


© Fisheries Research and Development Corporation and CSIRO Marine Research
2003 :

This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of
this publication may be reproduced by any process, electronic or otherwise, without the
specific written permission of the copyright owners. Neither may information be stored
electronically in any form whatsoever without such permission.

Polacheck, Tom.
An integrated analysis of the growth rates of southern
bluefin tuna for use in estimating the catch at age matrix
in the stock assessment.

Bibliography.
Includes index.
ISBN | 876996 38 2.

1. Bluefin tuna - Australia. 2. Fish stock assessment -
Australia. 3. Bluefin tuna - Age determination. 4.
Bluefin tuna - Research - Australia. I. Laslett, G. M. II.
Eveson, J. P. III. CSIRO. Division of Marine Research.
IV. Title.

338.37277830994

Printed by CSIRO Marine Research



FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

Table of Contents
LASE O TADIES ...veiiveiiiieiieecieccitcriee st st ie s sas s e e saee s e s e eseessbeeesbeesbsssansesbaseesnanees ii
LSt Of FIGUICS ..couvieiiieiiee ettt st b sab s eat s bbb ann s ii
List Of APPENAICES .....vveiirririiiiiiieniineere ettt e sar e ii
Non-technical SUMMATY .......occveriiriirienieei s 1
AcKNOWIEAZEIMENTS....cocuiiiiiieieniieee e 3
Background .........cocueeiiriiiiiiieeiieeeeee bbb s 3
INEEA . et s et s st e s e e e e ra e et b e e s s b e s e e s s ann s 6
IMEEROMS. ...t ciie ettt sbe st e et e e e s e e e bee st snbe s s bt e s be s as e sa b e aar s s bbb e en 8
DIALA ..o e s e ba e e s s ane 8
Estimating the time of band formation ............ccccoovieiivinnnninnni e, 9
GIOWEN CUIVES ....oiiviiiiiriiieeneeite et sere ettt et sre e sbe s sbs e saeea e n b sbn s s sonnns 11
Fitting growth curves to tag-recapture data ..........ccccecevervirvienieniiininieie e, 12
Fitting growth curves to length-frequency data............ccoovveviiniiniinnniiinn 14
Fitting growth curves to direct aging data ..........c.cccceevviiiiiiiiiiiiiinnie, 16
The integrated estimation model...........cccovvvevieieniiininni 18
Simulating rowth CUIVES .......cceevevieiiinirieniiieninine et e 19
Changes 1N GIOWEH .......covvveiiiiiriieni e e s 19
RESUIS....viiiiiiiiieciieer ettt ettt bbb b et 21
The time of band formation ...........cccceevcveriieeeieniieesecrecr 21
Model fitting — INtrOAUCHON. ....c.eireieriereieeiiereeeeie e 22
Choice Of eITOT SHUCLUTIE ......eeueeeierieeieeeie et st eba s 23
Choice of growth curves — fitting the 1980’s tagging data...........cccceeevvvirirncnienn 25
Fitting the length-frequency data..........ccccooceiriiinnniiiniiiin 26
An integrated model for the 1980°S ......cccvveviiiiiirienriirie e 28
Comparison of growth curves over four decades ..........cocveeuiviiniiniiniiiiniinniinnen, 30
Changes in SBT growth rates over time — time varying K.........co.ccccvvnniivinninnnins 32
Changes in SBT growth — otolith increment data.............coceeveeviinininnniiniinnn 33
DASCUSSION .vevvveuvrereenteesieriesieeteneesteebesee et e b e sresbt et e sbt e be e s b esstsrsesbn s sasesasebasasssaeenbeaeres 35
Hypotheses for the changes in growth........c..ccceeviviiininniiniiiee 37
Growth rate parameters for use in SBT stock assessment models............cccevvernnene 42
The expected length at age for the post-1960 cOhoO1ts ........cc.cocvvvvrivciiviiniiiiininiinnn. 42
Variance estimates for the expected length at age.........c.ccocevvviinnnns rerererreeeeane 44
Growth parameter values for the pre-1960 cohorts ........cocveeceiiriininiinienniinicinnnn 48
Growth models for ProJections ........ccccverveeereenirrieenenee ettt ere e 49
BnEfits ..oiiiiiiiciieiceeee e et sar e s bbb s e nba s 51
Further Development ...........cccoveieiienieniinrieeeerrcnice e esasssar e 52
Planned OULCOMES ......cooeerveieiiiiiiierenre ettt bbb s 53
CONCIUSION ...vvtivrieeeiieetieieenre et ssit e e e esbeesbee e st s seaeasessaeesseenseesbeessbnesneensessbsesnntnasinns 54
RETIOICES .. eiiiiiiiiiiieeee ettt st b e s sabe s bae b b e bessaba s s sanes 56




FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

List of Tables

Table 1: Comparison of the negative log-likelihood value for the best fit of the 1980°s
tagging data to the VB growth curve for four different error models (see text for
MOTE dELAIL). ...cveeveiiiiiiiiiiee ettt et 60

Table 2: Parameter estimates for the VB log & model with a seasonal growth
component based on the integrated best fit to the complete data set from each

AECAAR. ...viiiiiiiei ettt er et 60
Table 3: Comparison of the decadal mean otolith increments for different band

INCTEIMCIIES. ...oviuiterinitieeteetestereettste et etsssesesestebeseereebetessesenestessssessesensesessessensenas 61
Table 4: The correlation by cohort among the growth increments between different

bands within individual 0toliths.............ceveveiiiericeiiiiciee e, 62

Table 5: The expected average length at age by year based on the application of the
parameters from the best fit to the VB log k& model to the decadal data from
TADIE 2 ..o 63

List of Figures

Figure 1: (fop) The optimal integrated seasonal VB log k growth curve for each
decade. (bottont) The same curves plotted relative to the 1960’s curve for better
COMIPATISOIL. ...voviviiiriiiiiereatereseetenereses e te et s besaeteseetesseseseesesesssssteseseseaserersasensasans 66

Figure 2: Results from fitting a time-varying von Bertalanffy growth model to South
Australian length-frequency data. .........cccocoeviiiiiinririiccc e 67

Figure 3: Average deviation for a cohort from the overall mean and 95% confidence
mntervals for the band 1-5 increment in SBT otoliths..............coeocvvevervrereeeenene.. 68

Figure 4: Nominal CPUE (number of SBT per 1000 hooks) trends for ages 4 and 5 for
Japanese longline vessels fishing on their feeding grounds (Statistical Areas 4-9)

during the second and third qUATLErS. ..........covcvevierivrierieiciceceece e 68
Figure 5: Examples of estimates of recruitment trends from SBT stock assessments.
.............................................................................................................................. 69

Figure 6: An example of the coefficient of variation as a function of age for the
variance component resulting from aggregating length-frequency data over a
VAT 1uttiiitiiecetieiitt ettt e e et e et b e e st be e e e et b e e e e e rsaeesabaserareeebbnteesnabaeesns 70

Figure 7: Estimates for the various variance components as a function of age that
would contribute variance in the observed length-frequency of SBT commercial

CALCRES ..o 70
Figure 8: Estimates of the coefficient of variation expected in observed length at age
distributions for SBT .......cccoviiiiiriireieiserseee ettt 71

Figure 9: Estimates of the expected length and 95% confidence interval for the
observed distribution of lengths at age based on the best fit to the 1980°s data
and using the variance model developed in the discussion ...........c.coeevveveeennen... 71

Figure 10: Possible growth curves for cohorts born prior to 1960 to use as alternative
hypotheses in estimating the expected length-frequency distribution of SBT
catches from these COROILS. ........coivviririieiereiiicce e 72

Figure 11: The three possible growth curves for cohorts born prior to 1960 shown in
Figure 10 compared with the same three growth curves when the value of ap has
been left unadjusted at the value estimated for the 1960°S ....c.ccvevveveevveeveerennns 73



FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

List of Appendices

Appendix 1: Intellectual Property........cccoovivinininivienieninieiniesienenicns e All

Appendix 2: Staff. ... A21

Appendix 3: The data: details of tag-recapture, length-frequency and direct aging data
used for studying growth of southern bluefin tuna (Thunnus maccoyii) .....A3 1-30

Appendix 4: A flexible maximum likelihood approach for fitting growth curves to
tag-1ECAPLUIE AALA.......eeiieeiieeierireenieieccis e s A41-36

Appendix 5: Estimating the release age in capture-recapture studies of fish growth...A5 1-26
Appendix 6: Investigating sources of individual variability in von Bertalanffy growth

models - a simulation Study ........cccoovininiiini A6 1-36
Appendix 7: Fitting growth models to length-frequency data...........cccovvnenennene. A7 1-36
Appendix 8: The von Bertalanffy growth curve in a changing environment ......A8 1-30
Appendix 9: An integrated model for growth incorporating tag-recapture, length-

frequency and direct aging data ............cccoviiiiininniniin A9 1-38
Appendix 10: Comparison of growth rates of southern bluefin tuna over four decades

— 1960 10 2000 ....uiruieiiirririereenre e e e Al0 1-64
Appendix 11: Investigating the timing of annual growth zones in otoliths of southern

bluefin tuna (TAUNAUS MIACCOVIT) ...ovvvvieviiniiniiiiiiiecienis e All11-24
Appendix 12: Statistical models for growth curve estimation using otolith data.......A12 1-16

iii




FRDC Project Number 99/104 An integrated analysis of the gronh rates of SBT

1999/104 An integrated analysis of the growth rates of southern bluefin tuna
for use in estimating the catch at age matrix in the stock
assessment

Principle Investigator: Tom Polacheck

Address: CSIRO Marine Research
P.O. Box 1538
Hobart TAS 7000
Tel: 03 6232 5312  Fax: 03 6232 5012

Objectives:

1. To develop an integrated method for modelling SBT growth that combines
growth increment data from tagging experiments, length measurements and
direct aging estimates from otoliths, length-frequency modal information and
otolith growth increments.

