctuations in price; and available, but there should be no sharp fict This implies quality control from time guaranteed and consing to delivery into retail outlets.
of catching to delivery in

[^5]To date the Australian industry has been unable to fulfil these requirements, and has lost a potentially important outlet for its product. It should be observed that supermarkets would offer an additional outlet for fish, especially frozen fish which may need to be stored on board larger freezer boats or at times of market over-supply. Persons requiring a large range of fish especially fresh fish might be expected to continue to patronise existing fish shops (the desire for freshness is discussed below).
The requirements of supermarkets are not easy to meet and essentially involve the same considerations discussed earlier in relation to the 'fast food' industry. In very general terms selling to supermarkets will require centralised marketing either:

- through a large co-operative organisation such as SAFCOL, which is able to buy product from its members and distribute it to supermarket chains, or
b by marketing organisations entering into contracts with fishermen for the supply of product at specified prices and reselling to supermarkets, buy fromhrough supermarkets themselves setting up organisations to buy from fishermen;
\square by the establishment of large integrated companies owning their own boats.
Finally, to reiterate, unless fresh and frozen fish is made more readily available latent consumer demand will remain unfulfilled. Availability can be increased by the establishment of additional specialist fish shops, selling more fish through supermarkets or, ideally, a combination of both.
Price Even when fish is physically available the ability of individual consumers to purchase fresh and frozen fish also depends on its cost. Although fresh fish has become more expensive in recent years relative to other foods there is no evidence yet of consumer resistance to those prices. To a large extent these increases appear to have been offset by other perceived benefits to consumers such as the fulfilment of concerns about nutrition and dietary habits generally.
There is, however, much the industry can do to attract consumers by local advertising of cheaper varieties of fish and 'speciaHing' varieties in temporary oversupply. Such promotion needs to be accompanied by appropriate point of sale recipes (discussed below under promotion).
Freshness Desire for fresh fish and doubts as to whether fish purchased was really fresh dominated many aspects of consumer attitudes towards fish in the Melbourne survey.
Freshness was considered by respondents to be the most important characteristic when buying fresh fish. Also the freshness of fish offered was given as the dominant reason why consumers preferred a particular retail fish shop.
Although consumers considered freshness to be important 76% agreed with the statement that it was difficult to know if the fish offered to them was really fresh. Freshness was judged mainly by s̀mell or the brightness of the eyes but it was significant that 20% of consumers were unable to nominate any way to assess freshness.
The importance of freshness and the difficulty consumers have in assessing it underline the importance of ensuring that fresh fish sold should not only be fresh but be seen to be
so.
At present, keeping the fish fresh from the catching vessel to retail outlet is largely the responsibility of the industry itself. From observation, standards differ widely from State to State. However, judging from the response of Melbourne consumers allied to comments received in other capitals there is general unease among fish eaters at the freshness of the fish they receive. A number of suggestions could be made to raise the standard of fresh fish such as date marking fish landings, grading at wholesale markets,
wider controls by Health inspectors but all are either impractical or too expensive. It as been concluded that relative freshness must remain a part of the competitive process and the fisherman or retailer consistently selling fresher product should, other things being equal, receive a higher price.
onsumers confidence that fish sold is fresh as distinct from frozen, it could be suggested that fish be so described in retail outlets, and that such descriptions be mandatory. For example, bream should be described as 'fresh bream' or 'frozen bream'. A definition of frozen fish could be any frozen overnight by a retailer.
remperature below $30^{\circ} \mathrm{F}$, even if then rethawed, ing into the impations of any such Much more research would need to be undertatice that some frozen fish is of higher requirements. Also, it will be argued with jusere it is considered that a mandatory quality than fresh fish. On balance however description along the lines outlined above cols 'fresh' fish. Also supermarkets could reportedly experienced by consumers with sold being 'non-fresh' by promotion of overcome any problems about frozen fish sold more consistent in quality. Also, well quality control and in particular through to that segment of the market which eats fresh presented frozen fish fillets could appeal to thities such as messiness, smell and presence of bones.
Promotion As observed earlier the great majority of consumers it. There would therefore fish fairly frequently and have very positive feelings toward aimed to encourage consumers seem to be little advantage to be gained by promotion quality and competitively priced
to eat more fish. If the product availab
consumers could be expected to buy it.
consumers could be expected to buy it.
It is suggested that promotion would beut new or unfamiliar fish species coming on to
The first is in informing consumers about new display such as that used for gemfish and the market. In this respect more point ortion Committee will be needed.
mullet by the N.S.W. Seafoods Pron informed about products which are cheap and in Second, consumers need to be better inin seasonal stocks. third, and most important, and frozen fish. About 60% of such fish was fried and almost 15% grilled. A high percentage of respondents objective of the industry should ability as fish cooks. The most important promotional sale recipes, recipe booklets and be to raise this confidence by providing small point of sal entres.
cookery demonstrations to groups and in laro demonstrations) is undertaken in Promotion along these lines (other than cookenequate scale because of lack of funds. New South Wales and Queensland but on an infort be intensified and that it be extended It would seem extremely desi
to all States and Territories.
Accordingly, it is suggested that more funds be made available through an Australia wide levy on all sectors of the fresh and frozen fish industry and be administered by an independent committee of Government and industry pettee would set priorities and the fishing industry research committee. The coint of display posters, recipes etc., and disburse funds. Funds could be used for point by State authorities doing this work at much of this promotion would be conducled oversee the work of a small group of home present. Additionally, the committee could en in demonstration work.
economists who would be primarily engaged in demonst

4.1.6 Summary
 It has been assumed that a basic objective of the Australian fishing industry on the

 domestic market should be increased consumption of Australian fish.No specific marketing recommendations have been advanced for seafoods. It is considered that seafood consumption could be increased fairly readily in the absence of two major restraints. These are price, which is largely set overseas and resource availability. Increased consumption of Australian fish requires the fulfilment of one or both of the following objectives:

- to improve the industry's capacity to supply frozen fish to the institutional and catering markets; and to enden as 'everyday' food item in the home.
The following recommendations have been advanced to overcome some of the factors hindering the attainment of these objectives.

