QUEENSLAND DEPARTMENT OF PRIMARY INDUSTRIES

Premanagement Investigations into the Barramundi Lates calcarifer (Bloch) in Northeast Queensland Waters

1982

A Report to the Fishing Industry Research Committee

```
PREMANAGEMENT INVESTIGATIONS INTO THE BARRANUNDI
Lates calcarifer (Bloch) IN NORTHEAST QUEENSLAND
    WATERS : A REPORT TO THE FISHING INDUSTRY
    RESEARCH COMMITTEE
```

R.N. GARREIT and D.J. RUSSELL

Northern Fisheries Research Centre
Fisheries Research Branch
Queensland Department of Primary Industries Cairns

4 AUGUST 1982

CCNTENTS

1. Introduction Fage 1
2. Location of Operations Page 2
3. Procedures Fage 2
4. Results and Discussion
Tagging Page 4
Movements Page 5Age and Growth
Survival and Mortality Page 9Page 6
Reproduction Page 11
Feeding HabitsGenetic AnalysesPage 17
Page 18
5. Summary of Life History Page 19
6. Fishery Management Initiatives Page 19
7. Acknowledgements Page 20
8. Literature cited Page 21

1. INTRODUCTION

Barramundi, Lates calcarifer (Bloch), is a large percoid fish of the family Centropomidae that is widely distributed over the tropical Indo-dest Facific region outside of the African continent (Greenwood, 1976). It inhabits coastal and estuarine environments, but is capable of penetrating long distances up rivers. Throughout its range, it is an esteemed table fish, and is the subject of intensive commercial and artisanal fisheries. In a number of southeast Asian countries, notably Thailand, the technology has been successfully developed for the aquaculture of the species.

In northern Australia, barramundi stocks support a major inshore gill-net fishery and a large angling sportsfishery. The gueensland commercial net fishery produced about 3 ro tonnes in 1980/81 (Matilda and Hill, 1981) for a value of nearly $\$ 1$ million. This fishery is centred on the Gulf of Carpentaria where 160 operators are involved. Barramundi catches are an important component of the east coast mixed species fishery of 400 fishermen.

The biology of the barramundi is not well known. The most, significant published contributions include those of Dunstan (1959, 1962) who investigated aspects of its biology and fishery in Queensland and Fapua New Guinea; of Moore (1979, 1980) who studied reproduction and migration in the Gulf of Papua; and of Ghosh (1973) on the taxonomy of larvae and juveniles froman Indian estuary. Specialized aquaculture technology in Thailand was described by Yingthavorn (1951) and more recently Wongsumnuk and Kanevonk (1973).

Fishery management proposals of various sorts have been advanced in gueensland in recent years. However rational management technioues can be devised only when pertinent information for the exploited resource is available. The research effort reported in this document seeks to provide such biological information for barramundi. Investigations centred upon the movements, growth, reproduction, food habits and genetic composition of stocks in selected river systems of northeast Queensland.

The project was a major component of a study undertaken b $\dot{\forall}$ the Fisheries Research Branch, Queensland Department of Primary Industries, the C.S.I.R.O. Division of Fisheries Research and the Northern Territory Fisheries Division, and designed to provide information on the life history attributes of barramundi over its distribution in northern Australia.

2. LOCATION OF OPERATIONS

Biological studies were conducted over the period January 1978 to June 1981. Barramundi were investigated in three main east coast localities; the Cairns region (Barron River, Trinity Inlet, Northern Beaches), the Tully area 100 km south of Cairns (Hull, Tully, Murray Rivers and Rockingham Bay) and the Princess Charlotte Bay 250 km northwest of Cairns (see map, Figure 1). The four research staff were based in Cairns.

3. PROCEDURES

(a) Sampling. Most specimens for tagging, prey organism analysis, and reproductive condition determination were taken in set gill-nets. Gillnets were set in rivers, creeks, estuaries and along the coastal mudflats and beaches. Both nylon monofilament and multistrand nets were used. Seine-netting provided large numbers of small fish (total length less than 300 mm) in tidal creeks. Angling was used to a lesser degree. Additional information was gathered from the catches of professional net fishermen and sportsfishermen.
(b) Growth and movements of fish. The growth and movements of individual fish were followed by tagging them. Fish were captured by gill-net, angling and seine-net. Floy Ft-2 dart tags were used on fish over 300mm total length (TL), and FD-67 anchor tags on smaller fish. A modified Ft-2 dart tag with a much longer external plastic streamer was used for those specimens over 700 mm TL. Figure 2 depicts a small barramundi being tagged with an anchor tag.

Fish length (TL, mm) and weight (whole weight, g) were recorded at capture and a scale sample taken. Tagged fish were then released in the same area. The condition of the fish at the time of release was assessed using a scale of $0-4$. The condition factor assigned was a measure of the fatigue and stress of canture, and visible damage to the fish.

