INTERIM ${ }^{*}$ REPORT

Dietary Study of Australians Consuming
Significant Quantities of Fish Products.

* Considered by EO/TA to be the final report.

RUTH ENGLISH
Nutritionist
Commonwealth Department of Health.

INTERIM REPORT

OF

DIETARY STUDY OF AUSTRALIAN CONSUMING SIGNIFICANT

AMOUNTS OF FISH PRODUCTS

Ruth M. Eng1ish
Nutritionist
Commonwealth Department of Health

The major objective of this study is to provide detailed dietary data on fish products* consumption by individuals eating significant quantities of these foods and to relate that consumption to levels of total mercury, estimated in hair and blood samples of the participant.

BACKGROUND

Mercury is one of the naturally occurring elements and since it is ubiquitous, it is to be expected that trace amounts can be found in all foods. In recent years two major sources of human intoxication with mercury have been reported - the consumption of seed grain, treated with organic mercury fungicides $(1,2)$ and the consumption of fish and shell-fish from aquatic environments in Japan, contaminated with mercury from certain industrial operations $(3,4)$. The primary form of mercury in the fish and shellfish which were the principal factors in the cases of poisoning in Japan (Minamata disease) was methylmercury.

As a result of a number of major episodes of mercury poisoning, which led to deaths and disablement, many countries have carried out studies to monitor their own situations with respect to contamination of their food supply by mercury and the likely exposure of the population to this element. The Expert Consultation on the Joint FAO/WHO Food Contaminant Monitoring Program (5) in 1974, recommended that mercury in fish and other edible aquatic organisms be given priority in any evaluation program, together with other heavy metals, organochlorine compounds and mycotoxins. The study on which this interim report is based is part of a monitoring program to establish if Australians are at risk from methylmercury ingestion, resulting from the consumption of significant quantities of fish products.

Mercury in Food

For the great majority of the population, the most important site of entry of mercury compounds, particularly methylmercury, to the body is the alimentary tract. Exposure to elemental mercury and inorganic mercury through food is not as hazardous as exposure to organic mercurial compounds. Not more than 0.01 per cent of metallic mercury is absorbed by the alimentary tract, while inorganic salts are absorbed to a greater extent (about 15 per cent) (6). It has been estimated that, due to the low rate of absorption in the body, a daily intake of 1.0 mg of elemental mercury or inorganic salts of mercury appears safe (7). More than 99.9 per cent of ingested elemental mercury and about 85.97 per cent of ingested inorganic compounds of mercury are excreted within a few days, mainly in the faeces.

* Fish products is the term used throughout this paper to refer to fresh water and seafish crustaceans and molluscs, whether they be used fresh or in frozen, canned, cured, smoked or otherwise prepared forms.

The absorption of organic mercury compounds is considered to be high, but quantitative data for humans is available only for methylmercury, which when given in small quantities is almost completely absorbed from the gastrointestinal tract. Alkylmercury compounds are excreted slowly. Biologic half-1ife of methyl mercury has been estimated to range from 58-87 days in four subjects (8).

A number of countries have undertaken monitoring programs to determine levels of mercury in foods. In the United Kingdom, it was established that the mean level of mercury found in cereals, most fresh meat, fruits and preserves, green and root vegetables was $0.005 \mathrm{p} . \mathrm{p} . \mathrm{m}$. (fresh weight). Higher levels were found in canned fish e.g. in salmon, herrings, pilchards, sardines and mackerel, where the overall mean value was about 0.02 ppm ; in pig's kidney and liver, for which means of 0.05 ppm and 0.03 ppm respective1y were found in different types. Higher levels were found in canned tuna ($0.07-0.44 \mathrm{ppm}$); in canned shellfish (0.01-0.29) ; and in the other fish (0.03-1.6 depending on the area from which the fish was taken and the species) (6).

Levels of total mercury in a range of Australian foods have been established in the yearly Market Basket Survey, which is conducted by the Commonwealth Department of Health to measure the level of contaminants in the food supply. The 1970 market basket survey (9) found that in no case did the mercury residue in any food groups from any city exceed $0.03 \mathrm{mg} / \mathrm{kg}$ during any season. Fish were included in a meat, fish and poultry group for analysis. The 1973 survey (10) reported that all fish samples contained more than $0.1 \mathrm{mg} / \mathrm{kg}$, with two samples of a total of 24 being above $0.5 \mathrm{mg} / \mathrm{kg}$. The greatest value found was $1.05 \mathrm{mg} / \mathrm{kg}$. In other food groups examined, no samples exceeded $0.03 \mathrm{mg} / \mathrm{kg}$. In the 1974 survey (11), the two groups analysed for mercury were fish and eggs and offal. Six of a total of 24 fish samples were above $0.5 \mathrm{mg} / \mathrm{kg}$ (greatest value $0.755 \mathrm{mg} / \mathrm{kg}$). In the eggs and offal group none of the samples exceeded $0.03 \mathrm{mg} / \mathrm{kg}$ the greatest value being $0.005 \mathrm{mg} / \mathrm{kg}$ 。

The 1975 survey (12), examined levels of total mercury (i.e. inorganic and organic forms) in $f i s h$ and shellfish (oysters), four varieties of meat, eggs and lambs fry. The limit of detection for the results reported in Table 1 is $0.005 \mathrm{mg} / \mathrm{kg}$.

Food	Number of samples	Mean (a) $(\mathrm{mg} / \mathrm{kg})$	Range $(\mathrm{mg} / \mathrm{kg})$
Fish 24 0.15 $0.005-0.34$ Shelifish Chicken 13 (b) 0.03 $0.005-0.11$ Mutton chops 24 0.02 $0.005-0.07$ Pork chops 23 0.01 $0.005-0.08$ Minced steak 24 0.03 $0.005-0.20$ Eggs Lambs Fry 24 0.01 $0.005-0.06$ 21 0.01 $0.005-0.02$		0.02	$0.005-0.05$

(a) 0.005 was taken to equal 0.0025 in calculating the mean.
(b) incluḍes three samples of canned shellfish.