2. Using this integrated method, develop models for the historical changes in SBT
growth that can be used to estimate the expected length of SBT at age and the
associated variance for the entire period of the commercial fishery.

3.  Produce appropriate estimates of growth rate parameters for direct input into
length based assessment models.

4.  Develop a set of alternative hypotheses for the factors underlying changes in
SBT growth that are consistent with the observed growth data.

5.  Based on these alternative hypotheses, develop models for changes in the length
at age that can be used in SBT stock projections.

Non-technical Summary

Outcomes Achieved

The results from this project provide comprehensive and robust estimates of average
growth and variability in growth that can be used directly within the SBT stock
assessment. Preliminary estimates of growth using the methods developed in this
project were provided to the CCSBT Scientific Committee in 2001 and the results
were adopted for use in the stock assessments conducted in 2001. It is anticipated that
the results from this project will continue to be used in future SBT stock assessments
and in the evaluation of management procedures that the CCSBT is currently
undertaking.

The estimation of growth rates forms an essential part of the stock assessments of
southern bluefin tuna (SBT). Extensive information exists that can be used for
estimating SBT growth rates. These include tag-recapture data for fish released in
each of the decades between 1960 and 2000, length-frequency data from the
commercial catches taken by surface fisheries between 1965 and 1989, and combined
direct measurements of length and age from fish collected primarily in the 1990’s.
However, the estimation of SBT growth rates poses a number of technical challenges.
These include:
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e The long lifespan of SBT requires that long time series of data be available;

* SBT growth rates are known to have changed over time, meaning that the data
from different time periods cannot simply be pooled to provide a single estimate;

¢ None of the different sources of data provide comprehensive coverage of the years
in which there were fisheries for SBT or of the full range of ages within individual
cohorts (i.e. for fish born in the same year);

¢ Standard statistical methods for estimating overall growth rates by combining
different data sources did not exist prior to this project;

* The most common growth model (the von Bertalanffy growth curve) used in
fisheries’ studies is not appropriate for SBT.

All of these challenges were met. A new growth model was developed and new
methods of estimation were devised. All available data on SBT growth were
assembled and analysed using the new methods, and estimates of the growth of SBT
were produced for fish born in each of the 10-year periods between 1960 and 2000.

The results are significant — there have been marked changes in the growth of
juvenile SBT bomn over the last 40 years. SBT from the 1980’s grew considerably
faster than those from the 1960’s. The results also suggest that the 1970’s were a
period of transition and that growth of young fish in the 1990’s was faster than in the
1980’s, at least up to about age 4.

Various hypotheses for the changes in growth were explored. The changes appear to
be consistent with a population response to reduced numbers of fish as a result of the
large catches taken from the SBT stock. However, environmental factors (for
example, changes in temperature) cannot be excluded. The average size of fish caught
in the 1990’s over 25 years of age was ~185cm while almost no fish this size were
reported caught in the Japanese longline fishery until the 1970’s. Thus, there may
have been a substantial change in growth for fish bor prior to the commencement of
the SBT longline fishery.

The results from this project provide estimates of average growth and variability in
growth that can be used directly within the SBT stock assessment. Preliminary
estimates of growth using the methods developed in this project were provided to the
CCSBT Scientific Committee in 2001 and the results were adopted for use in the
stock assessments conducted in 2001. It is anticipated that the results from this project
will continue to be used in future SBT stock assessments and in the evaluation of
management procedures that the CCSBT is currently undertaking,

Several technical areas for further work that have the potential to improve the
estimation methods developed in this project are identified. In addition, the results
demonstrate the value and importance of having long time series of data available for
understanding growth. In this regard, it is critical that well-designed data collection
programs that are capable of providing information on growth are maintained within
the SBT fisheries so that future changes in growth are detected and appropriately
accounted for in the stock assessment and management of SBT.

Keywords: integrated growth modelling, southern bluefin tuna, generalized von
Bertalanffy
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Background
Estimates of SBT growth rates are fundamental to the SBT stock assessment.

