ANALYSIS OF TAIWANESE GILL-NET DATA

Final Report to the Fishing Industry Research and Development Council Project 87/19

CONTENTS

Page

A. INTRODUCTION 4
B. OBJECTIVES 6
C. SUMMARY 7
D. PRINCIPAL RECOMMENDATIONS FOR MANAGEMENT 12
E. DETAILS OF THIS STUDY.
Abstract 16
Introduction 17
Materials and Methods 19
Results 34
Discussion 66
References 72
Appendix 1 76
Appendix 2. 78
F, DETAILS OF ORIGINAL GRANT APPLICATION 80

Fig. 1a Area of Taiwanese gill-netting in northern Australian waters. Each dot represents a single gill-net set. This data comes from logbook records 1979-1986.

A. INTRODUCTION

A Taiwanese gill-net fishery operated off northern Australia between the North West Shelf and north of the Gulf of Carpentaria from 1974 until mid-1986 (Fig. 1a). The Taiwanese fished primarily for shark, tuna and Spanish mackerel. Before management measures were introduced following the declaration of the Australian Fishing Zone (AFZ) in November 1979, the annual catch in the area between northem Australia and Papua New Guinea averaged about 25000 t live weight. After 1979, the annual catch for this fishery within the AFZ averaged about 7000 t processed weight (about 10000 t live weight) (Fig. 2a).

The Taiwanese used surface-set gill-nets that ranged in average length from 8 km in the late 1970's, to 16 km in 1985/86, with many nets reported to be 20 km or more in the last years of the fishery's operation. In 1986, the Australian Govemment limited the length of gill-nets to 2.5 km to reduce the by-catch of dolphins. This made the Taiwanese gill-net fishing operations uneconomic and they were effectively excluded from the AFZ.

Australian interest in the Taiwanese fishery developed around the time the AFZ was declared in 1979. Little was known about the Taiwanese fishery up to 1979, but it soon became apparent that catches were declining. This was of concern because of the likely effects Taiwanese fishing would have on a small but developing inshore Australian gill-net fishery operating within 12 miles of the coast. The Australian fishery began in waters off the Northern Territory in the late 1970's.

Documentation of the Taiwanese gill-net fishery was sketchy in its early years. When the AFZ was declared in November 1979, foreign fishermen required a license to fish in Australian waters. Licensing requirements included the keeping of logbooks and regular radio reports containing catch and position data. The Taiwanese gill-netters were also subject to catch quotas and geographical restrictions. Commonwealth observers monitored the fishing activities of the Taiwanese fleet and collected independent data on catch and effort, species composition and length frequency of the catch.

This study undertook to assess and analyse the catch statistics of the Taiwanese gill-net fishery, using the AFZ logbook records of catch and effort as the the main data set. These were supplemented by observer records of species and size composition. Some research data was used to examine shark aggregating behaviour and catch variability.

Two other FIRTA-funded CSIRO projects were related to the Taiwanese gill-net fishery: the Northem Pelagic Stock Research Program (FIRTA 83/49) and the Northem Shark Tagging Study (FIRTA 86/87).

Fig. 2 (a) Annual catch (tonnes), (b) CPUE ($\mathrm{kg} / \mathrm{km} \mathrm{h}$) and (c) effort (km h) of the Taiwanese gill-net flect in northern Australian waters between 1974 and 1986. Figures for 1979 and 1986 are for part of the year only, so are not linked to other catch and effort data.

B. OBJECTIVES

(1) To assess and analyse the now complete Taiwanese gill-net catch/effort and observer-generated data sets.This objective was fully achieved and the results are presented below.
(2) To use this information to aid in the development of the model for the northem shark fishery. Results obtained in this study have been incorporated in the analysis of the FIRTA-funded Northern Pelagic Program and are discussed in the final report for this project (83/49 and 86/87)
(3) To use this model to predict the rate and pattem of recovery of the stocks following the removal of most of the effort from the fishery (caused by cessation of Taiwanese gill-netting in July 1986). This objective has not been achieved, partly because effort has recently increased again on the shark stocks as a result of Taiwanese longlining off northern Australia.
(4) To produce (by 1989) a single publication containing all relevant data on the northem gill-net fishery, that can serve as a reference guide to Industry. Production of this reference guide is awaiting publication of the remaining manuscripts relevant to the northern gill-net fishery (eight papers have been published and the remaining four manuscripts are in the refereeing system).

C. SUMMARY

Analysis of Taiwanese gill-net data

Trends in total catch, effort and CPUE in the AFZ

In the pre-AFZ period between 1975-1978, the Taiwanese annual catch taken within 200 nautical miles of the northem Australian coast averaged 7700 t processed weight (Fig. 2a). The only constraint on the Taiwanese operation at this time was an exclusion from fishing within 12 nm of the coast. When the AFZ was declared in 1979, fishing areas and vessel numbers were reduced and catches were constrained by a 7000 t quota.

Catch per unit effort in the fishery decreased from about $16 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1977 to about 7 $\mathrm{kg} / \mathrm{km} \mathrm{h}$ in 1986 (Fig. 2b). To maintain their catches the Taiwanese increased their effort markedly after 1979 (Fig. 2c). Average net lengths in the fishery increased from 7.5 km in 1979 to 15.8 km in 1986. Between 1982 and 1983 fishing effort nearly doubled due to a 31% increase in the surface area of the net and an increase in the number of sets. In the last two years of the fishery, effort dropped because the Taiwanese began to divert their vessels outside the AFZ when the Australian govemment announced their intention to limit net length.

Annual trends in shark, mackerel and tuna CPUE

For shark, annual CPUE generally declined, while the reverse was true for tuna (Fig. 3). Shark CPUE decreased from $11 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1979 to $3 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1984 and tuna CPUE increased from $0.3 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ to $3 \mathrm{~kg} / \mathrm{km}$ h over the same period. Mackerel CPUE remained steady at about $0.4 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ after 1981 following a decline from about $1 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1979/80.

Area differences in CPUE

Based on the distribution of Taiwanese effort between 1980 and 1986 we defined three main fishing areas: a Westem area $\left(10.5^{\circ}\right.$ to $17{ }^{\circ} \mathrm{S}, 121^{\circ}$ to $\left.130{ }^{\circ} \mathrm{E}\right)$, Arafura area $\left(9^{\circ}\right.$ to $12^{\circ} \mathrm{S}, 133^{\circ}$ to $136.5^{\circ} \mathrm{E}$) and a Wessels area (9° to $11 \mathrm{~S}^{\circ} \mathrm{S}, 136.5^{\circ}$ to $139{ }^{\circ} \mathrm{E}$).

Shark CPUE was similar in all areas and generally declined in each area (Fig. 4a). Tuna CPUE was higher in the Arafura and Wessels than in the Westem area. Tuna CPUE generally declined in the Westem area, remained relatively constant in the Arafura and increased in the Wessels (Fig. 4b). Mackerel CPUE was similar in all areas and declined in the Arafura and Wessels (most marked between 1979 and 1981), but remained relatively

Fig. 3 Shark, tuna and mackerel CPUE in the AFZ

Fig. 4 Shark (a), tuna (b) and mackerel (c) CPUE by year in the Western Area, Arafura and Wessels.
constant in the Westem area (Fig. 4c).

Catches of shark, tuna and mackerel were generally highest in the Arafura and lowest in the Westem area, with the exception of shark which was lowest in the Wessels. The pattems of catch and effort in the three areas suggest that the Westem area was less productive, particularly for tuna, and that after 1983 the Taiwanese put proportionately more effort into the Wessels, where they targetted on tuna.

Seasonal trends in catch, effort and CPUE

Analysis of seasonal rends in the catch, effort and CPUE was largely precluded by the high variances associated with the data. Shark CPUE showed no significant seasonal pattem in any of the areas, while tuna CPUE in the Wessels and Arafura, and mackerel CPUE in the Wessels, was highest between June and September.

Species composition

Sharks, tuna and mackerel comprise about $63 \%, 26 \%$ and 6% respectively of the catch by weight in the AFZ. The two major shark species, Tilston's shark, Carcharhinus tilstoni, and the spot-tail, Carcharhinus sorrah, comprise 39% and 16% respectively of the total catch by number in the AFZ. Hammerhead sharks, longtail tuna (Thunnus tonggol) and Spanish mackerel (Scomberomorus group) comprise 7\%, 15\% and 5\% of the catch by number in the AFZ.

Annual and seasonal changes in species composition are generally consistent with the CPUE data. Lower proportions of shark and higher proportions of tuna occurred in the catch in the 1983-84 period, particularly from the Wessels. Shark and mackerel comprise a lower proportion of the catch around July while the proportion of tuna and mackerel is high at this time.

Size composition

Analysis of size composition data showed a decrease in mean fork length for the principal mackerel species (Scomberomorus commerson) of about 2 cm per year between 1982-86. A decline in the proportion of mature C. tilstoni was also apparent over the period of the fishery. No such decrease in size of C. sorrah or T. tonggol was evident (in fact T. tonggol showed a slight increase in length over the period of observations).

Variability of shark catches

This analysis was restricted to C.tilstoni, the only species for which there was sufficient information. Data suggest that C. tilstoni occurs in aggregations which may be of about equal sex ratio or may be comprised predominantly of one sex, and that the sharks within an aggregation are of similar size. The aggregations may be at least $5-10 \mathrm{~km}$ across. The catch rates of shark were highly variable, partly because of the tendency of C.tilstoni to aggregate.

Effect of environmental parameters on catch

Examination of the effects of various environmental parameters and fishing strategies on catch variability confirmed the strong influence of light on catches, but was inconclusive in determining the effects of other parameters. There was a negative correlation between light availability and catch of both the shark and bony fish.

D. PRINCIPAL RECOMMENDATIONS FOR MANAGEMENT

The analysis of CPUE and size composition data suggest that shark (and to a lesser extent Spanish mackerel) stocks were over-exploited by the Taiwanese within the AFZ. The effects on tuna stocks are less clear, although there are no major signs of over-fishing.

Based on shark landings and species composition data the average annual Taiwanese catch of C. tilstoni and C. sorrah from the northem AFZ between 1977-84 was 4022 and 1676 t live weight respectively. CPUE for shark (which is mainly a reflection of these two species) in the AFZ dropped to nearly a quarter of its 1979 value by 1984 , indicating that these removal rates are too high. Size composition data suggest that C. sorrah was less affected by Taiwanese fishing pressure than C. tilstoni.

Results from this study were used in conjunction with a yield per recruit model (see FIRDC Report 83/49 \& 86/87) which suggests that effort in the fishery should not have exceeded $280,000 \mathrm{~km}$ hrs for C. tilstoni and $190,000 \mathrm{~km}$ hrs for C. sorrah. Between 1980-84 actual fishing effort was $755,000 \mathrm{~km}$ hrs. The maximum sustainable yield for both species combined would have been about 2400 tonnes live weight in the period from 1980-84. On an area basis about 50% of this catch would be available from the Arafura $\left(9^{\circ}\right.$ to $12{ }^{\circ} \mathrm{S}, 133^{\circ}$ to $\left.136.5^{\circ} \mathrm{E}\right), 20 \%$ from the Wessels $\left(9^{\circ}\right.$ to $11{ }^{\circ} \mathrm{S}, 136.5^{\circ}$ to $\left.139{ }^{\circ} \mathrm{E}\right)$ and 30% from the Westem area (10.5° to $17^{\circ} \mathrm{S}, 121^{\circ}$ to $130{ }^{\circ} \mathrm{E}$).

Tuna CPUE in the AFZ increased about 20\% between 1980 and 1984 and no decrease in mean length of tuna over the period of the fishery was detected. The data suggest that the Taiwanese average annual catch of tuna in the northem AFZ (1400 t) did not over-exploit the stocks. However, declining CPUE in the Westem area suggests there may have been some local over-fishing.

There is some indication that the Taiwanese overfished the stocks of Spanish mackerel. While CPUE remained relatively constant after 1981, there was an initial decline of about 50% between 1979/80 and 1981. The mean length of mackerel decreased significantly over the period of the fishery. The annual catch of mackerel by the Taiwanese was about 450 t .

The relatively low sustainable yields of C. tilstoni and C. sorrah indicate that the Taiwanese demersal longlining fishery in the northem AFZ requires careful monitoring. Preliminary information from observers indicates that C. tilstoni and C. sorrah are important components of the catch of this fishery, and that catch rates are relatively high.

E. DETAILS OF THIS STUDY

The details of this study are presented as a CSIRO Marine Laboratories report, that is currently in preparation.

Analysis of catch data from the Taiwanese gill-net fishery off northern Australia, 1979-1986.

J. D. Stevens and S. R. Davenport

CSIRO Division of Fisheries, Marine Laboratories, GPO Box 1538, Hobart, Tasmania 7001

Dedication

This work is dedicated to Durant Hembree, a good friend and colleague, who died suddenly in May 1987. Durant spent many long months on fishing boats, both Australian and foreign, collecting data, not only in his own field of whales and dolphins, but for others like ourselves. Much of the work in this study would not have been possible without Durant's contributions.

Durant was an extraordinary man. His dedication, enthusiasm and hard work eamed him the high regard and love of those who were fortunate enough to know him.

Abstract

Catch data were analysed from a Taiwanese pelagic gill-net fishery that operated off northern Australia between 1974 and 1986. Its annual catch in the Australian Fishing Zone averaged about 7000 tonnes processed weight, with shark, tuna and mackerel being the main species. Fishing effort nearly doubled between 1982 and 1983, while catch per unit effort (CPUE) declined from about $16 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1977 to about $7 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1986. After 1983, the Taiwanese put proportionately more fishing effort into an area north and east of the Wessel Islands, where they targetted on tuna. Both the CPUE and body length of shark (principally Carcharhinus tilstoni) and mackerel (principally Scomberomorus commerson) declined over the history of the fishery, which suggests over-exploitation. However tuna (Thunnus tonggol) appeared to be less affected by fishing pressure. No seasonal pattem in CPUE was evident for shark, while the CPUE for tuna and mackerel was generally highest between June and September. The catch rates were highly variable, partly because C. tilstoni tend to form groups of predominantly one sex or size range.

Introduction

The Taiwanese operated a pelagic gill-net fishery in the offshore waters of northern Australia from the early 1970s until mid-1986. They fished from the North West Shelf to north of the Gulf of Carpentaria, but effort was concentrated north of the Wessel Islands. Shark, longtail tuna (Thunnus tonggol), and mackerel (Scomberomorus spp.) were the target species, with shark comprising about 80% of the catch by weight. Of the sharks, two species, Carcharhinus tilstoni (Whitley) and C. sorrah (Valenciennes in Müller \& Henle), accounted for about 60% of the total catch by weight. The product was marketed in Taiwan, chiefly for domestic consumption, although some was exported.

Before management measures were introduced, the annual catch of the Taiwanese fishery in the area between northem Australia and Papua New Guinea averaged about 25000 t live weight. When the Australian Fishing Zone (AFZ) was declared in 1979, the fishing area and vessel numbers were restricted, and a catch quota of 7000 t (equivalent to 10000 t live weight) was imposed.

In 1986, the Australian Govemment limited the length of gill-nets to 2.5 km to reduce the by-catch of dolphins. As the Taiwanese were using nets that averaged 16 km in length, their fishing operations became uneconomic and they were effectively excluded from the AFZ.