Analysis of variance shows the difference between foods to be highly significant, with the mean mercury level markedly higher in fish.

In the case of foods other than fish and shellfish, Table 2 shows the number of samples which exceeded $0.03 \mathrm{mg} / \mathrm{kg}$.

TABLE 2 - Mercury Level in Foods (other than seafood) exceeding $0.03 \mathrm{mg} / \mathrm{kg}$

Food	Number of samples >0.03	Total number of samples
Chicken	6	24
Mutton chops	2	24
Pork chops	5	23
Minced steak	2	24
Eggs	0	24
Lambs fry	4	21

The National Health and Medical Research Council in the Standard for Metals in Food (13) has recommended the following maximum levels:

Mercury in fish, crustaceans, $0.5 \mathrm{mg} / \mathrm{kg}$ molluscs, the fish content of (0.5 ppm) fish products and the fish content of canned fish.

Mercury in any other food $\quad 0.03 \mathrm{mg} / \mathrm{kg}$
(0.03 ppm)
In the case of meats it is apparent that in each case some samples were above the maximum recommended limit, up to a maximum of 25 per cent of chicken samples. The results for beef and mutton were comparable with the much larger Australian survey undertaken by the Department of Primary Industry (14). In this survey, 34 (9.9 per cent) of a total of 345 beef samples were above $0.03 \mathrm{mg} / \mathrm{kg}$ and 5 (6.4 per cent) of a total of 78 mutton samples were above the limit.

In the 1975 survey, the leve1s of mercury found in fish and shellfish were all below $0.5 \mathrm{mg} / \mathrm{kg}$, in contrast to results reported in previous surveys.

A number of State Departments of Fisheries and Wildife $(15,15 A)$ and the C.S.I.R.O. Division of Fisheries and Oceanography have carried out extensive analyses of mercury concentrations in various species of fish, crustaceans and molluscs. As to be expected, a wide range of values was recorded, depending on the species, length of fish and the area from which the fish was taken. Some of these reported values for mercury, especially in school shark, were far in excess of the 1 imit that has now been set by the National Health and Medical Research Council.

It is now accepted, as a result of monitoring programs both in Australia and overseas countries, that fish products are the only foods likely to contribute significant quantities of mercury to the diet. In addition, it has been established that usually about 90 per cent of total mercury in fish is present in the methyl form. For shellfish, the proportion has been found to be variable, 40-90 per cent being present as methy1mercury.

Selected Studies on Fish Intake and Mercury Toxicity

Besides establishing, the concentration of a contaminant in food, data is also required on the amount of a specific food or foods consumed by the population to quantify the intake of that contaminant for the population as a whole or for selected population groups within a country. Data on the mean consumption per head can be obtained from official statistics. The most recent figures available for annual fish consumption per head of population in Australia are given below in Table 3 (16).

TABLE 3 - $\frac{\text { Apparent Consumption of Fish Products }}{\text { (kg per head per year) }}$

Fresh and frozen (edible weight)
Fish

Australian	1.2	1.8
Imported	1.6	1.7
ustaceans and molluscs	0.6	1.0

Canned

Australian	0.7	0.7
Imported	1.1	0.6
Cured (cured weight)		0.9
		0.9

These statistics indicate that 18.4 g fish products are available per head of population per day, corresponding to approximately one fish meal per person per week. The use of such statistics has appreciable deficiencies. For example, the mean consumption per head does not give any idea of variations in consumption in the population. Dietary studies have been carried out in a number of countries to establish more detailed data both on actual fish consumption of the general population or selected groups within that population. Details of a number of these studies are given below.

Sweden The most extensive investigations have been conducted in Sweden.

Tuolja (17) carried out two investigations of fish consumption in 16 families in the inland and mountain districts of Sweden who were supporting themselves by means of forestry with fishing and farming. They were families who could be expected to have a specially high consumption of fish. The amount of fish consumed was recorded for one year. On an average, fish was eaten 206 ($90-341$) days a year. Quantities were recorded as gutted fish. During the days that fish was consumed the mean amount was 0.31 per kg per head per day. Whitefish and char were the main species consumed. The author emphasises that the figures are higher than average for the population of the relevent areas. They show however, how large consumption can be in extreme cases.

The Swedish National Institute of Public Health (18) in 1967, carried out a survey by questionnaire, sent by mail on fish consumption habits. The investigation comprised (excluding non-response of about 20 per cont), 177 of the approximately 700 full-time fresh-water fishermen in Sweden, 179 saltwater fishermen and a random sample of 375 nationally ropresentative males between the ages of 16 and 67 years.

The medium fish consumption among freshwater fisherman was about 15 kg per year - 23 per cent ate 36 kg or more per year. The medium consumption among salt water fishermen was about 30 kg per year, whereas 39 per cent ate more than 36 kg per year. In the national sample, consumption was $11-15 \mathrm{~kg}$ per year and 10 per cent ate more than about 23 kg per year. The questions were formulated in the questionnaire in such a way that answers were obtained concerning the frequency of consumption and size of the portions prepared. In the investigation, it was also asked where the fish most frequently eaten were caught.

One hundred and four men randomly selected from the investigated national sample were subsequently interviewed in their homes to furnish more reliable information on amounts of fish consumed, fish consumption pattern of the rest of the family, etc. In order to estimate the consumption of fish, models of fish were used. On account of the limited size of the random sample, great care should be taken when drawing concluston with regard to the population as a whole. The median fish consumption was about 18 kg per year.

A market analysis was carried out in 1969 by Omnibus Research $A B$ on behalf of the Swedish Fish Economic Association. The analysis comprised 2013 households representing about 2.7 million households. The non-response was 14 per cent. It was reported that:-
69% of households ate fish $1-2$ times a week
26% of households ate fish $3-6$ times a week.