When this project was initiated, the analytic assessment and future stock projections
for the southern bluefin tuna (SBT) resource were based on virtual population
analyses (VPA) (e.g. Anon 1998a,b; Polacheck et al. 1998, 1999, Tsuji and Takeuchi
1998). The concept underlying VPA is that the time series of the estimated number of
fish caught by age provides sufficient information for reconstructing the history of the
population (i.e. the sum of the catches from a cohort in conjunction with natural
mortality must account for the individuals born in the cohort). In the application of the
VPA methodology to SBT, the catch at age matrix has been estimated from length-
frequency samples of the commercial catches based on growth curves estimated from

tagging data (Anon. 1994, Hearn 1994).

Since the initiation of this project, altemative assessment models for SBT have
been developed (e.g. Hilborn et al. 1998, Butterworth et al. 2001, Polacheck and
Preece 2001, and Kolody and Polacheck 2001). These models still depend on
estimating the number of fish caught by age and year (referred to as the catch at age

matrix) as the primary information for reconstructing the history of the population,
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but use a more statistically based approach to handle potential errors in the estimation
of the catch at age. In some of the alternative models, the same estimate of the catch
at age matrix used in previous VPA analyses is adopted, while in others, the
estimation of the catch at age data is performed internally based on the fit to imputed
estimates of the length-frequency distributions for the catch and an estimated growth
curve. In all cases, an estimated growth curve for SBT is fundamental information
required for performing the SBT stock assessment and providing management advice

on the probabilities of stock recovery.

The SBT assessment attempts to incorporate all of the critical uncertainties in
the input daté and underlying population dynamics in order to ensure that the results
and management advice are robust and unbiased. However, the estimate of the growth
curve and the catch at age matrix has been recognized as a major uncertainty that has
not been appropriately accounted for in past SBT stock assessments. Currently, a
single hypothesis for growth is used in the SBT assessments, and when this project
was initiated the assessment models also assumed that the catch at age matrix was
known without error. These simplifications have been adopted because of the lack of
an adequate range of models for SBT growth and its variability. Within the SBT
assessment, a number of internal inconsistencies are recognized among the various
input data (Anon. 1996, Polacheck et al. 1998). These inconsistencies have been
making it increasingly difficult to provide robust and scientifically objective
conclusions about the short-term change in the status of the SBT population. As such,
models that provide consistent interpretation of all the input data are urgently
required. Their development has been considered a very high priority by the CCSBT
Scientific Committee. The SBT growth model, particularly its application in
estimating the catch at age matrix, has been identified as one of the likely sources of

the inconsistencies (Polacheck et al. 1998).

The SBT catch at age matrix is estimated by converting estimates of the size
distribution of the catch into an age distribution based on the modelled growth rates of
SBT. SBT exhibit complex growth patterns and their growth rates are known to have
significantly increased over the history of the fishery based on analyses of tag return
data from the 1960’s and 1980°s. This change of growth was first taken into account
in constructing the SBT catch at age matrix in 1993 (Polacheck et al. 1993). The

4
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change in growth had significant effects on the stock assessments and resulted in
substantially reduced estimates of the probability of recovery (Anon. 1993, Polacheck
et al. 1993, Klaer et al. 1993).

The question of how to incorporate changes in SBT growth rates into the
construction of the catch at age matrix was reviewed in a workshop conducted under
the Tri-lateral process (the precursor to the present Commission for the Conservation
of Southern Bluefin Tuna). Agreed-on methods were developed at that workshop and
these methods form the basis for the procedures used in constructing the SBT catch at
age matrix until 2001 (Anon. 1994). However, there are a number of unresolved
problems and shortcomings in these procedures, largely related to the fact that
information on growth from additional sources, and statistical models for
incorporating this information, were unavailable at the time of the workshopl. Some

of the problems with the growth model include:

— Growth rates were assumed to have changed linearly between 1970 and 1980;

— Growth rates were assumed to have been constant prior to 1970 and after 1980;

— No consideration of how growth rates may change in the future is incorporated
into stock projections and estimates of the probabilities of recovery for the SBT
stock (this could lead to over-estimates of the probability of recovery);

Variability in growth among individuals of the same cohort is not accounted for”.

Since the 1994 Tri-lateral Workshop, substantial new data have been collected
on SBT growth. These include:

— Estimates of the age at length of individual fish based on direct aging from
otoliths

— Estimates of growth rates of fish tagged in the 1990°s

! Preliminary results from this project which provided updated estimates of SBT growth were
incorporated into the stock assessments undertaken for the 2001 CCSBT Stock Assessment Group and
Scientific Committee Meetings (Eveson et al. 2001, Anon. 2001c)

2 The length based assessment model developed in Kolody and Polacheck (2001) and presented at the
2001 CCSBT Stock Assessment Group and Scientific Committee Meetings (Anon. 2001a, b) modelled
variability and overlap in lengths among age classes using preliminary estimates of the mean length at
age and their variances from this project.
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— Estimates of historical changes in growth rates based on otolith increment

measurements.