Fishermen who catch tagged fish are offered a $\$ 5$ reward for the return of the tag with appropriate information on length, scale sample, location and fishing method (Figure 3). The practice of returninz live undersized (less than 500 mm TL) tagged fish to the water with the tag in situ was encouraged to maximize movement information.
(c) Reproductive biology and food habits. Fish sacrificed for biological information were weighed, total length measured, scale samples taken, and gonad condition and gut contents noted in the field or preserved for later laboratory examination. Professional and angler catches were also examined. Gonad material was fixed in 10% formalin, vacuum embedded in paraffin, sectioned at 6-7 microns and then stained with Harris' haematoxylin and eosin.
(d) Genetic composition of Queensland stocks. Liver samples of fish taken in the Princess Charlotte Bay, Cairns and Tully areas were forwarded during 1979-80 to Dr. B. Richardson, Australian National University, Canberra for gel-electrophoretic analysis. A further collection, in co-operation with C.S.I.R.O., was made in the Gulf of Carpentaria, in June 1980.
(e) Larval, nostlarval and juvenile fish studies.
(i) Larvae. Two permanent study sites were chosen for the 1979/80 larval sampling programme: the Trinity Inlet system and the Nurray River. In 1980/‥1 Trinity Inlet alone was sampled. A total of 20 stations (all 20 in $1 \times 70 / 80$, only six of these in $1980 / 81$) were sampled at two week intervals until October, then at weekly intervals until February. Sampling gear consisted of a push bongo net apparatus (Figure 4) with. plankton mesh sizes of 500 and 1000 microns. A diel sampling programme was implemented in $1979 / 80$ with night tows of 5 minutes duration and 10 minute day tows. In $1980 / 81$ day tows only were made. Measurements of water temperature, salinity and turbidity were made at every station. A total of 597 samples were collected in 1979/80 and a further 149 in 1980/81. Larval fishes were isolated from the fixed material in the laboratory, and barramundi identified from characters described by Ghosh (1973).
(ii) Juvenile Biology and Nursery Habitats. Sampling of juvenile barramundi in selected tidal creeks and tidal swamps was undertaken monthly in the Cairns and Tully study areas and less regularly in Princess Charlotte Bay. Methods for capturing these fish varied with the individual habitats and purpose of the sampling. Small-mesh ($50-100 \mathrm{~mm}$ mesh size) nylon gillnets and seine-nets ($12-20 \mathrm{~mm}$ mesh) were employed in open snag-free areas and barramundi could be tagged and released. The fish poison, rotenone, was used in the more difficult habitats (eg mangrove swamps), where sampling with nets was impractical. Length/weight data were collected on all barramundi caught with additional information on gut contents from those fish which were sacrificed.

Efforts in 1980/81 were concentrated on investigating aspects of the recruitment of barramundi larvae and juveniles into nursery or sanctuary habitats. Topics of particular interest included sizes of colonizing fish, the period over which colonization took place, duration of occupation and the physical environment of the nursery areas. Study sites. were established at Karumba on the southeast Gulf of Carpentaria coast and in Trinity Inlet on the east coast. Less detailed studies were conducted at selected sites in the Princess Charlotte Bay region over a two week period from the 20 th November. Two methods were used for sampling fish. The first consisted of small, one-way fish traps (Figure 5) constructed of flyscreen or 1000, plankton net, and designed to trap fish actively swimming or passively transported up tidal gutters which lead into coastal swamps. The second technique was with the fish poison rotenone. Temperature and salinity measurements were taken at every poison station and after servicing of larval traps.
4. RESULTS AND DISCUSSION

(a) TagginE

Between 1 January 1978 and 30 June 1981, a total of 3967 barramundi were captured in research operations. Of these, 3299 were tagged and released. Research personnel, anglers and professional net fishermen had recaptured by 30 June 1982 a total of 439 fish (Table 1).

Table 1. Summary of barramundi recapture data, north-east zueensland, 1978-1981.

Year tagged	Number tagged	1978/79	Returns			
$1979 / 80$	1980/81	$1981 / 82$				
1978	170	34	4	0	0	
1979	1856		276	28	13	
1980	1045			61	10	
1981	228				12	

Table 2 presents a summary of the distribution of tag returns made by anglers and net fishermen throughout the year (pooled for years and areas). If it is assumed that tagged fish are caught with the same seasonal frequency as untagged fish, then 46.2% of all barramundi are caught in the three months March - April - May, compared with 10.4% in the months of November - December - January.

Table 2. Distribution of tag returns by month from anglers and net fishermen; fish at liberty at least one year and all fish regardless of time at liberty (in parentheses).

Jan Feb Mar Anr May June July Aug Sept Cct Nov Dec

No.	2	9	9	6	9	5	7	3	2	2	1
(7)	(21)	(37)	(31)	(28)	(7)	(18)	(17)	(13)	(13)	(9)	(6)
$\% \cdot 3.5$	15.7	15.7	10.5	15.7	8.7	12.2	5.2	3.5	3.5	1.7	3.5
$(3.3)(10.1)$	$(17.8)(14.9)$	(13.5)	(3.3)	(8.6)	$(8.2)(6.2)(6.2)$	$(4.3)(2.3)$					

Tagged fish are recaptured in proportion to their abundance within age groups (Figure 6). From age group two years old, professional net fishermen take the bulk of the catch.
(b) Kovements

Movement data derived from tag returns (Table 3) show that 82% of fish moved less than 10 km in nett terms from the tag-release site. Fewer than $5!$? moved more than 50 km nett before being captured.