In no case was daily consumption reported. In 9 per cent, a laxge part of the fish consumption was covered by the houschold's own fishing and in 3 per cent a very large part.

On the basis of the data obtained in the interviewing of 104 men selected from the national sample, in 1967 , exposure to methylmercury was estimated. The consumption of fish was classified according to waters in which the fish had different degrees of mercury contamination. On the basis of the following factors:-
(1) consumed amount of flesh of different species of fish;
(2) the catch sites; of the fishy
the exposure tomexcury could be estimated for tho persons investigated. Three persons were exposed to $8,400 \mu \mathrm{~g}$ per year or more. The medium dose pex yeax was about $1600 \mu \mathrm{~g}$ mercury corresponding to $4-5$ pg per day. Thus the mercury exposure due to fish alone was of about the same magnitude as the exposure from the rest of the diet.

Tejning (20) studied the mercury content of blood and hair of individuals consuming large quantities of fish, containing mostly $0.5-1.0 \mathrm{mg} / \mathrm{kg}$ mercury. The actual intake of fish was not accurately assessed, but even the consumption of three meals of fish pex day produced no symptoms. The average consumption of fish was $3.1+0.1$ meals per week and the mean concentration of mexcury in pike, the principal species was $0.87 \pm 0.05 \mathrm{mg} / \mathrm{kg}$, which was considered representative of the other species in the diet.

Tejning estimated the average meal of fish to be about 150 g , with an average mercury content of 0.13 mg , i.e, a weekly intake (3 meals) of mercury of 0.39 mg . This resulted in more than five-fold increase in the normal mercury content of blood and haix.

Skerfying (8) collected data on exposure, mercury levels in blood and haix and health status in exposed groups in Sweden. Two hundred and six subjects were studied between 1967-1972. Of these, 164 (age 3-86 years) ate fish that they ox members of the family had caught themselves in different lakes or xivers or in coastal areas. Main interest was directed towards areas containing fish with methylmercury levels of $0.5-1 \mathrm{mg} / \mathrm{kg}$ 。 Considerable efforts wexe made to find exposed persons.

Contact was established through a variety of channels - local radio. local newspaper local public health commttees, inspectors of fisheries, local fishery advisers, fishermen's unions and sellers of fishing licenses. Special attention was paid to exposed children and young subjects. A total of 8 subjects made contact on their own initiative and volunteexed for examination. Only two persons refused any cxamination when contacted and three refused reexamination.

The persons scudied do not represent the total population in any region - the overwhelming majority of the population around mercury " contaminated water areas do not eat fish, or only rarely. In addition, eighteen subjects with high (4-10 meals per week) intakes of commercially available fish were studied. In most cases the examinations were performed at the local health centre. From each subject various blood samples were obtained for mercury determination
and from 60 persons also hair samples. In 71 subjects two or more blood samples were obtained at different occasions. Body weight was recorded. A nurse collected detailed information from each subject on fish intake habits. All subjects were asked about occupational or other possible exposure to mercury apart from fish consumption. They were also briefly interviewed as co major symptoms of methy1. mercury poisoning. In 86 persons another investigator performed a moxe detailed screening for symptoms and signs of methylmercury poisoning by means of a medical history and a physical examination.

Detailed information was recorded on the amounts of fish of different species consumed in different seasons. The mount of fish eaten at each meal was estimated by the use of models of five portions of fish of five different species. Also detailed information was obtained on the site of catch or place of purchase. Special attention was paid to consumption during the last year. From the records of fish-intake habits and data on levels of methy1mercury in the different species of fish consumed, the average daily exposure of methylmercury per kg body weight per day was calculated for each month during the last year.

Mercury in fish from Swedish waters is present almost entirely as methylmercury. Published and unpublished survey data from various laboratories on levels of total mercury or methylmercury in fish were used as well as data obtained from analysis of methylmercury in samples of fish obtained from the subject under study. When two or more samples were obtained from a person at different occasions only the highest level was estimated. When no information was available on the level in a particular species consumed, the average ratios between levels in different species caught in the same water was used for an estimate of level. When fish had been purchased infoxmation about the site catch was obtained through the merchant or the wholesale dealer.

The estimate of exposure suffered several possible sources of error. the main ones being the uncertainty in calculating the intake of different species of fish and in estimating the levels of methylmercury in fish.
U.S.A. Market Facts Inc. Chicago carried out a y year $\overline{\text { survey of }}$ fish consumption patterns of 1,586 U.S. households and a total of 4,864 pexsons (21). The participants were selected at random from a large panel designed to par allel census data for $U . S$. with reference to population density and degree of urbanisation, geographic division, household income and age of panel members.

The head of each household completed a diary of fish purchases twice monthly for 12 months. These diaries reported purchases of fish and shell fish products by item, weight and cost, numbers of fish meals eaten away from
home by item and number of meals consumed at home from sport fish by species. Purchases of meat, meat products and meat substitute foods were recorded. This information provided a data base which listed for each family estimates of the total weights of each kind of fish consumed. Micro-nutrient levels were established for these fish species and the average daily micromutrient intake printed out for each family. The intake for each family was divided by number in family to give the individual daily intake levels.

Maximum intake of mercury was $31.7 \mu \mathrm{~g} /$ day and this level was reached by one family comprising four individuals. which was the only family whose intake exceeded $30 \mu \mathrm{~g} / \mathrm{day}$. Ninty-nine per cent of the group had intakes below $17 \mu \mathrm{~g} / \mathrm{day}$. The average intake was $2.48 \mu \mathrm{~g} / \mathrm{day}$.