I Increased research by Government and industry to establish the extent of stocks available, especially for 'takeaway' outlets and tinned fish. Such research should also include investigations into ways of catching fish which at present cannot be caught because of technical or economic factors.

- Improved co-ordination between the catching and distribution sectors in order to improve continuity of supply and achieve some predictability in price to meet the needs of fast food outlets and supermarkets. Such co-ordination could be accomplished by the growth of large co-operative marketing organisations or some form of integrated enterprise supplied either by its own boat or by contract.
Studies aimed at identifying new fish species suitable for canning be conducted. Research be conducted into the implications of a mandatory requirement that fish sold through retail outlets be described as 'fresh' or 'frozen'.
Fish species be identified in a way acceptable to both trade and consumers.
Retailers give more emphasis to local advertising of 'specials' i.e., cheaper fish in temporary oversupply.
- An industry levy be adopted to, promote underused or new species; produce point of sale recipes and pamphlets; enable a small group of home economists to give cooking demonstrations at meetings of shoppers and at shopping centres.

4.2 Level of Consumption

The latest official statistics estimate the apparent consumption of edible fish products at 6.7 kg per person in 1975-76 ${ }^{4}$. In nearly all the previous ten years consumption per person was in the 6 to 7 kg range.
These estimates contrast markedly with the survey findings of an average 10 kg consumed per person over 1976-77 in the capital cities. Although neither of these two estimates of consumption is strictly accurate it will be argued here that Australian fish consumption is higher than hitherto believed. However, it is important first to note the major differences between the estimates in their basis and scope of calculation. Official statistics of consumption in any one year represent a balancing figure taking into account commercial production. exports, imports and stock changes. An

[^6]allowance of 10% is added to commercial fresh fish production to account for fish caught by leisure fishermen. Waste and deterioration between proder is derived by and final consumption are not calculated. Consumption pe Australia in the relevant dividing these statistics by the estimated mond year. By contrast, the survey figurear week. It was assumed thate a yearly rate, particularly as they had eaten in a particular could be translated in in weed different time periods in each interviewing was spread over four qua quarter.
the Australian population living in the capital and coverage. The survey results cover only No comparable surveys have been undertawever, it is unlikely that their cities surveyed. No comparable surver for conjecture. Howrey. Although some coastal and their fish consumptionis a exceed that found in the survey greater than the survey overall consumption would econsumption levels equal to fiss per person, especially cities and towns could have co be expected to consume less only inland city surveyed, average, inland centres might be recalled that Canberra, the only and there were factors fresh fish and seafood. It whl consumption of only 8 kg per personecilly of seafood, which had a total fish and seafood consump in above average eating out, especially of seafood, whin at work in that city resulting in above average eand centres.
are not likely to be present in most a diture would seem to strongly substantiate this. The following table sets out expenditure on fish by households in urban and rura

Total

Source: Australian Bureau of Statistics, Household Expendiure Survey, 1975-76 (Various Bulletins than those in other urban and Persons living in capital cities spent about 50% more this discussion, capital city rural areas. More importantly, in the context of Australia as a whole. expenditure was some 12% greater than the prion by persons living in dwellings. It did Also, the survey results related to consumption institutions or other centres. However, it is not cover fish and seafood consumed in institutions on difference between the survey considered that this would have minimal results and official statistics. These variātions between the two estimates of consumplerther reason for the variation for the 3 to 4 kg per person difference between th sets of estimates. would seem to stem from errors in one in the official estimates.
There are two likely sources of error in the official estich are caught by recreational The first concerns the proportion of fish 10% for this-a percentage which has been fishermen. The official statistics allow 10% 原
unchanged for over 30 years. Survey findings indicate a figure of some 27% of fresh and rozen fish consumed are caught by leisure fishermen. Applying this proportion to the official statistics would have produced an estimate of consumption per person $1975-76$ of 7.4 kg -compared with 6.7 kg . The second source of error is probably more imps and molluscs of Australian origin. production of fresh and frozen fish and crustaceapplied by fishermen which are believed These production figures are based on returns arisons with sales through metropolitan to be understated. Spot checks and comparstatement could be as high as 30%.
markets and co-operatives suggest this unde sources of error.
The survey estimate also contains possible sources of error. Because it is based on a sample of the population fish and seafood eaten at home per error. As noted in Appendix III, of the 7 kg of fise is 0.3 kg greater or less than this. person there is one chance in 20 that the average persons sampled the sampling error Because of the large
is relatively slight.
Error could also have occurred because of overstatement by respondents of amounts consumed during the survey week. This could have arisen through the inclusion of fish ard during the survey week. Such telescoping of consumption is widely recognised in consumer surveys based on recall 2). and every effort was made in this survey to prevent it (See Section 2.3).
One method of calculating whether such overstatement did occur is to estimate the Australian market for individual forms of fish and seafoods, bastics are available In the compare these with those forms for which reliable official on the survey was calculated by table which follows, the estimated market size based on the capital cities by the estimated multiplying the average consumption per person in the survey) of 13.9 m . An important population at September 1976 (the mid poinustralians ate these products in the same assumption in this calculation is that all Aus noted earlier this may not be so. quantity as the capital city householders; as noted earli

	Survey Estimate	DPI Estimate
Table 43 Market Size: Selected Fish Products:	Tonnes, edible weight	20400
	25000	3800
Canned fish	4200	6900
Frozen packaged fish	9200	4400
Fish fingers	3300	2100
Smoked fish	1700	37600
Canned seafood	43400	

