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for use in estimating the catch at age matrix in the stock
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Objectives:

3.

4.

5.

To develop an integrated method for modelling SBT growth that combines

growth increment data fi-om tagging experiments, length measurements and
direct aging estimates from otolifhs, lengfh-fi'equency modal mformation and

otolifh growth mcrements.

Using this integrated method, develop models for the historical changes in SET
growth that can be used to estimate the expected length of SET at age and the

associated variance for the entire period of the commercial fishery.

Produce appropriate estimates of growth rate parameters for du-ect input into

length based assessment models.

Develop a set of alternative hypotheses for the factors underlying changes m
SBT growth that are consistent with the observed growth data.

Based on these alternative hypotheses, develop models for changes in the length

at age that can be used in SBT stock projections.

Non-technical Summary

Outcomes Achieved

The results from this project provide comprehensive and robust estimates of average

growth and variability in growth that can be used directly within the SBT stock
assessment. PieUminary estimates of growth using the methods developed m this

project were provided to the CCSBT Scientific Committee in 2001 and the results
were adopted for use in the stock assessments conducted in 2001. It is anticipated that
the results from this project will continue to be used in future SBT stock assessments

and m the evaluation of management procedures that the CCSBT is currently

undertaking.

The estimation of growth rates forms an essential part of the stock assessments of

southern bluefm tuna (SET). Extensive mformation exists that can be used for

estimating SBT growth rates. These include tag-recapture data for fish released in

each of the decades between 1960 and 2000, lengfh-frequency data from the
commercial catches taken by surface fisheries between 1965 and 1989, and combined

direct measurements of length and age from fish collected primarily in the 1990's.

However, the estimation of SBT growth rates poses a number of technical challenges.
These include:
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• The long lifespan of SET requires that long time series of data be available;

• SBT growth rates are known to have changed over time, meaning that the data

from different time periods cannot sunply be pooled to provide a single estimate;

• None of the different sources of data provide comprehensive coverage of the years

in which there were fisheries for SBT or of the full range of ages within individual
cohorts (i.e. for fish born in the same year);

• Standard statistical methods for estimatmg overall growth rates by combming

different data sources did not exist prior to this project;

• The most common growth model (the von Bertalanffy growth curve) used in

fisheries' studies is not appropriate for SBT.

All of these challenges were met. A new growth model was developed and new

methods of estimation were devised. AU available data on SBT growth were

assembled and analysed using the new methods, and estimates of the growth of SBT

were produced for fish born m each of the 10-year periods between 1960 and 2000.

The results are significant — there have been marked changes in the growth of

juvenile SBT born over the last 40 years. SET from the 1980's grew considerably

faster than those fi'om the 1960's. The results also suggest that the 1970's were a

period of transition and that growth of young fish m the 1990's was faster than in the

1980's, at least up to about age 4.

Various hypotheses for the changes in growth were explored. The changes appear to

be consistent with a population response to reduced numbers of fish as a result of the

large catches taken from the SBT stock. However, envu'onmental factors (for

example, changes in temperature) cannot be excluded. The average size of fish caught
in the 1990's over 25 years of age was ~185cm while ahnost no fish this size were

reported caught m the Japanese longline fishery until the 1970's. Thus, there may

have been a substantial change in growth for fish born prior to the commencement of

the SBT longline fishery.

The results from this project provide estimates of average growth and variability in
growth that can be used directly within the SBT stock assessment. Prelimmary

estimates of growth using the methods developed m this project were provided to the

CCSBT Scientific Committee in 2001 and the results were adopted for use m the
stock assessments conducted m 2001. It is anticipated that the results from this project

wiU continue to be used in future SBT stock assessments and m the evaluation of

management procedures that the CCSBT is currently undertaking.

Several technical areas for further work that have the potential to improve the

estimation methods developed in this project are identified. In addition, the results

demonstrate the value and importance of having long time series of data available for

understanding growth. In this regard, it is critical that weU-designed data collection

programs that are capable of providing information on growth are mamtamed within
the SET fisheries so that future changes m growth are detected and appropriately

accounted for in the stock assessment and management of SBT.

Keywords: integrated growth modelling, southern bluefin tuna, generalized von

Bertalanffy
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Background

Estimates of SBT growth rates are fundamental to the SBT stock assessment.

When this project was initiated, the analytic assessment and future stock projections

for the southern bluefin tuna (SBT) resource were based on virtual population

analyses (VPA) (e.g. Anon 1998a,b; Polacheck et al. 1998, 1999, Tsuji and Takeuchi

1998). The concept underlying VPA is that the time series of the estimated number of

fish caught by age provides sufficient mformation for reconstructing fhe history of the

population (i.e. the sum of the catches from a cohort m conjunction with natural

mortality must account for the individuals born in the cohort). In the application of the

VPA methodology to SBT, the catch at age matrix has been estimated from length-

frequency samples of the commercial catches based on growth curves estimated from

tagging data (Anon. 1994, Heam 1994).

Since fhe initiation of this project, alternative assessment models for SBT have

been developed (e.g. Hilbom et al. 1998, Butterworth et al. 2001, Polacheck and

Preece 2001, and Kolody and Polacheck 2001). These models still depend on

estimating fhe number of fish caught by age and year (referred to as the catch at age

matrix) as the primary mformation for reconstructing the history of the population,
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but use a more statistically based approach to handle potential errors in the estimation

of the catch at age. In some of the alternative models, the same estimate of the catch

at age matrix used in previous VPA analyses is adopted, while in others, the

estiination of the catch at age data is performed internally based on the fit to imputed

estimates of the length-fi-equency distributions for the catch and an estimated growth

curve. In all cases, an estimated growth curve for SET is fundamental iuformation

required for performing the SBT stock assessment and providing management advice

on the probabilities of stock recovery.

The SET assessment attempts to incorporate all of the critical uncertainties in

the input data and underlying population dynamics in order to ensure that the results

and management advice are robust and imbiased. However, the estimate of the growth

curve and the catch at age matrix has been recognized as a major imcertamty that has

not been appropriately accounted for in past SBT stock assessments. Currently, a

single hypothesis for growth is used in the SBT assessments, and when this project

was initiated the assessment models also assumed that the catch at age matrix was

known without error. These simplifications have been adopted because of the lack of

an adequate range of models for SBT growth and its variability. Within the SBT

assessment, a number of internal inconsistencies are recognized among the various

input data (Anon. 1996, Polacheck et al. 1998). These inconsistencies have been

making it increasuigly difficult to provide robust and scientifically objective

conclusions about the short-term change ia the status of the SBT population. As such,

models that provide consistent interpretation of all the input data are urgently

required. Their development has been considered a very high priority by the CCSBT

Scientific Committee. The SBT growth model, particularly its application m

estimating the catch at age matrix, has been identified as one of the Hkely sources of

the inconsistencies (Polacheck et al. 1998).

The 8BT catch at age matrix is estimated by converting estimates of the size

distribution of the catch into an age distribution based on the modeUed growth rates of

SBT. SBT exhibit complex growth patterns and their growth rates are known to have

significantly increased over the history of the fishery based on analyses of tag return

data from. the 1960's and 1980's. This change of growth was first taken into account

m constructing the SBT catch at age matrix in 1993 (Polacheck et al. 1993). The
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change in growth had significant effects on the stock assessments and resulted in

substantially reduced estimates of the probability of recovery (Anon. 1993, Polacheck

et al. 1993, Klaer et al. 1993).

The question of how to incorporate changes in SBT growth rates into the

construction of the catch at age matrix was reviewed in a workshop conducted under

the Tri-lateral process (the precursor to fhe present Commission for the Conservation

of Southern Bluefin Tuna). Agreed-on methods were developed at that workshop and

these methods form the basis for the procedures used in constructmg the SET catch at

age matrix uatU 2001 (Anon. 1994). However, there are a number of unresolved

problems and shortcomings in these procedures, largely related to the fact that

information on growth from additional sources, and statistical models for

incorporatmg this information, were unavailable at the time of the workshop . Some

of the problems with the growth model include:

Growth rates were assumed to have changed tmeariy between 1970 and 1980;

Growth rates were assumed to have been constant prior to 1970 and after 1980;

No consideration of how growth rates may change in the future is incorporated

into stock projections and estimates of the probabilities of recovery for the SBT

stock (this could lead to over-estimates of the probability of recovery);

- Variability m growth among individuals of the same cohort is not accounted for .

Since the 1994 Tri-lateral Workshop, substantial new data have been collected

on SET growth. These include:

Estimates of the age at length of individual fish based on direct aging from

otoliths

Estimates of growth rates of fish tagged in the 1990's

Preliminary results from this project which provided updated estimates of SBT growth were
incorporated into the stock assessments undertaken for the 2001 CCSBT Stock Assessment Group and
Scientific Committee Meetings (Eveson et al. 2001, Anon. 2001c)

^ The length based assessment model developed in Kolody and Polacheck (2001) and presented at the
2001 CCSBT Stock Assessment Group and Scientific Committee Meetings (Anon. 200 la, b) modelled
variability and overlap in lengths among age classes usmg preliminary estimates of the mean length at
age and theu' variances from this project.
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Estimates of historical changes in growth rates based on otolifh increment

measurements.

In addition, substantial information exists on the growth of juvenile SBT from

modal mformation contained wifhin the length-frequency data from the surface

catches. These latter data were considered by the 1994 Workshop to be broadly

consistent with the tagging data. However, they were not directly used m the

estimation of the SBT growth model because of insufficient time and resources to

develop the appropriate statistical model. A CCSBT Peer Review in 1998

recommended that the modal data for juvenile SBT be directly incorporated into the

estimation of the catch at age matrix (Anon. 1998c).

When this project was initiated, none of these additional sources of data had

been incorporated directly into the estimation of SBT growth rates. An adequate

framework and model for mtegratmg these diverse sources of mformation did not

exist. Also, the amoimt of data is considerable and any integrated analysis would

require substantial computing resources and analytical time.

Need

The uncertainty in the SET catch at age matrix when using cohort slicing or m the

SBT growth curve when fitting directly to length data has been identified as one of

the main sources of unaccountable uncertainty in the SBT stock assessments. The

robustness of the assessment to this uncertamty is unknown. Moreover, a critical

issue in the SBT stock assessment has been the internal inconsistency that exists

among the input data and the need to develop improved models that can provide

consistent interpretations for aU of the available data. These mconsistencies have

been making it increa singly difficult to provide robust and scientifically objective

conclusions about short-term changes m the status of the SBT population. The model

used for estimating SBT growth rates has been identified as a likely factor

Cohort slicing is a procedure for estmating the age of a fish from their length and an estimated
growth curve. The procedure determines the expected mean length for each age class adjusted for the
time of year based on the growth curve. A fish of a given length is assigned to the age class which has
the closest mean length to it. The procedure does not take into account that the actual length
distributions of age classes generally overlap.
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contributing to the apparent mconsistencies m the data. The current model of SBT

growth was developed m 1993/94 and it makes simple assumptions about how

growth may have changed since 1951. In particular, it assumes that the growth rate of

SBT was constant in the 1960's and then increased linearly to a higher level in the

1980's. From 1980 to present, the growth rate is assumed to have remained constant,

at a level estimated using recaptures from the 1983/84 tagging program. Past changes

in the growth rate of SBT are consistent with density dependent growth; the current

model fails to address the question of whether growth may decrease in the future if

the population recovers. Given that the incorporation of change m growth between

the 1960's and 1980's had a significant effect on the stock assessment and

substantially reduced estimates of the probability of recovery, it is critical for the

provision of reliable assessments and management advice that changes in SBT growth

are appropriately and accurately accounted for in the analyses.

Since the 1994 growfh models were developed, a substantial amount of new

information has been collected on SET growth based on direct aging, otolith

increment measurements and tagging experiments conducted in the 1990's. Initial

analyses of some of these data suggest that fhe assumptions about changes in SBT

growth embedded in the current models are Ukely to be inadequate. There is a need to

incorporate these new data within a comprehensive analysis and to develop an

integrated model that mcludes all the various sources of mformation on SET growth.

Such an integrated model should also provide the basis for addressing uncertainties

associated with the growth curve and/or catch at age matrix within the SET stock

assessment. An improved growth model would m turn allow for the development of

improved assessment models that are able to provide consistent interpretations of the

available data and thus improve the reliability and robustness of the management

advice based on these models.

Objectives

6. To develop an integrated method for modelling SBT growth that combines

growth increment data from tagging experiments, length measurements and

See footnote 1
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direct aging estimates from otoliths, length-frequency modal information and

otolith growth increments.

7. Using this integrated method, develop models for the historical changes in SBT

growth fhat can be used to estimate the expected length of SBT at age and the

associated variance for the entire period of the commercial fishery.

8. Produce appropriate estimates of growth rate parameters for direct input into

length based assessment models.

9. Develop a set of alternative hypotheses for the factors underlying changes m

SBT growth that are consistent with the observed growth data.

10. Based on these alternative hypotheses, develop models for changes in the length

at age that can be used in SBT stock projections.

IVIethods

Data

Three primary sources of data with mformation relevant to SBT growth were

compiled for use in the analyses conducted within this project:

1) growth increment data over a known time period fi-om tag-recapture

experiments;

2) modal progression within a year from length-frequency data from commercial

catches; and

3) direct age estimates from otolith readings combmed with the length of a fish at

the time of capture.

These data sources provided iaformation on SBT growth spanning the four

decades from 1960 to 2000. However, for each of the data sources, the amount of data

varied considerably over time, as did the coverage m terms of the age range of fish

that the data spanned (see Appendix 3).

Before the compiled data were used in the estimation of growth, they were

examined with respect to quaUty and consistency. In each of the data sets, a number

of potential problems were identified and procedures were developed for data

screening. The underlying principle in developing the data screening procedures was

to ensure that the screening process would not introduce biases into the estimation of

the growth rates (e.g. favour faster or slower growing fish) and to remove data for
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which large measurement uncertainty could be identified. This latter is important to

ensure precise estimation of the growth parameters and reliable estimates of the

expected actual variation in growth at a given age. Details of the data screening

procedures are described in Appendix 3.

la addition to the above three primary data sources, data on the growth

increments between annual rings m a sample of SBT otoliths was utilized m the

examination of changes in growth over time. The data used in this report are the same

as those analysed by Gunn and Farley (1998). Details of the data collection and

preparation can be found m fMs reference. A strong correlation exists between otolith

lesngth and overall fish length for SBT (Gunn and Farley 1998, Gwm et al. in prep.).

As such, the distance between successive annual bands within the otolith can provide

a measure of the relative growth. Comparison of growth mcrements within the

otoUths for comparable ages from fish born at different times can indicate when and

to what extent growth has changed over time. Almost all SBT otoliths have been

collected from fish caught in fhe 1990's. Nevertheless, the increment data fi'om these

otoliths can provide retrospective mformation on the growth of younger fish over four

decades, since SBT Uve up to 40 years.

Increment data are available on 489 otoliths from fish estimated to have been

born between 1953 and 1994. The distances between the five first consecutive bands

were recorded for each otoUth (or ati increments for fish with less than five bands).

Otolith growfh for the first year of life was not measured because the precise position

of the primordium was not always distinguishable. Since only data on the mcrements

between annual bands are available these data are not informative for estimating

absolute growth rates. Even if absolute otolith sizes were available, the error m

predicting fish length from otolith length and the lack of direct measurement for most

of the sampled fish within the age range of the increment data would limit their use m

this context.

Estimating the time of band formation

There is an important source of measurement uncertainty ia the otolifh data. It

is associated with variation in the time of band formation. Previous studies of SET

otoliths found that SBT form annual translucent zones (bands) in their otoliths during
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the austral winter (Clear et al. 2000). However, reliable information was not available

to more precisely estimate when a band is Ukely to have formed and be detectable.

Thus, there is an uncertainty of one year in the estimated age and cohort of fish for

which otoliths were coUected during this winter period. This in turn can translate into

individuals fi'om the same cohort being assigned to three different age groups during

the period of transition (i.e. their tnie age group, one year older if the band has been

formed but is assumed not to have been, and one year younger if the band has not

been formed but is assumed to have been). In order to obtain an improved

understanding of the timing of band formation and to provide a basis for estimating

the probability that a band had been formed in a given month, additional otolith

research was undertaken.

It should be noted that the problem of the time of band formation had not been

anticipated to be a substantive complication in the use of the existing direct otolith

aging data and work on developing improved estimates had not been included within

the original research proposal. This additional work was undertaken and included in

the current project after consultation with FRDC.

Two approaches were used to provide improved information on the tune of

band formation. la the first approach, we used data from a previous age-validation

study (Clear et al. 2000) in which a number of SBT were caught as part of a large-

scale tagging program and injected with strontium chloride at the time of tagging.

Strontium chloride (SrClz) is a harmless salt that deposits in the otolith and provides a

"time-stamp" of the date of tagging. When the fish are recaptured and the otoliths are

removed, the number of increments formed subsequent to marking can be determined

by counting the number of translucent zones deposited after the strontium mark.

Because the amount of time the fish has been at Uberty is known, we can determine

whether or not the translucent zone for the recapture year has yet been formed (or is

yet detectable). The results obtained from this investigation did not provide as fine a

resolution of the time of band formation as we had anticipated. This was a significant

issue for the current project because a substantial amount of direct aging data comes

from fish captured during these winter months. Results of fitting growth cwves to the

direct aging data were found to be sensitive to assumptions about the time of band

10
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formation. As a consequence, additional work was undertaken to see if a more precise

and accurate estimate of the time of band formation could be determined.

Two methods have been developed for reading otoliths - one in which the

otolith is left whole and one in which it is sectioned (Gunn et al. in press).

Preliminary exploration of existing otolith data suggested that the ability to detect a

translucent zone forming on the margin may differ between fhe two methods. For fish

caught during the winter months while a marginal band is forming, it is important to

know whether a true difference exists. If it does, then the age assigned to these fish

could be one year different depending on the method used. A difference in age of one

year for small fish can have a significant impact on the estimation of growth rates.

Moreover, it was realized that if a consistent difference did exist, it could be exploited

to refine the time when bands become detectable with both methods by comparing

otolith readings using both methods on the same fish. For example, the first month in

which a difference in the number of bands was found between the two methods would

indicate the month when bands first became detectable with the method yielding the

higher number of bands. This month would mark the beginning of the potential period

of band formation. The subsequent month m which both methods yielded the same

number of bands would indicate the month when bands were consistently detectable

by both methods, and would mark the end limit of the period of band formation. In

order to address the problem of whether a consistent difference did exist and whether

it could be used to refine the estimates of fhe time of detectable band formation, we

conducted a study using pairs of sagittal otoliths from the same fish. (See Appendix

11 for more detail.)

Growth curves

To allow for a range of functional forms for SBT growth to be considered, a

generic growth curve was defined that could easily be formulated and parameterised

to represent a variety of growth patterns. The advantage of this approach is that a

single statistical estimation approach could be developed for this generic form, which

could then be used to examine the suitabUity of a variety of different functional forms.

The generic growth curve was defined to be of the form:
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1(a)=L^f{a-a^0) (1)

where L^ is asymptotic length and / is a monotone iucreasing function with

parameter set {a^, 0} that approaches 1 as a —> °o and equals 0 when a = cig. The

parameter ciy can be conceptualised as the theoretical age at which a fish would have

had length 0 if we were to project its growth curve backwards.

Most of the growth curves commonly used m fisheries can be formulated in

terms of equation 1. For example, for the van Bertalanffy curve, 0={k} and

f(a — ao',k) =1 - exp(-k(ci — a^)). In the course of the project, specific formulations

of this generic growth curve were used to examine the traditional von Bertalanffy and

Richards growth curves (see Appendices 4 and 9). In addition, a new growth curve

was developed that can accommodate a marked change m the growth pattern at some

point in the life cycle, called the von Bertalanffy growth curve with a logistic k

parameter (referred to here as the VB log k curve, see Appendbc 4). Essentially, this

growth curve is a modification of the von Bertalanffy curve that allows for the

parameter k to make a smooth transition from k\ to ki over time. The motivation for

such a curve came from recent analyses of tag-recaptui-e data for SBT. These

suggested that a more complex curve that incorporates a two-stage growth process is

required for this species (Anon. 1994, Beam and Polacheck m press).

As would be expected m the development of an integrated growth model, a

common functional form for / was used when a growth model was fitted to multiple

data sources.

Fitting growth curves to tag-recapture data

A new maximum likeUhood approach was developed for fitting the generic

growth model (equation 1) to tag-recapture data. The details of this approach are

documented in Appendix 45. The method is based on modelling the joint density of

tag and recapture lengths rather than the more common past approach of modelling

the growth increments.

5 A version ofAppencUx 4 was submitted and accepted for publication in the Canadian Journal of
Fisheries aud Aquatic Sciences (Laslett et al. 2002).
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The following notation is used to describe the tag-recapture data m terms of

the generic growth function (equation 1). Let /i represent the measured length of a

tagged fish that was released at time t^, and let /^ be its measured length upon

recapture at time t^. All offhese values are known. Let A =t^ -ty, where ty is the

theoretical time at which a fish has length zero (analogous to the parameter ciy on the

age scale). Then A is a random variable, which we assume has density p(-) and

whose parameters will be estimated in the model. Although the age at release is

unknown, if we denote it by a,, then A is equivalent to a^ — Og. Similarly,

A +t^ - ^ is equivalent to a^-Oy, where a^ denotes the age at recapture.

In terms of equation 1, we can specify the models for the release and recapture

lengths respectively as

J,=L^f(A;0)+s,

J,=L^f(A+t,-t,;0)+£,. (2)

The asymptotic length is allowed to vary from fish to fish by modelling L^ as

a random normal effect with mean jU^, and standard deviation <7^ . (See below for

more details on the choice of error structure used.) The terms £^ and s^ represent

residual error in the release and recapture lengths respectively, which combine

measurement error and residual model error (i.e. variation other than that due to

variation in L^ among fish) since there is insufficient mformation with which to

separate these sources of error. They are assumed independent within an individual

fish and between fish, and also independent of L^ and A. Furthermore, they are

assumed to be normally distributed with mean 0 and variance dependent on the length

measurer. Two classes of measurers were distinguished in the analyses: one being

scientists or trained staff and the other being fishermen or factory staff (<7, was used

to represent the variance for a scientist or trained staff measured fish and (Ty for the

additional variation in a fisherman or factory staff measured fish). Heam and

Polacheck (in press) found significant differences in measurement error between these

13
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two groups, with measurements made by scientists being more accurate than

measurements made by fishermen. Note that the release lengths for all tagged fish

were measured by scientists. Thus,

V{£,)= ^

<72 if measured by a scientist
s

~-Z) — 1 _2 , _2 •.

<7; + <7y it measured by a tislierman.

If we condition on A, then /, and /^ are both the sum of random normal

variables and their joint distribution, h (/i, ,3 | a), is bivariate normal. Their

unconditional joint density can then by obtained by integrating over A. Namely,

h^,J,)= \}i(1,,1,\a)p{a)da. (4)

The product of the joint densities over all fish gives the likelihood ftmction for the

tag-recapture data. Thus, the negative log-Ukelihood ftmction can be expressed as

-ln(^)=Sln^,,/,,) (5)
7

where i indexes the fish.

Methods used for performing the numerical integration were developed and

are described in Appendix 4.

Fitting growth curves to lengtli-frequency data

A two-step procedure was developed to enable efficient use of the length-

frequency data m fitting growth curves. First, a mixture decomposition was

performed on each half-monthly sample independently to generate a mode and an

accompanying standard error for each age-class represented in the sample. Second,

the summary statistics from step one were used as input into the likelihood component

for the lengfh-frequency model that was developed.

14
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In the first step, each length-firequency sample was assumed to be a mixture of

Gaussian components, where the number of components and the age-classes to which

they corresponded were specified. Since the length-fi'equency data are dominated by

juvenile fish with small numbers of fish greater than age 4, and since the modes

become less distinct after age 4, no attempt was made to separate out modes beyond

age 5. The modes were usually quite distinct and the corresponding age-classes were

generally clear based on the lengths near the mode. There were, however, several

exceptions m which our best judgement had to be used. The estimation of the mixture

decomposition parameters was unconstrained except for simple bound constraints.

This differs from previous modal decomposition approaches (e.g. Leigh and Heam

(2000), who constrained mean growth over a season to be linear, and Schnute and

Foumier (1980), who constrained the means to follow a von Bertalanffy growth

curve). The standard deviation of the components was assumed to be common within

a sample, but was allowed to differ between samples. A standard error associated

with each mode was calculated by invertmg the observed information matrix. The

estimation procedure took into account the fact that the data were scaled up fi'om the

actual sample size to the size of the catch. A detailed description of the first step is

given m Appendix 7.

In the second step, a growth model was fitted to the estimated modes (denoted

by p.) and standard errors (denote by s) from step one. In terms of the generic growth

function (equation 1), the model can be expressed as

ft,jk = ^f^y, - a, ;0) + e^ + £„., (6)

where a^ is the mean age assigned to the mode from year ?', half-month j, and age

group k, and e^ and e^ are independent random effects representing sampling error

and residual model error respectively. We assume e^ ~ N(0,s^ ), where the s ^ are

the estimated standard errors from step one, and e^ ~N(0,<7^). The mean age

assigned to a sample is based on assuming a mean birth date of January 1 (see

Appendix 7 for details on the assignment of mean age). The parameter (J,^ represents

the average asymptotic length for a group of fish, and is modelled as a fixed effect. It
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could be modelled as a random effect; however, there is ahnost no information from

the length-fi'equency data alone on the mean asymptotic length of fish, let alone its

variance. In practice the estimate for [J.^ is determined by the tagging and the direct

aging data in the integrated analyses. The negative log-UkeHhood for the length-

fi-equency data is given by

-w—zzs '^ft.^^^ (7)
2rrn - "IJh" v{fi^

where

E(fa,,)=^Aa,,-a,;0)

and

^)=4+^-

More complicated models for the length-frequency data were explored (e.g.

random fishing season effect, within-season random half-month effect, and a within-

season random age effect). However, such models did not provide improved fits (see

Appendix 7 for more detail) and as such only the above model was used in the

integrated modelling.

Fitting growth curves to direct aging data

In the fitting of growth curves to the direct aging data, it was assumed that the

age of a fish was known without error. There are three principal potential sources of

error m the estimates of age from otoliths:

1. Whether a band has formed during the year in which the fish was captured;

2. Mistakes in counting m the number of bands; and

3. The date of "birth".

Note that the last of these is primarily important for accounting for within season

growfh for fish past age 1. Thus, whether a fish was spawned early or late during the

spawning seasons appears not to be reflected in the size at age for a fish beyond the

first year (e.g. the multiple modes sometimes evident for new recmits m the size

composition data does not persist past age 1). The amount of error as the result of

countmg errors is thought to be smaU (e.g. independent age readings have errors of

less than 4%; Gunn et al. m press).
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The possible errors associated with the time of band formation are discussed

above and in Appendices 3 and 12. Although substantial work was undertaken to

refine estimates of the time of band formation, the available data did not prove

sufficiently informative to provide reliable estimates of the probability of a band

being formed during the period from June through September, while there is a high

degree of certainty outside of these months (see below and Appendix 11). Results for

estimated curves were found to be sensitive to assumptions made about the timing of

band formation within this June to September period. As such, otoUths collected

during these months were excluded in the fitting process. While this reduced the

amount of direct aging data, it ensured that no biases were introduced into fhe fitting

process as a result of assumptions about the time of band formation.

The age of a fish was estimated based on the number of bands which were

counted and the date of capture assuming a January 1 "birth" date. A decimal age was

assigned to each fish as follows:

n+r/365 iir<d
age =^ "; ' '7_. .^"/\' (8)

ln-l+r/365 ifr^d

where n = the number of bands counted,

r = the capture date, and

d = the date of band formation.

Both r and d are expressed in Julian days since January 1 of the year of

capture. Note that d was assumed to be July 1, but its exact date has no effect on the

results since otoliths collected between Juae-September were excluded. See

Appendices 3 and 9 for more detail.

Assuming there is no error in the age estimate, the model for fitting the direct

aging data is

J.=L^a,-a,;0)+y, (9)
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where / = a fish's length

a = its age,

/' = the index for an individual fish, and

y = measurement and residual model error.

We assume that y is normally distributed with mean 0 and standard deviation

a . As with the tag-recapture data, L^, is modelled as a random normal effect with

mean //„ and standard deviation o-^ . We assume that L^ and y are independent. It

follows that the negative log likeLUiood for the direct aging data is

•W3)=l£
i

ln(2^(/,)))+
(/,-^,))2

(10)
^(/,)

where

E(!,)=^f(a,-a,;0)

and

n!,)=alf(a,-a,;0)2+^.

The integrated estimation model

Given the likelihood equations developed above for the different sources of

data, the overall negative likelihood function when fitting to multiple data sources is

simply the sum of the relevant negative log-likelihood functions given above.

Namely,

A=-(ln(^)+lna2)+hi(^)). (11)

The parameters common to all three components are 0 (fhe parameters of the growth

function f) and //^ (the mean asymptotic length). The asymptotic variance parameter

a^ is common to the tag-recapture and direct aging components. For the length-

frequency component, we are not modelling lengths of individual fish but rather we

are modelling mean lengths (see equation 6). As such, the asymptotic length

parameter should have the same mean but not the same variance as the asymptotic
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length parameter m the tag-recapture and direct aging models. There is no

information on fish older than age 4 in the length-frequency data alone to estimate the

relevant asymptotic variance parameter, so we modelled the asymptotic length as a

fixed effect for this component. Whether the asymptotic length is assumed to be

random or fixed will have virtually no effect for fish aged 1 to 4. The parameter Og is

common to the direct aging and length-frequency components; this parameter is not

present in the tag-recapture model because it is encompassed in the random variable

A. The parameters defining the lognormal distribution of A, namely jU^^ and ff^^,

are unique to the tag-recapture component. The various error parameters are unique

to their corresponding components, namely <7, and a ^ for the tag-recapture

component, (7^ for the lengfh-fiequency component, and (T for the direct aging

component.

Simulating growth curves

Extensive smiulation testing of the statistical models and estimation

procedures were conducted to ensure that the models were robust and provided

adequate performance in terms of their statistical properties. The simulation studies

were also conducted to provide insight into the selection of an appropriate error

structure to use m modelling SBT growth.

The simulation mefhods consisted of generating monte-carlo simulated data

sets under a variety of model structures with different levels of underlying variability

and for differing levels of sampling mtensity and age coverage. The growth

parameters were then estimated using the maximum likelihood methods described

above under a variety of model assumptions. The results of these fits were then

compared ia terms of how well the estimated growth ciuves captured the "true" or

underlying growth curve in fhe simulated data sets. Appendix 6 contains further

detaUs on the simulation methods and their evaluation. Results of these simulations

are summarized below and more detail results are contained in Appendices 4 and 6.

Changes in growth

Two primary approaches were used to examine changes in SET growth over

time. The first approach was to apply the above integrated model to data from
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different periods and compare the resulting estimates. This first approach is

straightforward and required no additional methodological development (see

Appendix 10).

The second approach was to develop a model that would aUow for changes m

growth to be estunated and described by tune varying parameters within a single

overaU model of growth. There has been little previous work on this problem. The

approach we adopted was to model the growth rate parameters as a function of time.

We focussed on modelling changes in growth rates over time since the mean

asymptotic length appears to change by at most a few centimetres over the 40 year

period of the study (see Appendix 10). We examined various ways m which the

growth rate parameters may be modelled in a flexible but parsimomous manner

(Appendix 8).

We developed a model m which the growth rate k(t) varies according to a

series of superimposed logistic cuives. It is clear intuitively that such a model has the

capacity to foUow changes in growth. The basic model is aimed at situations in which

a von Bertalanffy growth curve appUes, then a change in eaviromnent dictates that

growth changes until a new von Bertalanffy growth phase is achieved. Extensions of

the model to the VB log k model were also explored (Appendix 8). The model allows

for several such transitions, often in concert. An expression for k(t) is

k(t)= «Co + t(C, -Co) ~———^ (12)l=^+£(c'-c')l^xp(-^-«,))

where a^ <... < a and ft > 0. Note that t is time, and hence spans the whole real

line. As t —> -°o, k(t) —> n^, and as t —> oo, ^ —> ^^C, • The ^i values can be any

number, positive or negative subject to k(t) > 0. ft could also be made dependent on i

but this would likely make the model over-parameterised. Although the above

equation encapsulates the reasoning for this model, it is not a suitable form for

computation. We developed two alternative parameterisations of the model (see

Appendix 8 for details). We also extended this logistic k model to aUow for seasonal

differences in growth.
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In Appendix 8, we also considered and developed two alternatives approaches

to the above logistic set of curves for modeUing trends in k over time (polynomial and

hyperbolic splines). We concluded that the logistic curve approach appeared more

suitable and used it for estimating trends m k over time for SBT.

In addition, we compared results from the otolifh increment data m

relationship to the results we obtained from the above two approaches.

Results

The time of band formation

The results indicate that otolith bands are generally formed between May and

September. There is substantial variability in time of formation among individual fish,

with July 1 being an approximate average. In the study of sister otoliths read whole

and sectioned, no consistent difference was found between the number of bands

counted and the time of year for the two methods. This means that comparison of

number of bands from fhe same fish using the two methods cannot be used to provide

further information on the timing of band formation (see Appendix 11 for more

detail).

With the available data, it was not possible to further refine the time period

when bands are formed or to reliably assign relative probabilities that a band had

formed by a certain date. As such, uncertainty of a year (plus or minus) exists about

the age of a fish caught during the period of band formation. As noted above, this

uncertainty can induce substantial uncertamty and potential bias into the estimation of

growth curves if fish caught during this transition period are included without

appropriate consideration. Some preliminary results suggested that estimates would be

sensitive if a fixed date were used as the time when a band was fanned. We

developed some initial statistical approaches for dealing with this problem (see

Appendix 12). However, their application turned out to be highly complex and

required substantially more data than were available. As such, the application of this

approach was beyond the scope of the current project. An alternative solution was

simply to exclude direct aging data from those months when bands are being formed.
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It is important to note that this solution does not bias the estimation of growth, while

their mclusion with some assumption about the time of band formation could.

Moreover, given the sample sizes, this solution does not have a substantial effect on

the resulting precision of the estimates. Thus, only direct aging data from fish caught

outside the proposed months of band formation (i.e. fi-om October through April)

were iacluded in growth analyses for the current project. In doing this, we believe

that we should have excluded atmost ati, if not all, fish for which the time of band

formation could potentially confound the estimation of its age.

Although the main purpose of comparing whole and sectioned otolith readings

was to see if the results could be used to refine the time of band formation, the work

produced important results for future direct aging studies. Thus, while the hvo

methods show quite good agreement (64%), there appears to be a tendency for the

sectioned count to have one more band than the whole count. The discrepancy

between the whole read and the sectioned read does not appear to be related to the

size of the fish (see Appendix 11), although the sample sizes m the smaller length-

classes are too smaU to be certain. As discussed in Appendix 11, examination of the

length of the smaller fish m relationship to age estimates &om the otoliths suggests

that the whole count is more reliable for young (small) fish. However, the whole

method caonot be used for larger fish (fork length >135 cm). Thus, with respect to

using direct aging, it is preferable to use the whole otoUths technique for smatler

sizes, and sectioned method subsequently.

Model fining - introduction

Given the multiple sources of information and years over which the data were

coUected, a stepwise approach was used to arrive at a final integrated model. This

ensured that each of the methods for each of the sub-components of the integrated

UkeUhood constituted an appropriate and robust estimator for a particular data source.

It also aUowed for development and exploration of the "best" statistical approach for a

given set of data without simultaneously having to deal with the complexities arising

&om the other sources. This stepwise approach resulted in substantial methodological

developments and results in terms of estimating growth curves from tag-recapture

data and length-J&equency data separately. As such, results are presented first in terms
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of fitting these two data sources, before results fi'om the integrated fitting are

provided.

Choice of error structure

Substantial variability exists m fhe size of fish at any given age. This

variability stems from a combmation of genetic (e.g. individual propensity to grow

faster and/or larger) and environmental factors that can vary throughout the life of a

fish (e.g. food availability, water temperatures, density of con-specifics, etc). In

addition, measurement error wUl exist both in the determination of age and in the

measurement of lengths. As such, defining appropriate errors structures to represent

how variability in growth translates into variability in length is an important

component of the statistical modelling of growth and the evaluation of the adequacy

of the fit of any model to observed data. Moreover previous work on the estimation of

growth from tag-recapture data has found that the choice of the error structure used m

fhe estimation of the growth curve is important and that selection of the wrong error

structure can induce substantial bias into the estimates of the parameters (e.g.

(Samsbury 1980, Mailer and deBoer 1988).

The effects of different sources of variability wUl tend to be confounded,

which can complicate selection of the most appropriate model. There is no a priori

way to determine what sources of variability are the primary contributors to the

observed variation in any particular data set. Different sources of variability wiU lead

to different patterns in how the amount of observed variability varies with age (see

Appendix 6). These differences can be used to provide guidance in selecting the most

appropriate model. We considered four basic alternatives:

1. that the variability is constant across all ages;

2. that there is individual variability among fish in their asymptotic length (L^ );

3. that there is individual variability among fish m their intrmsic growth rates

(e.g. the A; parameter m a VB growth model);

4. that there is individual variabiUty among fish in their asymptotic length and in

their intrinsic growth rates.

23



FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

In aU of the latter three alternatives, we also allowed for an element of constant

variability that reflects a combination of both model error (i.e. random variation due

to environmental variation for example) and measurement error.

Inspection of the length at age distribution from direct otolith data for older

fish approaching their asymptotic length (e.g. fish over 25 years of age) indicated that

there was substantial variability, and that the variability is rather constant and does not

decrease with age (see Figures m Appendix 10). Such a pattern is not consistent with

one in which the dominant source of variability is individual variation m mtrinsic

growth rates. In addition, in all cases where we fit growth curves using either the

tagging or direct aging data, inclusion of a term for individual variability m L^

resulted in a significantly better fit than simply assuming a constant variance (e.g. see

results m Appendices 4, 9 and 10). As such, the above suggests that either the second

or fourth alternative would be the most appropriate.

The simulation study reported in Appendix 6 indicates that only includmg a

term for individual variability m L^ when there is both individual variability m L^

and in fhe intrinsic rate of growth has only minimal effects on the estimation of the

growth curve. In addition, results of fitting tagging data with the above four

alternative error structures to a standard VB growth curve indicated that the most

appropriate error structure to use was one that only included individual variability in

L^ (Table 1). For these reasons, we chose an error structure in our modelling of SET

growth that included individual variability in L^ plus an additional random

component. This does not necessarily mean that there is not individual variability in

the mtrinsic growth rates, but only that it appears not to be distinguishable from the

residual variance. As such, inclusion of a term for this adds little or nothing to the

estimation of SBT growth within the resolution of the existing data.

At the beginning of this section we noted that previous studies found that

selection of the wrong error structure can induce substantial bias ittto the parameter

estimates. In these studies, the estimation of growth curves was based on the fitting of

The length-fi'equency data are not informative about the appropriateness of including a term for

variability in L^ because the data only provide information on fish up to age 4 (see Appendix 9).
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tag iacrement data (initially using the Fabens (1965) method). In the simulation

analyses that we conducted, we found that the parameter estimates were generally

highly robust to the choice of the error structure even for tag-recapture data (see

Appendix 6). The difference appears to be due to the estimation method that we

developed m this project for tag-recapture data that jointly models both the release

and recapture lengths, instead of simply the increment data (see Appendix 4). This is

an important property as it suggests that robust and unbiased estimates can be

obtained even in situations where the data may not be informative for discriminating

what is the most appropriate error structure (e.g. because of small sample size or

incomplete age coverage).

Choice of growth curves -fitting the 1980's tagging data

Previous studies of SBT growth have suggested there is a change m the

growth process for SBT during the transition from juveniles to adults that cannot be

adequately captured by a standard von Bertalanffy growth curve (Anon. 1994, Heam

and Polacheck, in press). Anon. (1994) and Heam and Polacheck (in press) model

SBT growth as a two-stage process in which the growth in each stage follows a

different VB curve, such that there is a discontmuity in the growth rate at the

transition between the two stages. In this project, we have developed an alternate

growth curve that can accommodate a change in the growth pattern at some point m

the life cycle but allows for a gradual, smooth transition between stages (for details

Appendix 4). We call this new curve the von Bertalanffy growth curve with a logistic

growth rate (abbreviated VB log k) to reflect the fact that the change in growth rate is

modelled using a logistic function. The growth function for the VB log k model is

given by

,-/?«,-<.„-.) Y^-WP

f(a-a,;{k,,k,,a,ft})=l-e-kl(a-ao)^^^ [> (13)

As a increases, this function makes a smooth transition from a VB curve with

growth rate parameter k^ to a VB curve with parameter k^. ft governs the rate of

the transition (being sharper for larger values), and a governs the age at which the

midpomt of the transition occurs. As discussed m Appendix 4, this new growth
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function provides an improved formulation for modelling growth with a transition

phase than the two stage von Bertalanfiy model used previously and overcomes some

the statistical problems that Heam and Polacheck (in press) encountered in fitting the

stage von Bertalanffy to SBT tag-recaptiire data.

In Appendix 4 results of applying this VB log k model to 1980's tag-recaptui-e

data are presented using the new estimation method developed m this project. The

results indicate that the VB log k model results in a substantially better fit to the

1980's SBT tag data than a standard VB curve. Thus, the results confirmed the

importance of aUowing for a transition phase when modelling SBT growth. The

results also indicate that the VB log k model can provide an appropriate function for

modelling growth with tag-recaptm'e data when a transition exists and that the

estimation procedure produces unbiased results. As such, in the subsequent modelling

of SBT we used the VB log k function, but also compared the results with those from

fitting a standard VB curve.

Fitting the length-freqiiency data

The results from fitting length-frequency data independently suggest that

growth patterns within these data do not conform tightly to a particular growth curve

(see Appendix 7 for detail). There appear to be significant additional sources of

variation operating between years (i.e. fishing seasons), between age groups within

years, between half-months within years and between age groups and half-months

within years (interactive effects). We are unable to offer explanations for all of these

effects in terms of covariates, and suggest that imtially they should be modelled as

independent hierarchical and crossed random effects. Otherwise standard errors of

growth parameters derived fiom length-frequency data are likely to be optimisticaUy

smaU. We suspect that a substantial portion of the variability may be due to the

clustered sampling of the population that occurs in the surface fishery (e.g. the

schooling nature of SBT involves apparent size/age segregation overlaid with spatial

clustering of schools and large within and between year variability in location,

migration and residence time within the area of the fishery).

Despite this complexity, the results indicate that southern bluefin tuna

consistently exhibit a seasonal pattern m which growth is fastest over the summer but
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flattens off in autumn. A sine curve with amplitude and phase parameters estimated

from the data appears to provide an adequate model for capturing this wifhin-year

seasonal effect. The results also indicate that broad changes in growth from year to

year occurred based on the estimated between-year random effects (Appendix 7).

Furthermore, these year effects change rather smoothly over time, and indicate that

they should be modelled as systematic effects rather than random effects.

The results from fitting the length-frequency data indicate that at a qualitative

level, the mean length of one-year-old fish has changed only m minor ways between

1960 and 1989, but age 4 fish in the 1980's are considerably longer than those in the

1960's. This question is explored further in the context of the integrated and time

varying k models in Appendices 8 and 10.

The results ii-om modelling the length-frequency data clearly demonstrate that

these data provide unique and valuable information for modeUing growth. However,

these data generally do not contain information on older mdividuals and thus are not

adequate by themselves. The modelling approach we used required an assumed value

for the mean asymptotic length when fitting the length-fi'equency data alone (this is

not necessary in the integrated model). We chose a value of 185 cm based on results

in Appendix 4 and mean length of older directly measured fish. The results over the

age range represented by the lengfh-frequency data are not sensitive to the value

chosen. Thus, the methods we developed for estimatmg growth from lengfh-

frequency data provide a robust method for estimating growth of younger fish from

length-fiequency data as long as a reasonable estimate of the asymptotic length is

available.

We also note that the approach developed in Appendix 7 could be used to

provide direct estimates of the age distribution of the catches &om these length-

frequency distributions. This approach would be preferable to the current practice of

estimatmg the age distribution using cohort sUciag as it takes into account the overlap

m size among age classes.
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An integrated model for the 1980's

The general integrated Ukelihood approach that we developed in this project

was first appUed to combined data sets for the 1980's m order to ensure that the

method provided consistent estimates and to determine the appropriate level of model

complexity that needed to be considered when applying the modeUmg approach to the

full data sets. The results of the model development and evaluation process are

described m detail in Appendix 9.

The results of this fitting process indicated that an integrated model using a

common growth function could be fitted to each of the data sources and that each of

the data sources provided a generally consistent and complementary fit. The only

indication of any substantive inconsistency was in estimates for age 1 fish from the

direct aging and length-fi-equency data. As discussed in detail in Appendices 3 and 9,

this stems from the fact that within the age 1 fish there is spatial segregation by size

that appears to be related to the actual age (i.e. age in terms of a when fish were

spawned). However, in both of these data sources we are not able to resolve age to a

finer level than individual year-class. SBT are also growing quite rapidly at this young

age. Thus, any estimate for size of one year old fish will be highly sensitive to both

the timing of the sampling and the proportion of fish m the overaU sample that come

from different locations. It should be noted that SBT growth during their first six to

nine months is extremely rapid and would be expected to be functionally different

than subsequent growth. Further, in terms of this project's primary objective for

modelling SET growfh (i.e. for estimation of the age structure of the catch m an

assessment context), precise estimation of the size of fish aged 1 and younger is not

critical.

In developing the integrated model, we considered the addition of a seasonal

component to the basic VB log k model. SBT growth, particularly as juveniles,

appears to be substantially greater during the austral summer months than during the

winter. Seasonality m growth was modelled by replacing a - ciy with a - ciy + S(t) m

equation 1, where / is the fractional time of year since January 1. Within year growth

was modelled as a sinusoidal function:
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5(0=^-sm(2^-w)) (14)
ITT

where u is the amplitude and w is the phase. The amplitude was constrained to be

between 0 and 1 to prevent negative growth and the phase was constrained to be

between -0.5 and 0.5. (Note any bounds for the latter with a span of one could have

been chosen due to the periodicity of the function.) In this formulation, the rate of

growth is maximal at t = w and dimmishes symmetrically about w to a minimum at

/ = \v - 0.5 and t = w + 0.5.

Comparison of results for the complete data sets for the 1980's with and

without this seasonal component indicated that inclusion of the seasonal component

yielded a substantial and statistically significant improvement in the overall fit,

although it had little effect on the parameter estimates for describing the longer-term

growfh (e.g. jU^, k^ and k^). The inclusion of the seasonal component resulted in a

noticeable improvement to the residuals for the lengfh-frequency data (see figures in

Appendix 9). It was also important m that it allowed information on growth from tag-

recaptures with short time at liberty to be included in the analyses. Previous studies

had excluded tag returns with less than 270 days at Uberty because the strong seasonal

signal in growth was seen as problematic if these shorter term recaptures were

included (Anon. 1994, Heam and Polacheck in press). There are substantial numbers

of tag returns with times of liberty less than 270 days. Such tags can provide valuable

additional mformation on the growth at younger ages (since these were the ages that

were tagged) as long as seasonal effects are appropriately accounted for.

It is worth noting that previous questions have been raised about the validity

of estimating mutual growth parameters m an integrated framework using more than

one data source (Francis 1988). The results m Appendix 9 (and additionally in

Appendix 10) demonstrate not only that consistent estimates can be achieved, but also

that there is considerable advantage in combining data from more than one source,

particularly when there is poor or incomplete coverage of the fall age range of fish

withm any one data source. However, m doing this, it is essential that appropriate

models and KkeUhood functions be developed that reflect the information on growth

and appropriate error structures for each data source. It is also important that the data
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are comparable in terms of the group of fish (e.g. cohorts) for which growth is being

estimated.

Comparison of growth curves over four decades

The integrated estimation method was applied to the data fi'om cohorts from

the 1960's through the 1990's. We separated the data by decade in order to obtain

estimates of the average realized growth by cohorts from each of these decades . We

applied the VB log k model with a seasonal component to each data set and obtained

estimates for the parameter values (Table 2). Comparison of the parameter values

suggests that there has been Uttle or no change in the mean asymptotic length (//^)

but that there has been an mcreasing trend m growth rates at younger ages as reflected

in estimates of the k\ parameters. Comparison of the estimated average growth curves

from the maximum likelihood fit indicates that the predicted length of juvenile fish

increased between the 1960's and 1970's, continued to mcrease between the 1970's

and 1980's, and changed little between the 1980's and 1990's (Figure 1). The overall

increase between the 1960's and 1980's is quite substantial. Thus, the estimated

average size of a two year old in the 1980's is nearly equal to that of a three year old

m the 1960's. Although Figure 1 suggests that there may not be much difference m

growth between the 1980's and 1990's, a closer exammation of the two curves

suggests that a difference of about 4 cm existed at age 2 and about 2 cm at age 3 (see

Appendix 10). After this age, the estimated differences were generally less than 1 cm.

The results for the data from the 1970's suggest that the 1970's were a period

of transition with quite variable growth. The results from the integrated analyses from

this decade suggest that growth rates at younger ages were slightly greater than those

in the 1960's. Examination of residual plots for the length-frequency data either by

year or cohort (Appendix 10) suggests that growth in the early part of the decade was

substantially slower than in the latter half and even lower m the 1960's. Similar

7 For the tag-recapture data, we separated the data by decade of release because of the techmcal
problem that estimates of the age and thus cohort for any individual tag release are only obtamable in
the context of fitting the growth model. (Even in this context, the estimated age/cohort is considered as
a random variable.) Additionally, the length-frequency data (which covered fish up to age 4) were
separated by decade of capture since we did not want to split up data collected within the same year in
our analyses (for reasons given in Appendix 10). This means that in each decadal data set there will be
a small percentage of fish that were actually born in the last few years of the previous decade. This
does not have any substantive effect on the results.
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results were also found in the analyses m Appendix 8. The pooled results for this

decade will thus provide intermediate values. Attempts to further resolve the growth

in the 1970's using this integrated framework were not successful. The data for the

1970's are relatively sparse and would not, for example, support half-decadal

estimates. The limitations in the 1970's data are important to recognize in any

interpretation of the results. In particular, there is little mformation on growth for

intermediate ages (i.e. between 6 and 15 years of age).

Examination of the residuals revealed no systematic deviations from the fitted

curves for any of the different data sources. Thus, the change in growth was

consistently seen in three independently derived data sources, indicating that the

observed difference was not an artefact of differences in the data collection or

processing procedures over time. The estimated difference m the growth curves

between the 1960's and 1980's decades is somewhat less than that estimated

previously in either Heam and Polacheck (1993, in press) and Anon. (1994). These

previous studies were based only on tag-recapture data and used Fabens' estimation

mefhod (Fabens 1965) without any allowance for individual variability in growth.

Fabens' approach has been shown to be biased if in fact there is individual variability

in L^ (Mailer and deBoer 1998). The results in this and previous appendices strongly

suggest such variability exists, and explicitly taking it into account in the model is the

primary source of the difference.

We examined in detail various aspects of the model fits to the data from each

decade, mcluding variance estimates for the estimated parameters (see Appendix 10).

The results suggest that //„ was approximately 3 cm larger for the 1960's data than

for subsequent decades. They also suggest that for the 1960's data there is no

significant difference between the standard VB and VB log k model, while a

sigmficantly better fit was obtained for the other decades with the VB log k model.

Interpretations of these results are discussed in detail in Appendix 10. However, m

terms of prediction of lengths within a stock assessment context, issues such as

whether to use a VB or a VB log k model for the 1960's or whether there is a common

//„ for all decades will have at most minor effects.
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Changes in SB T growth rates over time - time varying k

Estimates of k(t) from fittmg a time varying VB model to the length-

frequency data are illustrated in the upper panel of Figure 2. The estimates of k(t) are

relatively constant m the 1960's, decline sharply m the late 1960's and early 1970's,

increase to a peak in 1973 and decline again before uicreasing in the 1980's to a level

higher than that in the 1960's. The temporal pattern broadly follows the shape of the

seasonal effect estimated in the length-frequency analyses in Appendix 7 (see Figure

6 m Appendix 7). However, there is a noticeable difference, namely that the level of

the peak in 1973 is about the same as that in 1985.

It is important in interpretmg the upper panel of Figure 2 to keep in mind that

what is depicted is the estimated growth rate parameter (adjusted to one point in the

year) and not an estimate of the actual change in size. The predicted size at age a from

this model is the integration of the estimated k(t) from t - a to t. As such, the

temporal trend m the predicted size over time for any age can be substantially

different from the temporal pattern of k(t). This is illustrated in the lower panel of

Figure 2, which shows how the predicted mean lengths for age groups 1 to 4 vary

over time. There are important differences from the pattern m the upper panel. Thus,

the 1973 and 1985 peaks are the same height for fhe one-year-old fish, but the 1985

peak is clearly higher for the four-year-old fish. The two-year-old and thi'ee-year-old

fish show intennediate effects. These results are consistent with the decade by decade

results presented above and in Appendix 10. These show (hat the differences in the

mean length at age of SBT between the 1980's and previous decades were small for

the one-year-olds, but were progressively larger for older age groups.

In Appendix 7, when comparing half-month Gaussian mixture fits to the

1970's length-frequency data, we experienced difficulty m foUowmg the age group

changes. The fact that the growfh rates during the 1970's appears to have been

following a "sme"-shaped curve through that decade may explain the difficulty.

Inspection of the residuals to the fit of this k(t) suggests that the four-year-old fits are

too low in the 1980's. This would suggest that the actual change in size is being

underestimated by this model. This in turn indicates that the von Bertalanfiy model is

incapable of futly capturing the fast early growth of 1980's juvemle fish and is yet
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another indicator that a more complex growth model (e.g. VB log k) is more

appropriate.

We encountered technical difficulty m applying the changing k(t} model to

the tag-recapture data. The optimisation method was too slow to use with the full data

set. In order to be able to produce estimates for the tag-recapture data, preliminary

results from a sub-sample of size 1000 was used. We restricted the tagging data to

releases from the 1960's to the 1980's to have comparable results with those for the

length-frequency data and to ensure that there was sufficient data to support fhe

analysis. The estimates of k(t) and the mean lengths for age groups 1 to 4 are

qualitatively similar to those estimated from the length-fi-equency data (see Appendix

8), even though the data sets in the two analyses were independent. There are some

differences in the results but taken together the results support the conclusion that the

rate of growth of SBT was faster in the 1980's than in the 1960's. The 1970's saw a

period of change followed by a rise to the 1980's level starting m the late 1970's. It

should be stressed that the tag-recapture data set is deficient m the 1970's. As such,

the estimation of k{t) from these data is likely to be relatively poor during this time.

Changes in SBT growth — otolith increment data

The mean otolith increments by decades indicate a similar pattern of change to

that seen m the decadal estimates of SBT growth fiom the integrated analyses in

Appendix 10 and discussed above. Thus, on a decadal scale, the mean growth

increment in the otoliths between bands 1 to 2 and between bands 2 to 3 were similar

for the 1960's and 1970's and were significantly smaller than for the 1980's and

1990's (Table 3). The mean increments in the 1990's were also greater than those for

the 1980's. The same tendency is seen in the mean increments for bands 3 to 4,

although the magnitude is much smaller. There is little difference m the mean

mcrements for bands 4-5. (Note there are few increment data for the 1990's in fhis

case.) These results are similar to those presented m Gunn and Farley (1998) and

Gunn et al. (in prep). Interpretation of the increments for these older ages is more

problematic as the absolute magnitude of the increment declines with age and thus the

relative precision of the esthnates decreases because measurement errors become

proportionaUy greater. Moreover, the expected absolute growth increment of a fish
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declines with its size. As such, even if fish were growing faster post 1970's (e.g. a

greater k), fhe differences in the absolute growth increment would decrease with age.

It should be noted that the comparisons for growth increments between

different ages in Table 3 are not independent since they are all based on increments

measured fi-om the same set of fish. As can be seen in Table 4, within any cohort,

there tends to be a positive correlation between the growth increments between

successive ages. In other words, a fish with a larger than average growth increment in

its otoUfh for band 1-2 also tends to have a larger increment for band 2-3, etc. This

positive correlation is consistent with substantive individual variability in growth (i.e.

it supports the importance of considering L^ as a random variate). If substantive

individual variability did not exist, then successive growth increments from the same

fish would be expected to be negatively correlated (as a result of growth being a

function of size and also as a result of measurement error, since consecutive

increment measurements share a common middle band measurement). As such,

comparisons of the increments for different ages are confounded. The overaU

cumulative increment for bands 1-4 or bands 1-5 would appear to be the most relevant

measurement in terms of comparing overall trends in juvemle growth rates and for

minimizing the relative contribution of any measurement error. These values are

given in Table 3.

In addition to the decadal comparisons in Table 3, the otolith increment data

can be used to provide an indication of finer temporal resolution in changes m growth.

Figure 3 shows the mean otolith increment between bands 1 to 5 by cohort for cohorts

born between 1960 and 1989. Also shown are the estunated 95% confidence limits.

The increments have been scaled to the overaU mean for this period to facilitate

interpretation. The precision of the estimates for any given year is relatively low in

that for all but a few cohorts the confidence intervals for the deviation from the

overall mean overlap zero. Nevertheless, there is a general trend m the mean for

cohorts born in the 1980's to be greater than the overall mean and those born in the

early 1960's to be less. The 1977 and 1978 cohorts stand out as the two cohorts with

significantly smaUer increments. Overall, this figure suggests a relatively similar

growth for cohorts born prior to 1978 and an increase (and perhaps an mcreasing
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trend) for the 1980's cohorts. The transition between these two periods depends in

part on the interpretation given to the 1977 and 1978 cohorts.

The correlation in the increments for an individual otoUfh (Table 4) means

year and cohort effects tend to be confounded in this data set. For example, the

correlation between the mean growth increments for bands 1 to 2 and bands 2 to 3

among cohorts is 0.73, while the mean correlation between the same band increments

within a year is 0.35. This might suggests that cohort effects are stronger than year

effects. However, if the otolith samples are randomly divided within a year into two

groups in order to obtain two independent samples, the correlation with cohort and

year are both reduced and are of similar magnitude (0.28 and 0.22 respectively).

OveraU, this confoundmg between year and cohort means that distmguishmg the

specific temporal signals in these data is problematic.

Comparison of the temporal pattern in the otolifh increment data (Figure 3)

with the pattern estimated in the time varying k analyses (e.g. Figure 2 and Appendix

8, Figure 5) suggest that there is consistency m all of them in terms of predicting that

there was a decline in growth rates just prior to the increase in the 1980's. However,

within the otolifh increment data, there is no indication of the large decline m growth

rates at the beginning of the 1970's, a feature seen in both of the analyses in Appendix

8. As such, it is not clear wbefher the apparent decUne in the late 1970's is merely a

coincidence. The coef&cient of variation in the mean otolith mcrements between ages

1 to 5 for a cohort is on the order of 5%. The difference in the estimated decadal mean

lengths for juvenile SBT is of the order of 10% or less. As such, the power of the

otoUfh increment data to detect fine scale temporal differences would be small,

particularly given that the otoliths provide an indirect measure of actual growth.

Discussion

The estimation of fish growth is challenging and complex, particularly for

long-lived species such as SBT in which growth processes can be expected to vary in

different components of the life cycle and can change over time, potentially

differentially with age. This necessitates that extensive data be collected over

considerable time periods if reliable estimates are to be obtained. Moreover, given

the long lifespan of SBT, commonly used sources of information on growth (e.g.
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length-frequency and tagging data) are likely only to be mformative for portions of

the age range. As such, it is important to have methods that can incorporate and

integrate a variety of data.