In addition, substantial information exists on the growth of juvenile SBT from
modal information contained within the length-frequency data from the surface
catches. These latter data were considered by the 1994 Workshop to be broadly
consistent with the tagging data. However, they were not directly used in the
estimation of the SBT growth model because of insufficient time and resources to
develop the appropriate statistical model. A CCSBT Peer Review in 1998
recommended that the modal data for juvenile SBT be directly incorporated into the

estimation of the catch at age matrix (Anon. 1998c).

When this project was initiated, none of these additional sources of data had
been incorporated directly into the estimation of SBT growth rates. An adequate
framework and model for integrating these diverse sources of information did not
exist. Also, the amount of data is considerable and any integrated analysis would

require substantial computing resources and analytical time.

Need

The uncertainty in the SBT catch at age matrix when using cohort slicing® or in the
SBT growth curve when fitting directly to length data has been identified as one of
the main sources of unaccountable uncertainty in the SBT stock assessments. The
robustness of the assessment to this uncertainty is unknown. Moreover, a critical
issue in the SBT stock assessment has been the internal inconsistency that exists
among the input data and the need to develop improved models that can provide
consistent interpretations for all of the available data. These inconsistencies have
been making it increasingly difficult to provide robust and scientifically objective
conclusions about short-term changes in the status of the SBT population. The model

used for estimating SBT growth rates has been identified as a likely factor

* Cohort slicing is a procedure for estimating the age of a fish from their length and an estimated
growth curve. The procedure determines the expected mean length for each age class adjusted for the
time of year based on the growth curve. A fish of a given length is assigned to the age class which has
the closest mean length to it. The procedure does not take into account that the actual length
distributions of age classes generally overlap.
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contributing to the apparent inconsistencies in the data. The current model of SBT
growth was developed in 1993/94* and it makes simple assumptions about how
growth may have changed since 1951. In particular, it assumes that the growth rate of
SBT was constant in the 1960’s and then increased linearly to a higher level in the
1980°s. From 1980 to present, the growth rate is assumed to have remained constant,
at a level estimated using recaptures from the 1983/84 tagging program. Past changes
in the growth rate of SBT are consistent with density dependent growth; the current
model fails to address the question of whether growth may decrease in the future if
the population recovers. Given that the incorporation of change in growth between
the 1960’s and 1980’s had a significant effect on the stock assessment and
substantially reduced estimates of the probability of recovery, it is critical for the
provision of reliable assessments and management advice that changes in SBT growth

are appropriately and accurately accounted for in the analyses.

Since the 1994 growth models were developed, a substantial amount of new
information has been collected on SBT growth based on direct aging, otolith
increment measurements and tagging experiments conducted in the 1990’s. Initial
analyses of some of these data suggest that the assumptions about changes in SBT
growth embedded in the current models are likely to be inadequate. There is a need to
incorporate these new data within a comprehensive analysis and to develop an
integrated model that includes all the various sources of information on SBT growth.
Such an integrated model should also provide the basis for addressing uncertainties
associated with the growth curve and/or catch at age matrix within the SBT stock
assessment. An improved growth model would in turn allow for the development of
improved assessment models that are able to provide consistent interpretations of the
available data and thus improve the reliability and robustness of the management

advice based on these models.

Objectives
6. To develop an integrated method for modelling SBT growth that combines

growth increment data from tagging experiments, length measurements and

* See footnote 1
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direct aging estimates from otoliths, length-frequency modal information and
otolith growth increments.

7. Using this integrated method, develop models for the historical changes in SBT
growth that can be used to estimate the expected length of SBT at age and the
associated variance for the entire period of the commercial fishery.

8. Produce appropriate estimates of growth rate parameters for direct input into
length based assessment models.

9. Develop a set of alternative hypotheses for the factors underlying changes in
SBT growth that are consistent with the observed growth data.

10.  Based on these alternative hypotheses, develop models for changes in the length

at age that can be used in SBT stock projections.

Methods
Data
Three primary sources of data with information relevant to SBT growth were
compiled for use in the analyses conducted within this project:
1) growth increment data over a known time period from tag-recapture
experiments;
2) modal progression within a year from length-frequency data from commercial
catches; and
3) direct age estimates from otolith readings combined with the length of a fish at
the time of capture.
These data sources provided information on SBT growth spanning the four
decades from 1960 to 2000. However, for each of the data sources, the amount of data
varied considerably over time, as did the coverage in terms of the age range of fish

that the data spanned (see Appendix 3).