Total selected products
caution, there would seem to be a
Although this table needs to be interpreted with caution, the estimated quantity general tendency for the survey results to be higs. The overestimate could result from available for consumption based on official figures. survey (especially in country areas) lower consumption by persons not covered.
or because of overstatement by consumers. this discussion. First, official statistics of
Two general conclusions may be drawn from this ditated because of underreporting of Australian fish consumption appear to be understated broduction and also because the fresh and frozen fish, crustaceans anen is probably too low.
allowance for fish caught by fishermen is pre consumption at 10 kg per person are Second, the survey results showing average constralia as a whole. This is mainly overstatement of consumption in Australia as a whele
because the survey did not cover rural areas and cities, and respondents may have overstated their consumption.
If the percentage overstatement of the survey results indicated in Table 1 were applied to all products, consumption per person for Australia as a whole in 1976-77 was in the vicinity of 8 to 9 kg per person. This level would be consistent with estimates made of the extent to which official consumption figures underestimate the 'true' consumption.

4.3 Misnaming of Fish and Seafood

One of the difficulties encountered in this survey was to obtain from consumers a description of the fish species they had eaten. Some 2% of respondents did not know the species of fish served at home, 16% did not know the species bought from a 'take away' shop and 20% did not know the kind of fish eaten at a meal-serving establishment.
Even more important than this was the widespread misnaming of fish, especially when bought at 'take away' outlets and restaurants. For example, the two main species of cooked fish which respondents claimed to have bought in Adelaide and Perth were butterfish and snapper respectively; most of this fish appears to have been imported hake. Some fresh and frozen fish fillets also appear to have been misnamed.
Basically misnaming of fish occurs because merchants and retailers attempt to respond to consumer demand for traditional species which are unavailable or expensive by supplying species of similar or even superior taste. Also many Australian species have the same name as imported species but are different fish. Examples are given in Appendix IV of this report.
Although misnaming of fish would appear to involve an element of consumer deception it raises quite complex issues which require a more detailed study and analysis than is possible here. However it is important to recognise that misnaming of fish occurs in many other countries and that it can offer benefit to both fishermen and consumers.
In the United States and Europe a number of fish are sold under different names to satisfy the traditional preferences of local communities. Examples at random include hake sold as whiting, ocean perch as redfish, pollock as saithe and so on. It is pertinent to note that the United States Department of Commerce has commissioned a study into the appropriate market names for fishery products. The study is examining the feasibility of introducing a new framework of names based on edibility. For example fish with no bones, low fat content etc would be in one common group, those with firmer texture, higher fat content etc., would be in aṇother and so on.
There are obvious benefits in misnaming fish. The consumer can be introduced to new and unfamitiar species. Also seasonal shortages in supply of particular species can be alleviated by substituting comparable fish, often at lower prices. In this context it should also be noted that in a large number of cases misnaming has benefited the consumer because the substituted product is either cheaper or of superior or equal quality.
There are also clear disadvantages of such practices. The most important of these is their long term effect on consumer confidence in the product of the fishing industry. This occurs most frequently when frozen imported fish is substituted for fresh local fish; for example frozen hake fillets for bream, imported whiting for fresh Australian whiting etc. These practices may have contributed to the generally low regard consumers hold for fish shops because their fish is frequently 'not fresh's. The practice

[^7]could also have affected sales of domestically caught fish by enabling cheaper imported fish to be sold under the names of traditionally popular Australian species.
There would seem to be a need for a more detailed study into the extent to which misnaming of fish occurs, the reasons for it and its effect on the consumer and on sales of Australian fish. Such a study could also indicate whether a more rational classification of fish could be adopted instead of species names.

Glossary of Terms Used

Respondent Person responsible for the preparation of food in the household, aged 15 years and over.
Household One or more persons who normally share common food supplies.
Head of Household In husband-wife families the husband was taken as the head of household. In other cases the chief income earner was normally regarded as the head.
Household Members Includes all permanent residents, including boarders. Does not include guests or family members who do not normally live in the household.
Dwelling Any private house, flat, room etc. used for dwelling purposes with the exception of hotels, motels, clubs, hostels, boarding houses, educational, religious or charitable institutions, hospitals, police or fire stations, defence or penal institutions.
'Takeaway' Shops Snack bars, hamburger shops, takeaway Chinese food shops and any other 'fast-food' establishments.
Cooked Fish/Seafood Refers to fish which is cooked or prepared on the shop premises.
Caught or Gift Refers to fish and seafood which is caught by members of the household or given gratis to the household.

APPENDIX \mathbf{u}

Sample Methodology

1. Sample Design

The sample design chosen for this study was a multistage stratified scheme. Survey procedures were established in co-operation with the Australian Bureau of Statistics (ABS). The survey was designed to draw a representative sample of households on a probability-proportional-to-size (p.p.s.) basis from regions within each of the seven capital cities
The sampling frame consisted of the total number of private dwelling units in each capital city. Each state office of the ABS provided figures on dwelling units in all census collectors' districts (CDs). The number of dwelling units derive from the 1971 census and are adjusted for additions to the housing stock. This is, of course, important in areas of new suburban development.
Each city surveyed was stratified into at most five regions which comprised neighbouring Local Government Areas (LGAs). The boundaries of the regions were drawn so as to represent a combination of geographical and social differentiation in the population.
The sampling units are the 1971 CDs. A sample of CDs was selected in each region on a fixed interval sampling basis with a random start for each region. The selected CDs were then allocated to appropriate quarter periods of the survey e.g. first and fifth CD to the first quarter, second and sixth $C D$ to the second quarter etc. A cluster of 10 households was interviewed within each CD.
The proportionate stratification, i.e. 'regionalising' of each city, should lead to reduced overall variance compared with a simple random sample design, although clustering will increase variance.