The integrated methods developed and appUed to the SET data sources have

been able to provide a comprehensive set of estunates for the growth of SBT over

four decades. In particular, the combining of length-fi-equency, tag-recapture and

direct aging data has been a powerful mechanism for obtaining estimates for the

1960's and 1970's periods, where there are substantive deficiencies in coverage in the

historical data from any particular source. The inclusion of the direct aging data has

been particularly informative with respect to the asymptotic length. None of the

individual data sources, by themselves, were sufficient to provide estunates of growth

for the 1970's. By being able to combine the different data sets, the overall data sets

for SET constitute one of the most comprehensive, long-term data sets for a large

pelagic fish stock. Nevertheless, as discussed below and in the appendices, there are

still substantive limitations m the coverage provided by this integrated data set that

need to be taken into account in interpretmg the results. The du-ect ageing data

provided the best information on asymptotic length, the lengfh-frequency data the best

information on within-season growth and the tag-recapture data the best information

on intermediate ages and on between-fish variability ( (T^ ). Thus all three types of

data were essential in developing a comprehensive growth model for SBT.

Another advantage of an integrated approach is that it aUows for the

consistency of the data from different sources to be evaluated. Because of the high

correlation among parameter estimates m standard growth models (e.g. k and L^ in

the VB model) comparison of results from independently fitting to separate data

sources can be problematic. la addition, examiaation of the residuals from an

integrated source provides an indication of the overall robustaess of the resulting

estimates and can be a powerful means of gaining insight into the underlying

processes.

It is important to consider what the estimates of the growth parameters

represent when mterpreting them. At the most fundamental level, the estimates in
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conjunction with the underlying growth model provide a mathematical description of

the realized average length at age along with associated variances in the distribution

of length at age for the group of fish (i.e. cohorts) over which the data have been

aggregated. To the extent that growth rates vary over time the results do not provide a

direct description of the growth at any particular instant m time. Different

components/ages within fhe population at any given instance may have been

following very different growth trajectories depeadmg on the cumulative past and

current factors that have affected and are affecting their growth.

At another level, examination of the estimated growth parameters can provide

insight into the underlying growfh processes, how they have changed and the factors

responsible for them (see discussion below). However, in doing this, caution is

warranted because of the problem of mferring process from pattern, the large

correlation among some of the estimated parameters, and the potential problems with

the lack of separability in the observed realization of multiple and cumulative effects.

A further complication is that observed growth comes from the individual that

survived to that age. To the extent that there is size specific mortality within an age

group (either natural or fishery induced) the resulting observed growth curves

represent a combination of the underlying growth and mortality processes. Finally all

the observed data on growth comes from fish that were captured in a fishery (in most

cases commercial but "scientific" in the case of tagging). If there is large size

selectivity within an age class, then the resulting growth curves do not provide a fatty

unbiased estimate for the underlying population. As discussed above, there appears to

be significant size selectivity due to spatial segregation within the one-year-old age

class and also within ages 8-14 on the spawning grounds during the spawning season.

These have been taken into account ia the analyses. Other potential sources of size

selectivity wifhm an age class, particularly ones that may have changed over time,

would appear to be small (e.g. hook selectivity m the longline fishery). However, this

inherent limitation of fishery-collected data on growth should be kept m mind when

interpreting results.

Hypotheses for the changes in growth

The size of a fish at a point in time represents the integration of a complex

mixture of factors that have determined its growth up until that age. At the population
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level, changes in the average size at age indicate that there has been a change in one

or more of the dominant factors that affect growth. Four general categories of factors

at the population level are likely to effect observed changes m growth:

1. the genetic structure of the population with respect to factors controUmg

individual growth;

2. the physical environment (e.g. temperature) experienced by the population;

3. the productivity and available resources within the utilized habitat;

4. the size of the population.

Moie than one of these factors can change over time and be an influential

contributor to changes m growth. Moreover, these factors are not independent and

changes in one factor can mduce changes in the other. For example, changes in the

density of the population can affect the availability of food resources and result in

tropic interactions on the productivity of the ecosystem. Alternatively, increases in the

size of the population can result in more marginal habitats being used and thus change

the average physical environment that is experienced. Changes in population size can

also change the selection pressures with respect to growth within a population.

Nevertheless, when substantive changes in growth have been observed, as has

been the case with SBT, it is important to consider possible alternative hypotheses

with respect to the likely dominant factor in terms of their implication for stock

assessments and the provision of management advice. In particular, the potential

effects of changes m the size of the population on growth as the result of fishing are

important to consider.

In Appendix 10, possible hypotheses for fhe observed decadal changes in

growth are discussed. In that appendix, it is suggested that a hypothesis entailing a

density dependent response m juvenile growth rates should be considered as one

alternative for the changes m decadal growth observed in the estimates of growth. It is

also suggested that a hypothesis of density dependent growth m the post adult phase

that entails at least a change m //„ should be considered as an explanation of the lack

of fish greater than 184 cm m the early longline catches. As noted m this appendix,

these two density dependent hypotheses are clearly speculative, but they are at least
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broadly consistent and plausible given the set of estimated growth rate parameters

from this integrated analysis, the history of the fishery and the general trends m the

SET stock.

The other general alternative to a density dependent hypothesis is that the

changes m SBT growth have been driven primarily by changes m the physical nature

and productivity of SBT habitats. In terms of the decadal growth estimates, a large-

scale climatic "regime shift" m the mid 1970's has been linked to major ocean basin

productivity changes and flow-on effects for fish populations (Polovina et al. 1995,

Mantua et al. 1997, Beamish et al. 1999). While the best mformation on these

Imkages comes from the North Pacific, the climatic shifts have been linked to other

areas including the Indian Ocean (e.g. Minobe 1997). As such, the changes in SBT

growth could be considered to be broadly consistent with this observed decadal

climatic change. It is less clear what environmental signal could be considered

consistent with a large change m //„, if this is in fact the cause of the absence of fish

in the larger size classes (e.g. >184 cm) in the early longline catches (see Appendix

10).

Unfortunately, the decadal estimates of growth are not very informative m

terms of rejecting or accepting hypotheses about the underlying factors affecting

growth. Thus, they provide estimated growth curves that broadly represent the

average "growth" experienced by cohorts from each of these decades. There is no

information m the estimates to resolve at a finer time scale whether broadly coherent

hypotheses are consistent with fhe finer scale dynamics of the hypothesised causative

factors (i.e. environmental or abundance changes).

The methods developed and the analyses conducted in Appendix 8 were

undertaken to provide finer scale estimates of how SBT growth has changed over

time. While the methods developed m Appendix 8 appear promising, they expose

general limitations to the modelling and estimation of how growth rates change. It is

now clear that extensive data are required, particularly in the case of tagging data8.

Problems inherent m tagging data for this purpose are that the age of the fish needs to be estimated as
part of the analysis and for longer-term recaptures the observed change in lengths represent an
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Given the limitations m the temporal coverage within the various data sources (see

below and Appendix 3), the methods in Appendix 8 were only able to provide an

indication of how growth rates may have changed and then only for the juvenile age

classes.

Ideally, for analysing how growth has changed over time, the data should

atlow for reasonably precise separation of estimates of growth by age and time period.

Although the data for estimating SBT growth rates are extensive, there are real

lunitations in terms of the comparability of the age range within any single source and

the ability to provide a time series of growth rates by age and year. There are uiherent

problems in tagging data for being able to do this and substantial gaps exist within the

1960-2000 time&ame because few or no tags were released (e.g. during the 1970's

and in the mid to late 1980's). There are also sampling limitations in the direct aging

data. In particular, because the otolith samples were almost aU collected m the 1990's,

the direct aging data provide Uttle mfonnation for comparmg or modeUing growth

rates over time for simUar size/age range of fish (e.g. there is no information on

juvemle growth m the direct aging data for the 1960's and 1970's). However, it is

worth noting if otolith sampling contmues on a routme basis that the resulting direct

aging data would provide a very powerful data set for tracking how growth rates

change m the future and for developing an understanding of the underlying

mechanisms. The length-frequency data provide for a complete time series of growth

rate estimates over a consistent age range. However, the age range in this case is only

for ages 1-4 and no useable data exist for the 1990's.

Despite the limitations just noted, the results from Appendix 8 provide a set of

finer resolution estimates of both the change m growth rates and the resulting change

m mean size at age (particularly for the transition between the 1960's and 1980's).

Given the limitations of the data and model fitting problems, the results should be

considered more as a relative indication of how growth rates may have changed -

particularly since fbe fits to the length-fi'equency and tagging data yielded

qualitatively similar temporal patterns but somewhat different quantitative estimates.

The results indicate that the transition between the 1960's and 1980's was not a

integration of the growth rates experienced by that fish. Thus, there is no direct observation on how
growth rates may have varied within the interval between release and recapture.
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smooth continuous increase. Instead they suggest that growth rates m fact decreased

in the early 1970's and that a large fi-action of the increase in the average size of

juveniles between the 1960's and 1980's occurred rapidly near the end of the 1970's.

The decrease m the growth rate in the early 1970's is also consistent with the residual

pattern by year or cohort for the length-fi'equency data seen in the integrated fits to the

decadal data (Appendix 10). Although the length-fi-equency data are included in both

cases and thus the two analyses are not independent, the consistency between the two

different statistical models and approaches lends some additional support to the early

1970's being a period of depressed growth. However, it should be noted that such a

signal is not apparent m the back-calculated otoUth iacrement data (see above). In

contrast fhese otolith increment data also suggest that the increase in size between the

1960's and 1980's occurred relatively rapidly near the end of the 1970's (Figure 3).

If the early 1970's was a period with lower growth rates followed by a period

of rapid growth subsequently, environmental or density dependent effects could be

hypothesized for the underlying factor. Given the imprecision m being able to

estimate the timing and magnitude of the change combined with fhe shortness of the

time series, attempting to correlate it with a range of specific environmental signals

would probably result in at least one positive, but potentially spurious, result,

especially if lags were also considered. Liformation on changes in juvenile density

during this period suggests that a density dependent effect would also be broadly

consistent with such a pattern of growth during the 1970's. Thus, Japanese longline

CPUE trends for juveniles (ages 4 and 5) suggest that the early 1970's was a period of

high density (Figure 4). This is in spite of the large catches of younger fish being

caught by the Australian surface fishery. The stock assessment models integrate these

CPUE trends and catch data to provide estimates of recruitment. In this regard, the

resulting estimates of the recruitment trends also suggest that the late 1960's and the

first year of the 1970's was a period of somewhat elevated recruitment relative to an

overall declming trend and that this was followed by a short period of lower

recruitment in 1971 and 1972 (Figure 5). Allowing for these recmits to age suggests

that the pattern of recruitment is broadly consistent with the estimates of change m

growth rates in Appendix 8.
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Growth rate parameters for use in SBT stock assessment models

As discussed above estimates of the growth rates of SET are critical for the

SBT stock assessments. Both the traditional VPA assessments and the more recently

developed statistical time series approach require estimates of the expected mean

length of a fish by year and age. In addition, the catch at length based models require

estimates of the variance in length of fish in a given year and age class. The results

from fhe integrated analyses of SBT growth conducted m this project provide a basis

for generating estimates of the mean lengths at age and their variances that can be

used as input into these stock assessments. However, this is not a straightforward task

because SBT growth rates have varied substantially over time. Thus, the distributions

of lengths at age have changed, while the available data are incomplete for robustly

estimatmg these changes.

In considering what estimates should be used it is important to bear in mind

what data actually underpin the estimates, particularly in terms of the age ranges and

years covered. The stock assessments need to take into account the uncertainty in the

available growth data and consider plausible alternatives, particularly where data are

sparse or unavailable. The available data provide information on cohorts born

between 1960 and 2000. However, the data provide no direct information on the

growth of fish or length at age for fish existing at the time when the fishery began in

the early 1950's or for the large catches from the spawning stock that occurred m the

early 1960's (e.g. these spawning catches would have been greater than 8-12 years of

age based on current estimates of maturity). Whatever values are used for these early

cohorts must be based on hypotheses about SBT growth dynamics. As such, the

question of what growth relationships to use in the SBT stock assessments is most

appropriately addressed in two parts: (1) for those cohorts born since 1960 for which

data on growth actually exists and (2) for those cohorts caught in the fishery for which

no direct observations are available (i.e. bom before 1960).

The expected length at age for the post-19 60 cohorts

For the post 1960 cohorts, ideally, separate estimates for each cohort could be

derived. However, the data are not comprehensive enough to permit this (see

Appendices 3, 8 and 10). Appendix 10 provides estimates of the growth rates by

decades. The results m this appendix can be used to provide one alternative set of
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growth rate parameters. Within this alternative, each set of decadal growth rate

parameters would be used to provide estimates of the expected length at age for

cohorts that were born in that decade. Table 5 provides an example of such estimates

based on the parameters fi-om the best fit to the VB log k model (Table 2). The

parameter values from constraining all cohorts to have the same //^, as well as the

parameter estimates for the 1960's fit to the VB model, could also be considered as an

alternative hypothesis. However, the differences in the expected lengths at age are

small. Given the other elements of uncertainty within the stock assessment, the

differences between these different growth rate estimates would seem rather

inconsequential. As such, it would not seem necessary to consider each as a separate

alternative within the stock assessment. Whatever set of parameters are used, it may

be worth considering smoothing over tune the change m mean size at age, instead of

having a discontimuty every 10 years. Whether such a refinement is necessary is best

determined by fhose actually conductmg the assessment.

It should be noted that the estimates in Table 5 represent a different treatment

of the growth estimates for the 1960's cohort data than is currently utilized m the SBT

stock assessments (e.g. Heam 1994). Within the SBT stock assessments, the 1960's

growth curve is used to estimate the mean length at age wifhin a year for catches up to

1969. After this year, the mean length at age is assumed to increase; i.e. the transition

between the growth curves for fb.e 1960's and 1980's is assumed to occur across years

and not across cohorts. However, this is logically inconsistent with the data that were

actually used for estimating these growth curves. It was sensible to adopt fhis

convention at the time. The estimates of the 1960's and 1980's growth curves implied

that the mean length at age for some ages and in some years overlapped (i.e. younger

fish were estimated to be larger than older ones). The cohort slicing method being

used for estimatmg the age structure of the catch could not handle such overlaps.

Given the growth curves estimated here, overlaps no longer occur (Table 5).

Moreover, within the SCALIA catch at length model (Kolody and Polacheck 2001),

such overlaps would not be a problem. As such, it would seem more appropriate to

use estimates for the length at age that are consistent with the time period from which

the data used in the estimation of the underlying growth curves were collected.
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An alternative to simply using the decadal estimates from Appendix 10 would

be to incorporate the year specific changes in k from Appendix 8. However, these

estimates are not sufficient in themselves as they are primarily applicable to juvenile

fish and we were not able to get satisfactory estimates ofk{t) for the 1990's because

of the lack of length-fi'equency data and difficulties in applying this to tag-recapture

data. Also, the estimates of k(f) were estimated based on fitting a VB growth model,

and we know that a more complex model such as the VB log k is more appropriate.

One possibility would be to use these estimates of changing k in conjunction with the

decadal VB log k estimates for the k\ parameters in Table 2 or Appendix 10. This

alternative would be based on the recognition that the changes in growth since the

1960's appear to be primarily associated with juvenile fish (see Appendix 10).

Variance estimates for the expected length at age

Catch at length based assessment models generate predicted catch at length

distributions for comparison with observed distributions (e.g. Kolody and Polacheck

2001). The predicted catch at length distributions are generated from modelled

estimates of the catch at age distributions which are trausformed into length

distributions based on estimates of the mean length at age and the variances around

this mean. The time step m the assessment models is one year. Thus, the predicted

catch at length distributions generated by these models represent aggregated annual

distributions. The question of an appropriate error structure for modelling growth was

discussed above. In terms of predicting catch at length distributions, there are four

principal components of the variance that need to be considered within a specific set

of parameter values for a growth model:

1. Individual variability in the basic growth process;

2. Temporal variability in the underlying growth process (e.g. environmental

effects);

3. Measurement errors;

4. Growth within a time period (usuaUy annual) as a result of aggregating

catches.

Individual variability in growth within this project has been modelled by

treating L^ as a normal random variable. As such, the estunates for a^ provide a
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basis for estimating the first of these components. The estimates of a^ in Appendix

10 range from 3.5 to 4.7 percent of the estimates of fl^. The estimates tend to

increase over time. The (T^ 's for the 1980's and 1990's would be expected to be less

well determined since m both cases no actual observations are possible for fish at ages

where they would be expected to have approached their asymptotic length (i.e. the

oldest observation possible is for age 20). Thus, the estimates of ff^ for the 1960's

and 1970's could be considered more reliable. The average of these two yields an

estimate of 7.46 for <7^.

The second and third components of variance are not completely separable

and each of the different data sources provide a separate estimate which should reflect

a combmation of specific measurement errors associated with each data source plus

the temporal variability component that is common to all sources (see Appendix 9 for

further discussion on this). In terms of predicting the distributions of catch at length,

the variance associated with the length-frequency data superficially might appear to

be the most appropriate since these were derived from samplmg the commercial

catches. However, these are based on a limited age range and have confounded within

them the <7^ variance component. As such, the estimates from the tag-recapture data

would appear to provide the most reasonable estimate for this component of the

variance. Taking the average of the variance estimates for scientist measured fish (i.e.

the <7^ 's) from the results in Appendix 10 (also in Table 2) would suggest that a

value of -4.4 might be reasonable for those catch length-frequency distributions in

which scientific staff actually performed the measurements.

The estimates from the tag-recapture component also provide estimates of the

additional measurement variance as a result of fishermen making the measurements

(crj). Since, in some years, the lengfh-fi-equency distributions from the Japanese

longlme fleet were made on board vessels by fishermen, the <7^ 's (as given in Table 2

and Appendix 10) could be used to provide an estimate of this additional variance.

Taking the average of the o • ^ 's across decades results in an estimate of 7.4 for tius

additional variance component.

45



FRDC Project Number 99/104 An integrated analysis of the growth rates of SET

It should be noted that in the actual length-frequency data fi-om the catch, there

is an additional measurement variance component in some years for the Japanese

longlme data. This stems from the use of weight measurements that were converted

into lengths. Estimation of this variance component is outside the scope of the current

project, as the data on growth in most cases did not contain associated weight

information. However, the variance m weight at age is likely to increase with age. As

such, those performmg the stock assessment would need to develop an appropriate

model if the additional variance due to the conversion of weights into lengths is

judged important to incorporate.

Finally, within the observed length-frequency of fhe catches used in the stock

assessments, there is an additional component of variance resulting from aggregation

of the length-frequency distributions into an annual distribution. This additional

variation results fi-om within year growth. Thus, even if there was no variation in the

length of a fish at a given age and all fish had the same birth date, there would be

variation in the length of fish caught within a year-class throughout a year because

fish at the begirming of the year would be smaller than later m the year. The

additional variance is related to the amount of within year growth and the temporal

distribution of catches within a year. It is straightforward to show that an expression

for the overall variance that includes this aggregation component is:

JL n (r:1 4- T2
^,..)=£^"'^''"+^ d5)

^ N..y

where

/ , = lengthofa fishofage fifcaughtinyear^

fij = the number of fish caught m year y of age a during time periodj

; = the variance

period^'

c2. = the variance in length of fish caught in year y of age a during time
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^ „,, = the difference in the expected size for a fish of age a caught in ;/

and time period^ from the overatl expected size of a fish9

N == the total number of fish caught in year y of age a

The variance in length for an age class at any particular time within a year will

be approximately constant and this dependency changes relatively slowly (see

Appendix 8). As such, the above expression can be approximated by:

^U-^+£[77^L) (16)

Thus, the additional component of variance due to within-year growth will be

a weighted average of the square of the growth increments (relative to their mean),

where the weights are proportional to the distribution of catches taken within a year.

Clearly, fhe importance of this additional variance component wiU vary with age.

Figure 6 provides an example of the estimated variance component that would be

expected for SET as a function of age for a fishery in which catches were evenly

distributed throughout the year. This additional component is relatively smaU except

for younger ages (i.e. <5) in which there is substantial growth within a year. The

contribution of this component to the variance will depend upon the distribution of

fishing within a year. The effect, even for younger ages, wUl be relatively small for

highly seasonal fisheries.

The above four sources of variance for the distribution of lengths at age are

independent. Thus, they can be added together to provide an overaU estimate of the

variance. Figure 7 illustrates estimates of the total variance and the relative

contribution of each component for the parameter estimates from the best fit to the

1980's data. Results for the parameter estimates from the other decades are similar.

The total variance is dominated by the estimated variabiUty in individual growth

(c^). However, for younger ages, particularly ages 1 and 2, withia-year growth

IX^(U
9 Note that I^y = E (l^y ) - •2rl—-— where E{j^y ) is the expected length of a fish of

fl.V

age a in year y caught in time period j (derived from the appropriate growth cm-ve).

47



FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

would be the largest source of variance under the assumption of equal distribution of

catches throughout the year. Thus, for fisheries in which there are substantial catches

of juveniles, it will be important to account for the within-year growth and

distribution of fishing effort. Since these fisheries are often seasonal (e.g. the South

AustraUan surface fishery), the contribution firom withia-year growth would be

expected to be smaUer than that shown in Figure 7. As such, appropriately accounting

for the seasonal aspects of the catches would be important in appropriately reducing

the magnitude of this variance component. Judicious aggregations and appropriate

time steps within the assessment model would ati reduce this source of variance.

The estimated coefficient of variation for fhe distribution of ages at lengths is

estimated to be around 10% for most age classes (Figure 8). The approximate 95%

confidence intervals for the distributions indicate that a large amoimt of overlap in

lengfh among age is to be expected, particularly for older ages (Figure 9).

Interestingly, these estimated confidence intervals are almost identical for the

situations where scientists and fishermen measure the lengths. However, the estimate

of the additional variance contributed by fishermen doing the measurements is based

ou their measurement of recaptured tagged fish. The extrapolation to length

measurement of the catch by fishermen assumes that the level of measurement error

would be the same. There may be a tendency for recaptured tagged fish to be

measured more carefuUy than measurements taken during routine monitormg of the

catch. In addition, there may be a large amount of difference between different

fishermen, as well as potential biases.

Growth parameter values for thepre-1960 cohorts

Since no data exist with which to estimate growth rates for cohorts born prior

to 1960, any values used will be based on assumptions about the underlying factors

controlling the changes in the growth. This issue is discussed in Appendix 10. Three

basic hypotheses that could be considered are:

1. that growth for cohorts born prior to 1960 was similar to that observed for

cohorts born in the 1960's;

2. that SBT growth has a substantial mdetermiaate component related to adult

density which resulted in a substantial increase m the average asymptotic

length associated with the large declines in the spawning stock in the 1960's;
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3. that post juvenile growth rates (i.e. k^), as well as the asymptotic lengths,

have a density dependent component which increased in response to the large

declines m the spawning stock m the 1960's.

The &st of these is perhaps the least plausible given the lack of very large fish

(e.g. > 184 cm) in the initial catches from spawning grounds and the increases m the

proportion of very large fish over time in the longline catches (see Appendix 10). An

alternative to the second and third hypotheses would be that there were large long-

term environmentally driven changes m growth (see above). There is no information

available to distinguish these hypotheses. However, in terms of the stock assessment,

they would tend to have a similar effect.

Figure 10 provides examples of possible growth curves for pre 1960's cohorts

that would be consistent with the latter two hypotheses. In constructmg these, we have

used a value of 165cm for //„ based on the observed length distributions on the

spawning ground in the initial longlme catches (see Appendix 10) and have

considered a range of values for the ^ parameter (namely 0.1, 0.125 and 0.15). In

constmctmg these curves, we have kept the other parameter values equal to those

estimated from the best fit to the VB log k model for the 1960's data except for the

value of fifg. We have adjusted the value of flg so that the expected size of an age 2

fish remained the same as that estimated in the 1960's. This was necessary because, in

the VB log k model, changing the value of /j ^ also affects growth during the first

stage. It is not clear what is the most reasonable parameterisation for juvemle growth

in a situation where jU „ changes. We could have, alternatively, kept Og fixed at the

value estimated for the 1960's data, which would have implied an associated decrease

in the size of juvenile fish (Figure 11). It should be noted that the curves in Figure 11

clearly do not represent an exhaustive set of plausible hypotheses. However, they do

provide a useful range for discussion and consideration within the SET stock

assessment.

Growth models for projections

The alternative hypotheses discussed above and in Appendix 10 for the

changes m growth observed historically provide the most appropriate basis for
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possible alternative models for fatwe changes in growth to use iu stock projection.

The hypothesis that the changes m SET growth represent a density dependent

response is broadly consistent with the large reductions in both spawning biomass and

juveniles resulting from the high rates of exploitation. As such, a density dependent

response represents one alternative for future stock projections. Under this general

alternative, juvenile growth should be linked to the projected size of the juvenile

stocks m the future . The growth rates in the projections would need to be set so that

when the future juvemle stock sizes in the projections were similar to the historical

stock sizes estimated m a stock assessment then the corresponding growth curve

would be used.

To implement this hypothesis would require specification of which

component(s) in the population (e.g. number at age) is the actual density dependent

driver and the underlying functional relationship. A range of alternatives could be

considered. Given the current stock status, the primary focus for considering such a

density dependent hypothesis within projections would be to evaluate the potential

consequences for obtaming management's recovery objective (i.e. recovery to the

1980 spawning biomass). The main consequence of mcluding a density dependent

response in this context is that it would tend to slow the rate of any projected recovery

(i.e. as the projected stock begins to recover, cohorts will contribute less per capita to

the spawning stock at any given age and would need to be harvested in greater

numbers to obtain the same yield). In this context, it may be sufficient to use

recruitment as the density dependent driver and an "empiricaUy" based relationship

based on the average recmitment in each decade. Any such density dependent

response would not be expected to have a substantial effect on the projections until

there was some substantive rebuilding (i.e. recruitment or juvenile stock sizes

approaching the 1980 level). As such, the consideration of density dependent growth

responses is probably a secondary effect in terms of shorter-term projections.

10 Potentially, consideration could also be given to density dependent hypotheses linking the mean
asymptotic length to the spawning stock (see above and Appendbc 10). However, if the asymptotic
length has changed and if the change is linked to the early reductions in the spawning stock, the
changes would appear to have occurred over the range experienced m the 1950's and 1960's and
perhaps early 1970's. Given that the focus of current management is recovery to the 1980 spawning
stock levels, consideration of density dependent hypotheses for asymptotic lengths would be of little
relevance in the projection context.
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Nevertheless, it is a possibility that should be considered m longer-term projection

simulations for evaluating management strategies.

The other general category of hypotheses for the historical change in growth is

that the changes in SBT growth have been driven primarily by changes in the physical

environment and productivity of SBT habitats (i.e. large regime shifts). As discussed

above, the historical estimates of growth are not very informative in terms of

identifying the underlying mechanisms or for providing prediction about the likely

frequency and duration of regime shifts if they are in fact the underlying source of the

historicaUy observed changed. If it is considered that regime shifts hypotheses should

be incorporated into the projections, then a range of magnitudes and durations

consistent with past changes should be allowed for. Thus, consideration would need to

be given to allowing for changes in the asymptotic lengths consistent both with the

relatively minor estimated change between the 1960's and 1970's and the more

substantial hypothesized change for fish born prior to 1960 and afterwards.

Consideration would also need to be given to changes in juvenile growfh rates that are

at least consistent with those that have been observed in the past.

Benefits

One of the primary direct benefits of this research will be an improved and

more robust basis for the estimation of growth rates that are an essential component of

the SBT stock assessments. The results of fhis research provided improved methods

for predicting the mean length at age and also provided estimates of variances based

on aU available data. The results provide the basis for generating alternative

hypotheses for SBT growth and how it has changed over time. This should ensure that

this source of uncertainty is adequately addressed within the SBT stock assessments

and reflected in the subsequent management advice.

The estimation of growth is integral component of fishery biology and the

assessment of fish stocks. The growth models, the statistical procedures and

integrated methods developed m this project are applicable to a large number of

fisheries. The methods have the potential to provide an improved basis for modeUing

and understanding growth in other fisheries. In particular, the ability to combine data
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from disparate data sources has been shown to be a powerful mechanism to improve

the overaU estimation of growth curves, especiaUy where there are substantive

deficiencies in the coverage in the historical data from any particular source.

Further Development

A number of areas where there is scope for improvements in the analytical and

statistical methods are identified m the appendices of this report. Particular problems

that would warrant further investigation include:

1. Further development of modetling approaches for taking into account the

sources of variation m length-frequency data (Appendix 7). Is it possible to fit

a growth model with hierarchical error structure to the raw data rather than the

summary statistics?

2. Further work on modetling time variation into growth models and the

development of efficient methods for fitting such models to tag-recapture data

as well as to multiple data sources simultaneously (see Appendix 8).

3. Further development and application of appropriate statistical models for the

analysis of direct aging data that take into account variability in the time of

band formation, size segregation in space, errors in age readings and

differences in spawning dates (see Appendix 12);

4. Further development of methods for estimating the standard errors of the

growth curve parameter estimates (Appendix 10).

5. Further development of the analysis of tag-recapture data. Key issues are

computational efficiency; Bayesian analysis (which was attempted, but the

algorithm stalled on the VB log k growth curve for unknown reasons); explicit

inclusion of spatial effects (location of capture and recapture); estimation

equations for general growth curves; non-parametric estimation of the growth

curve for comparison with parametric models; non-parametric estimation of

the age at capture and its consequences for standard errors of growth curve

parameters; the effect of unposiag constramts on various parameters to

prevent over-fittmg.

In addition, the results from this report identify the importance of obtaining improved

understanding and estimates of the timing of annual band formation within SBT
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otoUfhs for the interpretation of growth and age data based on the coimts of annual

bands (See Appendices 3, 11 and 12).

Finally, this report highlights the importance and value of having long time

series of data available in order to understand and obtain robust estimates of growth.

Such time series are also essential for modelling the way growth rates change over

time and the underlying growth processes. SBT growth has been shown to vary over

time and these changes in growth have important implications for stock assessments

and the management of the SBT resource. In this regard, it is critical that well-

designed data collection programs that are capable of providmg information on

growth are maintained within the SBT fisheries so that future changes in growth are

detected and appropriately accounted for in the stock assessment and management of

SBT.

Planned Outcomes

The primary planned outcome for this project was the production of growth

rate parameters for use in the SBT stock assessments. The results m Appendix 4 were

completed m the fast year of this project and presented as work in progress to the

CCSBT Scientific Committee (Eveson et al. 2001, Anon. 2002c). Although the results

were only preliminary in that they were only based on tag release and recapture data,

they were considered to constitute an improvement over previous estimates being

used in the CCSBT stock assessments. The results were incorporated into the growfh

curves used in the SBT stock assessment preformed in 2001 (e.g. Anon. 2002b). It is

anticipated the results from this project wiU be incorporated into future SBT stock

assessments.

The other primary planned outcome was the development of an integrated

method for the analysis of growth from different data sources. The project produced

an integrated method for combining tagging, lengfh-frequency and direct aging data.

In the process, the project also developed a new growth curve and statistical

estimation approaches, as these were required components in the overaU integrated

analysis. These methodological developments are generally applicable to other

species and should have relevance to the estimation of growth beyond the specific
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SBT application. One paper documentmg these methodological developments has

ah-eady been published (Laslett et al. 2002, which is essentially Appendix 4). We

anticipate preparing at least four additional manuscripts (i.e. one based on Appendices

5, 7, 8 and 9 respectively) for publication m the primary scientific literature to ensure

a wider dissemination of the results.

Conclusion

AU of the primary objectives of this project have been completed. An

integrated method for modelling SBT growth that uses growth increment data from

tagging experiments, length measurements and direct aging estimates from otoUths,

and length-frequency modal mformation was developed. These methods were applied

to the available historical data from SET to produce estimates of SBT growth curves

over four decades. As demonstrated m the report, the parameter estimates from fitting

these curves can be used to estimate the expected length of SBT at age and associated

variances for the cohorts represented in these data. A set of growth curves was

developed for possible use for cohorts caught in the early years of the SBT fishery for

which no direct data exist for estunatmg their growth rates. The estimates of growth

rate parameters can be used as direct input into length based assessments. Alternative

hypotheses have been developed for the factors underlying changes in SBT growth

that are consistent with the observed growth data and suggestions have been proposed

for how these might be used m future stock projections. However, the scale of

resolution in these hypotheses was limited by the resolution and coverage within fhe

available data. In addition, a number of new statistical methods and methods for

modelling growth were developed, in particular the VB log k growth curve (Appendix

4), new maximum UkeKhood approaches for fitting tag-recapture data and length-

frequency data (Appendix 4 and 7), and statistical methods for estimating temporal

changes in growth rates parameters (Appendix 8).

In summary, the results from this project suggest the foUowing conclusions:

1. Length-frequency, tag-recaptui'e and direct aging data can be integrated to

provide a consistent estimate for SBT growth;

2. On a decadal scale, there have been significant changes in the growth of

juvemle SBT born over the last 40 years. SBT from the 1980's grew
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significantly faster than those from the 1960's. The results suggest that the

1970's were a period of transition and that growth of young fish in the 1990's

was faster than m the 1980's up to about age 4.

3. Estimates of the mean asymptotic length of SBT born since the 1960's

indicate at most small changes in the asymptotic length. However, the mean

asymptotic lengths from these cohorts is significantly greater than would be

expected for earUer cohorts based on fhe length-frequency distribution of

spawning fish captured m the 1950's and 1960's. This suggests that the mean

asymptotic length may have increased.

4. The time of year at which 8BT deposit a translucent zone m their otoliths can

vary from May to September, with July 1 being an approximate average date,

and there is considerable variability among individual fish.

5. Combining length-fi-equency, tag-recapture and direct aging data provides a

powerful mechanism for obtaining growth curve estimates where there are

substantive deficiencies m coverage in the available data from any particular

source.
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Table 1: Comparison of the negative log-likeUliood value for the best fit of the 1980's

tagging data to the VB growth curve for four different error models (see text for more

detail).

Error model

Constant

Random L^ plus a constant

Random k plus a constant

Random L^ and k plus a constant

-^I5!^o^e:^££arS!5E^Il
1

2

2

Neg. log-likeUhood

14695.59

14622.95

14663.52

14622.98

Table 2: Parameter estimates for the VB log k model with a seasonal growth

component based on the integrated best fit to the complete data set from each decade.

Decade L^ o^ h k2 a p It w ^ log A <7logA <7, '/ ClO

1960s 187.8 7.00 0.14 0.15 5.53 30.00 0.53 -0.069 1.19 0.16 2.40 1.49 -1.57 5.87 2.01

1970s 184.3 7.92 0.15 0.19 5.66 30.00 0.92 0.061 0.77 0.12 2.05 3.06 -1.28 0.00 3.54

1980s 184.7 8.06 0.22 0.17 2.83 18.33 0.34 0.129 0.58 0.17 2.08 2.61 -0.43 4.57 4.30

1990s 184.9 8.69 0.25 0.16 2.46 12.40 0.41 0.255 0.72 0.32 1.81 3.36 -0.31 5.57
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Table 3: Comparison of the decadal mean otolith increments for different band

increments.

Band 1.2

Band 2-3

Band 3-4

Band 4-5

Band 1-4

Band 1-5

Mean

SE
N

Mean

SE
N

Mean

SE
N

Mean

SE
N

Mean

SE
N

mean

SE
N

1960's

0.32

0.008

104

0.24

0.006

104

0.19

0.004

104

0.16

0.003

104

0.74

0.014

104

0.91

0.015

104

1970's

0.30

0.006

157

0.23

0.005

157

0.19

0.003

157

0.16

0.003

157

0.72

0.011

157

0.88

0.012

157

1980's

0.36

0.006

163

0.26

0.005

163

0.20

0.004

163

0.17

0.003

157

0.82

0.01

163

0.98

0.012

157

1990's

0.39

0.009

63

0.27

0.006

63

0.21

0.008

63

0.19

0.011

6

0.88

0.018

39

1.04

0.037

6
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Table 4: The correlation by cohort among the growth increments between different

bands within individual otoliths. For each cohort and band increment, the mean

increment was calculated. The deviations from these means were then calculated for

each otolith and the correlation coefficient for these deviations was then determined.

Cohort

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

N
3
4
6
7

13
11
21
11
16
12
18
15
17
15
15
14
19
16
14
14
17
10
14
16
15
18
12
27
25
9

35

Bands 1-2

& 2-3

0.92

1.00

0.73

0.41

0.70

0.40

0.44

0.66

0.22

0.53

0.36

0.34

0.71

0.31

0.72

0.73

0.84

0.63

0.12

0.52

0.09

0.61

0.45

0.59

0.29

0.49

-0.18

0.26

0.35

0.55

0.23

Bands 1-2

& 3-4

0.19

0.08

0.97

0.76

0.15
-0.06

-0.03

0.62

0.30

0.20

0.08

0.06

0.75

0.03

-0.08

0.09

0.50

0.12

-0.05

0.27

0.15

0.38

0.17

0.33

0.15

0.24

0.24
-0.31

0.08

0.01

-0.14

Bands 1-2

& 4-5

0.56
-0.29

0.72

0.53

-0.16

-0.46

-0.12

-0.30

0.45

0.14

-0.14

0.63

0.38

-0.45

0.34

0.09

-0.06

-0.08

-0.33

-0.08

-0.14

0.26

-0.54

0.12

-0.36

-0.03

0.22

-0.31

-0.13

0.73

-0.43

Bands 2-3

& 3-4

-0.22

0.05

0.82

0.49

0.62

0.79

0.32

0.65

0.44

0.44

0.59

0.54

0.80

0.21

-0.01

0.28

0.67

0.33

0.70

0.43

0.64

0.36

0.45

0.39

0.71

0.56

0.41

0.29

0.54

0.33

0.40

Bands 2-3

& 4-5

0.19
-0.28

0.59
-0.01

-0.04

0.08

0.12
-0.22

-0.13

0.74

-0.34

0.58

0.20

0.06

0.37

0.36
-0.17

0.36

-0.02

-0.08

0.21

0.53

-0.03

0.25

-0.07

0.29

0.35

0.13

0.31

0.62

-0.37

Bands 3-4
& 4-5

0.92

0.51

0.82

0.62

-0.13

0.44

0.27

0.35

-0.36

0.26

0.10

0.20

0.38

0.36

0.38

0.74

-0.03

0.53

0.39

0.35

0.38

0.19

0.40

0.58

0.02

0.43

0.27

0.62

0.79

0.63

0.68
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Table 5: The expected average length at age by year based on the application of the

parameters fi'om the best fit to the VB log k model to the decadal data from Table 2.

The mean lengths at age have been applied to cohorts correspondmg to data used in

estimating the decadal growth curves. The values represent one alternative hypothesis

for the expected length at age that could be used in the SBT stock assessments.

Age

Year 1 2 3 4 5 6 7 8 9 1011 1213 14 15

1960 5875- ------------

1961 587590- -----------

1962 587590103---- -------

1963 58 75 90 103115 -

1964 58 75 90 103 115125 -

1965 58 75 90 103 115 125134- -------

1966 58 75 90 103 115 125 134 141 -

1967 58 75 90 103 115 125 134 141 148 -

1968 58 75 90 103 115 125 134 141 148 153-- - - -

1969 56 75 90 103 115 125 134 141 148 153 158 -

1970 56 74 90 103 115 125 134 141 148 153 158 162 -

1971 56 74 90 103 115 125 134 141 148 153 158 162 166 -

1972 56 74 90 103 115 125 134 141 148 153 158 162 166 169 -

1973 56 74 90 103 117 125 134 141 148 153 158 162 166 169 171

1974 56 74 90 103 117 129 134 141 148 153 158 162 166 169 171

1975 56 74 90 103 117 129 138 141 148 153 158 162 166 169 171

1976 56 74 90 103 117 129 138 146 148 153 158 162 166 169 171

1977 56 74 90 103 117 129 138 146 153 153 158 162 166 169 171

1978 56 74 90 103 117 129 138 146 153 159 158 162 166 169 171

1979 48 74 90 103 117 129 138 146 153 159 163 162 166 169 171

1980 48 75 90 103 117 129 138 146 153 159 163 167 166 169 171

1981 48 75 94 103 117 129 138 146 153 159 163 167 170 169 171

1982 48 75 94 109 117 129 138 146 153 159 163 167 170 173 171

1983 48 75 94 109 120 129 138 146 153 159 163 167 170 173 175

1984 48 75 94 109 120 131 138 146 153 159 163 167 170 173 175

1985 48 75 94 109 120 131 139 146 153 159 163 167 170 173 175
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Table 5 (continued):

Age

Year 1 2 3 4 5 6 7 8 9 1011 1213 14 15

1986 48 75 94 109 120 131 139 146 153 159 163 167 170 173 175

1987 48 75 94 109 120 131 139 146 152 159 163 167 170 173 175

1988 48 75 94 109 120 131 139 146 152 157 163 167 170 173 175

1989 52 75 94 109 120 131 139 146 152 157 162 167 170 173 175

1990 52 81 94 109 120 131 139 146 152 157 162 165 170 173 175

1991 52 81 98 109 120 131 139 146 152 157 162 165 168 173 175

1992 52 81 98 111 120 131 139 146 152 157 162 165 168 171 175

1993 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173

1994 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173

1995 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173

1996 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173

1997 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173

1998 52 81 98 111 122 131 139 146 152 156 162 165 168 171 173

1999 - 81 98 111 122 131 139 146 152 156 161 165 168 171 173

2000 - - 98 111 122 131 139 146 152 156 161 164 168 171 173

64



FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

Table 5 (continued):

Age

Year 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1974 174-- ------------

1975 174176- ------------

1976 174176177- -----------

1977 174 176177179- ----------

1978 174 176 177 179 180 -

1979 174 176 177 179 180 181 -

1980 174 176 177 179 180 181 182 - - ------

1981 174 176 177 179 180 181 182 183 -

1982 174 176 177 179 180 181 182 183 184 -

1983 174 176 177 179 180 181 182 183 184 184 - - - - -

1984 177 176 177 179 180 181 182 183 184 184 185- - - -

1985 177 178 177 179 180 181 182 183 184 184 185 185 -

1986 177 178 179 179 180 181 182 183 184 184 185 185 185 -

1987 177 178 179 180 180 181 182 183 184 184 185 185 185 186 -

1988 177 178 179 180 181 181 182 183 184 184 185 185 185 186 186

1989 177 178 179 180 181 182 182 183 184 184 185 185 185 186 186

1990 177 178 179 180 181 182 183 183 184 184 185 185 185 186 186

1991 177 178 179 180 181 182 183 183 184 184 185 185 185 186 186

1992 177 178 179 180 181 182 183 183 183 184 185 185 185 186 186

1993 177 178 179 180 181 182 183 183 183 184 185 185 185 186 186

1994 175 178 179 180 181 182 183 183 183 184 184 185 185 186 186

1995 175 176 179 180 181 182 183 183 183 184 184 184 185 186 186

1996 175 176 178 180 181 182 183 183 183 184 184 184 184 186 186

1997 175 176 178 179 181 182 183 183 183 184 184 184 184 185 186

1998 175 176 178 179 180 182 183 183 183 184 184 184 184 185 185

1999 175 176 178 179 180 180 183 183 183 184 184 184 184 185 185

2000 175 176 178 179 180 180 181 183 183 184 184 184 184 185 185
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Figure 1: (top) The optimal integrated seasonal VB log k growth curve for each

decade, (bottom) The same curves plotted relative to the 1960's curve for better

comparison.
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Figure 2: Results from fitting a time-varymg von Bertalanffy growth model to South

/\

Australian length-fi-equency data. a) The fitted von Bertalanffy growth rate k(t)

versus time t. b) The mean lengths for age groups 1 to 4 versus time t. Note that the

curves exhibit subtle differences, in that the early 1970s peak moves to the right as

age increases, and the relative heights of the 1973 and 1985 peaks change with age

group. See Appendix 8 for more detail.
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Figure 3: Average deviation for a cohort from the overaU mean and 95% confidence

intervals for the band 1-5 increment in SBT otolifhs.
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Figure 4: Nominal CPUE (number of SBT per 1000 hooks) trends for ages 4 and 5

for Japanese longliae vessels fishing on their feeding grounds (Statistical Areas 4-9)

during tfae second and third quarters (adapted from Ricard and Polacheck, 2002).
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Figure 5: Examples of estimates of recruitment trends from SBT stock assessments.

These estimates are taken from Polacheck and Preece (2001), but similar trends are

seen in other stock assessment results. Shown are a set of different estimates derived

from alternative hypotheses for interpretation of input data and parameters. The three

rather distinct bands represent three different options considered for natural mortality

rates.
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Figure 6: An example of the coefficient of variation as a function of age for the

variance component resulting from aggregating length-frequency data over a year in

the situation in which catches were evenly distributed throughout the year (see text for

details).

^ 8 —\ —-—-—

Figure 7: Estimates for the various variance components as a function of age that

would contribute variance in the observed length-frequency of SBT commercial

catches (see text for details).
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Figure 8: Estimates of the coefficient of variation expected in observed length at age

distributions for SBT. The upper curve represents the situation m which all the length

measurements are made by fishermen and the lower curve represents the situation

where all measurement are made by scientists or trained technicians. The estimates

assume that catches were aggregated and uniformly taken throughout a year.
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Figure 9: Estimates of the expected length and 95% confidence interval for the

observed distribution of lengths at age based on the best fit to the 1980's data and

using the variance model developed in the discussion (including the additional

component for fishermen-measured lengths).

200

150

£
0)

S 100

50

10 15

Age

20 25 30

71



FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

Figure 10: Possible growth curves (the three lower lines) for cohorts born prior to

1960 to use as alternative hypotheses m estimatiug the expected length-fi'equency

distribution of SBT catches from these cohorts. AU curves were calculated assuming a

value of 165 cm for //„ . The lower curve uses a value of 0.100 for kz, 0.125 for the

middle curve and 0.150 for the upper one. The parameter do has been adjusted so that

each curve yields the same size of an age 2 fish as that estimated for the 1960's. Also

shown is the curve estimated for the 1960's (uppermost line).
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Figure 11: The three possible growth curves for cohorts born prior to 1960 shown in

Figure 10 (upper broken lines) compared with the same three growth curves when the

value ofao has been left unadjusted at the value estimated for the 1960's (lower solid

lines). Only estimates up to age 8 have been shown so the differences in the curves

can be clearly seen.
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Appendix 3: The data: details of tag recapture, leugth-fi-equency and du'ect aging data

Introduction

Three types of data that contain information on the growth of SET were used in the

analyses conducted within this project:

1) tag-recapture data;

2) length-fi'equency data from commercial catches; and

3) direct aging data fi-om otoliths.

This Appendix provides a description of each of these and documents the data selection

procedures used to obtain the final data sets that were used in the analyses presented m

this report.

In all data sources, we find that one-year old SBT caught off the coast of Western

Australia are smaller on average than one-year olds caught off' the coast of South

Australia at the same time. This is consistent with current beliefs about SBT spawning

and migration. SBT are spawned in the northeast Indian Ocean between Indonesia and

the northwest coast of Australia, generally between the months of September and April.

Catches indicate that there tends to be two peak spawning times, one around

September/October and one around January/February, although there is a high degree of

variability between years (Davis and Nurhakim 2001). Juveniles migrate southward

along the west coast of Australia, and then a large percentage of them turn and travel

eastward along the south coast of Australia to the Great Australian Eight. If SBT are

spawned at two peak times, then we might expect to find the larger, earlier spawned fish

off of South Australia at the same time we find the smaUer, later spawned fish off of

Western Australia. There is no indication of this size segregation persisting past age one.

In our analysis of the length-fi'equency and the direct aging data, we make the

assumption that SBT have a birth date of January 1. This date is chosen since it

represents a midpomt of the spawning season, and thus the mean of the assigned ages

should be close to the true mean.

Tag-Recapture Data

Extensive tagging experiments were conducted by CSIRO from the 1960's

through the 1990's in wtuch juvenile SBT were caught, tagged, and released in the
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coastal waters off southern Western Australia, South Australia and southeastern

Tasmania. Most of the tagged fish were initially caught using pole and line gear with a

barbless hook, although a small number were caught with troll lines. After a fish had

been hooked, it was hauled aboard the vessel. In the 1960's and 1970's, it was placed on

a measuring board and its nose to caudal fork length was measured; in the 1980's and

1990's, it was placed on a vinyl cradle and the same length measurement was taken. The

fish was then tagged with either one or two 12 cm plastic spaghetti dart tags (generally

referred to as "conventional" tags). Tags were inserted into a fish about 4 cm to the rear

of the second dorsal fin on either side of the fish. Tagging operations were designed to

minimize handling time, and fish were re-released to the water within about 30 seconds

of being brought on board. After 1963, almost all fish were double-tagged. The tag

numbers and length of each fish were recorded, together with the location and date of

release. Additional information about the release was also recorded, such as the quaUty

of tagging, fhe health of fhe fish, and the name of the tagger and the vessel. This

mformation was later transferred to a computer database.

In addition to the tagging conducted directly by CSffi.0, a large number of fish

were tagged and measured by contract fishermen in the 1960's and 1970's. Fishermen

were paid according to the number and size of the fish released. This would have created

an incentive to exaggerate the length measurement. Examination of the data suggests this

may have been the case since a high proportion of fish tagged by fishermen had a release

length larger thaa their recapture length, even after several months at Uberty. Return rates

from fishermen-tagged fish were also low relative to those for scientist-tagged fish,

which suggests that there may have been problems of substantial stress and tag-mduced

mortality among these fish. In order to ensure that negative biases were not introduced

into fhe growth analyses, we excluded any data where the tagger was a fisherman, a

crewmember, or unknown.
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Excluding the fishennen-tagged fish, a total of 26740 fish were tagged with

conventional tags and released into the wild during the 1960's (mcludmg 1959), 6668

during the 1970's, 10741 during the 1980's, and 68034 during the 1990's. Of these fish,

the total number of returns to date (January 2002) by decade has been 1392, 612, 4256

and 7779, respectively. Recaptures occurred throughout the geographical distribution of

SBT, ranging m longitude from 0 to 180°E and in latitude from 30 to 50°S. In a few

cases, recaptured fish were re-released into the wild. The above release and recapture

numbers only include original releases and terminal recaptures (i.e. recaptures for which

the fish was not re-released), and only growth information from terminal recaptures was

used in our analyses. Not all tagged fish that were recaptured will have been reported,

and for some fisheries non-reportmg rates have been estimated to be substantial

(Polacheck et al. 1998). However, there is no reason to believe that a fisherman's choice

to report a tag is related to fish size or growth, so growth analyses based on information

from reported tags should be unbiased.

Upon recapture, the finder measured the candal fork length of the fish and

recorded this length along with the tag number, the date and location of recapture, and

sometimes the weight of the fish. This information was sent to CSIRO and entered into

the computer database, along with the name of the finder and the vessel and a judgment

about the quality of the recapture mformation.

The change in length of a fish over the time it was at liberty gives information

about individual growth, and this data can be used collectively to model the growth of the

population. Unfortunately, some of fhe tag-recapture data is either unreliable or

unsuitable for studying growth due to various reasons. Using the subsidiary information

recorded on release and recapture, we applied a rigorous screemng process as follows.

In cases where for some reason either the release length or recapture length was

not measured, we excluded the entry. For example, the finder did not always record the

length of the fish. Plus, a few of the returns were tags found without a fish on the beach

CSIRO has also conducted tagging experiments with caged tuna in tuna farming operations and with

archival tags in the 1990's. Data from these tagging experiments were uot included in the analyses

presented m this project.
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for which a fish recapture length was clearly not possible. Entries for which both length

measurements exist were only included if both were reported as being measured

accurately.

In cases where the whole weight or dressed weight of the fish was measured and

recorded on recapture, the relationship between length and weight could be used to

identify questionable data. Specifically, we calculated the expected weight of a fish

using the relationship of Robins (1963),

W= 3.131 •Z29058-10-5

for fish with length less than 130 cm, and the relationship of Warashina and Hisada

(1970),

^=1.15-2.178-Z3-4229-10-6

for fish with length greater than 130 cm. W is whole weight in kg and L is caudal fork

length in cm. When only a dressed weight was measured for a fish, a factor of 1.15 was

used to convert it to a whole weight (Caton 1991). Note this factor also appears m the

equation of Warashma and Hisada to convert it from dressed weight to whole weight.

We chose to use this composite weight-length relationship based on the 1994 SBT

TrUateral Workshop Report (Anon. 1994). As a check, we fitted a power relationship to

the weight and length data available from the tag-recapture database and the resulting

curve was almost identical to the composite curve used (Figure 1).

If the expected weight was either less than 0.64 or greater than 1.27 of the

reported weight, then the entry was considered an outlier and excluded from our analysis.

These limits were chosen because they are the 2.5% and 97.5% percentiles of the

empirical distribution of expected to observed weight ratios. Unfortunately, the recapture

weight was not measured for a large percentage of fish, especially in the 1960's, and

therefore this screening criterion often could not be applied. In the absence of weight

information, we assumed the recapture length to be accurate and included the data.

A few vessels were noted to have a very high proportion ofweight-length outliers

and therefore all data from these vessels were considered unreliable and omitted from the

analysis. The criterion used to omit a vessel was as foUows. For each vessel, we

calculated a 95% confidence interval on the percentage of recaptures that were outUers
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(using the bmomial distribution). If the lower Ihnit of the confidence interval exceeded

20%, then all recapture records from that vessel were omitted. Using the confidence

interval rather than the point estunate takes into account the number of recaptures

actually made by the vessel, so that 1 outlier out of 3 recaptures is not considered too

high but 30 outliers out of 90 is.

The date of recapture was not always known precisely. Uncertainties in the day

of recapture were allowed, but if the month or year was uncertain, then the entry was

excluded.

If the tagger judged the injury to the tuna upon tagging to be anything more than

slight, then the record was excluded since the injury could affect the fish's growth. Even

well inserted tags may have an initial effect on fish growth. We assumed that, in terms of

length, this initial effect would be unappreciable after 30 days; thus, only fish at liberty

for 30 days or more were included m the analysis.

In the 1990's, tuna farming commenced and many of the fish that had been tagged

were caught and put into farms. The date of entry into the farm was recorded but the

length of the fish was not measured until it was harvested. We would expect the growth

rate of fish in farms to differ from than that of wild fish, in which case including farm

recaptures in our analysis would bias the results. The length data does not actually seem

to support this hypothesis. It is likely that farmed fish increase more quicMy in weight

than wild fish but not in length. Although we do not have mitial weights at tagging to

confirm this, the fact that farm fish weigh more at recapture than wild fish of the same

length lends support. In any event, we have opted to en- on the side of caution and

exclude the farm fish from our growth analyses. Note that fhe sample size in the 1990's

was large so the exclusion of farm fish should not affect the precision of the growth

parameter estimates.

As mentioned earlier, a few fish were recaptured and subsequently re-released,

some of which were recaptured again. We only included mformation fi-om the terminal

recapture (when there was one) m our growth analyses because usually no length

measurement was taken on the first recapture before the fish was re-released. The

number ofre-released tagged fish was very smaU.
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After applying the above screening criteria, the number of recaptures remaining

for analysis was 791 m the 1960's, 202 in the 1970's, 2181 m the 1980's and 2980 in the

1990's. The release lengths ranged from 38 to 125 cm with a mean of 68 cm, and the

recapture lengths ranged from 38 to 186 cm with a mean of 97 cm. Although the times at

liberty ranged from 30 days (a minimum imposed by the screening process) to 5115 days

(=14 years), the average was 598 days and most fish were at liberty less than three years.

The average growth rate, calculated as centimeters growth per day at liberty, for

fish of similar lengths and relatively similar times at liberty suggest that growth rates

have increased from fhe 1960's to the 1980's, with perhaps a transitional period in the

1970's and a stabilization in the 1990's (Figure 2). Subsequently, any long-term growth

analysis should take temporal changes into consideration.

Having two data points for each fish, and thus information about the growth of

individuals, is a valuable feature of tag-recapture data that the other data sources lack.

However, not knowmg the age of the fish at release is a drawback. Another limitation is

that the majority of fish have relatively short times at liberty so that growth information

for older fish tends to be lacking.

Length-Frequency Data

We only consider data from the Australian surface fishery in this report. We did

not include length-fi-equency data from the Japanese longline fishery for several reasons:

the procedure used to collect length samples was not consistent; the data is pooled

quarterly within a year; and fish caught ia the longline fishery are generally older fish for

which the length distributions overlap considerably and are not suitable for modal

analysis.

Length-frequency data from commercial catches of SBT caught in the Australian

surface fishery has been gathered from the 1963-64 fishing season (the fishery was

relatively small prior to this) to the present. Not all fish caught were measured for length.

Instead, individual landings were sampled at the place of processing. Sampling protocols

were designed to avoid introducing biases into the selection of fish to be measured. For

details, refer to Majkowski (1982), Majkowski and Morris (1986), and Deriso and BaylifF

(1991). Caudal fork lengths were measured and recorded to the nearest centimeter and
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pooled into one-centimeter bins. The bin counts were scaled up by the total weight of the

landing to give a length-frequency distribution for the landing. The length-fi'equencies

from individual landings were then pooled across half-months and fishing areas (South

Australia, Western Australia, and New South Wales). Usually not all landings in a half-

month and area were sampled, so the length-frequency distributions were scaled up again

by the total weight of the catch from all landings in that period and area. This was

possible since the bulk catch from every landing was weighed, regardless of whether the

landing was sampled for length.

When using the length-fiequency data to study the growth of the population, we

assume that the catch provides a reasonably unbiased sample of the lengths of fish within

an age class. Size-selectivity in the fishery would invalidate this assumption. Prior to

1990, most fish were caught for the canning market using purse seine vessels, which use

nets that catch the majority of a school and do not have the ability to select by size within

a school. However, m the 1990's, major changes occurred in the fishery to make size-

selectivity a concern. In particular, the focus of the fishery switched to catching tuna for

the sashimi market using pole and line vessels that targeted larger fish within a school. In

order to avoid introducmg biases from size-selective fishing into our analyses, we only

include data up to and includmg 1989.

The length-frequency distributions derived from SBT caught over a short time

interval (in this case, half-monfhly) generally exhibit modes that correspond to different

age classes. The progression of these modes over time can be tracked to give an estimate

of population growth. In particular, seasonal growth patterns can often be identified.

Ages are assigned to the modes based on knowledge of the relationship between age and

length, along with some common sense. Because the Australian fishery catches mainly

juvenile SBT aged 5 or less, there is usuaUy a maxuniun of five modes, and even if older

fish are present, the lengths tend to overlap too much for the modes to be distinguished.

Examples of the length-frequency data from South Australia in 1981 and 1983 are given

in Figure 3.

Although the length-frequencies have been aggregated into three fishing areas, we

only include fhe data fi-om South Australia in our study since it is most abundant and also

appears to be most consistent with respect to the progression of modes. The New South
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Wales data are somewhat sporadic, and, from the mid-1970's onward, consist

predominantly of fish aged 3 and older. Furthermore, the New South Wales fishery

collapsed m the mid-1980's. The Western Australia catches are dominated by one-year-

old fish (based on direct aging estimates). As such, there is Uttle information in these

data on growth of fish older than age one. In addition, for a number of years and periods,

there appears to be two one-year old modes, probably due to two peaks m the time of

spawning. This double mode does not follow through to the two-year olds, which

suggests that the smaller fish catch up in size by the age of two, nor does it appear in the

South Australia data, perhaps because fhe early and late spawned fish have different

migration routes or perhaps because the late spawned fish have not yet reached South

Australian waters by fhe end of the fishing season. For these reasons, we chose not to

include the Western Australia data in our current analysis.