This indicates that barramundi in the study areas constitute basically localized stocks whose movements may be characterized by a summer/monsoon season movement from the upper estuaries and freshwater areas to the coastal foreshores and inshore waters. In late summer/post monsoon, the fish disperse back into estuarine and freshwater environments. For those fish which showed extensive movement, the general pattern is one of long riverine travel and shorter coastal excursions. This pattern is exemplified by barramundi tagged in the freshwater lagoons in the Princess Charlotte Bay hinterland and recaptured on the coastal beaches.

Table 3. Barramundi movement as deduced from tag return data
Distance from tag-release site (km)

less 10 | | | | | |
| :--- | :--- | :--- | :--- | :--- |
| than 1 | $10-10$ | $20-30$ | $30-40$ | $40-50$ |

Number	273	87	22	14	13	10
Percentage	62.3	19.8	5.0	3.1	2.9	2.2

There is no apparent relationship between time at liberty and distance travelled. The greatest distance travelled to date has been approximately 120 km in 196 days exhibited by a fish tag-released in a freshwater lagoon on the Normanby River, Princess Charlotte Bay. However, a barramundi at liberty $89 / 4$ days displayed a nett movement of less than 1 km .
(c) Age and Growth
(i) Fish scale examination. Fish scales were found to be the most convenient hard structure for age determination. Scales were readily collected in field situations by research personnel and the fishing public, and required little preparation for laboratory examination.
(ii) Scale circuli. Barramundi have ctenoid scales. (igure 7). The upper surface of the scale is covered by ridges or circuli, usually nearly concentric about a central focus. Ridges are interrupted by radii that extend from the focus to the scale margin. No branching of radii has been noticed.

The scales of larger fish have more circuli than those of smaller fish. The relationship of total fish length to the number of circuli is linear and highly correlated ($r^{2} \leq 0.952$). The data relate to fish $105-520 \mathrm{~mm}$ TL only. Counting of circuli on scales of larger fish is a laborious task.

The scales of recaptured fish have more circuli than those scales taken at capture, indicating that the number of circuli present on a scale increases with increasing time (age).
(iii) Variation of scale size with fish length. A close relationship exists between anterior scale radius (R in $m m$) and total fish length (L in cm) as determined by least squares regression (Figure 8). With both sexes combined, the relationship is determined by the equation:

$$
R=0.254 L-1.728, r 2=0.927, N=658
$$

When fish from the Cairns, Tully and Princess Charlotte Bay regions (tidal waters only) are treated separately, the individual area relationships appear very similar.

$$
\begin{aligned}
& R_{\text {Cairns }}=0.264 \mathrm{~L}-1.596, \mathrm{r}^{2}=0.966, \mathrm{n}=220 \\
& \mathrm{R}_{\text {Tully }}=0.251 \mathrm{~L}-1.681, \mathrm{r}^{2}=0.911, \mathrm{n}=203 \\
& R_{\text {P.C.B. }}=0.236 \mathrm{~L}-1.726, \mathrm{r}^{2}=0.942, \mathrm{n}=235
\end{aligned}
$$

Correlation values are significant at the 1% level.
(iv) Scale checks. Checks are characterized by well-defined cutting across of circuli. Scales from larger fish exhibit more checks than scales from smaller fish. By back-calculation in the scale radius: total fish length equation, mean lengths ($+/-$ one standard error) at first, second, third, fourth and fifth checks are given in Table 4. The determination of the number and position of checks on scales from large barramundi (more than 800 mm TL) using visual assessment techniques is unreliable. Erosion and resorption of material from about the scale origin is a major difficulty.

Table 4. Fish lengths at scale checks

Check	Fish length $(\mathrm{mm} \mathrm{TL})$
1	
2	310.1 ± 73.2
3	463.7 ± 55.1
4	578.4 ± 42.0
5	684.1 ± 69.3
	751.2 ± 44.2

(v) Length-weight relationship. Barramundi exhibit allometric growth. The descriptive equation relating whole fish weight (W in g). to total fish length (L in mm) is

$$
w=0.00009874 L^{2.8748}, r^{2}=0.9812, N=625
$$

The size range of specimens used for computation was $41-1125 \mathrm{~mm}$ TL. All were taken from tidal waters, and all were taken in non-breeding periods to lessen the influence of increased gonad weight with maturation.
(vi) Growth rates and age determination. Thirty-two barramundi at liberty approximately one year (range 315-412 days) have been recaptured with measurements suitable for growth evaluations. The regression of length at tagging on change (increase) in length over the year shows a linear relationship between these variables (Figure 9; $r^{2}=0.848$, significant at the 0.01 level). Although there is variation in size for any given age, growth decreases in rate with increasing age.