In the early 1980s a small Australian gill-net fishery for shark developed in inshore waters of the Northern Territory, and was subsequently extended to northern Western Australia and northern Queensland. Annual landings from 1984-1988 fluctuated from about 100 to 450 t (liveweight). The species composition of this catch is similar to that taken offshore by the Taiwanese. Most of the catch is sold through the Victorian market for domestic consumption, with annual catch fluctuations reflecting marketing problems rather than shark abundance. More recently, following bans in Victoria on many species of northern shark because of high mercury levels, attempts have been made to establish export markets.

Because of the importance of the Taiwanese and Australian fisheries, considerable research effort was directed at developing and managing the pelagic stocks. The population structure, reproductive biology, diet, age and growth of C. tilstoni and C. sorrah were described by Stevens and Wiley (1986) and Davenport and Stevens (1988); and their stock structure was described by Lavery and Shaklee (1989). The biology of some other sharks taken by the fishery was documented by Stevens and Lyle (1989). Aspects of fishery development and marketing were examined by Lyle (1984), Lyle and Timms (1984), Lyle et al. (1984) and Welsford et al. (1984).

Table 1. Dimensions of the gill-nets of the Taiwanese fishery (derived from measurements taken by Commonwealth Observers aboard the vessels in the AFZ).

Year	Net length (km)		Net depth (m) Average	Surface area (m²)
	Mean	Range		
1979	7.5	$3.5-10.8$	15	112,500
1980	7.5	$3.6-10.8$	15	112,500
1981	8.6	$6.8-10.4$	15	129,000
1982	10.2	$6.0-18.5$	16	163,200
1983	12.6	$8.8-18.5$	17	214,000
1984	12.8	$7.4-18.5$	18	230,400
1985	14.6	10.6-18.5	19	277,400
1986	15.8	$7.1-18.5$	20	316,000

After the Taiwanese gill-netting off northem Australia ended, the stocks of shark, mackerel and tuna were lightly exploited in the AFZ until late 1989, when Taiwanese longliners started fishing in the zone. Observers estimate that in the first year of operation, up to 3,500 t of shark and other fish would have been taken. However, gill-netting is continuing outside the AFZ, presumably on the same stocks; the impact of this fishing on the stocks within the AFZ is unknown.

Analysis of the commercial and research data on the Taiwanese gill-net fishery that operated in the AFZ from 1974 to 1986 gives us invaluable information on the response of the stocks to fishing pressure, pattems in the distribution and abundance (temporal and spatial) of the stocks, and an insight into the dynamics of the Taiwanese fishing strategy. Such information provides a basis for future management should this become necessary. This report provides an analysis of the catch, effort and catch-composition data from the Taiwanese fishery.

Materials and Methods

Catch-and-effort statistics

Characteristics of the Taiwanese fishery

Vessels

The Taiwanese gill-netters were steel vessels of 160 to 380,30 to 45 m long. They included converted Taiwanese longliners and stem trawlers as well as purpose-built gill-netters. Millington and Walter (1981) give a general description of the layout of the vessels.

Fishing gear and operations

The gill-nets were of multifilament nylon with a diagonal stretched mesh between 14.5 and 19.0 cm . The net lengths increased from about 8 km in 1979 to about 16 km in late 1985, with some nets longer than 20 km . The nets fished at about 15 m depth (range $8-18 \mathrm{~m}$) in 1980 to about 20 m in 1986 (Table 1). For every kilometre of headline about 50 polystyrene buoys (30 cm diameter) were attached. The buoy lines were usually $1-2 \mathrm{~m}$ long, but could be varied to fish the net from surface to sub-surface. Between late 1983 and early 1985, there was a transition to smaller torpedo floats attached directly to the headline, effectively bringing the net to the surface. The net was hauled by a power block, the efficiency of which was upgraded when longer nets were used. The nets were set just before dusk, setting taking $1-2 \mathrm{~h}$. They were allowed to drift until hauling began around midnight, which generally took

Fig.1a Area of Taiwanese gill-netting in northern Australian waters. Each dot represents a single gill-net set. This data comes from logbook records 1979-1986.

Fig.1b Map shows the three areas referred to in our analyses of catch statistics: a Western area, Arafura and Wessels.

6-9 h but could take as long as 16 , depending on the size of the catch. Details of the fishing operation are provided by Millington and Walter (1981).

Processing of the catch

Tuna and mackerel were stacked whole in the freezer; on some vessels the caudal fins were trimmed first. Sharks were trunked, gutted and had their fins removed before freezing. Fins from large sharks were retained and dried in the sun.

Areas fished

Before 1978, the Taiwanese fished throughout northem Australian waters, to within 12 nautical miles (22 km) of the coast, from the North West Shelf to Cape York. In August 1978, the Gulf of Carpentaria was closed to foreign fishing. With the introduction of the AFZ in November 1979, the permitted fishing area included waters from the Monte Bello Islands to the westem end of Torres Strait and at least $12 \mathrm{~nm}(22 \mathrm{~km})$ from the Australian coast (Fig.1a). The gill-netters were excluded from an area around Melville Island and from within 25 nm (46 km) off Eighty Mile Beach (Western Australia) (Fig.1a). In November 1980, the area of exclusion off Amhem Land and the Wessel Islands was increased to between 30 and 40 nm (56 and 74 km) from the coast, and Joseph Bonaparte Gulf was closed to Taiwanese gill-netters. In August 1983, all vessels were restricted to grounds north of $18^{\circ} \mathrm{S}$.

Based on the distribution of Taiwanese effort between 1979 and 1986, we defined three main fishing areas for the purpose of our analyses: a Westem area $\left(10.5^{\circ}\right.$ to $17^{\circ} \mathrm{S}, 121^{\circ}$ to $\left.130^{\circ} \mathrm{E}\right)$, Arafura area $\left(9^{\circ}\right.$ to $12^{\circ} \mathrm{S}, 133^{\circ}$ to $\left.136.5^{\circ} \mathrm{E}\right)$ and a Wessels area $\left(9^{\circ}\right.$ to $11^{\circ} \mathrm{S}, 136.5^{\circ}$ to $\left.139^{\circ} \mathrm{E}\right)$ (Fig.1b).

Pre-AFZ catch and effort data

Catch, and some effort, data from 1974-79 are given by Walter (1981); the 1977 and 1978 figures are from Liu (1985). No effort data were given for 1974-76, although it was recorded that 67 vessels fished in 1976. The effort for 1976 (Fig. 2) was estimated by assuming that each vessel made 152 sets each year (based on post-AFZ logbook records). It was assumed that effort in 1975 was the same as in 1976. All these data include catches taken from outside the AFZ and require adjustment to make them comparable with post-AFZ information.

The proportion of catch and effort falling within the $200 \mathrm{~nm}(371 \mathrm{~km}) \mathrm{AFZ}$ for 1977 and 1978 was calculated from data reported by 5° square off northem Australia by Liu (n.d.). The proportion of available fishing area (taking the land into account) that lies within the

Fig. 2(a) Annual total catch (tonnes), (b) effort (km h) and (c) CPUE ($\mathrm{kg} / \mathrm{km} \mathrm{h}$) of the
Taiwanese gill-net fleet in northem Australian waters between 1974 and 1986. N.B.
Figures for 1979 and 1986 are for part of the year only, so are not linked to other catch and effort data.

Australian 200 nm limit was estimated subjectively. It was assumed that effort and catches were spread evenly over each 5° square. Calculations indicated that, in $1977,52 \%$ of the catch and 54% of the effort was within the 200 nm limit. For 1978 , these values were 27% and 25%, respectively. Walter's (1981) figures were then adjusted by these percentages, assuming the proportion of catch and effort in the AFZ from 1974-76 was the same as in 1977 and the proportions in 1979 were the same as in 1978 (Table 1). The effort from 1975 to 1979 was adjusted to km h assuming a net length of 7.5 km , net depth of 15 m and a fishing time of 15 h (Table 2).

Post-AFZ catch-and-effort data

Catch quotas and vessel numbers

A quota of 7000 t a year was allocated for 30 gill-netters from November 1979 to October 1982, under a bilateral agreement. This level of quota was determined in early 1979 by a Northem Fisheries Committee Working Group. Estimates of biomass in the area fished were based on the 1975 and 1976 Taiwanese catch, at rates of exploitation of 0.5 to 0.75 . Gulland's (1971) equation $0.5 \mathrm{MB}_{\mathrm{o}}$ was used to estimate a maximum sustainable yield (MSY) of 5345 t . Because the calculations of MSY were biased conservatively in a number of areas, the quota was initially set at 7000 t . It was set at 5250 t for a nine month period from November 1982, and reduced to 5000 t for the 12 months from August 1983 to allow for pending joint-venture proposals. Eight joint-venture vessels were allocated a 2000 t quota from October 1983 to August 1984.

As a result of pressure from conservation groups over the dolphin catch, the number of bilateral vessels was reduced to 15 longliners (of which 11 were also licensed as gill-netters) from August 1985 to July 1986. These 15 bilateral vessels were allocated 2700 t of quota. Six joint-venture vessels received a 1500 t quota.

Data sources

The three main sources of catch-and-effort data for the Taiwanese fishery from 1979 are AFZ logbooks, radio reports and annual reports produced by the National Taiwan University.
(i) AFZ logbooks

In 1980, a logbook system was implemented by the Australian Department of Primary Industry to recover data by individual set. The information recorded included logtype, boat code, date, net specifications, fishing times, water depth, total catch and catch components of

Table 2 Catch-and-effort data for the Taiwanese gill-net fishery in Australian waters. (Pre-AFZ figures adjusted from Walter (1981); logbook figures based on all records but with effort corrected to km h . See methods section for adjustments and corrections applied.)

Year	Pre-AFZ		AFZ logbook	
	Catch (t)	Effort (km h)	Catch (t)	$\begin{aligned} & \text { Effort } \\ & (\mathrm{km} \mathrm{~h}) \end{aligned}$
1974	321.4	-	-	-
1975	8997.6	618637.5	-	$=$
1976	6455.3	618637.5	\checkmark	-
1977	9970.7	618075.0	-	=
1978	5528.2	347400.0	-	-
1979*	2468.6	166837.5	813.5	63166.4
1980	-	-	5831.1	482052.2
1981	$=$	-	6694.7	568819.8
1982	-	-	5624.1	636323.8
1983	-	-	7589.9	1179812.0
1984	$=$	-	6544.2	908567.6
1985	$=$	-	2929.5	309106.8
1986	-	-	2111.1	309364.0

* The 1979 pre-AFZ data are for January to June and the logbook data for November and December.
the major commercial groups (shark, tuna and mackerel). Three logtypes were used: GN01, GN02 and GN04 (GN03 was not used). GN01 recorded effort as hours (x 100) from the start of the set to the start of the haul. GN02 recorded effort as hours (x 100) from the start of the set to the end of the haul. GN04 recorded effort as the number of sets, each record representing one set. The Taiwanese reported shark as processed weight. The department had intended that live weight be recorded; the mistake was not discovered until the logbook system had been in operation for some time. Figures for the total catch and for the components of the catch were recorded as weights on the GN01 and GN04 logtypes. On the GNO2 logs, while the total catch estimate was recorded as a weight, the catch components could be recorded as either weight or number. The logbook data were stored on the Australian Fisheries Zone Information System (AFZIS).
(ii) Radio reports

The Taiwanese were also required to provide a radio report every six days giving their position and catch for the previous six days. Logtype (RR01), boat code, date, time (at which report was sent), position (at the time of reporting), effort (as the number of sets), total catch (kg) and the catch breakdown (shark, tuna and mackerel) were reported. The catch information in the radio reports was expected to correspond with that in the logbooks. The radio report data were also stored on the AFZIS database.
(iii) Taiwanese Annual Reports

Data from the logbooks kept independently by the Taiwanese are summarised in reports of the National Taiwan University (1980-1985). Catch and effort statistics are presented by half degree squares for 3 monthly periods between 1980 and 1985. Effort is expressed as 100 pcs (panels) x 10 h from 1980 to 1983 and as 1000 pcs x h from 1984 to 1985. We were not able to ascertain whether the unit of time (hours) included setting or hauling of the net.

(iv) AFZ Observers

In addition to these main sources of catch and effort data, the Australian Fisheries Service placed observers onboard Taiwanese vessels, to collect information on net specifications, catch composition and catch weight. All these data were not collected from every boarding. Of the observer boardings, 40% were in the Arafura Sea; the remainder were from around the Wessels Islands and in the Timor Sea and North West Shelf. About 2\% of the total gill-net sets were covered by the AFZ Observers.

Data treatment

Catch data

To verify the catch-and-effort information and to determine which data set would be most suitable for analysis, we compared the different sets of catch data. Catch data from the AFZ logbooks and radio reports, and Taiwanese annual reports were examined by three monthly intervals and by year (Table 3 \& Fig. 3). Figure 3 shows reasonable agreement between the data sets. The reasons for disparities include mis-reporting of catch, confusion between the different versions of the AFZ logbook, errors in estimating and recording catch weight, and errors in transcribing the written logs to computer file.

It was hoped to use observer estimates of catch as an independent check on the logbook data. We compared observer records and Taiwanese catch records (AFZ logbook entries) for 39 sets in 1985/86. Although anecdotal information suggested that when observers were onboard, the Taiwanese often entered the observer's catch figures in the AFZ logbooks, we found good, rather than exact, agreement between Taiwanese and observer catch estimates ($\mathrm{R}=0.86, \mathrm{p}<$ 0.001). In only two instances did the estimates coincide.

As the radio report data were derived from the AFZ logbooks, and since the logbook data were on a finer time and position scale than those in the Taiwanese annual reports, it was decided to use the AFZ logbook data for all analyses.

The logbook data were corrected for obvious errors such as repetition of records, typographical and transcription errors and unrealistic catch figures. On the GN02 logtypes, catch components could be recorded as either a weight or as numbers. Where the shark, tuna and mackerel catches were recorded as the number of individuals, these had to be converted to weights to make the data compatible. Average weights for shark (4.4 kg), tuna (2.9 kg) and mackerel (4.4 kg) were derived by comparing radio report records, where all catch components were recorded as weight, with the corresponding logbook records where catch components were in numbers. These average weights were checked against independently derived observer data.

Logbook records were examined for consistency between the reported figures for total catch and the reported figures for the shark, tuna and mackerel components, using a table showing the distribution of the ratio of the sum of the weights of the catch components to the total catch weight. For those entries where the total catch and its components had been recorded as weights, we retained all records with a ratio of $0.9-1.0$, which allowed for a trash component

Table 3. Annual catch data from the Taiwanese gill-net fishery in Australian waters.

* These figures are extracted from the Taiwanese Annual Reports, which present data by half-degree squares. Catch figures include all half-degree squares within the AFZ and through which the AFZ boundary passes.

Fig. 3 Catch data from radio report database, logbook database and Taiwanese annual reports by three-monthly period, Jan 1980-June 1986.
(catch other than retained shark, tuna or mackerel) of up to 10%. Observers noted that the trash component of Taiwanese gill-net catches rarely exceeded 10%. If the weight of the catch components exceeded the total catch - that is if the ratio was greater than 1.0 - then that record was discarded. This retained 27% of the records where catch components were recorded as weights.