Finland A study has been reported by Sumari et al (22) on the examination of over 1,000 individuals in Finland, covering a range of consumption of fish from zero to large quantities with high mercury levels ($2-3 \mathrm{mg} / \mathrm{kg}$). Only in one area where the highest mercury levels were present in fish was there a significant correlation between the amount of fish consumed and the concentration in blood and hair. In this area, with fish averaging $2-3 \mathrm{mg} / \mathrm{kg}$ mercury, the safety limits of $20 \mathrm{ng} / \mathrm{g}$ in blood and $6 \mathrm{ng} / \mathrm{gm}$ hair were exceeded for an average consumption of more than three moals of fish per week but no blood or hair concentrations approached the predicted effect level. In all other areas, where concentration of mercury in fish did not exceed an average of $1 \mathrm{mg} / \mathrm{kg}$, the safety limits for blood and hair were rarely exceeded. These results suggest that even a regular consumption of fish, one meal daily, containing $1 \mathrm{mg} / \mathrm{kg}$, will not normally result in mercury concentrations in blood or hair exceeding the defined safety limits and cannot approach the levels producing a toxic effect.

United Kingdom In the United Kingdom, although fish forms a minor component of the diet, it has been estimated that it could supply a greater proportion of the mercury intake of the population than any other single component. The average concentration in fish eaten is estimated to be only $0.08 \mathrm{mg} / \mathrm{kg}$ and the average daily intake of mercury to be probably in the area of 7-8 $\mu \mathrm{g}$ with the contribution from fish of $2.5 \mu \mathrm{~g}$ (6). The average consumption of fish is only about 24 g per day in the United Kingdom i.e. $168 \mathrm{~g} /$ week.

Australia A study was conducted in Melbourne in 1972 by Pennington et al (23) to ascertain whether significant exposure to methymercury had taken place in sections of the Victorian population. Attempts were made to identify groups of subjects with an unusually high fish intake and to study such individuals for evidence of mercury accumulation or toxicity. Information on fish consumption was obtained
through completion of dietary questionnaires at the time of sampling of blood or hair for mercury. Flake was found to be the most popular form of fish in the Victorians surveyed. High intakes of fish (more than 500 g per week) were found amongst 30 out of 310 selected subjects and the greatest number of these were amongst school children in inner Melbourne suburbs. The authors concluded that, whilst the group studied did not reflect consumption in the population at large, if the fish consumed by this group had contained greater than 0.5 ppm mercury, body content would have exceeded that regarded by WHO (24) as consistent with safety.

Recommendations of FAO/WHO re Mercury Intake

A joint Food and Agriculture Organisation/World Health Organisation Expert Committee (24) has established a provisional tolerable weekly intake for mercury from food. This is given as 0.3 mg per person per week, of which not more than 0.2 mg should be methy1mercury, i.e. about $43 \mu \mathrm{~g} / \mathrm{day}$, of which not more than about $30 \mu \mathrm{~g}$ should be methylmercury. This is equivalent, for a 70 kg adult, to an intake of about $0.6 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{body}$ weight/day with not more than $0.4 \mu \mathrm{~g} / \mathrm{kg}$ body weight/day in the methyl form. The WHO/FAO 1 imit is about 70 times lower than the amount which could induce poisoning. In the Minimata episode, the intake of methylmercury probably averaged about $30 \mu \mathrm{~g} / \mathrm{kg}$ body weight/day over several months.

The highest acceptable level of mercury in whole blood would be $0.02 \mu \mathrm{~g} / \mathrm{g}$, corresponding to about $0.04 \mu \mathrm{~g} / \mathrm{g}$ in the blood cells and about $6 \mu \mathrm{~g} / \mathrm{g}$ in the hair. Such levels could conceivably result from prolonged continuous exposure to the provisional tolerable weekly intake set by WHO/FAO.

Selenium - Antagonist of Mercury

It is generally accepted that many substances in particular nutrients, modify the effect of methylmercury ingestion. Selenium in particular, has been shown to be a powerful metabolic antagonist of mercury, including methylmercury (25). Methylmercury added to a tuna-corn-soya ration fed to Japanese quail was less toxic than an equivalent amount of this organic mercury added to the basal soya ration (26). It has also been reported that the addition of selenium to a casein ration containing methylmecuric chloride increased the survival rate in a colony of rats (25).

Analysis of tuna have shown an increase in selenium content paralleling increase in mercury concentration. The above work suggests a relationship between mercury and selenium through which toxicity of the mercury is decreased. Underwood (27) has suggested that since fish are normally rich in selenium as well as in mercury, it could be that a particular intake of methylmercury from fish would be less potentially toxic than a similar intake of methylmercury from other sources such as grain contaminated with such compounds.

The study* was carried out in co-operation with the Dietitians' Training Institutes at Deakin University (Geelong, Victoria), Flinders' University (Adelaide, South Australia) and Queensland Institute of Technology (Brisbane, Queensland) and the Community Health Service at Albany, Carnarvon, Mandurah and One-Arm Point (Western Australia). Basically, the study consisted of three phases:-
(1) Screening survey
(2) Dietary survey
(3) Collection of hair and blood samples.

The data were collected between October 1976 and June 1977.
Screening survey
The purpose of this phase was to identify individuals consuming significant quantities of fish products, who were willing to participate in the dietary survey and provide hair and possibly blood samples. Two screening questionnaires were used - one designed for adulto and the other for chulinen. fon meat and chicken consumption as well as fish to avoid any undue bias or emphasis being placed on fish. The forms were distributed in the areas listed above to selected community groups, which included:-

Students in Primary and Secondary Schools.
Patients attending Health Centres and Hospitals
Staff of Health Centres and Hospitals.
Staff and Students at Tertiary Institutes of Education,
Customers of Fish Retail and Wholesale Establishments,
Leisure fishermen e.g Anglers' Clubs.
Copies of the two screening questionnaires together with the other forms used in the study - the seven-day food diary and interviewer's questionnaire - are given in Attachment I.

Selection of Subject
The main criteria for selection of people for participation in the dietary survey were frequency of fish consumption, type of fish consumed (fresh, canned, fried, shellfish etc.) and where bought. Two-thirds of the participants were to be having a high intake of fish i.e. four or more serving per week and the balance to be eating moderate quantities (about two servings of fish products per week).