Specific growth rates are available for 75 recaptured tagged barramundi with a liberty period of approximately one year or more (range 315-894 days). T e asymptotic length or theoretical maximum size limit (Lac) estimate for barramundi as derived from these fish data was 1295 mm TL. Barramundi caught at a size exceeding this Lovalue are occasionally reported. The von Bertalanffy growth equation was calculated as

$$
L_{t}=1295\left(1-e^{-0.187(t-0.577)}\right)
$$

This equation was used to estimate length at age and the values used to plot a growth curve (Figure 10). The length at age values so established correlate strongly with values calculated from scale measurements for length at check formation. (table 5).

Table 5. Length (mm TL) at age in barramundi
Year $\quad \underset{(\pm \text { Back calculation }}{\ddagger}$ from scales Bertalanffy

310.1 ± 73.2	251.5
463.7 ± 55.1	445.5
578.4 ± 42.0	616.5
684.1 ± 69.3	715.5
751.2 ± 44.2	798.0

(d) Survival and mortality

Age-frequency distribution for the 1978, 1979 and 1980 year catches are adjusted in Figure 11 to reflect the relative contribution of each age group because of unequal sample sizes. Similarity of distributions suggests the northeast coast stock was sampled randomly and in proprotion to actual abundance.

As revealed by the catch curves, survival between age groups for each year is low (Table 6), indicating a high total mortality. Survival rate increases from group $0+/ 1(0.418)$ to group $1 / 2(0.602)$ then abruptly decreases for group $2 / 3$ fish (0.359) as fish attain legal size $(500 \mathrm{~mm}$ TL) and are subject to increased fishing pressure. At later ages, survival increases again, reflecting a decreased vulnerability to the fisheries.

Table 6. Survival between age classes derived from catch curves, 19781980

$0+1$	$1 / 2$	$2 / 3$	$3 / 4$	$4 / 5$	$5 / 6$	$6 / 7$	$7 / 8$	$8 / 9$

1978	0.394	0.692	0.148	+*	0.222	.500	*	$n r^{* *}$	nr
1979	0.251	+	0.614	0.565	. 160	. 869	. 900	+	+
1980	0.609	+	0.317	+	. 410	. 472	. 769	$n \mathrm{n}$	+
average	0.418	0.692	0.359	0.565	0.264	0.613	0.834		

* + = positive slope in catch curve
**nr = 0 value

The method of Youngs and Robson (1975) was used to estimate survival from recapture data (Table 7). Only three estimates are possible currently (for $1978 / 79,1979 / 80$ and $1980 / 81$) as the fifth year has not yet elapsed.

Table 7. Survival estimated from recapture data, after the method of Youngs and Robson (1975).

Year tagged	Number tagged	1978/79	$1979 / 80^{\mathrm{Re}}$	ns by year 1980/81	1981/82	Total Recap	
1978	170	34	4	0	0	38	
1979	1856		276	28	13	317	
1980	1045			61	10	71	
1981	228				12	12	
C_{i}		34	280	89	35		
$\mathrm{T}_{\text {i }}$		38	321	111	34		
$\mathrm{E}_{\mathbf{i}} \operatorname{lexp}_{\mathrm{est}}$	itation ate)	0.200	0.148	0.053	0.054		'
S_{i} (sur	val esti	te)0.135	0.328	0.269		\backslash	

The survival estimates of $0.135,0.328$ and 0.269 appear lower than expected from the catch curve analyses, suggesting either than non-reporting of tag recaptures may be a serious problem or that the fishing mortality component of total mortality is lower than expected. A plot of size at time of tagging of recaptured fish against that for unrecaptured fish (figure 12) is highly correlated ($r^{2}=0.953$) indicating that no particular size/age group is poorly represented in reported recaptures from any of the study areas.

If tag returns represent true fishing mortality, and noting that keported recaptures accounted for $22.3 \%, 17 \%$ and 6.7% of fish released in 1978 , 1979 and 1980 respectively then natural mortality is 0.642 in $1978,0.502$ in 1979 and 0.664 in 1980 (Table 8).

Table 8. Mortality estimates derived from tag return data.

Year	Survival	Total Mortality	Fishing Mortality	Natural Mortality
1978	0.135	0.865	0.223	0.642
1979	0.328	0.672	0.170	0.502
1980	0.269	0.731	0.067	0.664

Natural mortality should decrease with increasing age. Non-reporting of tags may account for the difference between natural mortality values derived in Table 8 and those expected from the catch curve analyses (Table 9).

Table 9. Mortality estimates derived from catch curves

Year	Survival	Total Mortality	Fishing Mortality from tag returns
1978	0.549	0.451	Natural Mortality
1979	0.549	0.451	0.223

(e) Reproduction
(i) Spawning period. Dunstan (1959) established for the central Queensland east coast that the spawning period was October-March. Two independent methods were used in this study to determine the breeding season: direct observation of the gonad activity exhibited by mature fish, and the presence of barramundi larvae in estuarine plankton.