2. Survey Procedures

Within each census district, a random starting point for each cluster of interviews was chosen with the aid of a superimposed grid. Grid co-ordinates were chosen at random and the starting point was designated to be the street corner nearest to these coordinates.
Interviewers were instructed to obtain an interview at every third house from the starting point. When an interviewer failed to make contact with a potential respondent, after four calls at varying times of the day and evening, a dwelling on either side of the original one selected was substituted. This substitution also occurred if a household refused to supply information. The State Field Supervisor in each city validated at least 10% of all interviews by phone or personally.
The supervisors in each state were involved in the study from the initial piloting stage. The teams of trained interviewers in each state were briefed before each rcund of
interviews by the National Field Supervisor and debriefed after the first round of interviews.
All questionnaires were edited and then coded before being punched onto computercards and validated.

Basis for Per Capita Consumption Figures

Rase	City	Base No. of Dwellings	Sample Population	Actual No. of Respondents	Household Grossing Up Factor
June 1974	Sydney 1	937017	3106000	400	2343
June 1975	Melbourne 2	863559	2760000	360	2399
June 1974	Adelaide 3	282581	884000	180	1570
June 1975	Brisbane 4	261623	862000	180	1453
June 1975	Perth 5	250315	832000	160	1564
June 1974	Hobart 6	41421	135000	120	345
Sept. 1975	Canberra 7	55916	202000	100	559
Total			2692432	8779000	1500

,Sample Population $=$ No. of Dwellings \times Actual Occupancy Rate
1 Sydney Statistical Division (S.D.)
${ }^{2}$ Melbourne S.D.
5delaide S.D. excluding Gawler, Mudla Wirra, Stirling, Willunga.
Brisbane S.D. excluding Albert (Pt), Beaudesert (Pt), Caboolture (Pt), Moreton (Pt), Pine Rivers (Pt), Rediand.
3 Perth S.D. excluding Serpentine-Jarrahdale.

- Hobart (Urban parts of Hobart, Clarence and Glenorchy Councils).

1 Canberra City District.
The base number of dwellings for a city is taken for the latest year for which information was available at the time of sample selection (noted in above table).
The Brisbane and Perth Sample areas were less than the total City population as they excluded remote LGAs.
Population data for surveyed areas of Brisbane, Adelaide, Perth and Hobart was not available for the base year, so was calculated by applying the average occupancy rate to the base number of dwellings. The average occupancy rate was calculated by using the population figures for SDs and Hobart LGAs as given below:

	Base No. of Dwellings	Population	Occupancy Rate
Adelaide SD'74	289953	885400	3.054
Brisbane SD'75	302204	958800	3.173
Perth SD'75	250908	787300	3.138
Hobart/Clarence/Glenorchy	45418	135019	2.973

APPENDIX II
 Estimation of Survey Sampling Errors

This Appendix considers the scale and estimation of certain sampling errors that relate to the household sample survey of fish and seafood consumption conducted in Australian capital cities and Canberra over four quarters ending February 1977.
The need to estimate sampling errors arises from the fact that different samples drawn from the same population will yield different estimates of variables holding a particular attribute. Sampling errors are estimated in order to give a degree of confidence in a value or in the difference between two values.
The statistical design of sample surveys is directed to obtaining information representative of a population at economical cost. There is a trade-off between using a 'simple random sampling' (s.r.s.) design that affords relatively simple formulae for estimation of survey errors, and a 'stratified and clustered' design for which designs are estimation is mathematically complex. Variance estimates fr arises in the high cost of usually higher than for simple random samples. The tradd in our sprawling suburbs interviewing 'simple random samples' of housing of clusters of households in compared to the more economical inters (strata) of our capital cities.
representative Census Districts of regions Sydney and Melbourne were each divided
To facilitate estimation of sampling errors, Syree strata each, Perth and Canberra into into five strata, Brisbane and Adelaide into three ste stratum. The 21 strata were made up two strata each. Hobart was considered as a sings) in each city, the groupings of LGAs of contiguous Local Government Areas (LGAs) boundaries, and social/geographic having been made on the basis of natura development.
To each stratum a ple of households n_{b} (rounded to the nearest ten) was allocated in proportion to the number of households in the stratum. Within each stratum $\frac{n_{h}}{10}$ Census Districts were systematically selected with probability proportional to the number of households in each Census District in the stratum. Within each selected Census District a cluster of households were selected using a quasi-random procedure to yield ten effective household interviews. This procedure for selecting starting points for each cluster is explained in survey methodology.
Details of sample allocation and strata weights are given in Table A1. For example, in Sydney Central $\frac{320}{10}=32$ Census Districts were selected and in each quarter $\frac{32}{4}=8$ clusters of 10 households each were interviewed. The split-half technique ${ }^{1}$ was used to estimate the sampling errors of means. To permit use of this technique, each stratum was subdivided into two halves with an allocation of alternate clusters (of ten) into each half stratum.

[^8]Potentially, sampling errors can be calculated for all the values realised in the survey. The calculation of each error estimate would be an enormous task and their interpretation would be tedious. We therefore give estimates for selected variables, and on the basis of estimating the design effect give a table for estimating errors of proportions. Estimates of errors have only been made for data aggregated over the four quarters of the survey.