A complete list of the available South Australian length-fi-equency data by half-

months for years 1964 to 1989 is given in the Annex at the end of this Appendix. The

catch figures are in numbers of fish, estimated from the weight of the catch using year

and area specific weight-length relationships (hence the non-integer numbers). As

discussed already, the lengfh-fi-equency data m the database are scaled up to represent the

total catch for a given half-month and area. Using these data as the raw data m our

analyses would not be correct from a statistical viewpoint since the actual samples sizes

are much smaller than the catch sizes and varied among years. To correct for this scaling

up, we adopted the scale factors proposed by Leigh and Heam (2000), which take into

account the two-stage nature of the scaling-up procedure. The catch size divided by the

scaling factor gives an estimate of the "effective sample size" had a simple random

sample from the total catch been taken.

Although length-fi-equency data are subject to biases, and growth mformation is

limited to the first few years of life, the amount of data is considerable with the advantage

that it exists over the tustory offhe fishery. Furthermore, lengfh-frequency data provides

valuable information about the growth of young fish and about seasonal patterns of

growth, which can be used in conjunction with the other sources of data to model the

entire growth curve.
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Direct Aging Data

Since the late 1980's, thousands of SBT otoliths have been collected by CSIRO

scientists on tagging expeditions as well as by trained observers on commercial fishing

vessels. The majority of tagging expeditions occurred off the coasts of Western Australia

and South Australia, whereas observers were placed on fishing vessels that operated

throughout fhe geographical range of SBT. The sampUng protocol involved removing

both otoUths whenever possible. The caudal fork length of file fish was measured and

recorded, in addition to other information such as the date and location of recapture. The

fish chosen for sampling were, to the greatest extent possible, a random sample of the

catch.

In recent years, a large number of otoliths have also been collected fi'om tuna on

the spawning grounds. SBT are sampled at the export processing sites at Benoa, Ball as

part of a large-scale catch-monitormg program (Davis et al. 1998). SBT graded as not

suitable for export are available for length measurement and otolith sampling, whereas

export grade SBT are immediately plunged into ice and are unavailable for sampling. The

lengths of most reject SBT are measured, and otoliths are taken from as many reject SBT

as is practical at the time. For example, reject fish will be sampled in the order that they

were handled until the sampler runs out of time. Their order is not based on size. Between

500 and 600 sets ofotoliths are sampled each season. SBT are graded for export based on

flesh quality, which is dependent on handling and/or condition. There is no selection

based on length (Davis and Farley 2001); however, fish of poor condition will be lighter

for a given length.

The otolith samples are stored in the CSIRO Hardparts Archives, and the data are

stored in the CSIRO Hardparts Database. A summary of the number ofotoliths coUected

by year and area is presented in Table 1.

Increments are formed annually m the otoliths of SBT (Clear et al. 2000). Each

increment is comprised of an opaque zone corresponding to a period of fast summer

growth and a narrower, translucent zone correspondmg to slower winter growth (Gunn et

al. In press). This translucent zone appears as a dark band when placed on a black

background under a dissecting microscope, so that the number of bands can,

theoretically, be counted to determine the age of the fish. We refer to this procedure as
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"reading" an otolith. In practice, identification of the bands can be difficult, especially in

older 8BT for which grow is very slow and annuli are very closely spaced.

An otolifh can be read using two methods, one in which the otolith is left whole

and one m which it is sectioned. Details of the methods are given in Gunn et al. (In

press). The whole otolith method can geuerally only be used for fish less than six years

old (~135 cm fork length). Sectioned otoliths can be used for all ages, however the fiist

four or five increments can be difficult to distinguish. With both methods, if the start of a

transluceat zone can be detected on the outer margin of the otolith, it is counted as one

year.

Approximately 4500 of the archived otoUths have been aged to date. In the

selection of otoliths for age determination, some were selected based on size stratification

(10-cm length categories). This was done to ensure that the youngest and oldest age

classes were represented in the direct aging database. Although it is possible for such a

procedure to introduce bias into the mean length at age, especially at the very young ages,

we do not anticipate the bias to be significant, and if it was, it should be evident through

inconsistencies with the other data sources.

Two trained and experienced CSD?-0 staff made almost all of the otolith readings.

Over 80% of the otoliths have had multiple independent readings, ranging from two to

seven, made by one or both readers. Each read is assigned a confidence level based on a

discrete scale ranging from very uncertain to very confident. A final band count is then

assigned based on all of the available mformation. For each sample, the final count as

weU as the individual reads and their coiTesponding reader, confidence level, and method

are recorded in fhe CSIRO Hardparts Database.

From all otolifhs aged to data, the final band counts range from 0 to 41 years, and

the fork lengths of corresponding SET range from 26 to 216 cm. Such a wide span of

age-length information is desirable for defining a complete growfh curve; however, we

must use caution. Because the otoliths were cotlected from fish caught in recent years,

all growth information on older fish comes fi-om fish born in the 1950's to 1970's,

whereas all mformation on younger fish comes from fish born in the 1980's and 1990's

(Figure 4). This issue wiU need to be addressed if size-selective mortality exists for SBT
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so that Lee's phenomenon (Ricker 1969) is present, or if growth rates have changed over

time as the tagging data suggest.

Determining ages from otoUth readings is not as straightforward as it may first

appear. Firstly, there is uncertainty in the number of bands counted. Information from

the multiple readings could potentially be used to estimate the variability m the number

of bands counted. Even if we assume the final band count to be accurate, we need to

know the time of band formation (namely whether or not the last band was formed in the

year of catch) in order to assign an age to the fish. For example, if we assume fish are

born on January 1, then a fish caught in September with n bands m its otolifh would have

an integer age of n if it had already deposited a band in the year of catch; however, it

would have an integer age of 77-1 if it had not yet deposited a band. Information

suggests that for SBT the date of formation can vary from the beginning of IVIay to the

end of August (Appendix 11). Thus, for a fish caught during this time period, we cannot

know whether or not it has yet formed a band in that year, which leads to an uncertainty

in its age of one year. We have chosen to omit any fish for which this uncertainty applies

and only include direct aging data from fish caught between October 1 and April 30 (see

Appendix 11 for more details on why this was done).

Further complications arise from using the direct aging data collected from the

spawning groimds to model growth. Comparing lengths of fish of the same age on and

off the spawning grounds shows that the fish on the spawniag grounds are larger, with the

difference m mean length at age being significant for ages 8 (the youngest age on the

spawning grounds to date) to 14 inclusively (Farley et al. 2001). This is consistent with

maturity having a size-dependent component so that larger fish mature earlier and show

up on the spawning grounds before smaller fish of the same age. Since a large number of

otoUfhs were collected from the spawning grounds, includmg these data m our growth

analysis could bias the results. Thus, we have chosen to omit the direct aging data for

fish aged 8 through 14 caught on the spawning grounds. In doing so, we could possibly

bias the results towards smaUer fish if fish of ages 8 to 14 off the spawning grounds are

smaller than the population average. This does not appear to be the case; direct age-

length data from the period May to September when fish are not spawning and are not
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found on fhe spawning grounds look consistent with age-length data of fish caught off the

spawning grounds during the time of spawning from October to April (Figure 5).

As with the length-frequency data, the one-year old direct aging data from

Western Australia poses some problems. A small number of otoliths have been collected

off the west coast of Western Australia around the latitude of Perth. Fish with one band

in their otoUth that were caught off the west coast were very small compared to fish with

one band caught off of the south coast of either Western Australia or South Australia

around fhe same time. We beUeve that these srnaU fish were spawned very late m the

season, such that they were younger and not as far m their migration route as those

spawned earlier. We are not attempting to model the very early stage of growth (birth to,

say, 9 months) in our analysis because growth is very rapid during this tune and highly

seasonal, and there is msuf&cient information with which to adequately model it. Thus,

we omit the data from fish caught off the west coast of Western Australia with one otolith

band because we believe that the growth mformation from these fish is primarily relevant

to growth within the first 9 months. For the same reason, we also omit any data from fish

with no bands in their otoUths.

After excluding data due to the above reasons, the numbers of otoliths left for

analysis is 2530. A breakdown by year and area is presented in Table 1 (in parentheses

underneath the total number m the archives).

The length of each annual increment (i.e. the distance between translucent bands)

has also been measured for a number of fish (approximately 490). ff fish length and

otolith lengtii are highly con'elated, as evidence suggests (Gium and Farley 1998), then

the incremental otolith data contains useful mformation for studying growth. However, a

practical shortcoming of the data is that increments are only measured for the first five

years, after which the bands become too close together to get an accurate measurement.

There are a number of complications m attempting to incorporate these data into the

integrated growth model developed here. In particular, there is no information on the

actual length of a fish at ages corresponding to each measured otolith increment. While

there is a correlation between otolith size and fish length, there is still considerable

variability around this relationship. Moreover, there is no data to assess how this

relationship may have varied over time when substantial changes in growth have
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occurred. Thus, these data provide only limited additional information to estunate

absolute growth rates relative to the large amoimt of growth data available from other

sources. Consequently, we have not used the incremental data in our estimation of the

integrated growth model. The main mformation content of the incremental data is on

possible changes in growth rates over time, and we have considered the data within this

context.
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Table 1. Number of otoliths in the CSIRO Hardparts Archives by catch year and area.

The numbers underneath in parentheses are the corresponding numbers of otoliths that

have been aged to date and are remaining for growth analysis after data screening.

New ^ .. . , SE
Catch South Western „'"", Tas- New Indo- ,..",". South

South ._*""._ ^_",'_'.^ """. Indian 7^'
Year Australia Australia ^7.7"_ mania Zealand nesia

Ocean

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

Unknown

Total

0

24

277
(4)

5

1

59
(10)
151
(14)

42
(28)

54
(39)

71
(16)

64
(45)

73
(71)

26
(23)

5

209

460

134

360

254

32

2446
(250)

20

45

475
(10)

42
(6)

0

98
(20)

10

89

21
(4)
88

(21)
299
(57)

93

71
(8)

0

0

0

0

0

132

35

1521
(126)

0

0

0

0

0

0

0

12

0

0

0

0

17

89

0

88

0

0

6

1

273

0

0

0

0

0

36
(3)

308
(8)

465
(15)
375
(22)
350
(65)
684
(36)
563
(8)

378
(8)

329

302

1

0

0

0

10

3801
(165)

0

0

0

0

0

0

0

0

0

84
(D

0

0

0

0

0

547
(9)

0

0

0

0

631
(10)

0

0

0

0

0

0

0

0

0

2

10

357
(212)

500
(325)

514
(205)

472
(307)

412
(244)

873
(505)

502
(42)
470

1

4113
(1840)

0

0

0

0

0

0

0

0

109
(15)
413
(62)

0

156
(3)

157
(21)

0

0

0

0

6

0

0

841
(101)

0

0

0

0

0

0

0

5

0

52
(35)
105

74

144

0

0

0

0

0

0

52

432
(35)

0

0

0

0

0

5

18

7

0

30

31
(3)

1

3

5

1

2

0

0

0

468

571
(3)

20

69

752
(14)

47
(6)

1

198
(33)
487
(22)
620
(43)
559
(80)
1090

(200)
1193
(141)
1317

(294)
1296
(385)

942
(205)

984
(307)
1510

(253)
1007

(505)
868
(42)
862

599

14629
(2530)
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Appendix 3: The data: details of tag recapture, length-frequency and direct agmg data

Figure 1. Caudal fork length versus whole weight for southern bluefin tuna (SBT). The

points are measurements taken from recaptures of tagged fish. The dashed line is the

curve obtained from fitting a power relationship to the data shown. The solid line shows

the weight-length curve taken from the 1994 Report of the SBT Trilateral Workshop.
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Figure 2. Mean growth rate of recaptured fish (calculated as centimeters growth per day

at liberty) versus release length. To make growth rates comparable, fish at liberty for

similar number of days are grouped together. Each plotting symbol represents a different

decade (solid square = 1990's; solid circle = 1980's; x = 1970's; open circle = 1960's).

For readability we did not include standard error bars, but note that there is very little

data in the 1970's.

s
0

&10
0

Days
f

X »

0

at liberty

•

9

between

•

•

x

0

30

•
•

0

and

•

0

365

•

•

n

>>
(0

T3

0

LLJI
0
01
0
yi

40 60 80 100

§
0

&1
0
0

•

x
0

Days

•

0

at liberty

I
x

0

between

x
•

0

365

a

0

and

•
•

0

730

•

0

40 60 80 100

s
0

N0
0

8

Days

I
0
x

at liberty

§

between

:
Q
x

730

s
x

and

0
x
•

•

I
0

5200

1960s
1970s
1980s
1990s

^

0

40 60 80 100

RELEASE LENGTH (to nearest 10cm)
"A3-19



Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Figure 3. Examples of the length-frequency data available from the commercial catch.

Periods 1 to 6 correspond to the first half of January through the last half of March.
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Figure 3 (cont).

South Australia 1983
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Figure 4. Caudal fork length versus number ofotolith bands. Different plotting symbols

are used to indicate the decade in which the fish was born.
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Figure 5. Close-up of direct age-length data to compare the lengths of fish on and off the

spawning grounds (SG). Fish of ages 8 to 14 caught on the spawning grounds are larger

on average than fish of the same age caught off the spawning grounds at the same time.
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

ANNEX:

A summary of the length-frequency data available from the Australian surface fishery,

1964-1989. Refer to the text for an explanation of the scale factors and effective sample

sizes.

Year

1964
1964
1964
1964
1964
1964
1964
1964
1965
1965
1965
1965
1965
1965
1965
1965
1966
1966
1966
1966
1966
1966
1966
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1967
1968

Period

2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9

10
11
12

1

Catch

39066.8
40376.7
60828.8
41511.9
65960.7
42242.4
60269.5
28625.8

9070.8
27863.4
53407.4
41604.8

62788
52801.2
37408.7

3714.3
8480

63785.7
104452.6
85043.7
72328.2
43536.3
39186.8
14225.5
10657.3
45327.6
51425.7
56905.3

11778
14939.8
5771.1
8421.6
2147.9

15742.9
7910

5269.2

Scale

Factor

22.78
33.53
17.29
12.43
27.73
14.69
18.39
17.17

4.3
4.3

28.15
10.81

18.9

23.85
12.19

n/a

n/a

10.29
13.16
10.36
19.11
14.67
14.53
13.66
7.28

10.09
6.8

7.1

5.2

7.2

15.34
10.99
5.45

13.74
4.69

26.35

Effective
Sample Size

1715.0
1204.2
3518.1
3339.7
2378.7
2875.6
3277.3
1667.2
2109.5
6479.9
1897.2
3848.7
3322.1
2213.9
3068.8

n/a
n/a

6198.8
7937.1
8208.9
3784.8
2967.7
2697.0
1041.4
1463.9
4492.3
7562.6
8014.8
2265.0
2075.0

376.2
766.3
394.1

1145.8
1686.6
200.0
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Year

1968
1968
1968
1968
1968
1968
1968
1968
1968
1969
1969
1969
1969
1969
1969
1969
1969
1969
1969
1970
1970
1970
1970
1970
1970
1970
1970
1970
1970
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1971
1972
1972

Period

2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

24
1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10
11
12
13

1
2

Catch

29155.4
41175.9
54340.9
31668.5
19210.7
38281.3
32203.8

8019.2
4051.6

22064.4
91893.7

50102
64666.2

79212
56819.9
16105.7
38296.4

8556.1
10306
3785

42734.6
59458.2
32011.3
39262.3
71803.9
50039.8
18045.8
3682.2
2576.1

42400.5
38629

62297.8
48421.1
26285.7
20246.1
47925.3

7004.3
15855.8
12654.8
13123.1

887.7
7818.4
10630

64954.2

Scale

Factor

18.9

32.66
22.9

14.34
14.63
15.36

9.55

7.98

9.93

152.89
31.32
22.23
17.56
20.21
31.85

8.75

24.23
6.75

28.83
7.42

14.14
49.12
27.04
14.02
15.79
12.35
13.38
11.12
6.61

35
10.46
28.83
19.51
10.61
11.89
20.89

7.03

12.3

6.64

10.73
6.94

10.09
23.82
33.73

Effective
Sample Size

1542.6
1260.7
2373.0
2208.4
1313.1
2492.3
3372.1
1004.9
408.0
144.3

2934.0
2253.8
3682.6
3919.4
1784.0
1840.7
1580.5
1267.6
357.5
510.1

3022.2
1210.5
1183.8
2800.4
4547.4
4051.8
1348.7
331.1
389.7

1211.4
3693.0
2160.9
2481.9
2477.4
1702.8
2294.2

996.3
1289.1
1905.8
1223.0

127.9
774.9
446.3

1925.7
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Year

1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1972
1973
1973
1973
1973
1973
1973
1973
1973
1973
1973
1974
1974
1974
1974
1974
1974
1974
1974
1974
1974
1974
1974
1974
1975
1975
1975
1975
1975
1975
1975
1975
1975
1975

Period

3
4
5
6
7
8
9

10
11
12
24

1
2
3
4
5
6
7
8

10
12

1
2
3
4
5
6
7
8
9

10
11
23
24

1
2
3
4
5
6
7
8
9

10

Catch

77707.2
82433.5

81564
46640.4
17416.5
13594.3
22931.4
17799.1
13984.4
4360.4

29769.7
16173.9

81753
80269.2
72143.2
68896.4
87018.9
21606.5
16530.5
28587.3

3423.5
190231.4
105335.3
59393.5

135935.7
89873.8
28862.8
21606.3
53015.2
39068.3
30102.8

2701
43660.1
48244.5
48933.7

107140.7
94083.7
66255.4
80574.4
22220.3
18995.7
52164.8
9865.9
6905.7

Scale

Factor

39.41
35.97

44.26
67.54

17.03
66.28

27.91
8.5

17.12

9.98

32.08

8
54.17
18.72

18.85
17.68

20.97

5.39

6.19
19.33

17.17
n/a

111.8

23.84
50.33

26.28

12.13
15.73

30.77
11.64

11.1

3.39

n/a

21.05

14.21
53.73
43.93
12.46
13.85
5.28
6.79

17.41

10.02
5.07

Effective
Sample Size

1971.8
2291.7
1842.8
690.6

1022.7
205.1
821.6

2094.0
816.8
436.9
928.0

2021.7
1509.2
4287.9
3827.2
3896.9
4149.7
4008.6
2670.5
1478.9

199.4
n/a

942.2
2491.3
2700.9
3419.9
2379.5
1373.6
1723.0
3356.4
2712.0

796.8
n/a

2291.9
3443.6
1994.1
2141.7
5317.4
5817.6
4208.4
2797.6
2996.3

984.6
1362.1
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Appendix 3: The data: details of tag recapture, length-frequency and du'ect aging data

Year

1975
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1976
1977
1977
1977
1977
1977
1977
1977
1977
1977
1977
1977
1978
1978
1978
1978
1978
1978
1978
1978
1978
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1980

Period

23
1
2
3
4
5
6
7
8
9

10
23
24

1
2
3
4
5
6
7
8
9

10
23

1
2
3
4
5
6
7
9

24
1
2
3
4
5
6
8

10
22
24

1

Catch

189799.5
140522

93513.1
71541.5
90475.1
92784.5

120908.1
30034.6
10086.5
17016.2
8773.7

33384.4
226382
248989
219755

137406.1
43826

77668.3
64589.3
21936.7
62378.7
15170.1
8207.1

133841.8
102331

58363.2
94733

84485.4
49657.4
10907.9
11015.2
2685.2

109806.5
55838.3

119911.8
135040.6
98281.7
30775.8
18622.8
37791.2
25713.4
80502.4

161497.1
162294

Scale

Factor

60.13
33.06
39.99
32.68

24.78
15.69
23.21

7.62

2.92
8.82

4.4

21.84
290.43

75.86

63.93
61.57

49.74
33.44
59.11
19.48
36.75
17.21
23.51

113.83
97.43
41.26
49.68
39.15
36.33

8.26

27.17
12.51

591.26
46.19
84.54
41.9

18.23

31.64
75.34

191.31
60.44

205.27
323.42
109.96

Effective
Sample Size

3156.5
4250.5
2338.4
2189.2
3651.1
5913.6
5209.3
3941.5
3454.3
1929.3
1994.0
1528.6
779.5

3282.2
3437.4
2231.7

881.1
2322.6
1092.7
1126.1
1697.4

881.5
349.1

1175.8
1050.3
1414.5
1906.9
2158.0
1366.8
1320.6
405.4
214.6
185.7

1208.9
1418.4
3222.9
5391.2
972.7
247.2
197.5
425.4
392.2
499.3

1475.9
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Appendix 3: The data: details of tag recapture, length-fi'equency and du'ect agiug data

Year

1980
1980
1980
1980
1980
1980
1980
1980
1980
1980
1980
1980
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1981
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1982
1983
1983
1983
1983

Period

2
3
4
5
7
8
9

10
11
22
23
24

1
2
3
4
5
6
7
8
9

10
11
12
23
24

1
2
3
4
5
6
7
8
9

11
13
22
23
24

1
2
3
4

Catch

185941
159338.7
61118.6
88531.5
73045.9
39075.8
33870.3
30649.4

6711.6
640.8

61533.3
114055.8
114037.8

43124
86564.9
83599.2
47464.2

128252.7
69314.7

33990
23487.9

8715.2
2508.9
2110.5

17487.9
140031.4
170500.4
204331.6
196890.2
64955.5

127111.8
78629.7

118154.4
53963.5

3110.3
3986.7
5281.9
3695.8

112087.5
369328.5
243447.8
191300.9
166018.2
101179.6

Scale

Factor

128.64
202.18
122.85
109.21
137.14
143.99
49.92

49.65
45.63

n/a

n/a
n/a

159.78
392.04

87.04

58.44
33.03
53.22
43.13

18.07

39.34
18.06

3.06

10.55
44.25

138.22
74.54
63.35
80.58

27.39
85.45
60.77
89.86

136.32
n/a

8.19

9.83

34.05
179.48

2894.34
514.52

70.53
156.58
41.22

Effective
Sample Size

1445.4
788.1

497.5

810.7
532.6
271.4
678.5
617.3

147.1
n/a

n/a

n/a
713.7

110.0

994.5
1430.5
1437.0
2409.9
1607.1
1881.0
597.0
482.6

819.9

200.0
395.2

1013.1
2287.4
3225.4
2443.4
2371.5
1487.6
1293.9
1314.9
395.9

n/a

486.8
537.3
108.5
624.5
127.6
473.2

2712.3
1060.3
2454.6
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Year

1983
1983
1983
1983
1983
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1984
1985
1985
1985
1985
1985
1985
1985
1985
1985
1985
1985
1985
1985
1986
1986
1986
1986
1986
1986
1986
1986
1986
1986
1986
1986

Period

5
6

11
13
24

1
2
3
4
5
6
7
8
9

10
11
12
23
24

1
2
3
4
5
6
7
8
9

10
11
23
24

1
2
3
4
5
6
7
8
9

10
11
12

Catch

32555.9
15213.4
4730.1
4581.9

285578.1
101117.1

183673
144167.5

60020
6770.8
1360.7

166.2
4516.9
4093.4
27513

11267.6
1550.1

37754.7
153186.9
155835.2
102531.5

76452
24594.7
28859.1
46413.7
33903.2

27536
29165.3

8798.4
2199

57567.2
70811.9

146647.5
123718.1
123578.9
83000.1
96871.7
92355.6
51194.8
31243.8

6663.4
942

2216.3
242.6

Scale

Factor

108.33
41.11

n/a
n/a

507.7

n/a

177.92
730.52

52.25

20.24
85.24

n/a

n/a

n/a

n/a

n/a

n/a

58.69
24.6

23.22
18.34

18.27
15.94
9.28

14.3

20.07
28.24
17.07

n/a

n/a

17.88
15.09
26.97
28.78
28.49
28.89
27.61
24.01
28.16
50.73
39.22

n/a

n/a

n/a

Effective
Sample Size

300.5

370.1
n/a

n/a

562.5

n/a

1032.3
197.3

1148.7
334.5

16.0
n/a

n/a
n/a

n/a

n/a

n/a

643.3
6227.1
6711.2
5590.6
4184.6
1543.0
3109.8
3245.7
1689.2
975.1

1708.6
n/a

n/a

3219.6
4692.6
5437.4
4298.8
4337.6
2873.0
3508.6
3846.5
1818.0
615.9
169.9

n/a

n/a

n/a
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Appendbc 3: The data: details of tag recaphire, leugth-frequency and du'ect aging data

Year

1986
1986
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1987
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1988
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989
1989

Period

23
24

1
2
3
4
5
6
7
8
9

10
11
12
23
24

1
2
3
4
5
6
7
8
9

10
11
23
24

1
2
3
4
5
6
7
8
9

23
24

Catch

1605.2
63505.4
73247.7
99417.9

164043.9
94007.5
61121.9
44380.4
33797.5

4302
1038

118.9

49
29.7

7543.7
21005.7
68502.1

191509.7
109463.4
69194.5
60131.5

179547.5
41463.4
92070.4
17812.5
13102.9

167.1
9

21653.6
92509.3
78710.6
65978.1
75930.1
37010.4
36536.8

1404
1919.1
1144.5
9435.2

13893.6

Scale

Factor

4.6

16.57

25.53
23.13

28.69
27.92
22.25

26.04
19.77

n/a

n/a

n/a
n/a

n/a
11.75

29.46
23.28

30.13
32.93
27.86

32.99

40.13
54.64
78.34

n/a

n/a

n/a

n/a

34.14
37.23

20.12
28.59
44.46
19.87
42.1

n/a

n/a

n/a

n/a
16.29

Effective
Sample Size

349.0

3832.6
2869.1
4298.2
5717.8
3367.0
2747.1
1704.3
1709.5

n/a

n/a

n/a

n/a
n/a

642.0
713.0

2942.5
6356.1
3324.1
2483.7
1822.7
4474.1

758.8

1175.3
n/a

n/a
n/a

n/a

634.3
2484.8
3912.1
2307.7
1707.8
1862.6
867.9

n/a

n/a

n/a

n/a

852.9
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Introduction

Understanding how fish grow is a fundamental component of fish biology,

and quantitative information on growth is critical to the stock assessment process.

However, it is not only mean growth that is important to characterise, but also the

variability among individuals. One of the primary sources of information used for

estimating the growth rates of fish comes from tagging studies. In these studies, the

length of a fish is measured and recorded when the fish is released and recaptured.

The times of release and recapture are also recorded so that the time at liberty is

known. The estimation of growth rates from these data presents a difficult challenge

for several reasons: there are only two measurements per fish, the age at first release

is not precisely known, and fish vary in their growth from individual to individual.

Despite these obvious difficulties, several efficient methods of estimating growth

curves from tag-recapture data have been developed (e.g., Fabens 1965; Francis 1988;

Palmer et al. 1991). The estimation process involves both determining an appro-

priate parametric form for the growth cm-ve and a, reliable statistical procedure for

fitting the data to the growth curve. The determination of the appropriate curve is

often an iterative process using standard statistical model selection criteria. Non-

parametric estimation of growth from tag-recaptm-e data is generally not feasible

because of the paucity and structure of the data. In any case, parametric models

can provide insights into the underlying functional processes and allow for direct

comparison of growth curves across time and space or between different populations

or species. Moreover, differences among individuals can be captured by modelling

some of the growth parameters as random variables.

A wide variety of parametric models has been used to model fish growth,

with the von BertalaiifFy (VB) growth model being the most ubiquitous. However,

the generalized von BertalanfFy, the Richards, the Gompertz and the logistic models

have all been advocated (see Schnute 1981). In fact, any cumulative statistical

distribution scaled by an asymptotic length could be used, although the growth curve

preferably should have a biological motivation. Almost all modelling of fish growth
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has been based on modelling the growth rate as a continuous, smooth, monotonically

decreasing function of age. However, recent analyses of growth in southern bluefin

tuna (SBT) suggest that there is a marked change in the growth process somewhere

during the transition from the juvenile to sub-adult part of the life cycle (Anon.

1994; Hearn and Polacheck 2002). Heai-n and Polacheck (2002) suggest this might

also be a feature in other tuna species. In the SBT case, growth has been modelled

as a two stage process in which growth in each stage follows a different VB curve,

with a discontinuity in the growth rates at the transition point between the two.

However, Hearn and Polacheck (2002) identify problems both with the biological

interpretation of this model and in statistically fitting it. Thus there is a need, at

least in the case of SBT, for alternative growth models that can adequately represent

the complex pattern of growth.

A large scientific literature exists on the statistical estimation of growth curves

from tag-recapture data. The most widely used approach in fisheries' research has

been the one developed by Fabens (1965). However, this approach does not take

into account variability among individuals in their growth curves, cannot be applied

to the full range of potential growth models, and is not asymptotically consistent

(Mailer and de Boer 1988). Extensions to the Fabens approach that can accom-

modate individual variability in growth within a VB model framework have been

developed by Sainsbury (1980) and Hampton (1991), but these methods still bear

some limitations of a Fabens-type approach. James (1991) and Wang (1998) have

developed fitting procedures based on estimating equations as a statistically rigor-

ous alternative to Fabens' method, but again there are problems in applying the

estimating equations approach to more complicated growth models. As such, there

remains a need for a flexible estimation method that can be adopted to a wide

range of alternative growth models, that can accommodate individual variability

in the growth parameters, and that can provide a statistical basis for selecting the

most appropriate and parsinionious model.

In the current paper, we develop an alternative maximum likelihood approach
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for estimating growth curves from tag-recapture data which is based on estimating

the joint density of tag and recapture lengths rather than modelling growth incre-

ments. The method allows for individual variability in growth by having selected

parameters considered as random effects. Standard statistical tests based on likeli-

hood theory and Akaike's information criteria (Akaike 1974) may be used to compare

and select among alternative models. Although Wang et al. (1995) have proposed a

similar approach, ours requires less restrictive assumptions and can easily be applied

to a wide range of growth curves. Furthermore, we have developed a new growth

curve that can accommodate a marked change in the growth pattern at some point

in the life cycle. We apply our estimation method along with the proposed new

growth curve to tag-recaptiu'e data for SBT.

Methods

The joint density of tag and recapture lengths for a general

growth model

In this section, we derive the joint density of tag and recapture lengths for a

single fish. This is formulated in terms of a general model for fish growth in which

the asymptotic length varies from fish to fish. Other parameters are fixed. The joint

density is needed for maximum likelihood fitting of the growth model and inference

about its relative fit.

In tag-recapture studies, a fish is tagged at time t-^ with length l^ and is

recaptured at time t^ with length l^. We know that fish growth during the very

early stages of life (e.g., during the egg and larval stages) follows a different process

from subsequent growth. However, we do not have data with which to model this

initial growth. We define to to be the time at which a fish would have had length 0

if we were to project its post-larval growth trajectory backwards. We acknowledge

that to is a theoretical value with no real biological interpretation.
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Let A = ti —to, then A varies from fish to fish, partly because the fish are

spawned at different times (which results in ty varying between fish), and partly be-

cause there may be several tagging expeditions (so that t\ varies). For convenience,

we will refer to A simply as the age at tagging, keeping in mind that it is age relative

to to, not relative to birth.

We assume that a generic growth function f{t) is available, where f(t) is a

monotone increasing function of time, t. It approaches 1 as t —> oo, and is 0 when

t is ty. The growth of each fish follows the form of f(t), although with individual

variations.

The assumed growth curve for the fish is

l(t) = L^f(t;A,0), (1)

where Loo (the asymptotic length) is random from fish to fish with mean //oo and

variance cr^,, A is random from fish to fish with density p(.), 0 is a vector of fixed

unknown parameters, and t is real time. For example, for the von Bertalanffy model,

1 - exp(-/e(A +1 - t^)} ift>ti-A;

0 otherwise,

so 0 = {k} has only one component. Let St = t^ — tz be the time increment

between tagging and recapture. To analyse tag-recapture data, we need the familiar

equations

f(t^A,{k}) = l-exp(-fcA)

f(t^A,{k}) = l-exp(-fc(A+^)).
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James (1991), Palmer et al. (1991) and Wang et al. (1995) have all discussed the

estimation of van BertalanfFy parameters from tag-recaptm'e data using this style

of model. Om- aim is to show that parameter estimation is still feasible for more

complex and realistic growth models /(.) in (1).

In this article we assume that Loo and A are both random variables. Models

in which either Loo or A are the same unknown constants for all fish are implausible,

and models for which Loo and A are different constants are over-parameterised, so

ours is the simplest realistic assumption. We denote random variables by capital

letters. We follow James (1991), Palmer et al. (1991) and Wang et al. (1995) in

assuming that Loo and A are independent. We have no evidence to the contrary.

We assume for convenience that Loo has a normal distribution. Intuitively

this seems reasonable, and we have no data to refute it. We also assume that

measurements are taken at times t^ and t^ (with ti < t^), so that

h = W+e, (2)

h == W+€2 (3)

where e\ and 62 represent measurement error. They are also normally distributed

with mean 0 and variance a , and independent from fish to fish. We assume also

that ei and 63 are independent of Loo and A.

We are now in a position to derive the joint distribution of /i and ,2- For the

moment, we argue conditional upon a known value of A, say A = a. Then li and

,2 are both the sum of normal random variables, and hence are themselves normal.

Their first and second moments are

/.<i(a) = E(^i|a)=^ooA

^2 (a) = E(/2|a) =^00/2
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^(a) = Var(W=^A2+<72

aj(a) = Vai-(^|a)=^/|+a2

Cov(^la) = a^A/2
°oo A /2

;a) = Corr(/i,?2|a) =
ffi(a)CT2(a)

where fi = /(<i;a,0) and ,2 = f(t'2',a,0)- Clearly, ?i and ?s are joint normal with

conditional density

h^W = - — ,1 , ,^exp{-^912(aLJ (4)
tl'l21u' ~ 2^(0)02(0)^1-p(a)2c"pl-2(l-p(a)2).

where

(^i-^i (a))2 o,^(^^iM(k-_^^) , (^l-A<2(a))2
[a) = " _', "^ '' - '^p{a)— — ' "/,'_-/ ,' "' " +

(7i(a)2 ~''v"/ <7i(a)(72(a) ' ^(a)2

If A is random, the unconditional joint density of ^1,^2 is

-00

h^li^k) = I h{l]_,l'2\a) p{a) da. (5)
,0

There are several points to note. First, the joint density (5) involves a sin-

gle integral, whereas Wang et al. (1995) have a double integral. Second, l-i < l\ is

allowed, whereas Wang et al. (1995) do not allow it. Third, a more complex model

for the measurement error may be desirable, and can easily be incorporated. For

example, in the case of SBT, recapture lengths are measured by fishermen and sci-

entists, but tag lengths are measured by scientists only. The fishermen are believed
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to be less precise. Hence it may be desirable to structure the measurement errors

so that Values) > Var(ei) when ,2 is measured by fishermen. Fourth, correlation

between ei and 62 may also be allowed for very easily, although it is likely to be

poorly identified. Finally, conditioning on non-linear components to simplify the

analysis of partially non-linear models has a long history in statistics. A seminal

paper is Halperin (1963).

The joint density for zero measurement error

It is useful to have a special formula for /i(/i, ,2) when a = 0, since it is not

immediately clear what (5) reduces to. We first look at the van Bertalanffy model.

It is possible then to calculate exactly what A must be if li, l-^ and k are known: it

IS

... _ ^^Jl'z-h
"' - -klos[1t-J[) {6)

where d = exp(—k(t^ — ^i)). Arguing from first principles, we obtain

1 ,(i2/n-^\ ^^^ f i dho(h, b) = —7; 0 ( "/ "_ ^00 ) p(a+) ^ ^ —— - ——} (7)
°oo /2 \ CToo 7 /c I <2 - 4 <2 - ati

where /I == f(t^;a*,0) and 0(.) is the standard normal density. If l^ <, h, then

ho{h, h) is set to 0.

For general log-concave growth curves, the formula is

1 ^2//2°-^°°\ ^^Qa*
"oc"i2) = ^r^[:—)p(a')^ (8)
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suggesting that an explicit formula for a* in terms of ^ and l^ is needed for each

model. However, it is easy to prove that

-1
1 9a^ _ (, 9f! , 9^ ~

JjJl^ ~ \l2~Q^~kl~9^

so we really only need to differentiate f(t;a,0) with respect to a and evaluate it at

(Ai,a*) and (t^,a*). Note that a* is the solution to fi/h = /2/b, which may need

to be solved numerically. A growth curve f(t) is log-concave if logjf(^) is concave:

that is, any straight line joining two points on the curve log f(t) lies on or beneath

the curve. Many of the commonly used simple growth curves are log-concave. For

several examples, we confirmed nuraerically that /z(Zi,^) converges to ho (^1,^2) as

(72->0.

Numerical computation of the integral

Computation of the integral in (5) is not straightforward. When maximising

a likelihood, the integral needs to be computed separately for each fish at each step

of the likelihood maximisation. If there are 1000 fish in the study, and the likelihood

optimisation routine takes 500 steps to find the optimal parameters, the integral will

need to be computed 500 000 times. For large-scale applications, a fast and accurate

quadrature method is required. We used Ganss-Hermite integration, after using a

robust search method to locate the approximate maximum of the integrand. For

details, refer to the Appendix.

A new growth curve: the von BertalanfFy with logistic growth

rate parameter

Extensive tagging studies of southern bluefin tuna were undertaken during

the 1960s and 1980s. This large data base has enabled researchers to examine the
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adequacy of the van Bertalanffy growth curve, which has traditionally been the

standard for this species. As noted in the introduction, recent analyses suggest that

a more complex model which incorporates a two stage growth process is required

(Hearn and Polacheck 2002).

Wang (1998) has proposed the following generalization of the von BertalanfFy

growth curve. Suppose a fish has length 0 at time to. Then the growth rate at time

t is given by

l\t) = (Loo -l{t))k{t),

where k(t), the function that controls the growth rate, may depend on time. The

solution is

l(t) = L^[l-exp(-K(to,t~))]

where K(to,t) = f^ k(u) du. Hearn and Polacheck (2002) argue that for SBT k(t)

should be a constant value, A-i say, for juvenile tuna and a lower value, A;2, for adult

tuna. Thus k(t) is a step function

ki for t < to + a;k{t) = { ^ - —to -r (-1' (9)

A-2 otherwise.

In this model, a is the age at which juveniles become adults — it is denoted by t*

in Hearn and Polacheck (2002). The Hearn and Polacheck model is slightly more

general than this, but the extra generality is only mildly supported by the data.

The step-function (9) seems harsh from a biological viewpoint. We would at

least like to allow for the possibility of a slower transition between juvenile and adult
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growth. In addition, the step function may cause problems for statistical analysis.

For example, the likelihood in Hearn and Polacheck's (2002) analysis has two modes,

which might be caused by the step function.

We propose instead modelling k(t) by a logistic curve:

k(t) = fci + (A;2 — A;i)—————^-;—7——.
1 + exp{-/3(t -to- a)

(10)

For t <^. to + a, k(t) w k^, and for t ~S> to + a, k(t) w k^. As t increases, k(t) makes

a smooth transition from k^ to k^. The rate of transition is governed by /3, being

sharper for larger f3. As (3 —• oo, (10) reduces to the step function given in (9). An

advantage of the logistic form is that it can be explicitly integrated, yielding the

growth curve

l(t) = Lc e
-k2(t-to)

1 4- e-/3(t-to-Q) I -(fc2-fci)A3i

1 + e^a

if t >. to. Of course, l(t) = Oiit < ty. In the notation of equation (1), 6 =

{fci, /C2, a, ,3} has four components, in contrast to the ordinary von BertalanfFy curve

which has one. We propose calling this the von Bertalanffy growth curve with

logistic growth rate, and abbreviating it as the 'VB log fc' model. The traditional

von Bertalanffy curve is recouped if fci = k^ = k. Note that the VB log k model is

not a member of the Schnute (1981) class.

The 'VB log fc' model could be further generalized to three or more phases

in growth, reflecting different growth conditions for multiple life-stages. It is also

possible to generalize the von BertalanfFy by using a logistic rate k(t) on the length

scale: l(t') = Loo (l—e-fc^^f-t°^). However, this model does not have a simple growth

rate interpretation, so we leave it for future investigation.
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Estimation

Wang et al. (1995) suggest that a gamma distribution be used for p{-), the

distribution of A, although we shall prefer the lognormal. In fact, an advantage

of our approach is that any well-behaved parametric model for A can be adopted.

Once the models for A and for growth f(t) have been decided upon, the unknown

parameters can be estimated by maximising the log-likelihood

^log/z(/l,,/20,
i=l

where n is the number of fish, and (^,, l^z) are the two measurements for fish i. A

numerical optimisation algorithm with bound constraints is needed to fit the model.

After successfully maximising the log-likelihood, the user may wish to esti-

mate the realised values of A and Loo for each fish. One way to do this is to calculate

the estimated posterior distribution using Bayes' Theorem.

Thus, for a given fish, we can calculate

h(l^l'2\a)p{a)
p{A=a\l-i,l^~) =

h(h,k)

by plugging in the maximum likelihood estimates of the unknown parameters. This

distribution gives the plausible range of values of A compatible with the data /i and

1-2. Of course, calculating this conditional distribution might be practical if there

are only a few fish, but often there are hunch'eds. The user really requires a single

summary statistic for each fish. The mean would probably be chosen, although other

summary statistics, such as the median, mode, trimmed mean and so on, could be

used if desired. The mean requires a one-dimensional integration. It is worth noting

that the mode of A given li and l^ is ah'eady determined for each fish if the method
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outlined in the Appendix for calculating the likelihood is followed. Typically, we

find little difference between the mean and the mode.

Similarly, we can calculate q(L^ \h, l^), the density of the the asymptotic

length given the data. In practice, we would probably use the mean of q{Loo \h, b) as

a point estimate of the asymptotic length for a particular fish. The direct approach

yields a double integral, but this can be avoided by exploiting the joint normality

of Loo, h and k when a is known. The formula is

Jo00 E(Loo|^i, ^2, a) ^(^i, Wp(a) da
^oo|(l^2; ==

h{h,k)

where

<T2

E(Loo|^2,0) = ^oo + ,2 , ^^2 , ,2^ (A(^l - ^oo/l) + ,2^2 - ^oo/s)) .(12)
a~ +o'SolJf + J'2.

Thus, the conditional means E(Loo|^i, li) can be calculated by substituting (12) into

(11) and using one-dimensional integration. It is reassuring to note that this yields

the correct result when a = 0, in which case l\ = -Loo/i and ly, = Loo ,2; and it

is readily checked that E(Loo|^i, h, o) = Loo. Of course, the bivariate conditional

distribution p(A, Loo ?i, ^2) could also be calculated, although there seems little point.

Results

Simulated data

In order to test our proposed model fitting procedure and its generality, we

carried out a number of simulations. We generated growth data according to various

models, looking at the effect of different growth curves, different distributions on the

age at tagging, and different amounts of measurement error.
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Initially we considered the traditional von BertalanfFy (VB) curve. In all

model runs, Loo was taken to be normally distributed with mean 100 and standard

deviation 5, and k was taken to be 0.5, such that 95% of the average maximum

length was achieved by age six. The times at liberty were generated according to

a r(l,l) distribution, which was chosen to be representative of tagging studies in

which the majority of recaptures occur quickly and subsequently decrease (in this

case, 63% within the first year and 95% within three years).

At first, ages at tagging, A, were generated according to a lognormal distri-

bution with mean and standard deviation on the log scale of 0.5 and 0.5 respectively

(which we will denote by A ~ Log"N(0.5, 0.5)). This gives a positively skewed dis-

tribution with a mode around 1.5 years of age. The effect of varying the amount

of measurement error was investigated by setting a equal to 0, 2, and 4 in different

simulations. For each situation, a total of 100 simulations using a sample size of 100

recaptures per simulation were carried out.

We now summarize the results from the above simulations. The parameter

estimates obtained using the new estimation method were all unbiased, except for a

slight underestimation of the variability in Loo as the measurement error increased

(Table 1, rows 1 to 4). Otherwise, the effect of increasing the measurement error

was only to increase the standard deviation of the parameter estimates. Note that

in the case of zero measurement error we ran simulations using both the likelihood

based on the joint density developed for measurement error (equation (5)) and the

likelihood based on the joint density for no measurement error (equation (8)). The

two methods gave comparable estimates (Table 1, rows 1 and 2).

With such a small sample size and relatively short times at liberty, there is

not much information on older fish with which to discern the distribution of Loo.

Hence, it is not too surprising that the variability in Loo is slightly biased; perhaps

more surprising is that the mean value is estimated correctly. Increasing the sample

size from 100 to 500 or, alternatively, changing the distribution on the times at

liberty to be uniform on [1,7] eliminated the slight bias in the standard deviation of
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Loo when a was equal to 4.

For many studies, the ages at tagging may not follow a simple distributional

form. For example, in the case of SBT, fish spawn from October to April, and

tagging is performed most commonly diu-ing January. This results in a multi-modal

distribution for the release ages. Thus, it is important that our estimation method

works for a variety of distributions for A. We generated values for A that we believe

are representative of the real ages at tagging for SET using the following steps.

Firstly, from the true tagging data for SBT, we took a random sample of 100 fish

and retained their release date and integer age (an integer age had been assigned to

each fish based on its release length, and this age is likely to be accurate for young

fish). Next, we generated a 'birth date' for each fish from a normal distribution

with a mean of zero (representative of January 1) and a standard deviation of 1.5

months (so that roughly 95% of the birth dates fell between October 1 and April

1). Lastly, we calculated a release age for each fish by taking its integer age (in

years) and adding the difference between its release date and birth date (expressed

in decimal years).

The distribution of release ages generated in the above manner has distinct

modes at ages 1 and 2, and is clearly not lognormal (Figure 1). A Gaussian mbcture

model appears to be an appropriate choice. Thus, we applied our estimation method

to simulated data that included such ages at tagging assuming that they follow

a two-component Gaussian mbcture distribution with means u and v, a common

standard deviation o-c, and a proportion p belonging to the first component. We

again generated times at liberty according to a F(l, 1) distribution, and tag and

recapture lengths according to a VB curve with k = 0.5 and Loo random normal with

mean 100 and standard deviation 5. The standard deviation of the measurement

error was taken to be 2. The mean parameter estimates for -Loo, k and a were

unbiased (Table 1, second last row), which shows that the method works even for

fairly complex distributions for A.

To investigate the robustness of our method to the distribution assumed for
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A, we reran the above simulations assuming a lognormal distribution for A. Again,

the growth parameter estimates were unbiased (Table 1, last row). In this case, the

lognormal distribution gave a fair approximation to the true distribution of A, as

shown in Figure 1 where the fitted lognormal curve is overlaid on the histogram of

release ages. In most situations, the researcher will have some information about

the release ages, and the method appears to be quite robust provided a reasonable

distribution for A is chosen. For example, in the above simulations, we could have

chosen the gamma distribution instead of the lognormal and achieved equally good

results.

One of the advantages of oiu- estimation method is its ability to generalize

to a wide range of growth curves. To illustrate this, we ran simulations on growth

data generated from a logistic curve, a generalized von BertalanfFy (GVB) curve, as

well as a von Bertalanfiy cm've with a logistic growth rate (VB log k, as described

in the Methods section). The logistic curve can be expressed as

l(t) = Loo (2(1 + exp(-k(t - to)))-1 - 1), (13)

parameterized such that l(f) = 0 when t = to and /(^) approaches Loo as ^ —> oo.

The equation for a GVB curve is

l(t) = ^(l-exp(-^-^o)))'', (14)

for r > Q. Note that the logistic and GVB curves are both special cases of the

Richards growth curve. In our simulations for all models, we took Loo to be normally

distributed with mean 100 and standard deviation 5, A to be LogN(0.5, 0.5), the

times at liberty to be F( 1,1), and o- to be 2.

For the logistic curve we set k equal to 0.5, and for the GVB curve we set k

equal to 0.5 and r equal to 2. These two curves have a slower rate of growth than
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the VB curve, and the GVB curve has an inflection point at age log(2)/0.5 w 1.4

(Figure 2(a)). For the logistic and GVB models, we ran 100 simulations with 100

recaptures per simulation. For both models, all parameter estimates were accurate

with the exception of o-oo, which shows a small negative bias and larger variability

(Table 2). As with our simulations for the VB model, this is not surprising since

we are generating data that has very little information on older fish. We illustrate

a typical simulated data set for the logistic model along with the true curve (Figure

2(b)). The asymptotic length is not reached until approximately age ten but there

is little data exceeding age six. Still, /^oo is estimated very accurately, and with more

extensive data coverage, o-oo would be estimated with greater accuracy and precision

as well.

For the VB log k model, we set fci equal to 0.8, k^ to 0.3, a to 1.5, and f3

to 4, giving a fairly rapid reduction in growth rate from about age 0.5 to age 2.5

(Figure 3). In order to avoid identifiability problems, we did not optimize over f3

since f3 appears to be highly correlated with ki and k^. Furthermore, we increased

the sample size to 500 recaptures in each of the 100 model runs since the data are

otherwise insufficient to discriminate between likelihoods for many sets of parameter

values. Even for this more complex growth model, the parameter estimates were

accurate and unbiased (Table 3, row 1).

The necessity to fix f3 can be relaxed if the data are more comprehensive

such that there is sufficient information before and after the transitional stage in

the growth rate; however care must still be used. We increased a' to 2.5 so there was

more data before the transition and also changed the times at liberty to be uniform

over the interval [1,7], then ran simulations in which /? was allowed to vary. In

several data sets, either /3, fci or k-i converged to one of its set bounds. Nevertheless,

for the 82 of the 100 model runs in which this did not occur, the mean estimates for

the parameters were good (Table 3, row 2). Note that the coefRcient of variation in

,3 is much larger than in any of the other parameters.
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SBT tag-recapture data

To illustrate the method on real data, we used tag-recapture data from SBT

that were released in the 1980s. A total of 1412 recaptures were included in the

analysis. The times at liberty ranged from 270 days (an imposed minimum to

remove the effects of seasonal growth) to 4356 days (12 years), with 95% of the

returns occurring in the first three years.

We began by using our method to fit the standard von BertalanfFy growth

curve. We assumed that the ages at tagging followed a lognormal distribution, since

our simulations in the previous section using release ages generated from the SBT

tagging data indicated this was a reasonable assumption. Furthermore, we assumed

the measurement errors in release and recapture lengths, 61 and Ca; were normally

distributed with mean 0 and common variance, o- . We proceeded to make the model

more complex by fitting the VB log k growth ciu-ve, leaving all other assumptions

the same. Finally, we fit both the VB and the VB log k growth curves incorporating

a more complicated error structure in which the error variance in recaptm-e lengths

differed according to the measurer, scientific staff or fishermen. Scientists measiu'ed

all release lengths so there was no need to make this distinction for e\. In particular,

Var(ei) = a2

a if measured by a scientist
Var(62) =

a + Or if measured by a fisherman

For a given growth curve (either the VB or VB log k), the estimates of the

growth parameters were very similar regardless of the error structure assumed (Table

4). However, the fits were significantly better when the measurer-dependent error

structure was included, as indicated by the smaUer Akaike information criteria (AIC)

values (Table 4). This suggests that the more complex error structure is a worthwhile

addition as it explains a significant amount of the residual variation.
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Both of the VB log k models gave a significantly improved fit compared to the

VB model with an equivalent error structure. Again this is indicated by the smaller

AIC values. The mean fitted curves for the VB and VB log k models with measurer-

dependent error variance are very similar up until an age of about seven, at which

point the VB log k curve becomes progressively higher than the VB curve (Figure 4) .

To further compare and evaluate these models, we calculated residuals for the fitted

recapture lengths (Figure 5). To calculate these fitted values requu-es a realised

value of A and Loo for each fish, which we estimated using the procedures described

in the Methods section (under Estimation). Briefly, for each fish we calculated the

mean of the posterior distribution for A and for -Loo given the fish's release length

and recapture length. Two features of the residual plots are worth noting. First, the

improved fit of the VB log k model over the VB model is apparent in the residuals

for large fish. We see that the mean asymptotic length is being underestimated in

the VB model. Secondly, the reason for incorporating a measurer-dependent error

structure seems clear since the residuals are markedly smaller for lengths measured

by scientists than for those measured by fishermen.

Approximate errors for the parameter estimates can be obtained by invert-

ing the observed information matrix {Q2l/9pi9pj}, where I is the maximum log-

likelihood and p is the vector of parameters. Parameters on the boundary of the

parameter space must be regarded as fixed. We used this method for the VB log k

model with simple error structure (Table 4, row 3). The estimates 0.220 of A-i and

0.163 of /?2 have standard errors of 0.011 and 0.013 respectively, with correlation

0.918. Thus the estimate of fci — k^ is 0.057 with standard error 0.017, confirming

that fci and k^ are significantly different, and that a simple VB model is inadequate.

Similarly, for the VB log k model with measurer-dependent error variance (Table 4,

row 4), the estimate of fci — k^ is 0.053 with standard error 0.019, leading to the

same conclusion.

For the VB log k models, /?, the parameter that governs the rate at which the

growth rate changes in the VB log k model, was optimised at a set upper bound of
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30. This means an almost instantaneous switch in growth rate from fci to k-z at age

a. However, in the previous section we saw that the estimate of /3 can be high even

if the true value of f3 is low when the data coverage is inadequate. To check this,

we ran a number of simulations of 1400 fish with parameters close to those for the

fitted VB log k model with simple error structure (Table 4, row 3), but with ft = 3.

The times at liberty were sampled from the observed times. We found that /3 was

estimated correctly more than half the time, but converged to 30 (the upper bound)

in the remaining runs. The other parameters were all estimated with minimal bias

and good precision regardless of the estimate of f3. Hence we cannot be certain of the

rate of transition between the phases, but we expect the other parameter estimates

to be unaffected.

Discussion

The results from this paper show that the maximum likelihood method we

propose for fitting growth models to tag-recapture data is a viable alternative to the

methods already in existence. By modelling the joint density of l^ and l^, we avoid

the inconsistency problems that result from applying Fabens' method. However, in

return, we must model the distribution of A.

Wang (1998) has recommended fitting growth models using first-order esti-

mating equations. This appears attractive because it also is statistically rigorous,

yet it avoids the need to model A. We therefore consider this method more closely

for our own situation. James (1991) has described the method for the von Berta-

lanffy model, but it may be extended to other more realistic models following the

principles outlined by Wang (1998). For the VB log A; model, let

S(t,,t,) = ^(^-^)+^—^[log(l+e-^-^-a))-log(l+e^)].
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and

^i,Wi,^) = l2-h~{^-h){l-e-s(t1^).

For fish i, let Si = S(tu, ^z) and 77, == r](t-a, t-n, ^i,, ^0- The five milmown parameters

{/-too, fci, A;2, a:, ,3} may be estimated by solving the five non-linear equations

V^.-n. V-^.-n. V-^..-n. V-^ .. - n. V-^,E^=°; E^=o; E^:^=o; E^^=(); E:^^=0'
<ri iri y/i''i z~=i yK2 i=i ya: ^i

We attempted to solve these equations for the 1980s tagging data using com-

mercial routines, with starting values near the maximum likelihood estimates for the

VB log k model with simple error structure. We obtained /^oo = 164.5, fci = 0.265,

,£2 = 0.263, a = —0.606 and f3 = 12.5. These are suspiciously close to a simple

VB solution. Suppose that k and fioo are the solutions of the simple VB estimating

equations. It is then easy to show that setting fci = k^ = fc, a =0, f3 —^ oo and

/^oo = ;Uoo W1U solve the VB log k estimating equations — in fact, a and /3 merely

need to satisfy Y^=i Cz^i = 0> where Ci = log(l+e-/3(t2t-tlt-a)), so other combinations

of a and /3 may suffice. Hence a simple VB model always provides one solution. It is

possible that the equations have other solution classes, but the existence of a simple

VB solution is already an unsatisfactory feature.

There are other problems with these estimating equations: they do not yield

estimates of <7oo and the residual variance parameters, and there is no way of esti-

mating and testing for structure in the residual variation. These problems might be

solved by moving to second-order estimating equations. However, we recommend

staying with maximum likelihood, at least until the estimating equations approach

is better understood.
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Although the literature on fitting growth models to tag-recapture data is

vast, most methods in existence bear some limitation. Either they do not allow

for individual variability in growth, are restrictive in the way in which individual

variability can be incorporated, give inconsistent parameter estimates, are inflexible

in the error structures that can be assumed, or are not easily generalized to growth

functions other than the von BertalanfFy. Our proposed maximum likelihood method

appears to overcome these weaknesses.

In the case of a random Loo, the method can easily be generalized to any

growth function. This was suggested in the derivation of the likelihood, which used

a generic growth function, f(t), and illustrated in our simulations using a range of

growth functions.

Although we only allowed for individual variability in growth through a ran-

dom asymptotic length, the likelihood equations can be derived for other random

effects. For example, in the von Bertalanffy model, we might want to assume a

random A: parameter instead. We can adapt the argument presented in the Methods

section and condition on both A and k, but a double integration is now required

and would be time-consuming computationally. Alternatively, we can use modified

Sheiner-Beal linearisation to make the model linear in its random effects (Jones 1993,

Chapter 7). If these are Gaussian, we avoid any integTation problems, even where

Loo and k are both random. However, we concm' with the arguments summarized

in the discussion of Wang et al. (1995) that reject the need for letting both k and

Loo vary.

As a final point, the VB log k growth curve that we proposed shows potential

as a growth curve for modelling SBT and other large pelagic species. The improved

fit from applying this model compared to the simple von BertalanfFy lends support

to the idea of a two-stage growth process for SBT.
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Appendix

We discuss the efficient and accurate numerical computation of the integral

in equation (5). Denote the integrand by

g{a) = h(k,l2\a)p{a)

for given /i and l^. Note that g{a} is proportional to the conditional distribution

of A given ;i and l^. Consideration of several examples with A lognormal suggests

that g(a) is often unimodal, and nearly Gaussian in appearance. We can exploit this

observation to integrate g{a) efficiently. We first need to find the mode and spread

of g (a). After considerable experimentation, we decided on the following scheme:

1. Use an efficient and robust search method (e.g., Brent's method) to locate

the maximum of g{a) (Brent, 1973, Chapter 5). This is best done on the

log scale, since g{a) is approximately Gaussian near its maximum, and hence

approximately quadratic on the log scale. Denote the location of the maximum

by f^g.

2. Estimate the standard deviation of g{a) by

a9 = \l-l/Z"^g),

where z (a) = log g (a). A simple way of calculating z"{^g) is to fit a quadratic

to log g(a) in the neighbourhood of p,g.

Once we have good estimates of p,g and Og, we can use any accurate quadrature

method to calculate (5). We preferred to use Gauss-Hermite integration because it
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does not require many function evaluations. Define (/(a) = 0 for a < 0. Thus

•00

', a) da
•00

h{l^l2) = /. g{a)
,0

•00

g{ct) da.
—oo

'00

\0g I g(V2XOg + /.Ig) dX
—00•00

in

V2 ag ^ Wfe e:Bfc g(\/2xh o-g + /.ig)
/>•=!

where Xk (k = 1,2,..., ??z) and zu/,. (A; = 1, 2,..., m) are the abscissae and weights

of m-pomt Gauss-Hermite quadrature. Note that S^'Li Wk = \/TT for any in, so that

the above version of Gauss-Hermite quadrature is exact if g(a) is proportional to a

Gaussian density with mean /.(g and standard deviation (Tg. For 20-point quach-atm-e,

,2

the composite factors n'k exk range from 0.491 to 0.899, whereas the weights Wk range

from 0.462 down to 2.23 x 10-13. Hence it is best to use the composite factors Wh exk

directly. Experimentation with this integration scheme confirmed that it is very

accurate provided good values of jig and o-g have been found.