Maturity stages in barramundi gonads were assessed in a seven point classification (after Nikolsky (1963); as quoted in Lagler (1978)). The gross morphology of the testes and ovaries has since been described by Moore (1979) and the histology of maturation by Davis (1982). The distribution of gonad activity through the year is given in Figure 13. This shows that highest levels of activity occur in the months October-January, with reproduction occurring in November-January. Larvae were identified in estuarine and nearshore plankton samples collected from both the Cairns and Tully regions through the period 31 October to 14 February. At a size of 2.8 mm to 5.3 mm TL , these larvae are about $1-2$ weeks old (Wongsumnuk and Manevonk, 1973). No barramundi eggs were positively identified in plankton samples.

The evidence suggests a extended spawning period in north east queensland of late October - mid February. It is recognized that in some years exceptional circumstances such as delayed movement of mature fish isolated upriver in freshwater lagoons to marine spawning sites may extend the breeding period.
(ii) Spawning sites. Barramundi with running ripe gonads were only obtained in the coastal marine habitats of lower estuary and adjacent foreshores. Fish resident in freshwater exhibited gonad activity only to the 'maturation' stage of Nikolsky (1963). Larvae were found only within the lower estuaries and immediate margins. Moore (1981) found barramundi in New Guinea spawn only in high saline coastal areas, and Dunstan (1959) suggested river mouths and shallow coastal bays as likely spawning grounds. . The distribution of larvae and presence of running ripe mature adults in our study areas are indicative of lower estuarine and nearby foreshore spawning sites. Spawning appears localized and unsupportive of a single large spawning ground servicing much of the stock, as occurs in Fapua New Guinea (Moore, 1980).
(iii) Larvae. Thirty-one larval barramundi were identified from 746 estuarine and nearshore plankton samples. Wongsomnuk and Manevonk (1973) found newly hatched larvae measured 1.5 mm lonp. From the length range encountered, larvae collected in the study areas were 1-2 weeks old. Only a single specimen was taken outside a river mouth, and this within 200 m of the immediately adjacent mangrove foreshore.
(iv) Fostlarvae and Juveniles. The largest larva taken in plankton hauls was 5.3 mm TL , about two weeks old. Strikingly banded postlarval forms (Figure 14; size range $16-84 \mathrm{~mm} \mathrm{TL}$) together with juvenile barramundi (50240 mm TL) were located during February-March in brackish and freshwater swamps along the estuarine intertidal margins in the Cairns and Princess Charlotte Bay areas. Postlarvae of 16 mm TL are about one month old (Wongsomnuk and Manevonk, 1973). The swamps are typically shallow (less than 1 m deep), variable in area (less than $20 \mathrm{~m}^{2}$ to more than $13000 \mathrm{~m}^{2}$), vegetated by Rhizophora and Avicennia mangal (brackish habitat; Figure 15) and Melaleuca forest/sedge Eleocharis (freshwater), and are filled by high tides and seasonal rains during the summer months. Maximum tidal heights become smaller and rainfall is less in autumn and winter, \resulting in drying out of many swamps. Juveniles return to permanent tidal waters from March. The swamps probably serve as sanctuaries, albeit temporary, for postlarval and juvenile barramundi by offering protection from large piscivores and an abundant food supply of other larval and juvenile fishes and crustaceans for rapid growth.

Some 600 juvenile barramundi ($105-380^{\circ} \mathrm{mm} \mathrm{TL}$) were collected in permanent tidal creeks. Tagging results show a residence time in such creeks of up to one year. Subsequently there is wider dispersal through the estuary and inshore waters (Figure 16).

In the southeast Gulf of Carpentaria, river estuaries are fringed by a thin veneer of mangroves behind which are extensive saltpans. Freshwater or brackish swamps of the type utilized by postlarvae and juveniles on the northeast coast are rare. Instead, these utilize temporary pools created by high seasonal tides, which occur from October until April, on the saltpans and littoral margins of the estuaries. Temperatures and salinities in such habitats investigated in 1980/81 on the Norman River were, in some instances, extreme; with salinities ranging from 04%.to less than 1% and temperatures reaching $36^{\circ} \mathrm{C}$. Juvenile fishes of 37 species colonized the pools. Barramundi collected ranged from 9.5 to 210 mm TL . Residency period is limited, with a tidal regime unfavourable for egress commencing in mid-April. In some years freshwater run-off may extend this period. The movements of juvenile barramundi following departure from these sanctuary/nursery habitat wa's not investigated.

(v) Sub-Adults and Adults

These are distinguished on the basis of activity exinibited by the gonads. Adult fish have mature,reproducing gonads. For the months of greatest observed gonad activity, October to March (Figure 13), 439 fish with a size range of $150-1195 \mathrm{~mm}$ TL were examined. Specimens were obtained from research, angler and commercial fishermen's catches. The relationship in rounded percentage form between gonad maturation state and size of male fish is presented in Table 10 and that for female fish in Table 11. In 136 fish, sex could not be determined from the undifferentiated gonad. Such fish were nearly all in the $150-345 \mathrm{~mm}$ TL size range.