Before the compiled data were used in the estimation of growth, they were
examined with respect to quality and consistency. In each of the data sets, a number
of potential problems were identified and procedures were developed for data
screening. The underlying principle in developing the data screening procedures was
to ensure that the screening process would not introduce biases into the estimation of

the growth rates (e.g. favour faster or slower growing fish) and to remove data for
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which large measurement uncertainty could be identified. This latter is important to
ensure precise estimation of the growth parameters and reliable estimates of the
expected actual variation in growth at a given age. Details of the data screening

procedures are described in Appendix 3.

In addition to the above three primary data sources, data on the growth
increments between aﬁnual rings in a sample of SBT otoliths was utilized in the
examination of changes in growth over time. The data used in this report are the same
as those analysed by Gunn and Farley (1998). Details of the data collection and
preparation can be found in this reference. A strong correlation exists between otolith
lé,ngth and overall fish length for SBT (Gunn and Farley 1998, Gunn et al. in prep.).
As such, the distance between successive annual bands within the otolith can provide
a measure of the relative growth. Comparison of growth increments within the
otoliths for comparable ages from fish born at different times can indicate when and
to what extent growth has changed over time. Almost all SBT otoliths have been
collected from fish caught in the 1990’s. Nevertheless, the increment data from these
otoliths can provide retrospective information on the growth of younger fish over four

decades, since SBT live up to 40 years.

Increment data are available on 489 otoliths from fish estimated to have been
born between 1953 and 1994. The distances between the five first consecutive bands
were recorded for each otolith (or all increments for fish with less than five bands).
Otolith growth for the first year of life was not measured because the precise position
of the primordium was not always distinguishable. Since only data on the increments
between annual bands are available these data are not informative for estimating
absolute growth rates. Even if absolute otolith sizes were available, the etror in
predicting fish length from otolith length and the lack of direct measurement for most
of the sampled fish within the age range of the increment data would limit their use in

this context.

Estimating the time of band formation
There is an important source of measurement uncertainty in the otolith data. It
is associated with variation in the time of band formation. Previous studies of SBT

otoliths found that SBT form annual translucent zones (bands) in their otoliths during

9
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the austral winter (Clear et al. 2000). However, reliable information was not available
to more precisely estimate when a band is likely to have formed and be detectable.
Thus, there is an uncertainty of one year in the estimated age and cohort of fish for
which otoliths were collected during this winter period. This in turn can translate into
individuals from the same cohort being assigned to three different age groups during
the period of transition (i.e. their true age group, one year older if the band has been
formed but is assumed not to have been, and one year youﬁger if the band has not
been formed but is assumed to have been). In order to obtain an improved
understanding of the timing of band formation and to provide a basis for estimating
the probability that a band had been formed in a given month, additional otolith

research was undertaken.

It should be noted that the problem of the time of band formation had not been
anticipated to be a substantive complication in the use of the existing direct otolith
aging data and work on developing improved estimates had not been included within
the original research proposal. This additional work was undertaken and included in

the current project afier consultation with FRDC.

Two approaches were used to provide improved information on the time of
band formation. In the first approach, we used data from a previous age-validation
study (Clear et al. 2000) in which a number of SBT were caught as part of a large-
scale tagging program and injected with strontium chloride at the time of tagging.
Strontium chloride (StCl,) is a harmless salt that deposits in the otolith and provides a
“time-stamp” of the date of tagging. When the fish are recaptured and the otoliths are
removed, the number of increments formed subsequent to marking can be determined
by counting the number of translucent zones deposited after the strontium mark.
Because the amount of time the fish has been at liberty is known, we can determine
whether or not the translucent zone for the recapture year has yet been formed (or is
yet detectable). The results obtained from this investigation did not provide as fine a
resolution of the time of band formation as we had anticipated. This was a significant
issue for the current project because a substantial amount of direct aging data comes
from fish captured during these winter months. Results of fitting growth curves to the

direct aging data were found to be sensitive to assumptions about the time of band

10
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formation. As a consequence, additional work was undertaken to see if a more precise

and accurate estimate of the time of band formation could be determined.

Two methods have been developed for reading otoliths — one in which the
otolith is left whole and one in which it is sectioned (Gunn et al. in press).
Preliminary exploration of existing otolith data suggested that the ability to detect a
translucent zone forming on the margin may differ between the two methods. For fish
caught during the winter months while a marginal band is forming, it is important to
know whether a true difference exists. If it does, then the age assigned to these fish
could be one year different depending on the method used. A difference in age of one
year for small fish can have a significant impact on the estimation of growth rates.
Moreover, it was realized that if a consistent difference did exist, it could be exploited
to refine the time when bands become detectable with both methods by comparing
otolith readings using both methods on the same fish. For example, the first month in
which a difference in the number of bands was found between the two methods would
indicate the month when bands first became detectable with the method yielding the
higher number of bands. This month would mark the beginning of the potential period
of band formation. The subsequent month in which both methods yielded the same
number of bands would indicate the month when bands were consistently detectable
by both methods, and would mark the end limit of the period of band formation. In
order to address the problem of whether a consistent difference did exist and whether
it could be used to refine the estimates of the time of detectable band formation, we
conducted a study using pairs of sagittal otoliths from the same fish. (See Appendix
11 for more detail.)