[^0]The selected participants were asked to complete a food diary, recording accurately the quantity of fish, meat, poultry and eggs eaten over the period of seven days. If possible, scales were to be used to record quantities of food eaten. Effort was made to visit participarts during the diary week to check accuracy of recording.

After the collection of the diary, participants were asked to give details of usual fish consumption habits as a check that fish consumption during the survey week was representative of normal intake. Other data, such as height, weight, marital status, were obtained and recorded in the interviewers's questionnaire. Samples of fish, similar to those eaten during the survey week, were, in some cases, collected. These samples are being analysed for total mercury content and, if possible selenium by the Australian Government Analytical Laboratory, Hobart, Tasmania.

Collection of Hair and Blood Samples
A hair sample was obtained from all subjects, completing the seven-day food diary. The samples are being analysed for total mercury and in some cases, selenium content. Blood samples have been obtained from a small number of participants (approximately forty) comprising persons having a high intake of fish products and some having a moderate intake. These samples will be analysed for total mercury and selenium concentration. Analyses of hair and blood samples are being carried out at the CSIRO Division of Human Nutrition, Adelaide, South Australia.

Control Group

A sma11 number of residents of the Australian Capital Territory, who rarely eat fish, were asked to provide a hair sample. Some of the group also provided blood samples for total mercury and selenium determinations. These participants will serve as a control both to the group having a high intake of fish and the group with a moderate fish-intake.

```
Pilot Study
```

The pilot study was conducted in Melbourne, Victoria during July, August 1976 by nutritionists of the Commonwealth Department of Health, Canberra. Dietary data and hair samples were collected from nineteen participants. The hair samples were analysed for total mercury by the Industrial Hygiene Laboratory of the Victorian Department of Health. A small number of fish samples similar to those eaten during the survey week were collected and analysed for total mercury content by the Australian Government Analytical Laboratory, Hobart.

Data processed at the 30 th June 1977 is included in the results given in the Tables below. Included are the dietary data from:-
(1) The pilot study, conducted in Melbourne
(2) The Western Australian segment of the
(3) The South Austra1ian segment of the study
(4) The Queensland segment of the study.

Hair analyses for total mercury content are given for:-
(1) The pilot study, conducted in Me1bourne
(2) The Western Australian segment of the study.

No analyses are given for the selenium content of hair and the total mercury and selenium content of whole blood, as only 1 imited data is available. The total mercury values for blood (14 no) ranged from 0.002 ppm to 0.038 ppm .

The data provided in this interim report is given in the following Tables:-

Table 3 : Participants for Whom Data Processed at 30.6.77

Table 4 : Summarised Data on Participants with High Fish-Intake and Results of Hair Analyses.

Table 5 :
Summarised Data on Participants with Moderate Fish-Intake and Results of Hair Analyses.

Table 6 : Summarised Data on Participants with High Fish-Intake without Results of Hair Analyses.

Table 7 : Summarised Data on Participants with Moderate Fish-Intake without Results of Hair Analyses.

Table 8 :
Summarised Data on Participants with Insignificant Fish-Intake Without Results of Hair Analyses.

Discussion and Conclusions

It will be appreciated that due to the interim nature of this report and the incompleteness of the data detailed, these two areas cannot at this time be covered.

TABLE 3:

State or	Tigh Tish Intake (more than $500 \mathrm{~g} /$ week)		Moderate Fish Intake ($150-180 \mathrm{~g} /$ week)		Insigniricant food Intake (1 meal fish/month or less)	
Western Australia South Australia Victoria Queenaland A.C.T.	No	$\%$	No	\%	No	\%
	25	21.7	16	13.9	Nil	0
	13	11.3	6	5.2	Nil	0
	8	7.0	10	8.7	1	0.9
	18	15.7	4	3.5	Nil	0
	1	0.9	1	0.9	$1 ?$	10.4
	65	56.5	37	32.18	13	11.31

Participants Nunber	Weight of fish Consumed in diary week g	Times/week fish eaten No	Body Mass kg	Total Hg Content of hair p.p.m.
W.A.				
1	1675	8	52.0	3.00
?	1400	8	$\triangle 4.0$	2.05
3	12.45	7	48.0	1.88
Δ	2185	10	41.0	1.39
5	2680	13	41.0	1.27
6	2400	12	31.0	1.55
7	635	5	30.0	1.67
8	2165	12	27.5	1.84
9	1525	6	58.0	1.27
10	2160	12	107.0	2.00
11	1250	5	60.0	0.67
12	2295	12	87.0	0.59
13	2170	8	74.0	2.50
14	1590	7	63.0	1.38
15	600	2	95.0	2.13
16	600	3	70.0	2.10
17	880	7	82.0	1.87
18	780*	4*	60.5	1.86
19	2000	7	95.5	2.75
20	1000*	5*	63.5	1.49
21	750*	4*	25.0	2.00
22	720*	6*	73.0	2.70
23	540	5	65.0	3.04
24	960	7	73.0	0.49
25	880	\triangle	14.0	2.87
VIC				
26	880	3	95.5	7.00
27	600	5	66.5	0.97
28	570	5	63.0	2.70
29	735	7	42.0	2.90
30	570	5	75.5	3.00

* Calculated from dietary history

Table 4 (contd) - Summarised Data on Participants with High Fish-Intake
and Results of Hair Analyses

Participanta Number	Weight of figh Consumed in diary week 9	Times/Week fish eaten No	Rody Mass Kg	Total Hg Content of hair p.p.m.
Vic (contd) 31 32 33	$\begin{aligned} & 600^{*} \\ & 520 * \\ & 520 \end{aligned}$	$\begin{aligned} & 3^{*} \\ & 4^{*} \\ & 3 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 40.5 \\ & 51.0 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.80 \\ & 2.90 \end{aligned}$
Mean Range	$\frac{1223.6}{(520-2680)}$	$\frac{6.5}{(2-13)}$		$\frac{2.18}{(0.19-7.0)}$