Table 10. Effect of total length on testes maturation

Total length
Percent Contribution by Maturity Stage
Interval (mm) Undifferentiated Virgin Developing Advanced Number

$150-195$	100			34	
$200-245$	100				28
$250-295$	100	44		54	
$300-345$	56	64	9		27
$350-395$	27	83	8	11	
$400-445$	8	89	6	12	
$450-495$	6	84	11	5	18
$500-545$		8	75	17	24
$550-595$		78	22	32	
$600-645$		55	45	11	
$650-695$		39	61	18	
$700-745$		21	79	24	
$750-795$		7	93	15	
$800-845$		7	93	14	
$850-895$				100	14
$90-945$			100	3	
$950-995$				100	2

Male fish were first recognizable (as virgins) at 300 mm TL with the testes small thin strap-like and transparent. Advanced testicular development where milt could be extruded under pressure first appeared in substantial numbers at the $550-595 \mathrm{~mm} \mathrm{TL}$ interval. These fish are regarded as mature adults. By 800 mm TL , over 90% of male fish are mature.

Table 11. Effect of total length on ovary maturation

Total Length Interval (mm)	Virgin	Percent Contribution by Maturity Stage Developing Advanced	Number
$500-545$	100		
$550-595$	100	50	50
$600-645$	50	50	1
$650-695$		67	1
$700-745$		100	2
$750-795$		100	2
$800-845$		100	3
$850-895$		100	3
$900-945$		100	7
$950-995$		100	17
$1000-1045$		100	9
$1050-1095$		100	11
$1100-1145$		100	8

Only small numbers of female fish were sampled, so data are to be treated with caution. Two small (545 mm TL and 575 mm TL) females with small transparent pale orange ovaries are considered virgin. A further three fish ($600-735 \mathrm{~mm} \mathrm{TL}$) had eggs visible only when magnified. The presence of clearly discernable eggs in an enlarged ovary was considered indicative of advanced maturation, and occurred from 600 mm TL on. The largest size classes (equal to and more than 1050 mm TL) appear to be of female fish only, but this may be merely an artefact of small sample size.
(vi) Sex Ratios

Of 824 sampled barramundi for which sex could be determined, 686 were males and 138 were female, giving a sex ratio of $4.97: 1$ (Table 12).

Table 12. Sex ratio of barramundi taken northeast Queensland
Locality Habitat No. of Males No. of Females Male/Femaie

Cairns	marine	147	15	$9.80: 1$
Tully	marine	165	16	$10.31: 1$
Princess Charlotte Bay marine 307	103	$2.98: 1$		
Princess Charlotte Bay	freshwater	67	4	$16.75: 1$

The above figures include catches taken in both spawning and non-spawning times. Dunstan (1962) established that sex ratio alters with time of the year. He reported that at commencement of the Papuan spawning season, the ratio of males to females was 3.4:1. During the spawning season the ratio was about 1:1, indicating that a greater proportion of female fish remain in coastal waters for a longer period after spawning.

If we consider the immediate post-spawning period only (February to April), and make a distinction between river catches and foreshore catches, the ratios are:

Table 13. Sex ratio in post-spawning period

For this period there are marked differences in sex ratios between river and coastal foreshore catches, with foreshore catches showine lower preponderance of males. This suggests a greater proportion of female barramundi remain outside the rivers for a longer time after spawning.

(vii) Sex Reversal

Moore (1979) found that females aro normally derived from males by sex inversion. In this study, the transitional stage from male to female could not be detected macroscopically. The examination of histological preparations of gonad material routinely gathered through the yearly period is not yet complete, with a backlog to be placed on microscope slides. However, there is some indirect evidence for sex reversal. In Figure 17, the total length frequencies of 167 mature adult fish (as per Tables 10,11) are given. The female mode is displaced to the right of the male mode. The male peak in length frequency occurs at $750-795 \mathrm{~mm} \mathrm{TL}$, of which length class female fish contribute only 13.6\%. The female peak is at 900 945 mm TL , when 45.1% of the class are males. Davis (1982) found the mean length of transitional males in the southeast Gulf of Carpentaria was 820 mm (range 680-900 mm).

(f) Feedine Eabits

Dunstan (1059, 1962) established that barramundi are carnivorous and predacious throughout the whole of their life cycle. Generally, they will prey on any fish or crustacean species smaller than themselves. The food preferences of larval barramundi were not fully established, althpugh examination of the gut contents of 2 specimens suggests they feed predominately on zooplankton. Fostlarval and juvenile barramundi in nursery habitats prey on a wide variety of organisms including insect larvae, fish and crustaceans.