For many of the GN02 entries, it was apparent from the clustering of records around certain ratios that columns had been transposed (weights recorded as numbers or vice versa) when the data were transferred from logbook to computer. One cluster of records, where the catch components were recorded as weights, occurred around the ratio 0.25 . Since the average weight of captured fish is about 4 kg , this suggested that the value for the sum of the catch components was about four times lighter than it should have been and that numbers had been placed in the weight column.

To rectify this situation, we assumed that records where weights had been recorded and where the ratio fell below 0.9 , should have been numbers, transposed the columns accordingly, and converted the numbers to weights using our conversion factors. These records were then accepted if the new ratios were within the range 0.9-1.0.

The other cluster of records appeared where the catch components were recorded as numbers, around the ratio of 4.0. In this case, we assumed that the numbers should have been weights and corrected them accordingly, again accepting the new ratios in the range of 0.9-1.0. With the GN01 and GNO4 logtypes, we retained 77% of the records by imposing these constraints. The GN02 logtypes where catch components were recorded as weights were treated in the same way.

The GN02 logtypes where catch components were recorded as number of individuals were first converted to weights. The resulting ratios of the sum of the catch components to total catch were normally distributed about the mode (ratio 1.0). To allow for a trash component and for a weight conversion error we accepted records to 0.25 either side of the mode (ratios $0.75-1.25$). This resulted in retention of 69% of the GN02 records where catch components had been recorded as number of individuals.

Overall, we retained 71% of all records (17,234 out of 24,203 in the database). Because 29% of the records were removed, the analyses of catch, effort and CPUE presented in this report reflect trends rather than absolute values.

Net data

Although the logbooks contained information on net length and depth, few of these data had been entered on AFZIS and so were not available to us in this study. Independent information on net specifications collected during observer boardings showed considerable increases in net length and depth over the history of the fishery. Average net lengths increased by more than 100% between 1979 and 1986 (Table 2). Observers estimated the net lengths by either counting the number of net floats and multiplying by the inter-float distance, or by calculating the distance from the vessel's speed and the time it took to steam along the net Average net depths increased from 15 m in 1979 to 20 m in 1986. However, observers recorded considerable variation in net depths between gill-netters, and sometimes even within a single vessel in one year.

Effort data

Effort figures on AFZIS were recorded in different units (number of sets or fishing time) in the different logbook types. As GN01 logtypes did not record hauling times they were adjusted by multiplying by a correction factor of 1.93 . This correction factor is the average ratio of GN02 effort to GN01 effort during the period in which these logtypes overlapped. GNO4 records were adjusted by allowing 15 h for each set; this is the average fishing time derived from GN02 records. While net length increased over the history of the fishery, this was accompanied by a parallel increase in power block efficiency and observers considered that hauling time did not alter significantly. Effort figures were standardised to kilometre hours (km h) according to the formula:

$$
\text { effort }(\mathrm{km} \mathrm{~h})=\text { fishing time }(\mathrm{h}) \mathrm{x} \text { net length }(\mathrm{km}) x \text { net depth }(\mathrm{m}) / 15 \mathrm{~m},
$$

where fishing time is from the start of the set to the end of the haul and net lengths and depths are the annual values from Table 2. The divisor (15) used to standardise for net depth was the average net depth in 1979. Our effort figures are an approximation only, as they use an average value for net length for the calendar year (Table 2) and are not weighted according to the number of sets made with nets of different lengths as this information was not available to us.

Catch composition

Species composition

Species composition data were collected routinely by observers, who were trained in identifying pelagic sharks and teleosts and were accompanied initially by scientific personnel. Length-frequency data were collected routinely for the main commercial species, and usually for all other retained species. The numbers of each species were counted, with counts for sharks being separated by sex. Fish and sharks were measured to the nearest centimetre as fork lengths (FL), or in some cases for sharks, as total lengths (TL). Fork lengths were converted to total lengths using length/weight relationships derived previously (Rohan et al. 1981; Stevens and Wiley 1986; Stevens and Lyle 1989) or in some cases, in this study or by the observers. For small catches, all fish were counted and measured, while large catches were sub-sampled.

Only certain species or categories were analysed, partly because they were the most important commercially and partly to avoid mis-identification of the less common or less distinctive species. Because of the high turnover in observers it was difficult to maintain a high level of taxonomic expertise. The main commercial species or species groups were: C. tilstoni, C. sorrah, the hammerhead sharks (Eusphyra blochii, Sphyrna lewini and S. mokarran), T. tonggol and the Spanish mackerel group (S. commerson, S. munroi and S.fasciatum). Species composition was calculated as the proportion, by number, of the total catch.

Size composition

To describe changes in the proportion of mature sharks over time, we attempted to take account of the effects of both year and month. Regression models were fitted to the proportions of mature sharks in each of the 41 months for which data were available (between April 1981 and April 1986). A requirement of regression is that all observations have equal variance, so the data were transformed (using arcsine [$\sqrt{ }$ proportion], a standard transformation) to stabilise the variance of the proportions (Snedecor and Cochran 1980). As the unequal sample sizes in different months also affect the variances of the observed proportions, the regressions were weighted according to the sample size. The fitted models allowed for monthly effects within years, and for changing levels in the proportions of mature sharks over the years. Data for both sexes were analysed together, with a factor included for sex. Because fewer than 12 months were represented in each year, interactions between the factors could not be fully tested. However, two-factor interactions were tested within the limits of the available data.

Catch variability of sharks

Aggregations

Two sets of research data were used to investigate the catch variability of sharks, which is attributable in part to their forming aggregations (the term aggregation is used in preference to school, as schooling implies an orientation of the fish). Both sets recorded the length and sex of the captured sharks.
(i) A series of gill-net modification trials designed to investigate methods of decreasing the dolphin catch in gill-nets, was carried out on board the commercial Taiwanese gill-netter Chyun Fure No. 7 (Hembree and Harwood 1987).

One experiment, in 1985, assessed the effect of metallic bead chain woven into panels of the net. The multifilament, $14-15 \mathrm{~cm}$ stretched mesh-size net consisted of 14 panels, each panel almost 1 km in length. Altemate panels were modified with bead chain. Half the net was set off the stem of the vessel, the other half off the bow.

A second experiment, in 1986, examined the effects of submerging the net. During each fishing operation, two nets of equal length, depth (15 m) and mesh size ($14-15 \mathrm{~cm}$) were fished, one with the headline set on the surface, the other with the headline set 4.5 m below the surface. Each net consisted of five panels, each 975 m long; one net was set off the stem, the other off the bow.
(ii) Gill-nets used for research fishing in the Northem Pelagic Program (Stevens and Church 1984) were of 15 cm stretched mesh monofilament, 500-1000 m long and 10 m deep, and were set within 3 m of the surface. The net, which was set and hauled from a hydraulically powered drum onboard the FV Rachel (Lyle et al. 1984), was usually set for less than 30 mins prior to hauling.

Environmental effects

Data collected during the 1985 and 1986 gill-net modification trials were used to determine the possible effects of various environmental variables and fishing strategies on the number of sharks and fish caught. The variables recorded were: wind direction, wind speed, set direction, light (light availability on a scale of 0 for no light to 4 for maximum light), moon phase (on a scale of 0 for no moon, to 8 for full moon), time at start of set, time at start of haul, sea swell, sea depth, and surface temperature. The data were analysed using multiple regressions with the shark (or fish) catch as the dependent variable. Log-transformations were
used to normalise the catch data.

Logbook data were examined for possible effects of depth on the catches of shark, tuna and mackerel. Because the catch data were strongly skewed and dominated by the large catches, a linear regression was performed on log-transformed data. About one third of the tuna and mackerel data were zero catches, so for these species groups, the non-zero data only were analysed.

Results

Catch-and-effort statistics

The annual total catch (tonnes), effort (km h) and CPUE ($\mathrm{kg} / \mathrm{km} \mathrm{h}$) for the Taiwanese gill-net fleet from 1974 to closure of the fishery in 1986 are shown in Figure 2. The pre-AFZ component (1974-78) is based on the adjustments to Walter's (1981) figures (see methods), and the post-AFZ component is based on all the logbook records on the database. In our analyses we refer to calendar rather than quota years, because of the nature of the data available to us, and the variability in quota periods.

The total catch was very small during the first year of operation (Fig. 2 a). It rose to between 6,500 and 10,000 t between 1975 and 1977, when there were few area constraints. After closure of the Gulf of Carpentaria in August 1978, the catch dropped to 5,500 t. With declaration of the AFZ in November 1979 and introduction of a 7000 t quota, the catch fluctuated between about 5,500 and $8,000 \mathrm{t}$ from 1980 to 1984, before dropping to around $3,000 \mathrm{t}$ in 1985.

Annual effort was as high as $620,000 \mathrm{~km} \mathrm{~h}$ in the pre-AFZ period when up to 67 vessels were fishing (Fig. 2b). With vessel numbers limited to 30 after declaration of the AFZ, effort rose from about $500,000 \mathrm{~km} \mathrm{~h}$ in 1980 to $1,200,000 \mathrm{~km} \mathrm{~h}$ in 1983. Subsequently, effort declined as the number of vessels declined fishing towards the end of the fishery.

The CPUE declined from $16 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1977 to $6.5 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1983, before showing a slight rise in the last years of the fishery (Fig. 2c).

The remaining analyses of catch, effort and CPUE were carried out on the proportion of the data (71% of available records) that satisfied the criteria outlined in the Materials and Methods section (Data Treatment). Annual total catch, effort and CPUE from 1979 to 1986 (Fig. 4) show the same trends as the total data. Between 1982 and 1983 effort nearly doubled; this

Fig. 4 Edited logbook figures for (a) annual total catch (tonnes), (b) effort (km h) and (c) CPUE ($\mathrm{kg} / \mathrm{km} \mathrm{h}$) of the Taiwanese gill-net fleet in northem Australian waters between 1979 and 1986. N.B. Figures for 1979 and 1986 are for part of the year only, so are not linked to other catch and effort data.
was due to a 31% increase in the surface area of the nets and an increase in the number of sets.

When total catch is partitioned into shark, tuna and mackerel, Fig. 5a shows that the shark catch changed little from 1980 to 1983, then declined. The tuna catch peaked in 1983-84, before declining sharply (Fig. 5b). Mackerel catches fluctuated widely (Fig. 5c), although catches were much smaller than shark or tuna catches. CPUE for shark and mackerel (Fig. 5d \& f) was highest early in the history of the fishery and then declined, although shark recovered somewhat after 1984, while tuna CPUE increased progressively until 1984 (Fig. $5 e)$ and then declined.

Different trends in total catch were apparent in the three areas. In the Western area total catch was highest in 1980, before showing a general decline until 1985 (Fig. 6a). In the Arafura, the catch increased until 1983, and then declined (Fig. 6b) while in the Wessels it rose until 1984, and then declined (Fig. 6c). The pattem of effort was similar in the Western area and Arafura generally increasing until 1983, and then declining. In the Wessels, effort peaked one year later in 1984 and there was a proportionately larger increase in effort between 1980 and 1984 than there was between 1980 and 1983 in the other two regions (Fig. 6d, e \& f). CPUE showed a relatively rapid decline in all areas from 1979 to 1983, after which it either levelled off or showed a slight rise (Fig. $6 \mathrm{~g}, \mathrm{~h} \& \mathrm{i}$).

Catch and CPUE were examined by area and catch category (Fig. 7). The shark catch generally declined from 1980 until the end of the fishery in the Western area, while in the Arafura it remained relatively constant between 1980 and 1983 and then declined. The relatively smaller catches in the Wessels fluctuated considerably, increasing after 1982 (Fig. $7 \mathrm{a}, \mathrm{b} \& \mathrm{c}$). Shark CPUE was similar in all three regions: a decline followed high initial values, and then a slight rise (more pronounced in the Western area) towards the end of the fishery (Fig. 7e, f \& g). Tuna CPUE in the Western area rose rapidly between 1979 and 1980, remained high in 1981 and then declined until 1983, after which it rose slightly. In the Arafura, tuna CPUE rose rapidly between 1979 and 1980 and remained high until 1984, before declining. In the Wessels area, CPUE rose sharply between 1982 and 1984, after which it dropped sharply (Fig. 7j, k \& l). The mackerel catch in the Western area and Arafura declined overall, while in the Wessels, the catches were low until 1982 and then increased sharply until 1984 (Fig. 7m, n \& o). Mackerel CPUE generally declined from high initial values in the Arafura and Wessels, but in the Western area a higher CPUE value was recorded near the end of the fishery (Fig. 7p, q \& r).

Trends in total catch, effort and CPUE on a monthly basis are shown in Fig. 8a, b \& c.

Fig. 5 Catch and CPUE by species group in the AFZ: (a) shark catch, (b) tuna catch; (c) mackerel catch ; (d) shark CPUE; (e) tuna CPUE; (f) mackerel CPUE. Figures for 1979 and 1986 are for part of the year only. The vertical scale for mackerel differs from those for shark and tuna.

Fig. 7 Shark (a-f), tuna (g-l) and mackerel (m-r) catch and CPUE by year in the Westem Area, Arafura and Wessels. Vertical scales are not all the same for the different species groups.

Fig. 8 (a) Catch (tonnes), (b) effort (km h), and (c) CPUE ($\mathrm{kg} / \mathrm{km} \mathrm{h}$) in the AFZ by month. Error bars show (half) one standard error.

However, the variance about the means was very high, with the 95% confidence limits overlapping between all months. Any pattern would be likely to reflect factors associated with the quota year. The access period started in either August or November and finished in July or October. Vessel effort tended to be high at the beginning of the quota year from September to October and again in January to March, and lower during the remainder of the year as the vessels filled their quota.

Analyses by month were carried out on the total catch, effort and CPUE by area, on the shark, mackerel and tuna catch and CPUE within the AFZ, and on the shark, tuna and mackerel catch within the three areas. However, the variances about the means were so high that significant trends were not apparent in the data.

When the shark, tuna and mackerel CPUE were examined by month within the three areas, the variances were somewhat lower. To test for a seasonal difference in these CPUE data, an analysis of variance table was constructed using regression analysis. Effort values in the analysis were weighted to obtain the appropriate CPUE figures. The analysis assumes that there is no interaction between year and month, i.e. that the response over month is the same for each year. The validity of this assumption was examined by plotting the monthly CPUE data for each year.

The CPUE from the three areas was significantly different for shark over years, but not over months (Table 4; Fig. 9a, b \& c). It was significantly different for tuna between years and months in the Wessels and Arafura, and between years in the Western area (Table 4; Fig. 9d, e \& f). Tuna CPUE was highest between June and September in both the Arafura and Wessels (Fig. 9e \& f). The CPUE for mackerel was significantly different between years in the Arafura and Wessels, and between months in the Wessels and Western area (Table 4; Fig. 9g, h \& i). CPUE in the Wessels was highest between June and September (Fig. 9i).