Variance Estimates for Mean Fish and Seafood Consumption Levels

The mean consumption of fish served at home and seafood served at home was computed for each sub-strata of the 21 strata in terms of grams per household per week. The weighted mean annual consumption was estimated for each city ($\overline{\mathrm{x}}_{\text {cit }}$) and for all capital cities taken together (\bar{x}) by multiplying weekly consumption by fifty-two.
The variance of the sample means was estimated for each city and all cities using the split-halves formulae e.g.
$\operatorname{var}(\overline{\mathrm{x}})$
$=\frac{1}{4} \sum_{\mathrm{h}=1}^{21} \mathrm{~W}_{\mathrm{h}}{ }^{2}\left(\overline{\mathrm{X}}_{\mathrm{lh}}-\overline{\mathrm{x}}_{2 \mathrm{~h}}\right)^{2}$
where $\overline{\mathrm{x}} \quad=$ all capital cities sample mean
$\overline{\mathrm{x}}_{1 \mathrm{~h}} \quad=1$ st split-half sample mean in stratum h
$\begin{array}{ll}\mathrm{x}_{2 \mathrm{~h}} & =2 \text { nd split-half sample mean in stratum } \mathrm{h} \\ \mathrm{W}_{\mathrm{b}} & =\text { station }\end{array}$
$W_{b} \quad . \quad=$ stratum weight for stratum h, i.e. proportion of households in the sampling frame falling into stratum h, or in other words households in stratum h as a proportion of all households in that city.

Table A1 Details of Stratified Sample

Stratum Name		Stratum Weights Within CityW_{h}	Stratum Weights Between Cities	No. of Sample. Households
				n_{h}
Sydney	Central	. 202	. 0702	320
	East South	. 242	. 0842	400
	West South West	. 167	. 0582	240
	West North West	. 195	. 0678	320
	North	. 194	. 0676	320
	Total	1.000		1600
Melbourne	South	. 286	. 0918	400
	Central	. 127	. 0418	200
	West	. 129	. 0413	200
	North	. 172	. 0553	200
	East	. 286	. 0915	400
	Total	1.000		1400
Brisbane	North	. 347	. 0338	240
	South	. 329	. 0319	240 240
	Central West	. 324	. 0315	240
	Total	1.000		720
Adelaide	Coast	. 357	. 0374	240
	North	. 334	. 0350	240 240
	City	. 309	. 0325	240
	Total	1.000		720

Table A1 Details of Stratified Sample

Stratum Name		Stratum Weights Within City	Stratum Weights Between Cities	No. of Sample Households
		W_{h}		n_{h}
Perth	North	. 487	. 0453	320
	South	. 513	. 0476	320
	Total	1.000		640
Hobart		1.000	. 0154	400
Canberra	North	. 481	. 0098	240
	South	. 519	. 0106	240
	Total	1.000		480
Total			1.0000	6000

When multiplied by a factor of two (an approximation to 1.96), the standard deviation (which is the square root of the variance) of the mean yields a confidence interval. There are 19 chances in 20 that the true value lies within two standard deviations of the estimate.

$$
\overline{\mathrm{x}}-2 \text { std. } \operatorname{dev}(\overline{\mathrm{x}})<\mu<\overline{\mathrm{x}}+2 \text { std. dev. }(\overline{\mathrm{x}})
$$

where std. dev. is the standard deviation.

Table A2 Variation of Mean Annual Consumption of Fish served at Home Kilograms

	Per Household			Per Person(approximation)		
	Mean	2 Standard Deviations Of Mean	95% Confidence Interval on Mean	Mean	2 Standard Deviations of Mean	95\% Confidence Inrerval on Mean
All Cities	19.1	0.7	18.4 to 19.8	5.9	0.2	5.7 to 6.1
Sydney	21.6	1.6	20.0 to 23.2	6.5	0.5	6.0 to 7.0
Melbourne	18.1	1.2	16.9 to 19.3	5.7	0.4	5.3 to 6.1
Brisbane	19.4	1.7	17.7 to 21.1	5.9	0.5	5.4 to 6.4
Adelaide	18.6	0.5	18.1 to 19.1	6.0	0.2	5.8 to 6.2
Perth	18.6	1.9	16.7 to 20.5	5.6	0.6	5.0 to 6.2
Hobart	13.3	2.9	10.4 to 16.2	4.2	0.9	3.3 to 5.1
Canberra	17.0	0.8	16.2 to 17.8	4.7	0.2	4.5 to 4.9

Table A2 suggests highest mean fish consumption (served at home) occurred amongst Sydney households followed by Brisbane. The cities of Melbourne, Adelaide and Perth have similar 'close to average' consumption patterns. Less fish is served at home in Canberra than the above cities and Hobart households have the lowest consumption of fish at home.

Table Variation of Mean Annual Consumption of Seafood Served at Home

Kilograms	Per Household			Per Person (approximation)		
					2 Standard	95\% Confi-
	Mean	2 Standard Deviations of Mean	95% Confidence Interval on Mean	Mean	Deviations of Mean	$\frac{$ dence Interval on Mean }{1.0 to 1.2}
	3.4	0.4	3.0 to 3.8	1.11.1	. 1	$0.6 \text { to } 1.6$
All Cities					0.5	
		1.8	1.9 to 5.5	1.1	0.1	0.6 to 0.8
Sydney	3.7	0.3	$\begin{array}{ll}2.0 \text { to } 2.6 \\ 2.2 \text { 10 } & 5.4\end{array}$	1.2	0.5	0.7 to 0.5 to 1.5
Melbourne	2.3 3.8	1.6	$\begin{array}{lll}2.2 \text { to } & 5.4 \\ 1.6 \text { to } & 4.6\end{array}$	1.0	0.5	O. 1.5 to 0 1.5
Brisbane	3.8 3.1	1.5	$\begin{array}{ll}1.6 \text { to } 4.6 \\ 5.0 \text { to } & 5.2\end{array}$	1.5		
Adelaide	5.1	. 1	$\begin{array}{ll}5.0 \text { to } & 5.2 \\ 0.5 \text { to } & 4.9\end{array}$	0.8	0.7 1.2	1.2 to 3.6
Perth	2.7	2.2	0.5 to 4.9 4.0 to 13.0	2.4	1.2	1.2 10
Hobart Canberra	8.5	4.5				