For maximum likelihood estimation, log h(l-s_, l-^) is required rather than ,1(^1,1.2}

A stable method of computing this is

•00

log/z(/l, ,3) = log ^ (;Ug) + log / exp (log g (a) - log g (^3)) ria ,
'0

•00

= log g (/.ig) + log / ZQ (a) da,
—00

in

w log g(f.ig) + log (Tg + log ^ Wfcea;fc {v/2 zo(V2xkffg + l.ig)} (15)
k=l

where Zo(a) = exp(log(?(a) — logg(^ig)) if a ^ 0 and is 0 otherwise. In Zo(ci),

log g(a) is computed directly, not by taking logs of exponentials. Thus log(?(a) =

log /i(/i, l-2\a) + logp(a), where
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logh{h,k\a) = -log(27r)-logo-i(a)-logo-2(a)-0.51og(l-p(a)2) -

and, ifp(a) is log normal with parameters /^iogA and o-iogA,

2^ 9i2(a)
2(T^(a)2) '

logp(a) = -0.5 log(27r) - log o-iogA - log a - 0.5(log a - ^logA) /o"iogA •

Computation of log (/(a) rather than g{a) avoids overflow problems: a value of g{a)

of e-loo° may be truncated to 0 on a computer, but log (7(0) = —1000 is computed

very accurately. In Zo(a), logged) — log g{l^g) is computed before exponentiating.

AlSO, Zo(/J,g) = 1 at jJig and 0 ^. zo(a) ^ 1 for all a, so that the sum in (15) and its

log may be computed accurately for any set of parameters. If g(a) is proportional

to a Gaussian curve with mean /j,g and standard deviation o-g {a-g <§; /j.g), then

T^T,U!kexk{^/2zo{\/2XkO'g + ^g)} = V^TT ^ 2.5066. However, when fitting the

model in row 1 of Table 4, for example, we found that this quantity varied between

about 1.8 and 3.5, so that approximating g(a) by a Gaussian curve (a common

statistical procedure, sometimes called Laplace's approximation) is not accurate.

When the measurement error is small, g{a) can exhibit a very small spread.

In this case, Gauss-Hermite integration is particularly useful since it makes use of the

mode and spread of the distribution. However, precise values of these parameters are

required in order to achieve accurate integration. Occasionally we have encountered

situations in which A given l^ and l^ is not unimodal. This seems to occur when A

has a complicated distribution, or when the growth curve is complex, and when the

measurement error is substantial. We have found that Simpson's rule or the extended

trapezoidal rule is satisfactory under such circumstances, although it tends to be

slower than Gauss-Hermite integration.
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Table 1. Mean parameter estimates (and standard deviations) firom applying our new estimation method to simulated von Bertalanffy

growth data. For each model we ran 100 simulations with 100 recaptures per simulation. Data were generated with L^~ N(100, 25)

and k = 0.5. Times at liberty were taken to be F( 1,1) distributed. The standard deviation of the measurement error, a was varied, as

was the distribution on the true and assumed age at tagging, A. LogN(u, v) denotes a lognormal distribution with mean u and standard

deviation v on the log scale; Gaus.Mixt.(u,v,(Tc, p) denotes a Gaussian 2-component mixture with means u and v, common standard

deviation, <7c, and proportion^? belonging to the first component.

Distribution of A
Mean growth parameter estimates

(standard deviation)
Mean parameter estimates for A

(standard deviation)

Tme Assumed ^ k ffc p

LogN(0.5, 0.5) LogN(;(, v)

LogN(0.5, 0.5) LogN(u, v)

LogN(0.5, 0.5) LogN(;(, v)

Multi-modal Gaus.Mixt.(z(, v, dc, p)

Multi-modal LogN(;(, v)

0
0
2

4

2

100.3(1.8) 5.0(0.4) 0.50(0.02) 0.01(0.02)a
99.9(0.8) 5.0(0.2) 0.50(0.01) - b

100.1(2.2) 4.7(1.0) 0.50(0.04) 2.0(0.2)

99.7(3.0) 4.3(2.2) 0.51(0.05) 3.9(0.4)

100.0(3.3) 5.1(1.1) 0.50(0.05) 2.1(0.5)

100.6(2.9) 4.8(1.1) 0.49(0.04) 2.0(0.2)

0.50 (0.06) 0.50 (0.04)
0.50 (0.03) 0.50 (0.03)

0.50 (0.06) 0.50 (0.04)

0.49 (0.08) 0.50 (0.04)

1.1(0.06) 2.1(0.14) 0.20(0.03) 0.80(0.05)

0.21(0.05) 0.31(0.03)

a Parameters were estimated using likelihood for measurement error and setting lower boimd on (7 at 0.001.

b Parameters were estimated usmg likelihood for no measurement error.
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Table 2. Mean parameter estimates (and standard deviations) from applying our new estimation method to simulated logistic and

generalized von Bertalanffy (GVB) growth data. For each model we ran 100 simulations with 100 recaptures per simulation. Data

were generated assuming 7,^ ~ N(100, 25), k = 0.5, age at tagging A ~ LogN(0.5, 0.5) ando-= 2. Times at liberty were taken to be

U 1,1) distributed.

Growth

Logistic

GVB(r

curve ^
100.0

100.2

»

(2

(3

.9)

.3)

Mean

^
4.2(1

4.4(1

growth parameter estimates

(standard deviation)

k r

.5) 0.50 (0.03)

.3) 0.50(0.05) 2.1(0.6)

(7

2.0 (0.2)

2.0 (0.2)

Mean parameter estimates for A

(standard deviation)

f^losA

0.51(0.07)

0.49 (0.15)

(7lQSA

0.49 (0.03)

0.50 (0.07)
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Table 3. Mean parameter estimates (and standard deviations) from applying our new estimation method to simulated von Bertalanffy

logistic k growth data. We ran n =100 simulations with 500 recaptures per simulation. Data were generated withZ^- N(100, 25),

k\ = 0.8, kz = 0.3, a = 1.5 or 2.5 (as specified in the table), ,3=4, age at tagging A ~ LogN(0.5, 0.5), and cr = 2. The distribution on

the times at liberty, dt, was varied fi-om a gamma distribution (F(l,l)) to a uniform distribution (Unif(l,7)).

Mean growfh parameter estimates Mean parameter estimates for A

(standard deviation) (standard deviation)

dt~ n a

r(i,i) 100 1.5

Unif(l,7) 82" 2.5

//~

99.7

(2.2)

100.4

(2.1)

^
5.0

(0.4)

5.0

(0.3)

kl

0.81
(0.06)

0.83

(0.08)

h
0.31

(0.04)

0.30
(0.09)

a

1.5

(1.1)

2.4

(0.3)

p
4a

4.3

(1.8)

a

2.0

(0.1)

1.9

(0.4)

Aog/i

0.50
(0.05)

0.48
(0.08)

<71og^

0.50

(0.02)

0.51
(0.02)

Fixed at 4 to avoid identifiabUity problems.

b Of the 100 simulations, 18 had identifiability problems in which /?, ki or fc converged to a set bound.
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Table 4. Parameter estimates from applying our estimation method to 1980s soufhem bluefin tuna tag-recapture data (n = 1412).

Negative log-likelihood values and Akaike's mformation criteria (AIC) are also given. Results are for fhe von Bertalanfiy (VB) and

von Bertalanffy logistic k (VB log k) growth curves with both simple and measurer-dependent error structures.

Growth

curve

VB

VB

VB log k

VB log k

Error
structure

Simple

Sci./Fish.

Simple

Sci./Fish.

^
160.6

162.0

188.2

186.6

^
8.8

7.1

10.9

9.3

h

0.28

0.27

0.22

0.22

k2

0.16

0.17

Parameter

a

3.0

2.9

estimates

pc

30

30

^losA

0.55

0.56

0.58

0.58

<71og-4

0.17

0.18

0.16

0.18

(7

3.9

2.9

3.7

2.6

af

4.2

4.1

-log

likelihood
9633.1

9611.3

9609.7

9585.7

AIC

19278.2

19236.6

19237.4

19191.4

/? constrained to be ^ 30
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Figure 1. Histogram of simulated realistic ages at tagging for southern bluefm tuna,

scaled such that tfae total area of the bars is one. The line shows the fitted probability

density function (pdf) assuming a lognormal distribution.
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Figure 2. (a) Comparison between the von Bertalanffy (VB), logistic, and generalized

van Bertalanffy (GVB) growth curves with !„= 100 and k = 0.5 for all curves and T=I

for the GVB curve, (b) A typical simulated data set to which we are fitting the logistic

growth curve.
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Figure 3. (a) Logistic growth rate with k\ = 0.8, ki = 0.3, a= 1.5 and /?= 4. (b) von

Bertalaaffy curve with logistic growth rate (parameters as above) and L^= 100.
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Figure 4. Mean growth curves for the 1980s southern bluefin tuna tag-recapture data.

The solid line is the von Bertalanffy fit and the broken line is the van Bertalanffy logistic

k fit, both from models incorporating a measurer-dependent error stmcture. The dotted

vertical line shows the estimated transition point, Cf, for the von Bertalanffy logistic k

model.
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Figure 5. Residuals between the actual and fitted recapture lengths for (a) the von

Bertalanffy model and (b) the von Bertalanffy logistic k model fit to the 1980s southern

bluefin tuna tag-recapture data. Both models incorporate a measurer-dependent error

structure; the pluses indicate length measurements made by fishermen, whereas the open

circles indicate length measurements made by scientists.
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Introduction

Growth curves are an essential component of stock assessments in fisheries.

These assessments govern the management of the fishery, including the assessment

of long-term sustainability and, ultimately, quota setting. For southern bluefin tuna,

(SET) and other species, tag-recapture studies are the main source of information

for determining growth. A capture-recapture study has two stages: in the first, the

fish are caught, tagged, measured and released; in the second, the fish are caught

and measured. In the case of SET, the first stage is usually undertaken on specially

commissioned scientific voyages, but the second is a byproduct of commercial ac-

tivity. Incentives (t-shirts, cash rewards, et cetera) are often provided for each tag

returned to the tagging laboratories.

The resulting data consist of two lengths and times (^i, <i, ^2^2) for those fish

tagged and recaptured. The statistical model for a tagged and recaptured fish is

h = W+e, (la)

h = W+e, (Ib)

where l(t) is the true length of the fish at time t, and 61 and ^2 represent measurement

error. It is usually assumed that the errors are Gaussian distributed with mean 0

and variance o-2, and independent from fish to fish.

It is standard practice in fisheries to assume a parametric form for the growth

curve l{t). For example, for the von Bertalanff'y model, the length of a fish at time

Ms

Loo(l - exp(-k(A + < - ti))) if A > *i - A;

0 otherwise,

where Loo is the asymptotic length, A is the time from spawning to tagging and k is

a growth rate parameter. The age of the fish is a = A+t—ti. Typically, Loo and A

are regarded as random from fish to fish, and k is an unknown fixed effect, although

more complex models may be considered if the data seem to warrant them. In

A5- 2



Appendix 5: Estimating the release age in capture-recapture studies of fish growth

addition, Loo is usually taken as Gaussian (-Loo ~ N(^,00, cr^)), A might be Gamma,

lognormal or a mixture of Gaussians truncated at 0, and Loo and A are statistically

independent. In addition, Ci and £3 are independent of -Loo and A. The model

might be fitted using likelihood methods, estimating equations or Bayesian analysis.

The random effects A and Loo are usually estimated using the minimum variance

predictors A = E[A|^i,^] and -Loo == E[I/oo|^i, b]- The fitted growth curve is, in the

von Bertalanff'y example, /<oo(l — exp(—fea)), where ^oo is the mean of Loo and k is

the fitted value of k, and a is the age of the fish in years. Mailer and de Boer (1988),

James (1991), Palmer et al. (1991) and Wang et al. (1995) have all discussed this

style of model for capture-recapture data.

Once the model has been fitted, it is natural to plot the fitted growth curve,

and to superimpose l\ versus A and l^ versus A + t^ — <i, to see if the model fits.

Figure 1 gives an example for 1412 southern bluefin tuna caught in South Australian

waters in the 1980s. The von Bertalanff'y growth curve has been fitted to the capture-

recapture data by maximum likelihood {k = 0.276, ^oo = 160.65 cm, o-oo = 8.76 cm,

a = 3.912 cm), where A ~ lognormal with the mean of log A estimated as 0.547

and the standard deviation of log A as 0.172. Only the estimated release ages and

lengths (A, /i) have been plotted for clarity.

Two features stand out. First, there is a disparity between the data and the

fitted model. Second, the degree of variation of the lengths l\ for a given value of A

is much less than we might have anticipated from the parameter estimates o-oo and

a. This article explains these phenomena using classical statistical methods.

Alternative growth model formulations

It is natural to ask why we have chosen Loo and A to be random variables

in (2). That the asymptotic length and the age at tagging vary from fish to fish

is indisputable, but we could let them be different unknown constants for each

fish. However, this implies more unknown parameters than data values. The next

possibility is to let Loo be a random variable but A be a fixed effect — we would
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choose this rather than the reverse because Loo is likely to have a, simple distribution

(e.g. Gaussian) whereas A might be quite complex. However, this formulation causes

trouble.

To illustrate the problem, consider the growth model

1 + ^-W-to-a) ^ -{k-i-kt)H-l-

l(t} = ^ 1 _ g-^((-to)

l+e^a
(3)

where to is the theoretical time at which the fish has 0 length. Thus A = ti —to,

and ty is assumed to be a. different constant for each fish. This model, introduced

in Appendix 4, captures the separate juvenile and adult growth phases in southern

bluefin tuna. When this model is fitted by maximum likelihood to the data set of

the Introduction, different solutions are obtained depending on the starting values.

Two such solutions are presented in Table 1.

Table 1: Two solutions to fitting a growth model with a

separate spawning time for each fish.

P.OO k\ A;2 a /3 residual

sum-of-squares

170.64 0.210 0.245 2.049 10 31650.5

186.77 0.207 0.165 3.988 10 32112.9

In both fits, /3 has hit a preset upper bound of 10. There are 2824 data, values

and 1418 parameters. It appears that the large number of parameters combined

with the flexible growth model has created a multimodal likelihood surface. A plot

of the profile log-likelihood versus a' is distinctly bimodal (Figure 2). Neither the

number of modes in the likelihood surface nor the location of the global maximum

is known. Other growth data from direct ageing studies suggest that ,.(30 = 170.6 is

too low, so the mode with the lower log-likelihood (higher residual sum-of-squares)

has more biological credibility.

To reduce these problems, we let the age at tagging A be a random variable.

While this does not guarantee that the likelihood surface will be unimodal, the num-
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ber of parameters is now relatively small (< 10), and we expect that the likelihood

will be better behaved.

The linear model

A simple linear growth model

We first look at the problem illustrated in the Introduction for a very simple

linear growth model. The data are generated by

1^ == bA+ei (4a)

,2 :-= b(A+6t)+e^ (4b)

where St = t^ — ^i, b is a known constant, A ~ N(/.ia, cr^) and 6,- ~ N{0, o-2). There

are two measurements per fish, and A varies randomly from fish to fish. The e,:

represent independent measurement errors. Thus (A, ^1,^2) are trivariate normal,

and hence the best linear unbiased predictor (BLUP) of A is

A = E(A|^i, ^2) = ^a + ^2 +"2a62a? al - &fua + /2 ~ 6(^a + ^)) •

Note in passing that if o-2 > 0, A is conditionally biased for A, because

^2
^Aw=^+^h^A-^-

Thus E[A|A] < A if A > ^ and E[A|A] > A if A < p.o-

Set d = (l-i — l-i +bSt)/2, noting that E[d] = 0. Then it is readily proved that

ll=b^a+ 2^ -)(A-^))+d

and that Cov[A, d] = 0. Because /i and A are bivariate Gaussian, E[d|A] = 0, and

so E[^i|A] = 6(1 + r)A — r^a, where r = cr2/(2&2o^). The plot of /i versus A tends

to have slope bigger than &, the value expected for /i versus A. However, the slope

—^ b as a2 -^ 0. Further, the intercept should be 0, but in fact is -r^a- Each
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fish supplies an independent realisation of (^, l^, A, d) according to this model. This

explains, in a linear context, the biases seen in Figure 1.

The parameters b, p,a and cr^ are confounded in this example, although we

are treating them as known. This example is a lead-in to non-linear growth models,

where the confounding disappears.

A more general linear growth model

Explaining and correcting the bias in growth model plots

For a given fish, generalise (4a) and (4b) to

l.i = a.i Jr bjA + €.,. (5)

for '( = l,...,n, where a,: and 6, are known constants, the vector of errors e ~

A^(0,E), A ~ N{iJ,u.,(Ta~) and A and 6 are independent. Of course, a, could be

absorbed into /.; and &,• into A, but the generalisatiou to non-linear models is easier

if we keep them explicit. In growth models, a,- = bi8t.i, where Sti = 0 and St.,,

is the time increment from the first capture to the {i — l)th recapture. Hence

/,: = b,(A + ^,:) + €,. The BLUP of A is

A = ^+^J^_,^/S-la-a-6^) (6)

where /, a and b are the vectors of observed lengths, intercepts and slopes respec-

tively.

We assert that

1 _1_ (72&/E-16

/,: = a,+bi(^.+:—^=q—(A-^)+d,. (7)

where ri,, defined later, and A are independent Gaussian random variables and

E[d.i] = 0. In the growth model context, a plot of /i versus A will have slope larger

than 61 on average.

Given that the plot of l^ versus the BLUP A of A does not reproduce the

model correctly, it is natural to ask if there is an estimator of A that does. Now
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(5) looks like a regression model with A as an unknown parameter. The regression

estimate of the realised value of A, treated as a fixed effect, should reproduce the

linear model (5) in an unbiased way. Define

A = '-+^;ys-l(i-a-'"-)=i/syi^a)' <8>

Note that A = A+ T], where T] = &/E-le/b'S-lb and e is the vector of errors. Set

di = li — a, — &,A. Then, using standard regression calculations,

Cov[A, di\ = Cov[A + 77, -6, ?? + c,]

= Cov[?7, -b.i r] + Ci]

-6,+&'S-1COV[£,£,]

b'^-lb

-b.i + b'e.i

6'S-16

0)

where e,; is the vector of length n with zth entry 1 and the rest 0. Hence

k = cii+biA+di. (9)

This equation mimics the true relationship (5), because A and d,; are conditionally

independent. In regression, it is usual to plot ^ versus 6, for a given fish, but in

growth models, it is more natural to plot ^ versus A + 8t.i.

How may A be formally interpreted in the random effects context, to contrast

it with the BLUP estimator? Since E[A|A] = A, A is a linear conditionally unbiased

estimator of A. We assert also that A minimises the conditional variance Var A* A

amongst all linear conditionally unbiased estimators A*.

Explaining the reduced scatter in growth model plots

We now explain, in the linear model context, why the scatter about the curve

in Figure 1 is much less than we might anticipate from the fitted parameters. We

do this for l^ versus A rather than /i versus A, but the arguments are essentially

identical.
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The correlated error effect: The variance of ri,-may be considerably smaller than

the variance of 6,:. Let n == 2, &i = b^ = b and 61 and 63 have common

variance a and correlation p. Then rfi = —dg = (ci — ^i)l^i so that Var[rf;]

(72(1 — p)/2. If /5 is near 1, Var[ri,] <C Va.r[6t]. Hence a scatterplot of I; versus

A will follow the true line a,: + bA, but the scatter around the line will be

considerably less than for the true line.

In model (5) it is customary to think of the 6,- as measurement errors, but they

could represent more than that. The growth model (2) in the Introduction

has two latent random variables -Loo and A that could be estimated from the

data /i and l-^. By analogy, consider the linear model

/,: = c, + biA+'iniL + 8.i (10)

for '( = 1,...,??,, where A ~ Ar(/(a, o-^), L ~ 7Y(/^,o-;2), the vector of errors

S ~ JV(0,Ej), A, L and S are mutually independent and all fixed effects are

known. Then

l.i = a,, + &,A + Q

where a.; = c.;+m,:/^ and e, = m,(L—/^)+^,:. Hence Var[e] = S = S^+o-^pim/,

where 777, is the vector of m,i values. The theory for the linear model carries

through without change, except that the scatterplot /,: versus A clearly follows

the mean line c,: + m,-/^ + b^A rather than the individual lines c,' + b.jA + m.iL.

Further, the term a-^mm' is likely to induce a strong positive correlation in the

residuals £,:, so that the estimated residuals d; will exhibit very small scatter.

The changing slope effect: In capture-recapture studies of growth curves, the

slope of the growth curve at capture is usually much larger than the slope

at recapture. Consider a linear example in which the capture length l-i and

recapture length ,2 are modelled as

li = b^A + £1

^ = b^A + ^) + £2
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where 63 < &i; ^i ~ -^(0, cr2) and ei and 62 are independent. Then di = b^d and

d-2 = —bid where d = {e^—e-zb^/bb. It follows that Var[di] < Var^]- In real

studies, it is common that b^ <^bi, so that the scatterplot of l^ versus A will

exhibit considerably less scatter around the growth curve than the scatterplot

of /2 versus A + St. We shall see this effect in Figure 5.

The reduced scatter seen in Figure 1 is caused by a combination of the correlation

and changing slope effects.

Linear growth models with non-Gaussian random effects

We finish with a, final comment about non-Gaussianity, because in practice

A is usually not Gaussian. We drop the assumption that A and e are Gaussian in

(5), but retain all other assumptions. We ignore A given by (6) and commence with

the formula for A given by (8). Then A is still conditionally unbiased for A, and A

and d.i are uncorrelated. This does not immediately imply that l^ plotted against A

will follow the linear growth model, in the sense that E[^|A] = a.; + ^A, but there

are two reasons for believing that this will be nearly true. Firstly, under the usual

regularity conditions, the central limit theorem applies to both A and ri;; for example,

TI = b'Y. (./b'Tj b is closer to normality than any individual e,. Secondly, we proved

that Cov[A, di\ =0, which implies that A and d, are globally uncorrelated. But it is

just as easy to demonstrate a stronger result, Cov[A,d,-|A] = 0, which implies that

A and di are locally uncorrelated as well.

Nonlinear growth models

In fisheries' research, growth models are typically non-linear. We focus on

the problem of correcting the bias in the plot of l\ versus A seen in Figure 1. A

common generic growth model in fisheries' research is

1, == L^f(A+St,)+ei, (11)
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where i = 1 for capture, and i = 2, 3 ... for subsequent recaptures, /(.) is a monoton-

ically increasing curve with asymptote 1, the asyrnptotic length -Loo ~ A7'(//,oo, o-^,),

the errors e; ~ N(0,a ) and A, Loo and £1,62; • • • are independent. An obvious ap-

proach is to produce an estimator A,,,, of A that is conditionally median unbiased.

Then, since / is monotone increasing, /.(oo./"(A,,, + St) will be conditionally median

unbiased for ^,00 ./'(A + St). However, we do not know how to construct A,n, except

by correcting the median bias in a. nearly conditional!}^ unbiased estimator, so we

discuss three alternatives for doing so: linearising the growth model about an initial

estimate of A; treating the realised value of the random effect, A as a fixed effect; and

estimating A by a conditionally unbiased estimator. In linear growth models, these

approaches are equivalent. The linear estimators are Gaussian under certain condi-

tions, and we expect that the non-linear estimators will be approximately Gaussian

under the same conditions, so that they will be approximately conditionally me-

dian unbiased. If desired, they could be used as a starting point for a conditionally

median unbiased estimator.

Linearising the non-linear growth model

Consider the generic growth model (11). Let Ao, a known constant, be an

initial guess at the realised value of A; Ao = E[A|/i, ...,/„,] is often a good choice.

We can use the method of Vonesh and Carter (1992) to linearise the model with

respect to the random effects:

k W ^00 /(AO + 8t,~) + i^f'(Ao + St,) (A - Ao) + /(Ao + St,) (Loo - ^oo) + c,

a,+biA-{-8,, (12)

where a, = ^ (/(Ao + ^,-) - /'(Ao + ^)Ao), b, = ^ f'(Ao + St,) and 5, = /(Ao +

St,,) (Loo — H.oo) + €.,,. It is usual to assume that A and Loo are independent. The

theory of the general linear growth model then applies. We denote the estimator by

Ai.
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Treating the realised value of A as a fixed effect

The second option is to treat the realised value of A as an unknown fixed

effect. For simplicity, we consider only the case of a single recapture. The data are

h = Wi+d (13)

b = W2+62 (14)

where A = /(A), ,2 = ./(A + ^), Lo, - A^oo, ^) and e,: - A^(0,(7?). Here

the errors and -Loo are all mutually independent. We assume that all parameters,

apart from A, are known, or have been estimated from all fish assuming that A

is distributed according to a parametric model. The problem then is to estimate

the realised value of A for a given fish, treating it as an unknown fixed effect. Let

r.i = k - P.OQ fz. The log-likelihood is

.1 ^ ^ _ ^ A + ol rl + ^ (n h - r. A)2
2'"&1' ' 2|y|

where \V\ = a2^ (^ /f + ^ A2) + ^ ^-

The likelihoods for all fish may be maximised simultaneously by using a vec-

torised version of Brent's method (Brent, 1973, Chapter 5). We denote the estimate

by Af. The conditional mean and variance of Af may be calculated by numerical

integration. The variance of Af may also be approximated using likelihood theory.

We emphasise that we are only treating A as a fixed effect at this stage, and

only for the purpose of graphical model checking. If we were to treat A as a fixed

effect when fitting the parameters of the model, then A;, ftoo and the other parameter

estimates would be different from those used above.

A conditionally unbiased non-linear random effects estimator

As a lead-in, we examine a general situation in which we wish to predict a

random variable X from a random vector Y. We set X = E[X|Y] as the standard

minimum variance estimator of the random effect X given Y, but we wish to modify

X to a conditionally unbiased estimator X.
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Let h{X) = E[X\X]. We argue that the estimator X, obtained by solving

h(X) = X,

is, under mild conditions, much closer to being conditionally unbiased than X. There

is a. simple geometrical interpretation of X, shown in Figure 3. It is the inverse

estimator, obtained by plotting the curve E[A"|X] versus X, drawing a horizontal

line from X on the y- axis until it hits the curve, and then dropping down to X on

the .z-axis. In this sense, X is a natural estimator.

It is immediately obvious that we can refine X to X(-2\ obtained by solving

X =E[X\X(2)].

Since X has a much smaller conditional bias than X in general, we expect that X^

will have a smaller conditional bias than X.

In principle, a sequence of estimators X^ could be computed, starting from

XW == ,Y and X^ = X. Each would satisfy

X(^ =E[X(3)\X(3+^].

However, for practical purposes computation of X^ should be adequate. We could

start with a different estimator from A to derive X(-i\ but A is a stable starting

estimator.

We briefly indicate why X is almost conditionally unbiased. Suppose that

h(X*) w h(X} + h'(X)(X* - X)

for X* in the neighbourhood of X. For example, for bivariate Gaussian random

variables (X, Y) with means 0, unit variances and correlation p, h{X) == p2X. The

iterative scheme A'o = X and

X, = X+X,_i-E[X|X,_i] (15)

for j = 1,2,... yields

X, w X + X,_i - /z(X) - /z/(X)(X,_i - X).
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Take conditional expectations on X, and set /?j = E[Aj-|X]. Then

,5, ^ ^Y)+/3,_i-/z(.Y)-//(X)(/3,_i-X)

= /3,_x-/z'(X)(/?,_i-Z).

If (3j —> P, then clearly /3 = A", so that E[Aj-|X] is asymptotically unbiased for X.

Further, if 7^ = /3, — X, then 7^ ?y (1 — h'{X))3, so that /3j converges geometrically

to X ifO<h'(X) < 2.

In fact, this argument depends on local linearity of h(X), and non-linearity

may imply some conditional bias in X. For this reason, we recommend calculating

X^ to reduce this conditional bias.

When applied to capture-recapture growth data, we suggest that li should be

plotted against A or, even better, A^ rather than A. Similarly, I'i should be plotted

against A^ +1-^ — t^.

Southern bluefin tuna

We illustrate some of these ideas on the southern bluefin tuna study that

motivated this article.

Linearising the von Bertalanffy growth model

We first calculated A; for the van Bertalanffy growth curve by setting AQ = ^a,

but the resulting estimate of A using (8) was very poor. So we set Ay = A. We

computed r;(A) = E[A;|A]—A on afine grid of\og6t and A values (each combination

oUogSt = -0.5, -0.4,..., 2.5 and A = 1.0,1.1,..., 3.0). The average value of |r;(A)|

was 0.004 (~ 0.2%), equivalent to about 1.5 days. This conditional bias is probably

small enough for exploratory work, since capture and recapture times are recorded

to the nearest day, and the conditional standard error of Ai is about 10%.

Although the linearisation method worked on this data set, we have found

data sets for which it fails, even when Ao = A. We cannot recommend it in general,

even though it has superficial appeal.
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Treating the realised value of A as a fixed effect

The computation of Ay was straightforward, but the conditional moments

were not. In theory

.00 ,-00 .

E[A^|A, St] = I I Ak( /i(/i, /2|A, ^) ^2 ^i
./O JQ

f-v(A) r^A+St) ,
Akf[A,St]= I '' I ' ' AI'fh(h,kiA,8t)dkdli.

./o Jo

for any integer k, where h{ly, l^A, St) is the density of ^,,2 for release age A and

recapture age A+8t. However, Ay could not be computed for extreme combinations

of Zi, 1-2 not found in real data. Consider ^ = 100 cm at age A = 3 years and ^ = 50

cm at age 6 years. This is unrealistic for two reasons: li ^§> ,2 and 6 year-old-fish are

much longer than 50 cm. To overcome these problems, we simulated 50,000 lengths

for fish of a given age a and fitted a lower envelope curve A (a) and an upper envelope

curve v(a) so that all the lengths fell between A(a) + 3 cm and f{a) — 3 cm. That

is, A(a) and v{a) were slightly expanded beyond the range of the data. We then

evaluated the moments by

f-v(A) f-v(A+St) ^

'X(A) J\(A+St)

The average value of |?'y(A)|, where ?/(A) = E[Ay|A] — A, on the test grid of A and

St values was 0.002, smaller than for Ai. Because it is easy to calculate and is nearly

conditionally unbiased, we recommend A/ as an estimator of A for graphical model

checking.

A conditionally unbiased non-linear random effects estimator

Finally we computed A(-2\ which was non-trivial: both A; and Af are much

quicker to calculate than A^\ The average value of |?'(A)|, where r(A) = E[A^|A]—

A, on the test grid of A and St values was 0.0001, smaller than for A; and Af, and

confirming that A(2^ is, for practical purposes, conditionally unbiased.

The first panel in Figure 4 shows the resulting estimates A< of A plotted

against A^2\ The estimates agree closely, although they are not identical. The

second panel shows Ai—A^ plotted against A^. There is a small but obvious bias.
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Further, although we do not show the plot, the agreement between Var[A^|A] and

Var[A;|A] was excellent. Similar plots with A/ replacing A;, not shown here, were

even more impressive. The agreement between A^ and Ay is better, in that the

small bias disappears.

We briefly return to the problem outlined in the Introduction, and analyse

it using the tools developed here. The upper panel of Figure 5 shows l\ versus A^

and the fitted von Bertalanffy growth curve. The fit is much better than in Figure

1. The lower panel of Figure 5 displays ,2 versus A^ + 8t, which shows clearly that

the model underpredicts longer lengths. To emphasise this, we have simulated 20

data sets from the fitted model using the same 8t values as in the tuna study. A

cubic smoothing spline curve fitted to the 28240 simulated (A^ + St, l-^) is so close

to the growth curve we have decided to omit it. We have shown the running 5%

and 95% quantiles fitted to the simulated data as short broken lines. They confirm

that the data should fall symmetrically about the curve if the model is correct.

The simulations are very quick, and are an essential aid to interpreting the plot. If

we used A instead of A^ in the lower panel of Figure 5, we could not necessarily

be confident that the pattern in this panel indicated model failure. The mismatch

between model and data seen in Figure 1 may carry over to some extent to the plot

of 1-2 and AJr8t — whether it does depends on the link between /i and l^ and between

A and A+8t. The lack of fit can be established more traditionally by embedding the

von BertalanfFy growth model in a larger parametric family, and formally testing for

the adequacy of the embedded model. However, it is useful to see this conclusion

supported in a plot of the data.

Computation of E[A|A], E[A|A], E[A(2)|A] and Var[A(2)|A] in this example

presented a mild challenge. Each fish had its own time interval St between capture

and recapture, which meant that E[A|A] differed for each fish. Precise computation

of E[A|Aj] at each step of (15) separately for each of the 1412 fish would be very

slow: 20 iterations of (15) would require 28240 computations ofE[A|A] by numerical

integration, which would take about 50 hours of computing time using the excellent
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routines of Berntsen et al. (1991a,b) on a 500 MHz Pentium PC. Instead we com-

puted E[A|A] and E[A|A] for 0.5 < A < 8 and -0.5 < log St < 2.5 on a fine 76 x 31

grid, which took less than 5 hours of computing time, and estimated the required

values by bicubic spline interpolation when solving A = E[A|A] and A = E[A|A^2^]

by iteration. The number of iterations of (15) is then not limited by time consider-

ations. Additional covariates could be handled the same way in principle, but this

could cause problems if there are too many covariates.

Estimating the distribution of A

A final disadvantage of A is that a density plot of its values does not match

the true density of A. Figure 6 (a) shows the fitted lognormal density of A. The

mean of the loguormal is 1.754, almost identical to 1.757, the mean of A^. However,

the estimates A(-2') are overdispersed with respect to the true distribution of A, so we

rescale them around their mean to have the same standard deviation as the fitted

lognormal:

Ai2)=Aa2+??L(A(2)-^),
Oa2

where p,a2 and o-as are the mean and standard deviation of the A(- } values and a-in

is the standard deviation of the fitted lognormal distribution. A histogram of the

A^ values is also plotted on Figure 6(a). It is immediately evident that a more

skewed and longer-tailed distribution needs to be fitted. There is a suggestion that

A may be a mixture. Of course, if a new model for A is chosen, the estimates A^

will change.

A more sophisticated method involves estimating the density of A from A^

0> 1) by modelling A^) as

A°) = A + e ,

where e is an error with 0 mean and variance Va,r[A^|A]. Such a model is consis-

tent with A^j} being conditionally unbiased for A. The variance may be computed

explicitly as a function of A using the maximum likelihood parameter estimates,
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and then estimated by Var[A^|A]|^ 4^) for each fish. Nonparametric estimation of

the distribution of A when it is observed with error has been researched intensively,

and there are dozens of papers on this topic in the mainstream statistical literature,

although many assume that e has constant variance. Notable exceptions are Goutis

(1997), Cordy and Thomas (1997) and various papers in the empirical Bayes litera-

ture (e.g. Maritz and Lwin 1989). For our data, the standard deviation of e ranges

from about 0.1 to 0.5 when j = 2, and increases with A^. For the purposes of ex-

ploratory analysis, we assume that the errors e are independent, which is true if the

population parameters are known, and Gaussian, which is a convenient approxima-

tion. Figure 6(b) shows the density of A estimated using the method of Cordy and

Thomas (1997). This confirms that the lognormal is inadequate. The distribution

of A appears complex, and its estimation may warrant the nonparametric method

of Palmer et al. (1991).

It should be evident that conditionally unbiased estimates of random effects

can play a diagnostic role in capture-recapture studies for growth.

Concluding remarks

Conditionally unbiased estimators of random effects are an important didac-

tie tool in capture-recapture studies used to estimate growth curves. When the

capture lengths are plotted against the traditional minimum variance estimates

A = E[A|data] of the times to first capture, the points do not fit the growth

model even when it is correct. This causes alarm amongst those unfamiliar with

the regression-to-the-mean property of random effects estimators. Because of this,

the estimates A do not match the statistical properties of the quantities A they

estimate, and this causes the apparent lack of fit. The problem can be crystallised

by calculating conditionally unbiased estimators, and contrasting their behaviour

with the traditional ones. In particular, they can be shown to

largely correct the misfit in the plot of l\ versus A;
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• have a higher mean squared error than A;

• be over-dispersed with respect to the distribution of A.

This, hopefully, will lead to better appreciation of the relative merits of A and of

conditionally unbiased estimators of random effects.

Conditionally unbiased estimators of random effects can play a diagnostic

role in growth curve modelling from capture-recapture data. A plot of \,i versus

A^ + St may exhibit lack of fit in a parametric growth model. The histogram of

A^j) for j = 2, say, can, after rescaling, be compared with the fitted distribution of

A to see if the chosen form is reasonable. Alternatively, A^ can be deconvoluted

nonparametrically to yield an estimate of the density of A. The minimum variance

estimator A can be misleading in these roles.

In the growth curves we have studied, approximate conditionally unbiased

random effects estimators A; and A/ of the time to capture A may be calculated,

although we have experienced data sets for which Ai fails. Thus Aj in particular

may be used as a practical alternative to A^. Conditional moments, and hence

the variance, may be calculated by two-dimensional integration over the space of

possible l]_ and ,2 values.

We have mainly discussed the case of a single recapture, by far the most com-

man case in pelagic fisheries. With other species, such as lobsters and terrestrial

animals in a local habitat, multiple recaptures are possible. The two-dimensional in-

tegration needed to calculate E[A|data] will need to be replaced by high-dimensional

integration. It is possible that simulation techniques may be needed to estimate

E[A|data] in those circumstances.
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Figure 1. Plot of capture length /; against A. A von Bertalanffy growth curve with

random asymptotic length has been fitted to capture-recapture data for 1412 southern

bluefin tuna tagged and released m Australian waters in the 1980s. The tune A from

spawning to capture is assumed to be lognormally distributed. The mean growth curve,

fitted by maximum likelihood, is shown as a solid Hue. The capture length /, is plotted

against A, but does not follow the growth curve.
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Figure 2. Profile log-Ukelihood for a two-phase growth model versus a. The parameter

a is the age of transition between juvenile and adult growth phases in the new growth

model (3). The profile log-Ukelihood is clearly bimodal, and its complex shape suggests

that the log-likelihood surface may possess additional modes.

A5-22



Appendix 5: Estimating the release age in capture-recapture studies of fish growth

Figure 3. A graphical interpretation of A. We assume that A, the tkne between

spawning and capture, is a two-component Gaussian mixture, and let A =E[A \ /, ,,3 ] be

/\

the traditional random effects estimator of A. The solid curve is E[A \ A= a] versus a.

To obtain A, plot A on the ^-axis, draw a horizontal line fi'om A to fhe curve, and then

read off A as the corresponding ordinate.
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Figure 4. An approximate conditionaUy unbiased estimator of A. In panel (a), an

approximate estimator A, of A obtained from (12) and (8) is plotted against A(), and in

panel (b) the difference A, - A() is plotted against Aw. These plots indicate that the

approximate estimator is slightly biased, but suggest that it is possibly adequate for

exploratory work.
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Figure 5. Growth curve for the southern bluefin tuna data. Panel (a) shows the capture

length /t versus the estimated age at capture A() and panel (b) shows the recapture

length ,3 versus the estimated age at recapture A(2)+t^-t^ with the fitted von

Bertalanffy growfh curve. The bias in Figure 1 is largely corrected in (a), but (b)

suggests that the model is still inadequate. Running 5% and 95% quantiles of ,3 versus

Aw + ^ - ^, estimated from simulated data, are shown as short broken Hues.
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Figure 6. The distribution of the time to capture for the southern bluefin tuna data. Bi

panel (a), the solid line is the fitted lognormal model, and the histogram represents values

of A() scaled aroimd their mean to have the same standard deviation as the lognormal.

The plot suggests that the time to capture is much more complicated than lognormal. In

panel (b), Aw has been deconvoluted nonparametrically using the method ofCordy and

Thomas (1997). The comparison between the fitted lognormal (solid line) and the

nonparametric density estimate (broken Une) confu'ms that the lognormal is inadequate.
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Introduction

Modelling the growth of a species is a widely studied topic. A key step is to

determine a functional form that describes the growth process. In fisheries literature, it is

most often assumed that the mean growth of the population follows a von Bertalanffy

(VB) curve, namely

Ka)=L^l-exp(-k(a-a,))) (1)

where a and 7 are the age and length of a fish respectively. The parameter L^ represents

asymptotic length, k governs the growth rate, and <7g is the theoretical age of length zero.

It is generally accepted that the growth of individuals will vary from the mean, however

the sources of variation are usually unknown.

Individual variation from the mean population growth curve can occur through

variability in one or more of the growth parameters ( L^ and k for the VB curve) and/or

through a random process error, due perhaps to environmental influences. Hampton

(1991) discusses these sources of variation, in addition to measurement error, and lie

analyses a set of southern bluefin tuna tag-recapture data assuming various combinations

of them. ]VIeasurement error can undoubtedly be a source of variability, but without any

external information with which to estimate it, it is confounded with any constant term in

the process error. Thus, we do not include measurement error as a separate source of

variability in our investigation. It is also possible that variability from the mean growth

curve occurs because the uuderlying growth process (i.e. the functional form) varies

between individuals. For example, individuals may not grow according to a VB

relationship even though the mean growth of the population foUows a VB curve. Wang

et al. (1995) examine this situation, however we will not consider it here.

Our goal is to investigate, through simulations, the effect of assuming different

sources of variation given some truth, and to do so for various tmths. The motivation for

such a study is that m practice we cannot know without imcertamty what is the true cause

of variability in growth. We must use our best discretion to choose a model based on the

data and our knowledge of fhe species' biology. Thus, it is important to know the

consequences of choosing an incorrect model formulation in practical terms, such as the
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effect on prediction. Does it reaUy matter if we assume that variability is due to a random

asymptotic length L^ when it is actually due to a random k7 Or if we assume a constant

process error term when in fact L^ varies between individuals? What if we make the

random process error an increasing function of length, such that a fish strays farther from

the mean curve as it grows? This is plausible, for example, if a fish lives for a prolonged

period in an enviroitment of poor or favourable feeding conditions.

Of course, the phrase "does it matter" depends on the researcher's purpose and

also on the method chosen to evaluate the adequacy offhe model. la simulation studies,

we can compare the estimated parameter values with the true values to look for evidence

of bias. However, with a model such as the von Bertalanffy where the parameters are

highly correlated, two different parameter sets can lead to very similar length predictions

over a restricted range of ages. Thus, we consider alternative methods of evaluation as

weU. For example, plots of the difference in length between the fitted curve and the true

curve across ages are very useful.

The results wUl presumably depend on the type of growth data being modelled

and the method used to fit the model. In the case of direct age and length data, a

straightforward maximum likelihood method can be applied. However, m the case of

tag-recapture data, where the ages of the fish at release and recapture are not known,

there are several possible approaches. The traditional approach has been to analyse the

length increments and times at liberty assuming a VB growth model and using the fitting

method proposed by Fabens (1965). It is well documented that using Fabens' method

when individual variability m the growth parameters exists results in biased parameter

estimates (Sainsbury 1980, Mailer and deBoer 1988). In particular, Sainsbury (1980)

shows that the mean value of k is underestimated when variability in k exists but is not

accounted for; this is true for both age-length data and length-mcrement data but the bias

is much greater m the latter case. More recent approaches to analysing tag-recapture data

model the joint density of the release and recapture lengths as opposed to modelling

length mcrements (Wang et al. 1995, Laslett et al. 2002). Such approaches require the

age at release to be modelled.
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Other factors that will affect the results are the variability and comprehensiveness

of the data. la this Appendix, we concentrate on direct age and length data, considering

situations with low and high variability and complete and incomplete coverage. It would

be too lengthy to include the full suite of situations for tag-recapture data as weU;

however, we realize that for many marine species, tag-recapture data is the most

abundant source of growth mformation. Thus, we include an abbreviated set of results

for tag-recapture data as weU.

Methods

Direct age and length data

When we have direct age and length observations, we can formulate a growth

model based on the von Bertalanffy curve given in (1) as

!<ia)=L^l-exp(-k(a-a,)))+£(a) (2)

for a > ciy. The component s(a) represents process error and it is assumed to be

independent random normal with mean 0 and variance a (a). In our simulations, we

considered the following five model variations:

a) fixed Z^, fixed k, and constant error variance, namely <7(a) = <7

b) fixed L^, fixed k, and error variance that increases with mean length, namely

a(a)=(l-Gxp(-k(a-a^))8o- (^>0)

c) random L^ (normally distributed with mean /y^ and variance (7^), fixed k, and

constant error variance

d) fixed L^, random k (gamma distributed with mean ^ and variance <7^), and

constant error variance

e) random Z^ (normally distributed with mean /j^ and variance <7^), random k

(gamma distributed with mean //^ and variance <7^), and constant process error.

Li models where either Z^ or k are random effects we assume that they are independent

of the process error, and in the model where they both are random we assume they are

also independent of each other.
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Maxunum likelihood methods were used to fit all of the models. Assuming L^

and k are fixed effects, the density of/ is normal. This is also true when L^ is a random

normal variable. When k has a gamma distribution, the exact expectations and variances

for / can be calculated (see Samsbury (1980) for the exact formulation). The distribution

of / is now unknown, but using the approximation that it is normal should be reasonable,

as our simulation results confirm.

There are a couple of points worth noting. First, the assumption that k is gamma

distributed seems quite realistic for most species, including southern bluefin tuna.

However, if there is reason to doubt this assumption, the exact expectation and variance

of / can be calculated for a number of distributions (those with explicit moment-

generating functions). Second, the exact distribution of / can be calculated for any

distributions of L^ and/or k by conditionmg. Suppose both L^ and k are random with

densities p(L^) and q(k) respectively. Then the conditional distribution of/ given L^

and k, h(J \ L^,k), is normal. To determine the unconditional distribution of / requires a

double integration, namely

\\h(]\L^,k)p{L^q(k)dL^dk (3)

This reduces to a single mtegration if either L^ or k is fixed (or if L^ has a normal

distribution). Even for a single integration, computing (3) for every fish can be very

tune-consuming.

In generating age-length data, two sets of model parameter values were chosen -

one that corresponds to faMy low variability (a coefficient of variation of approximately

0.2), and one that corresponds to much higher variability (a coeffident of variation of

approximately 0.4). la all cases, we kept the mean value of L^ at 200, the mean value of

k at 0.2, and the value of ciy at 0. For the low-variability case, the parameter values we

chose for the five models were as follows:

2n^fj —Ed .tY
' The coefficient of variation for a data set was calculated as ,j^ . ^ .1 " _ " | , where r indexes

las^M E(J,,) } 'x

release or recapture and / indexes the fish.
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a) L^ =200, k=0.2, o-=10

b) 1^=200, k =0.2, (7=20, 0=0.6

c) ^=200,^=15, k =0.2, (7=8

d) Z^ =200,//^ =0.2, ^ =0.03, o-=7

e) i^^ = 200, a^ = 15, ^ = 0.2, c^ = 0.03 ,(7=5

For the high-variability case, the parameter values we used were:

a) Z^=200, k =0.2, ff=20

b) !„ =200, k=0.2, (7=40, 0=0.6

c) /u^=200,(7^=35, k=0.2, a=15

d) Z, = 200,//, =0.2, cr,= 0.05, (7=15

e) //^=200, a^ =35, ^. =0.2, o-^ =0.05, (7=9

Figure 1 shows how the error structures of model a) through e) differ in their

patterns across ages. Although we have displayed the results for the low-variability

parameter values, the general pattern is the same for the high-variabiUty case as weU.

To carry out the simulations, we fu'st generated age data as described below. We

then generated con'espondmg length data according to model a) imtiaUy, using the low-

variability parameter values. We fitted the data five times, assuming each of models a) to

e) to be true. This was repeated for models b) to e). FinaUy, the whole procedure was

repeated using the high-variability parameter values. In all cases, 100 simulated data sets

consisting of 1000 age-length points were fitted.

We initially generated ages according to a uniform distribution over the mterval

0.1 to 20 years. For a VB curve with L^ =200, A-=0.2, and ay =0, the asymptotic

length is achieved around age 20, so this choice for an age distribution gives rather

comprehensive growth mfonnation. In order to see how much the age distribution affects

the results, we also generated ages according to a lognormal distribution with mean and

standard deviation on the log scale of 1 and 0.7 respectively. This gives a highly right-

skewed distribution with a median of 2.7 years and a 95 percentile of 8.6 years. The

actual age distribution expected in a field study will depend on the species and the

sampling procedures used; ahnost any distribution seems possible. For southern bluefm
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tuna, the assumption of a uniform distribution fhat spans the range of common ages is

fauly realistic.

Evaluation methods

In order to evaluate how well a model performed, we calculated the mean of the

parameter estimates over all 100 runs and compared these to the true parameter values.

We also calculated the average difference in length between the 100 fitted mean curves

and the true mean curve as a function of age, a, namely

I00 /.

^)=^n£(z~.>(l-exP(-^(a-ffo,)))-200(l-exp(-0.2^)). (4)
f=l

A plot of g(a) versus a is a useful tool to evaluate how well a model fits. From this

plot, we can detenmne the maximum error in the fitted length at age. More generally, we

can visualize the fit across a range of ages. The latter is important m cases where a

model has a very large error at a particular age, or range of ages, but fits well elsewhere.

The above methods assess how well the mean growth curve is being fitted.

Another evaluation method, which indicates the overall goodness of fit of the models to

the data, is to compare likelihood values. For each of the five assumed models, we

calculated the average negative log-likeUhood over the 100 runs. We expect fhat the true

model will have the smallest average negative log-likelihood value; however, this is not

necessarily the case when the true model is nested within another model. For example, if

the true model has a random k, then when we fit the data assuming a random L^ and k,

we can get an equally good fit. In these cases, taking the number of parameters into

account wiU most often result in the true model coming out the wimer. Thus, we also

calculated the average Akaike's mformation criterion (AIC) value for the purpose of

comparison (Akaike 1974).

Tag-recapture data

In tag-recapture studies, the length of a fish on release and recapture (/i and ,2) are

measured and recorded, as are the times of release and recapture (?i and tz). Because age

is unknown, the way to model the data is not as clear-cut now. We chose to use the

maximum likelihood method ofLaslett et al. (2002), which models the joint density of /i
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and ,2, since it can accommodate a wide range of error structures. Briefly, this method

models the age at release relative to the time of theoretical length zero, ti-ty, as a

random variable denoted by A. For the von Bertalanffy growth curve, the model is

formulated as

!(t)=L^l-exp(-k(A+t-t,)))+£(A+t-t,) (5)

for t>t^-A. Then the release and recapture lengths can be expressed as

/i=Z,(l-exp(-fc4))+f(^)

and

,2 = L^ (1 - exp(-A:(^ + ^ - ^i))) + f(^4 + ^ - ^ ).

Again, e{A +t-t^) represents process error and is assumed to be independent random

normal with mean 0 and variance a (A+t-t^). In models where L^ and/or k are

random, we assume L^, k, and A are aU independent of each other as well as independent

of the process error.

To derive the likelihood function, we need to know the joint density of /i and ,2.

First consider the joint likelihood conditional on A. When L^ and k are fixed effects, the

joint density of/i and ,2 given A is bivariate normal. This is true even if L^ is a random

normal variable. If A: is random, we take the same approach as we did with the direct age-

length simulations and assume that it has a gamma distribution. As such, we can

calculate the exact expectations and variances of /i and ,2 given A, then make the

assumption that the joint density of 1\ and ,2 given A is approximately bivariate normal.

Once we have the conditional density, the derivation of the (unconditional) Ukelihood is

straightforward, mvolving a single integration over A. See Laslett et al. (2002) for the

exact formulation.

The exact joint density of /i and ,2 can be calculated for any distributions of

L^ and k by conditioning on the random parameters and then mtegratmg (analogously to

the direct age-length case). However, calculation of the likelihood is ah'eady slow since

it involves a single integration for each fish; further integrations would be very expensive

(and perhaps unfeasible) tune-wise to perfonn.
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We carried out simulations on tag-recapture data using the same five model

variations as we did for the direct age-lengtii simulations. For every combination of true

and assumed models, 100 simulated data sets consisting of 500 pairs of release and

recapture information were fitted.

We generated release ages. A, using a lognormal distribution with mean and

standard deviation on the log scale of 0.5 and 0.3 respectively. This translates to a mean

age of release of 1.7 years and a standard deviation of 0.5 years. The times at liberty

were generated according to a gamma distribution with shape parameter 3.0 and rate

parameter 0.5, giving an average time at liberty of 6 years and 95% of the recaptures

occurring within 12 years. Corresponding release and recapture lengths were generated

according to each of the models using the high-variability parameter values. For

conciseness, we only present fbe results for one set of parameters; we chose the high-

variability case because it accentuates the problems in the model fits where they exist.

The same evaluation methods were used, with a slight modification to the average

error m length formula, g(a) , given in equation (4). In tag-recapture simulations we do

not get an estimate of <7g; instead we get an estimate of the parameters for the lognormal

distribution of A. Thus, we calculate the average difference in length between the fitted

and tme growth curve as a function of age relative to ciy, say a, in which case the

function is

100 /•

gf (a) = T^ Z lz~,, ^ - exP(-^ ^)) - 200(1 - exp(-0.2 a))J .
1=1

Results

Direct age and length data using a uniform age distribution

Before discussing the results, it may be of interest to look at a typical data set for

each of the model variations a) to e), generated assuming a uniform age disbibution over

0.1 to 20 years. Figure 2 shows data corresponding to the low-variability parameter

values, and Figure 3 shows data corresponding to the high-variabUity parameter values.

The data are very comprehensive, giving good information about both the asymptotic

length and the rate of growth. We can see how fhe different patterns in fhe error
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structures, as illustrated in Figure 1, carry through to the data. The difference m

variability between the data generated using the low-variabiUty parameter values and the

high-variability parameter values is apparent. The low-variability data is more

representative of the age-length data seen for southern bluefin tuna. We imagine it is

more likely to represent the variability m length-at-age for other species as well;

however, for completeness, we consider a more extreme situation as well.

We first present the results for the low-variability case. To see how well each of

the assumed models estimates the true mean growth curve, we plotted the average error

in the fitted mean length, g(a), versus age, a (Figure 4). As we expect, the true model

estimates the mean growth curve accurately in all cases, even for models d) and e) where

an approximation was used for the likelihood. More interestingly, we see that in almost

all cases the incorrect models estimate the mean growth curve equally weU. In the few

cases where the fitted model shows an error - this occurs when the true model has

mcreasmg process error and when the true model involves a random k - the error is less

than 2 cm across ati ages shown. The estunates of the growth curve parameters

(namely//„, //^., and Og) reinforce the observation that the mean curve is estimated well

regardless of the true model and the model being assumed (Table 1).

Of course, this does not mean that all models describe the data equally well. With

respect to the AIC values, the true model gave the best fit in all cases (Table 1). This

reflects the fact that the incorrect models are generally not capable of capturing the error

structure; that is, they do not explain the variability in the data very weU. There are a few

exceptions. Clearly when the true model is nested within another, the other model always

comes a close runner-up. For example, when the tme model has constant process error,

aU other models have similar AIC values. Likewise, when the true model is the random

L^ model or the random k model, then the model with both a random L^ and k fits the

data just as well. The more interesting exceptions are that the random L^ and k model

captures the error structure of the increasmg process error model fairly wetl, and vice

versa. Also, the random L^ model provides a reasonable fit to the mcreasing process

error model, and vice versa. For all other models, the AIC value is considerably larger

than the best fit. Nevertheless, the researcher's primary interest may be the mean growth
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of the population, and this is being estimated without bias regardless of which model is

assumed.

We now tum to fhe results for the high-variability simulations (Table 2; Figure 5).

We have kept the y-axis scale the same in the plots of the low- and high-variability

results for easy comparison. For the most part, the observations made for the low-

variability case remain tme. A notable exception is that the random k model shows a

significant bias when being fitted to the model with mcreasmg process error.

Furfhermore, models that showed a small bias m the low-variability sunulations now

show a larger bias and the nature of the bias, while still the same, is more obvious. In

particular, the random !„ and k model being fitted to the mcreasmg process error model

slightly overestimates //^, whereas the random L^ model slightly underestimates it.

Also, any of the incorrect models being fitted to the random k model (with the exception

of the random L^ and k model within which it is nested) underestimate both //^ and // .

Similarly, aU of the mcorrect models show biases when being fitted to the random L^

and k model; however, the nature of the biases differs between them.

Again, a model that estimates the mean growth curve accurately does not

necessarily provide a good overall fit to the data. In fact, if we use the AIC value as our

measure of goodness-of-fit, then many of the models that show a bias in their estimate of

the mean growth curve actually describe the data better than some of the models that get

the mean curve right (Table 2). For example, consider the case when the true model has

mcreasing process error. Then the model with constant process error is the only other

model that estimates the mean growth curve without a noticeable error. However, the

AIC value for the constant error model is much larger than the AIC value for either the

random L^ model or the random L^ and k model.

Direct age and length data using a lognormal age distribution

Our next step is to see how the results differ when we use age and length data

with less extensive coverage. We again start by plotting typical age-length data sets for

each of the five model variations, this time with ages generated according to a lognormal

distribution with mean and standard deviation on the log scale of 1 and 0.7 respectively.
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Figure 6 shows data correspondmg to the low-variability parameter values, and Figure 7

shows data con'espondmg to the high-variabiUty parameter values. The data is far less

comprehensive thau when a uniform distribution was used to generate the ages. Li

particular, growth mformation for older fish is lacking, which not only makes the mean

curve (in particular the asymptotic length) more difficult to estimate, but also obscures

the error structure.

The low-variabiUty and high-variability sunulation results show ahnost identical

patterns, with the magnitude of the errors being significantly larger for the high-

variability case. This observation is true with respect to the mean growth curve, and is

apparent if we compare plots of the errors in the fitted mean length for the low- and high-

variability simulations (see Figures 8 and 9 - note that y-axis scales are different this time

since the magnitude of the errors is very different). It is also true for the overall fits of

the models to fhe data, as indicated by the fact that the ranking of the AIC values for fhe

five models fitted to any true model is the same between the low- and high-variability

results (Tables 3 and 4). Thus, we wiU discuss the errors for both cases collectively,

keeping in mind that the size of the errors for the low-variability case are generally less

than 4 cm and not likely to be of real concern whereas the errors for the high-variability

case are in the order of three times larger.

The random k model does not fit very well when the true model is the increasmg

process error model, the random L^ model, or the random L^ and k model. In aU three

cases, the mean curve is estimated poorly (/^ is overestimated and fl^ is

underestimated), and the overall fit to the data as measured by the AIC value is also poor.

In terms of estimating the mean growth curve, the random k model produces the most

notable errors; however several other models also show some biases. We will not specify

aU cases here, as they can be ascertained from the tables and figures.

In comparison to the simulation results for uniformly distributed ages, the errors

are of much greater magnitude. In fact, the magnitude of the errors for the low-

variability simulations using lognormal ages is in line with the magnitude of the errors for

the high-variability simulations using uniform ages. Not only are the sizes of the errors

similar in these two situations, but the patterns of the errors are also very similar m
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general. One noticeable difference is that the bias in the fit of the random k model to the

random L^ model and to the random L^ and k model is quite a bit larger. A more subtle

difference is the shape of the error across ages when the true model involves a random k

parameter - the error curves tend to be more rounded and have larger errors at young

ages when the ages are uniformly distributed compared to when the ages are lognormally

distributed. This shape difference results fi-om the fact that both /u^ and // are

underestimated when the ages are uniform, but only //^ is underestimated when the ages

are lognormal.