Catch composition

Species composition

Two sharks (C. tilstoni and C. sorrah), and one fish (T. tonggol), comprised about 70% by number of the Taiwanese gill-net catch in the AFZ. Mackerel, which together with sharks and tuna were a target group, represented about 5% of the catch by number (Table 5). C. tilstoni accounted for a considerably higher proportion (54\%) and C. sorrah a considerably lower proportion (10%) of the catch in the Wessels area, while the proportion of T.tonggol was highest in the Arafura (21\%) (Table 5). The edited logbook data indicate that sharks, tuna

Table 4. ANOVA tests for annual and seasonal differences in CPUE by catch component and area. (df is degrees of freedom; * $\mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$).

Area	Year			Month		
	F	df	p	F	df	p
Sharks						
Western	11.54	7,47	**	0.54	11,47	ns
Arafura	29.93	7,59	**	1.92	11,59	ns
Wessels	19.10	7,54	**	1.45	11,54	ns
Tuna						
Western	3.20	7,47	**	1.81	11,47	ns
Arafura	2.79	7,59	*	2.61	11,59	**
Wessels	12.63	7,54	**	5.53	7,54	**
Mackerel						
Western	1.49	7,47	ns	2.35	11,47	*
Arafura	4.52	7,59	**	1.58	11,59	ns
Wessels	7.54	7,54	**	4.67	11,54	**

Fig. 9 Shark CPUE (a-c), tuna CPUE (d-f), and mackerel CPUE (g-i) by month in the Western Area, Arafura and Wessels.

Table 5. Species composition of the Taiwanese gill-net catch (\% by number: based on observer data between 1981 and 1986).

Species Group	$\begin{gathered} \mathrm{AFz} \\ (\mathrm{n}=118154) \end{gathered}$		Western$(\mathrm{n}=12701)$		Arafura$(\mathrm{n}=55199)$		Wessels$(\mathrm{n}=32367)$	
	\%	SE	\%	SE	\%	SE	\%	SE
C. tilstoni	39.4	1.4	35.7	2.8	30.1	1.7	53.7	3.3
C. sorrah	16.3	0.8	16.6	1.9	20.2	1.3	10.2	1.2
Harnmerheads	7.0	0.4	5.9	0.7	7.9	0.7	6.5	0.7
T. tonggol	15.1	1.2	7.8	1.8	21.2	2.1	12.6	2.4
S. commerson	3.0	0.3	2.3	0.7	3.4	0.4	2.9	0.6
Scomberomorus spp.	4.9	0.5	4.0	1.0	5.8	0.7	4.7	0.9

and mackerel comprised about $63 \%, 26 \%$ and 6% respectively of the catch by weight in the AFZ.

When the species composition data for the AFZ were examined by year, the proportion of C. tilstoni in the total catch was lower in 1982-1984 than in 1981, 1985 and 1986 (Fig. 10a). The differences between years 1982, 1983 and 1984 were small. The 1986 data may be biased, since there were far fewer sets monitored by observers (Appendix 1) than in other years. The proportions of C. Sorrah (Fig. 10b) and of the hammerhead shark group in the catch did not vary greatly over the period monitored (13.6-17.5\% and 3.4-8.4\%, respectively). The proportion of T. tonggol in the catch was higher in 1982 and 1983 (22.2% and 20.9% of the catch respectively), while years 1981, 1984 and 1985 were lower (7.5-11.9\% (Fig. 10c)). The proportion of mackerel in the catch was highest in 1985 (5.9\%) and lowest in 1981 (2.8\%), excluding the poorly sampled 1986 year (Fig. 10d).

The annual species composition data, separated by area, are shown in Fig. 11. With a few exceptions, the proportions of the major species groups in the catch varied little over the years in each area, and in most cases the standard errors associated with the observations were large and overlapped between years. In the Arafura, and particularly the Wessels area in 1984, the proportion of C. tilstoni in the catch appeared to be lower, and the proportion of mackerel higher (Fig. 11e, h, i \& 1). In the Wessels, T. tonggol also comprised a higher proportion of the catch in 1984 and C. sorrah comprised a smaller proportion of the catch between 1983 and 1985 (Fig. 11j \& k). Data for the Western area are limited to a small number of sets monitored over a three-year period; no differences in catch category proportions are apparent between years because of the large standard errors associated with the data (Fig. 11a to d).

Examination of the species composition data for the AFZ by month suggests that for 10 months of the year there was little change in the proportion of C. tilstoni in the catch (Fig. 12a). May and July are the outstanding months. The high value for May (75\%) is probably a sampling artifact: there was only one year (1981) in which data were collected in May, and then only 5 sets were monitored, all in the Wessels area. Data for July (21 sets over three years, mostly in the Arafura, and to a lesser extent, the Western area) suggest that C. tilstoni was less well represented at this time of year, making up 15.8% of the catch compared with $28.9-47.1 \%$ in other months (excluding May). Over the year, there was little change in the proportion of C. sorrah in the catch, with the standard errors overlapping in all months apart from August (8.3\%), February (22.1\%) and March (21.4\%) (Fig.12b). There was very little change in the monthly proportions of hammerheads in the catch. The proportion of T. tonggol in the catch ranged from a low in April (7.6\%) to a high value July (33.3\%), with small differences between the other months (Fig. 12c). There are not

Fig. 10 Percentage by number of the major components of the Taiwanese gill-net catch by year in the AFZ: (a) C. tilstoni, (b) C. sorrah, (c) T. tonggol, (d) Scomberomorus spp., from data collected by observers. Error bars indicate (half) 2 standard errors.

Fig. 11 Percentage by number of the major components (C. tilstoni, C. sorrah, T. tonggol, Scomberomorus spp.) of the Taiwanese gill-net catch by year in the Westem area (a-d), Arafura (e-h), and Wessels (i-l) from data collected by observers. Error bars indicate (half) 2 standard errors.

Fig. 12 Percentage by number of the major components of the Taiwanese gill-net catch by month in the AFZ: (a) C. tilstoni, (b) C. sorrah, (c) T. tonggol, (d) Scomberomorus spp. from data collected by observers. Error bars indicate (half) 2 standard errors.
sufficient data for May to suggest any trend. The monthly proportions of mackerel in the catch ranged from $0-17.6 \%$ and were highest in July and August (Fig. 12d). There were insufficient data for May to be able to observe any trend.

The monthly species composition data, separated by area, are shown in Fig. 13. Data for the Western area were few; but there is some indication from Fig. 13 (a to d) that the lowest proportions of C. tilstoni were in July and of C. sorrah in August, while the highest proportions of T. tonggol were in July and of mackerel in August. In the Arafura, the proportion of C. tilstoni and C. sorrah in the catch was low in July, while T.tonggol and mackerel comprised a higher proportion of the catch at this time (Fig.13e to h). The proportion of hammerheads in the catch was similar throughout the year. In the Wessels area, the proportion of C. tilstoni in the catch was generally highest from February to June and lowest from August to January, while the reverse was apparent for T. tonggol and mackerel (Fig. 13i, k \& 1). No monthly trend in catch proportions was apparent for C. sorrah (Fig. 13j) or hammerhead sharks.

Sex composition

The sex composition of only the shark catch was examined (as sharks can be sexed externally); data were only sufficient for examination of C. tilstoni and C. sorrah.

Chi-square analysis showed a significant difference in the sex ratio of C. tilston i caught in all years except 1982 (Table 6a). There were proportionately more males in 1981 and from 1983 to 1985, with more females in 1986. No trend in sex ratio with year was apparent. Significantly more C. sorrah males were caught in 1982, 1983 and 1985 and significantly more females in 1981 and 1984. In 1986, the sex ratio was not significantly different from 1:1. No trend in sex ratio with year was evident (Table 6a).

When data from all years were pooled, C. tilstoni did not show any trend in sex ratio with month, while in 5 of the 12 months there was no significant difference from a 1:1 ratio (Table 6b). C. sorrah, showed a general tendency towards increasing numbers of females from March through to December (Table 6b). However, this pattern was mainly a reflection of the 1983 data and there was not sufficient information from other years to confirm the trend shown by the pooled data.

Size composition

Length-frequency distributions for C. tilstoni, by sex, taken from the northern AFZ from

Fig. 13 Percentage by number of the major components (C. tilstoni, C. sorrah, T. tonggol, Scomberomorus spp.) of the Taiwanese gill-net catch by month in the Western area (a-d), Arafura (e-h), and Wessels (i-l) from data collected by observers. Error bars indicate (half) 2 standard errors.

Table 6. Proportions of the sexes in catches of C. tilstoni and C. sorrah (* $\mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$, *** $\mathrm{p}<0.001$) by (a) year and (b) month.

a)		C. tilstoni		C. sor		
Year	Sample size	Percent male	X^{2}	Sample size	Percent male	X^{2}
1981	4678	59.5	***	1190	45.4	**
1982	6802	50.4	ns	3625	52.7	**
1983	7785	59.2	***	3487	55.2	***
1984	5573	55.1	***	3024	43.8	***
1985	16959	56.8	***	4624	55.4	***
1986	6046	46.7	***	762	53.4	ns
TOTAL	47843	55.1	***	16712	51.9	***

b)
C. tilstoni
C. sorrah

Month	Sample size	Percent male	X^{2}	Sample size	Percent male	X^{2}
Jan	2044	46.5	**	1406	57.5	***
Feb	9533	50.0	ns	3453	52.0	*
Mar	3074	60.9	***	1592	77.8	***
Apr	1922	49.3	ns	887	54.7	**
May	156	60.9	**	53	52.8	ns
Jun	2443	48.9	ns	1173	43.6	***
Jul	1151	48.0	ns	613	49.6	ns
Aug	2778	51.5	ns	628	58.1	***
Sep	5661	53.2	***	2910	43.3	***
Oct	12905	61.0	***	2134	53.2	**
Nov	3455	57.9	***	993	45.2	**
Dec	2721	61.0	***	870	33.3	***

1981 to 1986 are shown in Fig. 14a \& b. There is a decreasing trend in the proportion of mature females (115 cm TL or greater) from 1981 to 1986 and for mature males (110 cm TL or greater) (Stevens and Wiley 1986), cannot be confirmed statistically (females $\mathrm{R}=0.57$, p $=0.24$, 5 df ; males $\mathrm{R}=0.75, \mathrm{p}=0.09$, 5 df). In all cases the annual size distributions are not composed of 12 months' data, nor are the same months always represented in the annual samples (Appendix 2). Hence the apparent decrease.

Proportionally fewer mature C. tilstoni males were present in the catches in February, April and June to August (Fig. 15a); when these months were excluded from the analysis the regression (a decreasing trend in the proportion of mature sharks over the years of data collection) became significant ($\mathrm{R}=0.89, \mathrm{p}<0.05,5 \mathrm{df}$). Proportionally fewer mature females were present in the March, June and July catches than at other times of the year. When these months were excluded from the analysis the decline in the proportion of mature fish was stronger but still not significant $(R=0.66, p=0.16,5 d f)$.

Length-frequency distributions for C. sorrah, by sex, from the AFZ for the same period are shown in Fig. 14c \& d. The proportion of mature females (95 cm TL and greater) (Stevens and Wiley 1986) declined significantly with time ($R=0.94, \mathrm{p}<0.01$, 5 df), while no such trend was apparent for mature males (90 cm TL and greater). Monthly variations in the proportions of mature C. sorrah are not as marked as they are for C. tilstoni (Figs. 15c \& d, $16 \mathrm{c} \& \mathrm{~d})$.

To determine whether the patterns of declining proportions of mature fish over time observed in the six years' pooled data are reflected in each of the years, we examined data for the months where four or more years were represented. Five years' data were available for the month of February and four years' for the months of January, March and September to December. In February, both sexes of C. tilstoni and C. sorrah show an apparent decline in the proportion of mature fish with time, but the regressions are not statistically significant. In January, March and September to December the proportion of mature male C. tilstoni declined each year, while the proportion of mature females declined each year for five out of seven months. However, with the exception of females in January ($R=0.1, p<0.001,3 d f$), the regressions are not significant. In three of the six months, the regressions for C. sorrah have a negative slope, and in September the proportion of mature male C. sorrah increased significantly over time ($R=0.97, \mathrm{p}<0.05,3 \mathrm{df}$).

In the catch breakdown by month, a greater proportion of C. sorrah than C. tilstoni was mature, except in 1981 and 1983 when a greater proportion of C. tilstoni males than C. sorrah males were mature.

Fig. 14 Length-frequency distributions (percentages) by year for(a) C. tilstoni males (b) C. tilstoni females (c) C. sorrah males (d) C. sorrah females, in the AFZ.

Fig. 15 Proportion (by month) of mature and first year sharks in the catch: (a) C. tilstoni males (b) C. tilstoni females (c) C. sorrah males (d) C. sorrah females. For C. tilstoni , sample sizes > 500 except May (94 males, 56 females); for C. sorrah, sample sizes >250 except May (13 males, 10 females).

Fig. 16 Length-frequency distributions (percentages) by month for (a) C. tilstoni males (b)
C. tilstoni females (c) C. sorrah males (d) C. sorrah females, in the AFZ.

Monthly length-frequency distributions for C. tilstoni from the AFZ are shown in Fig. 16a \& b. C. tilstoni are bom at about 60 cm TL and January is the main parturition period (Stevens and Wiley 1986). New-bom fish first appear in small numbers in the fishery length data in that month, (Fig. 16a \& b). C. tilstoni attain about 80 cm TL after 12 months (Davenport and Stevens 1988). The proportions of first-year fish (< 80 cm TL) increase slowly from January to May, then rise to a sharp peak in July before declining (Fig. 15a \& b). This is reflected in the large proportion of $70-80 \mathrm{~cm}$ fish in the July length-frequency samples (Fig. 16a \& b). The proportions of mature fish show a corresponding decline in June and July (Fig. 15a \& b).

Similar monthly size data for C. sorrah are shown in Fig. 16c \& d. C. sorrah are bom at about 50 cm TL, mainly in January, and attain some 75 cm TL after 12 months (Stevens and Wiley 1986; Davenport and Stevens 1988). The proportions of first-year fish (< 75 cm TL) gradually increase from January to July (ignoring the May value, which is based on a very small sample of 10 females and 13 males) before declining again. The proportions of mature males show a corresponding drop in July, but this is not clearly evident for females (Fig. 15c \& d).

Figure 15 is derived from monthly data pooled over six years, where the same months were not necessarily sampled in each year. There was an apparent seasonal decline in proportions of mature C. tilstoni observed early in the year; this was followed by an increase in the second quarter and a further decline to a minimum in July and then a steady rise (Fig. 15). We examined each year's data separately to see if this apparent seasonal pattern was consistent. While the poor seasonal coverage for most of the years made this difficult, the available information did not generally contradict the pattem observed in the pooled data. When the C. sorrah data were treated in the same way, no clear seasonal pattem in the proportion of mature fish was evident.

Regression models showed little or no interaction between month and sex, or between year and sex, so in subsequent analyses, year and month effects were assumed to be the same for both sexes. There was, however, an interaction between month and year, which implies that the seasonal pattem within each year was not the same for all years. So we examined changes over the whole time span (April 1981-April 1986) rather than attributing any change to month and year effects only.