In Table 14; the stomach contents of 648 barramundi, length range 235-1125 $\mathrm{mm} T L$, taken from both marine and freshwater habitats, are given. Sixtynine percent of all stomachs examined were empty. Fish, penaeid pravns and decarod crustaceans were the most frequently taken prey items.

Table 14. Stomach Contents of Barramundi

Stomach Content	Frequency of Occurence (number, percentage)	
	Marine Habitat	Freshwater Habitat
empty.	$394,67.5$	$55,84.6$
fish	$130,22.2$	$6,9.2$
Fenaeid prawns	$66,11.3$	$2,3.0$
Alpheid prawns	1	0
decapod crabs	15	1
stomatopods	2	0
molluscs	2	0
plant material	1	1
coral	3	0

(g) Genetic Stock Analyses

Frozen liver material from the study areas was airfreighted in 1979 and 1980 to Dr. B. Richardson, Australian National University, for gel-electrophoresis analyses as part of the northern Australian barramundi stock delineation programme. The number and relative mobility of liver serum protein fractions was determined for the species in each area and compared.

The examination of such fractions has shown both similarities and divergences. Expressed as protein gene frequencies, Dr Richardson found only minor differences in frequencies among Queensland east coast samples. The gene frequency differences appear greater between east coast and Gulf of Carpentaria samples. Significant differences are exhibited between Queensland and the Northern Territory samples. It seems likely then that queensland and the Northern Territory support genetically distinct barramundi stocks. Further work is required before the existence of discrete separate sub-stocks may be ascertained.

Spawning and larvae. Spawning occurs in inshore waters probably at the mouths of rivers and large creeks, and along the coastline in sheltered embayments. Spawning usually occurs just prior to and during the wet season. In northeast Queensland, spawning commences in November and proceeds to January, perhaps into March if the monsoon is delayed. Eggs and larvae are probably transported by currents into and within estuaries. At hatching the larvae are 1.5 mm long. Within one to two weeks, larvae move into small tidal creeks and flooded coastal swamps where they feed initially on plankton and aquatic insect larvae. In about a month they reach a size of 10 to 20 mm and feed predominately on small prawns and fish.

Juveniles. The term applies to fish about one month to one year old, at which time they are about 300 mm long. Juveniles progressively occupy a wide ranfe of habitats, from tidal creeks and mangrove swamps adjacent to the river mouth, to brackish water streams, canals and drains in the upper reaches of the estuary, into freshwater areas. Growth of juveniles averages a little less than one millimetre per day during the first year of life.

Adults. After the first year, barramundi enter a sexually immature subadult phase which may last a further two years. In this time they grow to about 580 mm . Barramundi typically become mature as males in their fourth year. Female fish are usually older than six years (850 mm long), and most are probably derived from male fish through a process of sex reversal. Maximum age is beyond 25 years. Adult growth is highly variable, but decreases in rate with increasing age. Barramundi appear to be essentially non-migratory, but may travel great distances from freshwater and estuarine environments to marine environments during the summer spawning season. At this time they are especially vulnerable to fishing pressure.

6. MANAGEMENT INITIATIVES

The investigations indicated that additional management of the queensland barramundi resource was desirable. The tag-release programme revealed that a minimum of 7% (Princess Charlotte Bay) to 29% (Cairns, Tully) of legal sized barramundi are captured annually by amateur and commercial fishermen. These are minimum figures because not every tagged fish that is recaptured by fishermen is reported. About 10% of the annual catch may be taken during the spawning season.

Most recaptured fish are caught within the same river system as release, thus arguing for the existence of localized sub-populations within a total northeast Queensland stock. This concept is supported by the A.N.U. genetic analyses to some extent. Local differences in levels of fishing pressure will produce, then, different responses in local sub-populations.

As a direct result of this work, and in consultation with commercial and ameteur fishermen's organisations, the Queensland Government in January 1981 implemented a number of measures designed to allow for more rational use of the State's barramundi resource. These initiatives are:
(a) a closed fishing season from November to January, the peak spawning period.
(b) the establishment of separate limited licence commercial fisheries in the Gulf and on the east coast with difference eligibility criteria.
(c) an increase to 150 mm in the minimum mesh size for all set gill-nets used in the barramundi fishery.
(d) a bag limit on all amateur fishermen and commercial fishermen not holding a endorsed licence.
(e) the establishment of a number of legislated habitat reserves, fish sanctuaries and fish refuge areas, primarily to protect barramundi nursery habitats.

Evaluations of the effectiveness of the management plan are presently in progress. This research effort is, in part, being financed through a further grant from the Fishing Industry Research Trust Account.

7. ACKNO:GLEDGEMEMTS

We thank G.M. French, I.R. Hocking, N.A. Newton, G.J. Fomroy and I.C. Squire for their assistance in collecting field data. The financial support provided from the Fishing Industry Research Trust Account is gratefully acknowledged.

8. LITERATURE CITED

Davis, T.L.O. (1982). Maturity and sexuality in barramundi, Lates calcarifer (Bloch), in the Northern Territory and southeastern Gulf of Carpentaria. Aust. J. Mar. Freshwater Res. 33, 529-45.