Tag-recapture data

So far we have only considered fhe consequences of assuming various error

models when fitting direct age and length data. Because tag-recapture data is a common

source of growth information for many species, we take an abridged look at how the

results change when tag-recapture data is used.

A typical data set generated according to each of the five model variations using

fhe high-variabUity parameter values is shown in Figure 10. The amount of growth

information available dimmishes with age - a feature we would expect in most tag-

recapture studies.

The mean parameter estimates are presented m Table 5, and plots of the mean

error in length at age (i.e. g'(a) versus a) are shown in Figure 11. The results are

somewhat similar to those obtained fiom the direct age and length data in the case of

high-variability and logaormal ages (for which growth information also diminishes with

age). In both cases, incorrectly assuming a random k model produced the largest biases

in the estimated mean growth curve, and the errors in length at age were around the same

magnitude. The differences include:

• With tag-recapture data, all models except the random k model estimated the mean

curve accurately when the tme model had mcreasing process error; this was not tme

with direct age-length data for which the random !„ model and the random L^ and k

model also showed biases (of much smaller magnitude than the random k model).
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• With tag-recapture data, the models with constant process error and mcreasmg

process error showed fau-ly large biases when fitted to the model with both a random

L^ and k, and to a lesser extent so did the increasing process error model fitted to the

model with a random L^ . None of these biases existed with the direct age-length

data.

• The nature of the biases differs somewhat. For tag-recapture data, the tendency is for

L^ to be overestimated and k to be underestimated; this leads to S-shaped en-or-m-

length plots that transition fi-om a negative error to a positive error with age. For the

direct age-length data, this pattern is only present when incorrectly fitting the random

k model. Otherwise k tends to be estimated well, and the biases are the result of L^

being underestimated.

Discussion

The consequences of assuming an incon'ect error structure for a growth model are

dependent on the type of data being modelled; for this reason we considered both direct

age and length data and tag-recapture data m our simulations. The results will also

depend on the variability and completeness of the data. With direct age and length data,

it is feasible to have comprehensive growth mformation covering all ages and lengths;

this is less Ukely for tag-recapture data because it would require fish of all ages to be

tagged or else long times at liberty to be common. The amount of variability m length-at-

age between individuals will depend on the species.

For the direct age and length data, we carried out simulations for four cases, using

two levels of data variability (low and high) and two levels of data coverage (complete

and mcomplete). While there is obviously a continuum of situations between those

considered, results for these situations can be inferred from the results presented. For the

sake of brevity, we only considered one case for tag-recapture data, that of high

variability and fairly comprehensive data coverage. We simulated tag-recapture data that

dimmished with age, since this is an expected feature of most tag-recapture studies,

however the tunes at liberty that we generated gave more complete data coverage than

might be expected m many studies. We ran some simulations with much shorter times at
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liberty (maximum ages of approximately 10 years) and, not surprisingly, the errors in fhe

mean length-at-age increased where present. However, the errors within the range of the

data were generally of the same magnitude as the errors obtained using long times at

liberty; it was beyond the range of the data that large errors sometimes occurred,

It is difficult to concisely summarize all of the results obtained, however a few

observations stand out. When considering direct age and length data, most of the biases

occurred when incorrectly assuming a random k model, and these biases were probably

only large enough to be of concern m the case of high-variability data and incomplete

data coverage. Otherwise, assuming any of the models that we presented gave a

reasonable estimate of the mean growth curve, regardless of the true model. A similar

observation can be made regarding the tag-recapture simulations - the largest errors

occurred when incorrectly fitting a random k model. The only other errors of a similar

magnitude occurred when fitting the constant process error model and the mcreasmg

process error model to the model with both a random L^ and k. On the other hand, the

errors in the mean growth curve obtained fi'om fitting any of the incorrect models to the

random k model were not severe, regardless of the type of data or the case being

considered. This would suggest that in the absence of knowledge about the tme error

structure, it is generally wise not to assume a random k model.

For the tag-recapture simulations, an mterestmg outcome resulted from modellmg

the release age as a random variable. The fitting routine is able to manipulate the

distribution of the release ages to make the data better agree with the error structure of the

model being assumed. There were many cases where the parameter estimates for the

distribution of A were highly biased, and this occurred even in cases where the mean

growth curve was estimated well. Realistic bound constraints could be put on the

parameters of A based on prior knowledge about the size of the fish that were released.

Our mvestigatian of model selection using Akaike's mformation criterion proved

to be faMy predictable in qualitative terms, ffistograms of the best fitting models for the

direct age and length simulations using the low-variabiUty parameter values and

lognormal ages are presented in Figure 12. The same results for the high-variability

parameters are shown m Figure 13. In the vast majority of cases, AIC chose the correct

style of model, the only exception being the case when the true model was e), in which
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L^ and k are both random. In this case, AIC confused models b) and e). According to

Figure 1, the curves of standard deviation versus the mean are somewhat similar for these

models. Hence the patterns in Figures 12 and 13 can be interpreted as a tendency for AIC

to choose the most parsimonious model that fits the data. In particular, L^ and k are both

random only if necessary. When a less complex model is chosen, it has a similar mean-

variance relationship to the true model. Very similar remarks apply when considering the

results from the direct age and length simulations using imiform ages (not shown). The

results m Figure 14 for the tag-recapture data are harder to explain. The AIC often

chooses a more complex model than the truth. The reason for this is unknown, but it

abuost certamly reflects the flexibility of the tag-recapture model, which includes

parameters modelling the time to capture ia addition to the growth model and error

structure parameters. The results suggest that more hard information should be included

in the tag-recapture model, such as realistic constraints on the release ages and prior

distributions on the growth parameters. Bayesian methods of model fitting might be

required.
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Table 1. Mean parameter estimates for the direct age and length simulations using the

low-variability parameter values and assuming a uniform age distribution over the

interval 0.1 to 20 years. The average negative log Ukelihood and Akaike's mformation

criterion (AIC) are also given. All values are averaged over the 100 simulation runs.

True
model

a)

a)

a)

a)

a)

b)
b)
b)
b)
b)
c)

c)

c)

c)

c)

d)
d)
d)
d)
d)
e)

e)

e)

e)

e)

Assumed
model

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

^
200.0

200.0

200.0

200.1

200.1

200.1

200.0

199.7

200.1

200.7

200.2

200.5

200.2

200.2

200.3

199.3

199.3

199.3

200.1

200.1

199.3

199.1

198.8

199.5

200.1

0,

0.0

0.0

1.6

0.0

1.9

0.0

0.0

20.4

0.0

19.4

0.0

0.0

15.0

0.0

15.0

0.0

0.0

0.0

0.0

1.3

0.0

0.0

15.3

0.0

14.9

^k

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.201

0.200

0.200

0.199

0.197

0.199

0.199

0.199

0.198

0.198

0.198

0.200

0.200

0.198

0.199

0.200

0.198

0.200

<^k

0.000

0.000

0.000

0.004

0.005

0.000

0.000

0.000

0.001

0.025

0.000

0.000

0.000

0.001

0.006

0.000

0.000

0.000

0.030

0.030

0.000

0.000

0.000

0.011

0.030

C'O

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.01

-0.03

-0.01

-0.01

-0.01

-0.01

-0.01

-0.01

0.00

0.00

-0.01

0.00

0.00

-0.01

0.00

a

10.0

10.0

9.8

9.9

9.6

17.0

20.0

5.8

17.0

3.4

14.4

15.8

7.9

14.4

7.7

10.3

10.3

10.3

6.9

6.6

15.0

16.8

8.9

14.6

5.0

0

0.00

0.02

0.00

0.00

0.00

0.00

0.60

0.00

0.00

0.00

0.00

0.34

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.39

0.00

0.00

0.00

-log

likelihood
3717.4

3717.1

3717.1

3717.2

3716.9

4253.2

4180.9

4189.6

4253.3

4182.2

4083.8

4051.0

4044.4

4083.8

4044.2

3749.5

3749.4

3749.5

3712.2

3711.9

4124.2

4090.9

4101.9

4123.6

4087.2

AIC

7442.7

7444.2

7444.2

7444.4

7445.7

8514.5

8371.8

8389.2

8516.5

8376.5

8175.6

8112.1

8098.8

8177.7

8100.4

7506.9

7508.8

7508.9

7434.3

7435.8

8256.5

8191.8

8213.8

8257.3

8186.5
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Table 2. ]VIean parameter estimates for the direct age and length simulations using the

high-variability parameter values and assuming a uniform age distribution over the

interval 0.1 to 20 years. The average negative log likelihood and Akaike's mformation

criterion (AIC) are also given. All values are averaged over the 100 simulation runs.

True
model

a)

a)

a)

a)

a)

b)
b)
b)
b)
b)
c)

c)

c)

c)

c)

d)
d)
d)
d)
d)
e)

e)

e)

e)

e)

Assumed

model

a)

b)
c)

d)
e)

a)

b)
0
d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

//„

200.1

200.1

200.1

200.2

200.3

200.3

200.1

198.4

209.4

203.0

200.4

202.2

200.5

201.0

200.9

197.9

197.9

197.9

200.2

200.1

197.9

197.6

195.7

200.5

200.1

ff»

0.0

0.0

3.2

0.0

3.8

0.0

0.0

39.7

0.0

38.8

0.0

0.0

35.1

0.0

35.0

0.0

0.0

0.0

0.0

3.4

0.0

0.0

36.7

0.0

34.9

^
0.200

0.200

0.200

0.200

0.200

0.199

0.200

0.205

0.183

0.201

0.198

0.190

0.198

0.197

0.197

0.195

0.196

0.195

0.199

0.200

0.195

0.196

0.203

0.191

0.200

<7,

0.000

0.000

0.000

0.008

0.009

0.000

0.000

0.000

0.052

0.050

0.000

0.000

0.000

0.007

0.011

0.000

0.000

0.000

0.049

0.049

0.000

0.000

0.000

0.027

0.050

"0

0.00

0.00

0.00

0.01

0.01

0.00

0.01

0.02

-0.05

0.01

-0.02

-0.09

-0.02

-0.03

-0.02

-0.04

-0.04

-0.04

-0.01

-0.01

-0.05

-0.03

-0.01

-0.05

-0.01

a

19.9

20.0

19.5

19.7

19.1

34.0

39.9

12.1

28.1

6.7

31.6

35.7

14.7

30.0

14.3

19.7

19.8

19.7

15.0

14.4

30.0

36.5

13.0

29.3

8.6

6

0.00

0.02

0.00

0.00

0.00

0.00

0.60

0.00

0.00

0.00

0.00

0.43

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.00

0.51

0.00

0.00

0.00

-log

likelihood
4410.5

4410.3

4410.3

4410.4

4410.0

4946.4

4874.0

4883.1

4951.9

4875.4

4873.4

4827.0

4819.6

4876.6

4819.3

4397.9

4397.6

4397.9

4380.2

4379.9

4878.6

4820.5

4826.5

4876.2

4818.1

AIC

8829.0

8830.5

8830.5

8830.7

8832.0

9900.8

9758.0

9776.2

9913.7

9762.8

9754.8

9664.0

9649.1

9763.3

9650.7

8803.7

8805.1

8805.7

8770.5

8771.9

9765.2

9650.9

9662.9

9762.4

9648.2
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Table 3. Mean parameter estimates for the direct age and length simulations using the

low-variabiUty parameter values and assumiug a lognoi-mal age distribution with mean

and standard deviation on the log scale of 1 and 0.7 respectively. The average negative

log likelihood and Akaike's mformation criterion (AIC) are also given. All values are

averaged over the 100 simulation nms.

True

model

a)

a)

a)

a)

a)

b)
b)
b)
b)
b)
c)

c)

c)

c)

c)

d)
d)
d)
d)
d)
e)

e)

e)

e)

e)

Assumed
model

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

a)

b)
c)

d)
e)

^
200.0

200.0

200.0

200.0

200.0

200.0

200.2

199.0

207.9

201.3
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a
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6.1
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8.0
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12.4
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0.00
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-log

likelihood
3716.2
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3837.3
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3814.5

3814.3

3937.4
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AIC

7440.5

7442.0
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7718.9
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Appendix 6: Investigating sources of individual variability in von Bertalanffy growth models

Table 4. Mean parameter estimates for the direct age and length simulations using the

high-variability parameter values and assuming a lognormal age distribution with mean

and standard deviation on the log scale of 1 and 0.7 respectively. The average negative

log likelihood and Akaike's mformation criterion (AIC) are also given. All values are

averaged over the 100 simulation runs.
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a)
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b)
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c)
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d)
d)
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e)

e)
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e)

Assumed
model

a)
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d)
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200.3
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-0.03
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-0.01
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-0.02
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-0.09

0.00

<7

19.9
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19.7

19.5

19.4

24.7
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0.00
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0.00

0.00

0.00

-log

likelihood
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4409.2
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4567.0

4546.6
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4491.6
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4443.9
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4440.5
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4533.6
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AIC
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Appendix 6: Investigating sources ofiadividual variability in von Bertalanffy growth models

Table 5. Mean parameter estimates for the tag-recapture simulations using the high-

variability parameter values. The average negative log likelihood and Akaike's

information criterion (AIC) are also given. All values are averaged over the 100

simulation runs.
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b)
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c)
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e)
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Assumed
model

a)
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0.58
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0.49
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0.50

<7to&A

0.29

0.30

0.30

0.30
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0.31
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0.30
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0.29

0.38

0.41

0.38

0.30
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0.37

0.47

0.35

0.21

0.31

(7

19.9

20.1

19.7

19.6

19.5

29.2

39.7

24.0
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24.0

26.2
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18.3
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6

0.00
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0.00

0.00

0.00
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0.60
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0.00

0.00

0.00

0.00

0.25

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

-log

likelihood
4525.1

4524.9
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4524.4
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4724.0
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9458.1
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9008.7
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Appendix 6: Investigating sources of individual variability in von Bertalanffy growth models

Figure 1. Comparison of the error structures for models a) through e). The lines show

the standard deviation in length at age for the five model variations, calculated using the

parameter values for the low variability case.
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Appendix 6: Investigating sources of individual variability in vou Bertalanffy growth models

Figure 2. Examples of simulated direct age and length data sets for models a) through e),

using the low-variability parameter values and assumuig a uniform age distribution over

the interval 0.1 to 20 years.
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Appendix 6: Investigating sources of individual variability m von Bertalanffy growth models

Figure 3. Examples of simulated direct age and length data sets for models a) through e),

using the high-variability parameter values and assuming a uniform age distribution over

the interval 0.1 to 20 years.
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Appendix 6: Investigating sources of individual variability in von Bertalanflfy growth models

Figure 4. Results fi-om the direct age and length simulations using the low-variability

parameter values and assuming a uniform age distribution over 0.1 to 20 years. The

figure shows the difference between the fitted and true mean length (averaged over 100

runs) versus age, i.e. g(a) versus a. Panels a) to e) correspond to the results when the

true models are models a) to e) respectively. The Unes correspond to the models being

assumed: — for model a); "• for model b); -•- for model c); — for model d); and

-"•- for model e).
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Appendix 6: Investigating sources of individual variability in von Bertalanfiy growth models

Figure 5. Results fi'om the direct age and length sunulations using the high-variability

parameter values and assuming a uniform age distribution over 0.1 to 20 years. See

Figure 4 for a complete description.
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Appendix 6: luvestigatmg sources ofiudividual variability m vou Bertalanffy growth models

Figure 6. Examples of simulated direct age and length data sets for models a) through e),

using the low-variability parameter values and assuming a lognormal age distribution

with mean and standard deviation on the log scale of 1 and 0.7 respectively.
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Appendix 6: Investigating sources of individual variability m van Bertalanffy growth models

Figure 7. Examples of simulated direct age and length data sets for models a) through e),

using the high-variabUity parameter values and assuming a lognormal age distribution

with mean and standard deviation on the log scale of 1 and 0.7 respectively.
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Appendix 6: Investigating sources of individual variability in von Bertalauffy growth models

Figure 8. Results from the direct age and length simulations using the low-variability

parameter values and assuming a lognormal age distribution with mean and standard

deviation on the log scale of 1 and 0.7 respectively. See Figure 4 for a complete

description.
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Appendix 6: Investigating sources of individual variability in van Bertalanffy growth models

Figure 9. Results from the direct age and length simulations using the high-variability

parameter values and assuming a lognormal age distribution with mean and standard

deviation on the log scale of 1 and 0.7 respectively. See Figure 4 for a complete

description.
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Appendix 6: Investigating sources of individual variability in van Bertalanffy growth models

Figure 10. Examples of simulated tag-recapture growth data for models a) through e)

using the high variability parameter values. The x's represent release information; the

dots represent recapture information.
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Appendix 6: Investigatiug sources of individual variability in van Bertalanffy growth models

Figure 11. Results from the tag-recapture simulations using the high-variability

parameter values. The details are the same as in Figure 4 except the ages are now relative

to OQ , such that we are plotting g' (a) versus a.
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AppencUx 6: Investigating sources of individual variability ia von Bertalanffy growth models

Figure 12. Histograms showing the best fitting models for the direct age and length

simulations using the low-variability parameter values and lognormal ages. Moving from

top to bottom, the 5 panels show the results when the true model is model a to e

respectively. In panel x, the bars show the number of times (out of 100 simulations) that

each of models a to e had the minimum AIC value when fitted to data from true model x.

Qob

0•^-

OJ

0
00

0•^-

Q
>< m
0
c
d) 0
5 ^"
CT-
0
,'- 0

0
00

Q•^-

Qin

0
Fsl

A6-34



Appendix 6: Investigating sources of individual variability in von Bertalanfiy growth models

Figure 13. Histograms showmg the best fitting models for the du-ect age and length

simulations using fhe high-variability parameter values and lognormal ages. Moving from

top to bottom, the 5 panels show the results when the true model is model a to e

respectively. In panel x, the bars show the number of times (out of 100 simulations) that

each of models a to e had the minimum AIC value when fitted to data fi-om true model x.
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Appendix 6: Investigating sources of individual variability m van Bertalauffy growth models

Figure 14. Histograms showing the best fitting models for the tag-recapture simulations

using the high-variabUity parameter values. Moving from top to bottom, the 5 panels

show the results when the true model was model a to e respectively. In panel x, the bars

show the number of times (out of 100 simulations) that each of models a to e had the

minimum AIC value when fitted to data ftom true model x.
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Introduction

Commercial catch data contain important information on tlie growth of south-

ern bluefin tuna. In one sense they are more informative than any other data source

because commercial fishing data are more abundant and more consistent over time

than data from scientific research programs. In principle, fish can be sampled for

measurement every time that a. boat comes in to port. This provides a regular time

series of length-frequency data for the researcher to work with.

Extracting the information on growth from commercial data is not straight-

forward. First, a large number of age groups are potentially represented in the

commercial catch. There is no quick way to calculate the age of a tuna, so length-

frequency data do not come with any age attribution. For growth work the researcher

has to assign the fish to age groups, either explicitly or statistically. Second, tuna

are spawned over a period of several months, and nothing is known about the rel-

ative growth patterns of fish tliat were spawned early versus those spawned late in

the season. Third, commercial fishing is not a random sampling exercise, and in one

week boats can return with almost no one-year-olds, for example, but in an adjacent

week the one-year-olds can be plentiful. Finally, measurement error exists and may

be dependent on the measurer. There appear to be minor irregular inconsistencies

in growth patterns from year to year, week to week and age-group to age-group. It

is important to build methods that capture these sources of variation.

The biggest southern bluefin tuna fishery in Australia operates out of Port

Lincoln in South Australia. The length-frequency data from this fishery provide

information on two aspects of southern bluefin tuna growth. First, yearly growth

can be estimated by comparing the average length of one-year-olds, two-year-olds,

three-year-olds and so on caught at the same time. Second, the Port Lincoln fishery

operates during the Southern summer, when tuna are growing fastest. Seasonal

growth can be inferred by comparing the growth of a particular age-group from

week to week and month to month. Other data, sources, such as those derived from

tag-recapture surveys and otolith studies, are usually too coarse to provide detailed
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information on seasonal growth. Length-frequency data are vital for this reason

alone.

This Appendix presents our method for extracting growth information from

length-frequency data. Ours has some features in common with other methods pre-

sented in the quantitative fisheries' literature, but we depart from them in significant

ways. In particular, we develop a two-phase approach to the analysis. In the first

phase each half-month of length-frequency data is decomposed into age-groups using

a Gaussian mixture model, and relevant summary statistics are extracted. In the

second phase, the summary statistics are used as raw data for growth modelling.

This approach allows us to explore and visualise the sources of variation in the

data prior to final modelling. More direct methods are likely to overlook the many

possible complications in real length-frequency data.

In this Appendix we first discuss the form of the length-frequency data to

which we have access, and some of its features. Next is a critical review of the Leigh

and Hearn (2000) analysis of length-frequency data, summarising our reasons for

rejecting a combined analysis of the data for each season using a separate linear

growth model for each age group. We outline our alternative method, in which we

fit a growth model to summary statistics derived from fitting mixture models to

each half-month of length-frequency data. The final section is more speculative.

It discusses how we might model or understand some of the additional sources of

variation in length-frequency data.

The data

Length frequency data are measurements of lengths of fish caught in a partic-

ular season at a particular location, usually from commercial fishing. For southern

bluefin tuna, the data look like
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Table 1: Typical length-frequency data.

catch

year

1960

1960

1960

1960

1960

period

type

H

H

H

H

H

period

#
2

2

2

2

2

period

start

01/16/1960

01/16/1960

01/16/1960

01/16/1960

01/16/1960

statistical

area

SA

SA

SA

SA

SA

class

width

1

1

1

1

1

class

centre

57

58

59

60

61

catcl

coun

5.8

8.2

11.0

8.2

2.8

Most columns are self-explanatory. The period type H means half-monthly:

Australian data are generally recorded twice a month, but Japanese data only once,

and is then listed as M. These tuna have been caught in South Australia (SA),

but New South Wales and Western Australia also have tuna fisheries. The catch

is divided into one centimetre classes, so that the first line says that 5.8 fish are

between 56.5 and 57.5 cm in length. The reader will immediately ask: why 5.8,

rather than a whole number? The number of fish is scaled up from a sample, as

explained below.

We specify more exactly the definition of the half-monthly periods. The half-

months start on day 1 or 16 of each month:

Table 2: Half-month indices

Period # Period start

1

2

3

4

5

1/1

16/1

1/2

16/2

1/3
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Table 2: continued

16/3

24 16/12

Note that February has only 28 or 29 days, so period 4 is relatively short.

These period numbers are used in the output from the mixture fitting programs.

In South Australia the fishing season extends from the first half of October to the

second half of September the following year. For example, the 1964-65 season covers

period 19 in 1964 to period 18 in 1965. Thus when analysing a season of South

Australian data, period 24 —^ 0, 23 — -1 and so on.

There are a. two major issues that arise in the analysis of length frequency

data, and a number of minor issues. We discuss the major issues immediately.

Mixture of ages

The length data from a given year and area come from fish of all ages, although

the fish belonging to a particular age group have been spawned over a relatively short

period, and hence exhibit a limited range of lengths. In addition, the younger fish

are growing fast, so the histogram of lengths will often show obvious modes for the

1, 2, 3 and 4 year-olds, but for older fish the modes cannot be distinguished. Leigh

and Hearn (2000) have published a mixture decomposition method that attempts

to decompose the length data into their constituent age groups. Their method is

somewhat different from a widely-used industry method, MULTIFAN (Fournier et

al., 1990).

Scaling up of catches

Not all fish caught in a given period are measured for length, and the fre-

quencies are scaled up so that the total catch reflects that of the whole fishery. The
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scaling up is in two phases: firstly the measured sample from a landing is scaled

up by the weight of fish in that landing; and secondly the catches from sampled

landings are scaled by the weight of the entire catch from all landings in the fishery,

to allow for landings that were not sampled.

This scaling-up means that a conventional statistical analysis is not appro-

priate, because the recorded catch is larger than the sampled catch. Standard error

estimates from treating the recorded data as raw data would be too small, in general.

We need to correct for this scaling in the analysis if we are to obtain mean-

ingful results. Leigh and Hearn (2000) argue for a rather complicated scaling factor,

based on the variance of the mean. They assume that k landings have been sampled,

and that lauding i contains n.i fish of which g; are measured. They then propose

the scaling factor a = (n,./n'j) ^=1 nf./q,., where ??,,. is the scaled-up estimate of the

total number of fish caught and n,s = S,^ n,, is the number of fish caught in the k

landings. We have no information on which to base any alternative scaling factor,

so we continue to use the Leigh and Hearn scaling factors in this study.

The Leigh and Hearn method

Leigh and Hearn (2000) assumed that the data were generated from a simple

Gaussian mixture. For a, given sample, suppose there are m,j fish of length lj for

j = 1,... ,n. Here and elsewhere mj is the recorded catch count divided by the Leigh

and Hearn scaling factor, so that mj is effectively the number of fish in class j if a

random sample of fish had been collected. The lengths are assumed to be generated

from a K component mixture in which the probability density of component k is

gk(y). The likelihood is

The log-likelihood is

LHEwfc(y
j=\ (.k=l

h = Em,log|]>>^,)) . (1)
j=l \k=l
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To estimate parameters, we would like to maximise the log-likelihood of the data

from several samples. After considerable experimentation, it transpires that we

need an optimisation method that uses first and second derivatives. Derivative-free

optimisation methods for this problem may be slow and do not necessarily converge

to the maximum likelihood estimates.

First derivatives of the log-likelihood

We calculate the first derivatives of the log-likelihood h with respect to the

various parameters. We assume that (jk{lj) is a Gaussian density

l ^J {h-^2'
9k{l]} = ^rexP(-^L

/27K7 ^ ^ W )•

Some basic tools we shall use are

99^lj) _ ^n.\(^J^l=
= 9k[lj)—^ — = gk{lj) 11jk

and

Wj) _ ...n A f(ll_^k)l _ A ^^g^ = 5^)|^^FZ--iJ=^(^)^-

Also for convenience we define

K

Sj == E ^k9k(lj) •
fc=l

Thus

9h _ „ v^^ 9k{lj),^ = ^E-"^?

To compute this robustly, we should use the form

Qh_ - ^. \\^ 9k(l3)/9k(j}(lj)
9^ = ^^mr - 5;"—^'

where 5'* = Z^=i 7Tk9k{lj)/9k(j){h) an^ ^0) ls the lndex of the maximum value of

gk(lj} for a given ^-. We shall take the robust computational forms as understood

in this section.
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The derivative with respect to log a is

9h _^9h _^_ £f=iW/,)0,,
9\oga = a9a = ^m3 ~~~^~~~ •

We have parameterised the proportions so that there are K—l free parameters

XI,...,XK-I, and

7TA.

exk

1 + E^I1 e^

for k = 1,... ,K — 1 and

1
7TK==l+E^e^'

Thus, for k <K -1,

9h ^ 9h QTT.,

QXk ,fi 97T,, 9.T/,

= EEm,^)(^(r=A,.)-^)
»•=! .,=1 tj3

V-,,-... 9^) „ v^
7rA. 2^ mJ r-^— - 7rfe 2^ mj •
j-i IJ-i j=i

Second derivatives of the log-likelihood

We now calculate the second derivatives of h with respect to the various

parameters. Thus

92h _ 7rfcv^ ^-) . „ V-^ ^L2 _2V-...., ^(^)2,2
-^ = -^l^m3'^^+^k^m,^-^-^^mj^-^
Lk a" J^l " S3 J—l " ^ " ' j—l ' ^J

where Sj == Y,^ /nigi{lj}- Also

92h _ ^_ ^_ 9W9s(lj},
9^. ' -^.E'","-^"^^.

The second derivative with respect to logo- is

92h _ V- „. ^=1 TTfc ^.(/,) ^ , ^ ^ E^l ^. ^.(^) (-2^ - 2)
^

^ r-

(EiLi^m-A.)2

W^Y = km] "' 6. " "+^~~ """6-,

n /v^J< ^.. ^^ ;'; 'i Q \'2

-Em?
J=l ^
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The partial derivative with respect to log a and p,s is

92h - _o..V-^.^)^^.,V-^.^10^^rfc ^ ?^j "" v o' "" + ^k ^ inj
9\oga9^. —^--j ^. • "K^'"-/ Sj

J=l ^ J=l

Y.K=^i9i(lj')Qjiv.^ ^n^^K=^igi(l,)e,

J=l ij3

^<=1
-^fe^mj CJk{lj}f1jk-

The partial derivative with respect to log a and TT/.. is

^. ^^_^^^f^91oga^, - ^ S, ^^' s]

We need this quantity in terms of the dummy variable Xk. Then

92h ^ 92h BTT,

9 log a9xk ^ 9 log aQn-r Qxk

J^ 92h
= S ai_l.a_ (^J(r = k) ~ 7r^-)

^9\oga9^.

92h ^ 92h
7rfc ai._- _o_- - 7!'fc 2^ 7rr

)gaOlTk ^[ C/lOgO'C/TTr

92h
T^k

9 log O-^-TTfc

since E,^i ^r ^,,f^ = 0.z-^r=l "r aiogo-97Tr ""

The partial derivative with respect to p.k and ^s is

92h _ ^_ gk{lj)T]]k9s(l]~}
—TTfe ^ mj"J

9^k97Ts " jfi 'J S]

when s ^ k. Otherwise

92h _ ^^ g,(l^ _ ^^ gl(l,}^
m3 —o 'iilii - 7I'fc 2^ mJ9^9^ - ^3 5, 'IK^"V3 Sj

We need this quantity in terms of the dummy variable Xy. Then

92h ^ 92h QTTr

9p-k9xs ^ Q^Qvr 9xs

^ 92h
= E^(7F"J(r=s)-7r^)

92h ^ 92h
71's^—^— - TTs ^ ^r

9/^k9^s "",'fi"' Q^k9^s

92h
7T,

9^9TTs
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since ^=1 ^r ^ = 0.

The partial derivative with respect to .r/,. and TTg is

92h _ _ y-,., 9^Wh)
9x^ = ~7TI:^m3~'Sf

when s ^ k. Otherwise

92h _ v-^^) _v^.. ^.v-^.^?= E m. ^ - E m. - ^ E m. ^
lxkU^k J^i '3J J^l J=l ^J

We need this quantity in terms of the dummy variable x.y. Then

92h ^ 92h BTT,

9'XkQXs ^ 9xk97Tr QXs

= S 9^r ('"nr = s) ~ 7W)

Q'ih ^ 92h
^^—E— -7Ts2^7r1'-

9xk QTI-S ,^ 9xk 9-jTs

92h , ^
7T.sa^ a_ + 7I's7I'fc ^ m, ,'QxkQ^s ' "S"K^""7'

since E.^i ^r 9^ = -7Tk E;'=i mj-

Individual samples

We can apply this method of analysis to each half-month of data separately,

so we choose a particular half-month to illustrate the issues. The first period for

which reliable data were collected was period 2 in the 1964/5 season. Before we can

analyse the data, we need to make some decisions as follows.

Number of groups: We have to choose K. Hunt and Jorgensen (1999) discuss

this issue for fisheries length-frequency data, highlighting the point that some

older groups may have no fish or very few fish in the sample. Hence K is

impossible to choose from sample data alone. They conclude, and we concur,

that K should be chosen by the modeller. Our strategy was to eliminate data

greater than 130 cm, and to start with K = 5. If one or more parameters
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was on the boundary of the parameter space, K was reduced by 1, and the
€

model refitted. It was quite common to end up with K = 3 or K = 4, but

occasionally K = 2 or even K = 1.

Starting values: The starting values for ^ were derived from a growth model

fitted to corresponding tag-recapture data. For this, the A-year-old group was

assigned the age k + (j — 0.5)/24 years, where j is the half-month index and

24 is the number of half-months. Thus, the five groups for period 2 in 1965

would be assigned the ages 1.0625, 2.0625, 3.0625, 4.0625 and 5.0625 years,

where 0.0625=1.5/24. From a seasonal VB log A; growth model fitted to tag-

recapture data, (Appendix Tag-Recapture), the estimated mean lengths are

^ = 55.0, {.t-2 = 72.8, ^ = 87.8, ^ = 100.9 and ^ = 112.2 cm. These

are taken as starting values for p.^- So that the optimisation routine could

not switch groups, the ^ were assumed to lie between the bounds lk and u^,

where ^ = /u,i - 30, lk = (/ife-i + fik)!2 for fe > 2, Uk = lk+i for 1 < A; < K -1

and UK = p,K + 30 cm. The initial values of /4. and the bounds for the South

Australian 1964/5 data are thus

Table 3: Initial estimates of fi^ and bounds.

age group initial value lower bound upper bound

k

1

2

3

4

5

ftk

55.0359

72.8338

87.8271

100.8616

112.1933

lk

25.0359

63.9349

80.3305

94.3443

106.5274

Uk

63.9349

80.3305

94.3443

106.5274

142.1933

The starting value for a was generally a = 4, and the proportions were assumed

to be equal.
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Proceeding in this way, we fitted a Gaussian mixture model to each half-month of

South Australian length-frequency data from 1964/5 to 1998/89. The results for

odd half months in the 1981/2 season are shown in Figure 1. The patterns seen

there are typical: the data display a number of modes, although the number of

components of the fitted mixture does not necessarily equal the number of modes;

the fit is sometimes excellent, and sometimes problematic; when the half-month has

only a few fish, the fit can appear very bad, and the fitted modes are little more than

mathematical artefacts. In most, half-months, the allocation of fitted components to

age groups was easy and unequivocal. However, in a few cases an extra age group

(usually a young one-year-old group in the latter part of the season) appeared. This

mainly happened in the 1970s (1974 was the worst case). In such cases we usually

fitted a, single age component to the bimodal group, although in 1974 half-months 8

to 11 we omitted the one-year-old modes from the summary statistics. The retained

data for the next phase of analysis were the fitted modes and their standard errors,

estimated by inverting the observed information matrix. We also kept the estimated

number of fish in each group. For example, for the most complex panel in Figure 1,

half month 7 of 1982, the summary statistics are set out in Table 4 .

Table 4: Fitted modes, half-month 7 in 1982.

age group fitted mode s.e. estimated

k frk # in group

1 63.0032 0.5611 225

2 81.1072 0.3419 648

3 102.5016 0.9188 259

4 113.9566 0.8886 182

The fitted modes for the 1960s, 1970s and 1980s are shown in Figures 2,

3 and 4 respectively. Here the estimated means ^ from the maximum likelihood

fitting program are plotted against half-month, and means for different age-groups

are distinguished by a different plotting symbol. We estimate the number of fish
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in each age-group by multiplying the effective sample size {Y^vZj) by the estimated

proportions in each age-group. Groups with less than 50 fish are not included in

the next phase of analysis, because we doubt their accuracy in general. The three

figures show a consistent pattern. Although there are inconsistencies between years,

on average the means for a particular age group tend to increase up to about half-

month 6 and then flatten off. This is consistent with a seasonal growth pattern in

which growth is most pronounced over summer, but is quite minimal over winter.

Figure 5 overplots the summary data for all three decades. This suggests that growth

in the 1960s and 1970s was similar, but that fish grew faster in the 1980s.

Multiple samples: the Leigh and Hearn approach

Leigh and Hearn (2000) proposed a method for the combined analysis of

multiple half-month data, which we now discuss. When there are S independent

samples, the combined log-likelihood is

S n / K

h = E S my 108' ( S 7rik9ik(kj]
1=1j=l \k=l

Leigh and Hearn (2000) assume that the components are Gaussian, with

1 ^J ^-^^
9ik(kj) = -^=-exp

/27TO "" V 2^ J •

They could quite easily assume that o-2 varies with time, with component or with

the mean, but they assume it is constant for simplicity.

We shall be applying this model to the half-monthly length-frequency data

from Australian tuna fisheries. A season usually consists of three to six months of

fishing, so we typically have data from 6 to 12 half-months. Leigh and Hearn (2000)

assumed that the mean growth curve over a season is linear, so that

f^ik = Cth+ /3k(ti -t)

where ti is the time of the mid-point of the ith half-month, and t is the mean of the

ti. The proportions T\^ satisfy the usual constraints 0 < TT^ < 1 and ^^=1 'Kik = 1

but are otherwise completely unconstrained.
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If there are K components and S half-months, there are (K —1)S proportions

to estimate, 2K trend parameters and a. This is {K — 1)6' -h 2J< + 1 parameters in

total. For South Australia, in 1966-67, for example, there were S = 12 half-months,

K = 4 components so that 45 parameters required estimation.

Maximisation of the likelihood was not straightforward. Initially we chose a

derivative-f'ree optimisation algorithm, but it took several hours to converge. We

switched to a routine in which the user supplied first and second derivatives, which

converged in seconds.

Let
\ 92h
^9ff,90^

be the observed information matrix, where 0 is the vector of parameters, and 0^ is a

generic component. The asymptotic variance-covariance matrix is I~ . We actually

want the submatrix corresponding to a/,, ,3^ and logo-. In all trials, J-l could be

calculated directly without problem, and the relevant submatrix extracted.

We illustrate the method on the South Australian 1964/5 length-frequency

data. When we fitted the Leigh and Hearn mixture model with 4 age groups to the

1964/5 data, we obtained the results in Table 5.

Table 5: Leigh and Hearn (2000) estimates of linear

growth parameters: 1964/5 season.

age group growth parameters

k

1

2

3

4

a'fc

59.69

77.84

92.76

109.01

A
1.81

1.28

0.60

0.99

The estimates are derived from data from half-months 2 to 9, so that 59.69
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cms is the estimated mean length of one-year-olds at 5.5 half-months (mid-March)

and 1.81 cms is the expected increase in growth per half-month. We immediately

see a potential weakness of this method: if we extrapolate the one-year-old linear

growth model for 24 half-months, we predict that two-year-olds in mid-March will

be 59.69 + 24 x 1.81 = 103.13 cms, whereas the direct estimate is 77.84 cms.

It transpires that this is a bigger problem than might be anticipated. The

within-season growth for a particular age-group is being reduced to two summary

statistics (mean growth and slope), and this is simply insufficient to capture the

more complex growth patterns evident in Figures 2, 3 and 4. For this reason we

preferred to carry out the individual half-month analyses first, and to use the sum-

mary statistics from these as raw data for fitting growth models. This approach

does not come without some cost: first, the Leigh and Hearn (2000) approach is

unambiguous with respect to allocation of fitted means to age-groups, whereas the

individual analyses can be more problematic; second, the number of groups for a

Leigh and Hearn (2000) analysis is easier to determine.

It may be possible to compromise, and to fit a non-linear growth model us-

ing the Leigh and Hearn approach. The most common parametric models (such

as quadratics or exponentials) are not well-tailored to the data. However, a suit-

able model for initial analysis might be a monotonically increasing hyperbolic spline

growth model with an asymptote, somewhat similar to the models fitted by Grif-

fiths and Miller (1973). However, this is then quite complicated, and for simplicity

we prefer the two-phase approach of fitting the mixture model to each half-month

separately, generating suitable summary statistics, and then fitting a global growth

model from the summary statistics.
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Fitting a growth model to half-month summary

statistics

We assume that we have performed a mixture decomposition on the data for

each half-month, and we have generated a mode and an accompanying standard

error for each age group. Denote these by //, and s respectively. The standard error

s is obtained by inverting the observed information matrix. Let i index the season,

j the half-month and k the age-group. We assume that we can allocate a mean age

a to the fish at half-month j and age-group k. Then our initial model is

P'ijk = P-{a,.jk) +T.i + V,,y + c^ + e^fe + e.ijk

where /.((a) is the mean growth of fish of age a, and r, v, u, e and e are all independent

random effects. We assume that r ~ N(0,a^.), v ~ 7Y(0,o-^), uj ~ Ar(0,(7^,), e ~

N(0,cr^) and e ~ VY(0, s ). Thus T represents a random seasonal effect, v a within-

season random half-month effect, LO a within-season random age effect and c is a

within-season half-month age interaction. Finally, 6 represents sampling error, and

its variance is assumed known. Strictly speaking, e,,jk and e,jfc' for k ^ k and a given

'( and j should be correlated, because //,,:^ and f'l.ijh' have been derived from the same

mixture decomposition. In our experience such correlations are usually weak, and

they should be absorbed in the v^ random effects. Note that v^j and c^ik are crossed

within seasons — this is an occasion in which crossed random effects make sense.

The mean growth curve can depend on several (at least three) parameters.

A minimal model is the von BertalanfFy growth curve:

M = 11^ (1 - exp(-h-,(a - ao)))

where ^oo, K and GO are parameters to be estimated. It would be possible to add

the random effects to /<oo, to make K, depend on cohort and to make ao vary with

age-group, for example, but we prefer to fit the most parsimonious model we can

to the data. However, one complication cannot be ignored. We have already seen
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that growth within seasons is faster in summer than winter, and any model fitted to

length-frequency data must capture this effect. The seasonal von BertalanfFy growth

curve is

l{t) = Loo[l - exp(-K{t - to + (^/27r) sm(27r(A - w,)))]

where Us is the amplitude of the seasonal growth pattern and Wg is the phase. The

condition —1 < Us < 1 guarantees that growth is monotone, and it is customary for

length frequency data to impose the constraint —0.5 < Wg < 0.5 on the phase.

We assume that we estimate the parameters by maximising the likelihood of

the data. The data for each season are assumed independent, so we can add up the

log-likelihoods for each season. We can write the model in vector form as

p.i = ^ + IT,- + A^ + A^u,: + Ci + e,

where fli is vector of data and [i is the vector of mean growths. Also, Xy and X^

are design matrices: thus, X^jnj = 1 if element m belongs to half-month j and is

zero otherwise.

We need to compute the likelihood within a season. The log-likelihood is

log A = -0.5 log \V\ - 0.5(^ - ^'V-1 (ft - ^,

and V is the variance-covariance matrix of the data. Now

V =^I+D,+ a^V + alX^ + a^X^

where D^ is the diagonal matrix with diagonal elements d^m = s1^. We can write V

as

V = D + XX'

where D = o-j J + -Dg is a diagonal matrix and A'' = (o-T-l o'^A"i/ o-uA^) is a design

matrix. Most software packages are unable to solve the likelihood equations for

this model, because the user cannot specify in advance the value of any variance

component. We now indicate how to maximise the likelihood from first principles.
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We assume that we are in an iteration trial of an optimisation routine, so that all

parameter values are known, and we need to compute the likelihood.

When calculating the likelihood we need to compute \D + XX |, where X is

an n x p matrix, where n is the number of data values in the season, and p is the

number of design levels. Generally, n > p and sometimes n ^> p. For example, for

the 1980s length-frequency data from South Australia, we have

Table 6: Dimension of X by season.

season n p

1979/80 26 17

1980/81 30 17

1981/82 31 17

1982/83 24 14

1983/84 11 10

1984/85 34 16

1985/86 36 16

1986/87 30 14

1987/88 29 15

1988/89 18 12

Total 269 148

Computations involving matrices of order n are generally proportional to n3,

so if we can make the computations of order p rather than ?z, we should increase

speed by about (269/148) w 6 times. It turns out that this means about 2 or 3

minutes instead of 15 minutes, which is substantial.

We can use the following well-known identity to reduce the amount of com-

putation in this way: \I.n + A^Y/| = \Ip + X'X\, where |A| denotes the determinant

of the square matrix A, and J,. is the r x r identity matrix. Now \In + XX'\ is the
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determinant of an n x n matrix and \Ip + X'X\ is that of a p x p, so the latter

requires much less computer time to calculate. In fact, we need \D + XX \. Set

Y = D~V/2X, and note that

D + XX' = PV2(J + yr')D1/2.

Thus \D+XX'\ = |D||J+rr'| = |D||j+r'y|.

We also need to be able to compute (J + XX')~1. We simply note that

(J + XX')-1 =1- X(I + X'X)-1X'.

This result is easily checked. In fact, we need (D + XX')-1. Note again that

D + XX' = D1/2(J + YY')Dl/2.

Hence

(D + XX')-1 = D-1/2(J + rr/)-lD-1/2.

We need to compute (/( - ^)'(D + XX')~l(fz - jji). Set a = D-l/2(/i - /^).

Then

(ft - ^\D + XX')-1 {fi - ^ = a'(I + YY'Yla

= a'{I-Y(I+Y'Y)-lY')a

= a-'a-/3/(J+yT)-l/3

= a a — /3 7

where 7 is the solution of the equations (J + Y'Y)^ = /? and /3 == Y'a.

Finally, we compute the log-likelihood as

log A = -0.5dt-0.5r.

Using this methodology we can explicitly include the sampling error with known

variance. It appears to be impossible to do this in any of the major statistical

packages using the inbuilt commands for mixed modelling.
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It is sometimes helpful to calculate the gradient of the likelihood as well as the

likelihood itself. This can speed up optimisation routines. For a growth parameter

Oj, we have

9 log A _ ^ ,^/T^-i ^"if = ("-">'T"-I^'

For a. given suite of parameters, we first compute v^ = V~ {p.. — //,) efficiently, using

the dimension-reductions techniques described above. The vector of partial deriva-

tives Q^IQQ is then computed — sometimes there are specific features of the growth

curve that can be exploited to help calculate these quickly.

The variance parameters are slightly more problematic. For a generic additive

error structure,

v=E^
J=l

the general rule is that

= a, [-tr(V-1^) + (/< - ^)'y-l^V-l(/< - /.)],c)logA _ „ r ^T.'-IT^ , /,--. .^'T/-n/-T.-l,

9aj

where tr(.) stands for the trace of a matrix. Usually Vj is either diagonal or of

the form XjX'y, where the number of columns in Xj is small. The second term on

the right is just v Vj v^., and we have already computed v^, so this term is readily

computed for either form of Vj. If Vj = Dj is diagonal, then

tv{V-lD,) = ^ Dj,,,/Di, - tr(P,-l/2D-l/2y(J + y'y)-ly/z?-l/2D71/2).
•(=1

If Vj = XjX'j, then

tr(y-l.Y,X? = tr(X;.D-l.Y,) - tr(X;^-l/2y (J + V'Y)-1 rD-l/2Xj.).

The trace of a matrix M is the sum of its diagonal elements, but it is not always

necessary to compute all elements of M and then sum the diagonals. Thus for n x p

matrices A and B it is readily verified that tr(A/J3) = ^^i ^^AyBy. This can

be used to reduce the computational burden in most cases.
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Once the likelihood has been maximised, we need to calculate the random

effects. It is usual to use the BLUPs:

t, = a^vv-\p,-p)

P, = alxy-1^-^

u}i = ^x^/ (ft -1-1')

e, = 6-^y-l(;u-ju)

Using our usual notation,

V-\^-^)=D-ll\a-Y^.

The standardised BLUPs are obtained by dividing through by the relevant

standard deviation:

Ti/ar == a^l'V~l(i:i- ^i)

Vi/a^ = a^ A^y-l [jl - p.)

i^i/^ = a^X^V~Y[fi- ^

e,/0g = CTeVr-l(^-/A)

These are scale invariant. The corresponding true standardised random effects (e.g.

TZ Or} have mean 0 and variance 1. If Or = 0 for any random effect r, then the

BLUPs and standardised BLUPs are obviously 0.

Trials of this method proved reasonably satisfactory when analysing length-

frequency data alone. The parameter estimates when fitting a seasonal von Berta-

lanfFy growth model to the 1960s, 1970s and 1980s summary statistics are set out

in Table 7. We fixed /^oo at 185 cm, because there were no data bearing on this

parameter.
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Table 7: Fitted VB growth model parameters, South Aus-

tralian Length-Frequency data

decade //oo K GO u.s ws ar ov aw ae

1960s 185 0.146 -1.46 0.878 0.088 0.557 0.620 1.182 0.997

1970s 185 0.141 -1.51 0.902 0.108 1.551 1.171 2.306 1.780

1980s 185 0.170 -1.16 0.720 0.185 1.428 0.010 1.461 1.911

combined 185 0.154 -1.32 0.753 0.130 2.454 0.831 2.152 1.738

The fits for the separate decades were not perfect: for example, the one-

year-olds in the 1980s did not quite fit the growth model. However, the fits were

adequate for preliminary interpretation. The growth parameters for the 1960s and

1970s are almost identical, but growth appears to be faster in the 1980s. The

seasonal parameters u, and 'Wg appear to be quite sensible. The random effects

standard deviations do not show much consistency: about the only real pattern is

that o"^ and 0'g tend to be larger than a^ and cr,^. This inconsistency may simply

reflect the lack of fit of the growth model.

A rather interesting pattern of random effects emerged from a combined anal-

ysis of all the length-frequency data. The estimated seasonal effects f, are shown

in Figure 6. These are supposed to be estimated realisations of independent ran-

dom effects, but they follow a reasonably smooth trend. It seems likely that growth

has been changing systematically over these three decades, and that this should be

incorporated into a time-dependent growth model. We attempt this in Appendix 8.

The method was not robust when used in an integrated analysis of tag-

recapture, otolith and length-frequency data: for example, either 6'r = 0 or a^.

was very large. Partly for this reason, and partly because of the inconsistency in

the estimates of o-r, a^, cr^ and (Tg, we decided to employ a simpler model

flijk = P'{aijk) + Cijk + ^.jk

when doing an integrated analysis.
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Other approaches

The approach adopted by Leigh and Hearn (2000) and the two-phase method

recommended in this paper are convenient, but more general approaches are theo-

retically possible. Here we outline two possible directions for future work.

Mixtures with multiple components of variation

A Gaussian mixture model with K components may be written as

L=Y,hZk .
fe=l

where Zk ~ N(^/;,o-j), Zi,Z2)...,^/< are independent and the Ik are indicator

random variables such that J^: == 0 or 1 and Y,1^ Ik = 1- There are various ways of

generating J/;, but a sequential method is appealing:

l. h = Jr,

2. J2 = (1 - W;

3. h = (1 - ^i)(l - W;

and so on, where Jk are independent Bemoulli random variables with Pv{Jk = 1} =

pk, so that Pr{Jfc = 1} = '"'A') where TT/; = n^(l — pj)pk- It is convenient to define

the vectors I = (Ji, ..., Jj<) and Z = (Z^,..., Z/<) .

When we have a sample of size n, the model becomes

K

Li = ^ ^fc^fc
A;==l

where J(.;) = (1^,..., J,/<)' ~ I and Z(,) = (Z,i,..., ^,j<)/ ~ Z are independent from

fish to fish. This model generates the likelihood (1) that we maximise for a single

sample.

If there are multiple sources of variation, then we can generalise the mixture

model by setting

Zih=T+Vi+Wh+E,k
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where T - N(0, a^), V, - 7Y(0, a^) (z = 1,..., 72), M4. - ^V(0, ^) (A; = 1,..., A')

and Ej.k ~ N{p,k, o-j) (i = 1,..., n; A' = 1,..., K) are all independent. Then

L,=T+V,+^I,,(Wk+E,h).
k=l

Note that the marginal distribution of \V* == Z^<Li IzkWh is N{0,a^), but that

the correlation between W^ and W^i is I^TTJ when ^ ~^- i'. Hence W* represents

covariation between L.i and L,:' intermediate between that caused by T (correlation

1) and Vi (correlation 0). For this reason, it is probably more realistic than either

T or V,.

We first look at the effect of Vi. Consider a, single observation, so that tlie

model is
K

L=V+^W.
fc=l

where V ~ N(0, o-^), Ek ~ A^(^fc, o-j) and V and (£'1,..., E^) are independent. We

write the density of V as g{v) and of £/; as gk(e). Then

•00

Pr{L = 0 = / Pr{V = v] Pr{L = l\V = v} d,v
—00

K•00

Pr{V = ;.} Pr{^ hEk = I - ^ = v} dv
r-00 h=l

foo (_K_

9{v} {Y,-^k9k{l-v}\ d,v
'-°° lfc=l

JL /'°°

= Z/ 7rfc / fi'M ^-(^ - v) dv.
fc^l J-°°

Now f°° g{y') gk(l — v} dv is the density of V + E^, which is N(^h, o'1 + o-^). Hence

K
Pr{L=/}=^7T,^(Q

A-=l

where <j)k is the density of a A^/;,o-,2 + o"j) variate. Thus L is a Jf-component

Gaussian mixture, in which component k has mean ^ and variance o-^+o"^. At first

sight this result seems rather curious, because (V + E-i,... ,V + EJ(} are correlated

through the common V. However, (I-^V,... ,IKV) are uncorrelated. In words, only

one Eh of (£'1,..., EI{) is chosen, and the realised value is V + E^. If component
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k is chosen, the value of the other components is efFectively 0, so their dependence

on V is irrelevant. From an inferential viewpoint, we can forget V in the model,

because its effect is to simply inflate the variance of component A;.

Hence, without loss of generality, the mixture model with multiple compo-

nents of variation can be reduced to a hierarchical model

Z-ik = T + H4- + -E'zfe

where T ~ 1V(0,^), T/7, - N{0,a2J [k = 1,...,JQ and E,,. ~ JV(^,aj) (z =

1,... ,n;k = 1,..., JC) are all independent.

Temporarily drop T and consider the model

K

L,=^I,h{Wh+E^
fc=l

The log-likelihood of data generated from this model is difficult to compute, because

the data are dependent. However, we can ameliorate the situation somewhat by

writing

Li=T+ V, + Z,

where Z, is the Gaussian mixture,

K

Zi = ^ likEik ,
k=l

K

T = Y^-KkWk
k=\

and
K

Vi = ^ {lik - T^k)Wk .
k=l

Then T and Z; are independent, T and V, are uncorrelated, and V.i and V, are

uncorrelated for i ^ j. If we treat T and Vi as independent, then we can calculate

the likelihood of the data. We leave this for future investigation.

Variable spawning times

The spawning period for a species can be quite broad; for southern bluefin

tuna, spawning lasts for several months. Thus far, our modelling has not taken into
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account variable spawning times. To explore this issue, consider fitting a generic

growth model to a single sample. The growth model for a single fish of length L

and age a is

L = L^f(a- a,o;0) +e,

where Loo is asymptotic length, ay is the extrapolated age (usually negative) at which

the fish has length 0, and / is a monotonic increasing function with parameter set

6 that equals 0 when a = CI,Q and approaches 1 as a —> oo. For the familiar von

BertalanfFy curve, / = 1 — exp(—ff,(c( — ao)) with 0 = {/?}. We normally assume that

Loo is Gaussian with mean /.;,oo and variance cr2^, and that e is Gaussian with mean

0 and variance o-2. Hence L is Gaussian with mean and variance

M") = /l/-oo.f(a-ao;0) (2a.)

^IW = <^/2(a-ao;f9)+a2. (2b)

Recall that the majority of southern bluefin tuna. spawn between about

October and March, with the midpoint estimated to be January 1. The youngest

fish present in South Australian waters in a given year (say 1970) will be the one-

year olds spawned during the previous spawning season (between October 1968 and

March 1969). We assign them the index k == 1, and denote the proportion of one-

year-olds by TTi. In general, there are TT/,, fish of age k. For a ^'-year-old fish caught

at fractional time t into the year, the age of the fish is fc-h^+A, where A represents

the variable spawning time. We assume that A ~ N(0, cr|). The mean is 0 because

peak spawning is assumed to occur on January 1, and OA is about 6/52, so that

about 70% of spawning takes place over a 12 week period centred around January

1. Note that A > 0 for fish spawned early in the season (prior to January 1), and

A < 0 otherwise.

Let the random variables K and L denote the age group and length respec-

tively of a randomly caught fish. Then

•00

Pr{L = 1} = Y^ I Pr{L = /|A = S, K = k} Pv{K = k, A = 5} dS
T J-co
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= ^vkL
-I

(/)({l- l^s)/(7s) <Wa^)_^
~j~ J-oo O'g (TA

where ^s = p-L^s), a-s = 0-^(05) (see equations (2a) and (2b)), as = k +t + S is the

age of the fish and (/) is the standard Gaussian density function. The integration

must be carried out numerically. This is not difficult in principle, although we have

not seen such an analysis in the fisheries' literature. If we make the assumption that

05 == ffL^k+t) so that it does not depend on S, and that ^s is (locally) linear in 8 (so

that jjis w p,L{k-\-t}+/38, where /3 = //^(fc+<)), then we can carry out the integration

explicitly. We end up with a Gaussian mixture model in which component k has

mean ^L^k +1) and a slightly inflated variance o^(k +t) + /3 o\. This is effectively

what we are doing in our data analysis, where we assign all fish in age group k

the age k + t. For most commonly-used growth models, a^k + t) increases with

age-group k, but f3 declines with A;. These counter-balance to some extent, and as

a compromise we fit constant group variances when fitting Gaussian mixtures to

length-frequency data.

In practice, the proportions TT^. will vary considerably between half-months

because of the schooling nature of southern bluefin tuna, their highly patchy distri-

bution and differential movement/migration with age. Additionally, there is proba-

bly considerable year-to-year variability in the porportion of an age-class that comes

from a particular period in the spawning season

Conclusions

The results in this Appendix confirm the usefulness of length-frequency data

for understanding growth processes, and that within-season growth can be detected

and modelled. A number of previous publications have investigated how such growth

information can be extracted. However, our study emphasises features that previous

studies have not considered in detail.

1. Length-frequency growth patterns do not conform tightly to parametric growth

curves. There appear to be significant additional sources of variation operat-

A7- 27



Appendix 7: Fitting growth models to length-frequency data

ing between seasons, between age-groups within seasons, between half-months

within seasons and between age-groups and half-months within seasons (in-

teractive effects). We are unable to offer explanations for all of these effects

in terms of covariates, and suggest that initially they should be modelled as

independent hierarchical and crossed random effects. Otherwise standard er-

rors of growth parameters derived from length-frequency data are likely to be

optimistically small.

2. Despite this complexity, each decade of southern bluefin tuna data consistently

exhibits a seasonal pattern, in which growth is fastest over the summer, but

flattens off' in autumn. We propose that this seasonal growth can be modelled

using a sine curve with amplitude and phase parameters estimated from the

data.

3. Broad changes in growth from year to year can also be observed from the esti-

mated between season random effects. For southern bluefin tuna these appear

to be rather smooth, and suggest that they should be modelled as systematic

effects rather than random effects. At a qualitative level, the mean length of

one-year-old fish has changed only in minor ways between 1960 and 1990, but

the age four fish in 1990 are considerably longer than those in 1960. Quanti-

tative modelling of this trend is a large topic, which consider in Appendices 8

and 10.

Although length-frequency data provide unique and valuable information for

modelling growth, they generally do not contain information on older individuals

and thus are not adequate by themselves. The modelling approach used in this

Appendix required us to assume a mean asymptotic length for southern bluefin

tuna. We chose a value of 185 cm based on other studies, but, the results over the age

range represented by the length-frequency data are not sensitive to the value chosen.

Tag-recapture data uniquely provide good information on individual fish variation,

because there are two measurements per fish rather than one. The available otolith
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data are biased towards older fish, and thus provide direct information on the mean

asymptotic length. A comprehensive model for southern bluefin tuna. growth requires

an integrated analysis of length-frequency, tag-recapture and otolith data, each of

which provides essential input into the final model.
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Figure 1. South Australian 1981/2 length-frequency data and fitted Gaussian mixtures.