For C. tilstoni, when we ignored the year/month interaction, year, month and sex were all highly significant ($\mathrm{F}=15.53$, $\mathrm{df}=5,64, \mathrm{p}<0.001 ; \mathrm{F}=3.09, \mathrm{df}=11,64, \mathrm{p}=0.002 ; \mathrm{F}=$ 9.77, $\mathrm{df}=1,64, \mathrm{p}=0.003$ respectively). Over the period of the study, there was a significant change in the proportion of mature C. tilstoni ($\mathrm{F}=9.59, \mathrm{df}=40,40, \mathrm{p}<0.001$). There was
an overall decrease in the proportion of mature sharks from April 1981 to April 1986, with a marked dip in 1982 followed by a rise and then a continued decline. The 1982 dip was mainly due to the June and July figures, which comprised a large portion of the 1982 data. The analyses suggest that a lower proportion of mature sharks were caught in June and July than in other months. The proportion of mature males was significantly higher than the proportion of mature females ($\mathrm{F}=20.52, \mathrm{df}=1,40, \mathrm{p}<0.001$).
C. sorrah showed a significant variation in the proportion of mature sharks over the 41 months of the study period, allowing for different seasonal pattems within the years $(\mathrm{F}=$ 2.41, $\mathrm{df}=40,40, \mathrm{p}=0.003$), but there is no pattem that can be ascribed to year or month. There is no apparent decline in the proportion of mature sharks over the years, nor any consistent pattem within years. The proportion of mature males was consistently higher than mature females ($\mathrm{F}=48.85, \mathrm{df}=1,40, \mathrm{p}<0.001$).

Length-frequency distributions of T. tonggol taken from the AFZ from 1981 to 1986, and for S. commerson from 1982 to 1986 are shown in Fig. 17a \& b. Monthly length-frequency distributions for these species are shown in Fig. 18a \& b. When the mean length of T. tonggol was plotted sequentially by month from 1981 to 1986, no obvious seasonal trend (over months within years) was apparent; if anything, there was a gradual increase in mean length over years. Fitting a regression model that included terms for month within year and for year (allowing polynomials up to order 4 for month and 2 for year) did not show any regular seasonal or yearly pattem. A regression containing the linear term only for year gave a significant coefficient of $0.544 \mathrm{~cm}(\mathrm{SE}=0.053)$, indicating an average increase of about 0.5 cm per year in mean length over the period of observations. However, many higher-order terms were significant, indicating that no simple pattem is apparent.

When the mean length of S. commerson was plotted sequentially by month from 1982 to 1986, there was evidence of both a seasonal effect (with a peak in mean length around September) and a general decrease in average length over years. Fitting similar regression models to those used for T. tonggol showed a significant linear decrease in mean monthly length over the years of about 2 cm per year (coefficient $-2.04, \mathrm{SE}=0.203$). Including the quadratic term for years ($\mathrm{p}<0.001$) indicated that there was little or no decrease initially, but the decrease became greater over the years: about 2 cm from 1983-4 and 4 cm from 1984-5. The decrease in mean length was about 6 cm from 1985-6, but there are too few data for 1986 for this estimate to be reliable.

Fig. 17 Length-frequency distributions (percentages) by year for (a) T. tonggol, and (b)
S. commerson.
(a) T. tonggol

$\left.\begin{array}{c}60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0\end{array}\right]$

(b) S. commerson

$$
n=292
$$

$n=305$

$n=803$

$n=102$

$n=82$

Fig. 18 Length-frequency distributions
(percentages) by month for (a)
T. tonggol, and (b) S. commerson.

Catch variability and aggregations

Anecdotal catch information suggested that C. tilstoni and C. sorrah tend to aggregate by sex and size. This was investigated with two sets of research data (see Materials and Methods section).

In the 1985 and 1986 gill-net modification trials, the shark catch was recorded by 1 km panel along the gill-net. We examined four sets that had caught over 1200 individuals. As only C. tilstoni was caught in large enough numbers, analysis was restricted to this species. If C. tilstoni aggregates by size and/or sex, and the net samples one or more aggregations, it might be expected that groups of panels would contain sharks of the same size range and sex ratio. Three-way contingency tables were used to analyse for differences in length between panels and sex. Length was divided into four size classes ($<65,65-69,70-74, \geq 75 \mathrm{~cm} \mathrm{FL}$) to meet the requirement of the analysis that there should be more than five sharks in at least 80% of the cells. Sex ratio differences were tested by chi-square analysis against an expected 1:1 ratio.

The median lengths of sharks from each of the four sets are shown in Table 7. Of the 14 panels fished in Set 1, 12 were analysed, 2 contained too few sharks. There was no interaction of panel and sex in relation to length distribution ($\mathrm{X}^{2}=35.64, \mathrm{df}=33, \mathrm{p}>$ 0.20). Females were significantly larger in the length distribution of the sexes ($X^{2}=18.82$, $\mathrm{df}=3, \mathrm{p}<0.001$), but not between panels ($\mathrm{X}^{2}=24.8, \mathrm{df}=33, \mathrm{p}>0.20$). Males predominated in all panels. In 8 panels, the sex ratio was significantly different from 50:50 ($\mathrm{p}<0.001$ in panels 2 and 7; $\mathrm{p}<0.01$ in panel 14; $\mathrm{p}<0.05$ in panels 5, 6, 8, 12 and 13).

Ten panels were fished in Set 2 (Fig. 19). There was no effect of interaction between sex and panel ($\mathrm{X}^{2}=27.98, \mathrm{df}=27, \mathrm{p}>0.20$) on the length distribution. Males predominated in all 10 panels. In three panels (1,3 and 9), the sex ratios were significantly different from 50:50 ($\mathrm{p}<0.001, \mathrm{p}<0.01$ and $\mathrm{p}<0.05$ respectively). There were differences in length distribution between sexes ($\mathrm{X}^{2}=11.61, \mathrm{df}=3, \mathrm{p}<0.01$) and between panels ($\mathrm{X}^{2}=128.22, \mathrm{df}=27, \mathrm{p}<$ 0.001). For males, comparisons of the four length groups in adjacent panels indicated that panels 1-9 were similar (median lengths $66-68 \mathrm{~cm}$), panel 10 had slightly larger sharks (median length 67 cm); panel 11 also had larger sharks (median length 68 cm) and many smaller ones (Fig. 19). For females, the same comparison of adjacent panels indicated that there were three groups of broadly similar panels: panels 1 and 2 (which had few small sharks), panel 11 contained larger sharks and, like males in panel 11, many small sharks. There was no significant difference between panels 3-10 (median lengths 66-69), but they were different from panels 1, 2 and 11 (median lengths 67, 69 and 70 cm , respectively).

Table 7 Median lengths (cm FL) of C. tilstoni from four sets with large shark catches, from the 1985 \& 1986 gill-net modification trials.

Set	Panels	Median Length (cm FL) Males	
1	$2-14$	$64.0-67.0$	$64.0-68.5$
2	$1-5,7-11$	$66.0-68.0$	$66.0-70.0$
3	$1-5,7-11$	$65.0-69.0$	$66.0-69.0$
4	$1-5$	$65.0-68.0$	$67.0-68.0$
	$7-11$	$67.0-69.5$	$69.0-71.0$

Panel no.
1

2

3

4

5

7

8

Fig. 19 Length-frequency distributions (as numbers) for C. tilstoni in the gill-net panels of Sct 2 in the 1986 gill-net modification trials.

Over the 10 panels fished in Set 3, there was no interaction between panel and sex affecting the length distribution ($\mathrm{X}^{2}=36.04, \mathrm{df}=27, \mathrm{p}>0.10$), but there was a significant difference in the length distribution of sharks between sexes $\left(\mathrm{X}^{2}=25.81, \mathrm{df}=3, \mathrm{p}<0.001\right)$ and between panels ($\mathrm{X}^{2}=130.66, \mathrm{df}=27, \mathrm{p}<0.001$). In all 10 panels the sex ratio was not significantly different from 50:50. Since there was no interaction between panel and sex alone, the data for all panels were combined to look for the differences in length distribution related to sex. Females were slightly more numerous in the two middle length-classes (65-69 and $70-74 \mathrm{~cm})$. The males were somewhat smaller and the size-distribution was skewed to the right. When each panel was tested against adjacent panels, there appeared to be three groups of panels. Within each group there were panels of statistically similar length distributions, while the panels of one group were significantly different from the panels of another group. In group 1 (panels 1-4) the median length for both sexes was 67 cm , in group 2 (panels 5,7 and 8) it was 65 cm for males and 66 cm for females, and in group 3 (panels 9-11) it was 68 cm for both sexes.

Ten panels were fished in Set 4. There was no panel by sex interaction ($X^{2}=30.32, d f=27$, $\mathrm{p}>0.20$) but there was a difference due to sex $\left(\mathrm{X}^{2}=47.8, \mathrm{df}=3, \mathrm{p}<0.001\right.$) and panel (X^{2} $=101.78, \mathrm{df}=27, \mathrm{p}<0.001$). The sex difference appears because females are larger than males. The panel difference is due to two groups of panels: panels $1-5$ and panels $7-11$. This coincides with surface and sub-surface panels, respectively. The surface panels (1-5) caught smaller sharks than the subsurface panels (7-11). Panel 7, in which females predominated, was the only panel where the sex ratio was significantly different from 50:50 ($p<0.01$).

While statistically significant differences in length distributions between groups of panels were apparent in Sets 2, 3 and 4, the differences between the median length values are so small that they are probably meaningless from a biological viewpoint. When panels were combined and Sets 1, 2, 3 and 4 tested for differences in size distribution, there was a highly significant difference for both sexes in length distribution between the sets ($\mathrm{p}<0.001, \mathrm{df}=$ 12).

If C. tilstoni aggregates by size and/or sex, it might be expected that catches that are unrelated in space or time would have different sex ratios and size compositions. On the other hand, repeated catches within a small area and short time frame might sample the same aggregation (depending on its size) so that catches would have a similar size or sex composition.

We examined the nine largest FV Rachel catches that came from different locations at different times. C. tilstoni comprised the largest part of the shark catch in eight of these
sets, with 45-460 individuals in each set. We also examined all FV Rachel sets where the positions at the start of set were within $5 \mathrm{~nm}(9.3 \mathrm{~km})$ and within 5 h of each other. There were 129 groups of sets that satisfied these criteria. The number of sets in a group varied between two and four. Size composition and sex ratio between sets within groups were compared by three-way contingency tables. As this analysis requires at least 15 sharks of each sex in each set, only six groups could be analysed. Shark length was divided into five size classes ($<65,65-69,70-74,75-79$ and $\geq 80 \mathrm{~cm}$ FL) and the analysis was run separately on males and females. For the nine largest FV Rachel sets, sex ratio differences were tested by chi-square analysis against an expected $1: 1$ ratio.

Of the nine largest sets, four had sex ratios that were not significantly different from $1: 1$; in one set the difference was just significant $(\mathrm{p}<0.05)$ and females predominated; in the four remaining sets, the sex ratio varied significantly from 1:1 ($\mathrm{p}<0.01$) and males predominated. In comparisons of size distributions between sets, contingency table analysis indicated a highly significant difference between the sets ($\mathrm{p}<0.001, \mathrm{df}=32$) for both sexes (median lengths of fish from these sets ranged between 57 and 88.5 cm for males and 57 and 93 cm for females).

For the six groups of FV Rachel sets made within 5 nm and 5 h of each other, the sex ratios between sets within groups were significantly different in only one group ($p<0.05$, df $=1$), while the length distributions were significantly different in two groups (maximum difference in median length between sets within a group was 14.5 cm). In one group, C. tilstoni males showed a significant difference in length distribution between two sets ($\mathrm{p}<$ $0.05, \mathrm{df}=3$) (the median lengths of males were 77 and 89 cm , and of females 95 and 83 cm). In another group, female C. tilstoni showed a significant difference ($\mathrm{p}<0.01, \mathrm{df}=4$) between the length distributions in adjacent sets. The median lengths of all fish from these two sets were 89.5 and 75.0 cm for males, and 90.0 and 73.0 cm for females.

Sets within groups were combined and the data examined for differences between groups. For both sexes there was a highly significant difference in the length distributions between groups ($\mathrm{p}<0.001, \mathrm{df}=20$).

If sexual segregation is associated with reproduction (Strasburg 1958), it might be expected that unequal sex ratios in an aggregation would imply that the sex ratios of mature fish in the population are unequal. Using all the data from the panel experiments and the FV Rachel sets, we separated each catch into immature and mature fish and examined the sex ratios of these components separately, but could find no pattem. Similarly when the nine largest FV Rachel sets were examined by log-linear analysis with three-way contingency tables, a complicated interaction of set, sex and maturity was found. Furthermore, when the
sets were examined separately, the analysis indicated a different pattern in each set. Any relationships between sex ratio and maturity in C. tilstoni aggregations were not, therefore, apparent from these data.

Catch variability and environmental effects

In the 1985 gill-net modification experiment, 4 of the 43 sets were excluded from the analysis because only half the net was set. There were missing variables in the data set and different variables were missing for different sets. Regression models were fitted to the data, each regression excluding all sets where any one of the variables had a missing value. There was a significant relationship $(p=0.001)$ between shark catch and wind direction and/or set direction (these were positively correlated; $\mathrm{R}=0.701$). More sharks were caught when the wind was from an easterly direction (wind directions during this experiment varied mostly between 025° and 150°). Moon phase and/or light availability (these were highly correlated; $R=0.892$) were significantly associated with shark catch ($p=0.042$), with more sharks being caught when the moon phase was close to new moon or when there was less light. Wind speed and swell were highly correlated $(\mathrm{R}=0.891)$ but there was no significant relationship with shark catch. Depth was just insignificant ($0.05<\mathrm{p}<0.10$), with more sharks being caught where depth was greater. There were too many missing values to examine the effects of temperature. Times at start of set and start of haul had no significant bearing on shark catch.

The only variables tested that had a significant effect on the fish catch were depth, wind speed and light. More fish were caught in shallower depths ($\mathrm{p}=0.013$), with higher wind speeds (p $=0.015)$ and with less available light $(\mathrm{p}=0.077)$.

In the 1986 gill-net modification experiment, 4 of the 41 sets were excluded from the analysis because only half the net was set. Various models were fitted to the data. Models that included temperature suggested that this parameter was not a useful predictor of shark catch. Thus, rather than excluding the nine sets where temperature was not recorded, we used models that ignored temperature. A generalised linear regression model was used, with light as a factor and other variables as continuous covariates. As light was not recorded for three sets, a similar model that omitted light was also used so the data from all 37 complete sets could be included.

More sharks were caught when there was less light ($\mathrm{p}=0.004$) and when hauling started later ($\mathrm{p}<0.001$). It is not clear whether later times for start of set increased shark catches. Time at start of set significantly increased shark numbers in some analyses ($p=0.026$), but when two atypical sets (very late start-of-set times) were removed from the analysis, this variable
was no longer significant ($p=0.240$). Wind direction was significant in some analyses ($p=$ 0.012), which suggests larger shark numbers with winds west of north (contrasting with the 1985 experiment, where higher shark catches were associated with winds east of north), but in analyses using all 37 sets and excluding 'light availability', wind direction was not significant ($\mathrm{p}=0.280$). For a given level of light availability, it appeared that more sharks were caught with a fuller moon. Wind speed, swell and sea depth were not significant. Possibly their effects were obscured by other concurrent conditions: for example, greater sea depth tended to coincide with later start of haul times, and depths tended to be greater later in the study period, when wind direction also tended to be more easterly.