* Calculated from dietary hiatory

Participants Number	```Weight of figh Consumed in diary week g```	Times/Week Fish eaten No	Body Mass kg
S.A.			
34	832	6	70.0
35	966	7	89.2
36	610*	3*	60.5
57	1575	8	95.5
38	510	4	89.5
39	825	3	70.0
10	600	2	47.5
41	695	5	70.0
12	600	4	74.5
13	600	5	60.5
44	600	5	67.0
15	750	3	69.0
46	650	7	63,5
QLD			
47	840	5	78.5
48	670	5	59.0
49	1020	6	54.0
50	960	5	48.0
51	920*	3*	50.0
52	780	8	53.5
53	510	5	65.0
54	1604	10	55.0
55	720	4	67.0
56	720	2	63.5
57	720	7	56.0
58	560	5	58.0
59	960	5	108.5
60	870	6	90.5
61	810	7	63.5

* Calculated from dietary history

Table 6 (contd): Summarised Data on Participants with High Fish-Intake Without Results of Hair Analyses

Participants Number	Weight of fish Consumed in diary week E	Times/Week No	Body Mass kg
$\begin{array}{r} 62 \\ 63 \\ 64 \end{array}$	$\begin{aligned} & 600 \\ & 600 \\ & 780 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 52.0 \\ & 13.5 \\ & 70.0 \end{aligned}$
$\frac{A \cdot C . T}{65}$	900	Λ	66.5
Mean Range	$\begin{aligned} & 793.4 \\ & (510-1604) \end{aligned}$	$\begin{aligned} & 5.1 \\ & (2-10) \end{aligned}$	

Participants Number	Weight of fish consuned on diary week g	Times/week rish eaten	Body Mass

* Calculated from dietary history.

Participants Number	Frequency of Figh consumption for year	Body Mass kg	Total Hg Content of Hair p.p.m.
A.C.T		63.5	
301	12	75.0	
302	2	60.5	68.0
303	nil	73.0	
304	6	91.0	
305	12	49.0	
306	12	80.0	
307	12	65.0	
308	12	63.0	
209	1	36.5	
310	9		
311	12		
312			

ARTA	Participants Having High Fish Intake				Particpants having Moderate Intake			
	No	Weight of fish Consumed in diary week g:	Times/Week fish eaten No	Total Hg content of hair p.p.m.	No	Weight of fish Consumed in diary week g	Times/Week fish eaten No	Total Hg content of hair p.p.m.
Western Aust	25	1115	7.2	1.86	16	325	2.4	1.10
Victoria	8	624	4.4	3.16	10	320	2.4	1.13
South Aust	13	757	4.8		6	413	3.8	
Queen - sland	18	813	5.4		4	335	3.7	
	1	900	1.0		1	390	3.0	

REFERENCES

(1)

Haq, I.U., (1963). Brit. M.J. 1:1579.
Bakir, F. etal. (1973). Écience 181:230.
(3) Matsumoto, H. et al (1965). J. Neuropath. Exp. Neuro1. 24:563.

Kurland, L.T. et al (1960) World Neuro1 5:370.
Expert Consultation on the Joint FAO/WHO Food Contamination Monitoring Program (1974). Doc. FAO:ESM:MON/74.21 Report. Geneva.

Department of the Environment (1976) "Environmental Mercury and Man" Her Majesty's Stationery Office, London.

Expert Panel on Food Safety and Nutrition (1973) J. Food Sci. 38:729.

Skerfving, S. (1974) Toxicology 2:3.
National Health and Medical Research Council (1971). Report of Seventy-Third Session. Appendix VIII. Dept. of Health, Canberra.

Walker, T.J. (1976) Aust. J. Mar. Freshwater Res. 27:603.

Personal communication (1977). Australian Bureau of Statistics, Canberra.

Tuo1ja, J. (1970). Nordisk Hygienisk Tidskrift. Suppl. 4 p. 255.

Swedish National Institute of Public Health (1970) Nordisk Hygienisk Tidskrift. Supp1. 4. p. 255.
Omnibus Research AB (1970). gbrd. f. 260 Tejning (1970). Jbud. f.214 Finch, R. (1973) Fishery Bulletin 71:615. Sumari, P. et al (1972) Work environment, Health 9:61.

Pennington D. et al (1972-73). Unpublished.
WHO (1972) "World Health Organisation Food Additive Series, No. $4^{\prime \prime}$. Geneva.

Nutrition Reviews (1973) Ibid. 31:25.
Ganther, H. et al (1972) Science 175:1122.
Underwood, E. (1976) Food and Nutrition Notes and Reviews 33:101.

SURVEY ON FOOD HABITS OF AUSTRALIANS

This survey is being conducted for the Commonwealth Department of Health to determine the amounts of meat, fish, chicken and eggs that are being eaten by Australians. This information will make a valuable contribution to the knowledge of food habits in this country and your cooperation in filling in this form would be appreciated. All information given will be treated as confidential.

PLEASE COMPLETE:

AGE: years

SEX: please tick (V) $\quad \begin{aligned} & \square \text { Male } \\ & \square \text { Female }\end{aligned}$
MARITAL STATUS: please tick (V)
\square Single
\square Married
\square Widowed, separated, divorced
Country of Birth:
Occupation:

FOOD SURVEY

1. How many times each week do you usually eat the following foods?

Meat	times/week
Fish	times/week
Chicken	times/week
Eggs	times/week

2. Please tick (\checkmark) the types of meat, fish and chicken you usually eat.

meat	FISH	CHICKEN
\square lamb	\square fresh	\square fresh
\square beef	\square frozen	\square frozen
\square veal	\square canned	\square pre-cooked
pork	\square shell-fish	e.g. from
\square canned or	\square fried fish	take-away
ackaged	co-and chips	food shops

3. Please tick (V) where you most frequently buy these foods:-

A further detailed survey will be conducted within one month The information obtained will assist Government authorities to set safety standards for Australian foods.