The scaled length-frequency data are plotted for the first half of December, January,

February, March, April and June (half-months -1,1, 3, 5, 7 and 11 respectively). For each

period, a Gaussian mixture with 2, 3, 4, 3,4 and 2 components respectively has been

fitted. For the vast majority of half-months the number of components to fit was self-

evident. Mostly the fits were excellent, but fhe 1981/2 season has been chosen

deliberately to illustrate a case where the fit was problematic (half-month 7).
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Figure 2. Fitted modes for age-groups 1, 2, 3, 4 and 5+ in the 1960s plotted against half-

month. The estimated modes from the Gaussian mixture fitting program have been

assigned to age-groups, with 1, 2, 3 and 4 year-olds plotted as circles, triangles, plusses

and crosses respectively. (Diamonds correspond to 5+ year-olds, but we do not use this

data in subsequent analyses.) The 2 and 3 year-olds are numerically dommant, and on

average their modes tend to increase up to half-month 6 and then flatten off, reflecting

faster summer growth.
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Figure 3. Fitted modes for age-groups 1, 2, 3, 4 and 5+ in the 1970s plotted against half-

month. The symbols are the same as in Figure 2. Although the seasonal growth pattern is

still evident, the plot is not as 'clean'.
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Figure 4. Fitted modes for age-gronps 1, 2, 3, 4 and 5+ in the 1980s plotted against half-

month. The symbols are the same as in Figure 2. There is good separation between age

groups and a clear seasonal growth pattern.
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Figure 5. Overplot of the 1960s, 1970s and 1980s modes versus age. This suggests that

growth in the 1960s and 1970s was similar, but that fish grew faster in the 1980s. The

difference between the 1980s and the previous two decades is not very obvious for the 1

year-olds, but is very obvious for the 4 year-olds.
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Figure 6. Estimated between-season effects plotted against season. These are supposed to

be estimated realisations of independent random effects, but they follow a reasonably

smooth trend. It seems likely that growth has been changing systematically over these

three decades, and that this should be incorporated into a time-dependent growth model.

The complex pattern in the 1970s may explain the poor separation between age groups in

Figure 3.
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Introduction

The van Bertalanffy curve is the dominant and primary model of fish growth.

It states simply that a fish grows exponentially in length as it ages. More exactly,

fish growth is proportional to 1 — exp(-Ka), where K. is an unknown constant and

a is the age of the fish. The proportionality factor is sometimes a constant, but in

modern studies is more often a random variable representing the asymptotic length

specific to a given fish quite. The van BertalanfFy curve adequately describes fish

growth for many species, and, although many alternative models of fish gTowth

have been proposed, its prevalence persists. Part of its popularity can be ascribed

to its simplicity, and part to its derivation from a differential equation that is easily

generalisable to more complex growth environments.

Modelling fish growth is important because it forms a direct input into stock

assessments, from which sustainability of the fishery can be assessed, and quotas and

other management measures can be determined. Southern bluefin tuna are of huge

commercial importance to Australia, and have been intensively studied over many

decades. A large spatio-time series of data has been accumulated, which, for our

purposes, means that changes in growth might be estimated. Very few Australian

fisheries enjoy such a sustained level of recording. With southern bluefin tuna levels

falling to marginally sustainable levels, it has become more important than ever to

understand the growth patterns of this species.

In this Appendbc we generalise the von Bertalanffy growth curve by making K

a smooth function of time. We adopt a parametric modelling approach, but employ

enough parameters to capture long-term changes in growth. Om- parametric model

is sufficiently flexible to imitate regression splines, but nevertheless is an explicit

expression that can be stably evaluated without recourse to any recun'ence relation.

Om- philosophy is to commence with a simple growth model with complex error

structure. We estimate the error components, examine the estimates for non-random

structure, and transfer such structure to the growth model. Om- final model is a

reasonably complex growth model with non-trivial error structure.

A8-2



Appendix 8: The van BertalanfFy growth curve in a changing environment

In this Appendix we introduce some alternative time-varying von Bertalanffy

growth models, including a link to polynomial splines. We demonstrate how to in-

corporate seasonal growth rigorously and suggest how to generalise the time-varying

von Bertalanffy growth model to a more complex growth curve. Finally we fit the

time-varying von BertalaiifFy growth model to some length-frequency data and some

tag-recapture data.

The von BertalanfFy growth curve in a changing

environment

Wang (1998) has proposed the following generalisation of the von BertalanfFy

growth curve. Suppose a fish has length 0 at time to. Then the growth rate at time

t is given by

l\t) = (Loo -l(t))k(t), (1)

where k(t), the function that controls the growth rate, may depend on time, but

the asymptotic length Loo, although random, does not change its distribution with

time. The solution is

l{t) = L^[l-exp(-J<(^))]

where K(to,t) = f^ k(u)du. The von Bertalanffy growth curve is recovered if

k(t') = K for all t, but we wish to model the growth curve in an environment in

which the growth curve is changing with time. An advantage of this approach is

that covariates that explain the change in growth may easily be introduced into

the model, as Wang (1998) has indicated. However, our thrust in this paper is to

provide models when it has been observed that growth is changing, and we merely

wish to describe the change in growth through modelling. We first propose various

ways in which k(t) may be modelled in a flexible but parsimonious manner.

It would be rather simpler to generalise the von Bertalanffy by substituting a

time-dependent growth rate function k(f) for K in
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Loo(l — e'xp(—K,(t — to))). However, the derivative of this form does not have a

simple interpretation.

Logistic time trends

We first suppose that the growth rate k(t) varies according to a series of su-

perimposed logistic curves. It is clear intuitively that such a model has the capacity

to follow changes in growth. It is aimed at situations in which a von BertalanfFy

growth curve applies, then a change in environment dictates that growth changes,

until a new von Bertalanffy growth phase is achieved. The model allows for several

such transitions, often in concert. Thus, set

W = .&+Ete-&)^^_^_^. (2)

where 0:1 < a^ < ... < a,i and /3 > 0. Note that t is time, and hence spans the

whole real line. As t —f —oo, k(t) —>• n^o, and as t —> oo, />-(^) -4- I^^Lid- The

^ values can be any number, positive or negative subject to k(t) > 0. We could

also make /3 depend on z, but that is likely to make the model over-parameterised.

Although equation (2) encapsulates the reasoning for this model, it is not a suitable

form for computation. In fact, we investigate two alternative parameterisations of

the model. The first compares and contrasts our approach with that of polynomial

splines. The second is computationally robust, and is particularly suitable for non-

gradient optimisation methods.

First alternative parameterisation

There is an indirect link between (2) and quadratic B-splines, which we ex-

plore further in a later section. This provides some insight into the behaviour of the

model. We set the scene here. Set

k(t) = ^Kib,(t)
t=0

where

bo(t) = 1-
1 + exp(-/3(< - ai))
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bi(t) = 1 +exp(-/^ - a^ ~ 1 +exp(-/^ - a,^)) for ' = l"--'n- 1

w == . , „„„/ \1 + exp(-/3(t - a.n))

The ^s may be recovered from the KS by ^o = Ho/n and ^ = ^—^-i+Ko/n. The 6,(^)

functions share some of the properties of natural polynomial B-splines, particularly

quadratic B-splines (Schumal<er, 1981, Section 8.2). They are non-negative, and for

1 <, i <^ n — 1, bi(t) is unimodal with its peak at (a, + a',+i)/2. In addition, &o(^)

decreases from 1 to 0 and bn(t) increases from 0 to 1 as t increases, as with natural

B-splines. Obviously Z^Lo^W = 1 ^or any ^ The fc,(^)s differ from B-splines in

that they have infinite rather than finite support; that is, they are non-negative for

all t, not just a finite range. Also, they depend on a parameter, (3, unlike B-splines.

They are more easily computed than B-splines, which is why we prefer them.

The B-spline properties of the bi(t) functions have important consequences

for modelling. First, as t —> —oo, k(t) —> KQ and as t —> oo, k(t) —> Kn, so that KQ

and K,n are easily interpreted. Also, it can be important when fitting the model to

data to confine k{t) to a sensible range of values. If K.I <, Ki <: Ky for all i, then

K[ ^ k(t) <, K,u for all t. When fitting this model to data, one or more of the bounds

may be reached during the fitting process. Such bounds need to be expanded and

the fitting routine re-run. Even though it is much preferable to (2), convergence can

still be quite slow with this parameterisation.

Suppose the fish is of length 0 at time ty. An advantage of the logistic form

is that it can be explicitly integrated. The key identity is

dt log(l + exp{-f3{t - a)))
1 + exp(-/3(* - a)) " ' f3

Thus

f'w^ = zML^M

r W dn = '"•W -1.W]-[^(t)-^W] fo,,,^.,^^
'to

f\ /-.^. . . . , T1n(f} - r]n{to)
bn(u} du == t - to +Ao""^/""' " "u ' /3
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where i]i(t) = log(l + exp(—/3(^ — a;))). Hence the growth curve for a fish with

length 0 at time to is

1 _|_ g-W-a.) 1 -(^i-^-l)/^

Wo) = j^ii-e-^-^n
tL I 11 + e-^°-Q') (3)

if t ^ ^o- Of com-se, l(t \to) = 0 if A < to. Note that the growth depends on all n

component logistic growth rate curves, even if to > a, for some i.

Suppose we set K, = K for all i. Then (3) becomes the simple von BertalanfFy

model with growth rate parameter K.

For model building, we suggest two approaches:

(a) fixing the a, values on a regular grid spanning the data, with a maximum

density of one a per year, and then estimating the KI values with the other

parameters associated with A and the error structure;

(b) fitting the a, values, but making n as small as the data allows.

Capture-recapture data: Suppose that the time from to to iirst capture is a random

variable A, initially assumed to be identically distributed for all fish. Then,

conditional on A = a, we can set to = t^ — a, so that (3) becomes

1 + g-/3(*-".) 1 -('<.-^-i)//5'

l{t\t,,a) = L^ | 1 -e-K"(^+Q) n
,"LX I [1 + e-/3(*i-a-a>)

(4)

Hence we can \vrite down the joint likelihood of ^i, the capture length at time

^i, and ^2> the recaptm'e length at time t^. At time t = <i, ^ — ^i + a = a, the

age at capture, and at time t = t-^, t —t\ + a = 03, the age at recapture.

A complication is that the distribution of A may depend on t, particularly if

the tag-recapture data extend over three decades, as is the case with southern

bluefin tuna. The modelling can still be done, but requires that p(a\t), the

density of A, must depend on time. If A was log-normal for example, we might

assume that the mean of log A depends on time, but not the variance.
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Length-frequency and otolith data: For length-frequency and otolith data, we know

the age a and the time t of length measurement for each fish. We also know

the time t. To model the data, we set ty = t — a, + ao, where ay is a parameter

to be estimated. It is possible that we may need to allow ao = ao(t) to be a

simple function of time. Note that a > 0 and usually ao < 0, so that ty < t.

Thus when analysing otolith or length-frequency data we do not have to worry

about forcing l(t\to) = 0 for t < to.

Second alternative parameterisation

Although B-splines are often recommended for computation, there is another

way to parameterise the model that is more robust, in our experience. It can be used

for all data types, although we illustrate it with length-frequency data. Choose n+1

times 0o < 6-i < ... < On and let IQ, ..., In be the mean lengths of, say, two-year-old

fish at these times. It is important to choose an age group ag heavily represented in

the data, and two-year-olds dominate the tuna catch. The 0o,... ,0n may be fixed or

variable. One possibility is to set 6j = (aj + a,-n)/2 for j = 1,... ,n— 1, and OQ and

On the start and end of the data collection period. We use IQ,. .., In as parameters

in place of KQ, ... ,Kn- Given all the parameters, solve the following n + 1 linear

equations for K,n and Kja = Kj — Kj-i'-

n

log(l - k/^) = -Y^ dij Kjd - {ae - ao) Kn
J=l

where

di, = [log(l + exp(-/?(0, - a,))) - log(l + exp(-/3(^ - a@ + ao - a,)))]//?.

for i = 0,... ,n. In rfy, and elsewhere in this Appendix, we calculate log(l +exp(rc))

in a stable way as log(l + exp(a;_)) + x+ + log(l + exp(—a;+)) — log(2), where x^. =

max(a;, 0) and x- = x—x^.. This is suitable for scalars, vectors, matrices and arrays.

Solvers for such linear sets of equations are available in most mathematical

computing packages. The Kjd {j = l,...,n) and Kn are precisely the quantities

required for calculating the mean lengths for all the data. The advantage of this
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parameterisation is that the data bear directly on the lj parameters, and it is very

easy to constrain them to sensible values. Such stable parameterisations for non-

linear models were promoted heavily by Ross (1975), and in more detail by Ross

(1990). They are very useful when used in conjunction with gradient-free opti-

misation methods, but gTadients and Hessians can be tedious to compute. Stable

parameterisations of fish growth models have been promoted by Schnute (1981) and

Francis (1988).

Polynomial spline trends

It is not compulsory to use logistic cm'ves to model the trend, and we illustrate

alternatives. Perhaps the most obvious is to use cubic splines, which can also be

explicitly integrated. Thus, set

n

A"(u) =^i1iBi(ii)
i=l

where Bi(u) are the B-splines for a fixed set of knots. A cubic B-spline typically

consists of a set of 4 smoothly linked cubics on 4 adjacent intervals: the B-spline

has finite support and looks somewhat like a unimodal hill. To compute B-splines

in a stable way, it is necessary to use a recursive algorithm. Mathematical packages

will often have routines to calculate B-splines. However, we need the integrals of

the B-splines, which are not generally available, so we move on to another type of

spline.

It is important to clear up immediately the differences between the logistic

b-splines bi(f) and the polynoraial B-splines. For equally spaced knots, the logistic

b-splines have their maximum half-way between the knots, as do the even order

polynomial B-splines (quadi-atic, quartic and so on). We examine quadratic B-

splines, which we differentiate from cubic B-splines by using the symbol Q. For
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knots at 0, 1, 2, 3 the quadratic B-spline with maximum at 3/2 is

Qi{x) =

x2/2

{-2x2 +6x- 3)/2

(3 - x)2/2

0

0^a-<l;

1^2-^2;

2^2-^3;

otherwise.

For knots at 0, 2, 4, 6 the quadratic B-spline is

Q2(X) =

(^/2)2/2

(-2(.r/2)2 + 6{x/2) - 3)/2

(3 - x/2)2/2

0

0 ^ x ^ 2;

2^2-^4;

4^3-^6;

otherwise.

The relationship is clearly Q^x) = Qi(rc/2). If the spacing is h, then Qh{x) =

Q^x/h). This of course covers changes in scale.

We first compare Q\(x} with the logistic b-spline b\(x} with knots at 1 and 2

and maximum at 3/2. If we search for the f3 that minimises J(&i(a;) —Qi(a;)) cfcc, we

find that f3 = 3.988. As an aid to memory, we adopt /3 = 4 as a good approximation.

Visual inspection suggests that 6i(rc) and Qi{x) are very similar, with the maximum

absolute difference being 0.021 at x = 0.1 and 2.9. The peak values are about 0.75.

It follows immediately that if the spacing between the knots is h, then bh{x)

(with knots at h and 2/z) and Qh{x} (with knots at 0, h, 2h, 3h) agree most closely

when f3 = 4:/h. If we choose n uniformly spaced knots to span data with range r,

then h = r/n. Hence we recommend choosing f3 = 4n/r when fitting the logistic

model (3) to such growth data. This argument assumes evenly spaced knots, but

we suggest that this choice of /3 is reasonable when fitting unequally spaced knots

as well. We suggest that /3 should be fbced at this value at least until the final form

of the model is established.
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Hyperbolic splines

We can also use hyperbolic splines. Thus

n

k{t) = ^o+/.nt+^^h,(t), (5)
i=l

where

W =^{t- a,)2 + 72 +1 - \/a? + 72

It transpires that hi(t) has an explicit integral. Let

h(x) = vA'2 + 72 + ^.

Then

2 / h(x)dx = xh(x) + 72 log h{x) + c == 4r(x) +c

where c = 7 log 2 is a constant. Thus

2hi (t) =h{t-ai)+a

where Ci = a', — \/af + 72. Hence

"t ft

4, hi(ii)du =2 {h(n - ai) + c.i) clu
'to -'to

= 2 / (^) + c,) ^
i—a,'to-a,

(t - ai)h(t - ai) - (to - a.i)h(to - a',)

+ 72 log h(t - a,) - 72 log h(to - a,) + 2(t - to)Ci

^ 4(r(^ - a,) - r{to - a-,)) + 2(^ - ^o)c,.

Hence the growth curve for a fish with initial length time to is

l(t\to~) = Loo fl - e-^o(<-*°)-'ul(*2-t§)/2+E,'Li'?<[r(t-a')-'-(*o-a')+(*-to)c,/2]''

The logistic trend curve model seems a bit neater. Of course, we could difference

the hyperbolic functions to express the model in terms of hyperbolic B-splines.
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Seasonal effects

Southern bluefin tuna, in common with many other fish species, grow much

faster in summer than in winter. We would like to be able to incorporate such

seasonal effects into our growth model. A common model for the seasonal von

Bertalanffy curve is

l\t) = (Loo-^)Ml+^COs(27T(^-W,))),

where K is a constant and Us is the amplitude and Ws is the phase of the seasonal

effect. The amplitude has bounds —l<Us <: 1 so that I (t) is non-negative, and it

is convenient to constrain the phase to —0.5 < Ws ^ 0.5 for southern bluefin tuna.

When integrated we get the model

l(t) = Loo[l - exp(-K (t - to + (us/27r) {sin(27T(^ - w^)) - sin(27T(*o - ^s)})]

It is usual to just fit the model

l(t) = LOO [1 - exp(-K (t - t'Q + (us/27r) sm(27r(< - w,)))]

by combining the constants ty and (^,2^) sm.{2n(to — Ws)) into t'Q, but is must be

borne in mind that ty is no longer the time of 0 length.

We now turn to the situation in which K. is a function of time, k(t'). For

explicitness, focus on the logistic trend model for k(t). There is a trick to including

the seasonal effect in this type of model. Let s(t) == (us/27r) sm(27r(^ — Ws)) be the

seasonal effect. Then we generalise (1) to

l\t) = {L^-l{t))k{t+s){l+s'), (6)

where s = ds/dt. Of course, this is the same general form as (1), because k(t +

s)(l + s/) is just a function of time. The trick is to include k(t + s) in (6), rather

than k(t). Now note that

1 + s/ ^_/. . ^ , MI + exp(-/^ + s - a)))
!l+e^(-0(t+s-a))dt={t+s)+l+exp(-^+s-a))"u '' ' "/ ' /3
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Hence

1 + e-/?(t+s-a,) ^ -(Ki-K,^)//3-

Wo) = 2.0011 - e-Kn(t+s-to-so) n

i=l
1 -)- e-/3(*o+so-a,)

Thus we have an explicit rigorously derived equation including the seasonal effect.

If desired) SQ may be absorbed into to.

When analysing data, we use the following forms.

Capture-recapture data: Equation (4) generalises to

" F ( 1 -L ^>-/?(t+s-a,) 1 -(^-Ki-l)/0~

a} = L^ {1 - e-K"(f-tl+a-so)
EI, a.) = 2.00 ^ - e -"- - • - -u/ y j <j ^^g_^(^_a+^_a,)

where a is a realisation of A, the random time between length 0 and capture, and

«o = s(ti — a). When t == t^ — a, l(t\t^, a.) = 0.

Length-frequency and otolith data: We know the age a of the fish at capture. Hence

to = t — a+ cio and

1 + g-W+s-a,) 1 -(^>-^,-i)//3]

l(t\a,ao) = Loo | 1 - e-Kre(a-(IO+s-so) n
^ -I- g-/3(t-ci+ao+so-Qt) 17)

where SQ = s(t — a + a.o). When t = to, a = ao and s = SQ, so l(t\a, ao) = 0. For

length-frequency data, and sometimes for otolith data, southern bluefin tuna are

assigned 1 January as a birth date, so that t — a is an integer. Hence SQ = s(ao).

When using optimisation routines to fit this model, it is helpful to have ex-

plicit expressions for the first derivatives. For the record, the formulae are given

below. For a generic model of the type

^(^) = Loo (l - e^0))

where 6 is a vector of parameters and p(.) is a function, the partial derivative of

l(t; 0} with respect to one of the parameters is

9l(tlffl-^T. -1^.^QP^el-^-=-(^-^))^-

For the model (7)

^ (f^ _ ^
p(t; 9) ^ = -/v,,(a -a.o+s-so') -j_^ a pi

t=l
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where

Pi == log(l + e-/3(*+s-a<)) - log(l + e-/3(f-a+ao+so-a!)).

Hence the derivatives with respect to K are

Qp
QKQ

Qp
Qnj

9p
QHn

The derivatives with respect to a are

Qp

= Pl//3;

= (P, - Pj+i)//3 for 1 ^j <,n- 1;

= Pn//3 - (a- ao+s - so) •

p _ /,. .. ^ 1
^ = -^•-^•-^<[l+e-^-^QOj ~ v"3 IV3-1;\ 1 + e-/3(*-a+<.o+.o-a,) (1 + e-/?(t+.-a,))

for 1 <^ j ^ n. The derivative with respect to ao is

^ = (l+s»^

where S'Q = s'(t — a + ao) == Us cos(2'K(t — a + 0,0 — 'u;s)) and

"^ 1

Q = Ko + I>z - ^-l)^g-^-a+.o+.o-a.)) •

The derivatives with respect to Us and Wg are

9p _ ^ ( 9s 9so\ 9s ^,^ ^ ^ , 9so^
^ = ~KO[9u,~9^J~au,LAKi~Ki-l)Hi+Q^LAKi~Ki-l)Hoi

9p _ , ( Qs Qs,\ 9s ^ ^ ^ , Osov-
~KO I ci ~ ci I —' ci ^ ^^Kt — K'i-l)-tti + '?,— ^ ^^Kt —' Ki—l)n0i

Js -u \9Ws 9Ws) QWs^C'" ""/--t • Qwg^

where

Rj = 1 + e-/3(t+s-a,) ;

1
Rfii =i0j

\ -)_ Q—/3(t-a+ao+so-aj)

A time-varying VB log A; model

So far we have only discussed the time-varying von Bertalanffy model. There

are many other growth models that may be preferred. In Appendbc 4, we introduced
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the 'VB log k' model, defined by

k(t) = ^+(fc2-fci)r—^—J^—-^. (8)
1 + exp(-/3o(t -to- a'o))

Here t represents time, but the model only depends on age t — to. For t <C ty + a'o,

k(t) w k.i, and for t » to + ao, fe(^) ^ ^2- As < increases, k(t) mal?es a smooth

transition from fci to k-^. The rate of transition is governed by f3o, being sharper for

larger /3o. We discovered that the model provided a significantly better fit to 1980s

southern bluefin tag-recapture data than a simple von BertalanfFy model.

The obvious way to make this model depend on time is to make A-i and k^

functions of time:

(.«) = fe«) +(fe(t)-^«»^^(_^_t, _„„)). w

In general this model is intractable, and probably over-parameterised, but there is

one obvious tractable case, namely to set ki(t) = k(t), defined in equation (2), and

^2(^) — ^l(^) = ^"21) a- constant. This case assumes that k-^(t) and fcz^) vary in

parallel. If k-t(t) = K for all t, it becomes the VB log A; model, and if A-ai = 0, it

reduces to the time-varying von BertalaiTffy model.

For the tractable case,

'•* . . rt

k(zi)chi = I k-^{u} du-\-k^(t — to]
'to Jto

k-.

(log[l + exp(-/?o(^ - to - ao))] - log[l + exp(ao/?o)]) .
k'21

A)

Hence the growth curve for a fish with initial length time to is

l(t\to) = Loo (l-e-K(f-t0)^,^)) (10)

where

g(t,to) = n
i=l

1 + g-/?(*-a,) -i -K'd/^'

1 + e~/3(t°~a')

1 4- e-'3°(*-to-ao) I -w/30

1 -I- g/?o QO
(11)

for t >.ty, K. = K.n + /i-21 and Kid = KI— Ki-i. Of course, ^ ^o) = 0 if ^ < <o- We shall

not attempt to fit this model to any data in this chapter.
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The seasonal version of (10) is

IW = Lo, (l - e-^+^o-o) ^ + s, ^ + so)) .

Decade by decade analysis of both length-frequency data and tag-recapture

data suggests that the traditional von Bertalanffy model is an adequate approxi-

mation for the 1960s, but that the VB log A" model is needed for the 1980s. The

time-varying VB log k model that we have described in (10) is not flexible enough to

capture such a transition. A first modification would be to make k^i (t) = k^(t) —A-i (t)

a linear function of t (as in k^i{t) =- a + bt). Unfortunately, k(t) does not have an

explicit integral in terms of elementary functions. However, we can use the fol-

lowing trick. For a fish with starting time ty, and for given a/o, write A;2i(^) =

a + b(to + a'o) + b(t — to — a'o). Then the contribution of the linear component of

^21 W to the integral is

u-to-ao ^^ 1 f y
•du = ^2 /. -T——^

to 1 + exp(-/?o(t{ - to - a'o)) /3^ Ag 1 + exp(-z/)

^ [ f ^ y^ ^ dy - fi , , ,"_, , dy\
^ I .,-300 1 + exp(-?/) " ^-300 1 + exp(—i

1

w~2W~) - W}

where t* = f3o(t —to — a'o) and Q = —f3o a'o. The lower integration limit of -300 in

I(t) is imposed because a'o and f3o have upper bounds of 10 and 30 respectively in

practice. The integrand y/(l +exp(—?/)) does not depend on any parameters, so we

can compute I(t) on a fine grid t = —300 + n8 for n == 1,2,3 ... using an accurate

numerical integration algorithm prior to parameter estimation. During parameter

estimation, I{t) can be calculated by interpolation: I{t) w (1 — /)J(—300 + rifS) +

/Z(-300 + {ni + 1)5), where r^ -= [(t + 300) ,8} and / = t - rifS.

Alternatively, we could take a pragmatic approach, and make fczi in (10) a

suitable function of t. Given that the linear model for k^(t) is an approximation,

this is probably the best compromise.

There is another exact approach that can bypass the need to integrate. Let
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z(f} be a monotone increasing function of time, and set

A-2l(l+^))
k(t)=k^t)+

1 + exp(-/3o(^ - <o + ^) - z(to) - ao))

Then the length model is given by (10), but with the factor

1 + e-/3o(t-to-ao) ^ -fc21/^0

1 + g/?o ao

in g(t,to') (equation (11)) replaced by

1 4- e-/3o0-to+;s(t)-^o)-ao) ^ -X(t)/f3o

l+eA)a°

where ^(t) = A;2i(l + z'(t)~). The seasonal model generalises in the obvious way, by

replacing t by t + s and to by ^o + so everywhere.

The important point is that ~^(t) can change with time. Judicious choice of

•)^(t) can allow for the transition from von BertalanfFy to VB log A; model with time.

Fitting the time-varying von BertalanfFy model to

southern bluefin tuna data

South Australian length-frequency data

We first fit the time-varying van BertalanfFy model to South Australian

length-frequency data. The raw data are length measurements generated from com-

mercial fishing operations. They represent samples of landed fish accumulated over

each half-month of the fishing season. The analysed data are the estimated compo-

nent means and standard errors for age-groups 1 to 4 from 1964/5 to 1988/89. We

use the estimation procedure described in Appendbc Length-Frequency: the model

for season i of data is, in vector form,

Vi = /-1-i + 1^ + X^i + X^UJi +ei+€i

where y^ is vector of data and /-(, is the vector of mean growths. Here r,, ^, a^,

ei and 6, are independent random effects, representing a random seasonal effect, a
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within-season random half-month effect, a within-season random age effect and a

within-season half-month age interaction respectively. Finally, Ci denotes sampling

error, and is assumed known from previous data analysis. Also, Xy and X^ are

design matrices: thus, X^,mj = 1 if element m belongs to half-month j and is zero

otherwise. We calculate /^ from the relevant model, in this case equation (7). We

tried fitting this model using the b-spline parameterisation with and without first

derivatives of the likelihood, and the stable parameterisation of Ross (1990), Schnute

(1981) and Francis (1988) without derivatives. We can only recommend the gradient

method — it converged about 10 times faster than the derivative-free methods.

We fixed /^oo = 185 cm. Extensive analysis of other data suggests that the

asymptotic mean length has varied at most between about 183 cm and 187 cm

between 1960 and 2000, and we use 185 cm as a representative figure. The length-

frequency data do not bear on the asymptotic mean length. We tried fitting between

1 and 10 knots. The maximum log-likelihood log A for each case is shown in Table

1.

Table 1: Optimal negative log-likelihood for time-varying van

BertalanfFy growth model with K knots: complex error struc-

ture

K -logA K -logA

1 893.23 6 873.23

2 889.97 7 872.25

3 889.77 8 871.47

4 884.65 9 870.47

5 873.94 10 869.87

It is clear that the data are adequately fitted using K = 5 knots, since there

is no significant improvement in the log-likelihood with the addition of extra knots.

The results for the 5 knot solution are
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Table 2: Fitted parameters for the seasonal von Bertalanfiy

growth model with logistic growth rate: South Australian

length-frequency data

i-loo

GO

Us

Ws

,3

185

-1.187

0.743

0.128

0.833

Or

Ov

0-^

a-e

0.010

0.800

1.817

1.741

KO

KI

K2

K3

rt4

K5

0.155

-0.850

1.185

0.141

0.169

0.164.

Ql

a'2

a'3

a4

a'5

1970.86

1971.36

1971.86

1978.79

1984.13

Note that KQ = 0.155 and he, = 0.164 may be compared to K for a traditional

van BertalanfFy growth model. It is interesting to compare these estimates with the

corresponding values when fitting the model with constant n to the same data, with

/u,oo = 185 cm. Then K, = 0.154, ao = -1.32, u^ = 0.753, Ws = 0.130, ^ = 2.454,

a^ = 0.831, <7^ = 2.152 and cTg = 1.738. The estimates are all reasonably similar to

those in Table 2, except that a-r = 2.454 in the constant H, model reduces to a-u = 0.01

(the lower bound) in the variable K model. This suggests that the variable K model

has been successful in capturing the variation in K with season.

We now illustrate some features of the model. Figm'e 1, top panel, shows how

k(t), with the seasonal parameter Us set to 0, varies with time. It broadly follows

the shape of Figiire 6 in Appendbc 7. Rather surprisingly, there is a noticeable

difference: the level of the peak at 1973 is about the same as that at 1985. It is of

interest to compare k(t) with the estimates of k in a simple von Bertalanffy model

fitted to the component decades: k = 0.146 for the 1960s, k = 0.141 for the 1970s

and K = 0.170 for the 1980s. The average values of k(t) for these periods are 0.151,

0.153 and 0.165 respectively. Although similar, these are not identical to the decade

by decade estimates — it would appear that the fitting of a single smooth curve k(t)

has a regression-to-the-mean effect.

The lower panel shows how the mean lengths for age gToups 1 to 4 vary with
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season. The pattern differs in an important way from that in the upper panel: the

1973 and 1985 peaks are the same height for the one-year-old fish, but the 1985 peak

is clearly higher for the four-year-old fish. The two-year-old and three-year-old fish

show intermediate effects. These results are consistent with the decade by decade

results presented in Figure 5 in Appendix 7, which shows that the differences between

the 1980s and previous decades was small for the one-year-olds, but progressively

larger for older age groups. When comparing half-month Gaussian mbcture fits to

the 1970s length-frequency data, we experienced difficulty in following the age group

changes. The fact that the growth curve appears to have been following a sine curve

through that decade may explain the difficulty.

Figure 2 examines the fit of the model. The raw data are plotted as points,

and the fitted values as smooth curves. The model captures the major variation

with season. Some age-groups in some seasons do not fit very well. This is the

reason for including the random effect w^. in the model. It is not surprising that

a-w is the largest estimated random effect variance. Close inspection suggests that

the four-year-old fits are too low in the 1980s. This may reflect the inadequacy of

the von Bertalanffy gro-wth model for this decade. The van BertalanfFy model is

incapable of capturing the fast early growth of 1980s juveniles. This is yet another

indicator that a more complex growth model may be required.

The fit can be examined further by plotting the estimated random effects in

various ways. The traditional BLUP estimates of the random effects are

n == ^1V-1(^-^)

^ = ^<y-lQ/,-^)

Ui = a2,X'^V-l(yi-fii)

Ci = o-j V~l{yi - hatf.ti)

where

V = a^I+D, + ^11/ + alX^X, + ^X^

is the variance-covariance matrbc of the data, and De is the diagonal matrix of
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sampling variances. In Figm-e 3 we plot Cj^ estimated for each season, against year

for each age group. If the model is correct these plots should show no obvious

structure, but there is a clear downward trend in the panels for one and two-year-

olds, an upward trend with time for the three-year-olds and more complex structure

for the foiu'-year-olds. Studies in Appendices 4 and 9 indicate that this lack of fit can

be ascribed to two causes: firstly, the lengths of one-year-olds in the leng-th-frequency

data set are bigger than those of corresponding fish in the tag-recaptm-e and otolith

data sets; and secondly, the von BertalanfFy growth curve does not describe 1980s

tuna leng-th data very well. The fu-st problem must be resolved before more complex

time-vai'ying growth curves can be fitted. The objective of fitting more complex

time-varying growth models is to remove such trends — the growth model becomes

more complex, and removes the obvious non-random structure in the random effects.

Figure 4 shows some selected cohort growth curves, illustrating how they

change with the season. The mean lengths for fish of ages 1 to 4 on January 1 are

shown as broken lines. The model clearly includes an ameliorated cohort effect: the

peaks and troughs in these mean length curves move to the right as age increases,

but a given cohort does not follow this movement exactly. Cohort growth is strongly

seasonal.

It is useful to know how much the solution changes if we fit the much simpler

model

y, = /^+ei+e, (12)

to the data in season i. In this case the log-likelihoods are

Table 3: Optimal negative log-likelihood for time-varying von

Bertalanffy growth model with K knots: simple error struc-

ture

K -log A K -log A

1 1090.44 6 985.69

2 1078.39 7 983.04
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Table 3: continued

3 1062.41 8 980.25

4 994.51 9 976.25

5 990.65 10 975.36

The choice of K is no longer definitive. The simple error model forces some

of the seasonal and within-season variation to be treated as trend, and this trend

becomes more complex as K increases. The complex error model with hierarchical

and crossed random effects allows deviations from a simple trend model to be treated

as structured error rather than trend. We therefore prefer the complex error model.

Tag-recapture data

We now move on to fitting the time-varying von Bertalanffy growth curve to

tag-recaptui-e data. We have attempted to use the method of Appendbc 4. The data

file records the time t\ and length l\ at the time of tagging, and the time ^2 and

length ^2 upon recapture for 6154 tuna. This is the total tag-recapture data base

after quality control screening (see Appendix 3). The times ti range between 1959

and 1997. The model for fish i is

hi == Loo^f(t-n-, Ai, 6) + CH

ki = L^if{t2i;Ai,e)+^i

where Loo,i is the asymptotic mean length, f(t;A,0) is the monotone increasing

growth curve with asymptote 1 and parameter set 0, A, is the time to first capture

and e\i and e-a represent measurement error. All random variables are independent.

We assume that Loo,, ~ N{^,cr^), A, ~ LogN{/.i^gA^\ogA) and e,, ~ A^(0,(T2) for

J= 1,2.

We have encountered a technical difficulty in analysing these data with a

growth model with more than 4 parameters in 0: the optimisation method used

to maximise the likelihood is very slow. We need to calculate the gradients of the
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log-likelihood analytically, which should speed up the calculations by an order of

magnitude. In the meantime we report some preliminary results from a sub-sample

of size 1000 from this data set. We fit the model (4) with 4 knots and ,3=1. We

omit any seasonal parameters from 6 to speed up the algorithm and again fbc /<oo at

185 cm. The results are

Table 4: Fitted parameters for the van BertalanfFy growth

model with logistic growth rate: tag-recapture data

/KOO 185 KO 0.173 di 1969.37

o-oo 9.75 KI 0.040 as 1972.80

AlogA 0.926 K2 0.527 ag 1973.30

6-logA 0.246 KS 0.141 ay 1981.11

o- 4.15 /?4 0.196

The estimates of k(t) and the mean lengths for age groups 1 to 4 are shown in

Figure 5. Qualitatively k(t) is the same as that in Figure 1, even though this is an

independent data set. There are obvious differences between Figures 1 and 5, but

taking them together, we can safely conclude that the rate of growth of southern

bluefin tuna is faster now than in 1960. The 1970s saw a period of change followed

by a slow rise to its current level starting in the late 1970s. It must be stressed that

the tag-recapture data set is deficient in the 1970s, so that estimation of k(t) is likely

to be relatively poor during this time. There were sigiiificant tagging voyages in the

1960s, 1980s and 1990s, but only about 200 taggings in the 1970s. In retrospect,

the decision to scale down tagging in the 1970s was unfortunate, given the apparent

change in growth in that decade.

Om' first sample deliberately omitted data from the 1990s. We attempted to

supplement the first analysis with a second analysis of a sample of 1000 data points

from the 1980s and 1990s. The fitting program failed to converge. Inspection of

the data reveals that there were no fish tagged between mid-February 1984 and late

October 1990, a period of almost 7 years. We suspect that this caused the problem.
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Much technical work remains to be done before we can fit dynamically changing

growth curves with confidence.

Otolith data

We also attempted to fit the van Bertalanffy model with changing k(t) to the otolith

data. We confined our attention to 1980s and 1990s data with a maximum otolith

age of 4 years. Older fish could have come from previous decades. There were only

420 points, and 25% of these came from one year (1993), with only 101 from the

1980s. In the end the data proved too sparse to model. The otolith data may be

used to supplement other data sources, but fitting a model to these data alone is

impractical. Currently we have not developed the changing k(t) model to allow

integrated fitting of growth curves to data of multiple types.

Concluding remarks

There is an extensive literature on parametric growth models, particularly

applied to fish growth. Methods for fitting them have been developed for data

generated from individual studies. However, models for changing growth over long

time periods are virtually unknown. In this Appendix we have attempted to provide

a new class of models for time-dependent von BertalanIFy growth. Fitting of this

model to length-frequency and tag-recapture data sets of southern bluefin tzina

revealed a common pattern, in which growth changed dramatically in the 1970s,

with recent growth rates substantially higher than in the 1960s. The reason for these

changes are unknown, although they undoubtedly reflect, in part, fishing pressure

and changing stock levels.

Despite this success, there is more to be done. Time-variation needs to be

incorporated into other growth models, and efficient methods of fitting such models

to tag-recapture data in particular need to be developed. It may be desirable to move

to non-parametric growth models. Once such models can be fitted successfully, the
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ultimate challenge will be to fit them to length-frequency and tag-recapture data

sets simultaneously.
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Figure 1: Results from fitting a time-varying van BertalanfFy growth model to South

Australian length-frequency data. a) The fitted von Bertalaaffy growth rate k(t)

versus time t. b) The mean lengths for age groups 1 to 4 versus time t. Note that

the curves exhibit subtle differences, in that the early 1970s peak moves to the right

as age increases, and the relative heights of the 1973 and 1985 peaks change with

age group.
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Figure 2: The fit of the time-varying van Bertalanffy growth model for South Aus-

tralian length-frequency data. The raw data are plotted as points, and the fitted

values as smooth curves. The fit is not perfect - for example, the 1980s four-year-old

fitted values tend to fall below the data.
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Figure 3: Estimated within-season age effects versus year. The plots exhibit trends

and other structure inconsistent with a weU-fitting model, confirming the problems

with the model suspected from Figure 2.
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Figure 4: Selected cohort growth curves plotted against year. The subtle changes

in cohort growth with time are illustrated.
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Figure 5: Results from fitting a time-varying von BertalanfFy growth model to tag-

recapture data. a) The fitted von BertalanfFy growth rate k(t) versus time t. The

trend is qualitatively similar to the upper panel of Figure 1 although there are

obvious differences. For example, the peak in Figure 1 in the early 1970s is largely

missing, possibly because of limited tagging in the 1970s, b) The mean lengths for

age groups 1 to 4 versus time.
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frequency and direct aging data
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Introduction

The growth of a fish is a fundamental compoueut of fisheries research. Growth

models are used either directly or indirectly in stock assessments to estimate the age

composition of the catch, plus changes in growth have important implications about stock

health and size. Information for studying fish growth can be obtained from a number of

sources. Probably the three most common are: 1) release and recapture length data from

tagging experiments; 2) length-fi'equency data from the commercial catches; and 3) direct

age and length measurements, where age is estimated from annual deposits in hard tissue

such as otoliths, scales, or vertebrae.

Various methods for fitting growth models to any one of these data sources

mdividuaUy have been developed. For tag-recapture data, the age of a fish at release is

unknown so the traditional approach has been to model the incremental change m length

of the fish over the time it was at liberty (Fabens 1965; Francis 1988b; James 1991).

More recently, maximum likelihood approaches have been developed that model the joint

density of the release and recapture lengths as opposed to the modelling the length

increment (Pahner et a1. 1991; Wang et a1. 1995; Laslett et a1. 2002). In these cases,the

age at release is modelled as a random variable.

For a species that has a peak spawning period, the length-frequency distribution

of the catch taken over a Umited time interval wiU ordinarily exhibit modes that

correspond to different age-classes, at least for younger ages. The progression of these

modes over time can be tracked to give an estimate of growth. In particular, seasonal

growth patterns can often be identified. Methods have been developed to analyticaUy

separate the modes by assuming the distribution is a finite mixture of normal or log-

normal distributions (Hasselblad 1966; Macdonald and Pitcher 1979). Approaches that

also incorporate the estimation of growth parameters into the lengfh-frequency analysis

have subsequently been developed (Schnute and Founder 1980; Foumier et aJ. 1990;

Leigh and Heam 2000).

Direct age data is a useful source of growth mformation for species that deposit

annual growth rings in their scales, otoliths, vertebrae or other hard tissue. The abiHty to

determine age by counting the number of growth bands has been validated for many
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species, mcludmg soufhem bluefin tuna (Clear et al. 2000). The best tissue and

technique to use depends on the species and the specimen, and successful aging methods

have not been found for many species. Du-ect age and length information has been used

to estimate growth parameters in a number of studies (Yukmawa 1970; Thorogood 1987;

Gunn and Farley 1998; Alves et at. 2002).

While many studies exist that estimate growth using one of the above data

sources, analyses that integrate multiple data sources have been much rarer. Some papers

have compared estimates of growth obtained from different data sources (Labelle et al.

1993). Others have used one data source to supplement another, such as Heam and

Polacheck ( Submitted) who used the mean length of age one SBT from length-frequency

data to convert the length-time relationship estimated from tag-recapture data to a length-

age relationship. Although these studies make use of more than one data source, they do

not attempt to model the data jointly. An exception is Kirkwood (1983), who performed

a joint analysis of lengfh-mcrement and age-length data (determined from length-

frequency data) to estimate growth parameters for soufhem bluefin tuna.

We know of no analysis fhat integrates all three data sources into a unified growth

model, and this provided the motivation for our current paper. These data sources will

often be most mfonnative about different portions of the life cycle. As such, the

development of an integrated approach would aUow for the different data sources to

complement each other and provide a more robust and comprehensive basis for

modeltmg growth. Questions have been raised about the validity of estimating muhial

growth parameters using more than one data source (Francis 1988a). However, we

believe that this is not an issue if an appropriate estimation method is used. We present a

maximum UkeUhood approach for modelling growth that incorporates a likelihood

component for each tag-recapture data, length-frequency data, and direct age-length data.

Our method was developed and wiU be illustrated in the context of southern

bluefin tuna (SET). However it should be broadly applicable to other species with

perhaps small adjustments for the specific situation. SBT is an important species to both

Australian and Japanese fisheries, and hence its growth has been intensely studied.

Nevertheless, previous growth models are not fully satisfactory m that they have been
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estimated using only one soiu'ce of data, and the data fi-om any one source does not

provide complete informatiou about growth over the Ufespan of SBT.

We begin by discussing the three SBT data sets used in our analysis. We then

describe the integrated model and estimation method that we have developed. The

integrated model was developed m a piece-wise manner. We derived a statistical model

m terms of a generic family of growth curves, and a likelihood function for fitting the

model, for each data set separately. The likelihood components for the three data sources

were then added together to obtain an overaU objective function for the integrated model.

Finally, we apply the integrated model with several variations to the SBT data, and

discuss the results.

The Data

All of the tag-recapture, length-frequency, and direct aging data that are available

for SBT are described in detail m Appendix 3, as are the screening processes applied in

determmiug the data suitable for inclusion in a growth analysis. Some of the merits and

limitations of each of the data types with respect to studying growth are also discussed

there.

Although information on the growth of SBT exists from the 1950's until present,

we chose to only include data for fish that experienced their early years of growth m the

1980's. Previous studies have found that the average growth rate of SBT increased from

the 1960's to the 1980's (Heam and Polacheck in press; Anon. 1994). This makes a

combined analysis ofaU the data more complicated and is the topic of Appendices 8 and

10. We chose to analyse the 1980's data because extensive data sets exist in this decade

for each of the data sources, with a large degree of overlap among data sets with respect

to ages and lengths of SET. Thus, the 1980's provided the best data for testing the

integrated methods that we developed.

Following is a brief summary of the 19 80's data that we used in the analysis

presented m this Appendix.
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Tag-Recapture Data

During the 1980's (in years 1980, 1983 and 1984), a total of 10741 fish aged 0 to

4 were tagged with conventional tags and released into the wild. Of these tagged fish,

there have been 4341 reported recaptures to date (January 2002). Recaptures occurred

throughout the geographical distribution of SBT, ranging in longitude from 0 to 180°E

and in latitude from 30 to 50°S. After applying the screening criteria described m

Appendix 3 to exclude data that were considered unsuitable for studying growth, 2181

recaptures &om fish released in fhe 1980's remained for analysis. The release lengths

ranged from 40 to 115 cm and the recapture lengths from 47 to 173 cm. The distribution

of the times at liberty was highly skewed towards shorter times at liberty, and ranged

from 30 to 4356 days (==12 years) with a median value of 340 days. A plot of the change

m length of the fish versus the time at Uberty is shown m Figure 1.

Length-Frequency Data

For reasons discussed in Appendix 3, we only included length-J&equency data

from. the Australian surface fishery operating in South Australia in our analysis. For the

South Australian fishery, the sampling of fish for lengths occurred in a two-step

procedure in which a sample of fish was taken from a sample of landings. In each half-

monthly period, the length-J&equency data were scaled up &om the sample data using the

weight offhe total catch to represent a leagfh-frequency distribution for the catch. Scale

factors have been calculated which take into account the two-stage nature of the

sampling, so that dividing the catch size in a period by the scale factor gives an estimate

of fhe effective sample size if a simple random sample had been taken. The fishing

season m South Australia generally spans from November to July. Lengfh-frequency

data exist for every year in the 1980's, but the half-monthly periods for which there are

data depend on the year. Almost all years have data firom mid-December to mid-April.

Table 1 in Appendix 3 Usts the years and periods for which data are available, as well as

the corresponding catch sizes, scale factors, and effective sample sizes. For the 1980's,

fhe effective sample size m a period ranged from a few fish to several thousand. The

lengths of fish ranged fi'om 31 to 229 cm. However, we only included data up to 130 cm

in our analysis since modes cannot be distinguished beyond this length. Examples of the
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length-fi'equency distributions for South Australia in 1981 and 1983 are shown m Figure

3 of Appendix 3.

Direct Aging Data

In our analysis, we included direct aging data from fish that were born in the

1980's, where birth year was estimated from the catch year and the number of bands m

the otolith. Although otoliths fi-om 1780 SBT born in the 1980's have been aged to date,

not all of these were deemed suitable for mclusion in our growth analysis (see Appendix

3). la brief, SBT caught during the winter months of IVtay to September were excluded

since band formation occurs during these months and we cannot be sure whether or not a

fish caught during this time has yet laid down a band. Fish up to and mcluding age 14

that were caught on the spawning grounds were also excluded because for these ages

maturity is associated with larger sizes within an age-class fish and thus there is a bias in

the lengtfa-at-age of these fish (see Farley et al. 2001). Furthermore, fish with oue band

caught off fhe west coast of Western Australia were excluded since we believe they are

less than 9 months old and we are not attempting to model such early growth m this

analysis. The number of direct age-length observations in the 1980's remaining for

analysis was 668, for which the number of bands ranged from 1 to 21 and the lengths of

fish ranged from 45 to 200 cm. SET from all geographical areas where fishing occurs are

represented. However the majority of data is from older fish caught on the Indonesian

spawning grounds.

Methods

We adopted a maximum likelihood approach in order to jointly analyse the three

sources of growth mformation. For each data source, we developed a statistical model

and a corresponding Ukelihood component. The Ukelihood components were then added

together to obtain a final objective function that could be optimised to estunate the model

parameters. The addition of likelihood components is an appropriate procedure provided

that the data fi-om the different sources are independent, which is a reasonable assumption

in this situation.
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An important feature of any growth model is the functional form for the

relationship between fish length (/) and age (a). The most common in fisheries literature

is the von Bertalanffy growth curve. However, there is evidence that SBT growth is

better described by a function that aUows for a transition in the growth rate (Laslett,

Eveson, and Polacheck 2002; Heam and Polacheck Submitted). In the derivation of our

integrated model, we wiU leave the model very general by assuming a generic growth

curve of the form

J(a)=L^f(a-a,;0),

where L^ is asymptotic length and/is a monotone mcreasing function with parameter set

{ciy ,6} that approaches 1 as a —> oo and equals 0 when a = Og. We can think of ay as

the theoretical age at which a fish would have had length 0 if we were to project its

growth curve backwards. For the famUiar von Bertalanffy curve, Q={k} and

f(a - ay ;k) = 1 - exp(-k{a - fifg)) • As would be expected in an integrated growth

model, we assumed a common growth function / throughout the model components for

the different data sources.

Tag-Recapture Component

The method used to analyse the tag-recapture data is described in Appendix 4. It

is based on estimating the joint density of tag and recapture lengths rather than modeUmg

growfh increments. In summary, a fish is tagged at time ^ with release length /i and

recaptured at time ^ with length /^, all of which are known. Let A = ?, - ?g, where ty is

the theoretical time at which a fish has length zero (analogous to the parameter Og on the

age scale). Then A is a random variable, which we assume has density p(~) and whose

parameters will be estimated m the model.

Although the age at release is unknown, if we denote it by a,, then A is

equivalent to a, - Og. Similarly, A +1^ - ^ is equivalent to a^-Oy, where a^ denotes

the age at recapture. We introduce this notation to be consistent with the formulation of

fhe growth function presented at the beginning of the section. Tbus, we can specify fhe

models for the release and recapture lengths respectively as
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!,=L^f(A;0)+£,

1,=L^f(A+t,-t,;0)+£,.

We allow the asymptotic length to vary fi-om fish to fish by modeUing L^ as a random

normal effect with mean //„ and standard deviation a^. The terms f, and e^ represent

measurement error. It is important to note that what we refer to as measurement error

throughout this paper actually encompasses several sources of variation. Although

measurement error is one principal source of variation m length, there may also be

random variations due to environmental factors and genetic factors not captured by the

random L^ parameter. Without further knowledge, we cannot separate this pooled

source of error into its various components.

W assume f, and £., are independent from fish to fish, and also independent of

L^ and A. Furthermore, we assume they are normaUy distributed with mean 0 and

variance dependent on the length measurer ( a^ if a scientist or trained staff measured the

length and an additional component, a ^, if a fisherman or factoiy staff measured the

length). We expect measurements made by scientists to be more accurate than

measurements made by fishermen. Note that scientists measured ati release lengths.

Explicitly, we can specify the variances by

V(^= ^

<7: if measured by a scientist
V(g )== <{ ~s

2 (7,2 + o"J if measured by a fisherman.

These error variances are specific to the SBT data, but the method is very flexible with

regard to the choice of variance functions.

If we condition on A, then /i and ,3 are both the sum of random normal variables

and their joint distribution, h (/,, ,3 | a), is bivariate normal. Their unconditional joint

density can then by obtained by mtegrating over A. Namely,

h(!,,!,) =^(1,,1,\a)p{a)da.

The product of the joint densities over all fish gives the likelihood function for the tag-

recapture data. Thus, the negative log-likelihood function can be expressed as
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-ln(^)=-^ln/?(/,,,/,,) (1)
>

where ?' indexes the fish.

Length-Frequency Component

Analysis of the length-fi-equency data entailed a two-step procedure. First, we

performed a mixture decomposition on each half-monthly sample independently to

generate a mode and an accompanymg standard error for each age-class represented m

the sample. Second, we used the summary mformation from step one as input into the

likelihood component for our lengfh-frequency model.

The &st step is described in detail m Appendix 7. Essentially, each length-

frequency sample was assumed to be a mixture of Gaussian components, where the user

specified the number of components and the age-classes to which they corresponded.

Since we did not try to separate modes beyond age five, the modes were usually quite

distinct and the corresponding age-classes were generally clear based on the length.

There were several exceptions, of course, m which we simply had to use our best

discretion. The estimation of the modes was unconstraiaed except for simple bound

constraints. This differs from Leigh and Heam ( 2000), who constrained mean growth

over a season to be linear, and from Schaute and Foumier ( 1980), who constrained the

means to follow a von Bertalanffy growth curve. The standard deviation of the

components was assumed to be common within a sample, but was allowed to differ

between samples. A standard error associated with each mode was calculated by

inverting the observed information matrix. The estimation procedure took into account

the fact that the data were scaled up from the actual sample size to the size of the catch

(refer to Appendix 7). Figure 4 m Appendix 7 shows a plot of the summary modes

versus the half-month index. The separation of modes into age-classes is evident in this

figure, as is the seasonal pattern of growth (especially for age groups one and two).

In the second step, we modelled mean fish length using the estimated modes and

standard errors from step one. We only included the data for age-classes one through

four, even though a fifth mode was sometimes fitted. The fifth mode likely encompasses

several age-classes since a maximum of five modes was fitted, and thus the fifth mode
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acted as a catch-aU for any data beyond age four. Furthermore, we only included data for

modes where the estimated number of fish in the mode was greater than 50. The

estunated number of fish m an age-class was obtained by multiplying the effective

sample size for the period by the estimated proportion of fish in the age-class (which was

obtained in step 1).

Let i index the year, j the half-month, and k the age group. We wUl denote the

estimated mean length for a mode and its associated standard error by p.,^ and

s^. respectively. Let a^ be the mean age assigned to a mode. To aUocate a mean age to

the fish from a given age group and half-month, we used the foUowing procedure.

Firstly, we assumed that fish are spawned on January 1 since this is the approximate mid-

point of the spawning season for SBT (refer to Appendix 3). We then used the middle of

the half-month to calculate a fractional age relative to January 1. Because the fishing

season m South Australia generally runs from November to July, fish caught prior to

January wiU not yet be as old as theii assigned age-class. For example, the so-called age

2 mode in the first half of December will correspond to the age 2 mode in the first half of

January, even though these fish are not yet age 2 according to their assumed bulh date.

Thus, we indexed the half-months by j = -4,-3,... ,20, where -4 corresponds to the first

half of November, 0 corresponds to the first half of January, et cetera. Then, fish

belonging to age group k and half-month j were allocated a final mean age of

k + (7 - 0.5) / 24, since there are 24 lialf-months in total.

The model we used can be expressed as

ftyk = /^/(^ft/ -a,;0)+ Cy, + £y, (2)

where e and £ are independent random effects representing sampling error and residual

model error respectively. We assume e^ ~ N(0, s^ ) , where the s,^. are the known

standard errors estimated in step one, and s^ ~ N(0, <7^). The parameter//„ represents

the average asymptotic length for a group of fish, which we model as a fixed effect. We

could model it as a random effect; however, in practice, there is ahnost no mformation

from the length-fi'equency data on the mean asymptotic length of fish, let alone its

variance. The negative log-Ukelihood for the model is given by

A9-10



AppencUx 9: An integrated model for growth

-h(4,)4£££ ^^.^^^^)
(3)

where

E^)=^f^-a,;0)

and

^)=4+^-

A more complex model could have been used that takes into account other

structural aspects of the data. We explored models that incorporate a random fishing

season effect, a withm-season random half-month effect, and a wifhin-season random age

effect (refer to Appendix 7 for details). Although this might be desuable, the parameter

estimates were unstable in practice, suggesting that there were insufficient data to fit a

more complex model as well as possible confounding of parameters. The above model

was found to provide an adequate fit without excessive unexplained variance.

Direct Age-Length Component

To model the direct aging data, we need to assign an age to a fish based on the

number of bands in its otolith. The difficulties in doing so were discussed m Appendix 3.

In this appendix, we assumed that fhe final otoUfh reads (i.e. the final band counts) were

correct, and also that all fish were born on January 1 (the approximate mid-pomt of the

spawning season). As such, a decimal age could be assigned to each fish as follows:

n+r/365 \ir<d
age=-^ , ,-/_.„.. (4)

ln-l+r/365 lir^d

where n is the final band count, r is the capture date, and d is the date of band formation.

Both r and d are expressed m Julian days since January 1 of the year of capture.

The capture date is known accurately for almost aU fish from which otoliths were

collected. However, the time of band formation, d, is unknown and is variable among

fish. An investigation into the time of band formation (see Appendix 11) could only

conclude that bands can form any time during ]V[ay through September. For fish caught

during these months there is an uncertainty of one year m their age, so we omitted direct

aging data from fish caught within this period &om our analysis. This omission should
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not induce biases into the growth parameter estimates, however it will result in them

having higher variance.

For the remaining fish, there is stiU uncertainty m their assigned decimal age due

to uncertainty in their birth date and possible errors in the band coimt. We adopted the

simplest approach and used the decimal ages calculated using (4) as if they were exact in

our analysis. Again, this should not induce biases in the growth parameter estimates

since the age estimates should not be biased. However the precision of the estimates will

be higher than if we had incorporated the uncertainty m ages.

We explored approaches for modelling these age uncertainties, mcluding

uncertainties in the time of band formation, the band count, and the birth date. These

approaches are discussed in Appendix 12. They are stUl very much m the developmental

stage and more work is required before we would be incorporating them into the

integrated model.

Because we assume the age estimates to be accurate, the model for the direct

aging data is relatively straightforward. Let / and a denote the length and age of a fish

respectively, then the model can be expressed as

J=L^a-a,;0)+y

where y represents measurement error (and other unknown model error) and is assumed

to be normally distributed with mean 0 and standard deviation a . As with the tag-

recapture data, we model L^ as a random normal effect with mean //^ and standard

deviation a^. We assume fhat L^ and y are independent. Let i index a fish. Then the

negative log-likelihood is given by

-N^)=l£ ln(2^(/,))+
2^

where

E0,)=^f(a,-a,;0)

and

VQ,)=alf{a,-a,;0Y+^

{1,-E(J^

VQ,)
(5)
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The integrated model

The overaU objective fimction to be optimised, which we will denote by A, is

simply the sum of the three negative log-Ukelihood functions given in equations (1), (3)

and (5). That is,

A = -(ln(^ ) + ln(/l2) + ln(/l3)) .

The parameters common to all three components are 6 (the parameters of the growth

function f) and //„ (the mean asymptotic length). The asymptotic variance parameter

<r^ is common to the tag-recapture and direct aging components. For the length-

frequency component, we are not modeUiag lengths of individual fish but rather we are

modelling mean lengths (see equation 2). As such, the asymptotic length parameter

should have the same mean but not the same variance as the asymptotic length parameter

in the tag-recapture and du'ect aging models. There is no mformation on fish older than

age 4 m the length-fi-equency data alone to estimate the relevant asymptotic variance

parameter, so we modelled the asymptotic length as a fixed effect for this component.