The only significant variables affecting fish catch were swell and moon phase. More fish were caught with a larger swell ($\mathrm{p}<0.001$) and when the moon phase was close to new moon ($\mathrm{p}<0.001$).

Set direction was usually about 45° greater than wind direction. Nets were set from the port side of the vessel, so setting in a direction a little off the wind to starboard prevented the vessel's being blown onto the net.

Most Taiwanese gill-net sets were made between depths of 30 and 70 metres. The depths of 15,229 shark catches, 9,999 non-zero tuna catches and 10,343 non-zero mackerel catches are recorded in the logbooks. The proportion of non-zero tuna and mackerel catches steadily declined with increasing depth. There was a statistical relationship between catch and depth when a linear regression was performed for each of the shark, tuna and mackerel catches. These relationships were:
shark: \log (catch) $=6.2+0.0075$ depth $\left(p<0.01 ; R^{2}=0.012\right)$, indicating a slight increase in catch with increasing depth;
tuna: $\log ($ catch $)=7.25-0.038$ depth ($p<0.01 ; \mathrm{R}^{2}=0.064$),
mackerel: $\log ($ catch $)=5.17-0.023$ depth $\left(p<0.01 ; R^{2}=0.043\right)$, indicating a slight decrease in catch with increasing depth for both species groups. While these relationships are statistically significant, this is more likely a result of large sample sizes than any real effect of depth on catch.

Discussion

Catch-and-effort statistics

The quality of the catch and effort data was a problem. Simple punching, typographical and
transcription errors (which suggests that the logbook database was not adequately validated) could be corrected easily. Other problems were more difficult and involved making various assumptions, and in some cases discarding data. These problems included lack of pre-AFZ statistics, different logtypes recording different catch and effort units, failure to account for increasing net dimensions with time, and discrepancies between either weights or numbers of the catch components and total catch. However, overall there was reasonable agreement between the three sources of catch data and between independent observer estimates of catch and the corresponding Taiwanese log book entries.

Based on all available data, annual catches averaged about 7700 t between 1975-1978. After the AFZ was declared in 1979, catches were restrained by a 7000 t quota. Anecdotal information suggests that pre-AFZ Taiwanese effort was concentrated in inshore areas, including the Gulf of Carpentaria. Catch rates (at least since 1984) are higher inshore, with gill-net CPUE from inshore Amhem Land and the Gulf of Carpentaria (from CSIRO's Northem Pelagic Program) being 6-18 times higher than in the adjacent Taiwanese zone (Lyle 1987).

Taiwanese catches during the pre-AFZ period were made with maximum net-lengths of 8 km . To maintain catch rates between 1979 and 1983, the Taiwanese increased their fishing effort dramatically. Between 1982 and 1983, effort nearly doubled; this was due to a 31% increase in the surface area of the net and a large increase in the number of sets during the period. Catch-per-unit-effort dropped from 1977-1983, after which it increased slightly in the last years of the fishery. This slight reversal of the CPUE trend resulted from a reduction in vessel numbers as the Taiwanese began to divert their vessels outside the AFZ after the Australian government announced their intention to limit net length. The small number of vessels may have been able to maintain better catch rates by fishing in the best areas.

Different measures of fishing time have been used in gill-net CPUE calculations: Lyle and Timms (1984) used the time between completion of the set and start of the haul (soak time), while Lyle (1987) used time between completion of the set and completion of the haul. In this study we used time from start of the set to completion of the haul, which will give the most conservative estimates of CPUE. Perhaps a more realistic fishing time would be set time $/ 2+$ soak time + haul time $/ 2$. Such a model would increase our estimates of CPUE by about 30%.

Analysis of catch, effort and CPUE trends by area and catch category suggest that the Westerm area was less productive, particularly for tuna, and that after 1983 the Taiwanese put proportionately more effort into the Wessels, where they targetted on tuna.

Shark and mackerel CPUE generally declined with time in all three areas (ignoring the mackerel CPUE for the Western area in 1986, which is based on few data), as did tuna CPUE in the Western area. However, tuna CPUE in the Arafura remained relatively constant between 1980-1985 while it increased considerably in the Wessels between 1979-1984. Shark and mackerel resources in the northern AFZ appear to have been considerably overexploited by the Taiwanese gill-net fishery. Shark CPUE declined from about $11 \mathrm{~kg} / \mathrm{km}$ h in 1979 to about $3 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1984, while mackerel CPUE declined from about $1 \mathrm{~kg} / \mathrm{km}$ h in 1980 to $0.3 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1985-86.

The effect of Taiwanese fishing on the tuna stocks is less clear. CPUE increased from about $0.3 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1979 to $3 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1984, before dropping rapidly in the last two years of the fishery to $0.6 \mathrm{~kg} / \mathrm{km} \mathrm{h}$ in 1986 .

Analysis of seasonal trends in the catch, effort and CPUE was largely precluded by the high variances in the data. Shark CPUE showed no significant seasonal pattern in any of the areas, while tuna CPUE in the Wessels and Arafura, and mackerel CPUE in the Wessels, was highest between June and September. The apparent seasonal increase in the abundance of tuna and mackerel in this region may be due to increased productivity resulting from an enrichment of nutrients in an area north-east of the Wessel Islands (Rochford 1962, 1966). Based on radio report data (essentially the same as the logbook data), Lyle and Read (1985) also found that the major Taiwanese tuna fishing area lay in the vicinity of the Wessel Islands. These authors reported a tendency for catch rates to be higher from May to September, and to a lesser extent, December to March.

Catch composition

The Taiwanese catch was dominated by C. tilstoni , C. sorrah and T. tonggol (Table 5). In the inshore gill-net catch of CSIRO's Northern Pelagic Program, by contrast, C. tilstoni and C. sorrah accounted for 72% by number, C. macloti comprised 14%, and Scomberomorus spp. 2\%, while hammerhead sharks and T.tonggol accounted for less than 1% (Lyle 1987). In an inshore gill-netting survey in the Northem Territory, teleosts only accounted for 13% of the catch by number, and T. tonggol was caught infrequently (Lyle and Timms 1984). The reason for the higher proportion of T. tonggol in the Taiwanese catch than in the research catches may be because the Taiwanese were targetting them (Lyle and Read 1985) or they were more abundant in that region. An aerial survey of tuna off the Northem Territory recorded most schools within 50 nm of the coast; few schools were observed in the Wessels area but coverage of this region was poor (Lyle and Read 1985).

The lower proportion of C. tilstoni and C. sorrah, and higher proportion of T.tonggol, in the Taiwanese catches of 1983-1984, particularly from the Wessels (and to a lesser extent the Arafura) are mainly a reflection of low CPUE for shark and high CPUE for tuna in the Wessels during this period. An increase in the relative contribution of tuna to the total Taiwanese catch between 1980-1984 was noted by Lyle and Read (1985), who reported that changes in target fishing were mainly a response to market pressure, with the comparative prices of shark, tuna and mackerel in Taiwan determining the preferred species.

Major seasonal trends in species composition also correlate with the CPUE data. C. tilstoni and C. sorrah generally comprise a low proportion of the catch around July in most areas, while the proportion of T. tonggol and mackerel is high at this time. This would appear to be due to high CPUE for tuna and mackerel between June and September in the Arafura and Wessels.

Analysis of the size composition data for the major species was complicated by the unequal seasonal sampling coverage in each year. This confounded detection of any annual or seasonal changes in length. The results suggest that the proportion of mature C. tilstoni declined over the period of the fishery. One seasonal effect was detected in June-July, when the proportions of mature fish were low and of one-year-old fish were high. Since January is the main parturition period (Stevens and Wiley 1986), it might be expected that the proportion of neo-natals would increase in the next few months. Gear selectivity does not account for the large increase in July: neo-natal C. tilstoni would be about 70 cm TL in July, whereas peak selectivity for 15 cm mesh-size gill-nets is at 99 cm TL (unpublished data). No significant annual or seasonal changes in the proportion of mature C. sorrah were detected.
T. tonggol and S. commerson length-frequencies were analysed for changes in mean length, by year, and by month within year. T. tonggol showed no obvious seasonal trend in length distribution and there appeared to be an increase of about 0.5 cm FL per year in mean length over the period of observations. However, no simple pattern adequately described this length increase and it may have no biological significance. The mean lengths of S. commerson decreased by about 2 cm FL per year between 1982-1986, with this decrease becoming greater in the last few years. A seasonal effect was also evident, with a peak in mean lengths around September. This seasonal peak may be associated with the annual northward migrations of larger fish along the east coast of Queensland during September (McPherson 1981). Anecdotal information suggests that there is a similar annual 'run' of mackerel northwards along the coast of Western Australia. Over the period of the fishery, decreases in the mean length and proportion of mature C. tilstoni and S. commerson may be a result of overexploitation. This is supported by the decline in CPUE in the Taiwanese fishery over time.
C. tilstoni and C. sorrah have similar life-histories (Stevens and Wiley 1986; Davenport and Stevens 1988), so their apparent difference in response to fishing pressure is interesting. Lyle and Griffin (1987) noted differences in the proportions of these two sharks caught by gill-net and longline. Lyle (1987) reported that during the Northern Pelagic Program C. tilstoni and C. sorrah comprised 57% and 20% of the gill-net catch, and 19% and 47% of the longline catch respectively. If C. sorrah is less susceptible to gill-netting, it may have been less affected by Taiwanese fishing pressure.
T. tonggol appears to have withstood Taiwanese fishing pressure better than S. commerson, although it was taken in larger quantities. Little is known about the stock size or structure of T. tonggol in the Australian region (Wilson 1981). Electrophoretic studies suggest there are two major stocks of S. commerson in Australia: one in eastern Australia and a second, wide-ranging, stock in southern Papua New Guinea, the Torres Strait, and across northem Australia (CSIRO Division of Fisheries Research [1984]).

The catches and catch rates of shark in the northerm Australian fishery are highly variable between sets (Lyle and Timms 1984; Lyle 1987). Stevens and Wiley (1986) noted that both C. tilstoni and C. sorrah were found in groups of predominantly one sex or size range, sometimes with small spatial distributions.

As the research data used to investigate sex and size segregation in the present study were not collected for that purpose, interpretation is difficult. However, they suggest that the sex ratios and size composition of C. tilstoni catches by panel within a net, or between sets of a net that are made close together in space and time are usually consistent. However, there are significant differences in sex ratio and size composition between sets made in different areas or at different times. These data suggest that C. tilstoni occur in aggregations that may have an about equal sex ratio or may be composed predominantly of one sex, and that the fish within an aggregation are of similar size. Based on the size of the nets where the catch was recorded by 1 km panels, these aggregations of sharks may be at least $5-10 \mathrm{~km}$ across.

Sex and size segregation in C. tilstoni are not as marked as in some shark species. The proportions of the sexes ranged from about $50-80 \%$, but 100% unisexual aggregations were not found in the present study or in Stevens and Wiley's (1986). While comparatively large differences in median lengths were evident between aggregations, there was rarely a complete absence of a major part of the size range from an aggregation. By contrast, some schools of mature Squalus acanthias, are composed almost entirely of one sex (Ketchen 1986). Some sharks show marked size segregation with areas occupied almost exclusively by one size group (Olsen 1954; Stevens 1976).

Sex and size segregation is common among elasmobranchs; it is thought to be associated with reduction of inter- and intra-species competition, reproduction or migration (Backus et al. 1956; Springer 1960, 1967; Strasburg 1958). It is difficult to relate the relatively weak sex and size segregation of C. tilstoni to any of these factors. All size ranges including neonatals occupy the same geographic range, so reduction of intra-species competition is unlikely. C. tilstoni does not appear to make regular seasonal migrations (unpublished data). Unequal sex ratios in a group are not necessarily found among the mature fish, and the data in the present study did not show any relationship between sex ratio and maturity of fish in a group. While the benefits of sex and size segregation within C. tilstoni groups may be unclear, the formation of groups may, however, confer predatory advantages.

Examination of the effects of various environmental parameters and fishing strategies on catch variability confirmed the strong influence of light on catches, but was inconclusive in determining the effects of most of the other parameters recorded. The 1985 and 1986 gill-net modification experiments are not directly comparable, since they tested the effects upon cetacean catch of different gear configurations. Some apparent differences in the effects of environmental factors could in fact be seasonal: the 1985 experiment ran from September to November, the 1986 experiment in February and March. There could be a seasonal difference in the abundance of sharks both between experiments and within one experiment.

In both experiments many variables were correlated: for example, wind speed and sea swell, light availability and moon phase, wind direction and set direction. However, there are many missing values, and they are not consistent across sets or variables. The experiments were not designed to test the effects on the shark or fish catch of environmental variables, and it is quite possible that unrecorded factors influence the size of the catch.

It is nontheless evident from both experiments that light is a significant factor in the size of shark and fish catches - more light means smaller catches. Presumably the net is more visible when there is more light. The other significant variable, wind direction, is interesting. In the 1985 experiment, the more easterly winds gave higher shark numbers, while in the 1986 experiment, more sharks were caught when winds were westerly. Since wind direction tends to be a 'grouped' factor (that is, there are clumps of similar wind directions in the data sets), it is possible a seasonal relationship or another, unrecorded variable related to wind direction or time had a bearing on the numbers of sharks caught.

Acknowledgements

We are particularly indebted to Peter Campbell, Sally Wayte and Kathy Haskard for writing computer programs for data extraction, and for statistical analyses and advice; to Michael Bessell, Brita Hansen, and David Taylor for illustrations, to the Commonwealth Observers and especially Durant Hembree for the collection of data; and to Dr Jeremy Lyle, Dr Vivienne Mawson and Wade Whitelaw for their valuable comments on the manuscript.

References

Backus, R.H., Springer, S., and Amold, E.L. (1956). A contribution to the natural history of the white-tip shark, Pterolamiops longimanus (Poey). Deep-Sea Research 3 (3), 17888.

CSIRO Division of Fisheries Research (n.d.). Final report to FIRTA on project 83/48: Stock identity of northern fish species. 17 pp .

Davenport, S., and Stevens, J.D. (1988). Age and growth of two commercially important sharks from northern Australia. Australian Journal of Marine and Freshwater Research 39, 417-33.

Demersal Fish Research Center (1980-1984). Annual report[s] of effort and catch statistics on Taiwan gill net fishery in the waters surrounding Australia. National Taiwan University.

Demersal Fish Research Center (1985). Annual report of effort and catch statistics on Taiwan distant gill net fishery. National Taiwan University.

Gulland, J.A. (1971). Science and fishery management. Journal du Conseil International pour L'Exploration de la Mer 33(3), 471-77.

Hembree, D. and Harwood, M.B. (1987). Pelagic gillnet modification trials in northern Australian seas. Report of the International Whaling Commission 37, 369-73.

Ketchen, K.S. (1986). The spiny dogfish (Squalus acanthias) in the Northeast Pacific and a history of its utilization. Fisheries and Aquatic Sciences Canadian Special Publication 88, 78 pp.

Lavery, S., and Shacklee, J. B. (1989). Population genetics of two tropical sharks, Carcharhinus tilstoni and C. sorrah, in northem Australia. Australian Journal of Marine and Freshwater Research 40, 541-57.

Liu, H. (1985). The status of Taiwanese gill netter fishery in the waters off northern Australia. Unpublished report, 9 pp.