Your co-operation and assistance would be valuable. You mould be asked to:-

1. Record accurately all the meat, fish, chicken and eggs you eat for a period of seven. days.
2. Provide a small sample of hair so that food intake can be related to health.

If you are selected, would you be prepared to take part in this survey?

NO
\square

If yes, please complete the details on the back page so that an interviewer may contact you。

PLEASE NOTE: ALL information given on this form is for the use of the survey ONLY and will be treated as STRICTLY CONFIDENTIAL.

CONFIDENTIAL

Name
What is the most appropriate time and place to contact you?

Signature

OFFICE USE:-

Collection point:-

In your State this survey is being conducted by:-

> Mrs Yvonne "ebb, Department of Paramedical Studies, Queensland Institute of Technology, George Street, BR'SBiIIE ALD 4000

SURVEY ON FOOD HABITS OF AUSTRALIANS

This survey is being conducted for the Commonwealth Department of Heal th to determine the amounts of meat, fish, chicken and eggs that are being eaten by Australians. This information will make a valuable contribution to the knowledge of food habits in this country and your co-operation in filling in this form would be appreciated. All information given will be treated as confidential.

PLEASE COMPLETE:

AGE:........... years
SEX: please tick (V) $\quad \begin{aligned} & \square \text { Male } \\ & \square \text { Female }\end{aligned}$
School grade:
Country of birth of:
myself
my mother
my father
Occupation of:
my mother
my father
Please turn over

1. How many times each wenk do you usually eat the following foods?

$$
\begin{aligned}
& \text { Meat times/week } \\
& \text { Fish times/week } \\
& \text { Chicken times/week } \\
& \text { Eggs times/week }
\end{aligned}
$$

2. Please tick (V) the types of meat, fish and chicken you usually eat.

MEAT	FISH	CHICKEN
$\square 1 \mathrm{lamb}$	\square fresh	\square fresh
\square beef	\square frozen	\square frozen
\square veal	\square canned	\square pre-cooked
\square pork	\square shellfish	e.g. from
\square canned or	\square fried fish	take-away
packaged	and chips	food shops

3. Please tick (V) where you or your parents most frequently buy these foods:-

MEAT	FISH	CHICKEN
\square butcher	\square fish shop	\square butcher
\square meat market	\square fish market	\square poultry market
\square supermarket	\square supermarket	\square supermarket
take-away food shop	take-away food shop	take-away food shop
\square restaurant or cafe	restaurant or cafe caught by yourself or friends	restaurant or cafe farm

A further detailed survey will be conducted within one month. The information obtained will assist Government authorities to set safety standards for Australian foods.

Your co-operation and assistance would be valuable. You would be asked to:-

1. Record accurately all the meat, fish, chicken and eggs you eat for a period of seven days.
2. Provide a small sample of hair so that food intake can be related to health.

If you are selected, would you be prepared to take part in this survey?

YES

No

If yes, please ask your PARENTS or guardians to complete the details on the back - ge, so that an interviewer may contact you ad your parents.

PLEASE NOTE: ALL information given on this form is for the use of the survey ONLY and will be treated as STRICTLY CONFIDENTIAL.

Please turn over

CONFIDENTIAL

Name
Please tick (V)

\square	Mother
\square	Father
\square	Guardian

Child's Name
What is the most appropriate time and place to contact you?
Time
Day
Home or work

Telephone No:-
Address:-

Signature

OFFICE USE:-

Collection point:-

In your State this survey is being conducted by:-

> Irs Yvonne Webb,
> Department of Paramedical Stưdies, Qucensland Institute of Technology, George St.,
> BRI. BINE QLJ $40 C C$

COMMONWEALTH DEPARTMENT OF HEALTH

FOOD SURVEY

DIARY FOR DIETARY RECORD

Identification No. \square

This diary starts on
Day
Date.

Sample of hair to be taken on Date
A. Please record all the meat, poultry, fish and eggs you eat EACH day for the next SEVEN days in the diary, using ONE page for EZ.CH day.

```
MEAT - All foods which are:-
    Beef
    Lamb
    Mutton
    Pork
    Veal
```

and includes minced meat, liver, brains, kidney, sausages, processed sausage meats (e.g. salami, frankfurts, luncheon sausage) and bacon.

FISH - All foods which are:-
salt-water fish
fresh-water fish
shell-fish (e.g. lobster, prawns, scallops)
prepared fish products
(e.g. fish fingers)
and includes all Eresh, frozen, smoked or canned fish.

POULTRY - All foods which are:-
Chicken
Duck
Turkey
$\begin{aligned} \text { EGGS - } & \text { All eggs eaten whole or in an egg dish } \\ & \text { (omit eggs used in cooking, e.g. cakes, } \\ & \text { puddings, casseroles). }\end{aligned}$
B. During EACH ciay, EVERY time you cal one of these foods record the following details in the appropriate space:-

1. The TYPE OF FOOD EATE:, indicating cut of meat, portion of poultry and species of fish, for example:-
beef, sirloin
lamb chump chop
chicken leg
flounder fillet
egg

e. - Seakist Sancwici Juna.
2. Record HOW THE FOOD WAS COOKED, or served, for example:-
grilled, barbecued
fried
casserole, braised, stewed
roast, baked
battered, crumbed
in pie
in bread roll or sandwich
3. Record WHERE THE FOOD WAS COOKED, for example:-
home
restaurant, cafe
take-away food bar, fish shop
4. Record the AMOUNT OF FOOD EATEN by weight or size
(i) WEIGHT Preferably weigh foods accurately using kitchen scales or estimate weight or edible portion
(ii) SIZE is indicated by measurement (dimension, cup or tablespoon) and/or by number, for example:-

> Rump steak $-6^{\prime \prime} \times 4^{\prime \prime} \times \frac{1}{2} "(15 \mathrm{~cm} \times$ $10 \mathrm{~cm} \times 1 \mathrm{~cm})$
> Bream fillet $-8^{\prime \prime} \times 4^{\prime \prime}(20 \mathrm{~cm} \times 10 \mathrm{~cm})$
> Mince steak $-\frac{1 / 2}{2}$ cup
> Hamburger $-3^{\prime \prime}$ diameter (8 cm)
> Chicken wings -2
> Egg, scrambled -1 (2 tablespoons)
> Prawn chopsuey -1 cup (6 prawns)

NOTE: Imperial or metric measures may be used.
TO OBTAIN WEIGHT OF FOOD EATEN

1. Weigh your portion of food AFTER COOKING and BEFORE EATING.
2. Weigh any plate waste e.g. bone, fat and skin.
3. Weight of food eaten equals 1 minus 2.