Whether the asymptotic length is assumed to be random or fixed will have virtually no

effect for fish aged 1 to 4. The parameter ffg ls common to the direct aging and length-

frequency components; this parameter is not present m the tag-recapture model because it

is encompassed in the random variable A. The parameters defining the lognormal

distribution of A, //^g^ and (T^A> are unique to the tag-recapture component. The

various error parameters are unique to their corresponding components, namely a and

Of for the tag-recapture component, a \ for the lengfh-frequency component, and <7 for

the direct aging component.

Results

In order to apply the integrated growth model to the SBT data, a growth function,

f, must be selected. Initially, we used the growth function corresponding to the

traditional von Bertalanffy (VB) curve, namely

f(a-a,;k)=l-e-k(a-ao).

A9-13



Appendbc 9: An integrated model for growth

Previous analyses (Laslett, Eveson, and Polacheck 2002; Heam and Polacheck

Submitted) suggest there is a change m the growth process for SBT during the transition

from juveniles to adults that cannot be adequately captured by a VB model. Heam and

Polacheck ( Submitted) model SBT growth as a two-stage process in which the growth in

each stage follows a different VB curve, such that there is a discontinuity in the growth

rate at the transition between the two stages. In Appendix 4, we developed an alternate

growth curve that can accommodate a change in the growth pattern at some point in the

life cycle but allows for a gradual, smooth transition between stages. We call this new

curve the von Bertalanffy growth cuive with a logistic growth rate (abbreviated VB log k)

to reflect the fact that the change m growth rate is modelled using a logistic function.

The growth function for the VB log k model is given by

^(a-^-a) y(Wft
f(a-a,;{k,,k,,a,/3})=l-e-^-ao)^ ' ^^ ^

As a increases, the function makes a smooth transition from a VB curve with growth rate

parameter ^ to a VB curve with growth rate parameter k^. The parameter ft governs

the rate of the transition (being sharper for larger values), and a governs the age at

which the midpoint of the transition occurs.

We obtained parameter estimates for both the VB and VB log k models by

optimismg the objective function, A, with the appropriate growth function (Table 1).

Comparison of the results indicates that the asymptotic length is somewhat higher in the

VB log k model. The mitial rate of growth m the VB log k model is very similar to the

growth rate in the VB model; however the VB log k model suggests that the growth rate

slows considerably between ages two and three. Recall that a is the age of transition

relative to ag, so we estimate the midpoint of the transition to be at age a + cig. The fact

that ft converged to a preset upper bound of 30 suggests that the rate of transition

between the two growth phases is very fast.

According to Akaike's mformation criterion (AIC) (Akaike 1974), the VB log k

fit is significantly better than the VB fit (Table 2). To further evaluate how weU the two

models fit the data, we calculated residuals (fitted minus observed length) for each of the

data sets. In order to calculate the fitted release and recapture lengths in the tag-recapture
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data, we required a realised value of A and L^ for each fish. The approach outlined in

Appendix 4 is to use the mean of the posterior distribution for A and L^ , respectively,

conditioned on the fish's release and recapture lengths. This approach yields unbiased

estimates of L^, but, as discussed m Appendix 5, it leads to biased estimates of A.

Instead, we used the approximately conditionally unbiased estimator Aj- that is described

in Appendix 5.

The improvement in the fit of the VB log k model over the VB model is evident in

the residual plots (compare Figures 2.1-2.3 with Figures 3.1-3.3). For the direct-aging

component, the VB model overestimates the length of middle-aged fish (around ages 5

through 12); this is corrected by using the VB log k model. A local linear smooth of the

recapture length residuals for the VB model shows a pattern in which the length of

younger fish is underestimated and the length of older fish is overestimated; the transition

occurs between recapture "ages" three and five (recall this is age relative to ay). This

pattern clearly supports a two-stage growth function, such as the VB log k curve. The

recapture residuals for the VB log k model show no such pattern. The release residuals

are also improved slightly in the VB log k model. The length-frequency residuals are

more complicated. In both models, the predominant feature of the residuals is the

overestimation of age-class one and fhe underestimation of age-classes two to four.

However, overlooking this general lack of fit, which we discuss below, the fit to the four-

year olds is better in fhe VB log k model.

In the introduction to Appendix 3, we discuss the fact that oae-year old fish

caught off of Western Australia (WA) are smaller on average than one-year old fish

caught off of South Australia (SA) around the same time. Likely the WA fish were

spawned later in the spawning period than fhe SA fish and are younger. Our method of

assigning ages assumes all fish are spawned on the same day so this age difference

cannot be captured. Because all of the lengfh-frequency data is from SA, the length data

for one-year olds w£U be biased towards bigger fish. This is evident in the model fits.

We assigned ages to both the length-fi-equency data and the direct aging data

assuming a birth date of January 1. This introduces an uncertainty of several months into

the age depending on the true time of spawning. This is primarily a problem for very
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young fish whose growth is rapid enough that an age difference of a few months

translates to a significant difference m length. The model for the tag-recapture data

incorporates the estimation of the age-at-release, and hence has the ability to deal with

variable spawning times by assigning suitable ages based on size. IdeaUy, we would like

the model components for the length-fi'equency and direct aging data to incorporate this

uncertainty as weU; Appendbe 7 and Appendix 12 discuss possible future approaches for

doing so.

As an immediate and unbiased approach of dealing with the problem, we refit the

integrated VB log k model leaving out the length-frequency data for age-class one and the

direct aging data for fish with an estimated age of less than 1.5 years. Our justification

for doing so is that the uncertainty in age has the most significant effect on the expected

length of one-year old fish, with the effect diminislnng exponentiaUy with age.

Moreover, by age two, the difference in lengths of fish from WA and SA appears to be

negligible; perhaps the later-spawned fish catch up in size by age two, or perhaps the fish

from the two areas mix during their second year of life so that the two-year old fish off

WA and SA no longer correspond to late-spawned and early-spawned fish. Although the

uncertainty m age is still present in fish older than age one, we expect only an increase in

the variance oftheu- length-at-age (which will duninish rapidly with age), and not a bias.

The largest impact of leaving out the one-year old length-frequency and direct

aging data is that the initial stage of growth is steeper, as reflected by the increase in the

parameters k^ and Op (Table 1). The improvement in the fit to the length-frequency data

is apparent in the residual plot (Figure 4.2). The fit to the other two data sets appears

relatively unaffected (Figures 4.1 and 4.3).

SBT experience a period of fast growth during the southern summer (Heam

1986); we see evidence offhis in the length-frequency data and it is also the reason that

SBT otoUths display annual growth bands. Neither of the above models captures this

seasonality, and it is important to determine whether doing so could significantly improve

fhe fits. A seasonal component can be incorporated mto any growth function by adding

an annually periodic function, •S'(-) , to the independent age variable. Explicitly, a — ay

can be replaced with a — <7g + S(t), where t is the fractional time of year since January 1.
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In the tag-recapture data, we Imow the date of release and recapture so we can calculate t

for both events. Similarly, we know the date of catch for the direct aging data. For each

mode m the length-frequency data, we use the mid-pomt of the half-month as the catch

date. Note that for the direct aging and length-ftequency summary data, / simply

corresponds to the decimal part of the fish's age, a, since we assumed a birth date of

January 1 in assigning ages.

We considered a sinusoidal function for the seasonal effect, parameterised as

5(0=^-sin(2^-w))
In

where 11 is the amplitude and w is the phase. The amplitude is constramed to be between

0 and 1 to prevent negative growth, whereas we constrained the phase to be between -0.5

and 0.5. Any bounds with a span of one could have been chosen due to the periodicity of

the function. The rate of growth is maximal at t = \v and diminishes symmetrically about

w to a minimum at t = w - 0.5 and t = w + 0.5.

We refit the VB log k model with a seasonal component to the data including and

excluding age one length-frequency and direct aging data. The estimates of the mean

growth curves are ahnost identical to the mean curves estimated from fitting the non-

seasonal VB log k model to the corresponding data (see the parameter estimates m Table

1). However, the estimates of the seasonality parameters, which are almost identical

whether fhe age one data is included or not, suggest there is an appreciable seasonal

pattern to growth. The estimate of the phase, \v, suggests that SET experience theu-

fastest growth in mid-February, which is consistent with our prior expectation. A

comparison of the AIC values between the seasonal and non-seasonal models fitted to the

same data suggests that incorporating a seasonal component significantly improved the

fits (Table 2). The improvement is visible m a plot of the fitted curve through the lengfh-

frequency data (Figure 5.2, top panel). Alfhough the fits to the other two data sets do not

look much different (Figures 5.1 and 5.3), the negative log-likeUhood component for the

tag-recapture data was reduced significantly for both the model with and without age one

data. Note that these figures only show the results obtained without age one data; the

same observations can be made for the equivalent figures for the model with age one data

(see Figures 2a-2c in the Annex to Appendix 10).
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Discussion

It is important to have a method for modelling growth that can mcorporate all of

fhe available data sources because any one data source does not usually contain complete

mformation on growth over the entu-e Ufespan of the species. Oftentimes, where one data

set is deficient, another can provide valuable information. For example, in the case of

SBT, the length-fiequency and tag-recapture data lack the information on older fish that

is available from the du'ect aging data. Conversely, the length-fi'equency data has

mformation on seasonaUty not available from the other two data sources, whereas the tag-

recapture data is the only source of information on the growth of individuals, which is

important for understanding variability m the growth process. However, it only makes

sense to combine data sets into a single analysis if the mformation between them is

consistent; otherwise, the benefit gained from having multiple data sources becomes a

weakness as the data sets work against each other. The SBT data sets show a very high

level of consistency, with the exception of the one-year olds for reasons ah-eady

discussed. We can infer this from the fact that the integrated model fitted all of the data

sets weU. However a plot with the data sets overlaying one another shows the consistency

clearly (Figure 6). We have omitted the age one length-frequency and direct aging data

from the plot. The ages of release and recapture for the tag-recapture data are the

estimated values from the seasonal VB log k model fit to the reduced (without age one)

data sets. RecaU that when we obtain these age estimates, they are actually relative to

ay. Thus, we have added to them the Og value estimated fiom the model for the length-

fi-equency and direct aging data in order to make the age-axis comparable between ati

data sets.

Data from all of the sources discussed wiU not always be available. An advantage

of developing an integrated model of growth under a likelihood framework is the ease

with which data sources can be excluded from (or included in) the model. If one of the

data sources is not available for a species, then the Ukelihood component correspondmg

to the missing data set can be removed from the overall objective function. On the other

hand, if a data set other fhan the three we discussed exists, then it is possible to add on a
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likelihood component for this data set. Of course, the development of an appropriate

model for these new data may not be trivial.

We modelled the seasonal growth pattern of SBT using a sinusoidal function.

There is some suggestion in the length-frequency summary data (see Figures 1 to 3 in

Appendix 7) that the growth of SBT is fast over the summer season before levelling off

sometime around May and remaining ahnost flat for the winter. Lack of data over the

entire year makes the pattern difficult to confirm. If this were the case, an alternative

seasonality function may be more appropriate. Even so, the smusoidal function appears

to have performed adequately.

With regard to the direct aging data, research scientists and trained staff collect

the otoliths and also measure the lengths of the fish; therefore, it seems reasonable to

assume that the measurement error should be the same as that for length measurements

made by scientists in the tag-recapture data (i.e. a = <7,). In our results, a is actually

much greater than (T, . The tag-recapture model estimates the age-at-release intrmsically,

so the data points can be adjusted along the age axis to put them closer to the mean curve.

For the direct aging data, we assign an age assuming a common biith date for all fish and

take this age as precise. Therefore, it is not surprising that the residual variability m

length-at-age (above and beyond the variation due to a random L^) is greater for the

direct aging data than the tag-recapture data.

The questions raised by Francis (1988a) about the validity of estimating common

growth parameters using tagging and age-length data are only relevant when growth

increments are being modetled for the tagging data. When the release and recapture

lengths are modelled directly as opposed to the change in length, these issues are no

longer relevant. In this appendix, we have successfully demonstrated that data from three

sources can be integrated to obtain consistent estimates of growth.
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Table 1: Parameter estimates from applying the mtegrated growth model to 1980's southern bluefm tuna data. Results are for various

growth curves and data subsets, as specified.

Growth Exclude Parameter estimates

curve Age I? ^ ^ h h a /31 u w Aog^ ^A ^ ^ ^f ^ ^

f3 constrained to be <. 30

r

VB No 179.7 6.1 0.21 ----- 0.66 0.17 -0.57 2.7 4.5 4.2 5.5

VBlogk No 184.9 7.8 0.22 0.17 2.9 30.0

VB log k Yes 183.9 8.4 0.24 0.18 2.5 30.0

Seasonal ^ ^^ ^ ^^ ^ ^ ^^ ^^ ^^
VB log k
Seasonal
VB log k Yes 183-8 8-7 °-24 °-18 2.5 30.0 0.35 0.12

0.

0.

0.

0.

58

52

58

52

0.17

0.17

0.17

0.17

-0.44

-0.18

-0.43

-0.18

2.3

2.3

2.1

2.1

4.3

4.1

4.2

4.0

4.4

2.6

4.6

2.5

4.5

4.1

4.3

4.1
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Table 2: Negative log UkeUliood values and Akaike's information criterion (AIC) for the

various model fits.

Growth curve
Exclude # -log

Age I? parameters Ukelihood

VB No 10

VBlogA-

VBlogk

Seasonal VB log k

Seasonal VB log k

No

Yes

No

Yes

13

13

15

15

17752.1

AIC

35524.1

17649.5 35325.1

17259.1 34544.2

17607.1 35244.3

17209.1 34448.2
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Figure 1: Southern bluefin tag-recapture data for fish released in the 1980's (only data

remainmg for analysis after screening is shown).
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Figure 2.1: Diagnostic plots for the optimal integrated VB model fitted to the 1980's

southern bluefin tuna growth data. Panel (i) shows the direct aging data along with the

mean fitted curve. Panel (ii) shows the con-espcmdmg residuals (observed - fitted).
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Figure 2,2: Diagnostic plots for the optimal integrated VB model fitted to the 1980's

southern bluefm tuna growth data. Panel (i) shows the summary modes and ages

obtained from the length-frequency data along with the mean fitted curve. Panel (ii)

shows the corresponding residuals (observed - fitted).
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Figure 2.3: Diagnostic plots for the optimal integrated VB model fitted to the 1980's

southern bluefin tuna growth data. Panel (i) shows the residual release lengths for the

tag-recapture data plotted against the estimated ages at release relative to ciy (i.e. A^).

Panel (ii) shows the residual recapture lengths plotted against the estimated ages of

recapture relative to Og (i.e. A^ +t^ -/,). For legibility, we have left the words "relative

to Og" off the age axis labels. In both panels, a local linear smooth of the residuals is

shown to reveal any patterns.
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Figure 3.1: Diagnostic plots for the optimal integrated VB log k model fitted to the

1980's southern bluefin tuna growth data. Panel (i) shows the direct aging data along

with the mean fitted curve. Panel (ii) shows the corresponding residuals (observed -

fitted).
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Figure 3.2: Diagnostic plots for the optimal integrated VB log k model fitted to the

1980's southern bluefm tuna growth data. Panel (i) shows the summary modes and ages

obtained from the length-frequency data along with the mean fitted curve. Panel (ii)

shows the corresponding residuals (observed - fitted).
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Figure 3.3: Diagnostic plots for the optimal integrated VB log k model fitted to the

1980's southern bluefin tuna growth data. Panel (i) shows the residual release lengths for

the tag-recapture data plotted against the estimated ages at release relative to Og (i.e.

Af). Panel (ii) shows the residual recapture lengths plotted against the estimated ages of

recapture relative to a^ (i.e. Aj +^ -/i). For legibility, we have left the words "relative

to Og" off the age axis labels. In both panels, a local linear smooth of the residuals is

shown to reveal any patterns.
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Figure 4.1: Diagnostic plots for the optimal integrated VB log k model fitted to the

1980's southern bluefm tuna growth data excluding the age one direct aging and length-

frequency data. Panel (i) shows the direct aging data along with the mean fitted curve.

Panel (ii) shows the corresponding residuals (observed - fitted).
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Figure 4.2: Diagnostic plots for the optimal integrated VB log k model fitted to the

1980's southern bluefin tuna growth data excluding the age one direct aging and length-

frequency data. Panel (i) shows the summary modes and ages obtained from the length-

frequency data along with the mean fitted curve. Panel (ii) shows the corresponding

residuals (observed - fitted).
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Figure 4.3: Diagnostic plots for the optimal integrated VB log k model fitted to the

1980's southern bluefin tuna growth data excluding age one direct aging and length-

frequency data. Panel (i) shows the residual release lengths for the tag-recapture data

plotted against the estimated ages at release relative to Og (i.e. A^). Panel (ii) shows the

residual recapture lengths plotted against the estimated ages of recapture relative to Og

(i.e. Af +t^ -/,). For legibility, we have left the words "relative to Gp" off the age axis

labels. In both panels, a local linear smooth of the residuals is shown to reveal any

patterns.
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Figure 5.1: Diagnostic plots for the optimal integrated VB log k model with seasonality

fitted to the 1980's southern bluefin tuna growth data excluding the age one direct aging

and length-frequency data. Panel (i) shows the direct aging data along with the mean

fitted curve. Panel (ii) shows the corresponding residuals (observed - fitted).
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Figure 5.2: Diagnostic plots for the optimal integrated VB log k model with seasonality

fitted to the 1980's southern bluefin tuna growth data excluding the age one direct aging

and length-frequency data. Panel (i) shows the summary modes and ages obtained from

the length-frequency data along with the mean fitted curve. Panel (ii) shows the

corresponding residuals (observed - fitted).
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Figure 5.3: Diagnostic plots for the optimal integrated VB log k model with seasonality

fitted to the 19 80's southern bluefin tuna growth data excluding age one direct aging and

length-frequency data. Panel (i) shows the residual release lengths for the tag-recapture

data plotted against the estimated ages at release relative to Og (i.e. A^. Panel (ii)

shows the residual recapture lengths plotted against the estimated ages of recapture

relative to Og (i.e. A^ +t^-t^). For legibility, we have left the words "relative to Og" off

the age axis labels. In both panels, a local linear smooth of the residuals is shown to

reveal any patterns.
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Figure 6: The 1980's southern bluefin tuna length and age data, excluding age one direct

aging and length-frequency data. The data comes from three sources of growth

information: 1) direct aging data (+); 2) modes estimated from length-frequency data (i»);

and 3) tag-recapture data (•). The ages of release and recapture for the tag-recapture data

are the values plotted in Figure 5.3 plus the OQ value estimated from the corresponding

model (i.e. the integrated VB log A; model with seasonality fitted to the data shown). The

bottom panel is simply a close-up of the younger age classes.
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Introduction

Understandmg how growth changes over time can provide important insights

into the processes underlying population and ecosystem dynamics (e.g. density

dependent growth and regime shifts m the environment). In addition, estimates of

growth rates are fundamental to most stock assessments and the provision of scientific

advice on the consequences of future management actions. In the absence of any

direct information, growth rates are generally assumed to remain static over time m

stock assessments. However, if growth rates are changing and these changes are not

accoimted for, they can result m substantial biases in estimates of stock productivity,

sustainable catch levels and recovery in the case of a depleted stock.

In spite of the unportance of knowing how growth may have changed,

estimates of long-term temporal trends and variability in growth are seldom available

for most commercially exploited fish stocks. Often this is due to the absence of long-

tenxi data series. In other cases a variety of different sources of growth mformation

(e.g. tagging, length-frequency and du-ect aging data) may be available, but the data

coUection processes have resulted in fragmented time series for any single source.

When such fragmented data exist, a statistical framework is required that can integrate

mformation from the different sources and can also cope with temporal changes in

growth. Even the simpler problem of integrating several data sources from a period of

static growth is not straightforward. Eveson et al. (submitted) have developed an

estimation framework that integrates growth data fi-om tagging studies, from diiect

aging of hard parts, and from modal length analyses of length-fi-equency data. In the

current paper, we apply this framework to southern bluefin tuna data collected m each

of the four decades from 1960 to 2000, assiuning that growth remained relatively

stable within each decade. The results are used to quantify changes in SBT growth

over this 40-year period.

A large amount of data relevant to the estimation of growth for SET has been

collected since the early 1960's. Several previous studies have used subsets of data

from a single source to address the question of changes in SBT growth. Comparisons

of growth mcrement data from tag experiments conducted m the 1960's and 1980's

have demonstrated that there was a substantial increase in SBT growth rates between

these two periods (Heam and Polacheck 1993, 2003, Anon. 1994). Concurrently,

there was a substantial decline m the SBT stock, suggesting the change m growth may
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have been density dependent. Analyses of length-frequency data for juvenile fish

caught in the Australian domestic fishery also demonstrated a substantial increase in

the growth of juveniles between these two periods (Leigh and Heam 2000). Previous

studies have been unable to provide estimates of growth rates m the 1970's and

1990's because of the limited data available for these decades at the time of analyses.

Direct aging techniques were developed and verified in the 1990's for aging

SBT using their otoliths (Clear et al. 2000). The direct aging data that have

accumulated since then provide important growth mformation on fish born in the

1970's, and they also have the potential to clarify uncertainties that previous studies

had m comparing asymptotic lengths (Heam and Polacheck 2003). Moreover,

substantial mformation on growth of fish spawned in the 1990's is now available.

With all of the data currently available and with an integrated analysis method, we

were able to obtain rigorous estimates of growth in each of the past four decades and

to identify significant changes m growth over this time.

Recent SBT stock assessments suggest that the stock continued to decline

fi-om the 1980's until the mid 1990's, after which the trend is uncertain (Polacheck

and Preece 2001, Kolody and Polacheck 2001). Given the previously documented

changes in SBT growth, the depleted status of the SBT stock and uncertainty about

the most recent stock trends (Anon. 1998a, 1998b, 2001, Polacheck et al. 1999),

knowing how SBT growth rates ia the 1990's compare with previous periods has been

seen as an important indicator of the current stock status (Gunn et al. 1998), and may

provide insight into possible mechanisms underlying growth changes.

Material and Methods

Data

Data &om three sources were used m the analyses considered here:

1) release and recapture length and time data from tag-recapture experiments;

2) modal progression within a year fiom lengfh-frequency data from commercial

catches; and

3) direct age estimates from otolifh readings combined with the length of a fish at

the time of capture.
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For each of these data sources, extensive documentation exists (see Appendix

3 and references cited therein). Table 1 summarizes the extent of available data for

each source by decade.

AU of the tag-recapture data come from fish tagged as juveniles (primarily

ages 1-4). Only tagging data from fish tagged and measured at release by trained

tagging personnel are used here. Recapture mformation (particularly recapture

lengths) was obtained from commercial fishermen, factory personnel and

scientifically trained staff. Data from the trained staff had lower measurement errors

and hence were assigned a different factor level in the analyses. The maximum time at

liberty for which release and recapture data are available is approximately 14 years.

However, the majority of recapture times are less than 4 years. As such the tagging

data are most informative about growth rates for juvenile and sub-adult SBT. (SBT

can live past 40 years of age and the mean age of maturity appears to be on the order

of 10-12 years; Kalish et al. 1996, Davis et al. 2001). Tagging experiments were

conducted during each of the four decades considered, but the number of releases and

release years varied substantially. Consequently the extent of growth data differs

considerably. In particular, tagging data from the 1970's are limited, and all of the

tagging data from fhe 1980's comes from the first half of the decade (Table 1).

Length-fi'equency distributions of the commercial catches landed in South

Australia each half-month exhibit modes coiTesponding to age classes. The

progression ia length of these modes over the year provides information on growth

rates. The catch was sampled either in cauumg processing plants or at the time of

landing. The data consisted of length measurements from a sample of the landings

wifhin a half-month penod. Caudal fork lengfhs were measured and recorded to the

nearest centimetre and pooled into one-centimetre groups. Trained technicians made

aU measurements. The sample length frequencies from an individual landing were

scaled up by the total weight of the landing relative to the weight of the sample to

provide an estimate of the length-frequency distribution for an individual landing.

The length-frequencies from individual landmgs were then pooled across half-months

to provide an estimate of the length-fi'equency of the catch for that half-month period.

Not aU landings m a half-month were sampled, so the lengfh-frequency distributions

from the sampled landings were raised by the total weight of the catch from all

landings m that period and area.
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For South Australia, lengfh-fi-equency data are available since the 1964/65

fishing season (Table 1). Data after 1989 are not used in the current paper because

the nature of the surface fishery changed dramatically to one dominated by small

landings aimed at the sashimi market and later to farming. In both cases, there are

indications of a high level of size selectivity. In addition, the level of sampling in the

farms has been quite low.

Verified methods for du-ectly aging SBT from their otoliths were developed in

the 1990's (Clear et al. 2002) and extensive collection of otoliths was undertaken

during this period. Otoliths were collected from juvenile fish landed in the surface

fishery and from fish caught during tagging programs. OtoUfhs were also coUected by

observers aboard Japanese longline vessels operating in the Australian EEZ as well as

on the high seas. In addition, a large number of otoliths were collected at the tune of

landing m Indonesia from longline vessels operating on the spawning grounds. The

age range of fish sampled covers 40 age classes. Thus, these data provide information

on growth for fish born in each of the four decades considered m this paper. However,

the degree of overlap in ages among the decades is low because ahnost aU the otolifhs

were collected in the 1990's (Table 1). In order to avoid aging errors due to

uncertainty in fhe time of band formation, direct aging data were only used for fish

coUected from October through April (see Appendix 12). Also, there is evidence of

size selectivity in spawmng within an age-class below age 14 (Farley et al. 2001).

Therefore, only the direct aging data for fish 14 and older firom fish caught on the

spawning grounds were used to avoid biasing the results for younger ages.

Growth Model

The basic growth function used in this paper for describing SBT growth is the

VB log k model, which is described in Appendix 4. There is evidence in SET of a

significant departure from the commonly used von Bertalanffy (VB) model (Anon.

1994, Heam and Polacheck 2003, Laslett et al. 2002, Appendix 9). All of these

analyses suggest that there is a discernible change in the growth process during the

transitional period from juvemles to sub-adults. The VB log k model was developed

by Laslett et al. (2002) to accommodate such a transition m growth. It provides a

more flexible framework with better statistical properties using the same number of

parameters than the two-stage VB growth model used for SET and similar species
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(Bayliff 1991, Heam and Polacheck 2003). The VB log k model uses six parameters

to describe length, /, as a function of age, a:

/(fl)=^ 1-e
-ks(a-tio)

^^(^-.)Y^-WP-

~^ea/r (1)

where

OQ is the theoretical age when a fish would have length zero;

L^ is the asymptotic length;

k\ is the growth rate parameter for the first stage of growth;

kz is the growth rate parameter for the second stage of growth;

P is a parameter governing the rate of transition between k\ and kz;

a is a parameter determining the central age of transition.

As age increases, this function makes a smooth transition (according to a logistic

function) from a VB curve with growth rate parameter k^ to a VB curve with growth

rate parameter k^. lfk\ equals k-i, the model reduces to the standard VB curve.

In addition to this basic model, a seasonal component was included in the

model to reflect the fact that SBT growth, particularly as juveniles, appears to be

substantially greater during the austral summer months than durmg the winter.

Seasonality in growth was modelled by replacing a - cig with a - Op + S(t) in

equation 1, where t is the fractional time of year since January 1. Withiu-year growth

was modeUed as a sinusoidal function:

S(t)=^-sm(2^t-w)) (2)

where ;/ is the amplitude and w controls the phase shift. Both parameters were

estimated m the growth model, with ;/ constrained to be between 0 and 1 to prevent

negative growth and \v constrained to be between -0.5 and 0.5 (any bounds with a

span of one could have been chosen due to the periodicity of the function). In this

formulation, the rate of growth is maximal at t= w and dimimshes symmetricaUy
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about w to a minimum at t = w - 0.5 and t = ~\v + 0.5. Other formulations for S(t)

could have been considered, but a smusoidal function provided an adequate fit and

data limitations did not allow for further resolution of the withm-season growth

pattern.

Parameter Estimation

The model was fit to the data from each of the four decades separately. For the

otolith data, we separated the data into decades according to cohorts (i.e. year of

birfh.), as determined from the year of capture and the estimated age. For the tag-

recapture data, we separated the data into decades according to the year of release

because the age of the fish at release (and hence its cohort) is not known. Similarly,

the length-fiequency data were separated into decades accordmg to the year of

capture. To separate based on cohorts would have required the data collected within

the same year to be split up m some years. We did not do so because the mitial step

of the analysis involves fitting a mixture decomposition to the length-fi-'equency data

from each year, and also because we explored estimating year effects m the

subsequent stage of the analysis. As such, in both the tag-recapture and length-

frequency decadal data sets, there may be a smaU proportion of fish that were actually

born m the last few years of the previous decade. This does not have any substantive

effects on the results.

la fitting the model to the data, several sources of variation were taken into

account. It is well known that if allowance is not made for individual variability in

growth, the resulting estimates can be substantially biased depending upon the

estimation method. Individual variability in growth was modelled by allowing the

asymptotic length to vary fi-om fish to fish. Thus, L^ was assumed to be a random

normal variable with mean p,^ and standard deviation a^,. Other formulations for

individual variability m growth were considered, but treating L^ as a random normal

variate appears to provide both an adequate representation of the error and leads to

similar predictions as other possible formulations (e.g. random growth rate

parameters). la addition to individual variability in growth we allowed for additional

measurement and model error. This was achieved by assuming that for any given

observed length at age there was an additional normal random variability associated

with the observation. The source and magnitude of the variation would be expected to
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be different among the different data sources and this was taken into accoimt in the

estunation model (see Appendix 9 for details). In total, four different

model/measui'ement variance parameters were estimated. These were:

<72 = the variance of the model and measurement error components for the

tagging data when the (either release or recapture) lengths were measured by

scientists

<jl = the additional variance components for the tagging data when the tag

recapture lengths were measured by fishermen

ff2 = the variance of the model and measurement error component for the

direct aging otolith data

cr = the variance of the model and measurement error component for length-

frequency data

A maximum Uketihood approach was used to obtain the parameter estimates.

For each of the data sources a separate likelihood function was defined. The

UkeUhood functions that are used here were developed and described m detaU in

Appendices 4 and 9. As such, the details are not repeated here and the reader is

referred to these appendices for a complete description. Since each of the data sources

were independent, the integrated log-UkeUhood across all of the data sources is simply

the sum of the log-Ukelihood components. The integrated likelihood mcorporated

common parameters across components for the parameters defining the mean growth

function (i.e. //„, k^, ki, <7g, ft , ex , n and w) and for the asymptotic variance

parameter (cr^), but had component-specific parameters for the measurement/model

variance terms for each data source. Two additional parameters, //^g^ and o", ^,

were estimated in the fitting of the tag-recapture data; they define the lognormal

distribution that was used to model the unknown ages at release. These parameters are

not of primary interest and the estimates of the growth rate parameters are generally

insensitive to how the distribution of mitial ages is modelled, as long as a reasonably

appropriate distribution is used (see Laslett et al. 2002). Overall, fhe integrated VB

log k model has 15 parameters to be estimated.

A10-8



Appendbc 10: Comparison of growth rates of SBT over four decades - 1960 to 2000

We also compared the fit of the VB log k model to that of a standard VB

growth curve:

1{a)=L^-e~k(a~av)} (3)

where the parameters have the same definition as in equation 1 above. In this case, we

used the same basic likelihood functions and still retained the seasonal component.

The number of parameters is reduced by three (i.e. ft , a and one of the A: parameters

are elimmated).

To evaluate how well a model fit the data, we calculated residuals (fitted

minus observed length) for each of the data sets. la order to calculate the fitted

release and recapture lengths m the tag-recapture data, we required a realised value of

A and £„ for each fish. The approach outlined in Appendix 4 is to use the mean of

the posterior distribution for A and L^, respectively, conditioned on the fish's release

and recapture lengths. This approach yields unbiased estimates of L^, but, as

discussed in Appendix 5, it leads to biased estimates of A. Instead, we used the

approximately conditionally unbiased estimator A^. that is described m Appendix 5.

We computed approximate variances and co-variances of the parameter

estimates by evaluating the inverted Hessian matrix at fhe minimum of the negative

log-Ukelihood fimction. In some cases this matrix was not positive definite. We were

forced to treat the estimates of some of the less "weU-behaved" parameters as known

quantities. As such, no variance or co-variance estimates were calculated for these

parameters.

Results and Discussion

Table 2 provides the parameter estimates for the individual decadal maximum

likelihood fits to fhe overall growth model. Comparison of the parameter values

suggests that there has been little or no change in the asymptotic length ( //„ ),at least

since 1970, but that there has been an increasing trend in growth rates at younger ages

as reflected in estimates of the k\ parameters. Comparison of the estimated average

growth curves fi'om the maximum likelihood fits indicates that the predicted length of

juvenile fish increased between the 1960's and 1970's, continued to increase between
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the 1970's and 1980's, and changed little between the 1980's and 1990's (Figure 1).

The overall increase between the 1960's and 1980's is quite substantial; the estimated

average size of a two year old m the 1980's is nearly equal to that of a three year old

in the 1960's. Although Figure 1 suggests that there may not be much difference in

growth between tbe 1980's and 1990's, a closer examination of fhe two curves

suggest that a difference of about 4 cm existed at age 2 and of about 2 cm existed at

age 3 (Figure 2). After this age, the estimated differences were generally less than 1

cm (see below for more discussion of this).

In order to test formally whether the growth curves estimated for each decade

were different, the fit when the data for two adjacent decades were combined was

compared to the fits to each decade separately (Table 3). In all cases, there was a very

substantial and statistically significant decrease m the negative log-llkelihood when

separate curves were fitted to the data from each decade.

Common //„?

Comparison of the parameter estimates for //„ in Table 1 raises the question

of whether //„ has varied over time - in particular whether the apparently lower value

for //^ of around 3 cm for fish born after 1970 is associated with the higher growth

rates in these later years. Fitting all four decades unconstrained with a common jj.^

parameter resulted m a significant increase in the negative log-UkeUhood (Table 4). It

is clear fi-om Table 4 that the difference is driven primarily by the higher estimate of

//„ for the 1960's, wifh little difference in the other three decades. However, it should

be noted that fhe likelihood profile for //^ for the 1990's data is quite flat (Figure 3)

and there is little basis for distinguishing whether /n^ is different in this decade from

any of the other decades mcludmg the 1960's. This is not surprising as the oldest fish

in the data sets for the 1990's is around age 10 (by necessity) and fish are still

exhibiting substantial growth (i.e. they are only -80% of their asymptotic length). For

the 1980's, the likelihood profile with respect to //^ is substantially steeper than for

the 1990's and the estimate of //^ is significantly different from that for the 1960's

(Figure 3). Nevertheless, there are no fish older than age 20 in the 1980's data sets

and some iadeterminacy might be expected m the estimate of //^ since SBT stUl

appear to exhibit appreciable growth after this age.
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Thus, the main basis for assessing whether there has been a change in ^

comes &om the comparison of the estimates for 1970's with that of the 1960's. For

both decades there are a substantial number of length observations for animals

estimated to be over 25 years of age. For these two decades, the estimates of //„ are

significantly different based on differences in the log-likelihoods (Table 5, Figure 3).

Moreover, a non-model based comparison of the mean length of fish estimated to be

older than 25 also suggests a significant difference m the asymptotic length (Table 6).

In spite of a significant difference existing m the estimates of //„, the estimates of

length at age for the 1960's are relatively insensitive to fhe value used for //„ (Figure

4). Thus, for the range of ages for prediction of the age structure likely to be important

within a stock assessment context, there is at most 1.5 centimetres difference (e.g.

below age 20) and the differences in /^ have little effect on the residual patterns

(Annex 1). The parameter estimates for the other decades are similar whether ju^ is

estimated separately or a common value is estimated for aU four decades (Tables 2

and 7).

VB log k or Standard VB model?

Comparison of the A:i and k-a, parameters suggests that, for the 1960's and

perhaps for the 1970's, they may be equal (Table 2), in which case the VB log k

model is equivalent to the standard VB growth model. In order to see if this was the

case, the data from each decade were fitted separately to a standard VB model, and

the resulting likelihoods compared (Table 8). The results indicate that there is no

significant difference between the standard VB and VB log k model for the 1960's. A

comparison of the residuals for the 1960's data sets suggests the same conclusion

(Figures la-c m Annex 1 versus Figures la-c m Annex 2). The VB log k model

provides a significantly better fit to the 1970's data, as weU as to the 1980's and

1990's data. Table 9 provides the parameter estimates for the fit to the VB model for

the 1960's.

The lack of difference between the VB log k and VB models for the 1960's is

not consistent with results in Heam and Polacheck (2003) and Anon. (1994). Using

only tagging data, these previous studies found a significant difference for the 1960's

between the standard VB model and the two-stage VB model, which they were using
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to model a change in growth rates between juvenile and adult phases1. (This model is

similar to the VB log k except the transition is abrupt.) The reason for the difference

appears due, at least in part, to the inclusion of the direct aging data in the current

study. The direct aging data are highly informative with respect to //„. In contrast, as

discussed in Heam and Polacheck (2003), the tagging data provide only minimal

mformatioa for estimating //„. The direct aging data clearly indicate that //^ is

around 185-190 cm (Table 6 and Figure la(i) in Annex 1) compared to the estimate

of 211 cm in Heam and Polacheck (2003). Reducing the estimate of ju^ wiU increase

the estimate of kz m order to achieve a relatively similar fit to the growth information

on intermediate ages since k^ and //^ are highly negatively correlated. There are other

possible reasons for the difference, such as L^ was modeUed as a random variable in

the current paper and the estimation methods used are different.

la any case, it is not clear whether the available data would have sufficient

statistical power to distinguish between the VB and VB log k models. Most of the

data on growth rates for the cohorts born prior to 1970 provides information on

growth either below aroimd age 5 or greater than age 25. These latter data provide

mformative data for estimating //^ but would be equaUy compatible with a wide

range of growth rate models for the mtervening ages. The only data in the

intermediate age ranges from 5 to 20 comes fi'om tag return data in which the return

lengths were measured by fishermen. The amount of data is small, and there is clearly

large measurement error associated with these return lengths as indicated by the large

residuals for these data (see Annex 1) and the large estimate of the additional variance

component for fishermen-measured return lengths, (7^ (Table 1).

For the 1970's data, it is worth noting that the estimate ofA;i is m fact less than

the estimate of k-i. This is the reverse of the situation for the 1980's and 1990's

cohorts and contrary to what was expected given previous discussions and

suggestions for why a transition may occur in SET (e.g. Heam and Polacheck 2003).

This issue is discussed further below.

' Heam and Polacheck (in press) found that the first stage of the two-stage YB model could be

equivalently represented as a linear function.
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Examination of Residuals

Examination of the residuals for each data set m each decade indicates fhat m

general the growfh model provides a reasonable and consistent fit (Annex 1). There is

no indication of any substantive mconsistency among the different data sources. This

provides additional confidence in the overall estimates since each of the data sources

was collected independently and suggests that substantial selection biases did not

occur. This is particularly true for the 1980's and 1990's where the data are extensive

and there is a large overlap in the age ranges for which these sources are providing

information on growth.

The only substantive systematic pattern m the residuals that would suggest a

serious lack of fit to the model occurs in the modal length-fxequency data for age 1 m

the 1980's. Li this case the modal data suggest that the length of an age 1 fish was

larger than that predicted by the model. As discussed in Appendix 3, there is

substantial spatial segregation in size for age 1 between fish found in Western

Australia and South Australia. On average, one-year-old fish are larger m South

Australia than Western Australia. This appears to reflect a combination of effects. The

actual range of biological ages within the one-year-old age class is large relative to

their true age due to the protracted six-month spawning season of SBT. Thus, fish

fhat are classified as age 1 based on a January 1 birthday may differ by as much as six

months in their actual age. For an age 1 fish this would induce large differences in

their expected size. There also appears to be a tendency for the older/larger fish to

migrate farther east and into the Great Australian Eight (i.e. South AustraUa), which is

consistent with the current understanding of the general migration of young fish

from the spawning grounds off Indonesia, along the west Australian coast and then

into the waters south of Australia. As such, estimates of the size and growth for age 1

fish will be sensitive to the relative proportion that came from early and late spawners

in a given year and also sensitive to relative sampling intensity m South Australia and

Western Australia.

A consequence of this is that modeUmg the growth of SBT below age 2 will

contain some ambiguity and uncertamty. In theory, by using daily rings in the otoUth

(Rees et al. 1996, Itoh and Tsuji 1996), it might be possible to resolve some of the

problems by estimatiag the actual birth date of individual fish and thus correct for

differences m age among age 1 fish. Besides the practical difficulty in doing this
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(counting daily rings is both expensive and time intensive), the results would likely be

confounded by compensation in growth during these early ages (i.e. faster growth

during the first year by late spawners). In terms of the objectives of this project and

the overall use of estimates of growth within the assessment context (i.e. assigning

cohort to the catch at length data and estimating the weight of the spawning biomass),

this uncertainty and ambiguity about the best estimate of the growth and length of fish

below age 2 is of little consequence. In terms of the assignment of cohorts, the

growth at these earliest ages is very rapid. As such, the difference in the length at age

for ages 1 and 2 provides a reasonably robust basis for assigning cohorts as long as a

reasonable value is used for the size of an age 1 fish (i.e. the modes in the length-

frequency distributions tend to be quite distinct). Moreover, m terms of the current

SET fishery, the amount of fish being caught below age 2 is quite smatl (Preece et al.

2001). Finally, since SBT appear to mature around age 10-14 with no indication of

maturity before age 8 (Davis et al. 2001), estimates of the size of an age 1 fish have

no relevance to the estimation of the spawning stock biomass.

Variances/Covariances for the Parameter Estimates

Estimates of the standard errors indicate that most of the non-variance related

parameters are estimated witfi a high degree of precision. AU of the parameters that

are used in the estimation of the expected or average length at age have a coefficient

of variation (CV) less than 7% except for u and w (Table 10). These latter two

parameters determine the seasonal pattern of growth. It is not surprising that u and \v

are less precisely estimated as the amount of mformation within the data on the

seasonal component is substantially less (e.g. only from the shorter term tag returns

and the withiu-year pattern of the means in the length-frequency distributions over a

limited portion of the year). Moreover, there appears to be some year-to-year variation

in the period of peak growth within the austral summer months (Appendix 7). This

would be expected given annual variation in environmental conditions. Nevertheless,

even for u and w, the estimates of the C Vs are less than 35%.

It should be noted that there was one parameter related to the expected value

of the growth curve for which we were not able to estimate its standard error. This

was the parameter ft , which governs the rate of transition between the two growth

rate parameters k\ and kz. In all cases, the estimates of /3 were large and frequently
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equal to fhe upper bound of 30 that we set for this parameter. For values of ft over 10

the rate of transition is very rapid and any difference m the predicted length at age for

larger values would be restricted to a very narrow age range within a year. As such

the likelihood function for higher values of ft is very dat. Thus, the model is

predicting with a high degree of certainty that the rate of transition between k\ and ki

is very rapid. The fact that we are not able to estimate a variance for P reflects the

fact that there is basically no predictive or practical difference in the value chosen for

j8 once {3 is estimated to be large (e.g. >10).

Many of the variance related parameters are estimated with reasonably high

precision. In most cases their estimated CV is less than 12%. One exception is the

variance for the parameter a (the residual measurement standard deviation in the

model for the direct aging data). In the two cases where we were able to estimate the

standard error of this variance parameter it had a CV of over 100%. However, in

most instances, we had to assume that this parameter was known in order to be able to

achieve a positive definite Hessian. The reason for this is not obvious. Nevertheless,

the estimates of this parameter appear to have little correlation with the other

parameters. As such, the fact that we had to assume that it was fixed m estimating the

variance and co-variance matrix should have Uttle effect on the results for the other

parameters.

The correlation matrix of the parameter estimates has some high entries,

mostly negative (Annex 3). Most of these are expected given the structural form of

the model. Thus, high negative correlations between jj.^ and the growth rate

parameters (k's) are a well known feature ofVB type growth models. Similarly, the

variance related parameters are often frequently highly negatively correlated. This is

not surprising as they are providing alternative ways of explaining the residuals

around the mean growth curve (e.g. iacreasmg the value of one results in less variance

that needs to be explained by the others).

The estimates of the variance-covariaace matrix can be used to produce

estimates of the confidence intervals around the predicted growth curves based on

normality assumptions. We calculated these confidence intervals and found that they

are very narrow. The upper and lower 95% confidence intervals are ahnost

mdistinguishable from the predicted curves when plotted on the same scale as Figure

1. The small C Vs for the growth parameter estimates and the narrowaess of the
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confidence intervals indicate that the growth model is estimating the mean length at

age witii a very high level of precision. Such high precision reflects fhe large amount

of data going into each of the estimated curves and the high degree of consistency

across the different data sources.

Nevertheless, these estimates of the variances, covariances and confidence

intervals are too precise. We would not recommend that these be used to represent the

actual imcertainty m the mean growth of SBT during these decades. There are at least

five reasons why the uncertamty is being under-represented: (1) model uncertainty

(e.g. the choice of modelling L^ as a random effect); (2) lack of normality in the

parameter estimates; (3) non-mdependence in the data (e.g. non-independence among

fish tagged in the same school; over-estimation of the effective sample size in fhe

length-fi-equency data; reader biases m the otolith data, etc); (4) non-representative

sampling from the SET population (e.g. all tagging was done in near-shore surface

fisheries close to Australia; potential size selectivity m the catch; etc); and (5) the tag-

recapture model fitting procedure is very flexible and may overfit the data with

respect to the age at release. A, as explained in Appendix 6 (this is a quite recent

discoveiy). Alternative methods for estimating the variances (e.g. Bayesian) would

likely result in somewhat larger variance estimates because we would not have to

regard any of the unknown parameters as fixed. However, application of these

approaches was not feasible given the size of the data sets and the time required to

achieve a single solution. Moreover, there is little information for mcorporating many

of the unaccounted sources of uncertainty in the estimation of the variances. The

estimation of the variances for the parameters is an area requiring further research.

Mfldel Simplification?

Bi addition to considering whether the VB log k model could be simplified to

the standard VB model, consideration was also given to whether inclusion of the

seasonal component with the two additional parameters provided a significantly better

fit. In all cases, it did. As would be expected, addition of this seasonal component had

ahnost no effect on the estimates of the parameters describing the overall longer term

growth patterns (for more detail see Appendix 9).

* Note that while the variability in the estimated mean growth curve is veiy small, there is clearly a

large amount ofmdividual variability around the mean curve.
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The estimates for a number of the variance related parameters are similar

among some or all of the decades. This is particularly encouraging as it suggests

consistency in the growth processes and measurement processes and that the model is

capturing these reasonably well. la particular, it was somewhat surprising that the

estimates of a^ across the four decades were as similar as they were (ranging fi'o 7.0

to 8.7) as there are no observations for the 1980's and 1990's for ages that have

essentially reached their asymptotic lengths. We have not attempted to fit models m

which any of these variance related parameters were assumed to be common across

decades. This was due m part to practical considerations. Attempting to fit models

with common parameters proved to be highly computer intensive, requiring extensive

amounts of time because of the magnitude of the data sets, the number of parameters

that needed to be estimated, and the large number of different parameter combmations

that needed to be tested. More importantly, the results of such an exercise would not

provide any substantial improvement for modeUing the growth within a decade or for

predicting the expected distribution of lengths at age for these different decades.

General Discussion

The results from applying the integrated model to the data fcomthe 1960's and

1980's confirm previous results that the latter cohorts grew substantially faster at

younger ages. They also demonstrate fbat this difference was consistently seen in

three independently derived data sources, mdicating that the observed difference was

not an artefact of differences in the data collection or processing procedures over

time. The estunated difference in the growth curves between these two decades is

somewhat less than that estimated in either Heam and Polacheck (1993, 2003) or

Anon. (1994). These previous studies were based only on tag-recapture data and used

Fabens' estimation method (Fabens 1966) without any allowance for individual

variability m growth. Fabens' approach has been shown to be biased if there is

individual variability in L^ (Mailer and deBoer 1988). The results in this and previous

appendices strongly suggest such variability exists, and taking into account this

variability is probably the primary source of the difference.

The results in this appendix also indicate that growth of young fish in the

1990's was faster than in the 1980's up to about age 4. The estimated growth curve

suggests that after this age growth slowed down so that fish from the 1990's are
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predicted to be the same size on average as those born in the 1980's (Figure 2).

However, the limitations in the 1990's data need to be recognized. Only half of the

cohorts born in the 1990's can possibly contribute data on growth for fish older than

age 5 because 2000 was the last year for which data were available for inclusion in

this study (cohorts born after 1995 would be younger than age 5 in 2000). la addition,

the last tag releases of SBT were of age 1 and 2 fish in 1997. The most recent cohort

for which an otolith was read was from the 1995 cohort and only 7 otoliths were read

from fish collected after 1995. As such, the estimated growth curve for the 1990's,

particularly for ages past 5, is based ahnost exclusively on the growth experienced m

the first part of the decade. Thus, if growth rates have on average been increasing in

the 1990's, the estimates for the older ages may be biased downward relative to what

may be observed when more complete and representative data are available. la this

regard, it is worth noting that m the tag-recapture data there is a tendency for the

residuals for the oldest fish from the 1990's to be negative (Figure 4-6, Annex 1).

These fish were born in the first few years of the 1990's or m some cases in the late

1980's.

The 1970's results suggest that this decade saw a period of transition with

quite variable growth. The results from the integrated analyses for the combined data

from this decade suggest that growth rates at younger ages were slightly greater than

those m the 1960's. Examination of residual plots for the length-fi-equency data either

by year or cohort (Figures 5 and 6) strongly suggests that growth in the early part of

the decade was substantially slower than in the latter years (see also Appendix 7).

Thus, when the data are pooled for this decade they will provide intermediate values.

Attempts to further resolve the growth m the 1970's using this integrated framework

were not successful. The data for the 1970's are relatively sparse and would not, for

example, support haU-decadal estimates. The limitations in the 1970's data are

important to recognize m any interpretation of the results. In particular, there is Uttle

information on growth for intermediate ages (i.e. between 6 and 15 years of age).

The estimates of fJ,^ suggest that there may have been a small decrease in the

average asymptotic length between the 1960's and 1970's. As discussed above, it is

difficult to evaluate whether this represents a real change m the underlying growth

dynamics or is the result of other factors (e.g. sexual dimorphism in growth or

samptmg/age-readmg effects). More significant in this regard is the fact that the
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estimates of {j.^ appear to be larger than the size distribution of adult fish that were

caught historically. In the fu-st 20 or so years of the SBT fishery (prior to 1970) less

than 0.05% of all fish caught on the spawning ground by Japanese longliners were

estimated to be greater than 184 cm and the proportion never exceeded 0.4% in any

year (Figure 7). The proportion of fish greater than 184 cm in the spawning stock

would have been expected to have been m excess of 9% for a stable age distribution if

//^was at post-1960 levels, given current estimates of age of maturity (10-14) and

adult survival rates (0.08-0.10) . The observed proportion m the catch is about 200

times less fhan what would be expected m an unexploited population. Fish greater

than 184 cm were similarly rare in the longline catches off the spawning grounds m

the years of the fishery (Figure 8). Interestingly, in the spawning ground catches, fish

over 184 cm began to make a non-negligible contribution to the catches around 1970

and m the feeding ground catches around 1980 (Figure 9). Their contribution after

1980 has generally been mcreasing. In addition, fhe contribution of larger fish to the

catch showed a rather steady increase (Figures 8 and 9, see also Anon 1994 for further

details). Under constant growth conditions, such an increase is contrary to what is

expected in the initial period of exploitation of a fishery, namely that the age and size

distributions shift towards younger and smatler fish (i.e. the increase in mortality

reduces average life expectancy).

The spawning ground fisheries operating prior to 1970 would have been

catching adult SBT born prior to 1950 for fish older than age 20. The contrast

between the estimates of //^ from all fish born after 1960 and the absence of fish in

the corresponding size range m the pre-1970 spawning ground fisheries raises the

question of whether //^ was substantially less prior to the commencement of the

fishery. The hypothesis that jU^ was substantially smaller would be consistent with a

density dependent response in the post-juvenile phase of the SET life cycle. Under

this hypothesis, the large catches of adult fish m the late 1950's and early 1960's and

the corresponding large reduction in the adult SBT biomass would have permitted

1 This 9% figure is derived from calculating the proportion of the SBT stock aged 10 and above that

would be over age 25 years based on a stable age distribution and assuming that half of these would be

greater then 184 cm. This provides a conservative estimate since a substantial number of fish appear to

reach lengths of 184 cm prior to attaiaing 25 years of age.
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SBT, particularly those bom after around 1950 (i.e. less than age 10), to have

developed a positive response to the reduction in the adult and sub-adult biomass

(possibly as the result of reduced competition for food). This would be consistent with

fish larger than 184 cm appearing in non-negUgible proportions m the spawning

ground and feeding ground catches in the 1970's and 1980's and would suggest that

there is a large element ofmdetermiaate growth in SBT.

The above hypothesis is clearly speculative. Unfortunately there are no

available data or biological material from which to estimate growth rates for cohorts

born prior to 1960 or for determining fhe age of larger fish that were caught in the

1950's and 1960's. However in the SBT stock assessment, values for the growth rates

or alternatively the distribution of the lengths at age are required. As such, developing

plausible hypotheses for the growth prior to and during the early years of exploitation

is an essential component of the stock assessment. The estimates that are used can

potentially have a large effect on current levels of depletion and the productivity of

the stock. While the above hypothesis is speculative, it does provide a consistent and

plausible explanation for the lack of larger fish m the early catches. It needs to be

considered in relationship to other plausible hypotheses.

In the current stock assessments, the underlying hypothesis is that growth rates

for cohorts born prior to 1960 were similar to those observed for the cohorts born in

the 1960's. WMle this is the simplest parsunonious hypothesis in terms of the direct

information on growth, it raises the question of why only negligible amounts of fish

around the hypothesized asymptotic length were captured in the early years of the

fishery, and why they began to be caught in increasing proportions begmning m the

1970's and continumg untU present. There are at least three potential alternative

hypotheses:

1. A period of sustained very low recruitment existed such that very few

adults greater than 20 years of age were alive at the beginning of the

fishery and for the next 15-20 years (e.g. a major "regime shift").

2. High natural mortality existed prior to the fishery such that fish did not

generally live to age 20 and older, and thus did not attain their potential

asymptotic length.
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3. Strong negative size selectivity for very large fish existed in the Japanese

longline fishery (particularly on the spawning ground), but this diminished

overtune.

4. Large sampling or measurement biases exist in the earlier size data

collected from the Japanese longline fishery.

The first two hypotheses would seem equally as speculative as a changing

asymptotic length with no direct data to support them. In addition, with respect to the

first hypothesis, a period of low recruitment is not consistent with the estimates of

recruitment trends in the assessments (e.g. an extended period of low recruitments

prior and during the early years of exploitation would be inconsistent with the large

catches and estimated spawning biomass in the late 1950's and early 1960's).

The third of these alternative hypotheses seems rather less plausible. It is

difficult to imagine a mechanism in terms of the longUne gear that would generate

such strong negative selectivity only for very large fish. Origmally, there was very

intensive fishing effort for SBT on the spawning grounds. As such, it is hard to

conceive of a temporal/spatial refuge only for very large fish. Finer scale analyses of

the shift in size towards larger fish on the spawning grounds suggest that this was not

a consequence of temporal or spatial shifts in the distribution of effort (Anon. 1994).

Moreover, there appears to have been a shift towards targeting bigeye tuna during the

1960's and the residual fishing on the spawning ground after 1970 has been reported

to generally be fishing deep. This should have resulted in an mcreasmg selectivity

towards smaUer fish (Davis et al. 2001) and is the opposite of what has been

observed. Finally, the current Indonesian fishery operating in the same general area

and period catches substantial numbers of large SBT (i.e. they are a primary source of

the otolith samples for large fish — see Appendix 3).

Measurement bias seems an unlikely source for the lack of large fish being

reported in the Japanese catch consideriag all of the early size measurements of the

Japanese catches were made m port by trained scientific samplers. It also seems

unlikely that there were large selection biases against large fish m the choice of fish

that were sampled. There have been hearsay suggestions that in the earUest years of

the fishery (during the 1950's) there may have been some selection bias due to large

SBT being cut m half to fit into available storage space. Even if this practice was
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extensive (which it would have had to have been to explain the lack of large fish m

the samples), it would not explain the persistent lack of large fish up to 1970.

The hypothesis that //„ was substantially less prior to the commencement of

the fishery could also provide a possible explanation for why there is no significant

difference between the VB and the VB log k models m the data from the 1960's. If the

underlying growth process of SBT involves a substantial transition between the

juvemle and sub-adult stages as suggested by the post 1960's data, the lack of a

transition in the 1960's could have stemmed from the fact that during the 1960's there

was a substantial increase m the growth rate associated with fhe post-juvenile stage in

conjunction with the increase in //„. The resulting change m growth rates could have

been such that k\ and kz became essentially equivalent. Such a hypothesis would be

consistent with a density dependent response m the post-juvenile phase to the large

declines that occurred in the spawning stock during the 1960's.

A hypothesis for the subsequent increase in the juvenile growth rate (A:i) m the

1980's and 1990's would also be that it was a density dependent response. In this

case, the response would have been primarily to the declining recruitment combined

with even larger proportional dectmes in juveniles as a result of the large increases m

juvenile catches m the surface fishery (Caton 1991, Polacheck and Preece 2001,

Kolody and Polacheck 2001). The smaU but continued increase m the juvenile growth

rate estimated to have occurred in the 1990's is consistent with the estimated

contmumg, but slowed, declines in recruitment. These two hypotheses are speculative,

but they are at least broadly consistent and plausible given the set of estimated growth

rate parameters from this integrated analysis, the history of the fishery and the general

trends in the SBT stock. Under these hypotheses, juvenile SBT growth rates would be

expected to decline if substantive increases m recruitment occur, while adult growth

rates and //„ would be expected to decliue only if quite substantial rebuilding of the

spawning stock occurs.
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Table 1: Summary of data used in estimation ofdecadal growth curves.

Decade

1960's

1970's

1980's

1990's

Otolith Readings

No.born

in decade

277

1298

668

281

Age

range

22-38

12-30

1-21

1-6

Tag-Recapture

Release

years

1961-66

1973-74,1977-78

1983-84

1991-95

Data

No.

recaptures

791

202

2181

2980

Sampled

years

1965-1969

1970-1979

1980-1989

Length-Frequency Data

Mean no. lengfh

samples per year (sd)c

24019(6937)

21 788 (8 903)

17 865 (10 875)

No. estimated

modes

119

288

269

a All otoliths were collected in the 1990's so fish born in progressively earlier decades were progressively older by the time of catch.

Years with at least 5% of the total releases for that decade.

c Length samples were taken using a two-stage procedure; the sample sizes shown are estimates of the equivalent sample size had a simple random sample been taken (refer

to Leigh and Heam 2000 for details).

Table 2: Parameter estimates for the VB log k model with a seasonal growth component based on fhe integrated best fit to the data from each

decade.

Decade h k a p ao It \V /21ogA a log A '/

1960's 187.8 7.0 0.14 0.15 5.5 30.0* -1.6 0.53 -0.07 1.2 0.16 2.4 3.1 5.9 2.0

1970's 184.3 7.9 0.15 0.19 5.7 30.0 -1.3 0.92 0.06 0.8 0.12 2.1 4.7 0.0* 3.5

1980's 184.7 8.1 0.22 0.17 2.8 18.3 -0.4 0.34 0.13 0.6 0.17 2.1 4.2 4.6 4.3

1990's 184.9 8.7 0.25 0.16 2.5 12.4 -0.3 0.41 0.26 0.7 0.32 1.8 4.9 5.6

Estimate is equal to the upper or lower bound set for this parameter.
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Table 3: Comparison of the negative log-likelihood values when a single growth

curve is fitted to the pooled data from two consecutive decades compared to when

individual growth curves are fitted to data from each decade separately.