Dunstan, D.J. (1959). The barramundi in Queensland waters. CSIRO Aust., Division of Fisheries and Oceanography Technical Paper No. 5.

Dunstan, D.J. (1962). The barramundi in New Guinea waters. Papua New Guinea Agric. J. 15, 23-31.

Ghosh, A. (1973). Observations of the larvae and juveniles of the "bhekti" Lates calcarifer (Bloch) from the Hooghly-Natlah estuarine system. Indian J. Fish. 20, 372-9.

Greenwood, P.H. (1976). A review of the family Centropomidae (Fisces, Perciformes). Bull. British Museum (Nat. Hist.) ZOOL. 29, 4-81

Lagler, K.F. (1978). Capture, sampling and examination of fishes. In "Nethods for assessment of fish production in fresh waters", ed. T. Bagenal. (third edition). pp. 7-47 (Blackwell Scientific Publications:Oxford).

Natilda, C.E. and B.J. Hill (1981). Commercial landings of fish in Queensland. Qld. Dep. Primary Ind. Miscellaneous Publication No. 81018 .

Yoore, R. (1979). Natural sex inversion in the giant perch (Lates calcarifer). Aust. J. Mar. Freshwater Res. 30, 803-13.

Moore, R. (1980). Reproduction and migration in Lates calcarifer (Bloch). Ph. D. Thesis, University of London.

Wongsumnuk, S. and S. Manevonk (1973). Results of experiments on artificial breeding and larvai rearing of the sea bass (Lates calcarifer Bloch). Thailand Division of Research and Investigetions, Department of Fisheries, Songkla Marine Fisheries Station Contribution No. 5.

Yingthavorn, F. (1951). .Notes on pla-kapong (Lates calcarifer Bloch) culturing in Thailand. IPFC/C511 Technical Paper No. 20.

Youngs, W.D. and D.S. Robson (1975). Estimating survival rate from tag returns:model tests and sample size determination. J. Fish. Res. Board Can. 32, 2365-71.

FIGURE 2 A small (300 mm TL) barramundi being tagged with an FD-67 anchor tag. The yellow streamer of the tag is seen adjacent to the trigger piece of the tag gun (photograph G. Pomroy)

REWARD

tagged barramundi

AREWARD OF $\$ 5.00$ IS PAD FOR EACH TAG RETURNED WITHIMFORMATION
 WHATTO DO:
 $$
\begin{aligned} \text { RETURN TAG TO - } & \text { NORTHERN FISHERIES STATION, } \\ & \text { QUEENSLAND FISHERIES SERVICE, } \\ & \text { C/-POST OFFICE, BUNGALOW, QLD., } 4870 . \end{aligned}
$$ QUEENSLAND FISHERIES SERVICE, QUEENSLAND FISHERIES SERVICE, C/-POST OFFICE, BUNGALOW, QLD., 4870. C/-POST OFFICE, BUNGALOW, QLD., 4870.
 $$
\begin{gathered} \text { OR - CSIRO, P.O. BOX } 3998, \\ \text { WINELLIE, N.I., } 5789 . \end{gathered}
$$
 OR - CONTACT NEAREST FISHERIES INSPECTOR

AND PROVIDE

1) PLACE AND DATE OF CAPTURE.
ii) LENGTH OF FISH FROM TIP OF LOWER JAW TO TAIL.
iii) SEX OF FISH.
iv) ABOUT 10 SCALES FROM LEFT HAND SIDE OF BODY AS SHOWN IN DIAGRAM.

BARRAMUNDI ARE BEING TAGGED BY THE QUEENSLAND FISHERIES SERVISE AND THE CSIRO TO STUDY GFIOWTH RATE, POFULATION DENSITY, FISHIING EXPLOITATION AND MIGRATORY PATTERNS.

FIGURE \& Larval barramund are collected in planktonnets suspended
from the bow of small dinghy (photograph G. French)

FIGURE 5 Design of one-way tidal fish trap

FIGURE 6 Proportions of tagged barramundi subsequently recaptured by anglers and net fishermen 1978-1982. Age of fish assigned on the basis of Section $4(c)(v i)$.

f	$=$ Central focus
r	$=$ Radius
x	$=$ Crossover of circli or check
m	$=$ Anterior scale margin
$f-m$	$=$ Anterior scale radius

FIGURE 8 Variation of anterior scale radius with fish length

FIGURE 10 Von Bertalanffy growth curve for recaptured barramundi

FIGURE 12 Comparison of mean length at time of taging for recapture and unrecaptured barramundi

FIGURE 13 Distribution of Gonad Activity through the year

,

Section of Cairns region nursery swamp. Water way in background is a tidal creek. Swamp has Rhizophora mangal margins. Avicennia in left and right foreground (photograph J. Russell)

Total length frequencies of male and female barramundi from 167 mature adult specimens expressed as a percentage of the total samples of each sex. - male o female