DIETARY RECORD
DAY 1

Day.... Wednesday....

NOTE: Please READ INSTRUCTIONS CAREFULLY and COMPLETE RECORD as DIRECTED.

```
Day..........................
```

$\begin{aligned} & \text { Time of } \\ & \text { day } \end{aligned}$	Description of food	How cooked	Where cooked	Size of serving	Weight
Breakfast					
Between breakfast \& lunch					
Lunch					
Between lunch \& dinner					
Dinner					
After dinner					

[^1]Day.

| Time ó
 day | Description
 of food | How
 cooked | Where
 cooked | Size of
 serving | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$

NOTE: Please READ INSTRUCTIONS CAREFUZIY and COMPLETE RECORD as DIRECTED.

Day
\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{c}\text { Time of } \\
\text { day }\end{array} & \begin{array}{c}\text { Description } \\
\text { of food }\end{array} & \begin{array}{l}\text { How } \\
\text { cooked }\end{array} & \begin{array}{l}\text { Where } \\
\text { cooked }\end{array}
$$ \& \begin{array}{l}Size of

serving\end{array} \& Weight\end{array}\right]\)| Breakfast |
| :--- |

NOTE: Please READ INSTRUCTIONS CAREFULLY and COMPLETE RECORD as DIRECTED.

Day.

Time of day	Description of food	How cooked	Where cooked	Size of serving	Weight

NOTE: Please READ INSTRUCTIONS CAREFULLY and COMPLETE RECORD as DIRECTED.

Day..........................

Time of day	Description of food	How cooked	Where cooked	Size of serving	Weight
Breakfast					
Between breakfast \& Iunch					
Lunch					
Between 1 unch \& dinner					
Dinner					
After dinner					

NOTE: Please READ INSTRUCTIONS CAREFULLY and COMPLETE RECORD as DIRECTED.

Time of day	Description of food	How cooked	Where cooked	Size of serving	Weight
Breakfast					
Between breakfast \& lunch					
Lunch					
Between lunch \& dinner					
Dinner					
After dinner		.			

NOTE: Please READ INSTRUCTIONS CAREFULLY and COMPLETE RECORD as DIRECTED.

Day.
i

$\begin{aligned} & \text { Time of } \\ & \text { day } \end{aligned}$	Description of food	How cooked	Where cooked	Size of serving	Weight
Breakfast					
Between breakfast \& lunch					
Lunch					
Between lunch \& dinner					
Dinner					
After dinner					

NOTE: Please READ INSTRUCTIONS CAREFULLY and COMPLETE RECORD as DIRECTED.

COMIMONWEALTH DEPARTMENT OF HEALTH FOOD SURVEY

QUESTIONNAIRE ON FISH-EATING HABITS (To be completed by interviewer)

Identification No.

Name:
Address:

1. Age yrs
2. Sex: Hale $\underset{\substack{\text { Female } \\ \square}}{\square}$ If pregnant, please tick (/) \square
3. Height Ca
Weight kg
4. Is the subject on a special diet? YES \square NO \square If YES, that is the reason for the diet?

Please tick (M) if diet is,

\square Medically prescribed Self-medicated
Prepared by slimming club
5. Has the subject changed his/her dias in the last 12 months?

YES \square
 NO

If YES, how has it changed?

FISH EATEN DURING DIET RECORD:-
8. Please summarize from the diet record and conversation with the subject, details of each fish meal:-

Species	weight-gm	where purchased	if fish sampled	

2. During the reek, did other members of the household eat the same fish meals as the subject?

If YES, what is the family (or household) composition?
No. Adult males
No. Adult females

Ages of children (yrs)

1. Is the amount and type of fish eaten during the diet record typical for the subject?

YES \square NO \square

If NO, (1) mhat is the usual amount?tiges/reek
(ii) ahy is it different? Please specify
\square Avallability of favourita species \qquad
\square Seasonal variation

\square
 A typical activity pattern during meak

\square
Other e.g. Illness, special diet \qquad
2. List all species of fish the subject most frequently eats.

Spacios	Hoi often	Heal lemoth of Heh
		.
		.

3. Why does the subject eat fish regularly? Indicate a ajor reasons

custom
religious balief
for special diet
Catches oun fish -
If subject fishes, hou frequently? times/reek
Receives fish from friends or relatives who fish -
If subject given fish, hoo frequently?
times/reek
Convenience as a tako-away food
Likes flavour
Other
4. Does the subject buy food from fish and chip shops?

If YES, how frequently
times/week
What does he/she usually buy? Please indicate.

Chips, potato scallops or potato cakes Chiko Rolls, Dim Sims, etc. Friad fish, specify species Cther - specify

HAIR PRODIETS

List the Hrande of halp sherege and acediticuer

FOR OFFICE USE

Summary of Study
Date of Diet Record:- from ... (inclusive) ${ }^{(i n ~} 197$
Date of Hair Sample taken:- 197:

Result of Fish sample taken:-

Sariple	Weight of fish eaten gm.	Mencentration ppm	Contel ug
Total Hg intake for week			

Further contact required for blood sample

NO

[^0]: * The study was funded by a grant from the Fishing Industry Research Committee, Commonwealth Department of Primary Industry.

[^1]: NOTE: Please READ INSTRUCTIONS CAREFULLY and COMPZEIE RECORD as DIRECTED.