Table A3 shows that mean consumption of seafood served at home is far lower than that of fish. Canberra has highest range of consumption (but very above the all-capitals Perth (with almost no variation). Sydney and Brisbane had lowest range of home average and quite variable. Melbourne househol below average consumption of consumption of seafood. Adelaide and Hobariability.
seafood at home, both cities showing high a Estimates of 'per person' consumption are strimption and average household size i.e., variables, namely average household consump household size within sub-strata are not persons per household. Data on average hou to be far less variable than consumption, available. As average household size is known to and A3 are reasonable as they are the the 'per person' estimates given in Tables A2 ation per household in strata by a mean result of dividing the weighted mean of consump aken together.
relates to estimates of variance of means. The scale of variances of means is generally smaller than the underlying variance of the individual observations to the order of n, the sample size. Table A4 gives the means ab-strata. The deviations of weekly household fish and seafood consumption in earn of consumption very wide variability within sub
in all parts of the community
Estimation of Design Effect
Es view of the need to make estimates of errors that apply to a broad range of variables we have examined the relationship between the variance for the stratified/cluster design and the variance that would have applied had a simple random sample been employed.
The method involves estimating 'design effects' (deff (x)), where the estimated design
effect for sample estimation x is defined as:
$\operatorname{deff}(x)=$ estimated variance of x for the complex design
For forming confidence intervals $\sqrt{\text { deff }(x)}$ represents the multiplier that may be applied to the s.r.s. standard deviation to give the estimate of standard deviation for the complex design.
Using the large-sample standard normal distribution approximation for the sampling distribution of

$$
\frac{p-P}{\operatorname{Std} \operatorname{dev}(p)}
$$

Table At Mean and Standard Deviations of Fish and Seafood Consumption at Home by Sub-Strata, Four-Quarter Aggregate, Grams Per Household Per Week

Sirutum	SubStratum	Fish		Seafood		Straturn	SubStratum	Fish		Seafood	
		Mean	Siandard Deviation	Mean	Standard Deviation			Mean	Standard Deviation	Mean	Standard Deviation
Sidney						Brishane North	1	341	489	65	264
Cenral	1	354 372	466 552	64	222 236		2	390	555	48	206
East South	1	352	468	42	188	South	1	377	510	30	124
	2	370	525	46	152		2	345	605	124	64
West South West	1	514	1090	155	863	Central West	1	352 438	473 624	95 81	441 271
	2	430	679	75	239		2	438	624	81	27
West North West	1	391	532	56	184	Adelaide			704	58	204
North	1	383	520	74	299	Coast	1	421	705	141	534
	2	515	852	39.	143	North	1	463	457	141 41	254
	'						2	341	478	34	149
South	1	324	453	41	149	City	1	309	340	47 33	225 131
	2	387	595	37	189		2	290	394	33	131
Central	1	273	367	33	- 85				1		
	2	245	357	40	164	Perth			- 485	103	518
West	1	398	616	37 57	130	North ${ }^{\text {- }}$	2	317 332	515	108	369
	2	$311-$	435 515	57 68	244 233	South	1	332 353	509	91	335
North	1	435	515 540	68	220	South	2	424	562	93	314
East	1	344	445	33	109						
	2	317	419	48	152	Canberra North	1	341	458	25	90
Hobart							2	349	542	72	271
	1	227	412	31	224	South	1	327	420	36	. 139
	2	285	519	73	260		2	297	417	40	160

a 95% confidence interval for the population value of the proportion P is

$$
p-2 \sqrt{\operatorname{deff}(p)} \quad \frac{\sqrt{p(1-p)}}{n} \leqslant p \leqslant p+2 \sqrt{\operatorname{deff}(p)} \sqrt{p(1-p)} \frac{n}{n}
$$

where p is the sample estimate of the proportion and n is the sample size.
As deff is usually greater than 'one' the confidence interval is wider than that for an equivalent simple random sample design.
Table A5 gives estimates of $\sqrt{\text { deff }}$ for each city and all cities together that result from computing split-halves estimates of proportions for five selected variables. The selected variables broadly cover the range of the distribution of a proportion i.e., ranging from 10.3% to 49.4%.
The deff estimates for Sydney and Melbourne lie above the below the mean of 1.98 for all cities. Although the Table shows deff varies considerably both within cities and between cities we propose a value of 2 as a reasonable estimate of deff for most purposes for which the fish and seafood consumption survey may be used.

Table A5 Estimates of the Square Root of the Design Effect for Selected Variables

	Households Which					
	Served Fish Fingers Once in Past Week	Served Fish Fingers but not in Past Week	Never Serve Fish Fingers	Fresh Fish Served	Never Serve Fresh Fish	$\begin{gathered} \text { Average } \\ \sqrt{\text { deff }} \end{gathered}$
Mean Proportion for All Cities \%	10.3	37.5	49.5	25.7	18.1	
All Cities	2.74	2.86	1.29	1.82	1.20	1.98
Sydney	2.81	3.75	2.45	1.83	. 79	2.33
Melbourne	2.46	1.71	2.58	1.14	1.50	1.88
Brisbane	2.67	2.66	3.63	1.28	. 93	2.23
Adelaide	2.62	1.01	3.60 .	2.28	. 90	2.08
Perth	1.00	. 37	3.93	1.62	. 91	1.57
Hobart	2.80	. 36	4.90	. 35	. 86	1.85
Canberra	3.11	2.77	4.47	1.01	. 51	2.37

Table A6 gives estimates of the standard deviations for a percentage variable p calculated as

$$
\begin{aligned}
\text { std dev. }(p) & =\sqrt{\text { deff }} \times \text { std dev of a s.r.s. } \\
& =2 \times \frac{\sqrt{p(1-p)}}{n} \\
& =2 \frac{\sqrt{p(1-p)}}{n}
\end{aligned}
$$

Thus a 95% confidence interval for a proportion of 80% occurring in Melbourne would be $80 \% \pm 2(2.1 \%)$ i.e., 75.8% to 84.2%.