Growth curves

To allow for a range of functional forms for SBT growth to be considered, a
generic growth curve was defined that could easily be formulated and parameterised
to represent a variety of growth patterns. The advantage of this approach is that a
single statistical estimation approach could be developed for this generic form, which
could then be used to examine the suitability of a variety of different functional forms.

The generic growth curve was defined to be of the form:

11
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Ka)=L.f(a—ay;0) ey

where L_ is asymptotic length and f is a monotone increasing function with
parameter set {a,,6}that approaches 1 as @ — co and equals 0 when a=a,. The
parameter a, can be conceptualised as the theoretical age at which a fish would have

had length 0 if we were to project its growth curve backwards.

Most of the growth curves commonly used in fisheries can be formulated in
terms of equation 1. For example, for the von Bertalanffy curve, §={k} and
Sla—ay;k)=1-exp(-k(a—a,)). In the course of the project, specific formulations
of this generic growth curve were used to examine the traditional von Bertalanffy and
Richards growth curves (see Appendices 4 and 9). In addition, a new growth curve
was developed that can accommodate a marked change in the growth pattern at some
point in the life cycle, called the von Bertalanffy growth curve with a logistic &
parameter (referred to here as the VB log k curve, see Appendix 4). Essentially, this
growth curve is a modification of the von Bertalanffy curve that allows for the
parameter k to make a smooth transition from k; to k> over time. The motivation for
such a curve came from recent analyses of tag-recapture data for SBT. These
suggested that a more complex curve that incorporates a two-stage growth process is

required for this species (Anon. 1994, Hearn and Polacheck in press).

As would be expected in the development of an integrated growth model, a

common functional form for f was used when a growth model was fitted to multiple

data sources.

Fitting growth curves to tag-recapture data

A new maximum likelihood approach was developed for fitting the generic
growth model (equation 1) to tag-recapture data. The details of this approach are
documented in Appendix 4°. The method is based on modelling the joint density of
tag and recapture lengths rather than the more common past approach of modelling
the growth increments.

* A version of Appendix 4 was submitted and accepted for publication in the Canadian Journal of
Fisheries and Aquatic Sciences (Laslett et al. 2002).
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The following notation is used to describe the tag-recapture data in terms of

the generic growth function (equation 1). Let /, represent the measured length of a
tagged fish that was released at time #,, and let /, be its measured length upon
recapture at time #,. All of these values are known. Let 4=t —t,, where ¢, is the
theoretical time at which a fish has length zero (analogous to the parameter a, on the
age scale). Then A4 is a random variable, which we assume has density p(-) and
whose parameters will be estimated in the model. Although the age at release is
unknown, if we denote it by a,, then 4 is equivalent to a, —a,. Similarly,

A+t, —t, isequivalent to a, —a,, where a, denotes the age at recapture.

In terms of equation 1, we can specify the models for the release and recapture

lengths respectively as

h =L_f(4;60)+¢,
I,=L_f(A+t, —1;0)+&,. @)

The asymptotic length is allowed to vary from fish to fish by modelling L_ as
a random normal effect with mean g_ and standard deviation o . (See below for
more details on the choice of error structure used.) The terms & and &£, represent
residual error in the release and recapture lengths respectively, which combine
measurement error and residual model error (i.e. variation other than that due to
variation in L_ among fish) since there is insufficient information with which to
separate these sources of error. They are assumed independent within an individual
fish and between fish, and also independent of L and 4. Furthermore, they are

assumed to be normally distributed with mean 0 and variance dependent on the length

measurer. Two classes of measurers were distinguished in the analyses: one being

scientists or trained staff and the other being fishermen or factory staff (o? was used
to represent the variance for a scientist or trained staff measured fish and o ; for the

additional variation in a fisherman or factory staff measured fish). Heam and

Polacheck (in press) found significant differences in measurement error between these

13




FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

two groups, with measurements made by scientists being more accurate than
measurements made by fishermen. Note that the release lengths for all tagged fish

were measured by scientists. Thus,

Vie)= o_sz
o’ if measured by a scientist
V(gz ) = 2 2 . (3)
o, +o0, if measured by a fisherman.

If we condition on 4, then /,and 7/, are both the sum of random normal
variables and their joint distribution, #(/,,/, |a), is bivariate normal. Their

unconditional joint density can then by obtained by integrating over 4. Namely,
h(l, 1) = [k, 1, @) pla) da. )

The product of the joint densities over all fish gives the likelihood function for the
tag-recapture data. Thus, the negative log-likelihood function can be expressed as

—m(ﬂj)=z Inh(l,, 1,) (5)

where 7 indexes the fish.