Liu, H. (n.d.). [Copies of these unpublished tables held in CSIRO Marine Laboratories Library]
Table 1 Catch statistics by month of Taiwan gill netters operated in northern Australian waters from 1977 to 1978

Table 2 Catch statistics of Taiwan gill netters operated in northern Australian waters in 1977 (by 5° - square)
Table 3 Catch statistics of Taiwan gill netters operated in northern Australian water in 1978 (by 5° - square)

Lyle, J.M. (1984). Mercury concentrations in four carcharhinid and three hammerhead sharks from coastal waters of the Northern Territory. Australian Journal of Marine and Freshwater Research 35, 441-51.

Lyle, J.M. (1987). Northerm Pelagic Fish Stock Research Programme: summary of catch and effort data. Department of Industries and Development, Northem Territory. Fishery Report No. 16, 54 pp.

Lyle, J.M. and Griffin, P.J. (1987). Evaluation of the suitability of longlining for shark in northern Australian waters. Department of Industries and Development, Northern Territory, Fishery Report No. 15, 34 pp.

Lyle, J.M., Pyne, R.R., Hooper, J., and Croaker, S.L. (1984). North Australia's multispecies shark fishery. Volume 1. A preparatory evaluation of the development of a shark fishing industry in Northern Territory waters. Department of Primary Production, Northem Territory, Fishery Report No. 12, 36 pp.

Lyle, J.M., and Read, A.D. (1985). Tuna in northern Australian waters: a preliminary appraisal. Department of Ports and Fisheries, Northem Territory, Fisheries Report No. 14, 41 pp .

Lyle, J.M., and Timms, G.J. (1984). North Australia's multi-species shark fishery. Volume
4. Exploratory fishing survey of shark and other pelagic fish resources found in Northern

Territory inshore waters. Department of Primary Production, Northem Territory, Fishery Report No. 12, 75 pp.

McPherson, G.R. (1981). Preliminary report: investigations of Spanish mackerel Scomberomorus commerson in Queensland waters. 8 pp In: Northern Pelagic Fish Seminar. (eds C.J. Grant, and D.G. Walter) Canberra: Australian Govemment Publishing Service.

Millington, P., and Walter, D. (1981). Prospects for Australian fishermen in northern gillnet fishery. Australian Fisheries, 40(9),3-8.

Olsen, A.M. (1954). The biology, migration, and growth rate of the school shark, Galeorhinus australis (Macleay) (Carcharhinidae) in south-eastern Australian waters. Australian Journal of Marine and Freshwater Research 5, 353-410.

Rochford, D.J. (1962). Hydrology of the Indian Ocean_Australian Journal of Marine and Freshwater Research 13, 226-51.

Rochford, D.J. (1966). Some hydrological features of the eastern Arafura Sea and the Gulf of Carpentaria in August 1964. Australian Journal of Marine and Freshwater Research 17, 31-60.

Rohan, G., Church, C., and Clark, A. (1981). Northern Territory Mackerel Fishing Program 1980/81. Northem Territory Department of Primary Production, Darwin. Fisheries Report No. 4, 55 pp .

Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods. 7th ed. Iowa State University Press.

Springer, S. (1960). Natural history of the sandbar shark, Eulamia milberti . Fishery Bulletin of the U.S. Fish and Wildlife Service 61(178), 1-38.

Springer, S. (1967). Social organization of shark populations. In: Sharks, Skates and Rays. Chapter 9, 149-173. (eds P.W. Gilbert, R.F. Mathewson and D.P. Rall) Baltimore: John Hopkins Press.

Stevens, J.D. (1976). First results of shark tagging in the north-east Atlantic, 1972-1975. Journal of the Marine Biological Association of the United Kingdom 56, 929-37.

Stevens, J.D., and Church, A.G. (1984). Northem tagging project yields interesting results. Australian Fisheries 43(11), 6-10.

Stevens, J.D., and Wiley, P.D. (1986). Biology of two commmercially important carcharhinid sharks from northem Australia. Australian Journal of Marine and Freshwater Research 37, 671-88.

Stevens, J.D., and Lyle, J.M. (1989). Biology of three hammerhead sharks (Eusphyra blochii, Sphyrna mokarran and S. lewini) from northern Australia. Australian Journal of Marine and Freshwater Research 40, 129-46.

Strasburg, D.W. (1958). Distribution, abundance, and habits of pelagic sharks in the central Pacific Ocean. Fishery Bulletin of the U.S. Fish and Wildlife Service 58(138), 335-61.

Walter, D.G. (1981). Some historical aspects of Taiwanese gillnetting off northerm Australia. 19 pp. In: Northern Pelagic Fish Seminar. (eds C.J. Grant, and D.G. Walter) Canberra: Australian Govemment Publishing Service.

Welsford, J., Sumner, J.L., Pyne, R.R., and Lyle, J.M. (1984). North Australia's multispecies shark fishery. Volume 3. Consumer Acceptability of Shark. Northem Territory Department of Primary Production, Fishery Report No.12, 42 pp.

Wilson, M.A. (1981). Some aspects of the biology and production of longtail tuna in Oceania. 11 pp. In: Northem Pelagic Fish Seminar. (eds C.J. Grant, and D.G. Walter) Canberra: Australian Govemment Publishing Service.

Appendix 1

(a) Number of Taiwanese gill-net sets monitored by observers in the AFZ

Month	Year						
	81	82	83	84	85	86	n
Jan			15	7	4	4	30
Feb		12	8	5	16	6	47
Mar		18	12	2		2	34
Apr	4	10				6	20
May	5						5
Jun	8	15	5				28
Jul	2	16	3				21
Aug			6		13		19
Sep	4		6	23	14		47
Oct	16		9	38	19		82
Nov		21	5	5	3		34
Dec	$\underline{12}$		6	3	1		22
Total	51	$\underline{92}$	75	83	70	18	389

(b) Number of Taiwanese gill-net sets monitored by observers in the Western Area

Month	Year						
	81	82	83	84	85	86	n
Jan							0
Feb							0
Mar							0
Apr	3						3
May							0
Jun	3						3
Jul	2						2
Aug			3				3
Sep			6	23			29
Oct				38			38
Nov							0
Dec	-		-	-	-		0
Total	8	$\underline{0}$	9	61	$\underline{0}$	$\underline{0}$	78

(c) Number of Taiwanese gill-net sets monitored by observers in the Arafura area.

(d) Number of Taiwanese gill-net sets monitored by observers in the Wessels area.

Month	Year						
	81	82	83	84	85	86	n
Jan						1	1
Feb		4			3	4	11
Mar				1			1
Apr						2	2
May	5						5
Jun	1						1
Jul 0							
Aug					8		8
Sep	1				3		4
Oct	7		8		19		34
Nov		8	2	4	2		16
Dec	$\underline{2}$		4	-	1		7
Total	16	12	14	5	$\underline{36}$	7	$\underline{90}$

Appendix 2

(a) Number of male C. tilstoni measured in each month and year from Taiwanese gill-net catches in the AFZ

Month	Year						
	81	82	83	84	85	86	n
Jan			535	99	236	223	1093
Feb		557	357	273	1779	1715	4681
Mar		295	261	48		699	1303
Apr	111	264				585	960
May	56						56
Jun	73	1009	167				1249
Jul	7	467	125				599
Aug			559		787		1346
Sep	92		279	1201	1075		2647
Oct	962		467	717	2890		5036
Nov		784	195	16	459		1454
Dec	594		227	147	92		1060
Total	$\underline{1895}$	3376	$\underline{3172}$	$\underline{2501}$	7318	3222	$\underline{21484}$

(b) Number of C. tilstoni females

Month	Year						
	81	82	83	84	85	86	n
Jan			283	58	309	301	951
Feb		458	175	363	2434	1162	4592
Mar		427	780	97		773	2077
Apr	18	310				588	916
May	94						94
Jun	159	898	137				1194
Jul	22	394	136				552
Aug			605		827		1432
Sep	156		435	1562	861		3014
Oct	1440		1125	897	4407		7869
Nov		939	434	26	602		2001
Dec	894		497	69	201		1661
Total	$\underline{2783}$	3426	4607	3072	$\underline{9641}$	2824	$\underline{26353}$

(c) Number of C. sorrah males

Month	Year						
	81	82	83	84	85	86	n
Jan			372	62	111	54	599
Feb		149	527	128	669	128	1601
Mar		260	145	3		6	414
Apr	7	224				168	399
May	10						10
Jun	44	525	92				661
Jul	29	220	60				309
Aug			1		262		263
Sep	44		77	813	612		1546
Oct	316		54	457	171		998
Nov		338	65	18	123		544
Dec	$\underline{200}$		$\underline{155}$	$\underline{218}$	7		580
Total	650	1716	1548	1699	1955	356	7924

(d) Number of C. sorrah females

Month	Year						
	81	82	83	84	85	86	
Jan			296	95	240	177	808
Feb		282	418	296	629	125	1750
Mar		440	867	9		13	1329
Apr	2	344				92	438
May	13						13
Jun	30	447	35				512
Jul	47	206	51				304
Aug			3		362		365
Sep	75		29	406	747		1257
Oct	251		74	447	364		1136
Nov		189	33	21	206		449
Dec	$\underline{122}$		103	51	14		290
Total	540	1908	1909	1325	$\underline{2562}$	407	8651

F. Details of original grant application.

FISHING INDUSTRY RESEARCH TRUST ACCOUNT

Application for a new grant (1986/87)

1. Title of proposal: Analysis of Taiwanese gill-net data
2. Name of Applicant: CSIRO
3. Division, Department or Section: Division of Fisheries Research

4. Proposal:

To undertake a detailed assessment and analysis of the Taiwanese gill-net fishery data. This consists of two independent data sets; commercial catch and effort information, and data generated from the Commonwealth Australian Fishing Zone (AFZ) Observer Program. Catch/effort data are from two sources: log books and radio reports, and have been collected since the introduction of the AFZ until the cessation of Taiwanese gill-netting in Australian waters in July 1986. Observer data include independent estimates of catch and effort as well as routine species composition and length-frequency information and comprise a very large data set from 1979 to 1986.

Analysis of these data is required because:
(1) All available information must be taken into consideration in developing the model for the northem shark fishery. This model is a major objective of the Northem Pelagic Fish Stock Research Program (FIRTA project 83/49). Cessation of Taiwanese gill-netting in July 1986 removed most of the effort from the fishery. This provides a unique opportunity to use the model to predict the recovery pattern of the stocks and thus improve our knowledge of the stock dynamics. Understanding the resilience of the resource is of direct relevance to the developing Australian shark fishery.
(2) Complete documentation of the fishery can then be undertaken. It is proposed that a single publication containing all relevant data on the northern gill-net fishery is produced (by 1989) which can serve as a reference guide to Industry.

5. Name of Person Responsible

Dr. F.R. Harden Jones,
Chief, Division of Fisheries Research, CSIRO Marine Laboratories,

GPO Box 1538,
Hobart, Tasmania 7001
Phone: (002) 206222
Telex AA 57182
6. Qualification of Staff to be employed on the Program Scientific staff of the CSIRO Fisheries, Hobart:
\% Time on
Project
Ms S. R. Davenport, B.Sc.(Sydney)
85
Dr J. D. Stevens, B.Sc. Hons (Lond.), Ph.D. (Lond.) 20
MrK. J. McLoughlin, B.Sc (Macq) 5
Dr G. P. Kirkwood, B.Sc (Melbourne), Ph.D (NSW) 5
with input from Northern Territory Fisheries (NT), Australian Fisheries Service (AFS) and AFZ Observer personnel:

Dr. J. M. Lyle, B.Sc, Ph.D (NT contact)
Dr. R. Branford, B.Sc, Ph.D (AFS contact)

7. Objectives

(1) To assess and analyse the now complete Taiwanese gill-net catch/effort and Observer-generated data sets. These represent extensive, valuable and largely unused sources of information.
(2) To use this information to aid in the development of the model for the northern shark fishery (this model is a major objective of the Northern Pelagic Fish Stock Research Program (FIRTA project 83/49).
(3) To use this model to predict the rate and pattern of recovery of the stocks following the removal of most of the effort from the fishery (caused by cessation of Taiwanese gillnetting in July 1986).
(4) To produce (by 1989) a single publication containing all relevant data on the northem gill-net fishery, which can serve as a reference guide to Industry.

8. Justification, including practical appplication.

Taiwanese gill-netters have fished the area north of Australia since 1974, taking predominantly shark, mackerel and tuna. Following declaration of the Australian Fishing Zone in November 1979, the fishery came under Australian jurisdiction and the Taiwanese were restricted to specified offshore areas and annual catch quotas were imposed. Prior to 1979, Taiwanese catches reportedly peaked at over $20,000 \mathrm{t}$ (1978), quotas constrained catches in subsequent years. In early 1986 the Federal Govemment expressed concern over the incidental capture of dolphins in Taiwanese gill-nets. As a control measure legislation was introduced limiting net length to 2.5 km . This restriction rendered the Taiwanese operation uneconomical, as at the time they were using up to 20 km of net, and by July 1986 they had ceased fishing in the AFZ. Australian involvement in the fishery commenced in the early 1980's and approximately 400 tonnes of shark were landed in 1985/86.
Since 1979 considerable research funds and effort have been invested in the northern gill-net fishery, notably through the AFZ Observer Program, NT Fisheries, CSIRO and the Northem Pelagic Fish Stock Research Program (FIRTA project 83/49). This has resulted in what is probably one of the most comprehensive data sets ever obtained for a shark fishery.

Withdrawal of the Taiwanese and temporary marketing problems in the Australian segment of the fishery mean that the stocks are currently under very light exploitation, following some 12 years of heavy fishing pressure. The Technical Advisory (Pelagic) Sub-Committee to Northem Fisheries Committee had identified signs of overfishing for shark (drop in catch per unit effort) and in 1985 recommended that the total allowable catch of all pelagic species available to foreign joint venture and bilateral operators be reduced from 7000 to 6000 t .

A major objective of the Northem Pelagic Fish Stock Research Program is to produce a simulation model to assess the state of the stocks under the Taiwanese regime of heavy fishing pressure. The current reduction in effort following cessation of Taiwanese fishing provides a unique opportunity to use the model currently being developed to predict the recovery of the stocks. At a later date it would then be possible to test these predictions. This would greatly improve our knowledge of the stock dynamics. An understanding of the resilience of the resource to fishing pressure is of direct relevance to the developing Australian shark fishery. However, before this can be done, all the available information must be considered. Until now the Taiwanese data have not been fully utilised because of higher priorities and man-power considerations. Information required from this project
includes:
Refinement of Taiwanese catch and effort data
Pre-AFZ Taiwanese catch data
The extent of Taiwanese effort in Indonesian waters
Relationships between changes in ef fort and trends in catch per unit effort Changes in species composition with time

Between-set variability in the composition of catches
Evidence for seasonal movements from the catch data
Changes in size composition with time
The amount of shark by-catch from Taiwanese pair trawling

Analysis of these data will also provide the opportunity to produce a complete documentation of the fishery. All relevant, available data will be compiled into a single document incorporating both previously published, as well as unpublished information. This will be formatted and written as a reference guide for Industry.