A 7 is an extension of Table A6 and gives error estimates for weig all cities. Table Table A 7 is an extens terms of thousand of households for eacholds never serve fish fingers of variables given in terms. If in Melbourne 413000 househoring to the upper row for A6 may be used as follows. . ince interval is obtained by 413000 i.e., in this case 390000 the appropriate 95% A 7 and finding the closest valu the row below. Mer which the error estimate is given as 22000 in the
The confidence interval is then computed as
作 e., between 369000 and 477000 Melbourne households never serve

Table A7 Estimates of Standard Deviations for Variables Showing Thousands of Households in Capital Cities Holding Attributes

Relationship Between Trade Names and Other Names for Fish

The names used in the report to describe fish and seafood purchased and consumed are the names which respondents used in describing their purchases or catch. These were the common or trade names of the fish. The main objectives of this Appendix are:
\square to denote the range of species which may be covered by such common names; \square to indicate where fish and seafood may have been named incorrectly by consumers or retailers and to suggest what the correct species may have been; to provide the proper and scientific name for the fish and seafood where a Table 1 sets out the common name, the prop
Table 1 sets out the common name, the proper name and the scientific name of all
Australian caught fish discussed in this Appendix.
Table 1 Common, Proper and Scientific Names of Some Australian Fish

Common Name	Proper Name	Scientific Name	
Whiting	Goldenlined	Sillago analis	
	Sand (Eastern)	S. ciliata	
	Trumpeter	S. maculata	
	Western sand	S. schomburg Sillaginodes punctatus	
	King George or spotted	Chrysophrys auratus	
Snapper	Snapper	Nemadactilus valenciennesi	
Bream	Queen snapper	Acanthopagrus australis	
	Yellowfin	A. berda	
	Pikey	A, butcheri	
	Black	A. latus	
	Western yellowin	Segutilum corneli	
	Buffalo	Fluviolosa richardsoni	
	Bony bream	Platycephalus indicus	
Flathead	Bartailed	Neoplatycephalus fuscus	
	Dusky	Trudis arenarius	
	Northern sand	Neoplatycephalus richardsoni	
		Trudis bassensis	-
	Sand	Rhombosolea spp.	
Flounder	Flounder	Thunnus maccoyii	
Tuna	Southern bluein	T. tonggol	
	Northern bluefin	T. albacres	
	Yellowfin	Katsuwonus pelamis	
	Skipjack or striped	Gymnosarda nuda	
	Dogtooth	Arripis truta	
Sardines	Austraiian salmon	Sardinops neopilchardus	
	Pilchards	Fluvialosa vlaminghi	
	Perth herring	Engraulis australis	
	Anchovy	Hyperlophus vittatus	
	Saudy spratt	Clupea bassensis	
	Scaly mackerel	Amblygaster postera	

Flake	Gummy shark	Mustelus antarcticus Cod
	School shark	Galeorhinus australis
	Cod	Epinephelus and cephalopholis spp.
	Cod	Plectropoma maculatum
	Southern rock cod	Physiculus barbatus
	Murray cods	Maccullochella spp.
Butterfish	Butterfish	Selenoloca multifasciata
Prawns	Brown tiger prawn	Penaeus esculentus
	Banana prawn	P. merguiensis
	Eastern king prawn	P. plebejisu
	Western king prawn	P. latisulcatus
	Endeavour prawn	Metapenaeus endeavouri
	School prawn	M. macleayi
	Green-tail prawn	M. bennettae
	Rainbow prawn	Parapanaeopsis sculptilis

1, Whiting

Six species of whiting are caught locally and these are predominantly sold as fresh fish for serving at home or eating out at restaurants.
King George or spotted whiting is the major species landed, with South Australia being the chief producer (some 1000 tonnes annually) and smaller quantities being caught in Victoria and Western Australia. School whiting is also important with a catch of close to 1000 tonnes and nearly all landed in Victoria. Less than half of the school whiting catch is eaten in Australia. About 300 to 400 tonnes of sand whiting is caught annually and 100 to 200 tonnes of trumpeter whiting. These species are found mainly off Queensland and New South Wales.
Whiting (Gadus merlangus) is also imported, with Scotland and Ireland being the principal source of supply. These imports differ significantly from the local species having a softer texture flesh and generally an inferior taste.

2. Snapper

Snapper and queen snapper are the two species of this fish landed locally. These are high quality eating fish and are predominantly sold fresh for serving at home or for eating out in restaurants. Only a small proportion, if any, is believed to be actually sold as cooked fish from 'take aways'. This conflicts with information supplied by many survey respondents, mainly in Perth, concerning the purchase of snapper as cooked fish from 'take aways'. It is thought that the fish sold as 'snapper' was chiefly imported hake with possibly a smaller proportion being shark.
New South Wales is the main producer of snapper and accounts for about half of the annual catch of some 1500 to 2000 tonnes. It is also caught in significant quantities in all other States, excepting Tasmania. Queen snapper represents only a very small proportion of the catch and is mainly caught in Western Australia.
About 1000 tonnes of snapper is imported mainly from New Zealand. This fish is similar to that taken locally and is sold as fresh fish for serving at home or eating out at restaurants.

3. Bream

Most bream caught locally is either black or pikey bream and is landed along the East Coast. Victoria and New South Wales are the major producing States.