Decades

1960's

1970's

1980's

Compared

& 1970's

&1980's

& 1990's

Negative

Separate

12973.8

24169.0

40482.6

Log-Likelihood

Combined

13319.5

24560.8

41272.9

Number of Additional

Parameters

15

15

14

Difference in

Log-LikeUhood

345.7

391.7

790.3

Table 4: Comparison of the negative log-likelihood values when ^^ is estimated

separately for each decade (values in Table 2) versus when a common //„ is

estimated across all decades (in which case the best fit estimate of //„ is 185.6 cm)

Decade

1960's

1970's

1980's

1990's

Sub-total 70's-90's

Total

Separate jU^,

6411.9

6561.9

17607.1

22875.4

47044.5

53456.3

Common //„

6417.3

6564.1

17607.6

22875.5

47047.2

53464.5
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Table 5: Comparison of the negative log-likelihood values when //^ is estimated

separately for the 1960's and 1970's and when a common value is estimated for the

two decades. (The estimated common value for //„ is 186 cm.)

Decade Separate //^ Common //„

1960's 6411.9 6415.5

1970's 6561.9 6565.6

Total 12973.8 12981.1

Table 6: Mean length and standard error (SE) for fish over 25 years of age based on

direct age estimates from otolith readings. (Note that sufficient time has not elapsed

for otoliths of this age to exist in the 1980's and 1990's.)

Decade N Mean Length SE

1960's 263 186.0 0.53

1970's 225 184.0 0.57
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Table 7: Parameter estimates for the VB log k model with a seasonal growth

component based on the integrated best fit to the data for each decade, but with a

common fJ.^ value for ati decades.

Decade P-^ (T. t/ a p It w //log/l a log A '/ cio (7, ^e

1960's 185.6 6.59 0.14 0.16 5.59 30.00 0.54 -0.07 1.19 0.16 2.41 3.09 -1.56 6.60 2.01

1970's 185.6 7.98 0.15 0.17 5.66 30.00 0.91 0.06 0.77 0.12 1.97 4.74 -1.28 0.00 3.54

1980's 185.6 8.12 0.22 0.17 2.86 15.75 0.34 0.13 0.58 0.17 2.08 4.20 -0.43 4.56 4.29

1990's 185.6 8.71 0.25 0.16 2.46 12.40 0.41 0.26 0.72 0.31 1.81 4.85 -0.31 5.58

Table 8: Comparison of the differences m the negative log-likelihood values for fhe

best fit to the standard VB model and fhe VB log k model.

Number of additional Difference m

Decade VB VB log k parameters log-likelihood

3.0

13.4

101.6

65.5

1960

1970

1980

1990

's

's

's

's

6414.9

6575.3

17708.7

23040.9

6411.9

6561.9

17607.1

2275.4

3

3

3

3

Table 9: Parameter estimates for the standard VB model with a seasonal growth

component based on the integrated best fit to the 1960's data.

Decade

1960's

^.

188 .8

a^

7.86

kl

0.14 0

11

.49

w

-0.06

^losA

1.18

a

0

log A

.16

(^

2.35

af

3.01

do

-1.53

Gy

4.75

^e

1.99
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Table 7: Estimates of the coefficient of variation (100*SE/mean) for the best fit to the

VB log k model for each decade. Also shown are the estimated coefficients of

variation for the best fit to the VB model for the 1960's data (in which case k\ denotes

the single growth rate parameter k). A dash indicates that the parameter needed to be

treated as fixed.

^
<^

h
k2

a

p
ClQ

11

\v

/JlogA

log A

0-,

af

ar

^e

1960's

0.3

3.6

1.2

4.0

4.5

2.7

16.5

30.7

1.1

3.1

4.9

11.2

7.1

VB log k

1970's

0.3

3.2

1.6

5.3

3.4

4.0

13.9

30.8

2.4

8.0

35.0

22.2

4.4

1980's

0.4

3.3

1.6

2.4

4.2

6.6

12.1

12.2

2.6

1.8

6.0

5.4

159.3

4.7

1990's

0.3

0.9

1.2

2.0

15.3

19.3

1.3

1.5

5.7

4.0

n/a

VB

1960's

0.3

3.8

1.1

n/a

n/a

n/a

2.5

17.2

35.7

1.0

3.1

5.4

11.5

318.4

7.0
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Figure 1. (top) The optimal integrated seasonal VB log k growth curve for each

decade, {bottom) The same curves plotted relative to the 1960's curve for better

comparison.
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Appendix 10; Comparison of growth rates of SET over four decades - 1960 to 2000

Figure 2. The optimal integrated seasonal VB log k growth cuive for the 1990's

decade plotted relative to the 1980's curve.
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Appendbc 10: Comparison of growth rates of SBT over four decades - 1960 to 2000

Figure 3. Change in the negative log-likelihood relative to its minimum value as a

function of //„.
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Appenduc 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 4. (top) Integrated seasonal VB log k growth curves for the 1960's with //^

fixed at: 1) the optimal value for the 1960's data alone (187.8); 2) the optunal value

when //„ is constrained to be the same in aU decades (185.6); 3) the optimal value

when //„ is constrained to be the same in the 1970's, 1980's, and 1990's (184.4).

{bottom) The same curves plotted relative to the optimal 1960's curve (with //^, =

187.8) for better comparison.
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Appendix 10: ComparisonofgrowthratesofSBT over four decades- 1960to2000

Figure 5. The residual (observed minus fitted) for the length-frequency data as a

function of year for the best fit to the VB log k model for each decade.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 6. The residual (observed minus fitted) for the length-fi'equency data as a

function of cohort for the best fit to the VB log k model for each decade.
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Appendk 10: Comparison of growth rates of SBT over four decades - 1960 to 2000

Figure 7. The proportion of the catch by spawning season by Japanese longliners from

the SBT spawning ground (Statistical Area 1) estimated to be over 184 cm. (See

Caton, 1991, for definitions of the statistical areas.)

0.10

0.08

.0 0.06
'•c

0
a.

2 0.04 •}
Q.

0.02

0.00 -\ —••%•••

1950 1960 1970 1980

year

1990 2000

A10-37



Appendix 10: Comparison of growth rates of SET over four decades - 1960 to 2000

Figure 8. The proportion of the annual catch by Japanese longliners fi-om the SBT

feeding grounds (Statistical Areas 4-9) estimated to be over 184 cm. The lower dotted

line is for the proportion of the total catch and the upper solid line is the proportion of

the catch for fish larger than 130 cm. (See Caton, 1991, for definitions of the

statistical areas.)
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 9. The cumulative proportion of the catch by spawning season by Japanese

longliners from the SBT spawning ground (Statistical Area 1) estimated to be over a

given length. (See Caton, 1991, for definitions of the statistical areas.)
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

ANNEX 1: Residual Plots of the Best Fit to the VB log k Model for

Each Decade

Figure la. Diagnostic plots for the optimal integrated seasonal VB log A" model fitted

to the 1960's growth data. Panel (i) shows the 1960's direct aging data along with the

mean fitted curve. Panel (ii) shows the corresponding residuals (observed - fitted). A

local linear smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure Ib. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1960's growth data. Panel (i) shows the summary modes and ages obtained

from the 1960's length-frequency data along with the mean fitted curve. Panel (ii)

shows the corresponding residuals (observed - fitted). A local linear smooth has been

put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 1c. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1960's growth data. Panel (i) shows the residual release lengths for the 1960's

tag-recapture data plotted against the estimated ages at release relative to dg (i.e. A^,

as described in Appendix 5). Panel (ii) shows the residual recapture lengths plotted

against the estimated ages of recapture relative to Op (i.e. Af +t^ -/,). A local linear

smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 2a. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1970's growth data. Panel (i) shows the 1970's direct aging data along with the

mean fitted curve. Panel (ii) shows the corresponding residuals (observed - fitted). A

local linear smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 2b. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1970's growth data. Panel (i) shows the summary modes and ages obtained

from the 1970's length-frequency data along with the best fitting curve. Panel (ii)

shows the corresponding residuals (observed - fitted). A local linear smooth has been

put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 2c. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1970's growth data. Panel (i) shows the residual release lengths for the 1970's

tag-recapture data plotted against the estimated ages at release relative to ay (i.e. A^,

as described in Appendix 5). Panel (ii) shows the residual recapture lengths plotted

against the estimated ages of recapture relative to Og (i.e. A^ +t^-t^). A local linear

smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 3a. Diagnostic plots for the optimal integrated seasonal VB log A: model fitted

to the 1980's growth data. Panel (i) shows the 1980's direct aging data along with the

mean fitted curve. Panel (ii) shows the corresponding residuals (observed - fitted). A

local linear smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 3b. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1980's growth data. Panel (i) shows the summary modes and ages obtained

from the 1980's length-frequency data along with the best fitting curve. Panel (ii)

shows the corresponding residuals (observed - fitted). A local linear smooth has been

put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 3c. Diagnostic plots for the optimal integrated seasonal VB log A: model fitted

to the 1980's growth data. Panel (i) shows the residual release lengths for the 1980's

tag-recapture data plotted against the estimated ages at release relative to Og (i.e. A^,

as described in Appendix 5). Panel (ii) shows the residual recapture lengths plotted

against the estimated ages of recapture relative to a^ (i.e. A^ +t^ -<\). A local linear

smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 4a. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1990's growth data. Panel (i) shows the 1990's direct aging data along with the

mean fitted curve. Panel (ii) shows the corresponding residuals (observed - fitted). A

local linear smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 4b. Diagnostic plots for the optimal integrated seasonal VB log k model fitted

to the 1990's growth data. Panel (i) shows the residual release lengths for the 1990's

tag-recapture data plotted against the estimated ages at release relative to ay (i.e. A^,

as described in Appendix 5). Panel (ii) shows the residual recapture lengths plotted

against the estimated ages of recapture relative to a^ (i.e. Ay +t^-t^. A local linear

smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 5a. Diagnostic plots for the integrated seasonal VB log k model fitted to the

1960's growth data with //„ fixed at 184.4. Panel (i) shows the 1960's direct aging

data along with the mean fitted curve. Panel (ii) shows the corresponding residuals

(observed - fitted). A local linear smooth has been put through the residuals to reveal

any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 5b. Diagnostic plots for the integrated seasonal VB log k model fitted to the

1960's growth data with fl^ fixed at 184.4. Panel (i) shows the summary modes and

ages obtained from the 1960's length-frequency data along with the mean fitted curve.

Panel (ii) shows the corresponding residuals (observed - fitted). A local linear smooth

has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 5c. Diagnostic plots for the integrated seasonal VB log k model fitted to the

1960's growth data with fl^ fixed at 184.4. Panel (i) shows the residual release

lengths for the 1960's tag-recapture data plotted against the estimated ages at release

relative to Og (i.e. A^ , as described in Appendix 5). Panel (ii) shows the residual

recapture lengths plotted against the estimated ages of recapture relative to Og (i.e.

Af+t^-t^). A local linear smooth has been put through the residuals to reveal any

patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 6a. Diagnostic plots for the integrated seasonal VB log k model fitted to the

1970's growth data with //^ fixed at 187.8 (the optimal value for the 1960's). Panel

(i) shows the 1970's direct aging data along with the mean fitted curve. Panel (ii)

shows the corresponding residuals (observed - fitted). A local linear smooth has been

put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 6b. Diagnostic plots for the integrated seasonal VB log k model fitted to the

1970's growth data with //„ fixed at 187.8 (the optimal value for the 1960's). Panel

(i) shows the summary modes and ages obtained from the 1970's length-frequency

data along with the mean fitted curve. Panel (ii) shows the corresponding residuals

(observed - fitted). A local linear smooth has been put through the residuals to reveal

any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 6c. Diagnostic plots for the integrated seasonal VB log k model fitted to the

1970's growth data with //„ fixed at 187.8 (the optimal value for the 1960's). Panel

(i) shows the residual release lengths for the 1970's tag-recapture data plotted against

the estimated ages at release relative to dy (i.e. A^, as described in Appendix 5).

Panel (ii) shows the residual recapture lengths plotted against the estimated ages of

recapture relative to a^ (i.e. A^ + ^ - 0. A local linear smooth has been put through

the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

ANNEX 2: Residual Plots of the Best Fit to the Standard VB Model

for the Data from the 1960's

Figure la. Diagnostic plots for the optimal integrated seasonal VB model fitted to the

1960's growth data. Panel (i) shows the 1960's direct aging data along with the mean

fitted curve. Panel (ii) shows the corresponding residuals (observed - fitted). A local

linear smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure Ib. Diagnostic plots for the optimal integrated seasonal VB model fitted to the

1960's growth data. Panel (i) shows the summary modes and ages obtained from the

1960's length-frequency data along with the mean fitted curve. Panel (ii) shows the

corresponding residuals (observed - fitted). A local linear smooth has been put

through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

Figure 1c. Diagnostic plots for the optimal integrated seasonal VB model fitted to the

1960's growth data. Panel (i) shows the residual release lengths for the 1960's tag-

recapture data plotted against the estimated ages at release relative to ay (i.e. A^, as

described in Appendix 5). Panel (ii) shows the residual recapture lengths plotted

against the estimated ages of recapture relative to Og (i.e. A^ +t^-t^). A local linear

smooth has been put through the residuals to reveal any patterns.
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Appendix 10: Comparison of growth rates ofSBT over four decades - 1960 to 2000

ANNEX 3: Estimates of the Correlation Matrix for the Parameter
Estimates from the Best Fit to the VB log k Model for Each Decade

and to the Standard VB Model for the 1960's

Table 1: Correlation matrix for the parameter estimates from the VB log k model fit to

the 1960's data.
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Table 2: Correlation matrix for the parameter estimates &om the VB model fit to the

1960's data.
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Table 3: Correlation matrix for the parameter estimates from the VB log k model fit to

the 1970's data.
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Table 4: Correlation matrix for the parameter estimates from the VB log k model fit to

the 1980's data.
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Table 5: Correlation matrix for the parameter estimates from the VB log k model fit to

the 1990's data.
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Appendix 11: Investigating the timiug of annual growth deposits ia otoUths of SBT

Introduction

Otoliths are calcified 'ear-stones' m teleost fishes used for balance and/or hearing.

They are metabolically inert and, unlike other hard parts of fish such as scales and

vertebrae, are not subject to resorption (Campana 1999). In addition, otoliths continue to

grow throughout the life of a fish and hence contain a permanent chronological record.

OtoUth growth is not constant. During periods of fast growth the accreted otoUth

material is opaque whereas it is translucent during slow growth periods. An opaque zone

and subsequent translucent zone is referred to as an 'increment' and they appear as a light

and a dark band, respectively, when placed on a black background and viewed under a

dissecting microscope with reflected light.

Increments in the otoliths of southern bluefin tuna, Thimmis maccoyii, (SET) are

formed annually (Clear et al. 2000), with fast growth occurring during the southern

summer and slow growth during the southern winter. Thus, the number of increments can

be counted to give an age estimate of SBT in years. We refer to this procedure as making

a "reading" from an otolith.

There are three pairs of otoliths; in most fishes, includmg tunas, the sagittae are

the largest pair. Because of their size, sagittae are the easiest to handle and prepare so

they are most often the otoliths chosen for research, as they were for this study. Previous

studies involving direct age estimates of SBT have included two methods of preparing

sagittal otolifhs for "reading", one in which the otolith was left whole and the other in

which the otolith was sectioned (Gunn et al. In press). The whole otoUth method has been

used successfully for fish less than about 6 years old (-135 cm fork length); after this

age subsequent increments are deposited too closely to differentiate them. Sectioned

otoliths have been used for all ages, however the first 4 or 5 increments are particularly

difficult to decipher. With both methods, if the start of a new translucent zone (or band) is

detected on the otolith margin an additional increment (known as the marginal mcrement)

is counted as a year.

Using the number of increments as an estimate of fish's (integer) age is not

straightforward because variation occurs in the time of year when individual fish form

fheir translucent band. Consider two fish from the same cohort. One fish is caught in
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Appendix 11: Investigating the timing of annual growth deposits m otoliths of SBT

April and has not yet started to form the translucent band within the marginal mcrement.

There are N increments visible on its otolith, so the fish is assigned age N. The other fish

is caught two months later. By this time it has started to form a translucent band,so it is

estimated to be age TV + 1, despite the fact that the two fish came from the same cohort.

If we know the date, d, when the translucent band becomes detectable, then we

can estimate the cohort to which a fish belongs. For example, if we assume that all fish

are born on January 1st (the approximate mid-point in the SBT spawning season), then we

can correct the ages such that all fish from the same cohort are assigned the same age as

foUows:

N if capture date <d
age =

N-l if capture date >.d

where N is the number of bands counted, and both d and the capture date are expressed m

Julian days since January 1 of the year of capture.

As part of this Appendix, we carried out an investigation to determine d, the time

when the translucent band is formed, using data from a previous age-validation study

(Clear et al. 2000). In the Clear et al. (2000) study, a number of SBT that were caught as

part of a large-scale tagging program were injected wifh strontium chloride at the tune of

tagging. Strontium chloride (SrCl2) is a harmless salt that deposits m fhe otolith and

provides a "time-stamp" of the date of tagging. When the fish are recaptured and the

otoliths are removed, the number of increments formed subsequent to marking is

determined by counting the number of translucent zones ('bands') deposited after the

strontium mark; the translucent zones are narrower and more defined than the opaque

zones and hence easier to count. Because the amount of time the fish has been at liberty is

known, we can determine whether or not fhe translucent zone for the recapture year has

yet been formed (or is yet detectable).

The results of this investigation did not provide as fine a resolution for

determining when during the winter period the translucent band was formed as we had

anticipated. This was considered a significant issue for the current growth project because

a substantial number of otoUths had been aged from fish captured during these winter
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Appendix 11: Investigating the timing of annual growth deposits in otoliths of SBT

months. Results of fitting growth curves to the otolith age and length data were found to

be sensitive to assumptions about the time of band formation. As a consequence,

additional work was undertaken to see if a more precise and accurate estimate of the time

of band formation could be determined.

A pilot study was conducted in which a small number ofum-ead strontium-marked

otoliths from fish caught during the winter months were selected fi'om the CSIRO

archives. la addition to counting the number of bands formed subsequent to the

strontium mark, several additional observations were also made. la particular, the

samples were chosen from fish that had had both otoliths extracted so that one otolith

could be read using the whole method and the other could be read using the sectioned

method. Some preliminary exploration of existing otolith data suggested that the ability

to detect a translucent zone forming on the margin may differ between the two methods.

The results from the pilot study further indicated that this was a possibility.

Consequently, a larger study was conducted in which otolith pairs were read both

sectioned and whole and fhe readings compared.

JVtethods

Time of band formation shidy based on strontium chloride marked otoliths

As part of the Clear et al. (2000) age-validation study, 59 otoliths were read from

fish that had been strontium injected and recaptured. Details on the strontium chloride

tagging experiment can be found in Clear et al. (2000).

Using the release date of the fish (at which point the strontium mark was

deposited m the otolith), the recapture date, and the number of increments subsequent to

the strontium mark, we can determine if a translucent band had yet been formed in the

year of recapture. For example, if a fish released m January 1990 and recaptured in July

1994 has four translucent bands in its otoUth after the strontium mark, we can assume that

its translucent band for 1994 has not yet been formed, or at least cannot yet be seen. In

doing so, we are assuming that the count of increments subsequent to the strontium mark

is accurate. We are also assuming that the only uncertainty in the number oftranslucent

bands that should have formed comes from the year of recapture, and not the year of
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release. The majority of fish were tagged and released during the summer months of

December to March; months during which a translucent band would not be forming.

However, two of the 59 fish were released in Jime and one in May, and we cannot be sure

whether the band corresponding to the year of release would have been formed prior or

subsequent to fhe strontium mark. Thus, we excluded these three fish from our analyses.

For each month of recapture, we tabulated how many fish had ah-eady formed a

band ia the year of recapture. We could then estimate the range of months during which

band formation can occur, and also an average date by which SBT otoliths exhibit a

translucent band.

Pilot study

A pilot study was conducted m which 24 unread strontmm-marked otoliths fi-om

fish caught during the winter months (May-September) were extracted from the CSIRO

archives. The number of bands formed subsequent to fhe strontium mark were counted

and checked against the tune at liberty to determine if a band had yet been formed by the

recapture date. Several additional observations were also made.

Two methods have been developed for reading otoliths - one in which the otolith

is left whole and one m which it is sectioned (Gunn et al. In press). Prelimmary

exploration of existing otolith data suggested that the ability to detect a translucent zone

forming on the margin may differ between the two methods. In particular, a plot of fork

length versus estimated age showed obvious disparities m fhe lengths-at-age of yoimg

fish that had been caught m llie winter months. Further investigation revealed that these

disparities were consistent with fish aged using the sectioned method being one year too

young, which would occur if a band forming on the otolith margin was not being detected

in the sectioned otoliths. However several confounding factors also existed which could

explain the differences, one being that the same fish that were aged using the sectioned

method were also caught in a very different area of the ocean than the fish that had been

aged using the whole method. We used the pilot study to investigate this issue further.

The 24 otoliths that were selected for the pilot study came from fish for which both

otoUths had been collected (called sister otoliths). One otoUth was read whole and the
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other otolith was read sectioned. In addition, for bofh methods the reader recorded

whether or not a ti'anslucent band was coimted on the margin of the otolith.

Whole versus sectioned otoliths study

Exploratory data analyses m conjunction with results from the pilot study

suggested that there may be a consistent difference in the time at which the translucent

band being formed on the margin of an otolifh becomes detectable between otoliths read

whole and otoliths read sectioned. For fish caught during the winter months while a

marginal band is forming, it is important to know whether m fact a difference does exist.

If it does, then the age assigned to these fish could be one year different depending on the

method used. A difference in age of one year for small fish can have a significant impact

on the estimation of growth rates. Furthermore, it was realized that if a significant

difference did exist, it could be exploited to refine the tune when bands become

detectable with both methods by comparing otolith readings using both methods firom the

same fish. For example, the first month in which a difference in the number of bands was

found between the two methods would indicate the month when bands first became

detectable with the method yielding the higher number of bands. This month would mark

the beginning of the potential period of band formation. The subsequent month in which

both methods yielded the same number of bands would indicate the month when bands

were consistently detectable by both methods, and would mark the end limit of the period

of band formation.

In order to address the problem of whether a consistent difference did exist and

whether it could be used to refine the estimates of the time ofdetectable band formation,

we conducted a study using pairs of sagittal otoliths from the same fish. One otolith was

read whole and the other was read sectioned to see if there was a consistent difference m

the readings around the tune of band formation, and if so, for what months the difference

was present.

Pairs of sagittal otoliths (paired otoliths from the same fish are referred to as

'sister otoliths') were chosen from the CSIRO Hard Parts Archives. Samples were

selected from fish with lengths less than 135 cm since whole otoUths from fish larger

than this are usually very difficult to read. Furthermore, otoliths were selected from fish
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caught during the months of March to November since the translucent zone would almost

surely have been deposited sometime within this period. In three of these months (April,

August and November), fewer than 20 intact pairs of otoliths were available from the

Archives. The small sample sizes could possibly obscure a pattern m the development of

the translucent band through the year. However, the numbers of fish m the adjacent

months are high, which should still allow for a general pattern to be detected if it exists.

Furthermore, the length distribution is fairly similar across months, especially m the

potential months of band formation (Figure 1). This would be important if the ability to

detect the marginal band using a particular method is related to the size of the otolith, and

hence fhe size of the fish.

Sister sagittal otoliths were prepared using two techniques: one otoUfh for reading

whole and one for reading sectioned. The otoUth to be read whole was burned on a

400°C hot plate until it turned golden brown. This accentuates the opaque-translucent

banding pattern since the colour change m the translucent zones is greater, making them

more visible (Figure 2). The other sagitta of the pair was sectioned along the transverse

axis (Figure 3a), producing a 0.35 mm thick cross-section contamiag the primordium

(Figure 3b).

Age estimates were successfuUy made using both the whole and sectioned method

for 227 pairs of sister otoliths. Regardless of the method, two coimts were made 'blindly'

&om each otolith (without knowledge of the size of fish or any previous estimates). A

third reading was made to determine a final age estimate (FAE); this reading was made

wifh the knowledge of the previous two readings. Two readers, both with extensive

experience in age and growth studies of SBT, made all of the readings. The average

percentage error (APE) ofBeamish and Foumier (1981) was calculated to compare age

estimates between the FAEs from each method. This index provides a measure of the

precision or reproducibiUty of age estimates.
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Results

Time of band formation based on strontium chloride marked otoliths

None of the fish recaptured in the months of January to May (inclusive) had a

detectable baud on the otolith margin, i.e. the band had not yet begun to form during the

year of recapture (Table 1). Of the 11 fish caught in June, two had formed a band m that

year, while three of the four fish caught in July had formed a band. All fish recaptured

after July had ah-eady deposited a band m their otolith by the time of recapture. This data

implies that band fonnation can occur during June and July, with July being most

common. Unfortunately, we have no data for August so we cannot say anything about

band formation during this month. Likewise, the sample sizes in all months surrounding

the identified period of band formation are so smaU that we cannot be sure about the

boundaries of the period, or reliably estimate the probability of a band being formed and

becoming detectable during these transition periods. From the available information, we

infer that band formation can occur any time during the months of May to September,

with July 1 as the approximate average time.

It is important to note that all of the otoliths used m this strontium chloride

marking study had been read using the whole otolith method. Thus, the results only apply

to the time when bands become detectable with this method, but this also means fhat

there is no potential confoundmg based on the method of reading. In addition, aU of the

otoUths came from fish recaptured m years 1992 to 1995 in waters south of Australia

between 110°E and 170°E and 32°S and 44°S, with the majority caught m the Great

Australian Eight or off Tasmania.

It is conceivable that the year or the spatial environment of the fish may affect the

timing of band formation. The formation of otoUths is thought to be determined m part

by the environmental conditions experienced by the fish (temperature, salinity, etc.) and

m part by other factors such as ontogeny, growth rates and physiological processes,

although their relative contributions remain uncertain (Campana 1999). To add to this

complex picture, the ability of SBT to maintam body temperature above ambient

temperature may possibly obscure the water temperature signal to some urdmown degree.

However, if fast and slow growth periods are related in part to hot and cold water
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temperatures respectively, then either a year with an unusually warm autumn, or else a

warm place of residence during autumn, might prolong the fast growth period and hence

delay the formation of the translucent zone. For this reason we stratified the data in

Table 1 by recapture year and by recapture area respectively (Table 2 shows the results

stratified by year). We found the pattern in the number of bands formed by each month

to be similar across years and across areas.

The recapture ages of the fish (as detennined by fhe number of increments m the

otolifh) ranged from one to six, with the majority of fish aged three or four. The

detection of fhe marginal band may be affected by the age of the fish. In juvenile SBT

the width of the new translucent zone decreases with each subsequent increment formed,

so for older fish the marginal band might be more difficult to detect until it has been more

fiiUy formed. Thus, we stratified the data in Table 1 by recapture age. Again, we found

the pattern in the number of marginal translucent bands formed by each month to be

similar across ages.

Caution must be used in iaterpretmg these results because the sample sizes in

each month after stratification are so small that the data are not very informative. The

results certainly cannot be taken as conclusive, and they cannot be generalized outside the

range of the data. The fish included in the study came from a faMy narrow range of the

population with respect to years, areas, and ages. It is possible that one or more of these

factors play a role in the formation or detection of bands that we were unable to identify.

Pilot study

Of the 24 pairs of sister otoliths selected for the pilot study there were 3 pairs that

had to be omitted completely from the study due to both otoliths being unreadable or the

release and recapture information being unbelievable. Offhe remaming otolifh pairs, the

whole otoUth was unreadable in 3 cases and the sectioned otolith was unreadable m 2

cases. For investigatiag the time of the band formation, this left 18 whole otoliths and

19 sectioned otoUths; for comparing the two reading methods, this left only 16 pairs with

both readings available.

The results from the investigation on the time of band formation (Table 3) were

not very informative for clarifying the period of band formation. This was due largely to
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the small sample sizes. The results fi'om both the sectioned readings and whole readings

indicate that bands can form in May, June and July. Only one sample from each of

August and September was included in the study. In both cases, the whole otolith was

um-eadable and the sectioned otoUth exhibited a band on the margin, but clearly nothing

can be concluded about these months with a sample size of one. The small sample sizes

are unfortunate but were due to several reasons: a) this was only intended as pilot study

and resources were limited (the process of preparing an otolith and obtaining a final

reading is expensive and time-consuming), b) there are limited numbers of strontium-

marked otoliths available (only 2 remain m August, which is a critical month for defining

the period), and c) strontium-marked otolith samples for which both sister otoliths are

available are even more limited.

Recall that for each sectioned otolith, the number of bands deposited after the

strontium mark was counted, and it was also recorded whether a band was detected on the

margin of the otolith. For 100% of the sectioned otoliths, if a band was detected on the

margin of the otoUfh, then the post-strontium count indicated the presence of a band ia

the year of recapture; if a band was not detected on the margin, then the post-strontium

count indicated a band was not present m the year of recapture. Because both sets of

results are equivalent, we will only refer to the detection of a marginal band results for

sectioned otoliths.

Despite the small amount of data, some interestmg results were obtained. The

proportion of fish with a margmal band in May was high, whereas the proportion of fish

with a marginal band in July was small, and these observations were consistent whether

using the whole otolith or sectioned otolith. These results are somewhat contradictory to

those from the previous study (see Table 1), but the difference is not startling since the

sample sizes for May and July are so smaU in both studies. A more mteresting result is

that the proportion of fish with a marginal band in June was high based on whole otoliths

and low based on sectioned otoliths.

In the previous study, which used only whole otoliths, June had a low proportion of otoliths with a band

detected iu the year of catch. However, the results from the two studies are not completely comparable -

(continued on next page)
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In comparmg the whole and sectioned readings on sister otoliths, the whole

reading was generally one greater than the sectioned reading for fish caught in Jime

(Table 4). The two readings tended to agree in the other months, although June is the

only month with a reasonable sample size for comparison. This finding supported our

hypothesis that the ability to detect a marginal band may differ between the two methods,

with a band becoming detectable sooner with whole otoliths than with sectioned otolifhs.

This led to a more comprehensive study compariag whole and sectioned readings on

sister otoliths, the results of which are presented below.

Whole versus sectioned otoliths study

Using the final age estimates (FAEs) &om 227 pairs of sister otoliths, where one

sister was read using the whole otolith method and the other using the sectioned otolith

method, we calculated the average percent error (APE) between the methods to be 5.8%.

This is well within the acceptable level of 10%. For each pair we also calculated the

difference between the whole and the sectioned read. Of the 227 pairs included in. the

study, the whole and sectioned readings agreed in 146 cases (64.3%). The whole reading

was one greater than the sectioned reading in 17 cases (7.5%) and two greater in 4 cases

(1.8%); it was one less in 55 cases (24.2%) and two less in 5 cases (2.2%). This trend is

consistent across months (Figure 4). This would suggest that there is a tendency to count

an extra band using the sectioned method versus the whole method. If the difference was

due to new bands being detectable earlier in the year in sectioned otoliths than whole

otoUfhs, then we would expect the sectioned readings to be one greater during the early

months of band formation and equal later in the year. Instead, all months show the same

pattern, which implies that the difference is not due to the timing of band formation.

The main purpose of this study was to see if the method used to read the otolith

affects the perceived time of band formation. However, out of interest, we plotted the

the results from the previous study are based on counts of the number of bands after the strontium mark in

whole otoliths, whereas the results obtained from whole otoliths in the pilot study are based on whether or

not a band was detected on the margin of the otoUth. Post-strontium counts were only made on sectioned

otoliths in the pilot study.
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fork length of the fish versus the whole and sectioned readings (Figure 5). The sectioned

readings show greater variability m length at age than the whole readings, especially at

younger ages. From our knowledge about the length-at-age distribution of young SET,

the sectioned readings show a greater range than expected. For example, it is unlikely

that a fish of age two is over 100 cm m length. This suggests that the whole readings

may be more precise, at least at young ages. This result may not be overly surprisiag

since it has been documented that the first four or five increments are difficult to interpret

m sectioned otoliths (Gunn et al. In press).

Discussion

From the data available, we found that the time of year at which SBT deposit a

translucent zone in their otoliths can vaiy fi-om May to September, with July 1 being an

approximate average date. Although some of the variability may be due to errors in the

increment counts, most of the variability is Hkely due to the fact that the time of

translucent band formation differs considerably from fish to fish. Growth m SBT, and

hence the formation ofotolith mcrements, is beUeved to be related in part (and indirectly)

to water temperature, with slow growth occurring when the water is cooler. SBT are

found throughout a large area of the ocean with very different envu'omaental conditions.

As such, it is not surprising that fbe time at which the band forms can vary greatly

between fish. The annual formation ofmcrements in otoliths may also be, at least in part,

physiologicaUy controlled; this too could cause the tuning of band formation to differ

between fish.

In our comparison of sister otoliths read whole and sectioned, we found no

relationship between the difference m the readings and the time of year. This means that

comparison of number of bands from the same fish using the same method cannot be

used to provide further mformation on the timing of band formation. However, it also

means that the fact that all the otoUths read m the Clear et al. (2000) strontium-chloride

experiment were read whole should not affect our findings about the period of band

formation, and that the conclusions from this study can be applied to otoliths read with

either method.
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Although the main purpose of comparing whole and sectioned otolith readings

was to see if the methods differed m their detection of the marginal increment, some

other interesting results came fifom the study. For example, although the methods show

quite good agreement (64%), there appears to be a tendency for the sectioned count to

have one more band than the whole count. The discrepancy between the whole reading

and the sectioned reading does not appear to be related to the size of the fish (Figure 6),

alfhough the sample sizes in the smaller length-classes are too small to be certain. Based

on Figure 5 and our prior knowledge of the length-at-age distribution of young fish, we

believe the whole count is more reliable for young (small) fish. However, the whole

method cannot be used for larger fish (fork length > 13 5 cm). Thus, with respect to using

direct aging data to model growth, it might be preferable to use only data from otoliths

read whole up to a given size, and then use data from the sectioned method subsequently.

Of course, one would need to decide (probably somewhat arbitrarily) an exact figure to

use for the transition size.

There are still some um-ead otoliths in the CSIRO Hard Parts Archives that were

collected from strontium-mjected SBT. These otolifhs could perhaps be used to better

define the period of band formation, but preparation and reading of them was beyond the

scope of this study. There are at least 20 unread strontium-marked otolifhs collected in

each month from January to June (with the exception of 16 in May) that could help to

define the start of the period. Unfortunately, there are only 7 unread otolifhs &om fish

caught in July, 2 from August, and 5 from both September and October. This means that

there are insufficient samples to reliably estimate fhe end of this period with any

confidence.

AU of the stroutium-mark otoliths included m our investigation of fhe tune of

band formation came from fish aged six or less that were caught m soufhem Australian

waters in years 1992 to 1995. The time of band formation may differ for fish outside

these ranges since the physical environment in other regions may differ and there may be

differences in habitat use with age. By proposing a fairly broad range of months m which

band formation can occur (May to September), we hope to have enveloped the time of

band formation for the vast majority of fish.
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Without more information, uncertainty of one year exists about the age of a fish

caught during the period of band formation. In turn, this uncertainty could induce

substantial uncertamty into the estimation of growth curves if fish caught during this

transition period are included. While statistical approaches can be developed to deal wifh

this problem (see Appendix 12), their application is complex, requires substantial

amounts of data and was outside the scope of the current project. It is important to note

that the exclusion of du-ect aging data from fish captured diirmg the months when bands

are being fonned would not bias the estimation of growth, but their inclusion with some

assumption about the time of band formation could. Thus, only direct aging data from

fish caught outside the proposed months of band formation (i.e. from October through

April) were included m growth analyses for the current project. In doing this, we believe

that we should have excluded atmost aU, if not aU, fish for which the time of band

formation could potentially confound the estimation of its age.
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Table 1. Direct aging data from 56 southern bluefin tuna that were part of a tag-recapture

experiment with strontium chloride. The table shows how many of the fish recaptiu'ed in

each month had yet deposited a detectable band in their otolith for that year.

Recapture
Month

January
February
March

April
May
June

July
August

September
October

November

December

Total

Band deposited yet?
No

3
9
14
3
2
9
1

41

Yes

2
3

2
4
1
3
15

Total

3
9
14
3
2
11
4

2
4
1
3

56
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Table 2. The data from Table 1 stratified by year of recapture. The time when bands are

formed does not appear to be affected by year; however, the sample sizes in each month

are much too smaU to be conclusive.

Recapture
Year

1992

Recapture
Month

3
4
6
7
10

1992 Total
1993 1

2
3
4
5
6
7
10
11
12

1993 Total
1994 1

2
3
6
7
9
10

1994 Total
1995 1

2
3
4
6

1995 Total
Grand Total

Band deposited yet?

No

1
1

2
1
4
8
1
2
1

17
1
1
3
4
1

10
1
4
2
1
4
12
41

Yes

1
2
1
4

1
2
1
3
7

2
1
3

1
1

15

Total

1
1
1
2
1
6
1
4
8
1
2
1
1
2
1
3

24
1
1
3
4
1
2
1

13
1
4
2
1
5
13
56
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Table 3. Summary results from the pilot study. The table shows how many of the fish

captured in each month had a detectable band forming on fhe margin of their otolith

according to a) the whole method and b) the sectioned method.

Recapture

Month

May
June

July
August

September

Whole Method
No

1
2
3
0
0

Yes

3
8
1
0
0

Sectioned Method
No
2
7
3
0
0

Yes

3
1
1
1
1

Table 4. Difference between whole reading and sectioned reading for otoliths read as

part of the pilot study. Only 16 of the otolifh pairs could be included m the comparison

due to one or both of the otoliths being iim-eadable using the method for which it was

prepared.

Recapture
Month

May
June

July
August
September

Whole -

-1

0
0
1
0
0

Sectioned

0
4
2
2
0
0

+1

0
6
1
0
0

Total

4
8
4
0
0
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Figure 1. Fork length versus month caught for the 227 fish selected for the study

comparing whole and sectioned readings fi-om sister otoliths. The length distributions are

reasonably similar across months, especially in the most probable months of band

formation, so length should not be a confounding factor m whether or not a method can

detect a band in a particular month.

160 ^

140^

120^

"E 100
0

f 80
u
-£

i? 60

40

20

0

<
t
•

•

•

•
•

»
•

•
»
•

•

(
$

6 7

Month Caught

I
•
•

•

t

•

•

10 11 12

All-19



Appendix 11: Investigating the timing of annual growth deposits ia otoUths of SBT

Figure 2. In preparation for being read whole, the sagittal otoliths were burnt on a hot

plate accentuating the translucent zones (bands). Scale bar: 1 mm,
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Figure 3. a) Sagittal otolifhs were sectioned along the transverse axis, producing a 3.5-

mm thick cross-section that contamed the prunordium. b) Age estimates were made by

counting increments along the longer arm of the cross-section, from pnmordium to

margin. Scale bar: 1mm.
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Figure 4. Barplots of the difference in whole versus sectioned readings made from sister

otoliths broken down by month. a) Each bar shows the number of otolith pairs from that

month for which the whole reading minus the sectioned reading was 2, 1, 0, -1, and -2

respectively, b) Same as a) but showing percents instead of absolute numbers.
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Figure 5. Fork length of fish versus final otolith reading, for both sectioned and whole

otoliths.
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Figure 6. Barplot of the difference in whole versus sectioned readings made from sister

otoliths broken down by 1 0-cm length classes. The x-axis label gives the start of the

length class. Each bar shows the number of otolith pairs coming from fish in that length-

class for which the whole reading minus the sectioned reading was 2, 1, 0, -1, and -2

respectively.
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Introduction

The growth of southern bluefin tuna is much faster in summer than in winter.

This seasonal growth pattern is reflected in the tuna's otolith (ear-bone), which

exhibits bands corresponding to slower winter growth. These bands can be counted,

yielding a measure of the age of the fish (Clear et al. 2000). When a fish is caught

and its otoliths are extracted, its length I is also measured. The number of bands

in one or both of the otoliths is counted under an optical microscope. This is

caUed reading an otolith. An otolith can be read by two methods, either whole or

sectioned. It has been common to use the whole otolith on young fish, partly for

cost considerations. As a fish ages, its growth slows and the otolith bands crowd

together. On older fish (over age six), the otolith must be sectioned so that adjacent

bands can be distinguished better.

The analysis of otolith data represents a considerable statistical challenge.

Even if counting is correct, the age of the fish is known only to within a year because

of uncertainty in the birth date. Moreover, the time when bands are formed varies

among fish so errors of plus or minus a year can be induced in the age estimates

of fish caught during this time. In addition to age uncertainties, there are other

sources of variation that may need to be accounted for, such as possible reader

effects, method effects and regional differences. In the cm-rent growth project, we

avoided the worst of these complications by excluding otolith data from fish captured

during the period of band formation (see Appendices 3 and 11) as well as otolith

data from the spawning grounds that was known to have size biases (see Appendbc

3). However, this resulted in potentially useful data being omitted. We also made

simplifying assumptions with respect to birth dates, measurement error, et cetera.

While these assumptions should not induce biases into the parameter estimates of

the growth model, they will result in them having higher variances. It was beyond

the scope of this project to develop rigorous statistical theory to deal with all these

issues. However, we have developed some initial ideas and approaches which we

present in this Appendbc. These are preliminary ideas that need further development
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and testing, but we present them as a basis for stimulating further work.

A first approach

There are two response variables measured on an aged fish: the length / and

the number of bands z. We also know the time t at which the fish was caught. We

require a statistical model of the data. The length I is assumed to follow a growth

curve

I = L^f{a; 0) + e

where Lyy (the asymptotic length) is random from fish to fish with mean ^oo and

variance (T^, a is age, 0 is a vector of fixed unknown parameters and e ~ N(0, a2)

represents measurement error. For example, for the van Bertalanffy growth curve

1 — exp(—/c(a — ao)) if a > a,o;
f{a;0) =

0 otherwise,

so that 6' = {k,a,o}.

The age a of the fish is not measured directly, but we can assume that the

age and the number of bands z are related by

a== z Jt-r — m — S

where 0 ^ r = t — [t] < 1 is the time of the year at which the fish was caught,

m = 1 if the fish has laid down a band during the current calendar year and is 0

otherwise and 8 ~ N(0, o-j) reflects the variable spawning time of southern bluefin

tuna. The distribution for S implicitly assumes that the mean time of spawning is

January 1. The band is laid down in the winter, so that m = 0 at the beginning

of the year when r is close to 0, and m = 1 at the end of the year when r is close

to 1. Imagine a given fish passing through the stroke of midnight at the end of a

calendar year: then m switches from 1 to 0 and r simultaneously switches from 1 to

0. For the purposes of this Appendbt, we assume that the time of laying down the
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band is symmetric about July 1 with a standard deviation of about 1 month, but

we recognize that further work on this is needed (see Appendix 11). A reasonable

model for m is therefore

logit Pr[m = l|r] = 30 (r - 0.5).

We assume that the standard deviation o-s of S is about 0.1, and that S and in are

independent. This may not be true for fish in their first year of life, but we suspect

that it is true in later years. However, we have very few fish less than one year old,

so we ignore this point, and note that the growth rates of fish below this age are not

important in terms of their use in the stock assessment.

Note, in passing, that we could model dependence between m and S quite

easily by setting, for example,

logit Pr[??z = 1\S, r} = 30 (r - a8\8\z - 0.5).

The function \S 2 ensures that the correlation between in and S declines as the age

of the fish increases. Other functions could be used. If S > 0, the fish was spawned

after January 1, and we suspect that the first band would tend to be laid down after

July 1 the next year, so that a > 0. However, we leave this for future work.

For a fish caught at time r let

1 _( l(l-^f)^
g{l\z,S,m,r) = /— r—= exp ( - ^ v^ ;;°° •

/2n^r+a^^\ 2a^f-+^j-

where / == f(z + r — m — S;0). We can therefore write down the likelihood of the

length / given z as

1

'-°°m=0

where

•00 1

g(l\z, r) == / }j fif(^|2;, 5, ?72, r) Pr[m|r] h(S) d8
—00 „._,

"^©
and <^>(.) is the standard normal density. If??z and 5 are correlated, we simply replace

Pr[m|r] by Pr[??z|5,r].
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The unknown parameters could be estimated by maximising the log-likelihood

n

^\ogg(l.i\Zi,Ti').
1=1

This involves either one integral per fish, or, if the summation is moved before

the integral, two integrals for each fish, one for m = 0 and one for m = 1. If

we do one integration, the integrand might be quite complicated, so we might

need to use Simpson's rule, but if we do two, the integrals could be handled by

Gauss-Hermite quadrature. However, it is probably adequate to approximate the

integral by a sum, particularly as there are no unknown parameters in the distri-

bution of S. Thus we could make the distribution of 8 discrete, with probabilities

of say 0.01, 0.10, 0.39, 0.39, 0.10, 0.01 of being spawned in October, November,

December, January, February and March respectively, which would correspond to

8 = -0.21,-0.13,-0.04,0.04,0.13,0.21. An advantage of this approach is that a

non-Gaussian (e.g. bimodal) distribution for 6 could be handled easily. Also, the

cell sizes do not need to be equal, so we could divide December and January into

two, say.

In practice there are complications. First, the observed number of bands z

might be the true number of bands z* measured with error, and this error may

depend on the reader, the method used, and the age of the fish. One possibility is to

condition on the number of bands reported, and to work out a distribution for the

number of true bands given the number of reported bands. This is called a Berkson

error model. An obvious first candidate is

Pr[-^] = $((z+ +0.5 - z - /3)/a,) - $((^ -0.5 - z - f3~}/a,)

where the second term on the right is omitted if z* = 0. The probabilities then sum

to 1. We should probably make o-z depend on z too. For example, if counting errors

are expected to have a 10% coefRcient of variation, set a^ == 0.1 (z +0.5). The bias /3

would change with the reader/method combination — for one such combination, say

Reader 1 with sectioned otoliths, set /3 = 0, and estimate a different f3 for the other
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reader/method combinations. This of course adds an extra sum into the likelihood:

9^z'T) = E EE CMZ^ 5>m' T) Pr[mlT] PrN Pr[^l^] •
z* S m

Note that /3 and a-z could be made to depend on covariates. For example, we might

expect a greater bias or error around the time of band formation, in which case f3

could be made a suitable function of r.

The second complication is that fish in different areas might exhibit slightly

different growth rates or times of band formation. There are several possible ways

to model this. We might make some of the growth parameters, k or ao, depend on

the area.

A more pragmatic approach

In this Appendix we shall take a more pragmatic approach. Let i index the

region and j the fish within that region. We let the age be

a = Z+T-M

where M = 1 if r > 0.5 and M = 0 otherwise. We are ignoring the randomness in

a, because we believe that other sources of variation may be more important, and

we wish to concentrate on them initially. Our first model is

Ro

kj = ^oo,y/(%'; 61) + Ui + ^ <5-y,,.ar + Cy ,
r=l

where

'oo,ij = l-^oo -t- ^ij

and Ro is the number of reader/method combinations. Here u, v and c are all

independent random effects. We assume that n ~ N(0,a~^), v ~ N{0, o-^,) and 6 ~

N(0,a ). Thus K, represents a random regional effect and v the natural variability

of fish lengths. In addition, e represents sampling error, and its variance is assumed

known — although in practice it will be estimated from other data.
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The final component of the model is the reader/method combination a'r,

which we treat as a fixed effect. Thus

'z],r —

1 if fish otolith ij is read with method r;

0 otherwise.

We need to avoid redundancy in the a',, parameters by setting ^ ar = 0- Once

again, it is possible to make this effect depend on covariates such as r. For example,

we could replace a'r by 7^^ = arSin2(7TT,j). This implies that there is virtually

no reader effect if the fish is caught in December or January, but the reader effect

becomes very pronounced if the fish is caught in June or July. It should be noted

that the reader effect is likely to vary randomly from fish to fish, and will not just

be a fixed amount captured by the parameter ctr. This could be modelled by adding

in a term Wy, so the model becomes

ij = -^oo ,ij J \fti]i ^) ~1- ^'i -t~ ^ ^ Oy^d'r -t- Wy -1- Cy ,

r=l

,2where Wy ~ N(0,cr2^). Analysis of independent replicate measurements suggests

that o-u, w 0.1(2; + 0.5). In practice, Vy J(ay; 0) and Wy are likely to be highly con-

founded, and therefore we omit Wij from the model. However, it might be necessary

to include Wy explicitly if the tag-recapture data are being analysed at the same

time. Alternatively, we could assume that o\y is known.

We assume that we estimate the parameters by maximising the likelihood of

the data. It would be normal to write the model in vector form as

l=T(3+ Uu + d

where I is the vector of length data, T = (/ A), / is the vector of growth function

values, A is a fbted effects design matrix such that Ay^ = 1 if fish ij is measured

using reader/method r and is 0 otherwise, U is a random effects design matrix such

that Uij i == 1 if fish ij is caught in region i and is zero otherwise and d = f v + e

where v and e are the vectors of Vij and 6y values respectively. All of the linear

parameters are placed into a single vector /3; that is, f3' = (/^oo,a')/. However, we
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need to be aware that some parameters will be common to other data sets in an

integrated analysis, and hence we shall write the model as

I = /.i+ Aa + Uu + d

where /u = /./oo/- We emphasise that when analysing data we need to take into

account the constraint that ^,, a'r =0, or, equivalently, that the rows of A sum to

1, so that the columns are not independent vectors. It is simplest to omit the final

column of A to overcome this problem, so that we estimate a'i,..,, a,._i, and then

calculate Or = — Sr.=i c^r- In what follows, it shall be be implicitly assumed that

the final column of A has been omitted.

We need to compute the likelihood. There are two approaches. The first is

to calculate the log-likelihood of the full data in one operation. The second is to

recognise that regions are independent, and to compute the log-likelihood separately

for each region.

The full log-likelihood

The log-likelihood is

log A = -0.5 log \V\ - 0.5{y - ^a)'V~l[y - Aa) ,

where y = I — /.i and V is the variance-covariance matrbc of the data. Now

V = D + a^UU'

where D == a2 I + cr^-Dw and -Dy, is the diagonal matrix with diagonal elements

f2. There are multitudinous papers on how to solve the likelihood equations in the

most efficient manner, but we want to use a vector-based statistical language, in

which we maximise the likelihood from first principles with an efficient optimisation

routine. We assume that we are in an iteration trial of the routine, so that the

parameters /.loo, cr^ and a- are known, that U and A have been computed and we

need to calculate a and compute the likelihood.

There are three steps to perform when computing the log-likelihood.
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1. V|: When calculating the likelihood we need to compute \D+X X' , where X ==

a^U is an n xp matrix, where n is the number of data values in the season, and

p is the number of design levels. Generally, n ~^> p. Computations involving

matrices of order n are generally proportional to n3, so if we can make the

computations of order p rather than n, we should increase speed substantially.

We can use the following result to reduce the amount of computation in this

way.

\I+XX'\ = \I+X'X\.

Now |J + XX'\ is the determinant of an n x n matrix and \I + X'X\ is that

of a p x p, so the latter requires much less computer time to calculate.

In fact, we need \D + XX'\. Set Y = D-V2X, and note that

D + XX' = Dl/2(7 + YY')D1/2.

Thus \D + XX'\ = \D\\I + YY'\ = \D\\I + Y'Y\.

2. a: We need to calculate a = (A'y-lA)-lA'y-1?/. Note first that

(J + XX'}-1 = I - X(I+ X'X)-1X'.

This result is easily checked. In fact, we need {D + XX')~1. Note again that

D + XX' = D1/2(J + YY')D1/2.

Hence

(D + XX1)-1 = D-1'\I + YY')-1D-1/2.

First let P = P-V2A and Q = Y'P. Then

AV-IA = A'p-l/2(J-y(J+y'y)-ly')P-l/2A

= P'P-Q'{I+Y'Y)-1Q

= P'P-R'Q,

where R is the solution of (J + Y'Y)R = Q.
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Similarly let T] = D~l/2y and ^ = V'?7. Then

A'V-ly = ^'D-l/2(I-Y{I+Y'Y)-lY')D-l/2y

= P'^-Q'(I+Y'Y)-1Q

= P'^i-R'^.

Finally, a is obtained by solving (P P — R Q) a = Pr/ — R ^.

3. (y — Aa)/V-l(y — Ad'): We need to compute, as part of the log likelihood, the

residual sum of squares (i/-Ad')/(£)+^YX/)-l(?/-Ad). Set v = D~l/'2^j-/\a)

and LU = Y v. Then

(y-^a)'(D+XX')-l(y-Aa) = v'(I+Y^/•V'\-i
f

= v'{I-Y{I+Y'Y)~lY'^

= V'V-UJ\I+Y'Y}-IU

/ /

v v — uj 7

where 7 is the solution of the equations (/ + Y'Y)^' = uj.

Finally, we compute the log-likelihood as

A = -Q.5dt - 0.5r .

Once the likelihood has been maximised, we need to calculate the random

effects. It is usual to use the BLUPs:

Ui = ^UIV-\l-f:i-/\a)

Using our usual notation,

V-l(l -ft- Ad-) = £>-1/2(^ - y7).
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The standardised BLUPs are obtained by dividing through by the relevant

standard deviation:

m/au = o-^U'V~l{l- ^-Aa)

= Y'(y-Y^.

These are scale invariant. The corresponding true standardised random effects (e.g.

Ui/o-u) have mean 0 and variance 1. If 6-r = 0 for any random effect r, then the

BLUPs and standardised BLUPs are obviously 0.

We apply this method to southern bluefin tuna otolith data, as described in

Appendbc 3, using the full suite of data prior to screening. Briefly, each otolith has

been read whole, sectioned or both, and assigned a final read by one of two readers.

We assume that growth followed the VB log k growth curve introduced in Appendix

4. For a fish with zero length at time to, the length at time t is

l(t) = L,
,-f3(t-to+s-so-ao) ~\ -(fe2-A-i)//3o'

1 _ g-k2(t-to+s-so) ^ l-t-e

l+eA)Q°

where s{t) = u,sSin(27T(^ — Ws))/(27T) is the seasonal effect. We can write t — to as

a — 0,0, where a is the age of the fish at time * and ao is the extrapolated age at

which the fish has length 0. The results are set out in Table 1.

Table 1: Fitted parameters for the VB log k growth model

fitted to otolith data

,^00

(TOO

Us

Ws

186.79

7.28

0.930

0.456

fcl

k2

a'o

A)

0.

0.

3.

10

179

144

780

0.0

Ou

0-

-1

5

3

.489

.944

.5

The parameters /3o and a are held fixed. It is very difficult to estimate f3o
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unless there is a huge amount of data, and a-u cannot be estimated well because there

are only 8 regions. The estimates of a-u and a- are likely to be heavily confounded.

We therefore fix a at 3.5, derived from the analysis of tag-recaptiu'e data.

The regions in which the fish were caught were treated as random effects.

The estimated standardised random effects are

Table 2: Estimated random effects of regions

Region

Farm

Indonesia

New Zealand

South Australia

South Africa

South East Indian Ocean

Tasmania

estimate

0.024

0.157

-0.257

-1.057

0.227

0.213

-0.271

# tuna

9

1548

299

250

297

311

559

Western Australia -2.553 181

The fitted growth model and the data from the 8 regions are plotted in Figm-e

1. The fits seem adequate to the eye. Of most concern is the non-trivial negative

estimates for the South Australian and Western Australian regions. These are the

two areas from which substantial numbers of relatively small fish are caught. The

estimates need to be multiplied by a-u = 5.9 cm, and suggest that for these two

regions the model misses by 5 to 10 cm. These failures suggest that more work

needs to be done.

We also estimated the reader/method combinations as fixed effects.

Table 3: Estimated fixed effects of readers and otolith meth-

ods

Reader Method estimate # tuna

1 Whole -0.233 474
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Table 3: continued

1 Both 0.974 126

1 Sectioned -0.500 369

2 Sectioned -0.241 2485

Reader 2 in fact read two otoliths both whole and sectioned, but this was too

small to estimate a separate effect, so these two data points were pooled with the

2483 measured using sections only. The interesting feature is that the measurements

using only one method tend to agree. However, when Reader 1 used both methods,

one to two more rings seem to be counted. These estimates could easily change

with different growth models, so we caution that these estimates should not be

over-interpreted.

We note that the analysis has not proved convincing, and take a closer look

at the data. A table of reader/method combination by region yields

Table 4: Confounding between reader/method combinations

and regions

Reader/method Farm Indonesia NZ SA SAfrica SEIO TAS WA

1/whole

1/both

1/sectioned

2/both

2/sectioned

9

0

0

0

0

0

0

53

0

1495

0

0

0

0

299

227

21

2

0

0

6

10

6

1

274

9

8

72

0

222

44

86

236

1

192

179

1

0

0

1

This table suggests that comparisons between reader/method combinations

should best be done on Tasmanian data, where all four combinations are reason-

ably well represented. Further comparisons between Readers 1 and 2 on sectioned

data could emerge from Indonesian and South-East Indian Ocean data, and some

comparison between Reader 1 whole and both could be derived from the South Aus-
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tralian data. Other comparisons are likely to be highly confounded with regional

differences.

Independent regions

The log-likelihood for a given region is

log A, = -0.5 log |^.| - 0.5(?/, - A,a,)/1<-l(?/, - A,a,) ,

where y.,. = l,r — i-ir and Vr is the variance-covariance matrbc of the data. Now

Vr = D, + ^1,1',

where Z),., A,., yr and a'r refer only to the submatrices and subvectors of D, A, y

and a for the region in question, and lr is a vector of ones with the same length as

Vr- The computation proceeds as for the full-likelihood case. The log-likelihood to

be maximised is

]C logA'- •
r

Concluding remarks

We have presented some preliminary approaches for rigorously analysing

otolith data. These approaches are still in the developmental stage, but there is

a need for models of this type in order to fully utilize direct aging data, includ-

ing data collected dm-ing the period of band formation. We have reported some

preliminary analyses of the pooled otolith data set, which suggests that Western

Australian and South Australian data still exhibit some deviation from a common

model. There are at least two possible explanations for this. First, there appears

to be a size segregation in one-year-old fish caught off Western Australia and South

Australia and in the general eastward movement of young fish within a fishing sea-

son. The Western Australian fish may have been spawned late in the season, and

hence their assigned age is too high (Appendix 3). Second, other work suggests a
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bias in the Indonesian data. Fish caught in Indonesian waters are usually spawn-

ers. Tuna in the age range 8 to 14 years exhibit size-dependent maturity, and those

seen in the spawning grounds tend to be longer at a given age than the population

average. Since there are a large number of otoliths from fish caught in Indonesian

waters in the 8 to 14 age range, these data may be dominating the analysis and

causing a misfit in the young fish from Western Australia and South Australia. A

more sophisticated model would take this into account. We have also assessed reader

effects, but the results must be treated with great caution.

We have not reported analyses of the otolith data using the first approach,

taking into account uncertainty in the time of spawning and the time of band for-

mation. We have developed both classical and Bayesian methods to fit this model,

but we were unable to implement these methods within the extent of this project.
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