The NT, Queensland and Westerm Australia have interests in the resource and the NT are committed to developing the fishery and are currently attempting to establish alternate markets for the product. A substantial resource has been demonstrated and there is no doubt that the fishery will be exploited more heavily in the future when current problems, particularly with cetacean by-catch, are resolved.

9. Location of Operation

Program operations will be based at the CSIRO Marine Laboratories, Hobart. 12 days will be spent at the Northern Territory Fisheries (Department of Ports and Fisheries), Darwin, liaising with the AFZ Observers.
5 days will be spent in Canberra in consultation with the AFS Foreign Fishing Section over the AFZ data base.
10. Proposal in detail, including procedures.
a) Plan of Operation
(1) Method of procedure

A scientist will be required for 12 months full-time to work on the assessment and analysis of the Taiwanese data. Because of advantages of having someone familiar with the gill-net
fishery data, and to save on salary money, it is planned to use a current member of the CSIRO (Hobart) shark group (Experimental Scientist level).

Data on species composition extends from 1979-1986, although there are problems with species identification in the early years. Biases and inaccuracies in the collection of data by the AFZ Observers are known to exist and it will be necessary to liaise directly with the AFZ Observers in Darwin to identify and account for many of these problems. It is envisaged that these tasks will require the scientist to spend two weeks in Darwin. Only the 1986, and the latter half of the 1985 Observer data have been put onto computer, and it will be necessary to arrange the transfer and punching of earlier information. Species composition and length-frequency data sets are extensive, involving several hundred thousand individuals identified and measured. One month's hire of a data entry person is required to enter this information collected by Observers between 1981-84. This data has already been transcribed in preparation for entry.

A further week will be required in Canberra working with the Australian Fisheries Service, Foreign Fishing Section in order to become familiar with radio report and log book data sets and to assess the feasibility of validating Taiwanese catch data against AFZ Observer records.

Data assessment and analysis will be carried out using a 'Macintosh' personal computer. Macintosh are used by the AFZ Observers, who have a considerable amount of data already on this system, and are also compatible with CSIRO and the AFS systems (they can emulate the terminal required to communicate with the CSIRO Vax 750 and AFS 'Cyber' 830 data base).

Data to be obtained are:

* Reliable catch-effort data is limited to post-AFZ years. It is important to have information on pre-AFZ Taiwanese catches before any restrictions were placed on the fishery. Some rough data are available but it may be possible to improve, or get additional data, for example from personal contacts in Taiwan.
* Taiwanese ef fort figures need refining. These should take account of changes in effective fishing effort that occurred as net lengths and depths were increased. Various sources of data are available - AFZ Observer records, log book records and information supplied by the Kaohsiung Fishing Guild to the National Taiwan University (Prof. Liu). Fishing times given in log-books have remained approximately constant over the years. However, these do not include a measure of the time taken to haul the net, which has presumably increased as net lengths increased.
* Taiwanese catch data need refining. Known sources of error are: confusion in whether reported weights are processed or total; undereporting; discrepancy between log-book and radio report catches. A measure of validation (and calibration) is possible by comparing AFZ Observer estimates with those reported by the Taiwanese.
* Identify trends in catch per unit effort that may have been related to aspects of fishing pressure.
* Identify the extent to which Taiwanese effort is now directed at Indonesian waters (sources to be explored are coastal surveillance and personal contacts in Taiwan).
* Examine changes in species composition with time and area. Data on species composition extends from 1979-86 (although there are problems with species identification in the early years).
* Evidence for seasonal movements. Analysis of catch composition and length-frequency data (Observer-collected) could provide information on seasonal movements to complement the tagging data obtained in the Northem Pelagic Fish Stock Research Program.
* Information on size/sex 'schooling'. During attempts to reduce the incidental catch of cetaceans continous gill-net catches over one month were recorded for individual Taiwanese vessels during the Observer Program. These data should provide valuable information on between-set variability in size and sex composition.
* Changes in annual size composition which might be related to fishing pressure.
* Information on the amount of shark by-catch from Taiwanese pair trawlers.
* Documentation of the fishery

Agreement, in principle, has been given by the AFS to arrange, and pay publishing costs (from the camera ready stage) for a single publication to include all available information on the northern gill-net fishery. NT, Queensland and AFS have already agreed to contribute sections to this document, which would form a reference guide for Industry. Section 16 of this application details the format and contents of this proposed document which would be available in 1989.
(2) Facilities available
(1) Laboratory and office facilities at the CSIRO Marine Laboratories, Hobart.
(2) Vax 750 and CSIRONET compter systems at the CSIRO Marine Laboratories, Hobart, for data analysis.
(3) Facilities at Department of Ports and Fisheries, Darwin, and Foreign Fishing Section, Australian Fisheries Service, Canberra, for the sections of the work to be carried out
at these Institutes.
(b) Supporting data
(1) Previous work in this or related fields

The Division has had an active involvement in shark research since 1981 when the northem shark research group was set up. Initially biological data were collected through the AFZ Observer Program and subsequently through the Northem Pelagic Fish Stock Research Program (FIRTA 83/49). Dr J. D. Stevens, the leader of the shark group, represents the Division of Fisheries Research on the Technical Advisory (Pelagic) Sub-Committee to Northem Fisheries Committee, the Southern Shark Task Force and the Southern Shark Stock Assessment Workshops. He has extensive experience and an intemational reputation in the field of shark research. Publications which he has authored or co-authored that relate to this proposal are attached. Of the other members of the shark group Ms S. R. Davenport has been in the group since 1981, is familiar with the fishery and the AFZ Observer Program, and has the necessary computing experience for the data analysis. Mr K. McLoughlin had 3 years experience as a commercial computer programmer before joining the CSIRO shark group where he is responsible for the computing required for analysis of the Northem Pelagic Program data set.

Dr G. P. Kirkwood is head of the CSIRO Population Dynamics and Fish Stock Assessment Group, and has an intemational reputation in this field. He is closely involved with the Southern Shark Stock Assessment Workshops where he has been responsible for developing some of the mathematical models used in the fishery. Dr Kirkwood is also co-operating with the CSIRO shark group on the analysis of the Northem Pelagic Fish Stock Research Program data set.

Dr Jeremy Lyle has been in charge of the NT Fisheries shark research program since 1982 and is closely involved with the Northem Pelagic Fish Stock Research Program and with the AFZ Observers. His publications which relate to the northern fishery and which are of relevance to the proposed document describing the fishery are attached.

Dr R. Branford of the AFS has been in charge of the technical operations of the AFZ Observer Program from 1983.

Publications of general relevance to this submission - CSIRO

Stevens, J.D. 1973. Stomach contents of the blue shark (Prionace glauca L.) off southwest England. J. Mar. Biol. Ass. U.K. 53, 357-361.

Stevens, J.D. 1974. The occurrence and significance of toothcuts on the blue shark (Prionace glauca L.) from British waters. J. Mar. Biol. Ass. U.K. 54, 375-378.

Stevens, J.D. and Brown, B.E. 1974. Occurrence of heavy metals in the blue shark Prionace glauca and selected pelagic fish in the N.E. Atlantic Ocean. Mar. Biol. No. 4. 287-293.

Clarke, M.R. and Stevens, J.D. 1974. Cephalopods, blue sharks and migration. J. Mar. Biol. Ass. U.K. 54, 949-293

Stevens, J.D. 1975. Vertebral rings as a means of age determination in the blue shark (Prionace glauca L.). J. Mar. Biol. Ass. U.K. 55, 657-665.

Johansson-Sjobeck, M.L., and Stevens, J.D. 1976. Haematological studies on the blue shark, Prionace glauca L. J. Mar. Biol. Ass. U.K. 56, 237-240.

Stevens, J.D. 1976. Preliminary results of shark tagging in the north-east Atlantic, 19721975. J. Mar. Biol. Ass. U.K. 56, 929-937.

Stevens, J.D. 1983. Observations on reproduction in the shortfin mako Isurus oxyrinchus. Copeia. (1), 126-130.

Stevens, J.D. and Cuthbert, G.J. 1983. Observations on the identification and biology of Hemigaleus (Selachii: Carcharhinidae) from Australian waters. Copeia. (2), 487-497.

Stevens, J.D., Dunning, M.C. and Machida, S. 1983. Occurrence of the porbeagle shark, Lamna nasus in the Tasman Sea. Jap. Joumal of Ichthyol. 30 (3), 301-307.

Stevens, J.D. 1984. Life-history and ecology of sharks at Aldabra Atoll, Indian Ocean. Proc. R. Soc. Lond. B. 222, 79-106.

Stevens, J.D. 1984. Biological observations on sharks caught by sport fishermen off New

South Wales. Aust. J. Mar. Freshw. Res., 573-590.

Stevens, J.D. 1982. Streamlined scavengers of our east coast waters. Australian Natural History. 20 (12), 399-403.

Stevens, J.D., Davis, T.L.O. and Church, A.G. 1982. Results of shark gill-netting by the R.V. Hai Kung in the Arafura Sea. Aust. Fish. 41 (4), 39-43.

Stevens, J.D. and Paxton, J.R. 1985. A new record of the goblin shark Mitsukurina owstoni (Family Mitsukurinidae) from eastern Australia. Proc. Linn. Soc. N.S.W. 108 (1) 37-45

Stevens, J.D. and Church, A.G. 1984. Northern shark, mackerel and tuna tagging project yields interesting results. Aust. Fish. 43 (11), 6-10.

Stevens, J.D. and Wiley, P.D. 1986. Biology of two commercially important Carcharhinid sharks from northern Australia. Aust. J. Mar. Freshw. Res. 37 (In press)

Stevens, J.D. 1984
The families Carcharhinidae, Hemigaleidae, Sphymidae and Alopiidae, together with a checklist of the sharks of northern and north western Australia. In: Continental shelf fishes of northern and north-western Australia. Eds, Sainsbury, K.J., Kailola, P. and Leyland, G.G. Clouston \& Hall, Canberra.

Stevens, J.D. The orders Hexanchiformes, Squaliformes, Pristiophoriformes, Squatiniformes, Heterodontiformes, Orectolobiformes, Lamniformes and Carcharhiniformes. In: A field guide to trawl fish from the temperate waters of Australia. Second edition. Eds, Maxwell, J.G.H. and May, J.L. (In press)

Okera, W.G.P., Stevens, J.D. and Gunn, J.S. 1981. Tropical sharks fishery situation report. pp. 59-72. In: Northern pelagic fish seminar, Darwin. Eds. C.J. Grant and D.G. Walter. A.G.P.S. Canberra

Stevens, J.D.
The families Orectolobidae, Odontaspididae, Isuridae, Scyliorhinidae, Triakidae, Carcharhinidae, Squalidae, Oxynotidae and Echinorhinidae. In: Fishes of Australia's South Coast. Eds, Glover, C.J.M., Gomon, M., Cross, G. and Kuiter, R. (In preparation with
the editors)

Davenport, S.R. and Stevens, J.D. Age and growth of two commercially important sharks (Carcharhinus tilstoni and C.sorrah) from northern Australia. (In preparation- with CSIRO Editor)

Francis, M. P., Stevens, J. D. and Last, P.R. The taxonomic status of Somniosus specimens from the Southem Hemisphere. N.Z. J. Mar. Freshw. Res. (In preparationwith CSIRO Editor)

Northern Territory Publications

Lyle, J.M. 1984. Mercury concentrations in four carcharhinid and three hammerhead sharks from coastal waters of the Northern Territory. Aust. J. Mar. Freshw. Res., 35, 441-451.

Lyle, J.M. 1984. Mercury in shark from Northern Territory waters. Department of Primary Production, Northem Territory. 2(12), 51 pp .

Lyle, J.M. and Timms, G.J. 1984. Exploratory fishing survey of shark and other pelagic fish resources found in Northern Territory inshore waters. Department of Primary Production, Northem Territory. 4(12), 75 pp.

Lyle, J.M., Pyne, R.R., Hooper, J. and Croaker, S.L. 1984. A preparatory evaluation of the development of a shark fishing industry in Northem Territory waters. Department of Primary Production. 1(12), 36 pp.

Welsford, J., Sumner, J.L., Pyne, R.R. and Lyle, J.M. 1984. Consumer acceptability of shark. Department of Primary Production, Northem Territory. 3(12), 42 pp.
11. Proposed Commencement Date and Anticipated Completion Date

Commencement Date
Completion Date for analysis

July 1987
June 1988

Publication to be available in 1989
12. Funds requested (for details see Annex A)

Summary	Year 1	Year2
	$\$$	$\$$
(a) Total salaries and wages	2000	-
(b) Total operating expenses	-	-
(c) Total Travel expenses	3004	-
(d) Total capital items	4000	-
GROSS TOTAL COST	$-9,004$	Nil
Estimated Income	-	-

13. Funds to be provided by the applicant or sought from other sources

	Year 1	Year 2
	$\$$	$\$$
(a) Total Salaries and Wages		
85% of ES2 Max + 20.5\% Super \& leave loading	32,277	33,612
20% of SKS E + 20.5\% Super \& leave loading	9,407	9,735
5% of ES2 (1) + 20.5\% Super \& leave loading	1,716	1,808
5% of PRS 2 + 20.5\% Super \& leave loading	2,786	2,873
Total Salaries and Wages	$-46,186$	48,028

(b) Publication Costs

AFS have agreed, in principle, to pay publishing costs for the document which will include the results of this study.

14. Co-operating Agencies and their Functions

The NT and AFS have been closely involved with collection of these data sets through the Observer and Log Book Programs. Both were co-operating agencies with CSIRO, (and Western Australia and Queensland) in the Northem Pelagic Fish Stock Research Program. Personnel from AFS and NT will be closely involved with the analysis and in particular will assist in evaluating the data in the work to be carried out in Darwin and Canberra. Personnel from the NT, Queensland, (Western Australia have not yet been approached) and AFS will contribute sections to the publication documenting the fishery.
15. Is similar work being undertaken in Australia

No detailed analysis of the Taiwanese gill-net data sets are being undertaken in Australia

16. Plans for Reporting or Publishing Results

In a single publication (which will include all other relevant information on the northern gill-net fishery) to be published by AFS. The approximate format and contents of which are envisaged to be:

TITLE 'Australia's northern gill-net fishery'
CONTENTS

1) Description of the fishery
a) Taiwanese
b) Australian

Development; vessels; areas fished; gear technology; fishing strategy; species composition.
2) Analysis of commercial data
a) Taiwanese
b) Australian

Catch; effort; catch per unit effort
3) Marketing
a)Taiwanese
b) Australian

Consumer acceptability; mercury; overseas/domestic markets
4) Biology
a) Shark
b) Tuna
c) Mackerel
5) Future prospects

State of the stocks; market
ANNEX A
Detail of Funds Requested
Year 1
(a) Salaries and wages \$
Casual. Technical Assistant 2 Max One month for data entry 2000
Total salaries and wages 2000
(b) Operating expenses Nil
(c) Travel expenses
(1) Fares
Retum trip Hobart-Darwin 1100
Retum trip Hobart-Canberra 464
(2) Allowance
12 days living allowance (Darwin) (\$84.70/day) 1016
5 days living allowance (Canberra) "' 424
Total Travel expenses 3,004
(c) Capital Items
Macintosh 512 K computer, disc drive \& printer 4000
Total Capital Items 4000
Gross Total Cost \$9,004
Estimated Net Income Nil