Bream is a high quality eating fish mainly sold fresh for serving at home or eating out at restaurants. Little is actually believed to be sold as cooked fish from 'take aways' which conflicts with details supplied by respondents about this species particularly in Sydney and Canberra.
It is thought that the species sold as bream cooked from 'take aways' was predominantly either Japanese or South African hake.
Bream (Abramis brama) is also imported principally from Denmark and other Western European countries. It is considered that this fish does not differ significantly from the local species. Some quantities may be sold through 'take-aways' as cooked fish but most is sold as frozen packaged fish through supermarkets for eating at home.

4. Flathead

Tiger, sand, dusky and bartailed are the major species of this fish caught domestically. New South Wales and Victoria are the dominant producing States, with much smaller quantities being landed in all the other States. Most of this fish is sold in Sydney.
Although respondents stated that they purchased significant quantities from 'take aways' as cooked fish, it is believed that what may have been purchased on many or most occasions was an imported species such as hake.
No flathead is believed to be imported.

5. Flounder

Relatively small quantities of flounder are caught locally and catches are believed to be less than 100 tonnes. Victoria, Tasmania and South Australia are the main producing States. This is a high quality eating fish mainly sold fresh for serving at home or for eating out at restaurants.
Flounder is also imported, some in frozen packaged form from Europe and the other as fresh or chilled whole fish from New Zealand. About 300 tonnes liveweight is imported from New Zealand annually.

6. Tuna

Southern bluefin and skipjack or striped tuna are the principal local species landed. Some yellowfin and northern bluefin are also taken, but in very small quantities.
This fish is predominantly used for canning, although a small proportion is sold fresh. Nearly all tuna is served at home as canned, although some quantities may be eaten out in the form of sandwiches and salad, etc. purchased from 'take aways' and restaurants.
Frozen tuna is imported on occasions, depending chiefly on the shortfall in local landings, for use by domestic canners. Some is also imported already canned.
These imports are generally of skipjack tuna and believed to be similar to the skipjac caught locally. However, for canning purposes they are considered inferior to southern bluefin tuna-the main species used in Australia.

7. Salmon

Australian 'Salmon' is the only species of this type of fish caught locally. It is a canning variety and is served mainly at home.
Western Australia, South Australia and New South Wales are the major producing States, although significant quantities are also landed in Victoria and Tasmania. The annual catch is around 3000 to 5000 tonnes liveweight.
About 8000 tonnes of canned salmon is imported annually, chiefly from Japan, Canada and the United States. The bulk of these consist of pink with a smaller amount of red salmon being imported.

The imported salmon differs in species and quality from the local fish. The Australian 'salmon' in fact is not a true salmon but a perch and generally is regarded as not being as high a grade as the imported product.

8. Fish fingers

Currently fish fingers are not produced locally on a commercial scale using Australian fish, although research is being conducted in this field to find suitable species for this purpose. The fish fingers which are imported are based on cod species from the Northern Hemisphere and South African hake.

9. Sardines

Although there are domestic landings of small species of fish like pilchards, herrings, anchovy, sprat and scaly mackerel, little is used for human food consumption. Most are used as raw material for fish meal production for stock feed supplements and bait for fishing. Some is also used in making fish pastes and for specialty pickled food items. Most of the local small fish is landed in Victoria and Western Australia with smaller quantities in New South Wales.
Sardines are imported from several European countries. These are chiefly in canned form although a significant amount comes in cured as either salted, dried or smoked fish. These are predominantly for serving at home.

10. Flake

Flake is the trade name given to shark. The species involved are mainly gummy and school shark, although other smaller quantities of shark are also caught and marketed. The bulk is sold through fish and chip shops either as cooked or fresh filleted fish.
School and gummy shark are caught off most States, but mainly Victoria with New South Wales being a major producer.
Small quantities of shark are imported from New Zealand and these are similar to the domestically caught fish.

11. Cod

Cod is landed locally in very small quantities with Queensland being the main producer followed by Western Australia.
Most cod (Gadus morrhua) is imported and sold through supermarkets as fish fingers for serving at home.
Cod was also stated by Brisbane respondents to be the principal fish purchased cooked from 'take aways'. However, it appears that this was not cod but was mainly imported hake, either Japanese or South African.

12. Butterfish

A very small quantity of butterfish is landed locally mainly in Queensland, but some also in the Northern Territory.
Butterfish was given as the principal fish purchased cooked from 'take aways' in Adelaide. This was found also to be imported hake.

13. Prawns and Shrimps

Many species of prawns are caught domestically. These range in size from the large type to the small variety.

The term shrimp is widely used overseas to describe what in Australia are called prawns. Quite often however local consumers and distributors may call very small prawns shrimp.
Australia imports significant quantities of very small prawns from Asia.

[^0]: 1 Victorian Division of Fisheries and Wildlife, Some Aspects of Consumer Attitudes and Opinions Towards Fish and other Seajood in Metropolitan Melbourne, June 1978.

[^1]: ${ }^{3}$ Cod is believed to be the main species used in fish fingers consumed in Australia.

[^2]: Does not in

[^3]: See Australian Bureau of Statistics, Household Expenditure Survey, 1975-76 (various bulletins) and Austrahian Retailing,

[^4]: See 'Some Aspects of Consumer Attitudes and Opinions Towards Fish and Other Seafoods in Metropolitan Melbourne'

[^5]: ${ }^{3}$ See L. R. Watson and M. W. Rowe, 'Australian Fish for Local Super

[^6]: - Fisheries 1975-76, Australian Bureau of Statistics, Canberra (reference number 10.8)

[^7]: s See 'Some Aspects of Consumer Attitudes and Opinions Towards Fish and Other Seafood in Metropolitan Meibourne'.

[^8]: The 'split-haives' technique was developed by J.C. Koop (Arn. Math. Statist, 42, (3), 1971)