Methods used for performing the numerical integration were developed and

are described in Appendix 4.

Fitting growth curves to length-frequency data

A two-step procedure was developed to enable efficient use of the length-
frequency data in fitting growth curves. First, a mixture decomposition was
performed on each half-monthly sample independently to generate a mode and an
accompanying standard error for each age-class represented in the sample. Second,
the summary statistics from step one were used as input into the likelihood component

for the length-frequency model that was developed.
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In the first step, each length-frequency sample was assumed to be a mixture of
Gaussian components, where the number of components and the age-classes to which
they corresponded were specified. Since the length-frequency data are dominated by
juvenile fish with small numbers of fish greater than age 4, and since the modes
become less distinct after age 4, no attempt was made to separate out modes beyond
age 5. The modes were usually quite distinct and the corresponding age-classes were
~ generally clear based on the lengths near the mode. There were, however, several
exceptions in which our best judgement had to be used. The estimation of the mixture
decomposition parameters was unconstrained except for simple bound constraints.
This differs from previous modal decomposition approaches (e.g. Leigh and Hearn
(2000), who constrained mean growth over a season to be linear, and Schnute and
Fournier (1980), who constrained the means to follow a von Bertalanffy growth
curve). The standard deviation of the components was assumed to be common within
a sample, but was allowed to differ between samples. A standard error associated
with each mode was calculated by inverting the observed information matrix. The
estimation procedure took into account the fact that the data were scaled up from the
actual sample size to the size of the catch. A detailed description of the first step is
given in Appendix 7.

In the second step, a growth model was fitted to the estimated modes (denoted
by ) and standard errors (denote by s) from step one. In terms of the generic growth

function (equation 1), the model can be expressed as

By = f(ay —ag0)+ey +&, ©)

where a,,

is the mean age assigned to the mode from year i, half-month j, and age
group k, and e, and &, are independent random effects representing sampling error
and residual model error respectively. We assume e, ~ N (O,S;k ), where the s, are

the estimated standard errors from step one, and &, ~ N(0, 0?). The mean age

assigned to a sample is based on assuming a mean birth date of January 1 (see
Appendix 7 for details on the assignment of mean age). The parameter 4, represents

the average asymptotic length for a group of fish, and is modelled as a fixed effect. It
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could be modelled as a random effect; however, there is almost no information from
the length-frequency data alone on the mean asymptotic length of fish, let alone its
variance. In practice the estimate for 4_ is determined by the tagging and the direct
aging data in the integrated analyses. The negative log-likelihood for the length-
frequency data is given by

ik -E ik
~In(4,) == ZZZ In27V (4,,))+ i, v (" ; i @)

where
E(.[[y/.) = /I'Imf(al'jk —a,30)
and

~ 2 2
V(/uijk) = Sijk + O-E *

More complicated models for the length-frequency data were explored (e.g.
random fishing season effect, within-season random half-month effect, and a within-
season random age effect). However, such models did not provide improved fits (see
Appendix 7 for more detail) and as such only the above model was used in the

integrated modelling.

Fitting growth curves to direct aging data
In the fitting of growth curves to the direct aging data, it was assumed that the

age of a fish was known without error. There are three principal potential sources of
error in the estimates of age from otoliths:

1. Whether a band has formed during the year in which the fish was captured;

2. Mistakes in counting in the number of bands; and

3. The date of “birth”,
Note that the last of these is primarily important for accounting for within season
growth for fish past age 1. Thus, whether a fish was spawned early or late during the
spawning seasons appears not to be reflected in the size at age for a fish beyond the
first year (e.g. the multiple modes sometimes evident for new recruits in the size
composition data does not persist past age 1). The amount of error as the result of
counting errors is thought to be small (e.g. independent age readings have errors of

less than 4%; Guan et al. in press).
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The possible errors associated with the time of band formation are discussed
above and in Appendices 3 and 12. Although substantial work was undertaken to
refine estimates of the time of band formation, the available data did not prove
sufficiently informative to provide reliable estimates of the probability of a band
being formed during the period from June through September, while there is a high
degree of certainty outside of these months (see below and Appendix 11). Results for
estimated curves were found to be sensitive to assumptions made about the timing of
band formation within this June to September period. As such, otoliths collected
during these months were excluded in the fitting process. While this reduced the
amount of direct aging data, it ensured that no biases were introduced into the fitting

process as a result of assumptions about the time of band formation.

The age of a fish was estimated based on the number of bands which were
counted and the date of capture assuming a January 1 “birth” date. A decimal age was

assigned to each fish as follows:

: 3
n—1+r/365 ifr=d

{ n+r/365 ifr<d
age =
where n = the number of bands counted,

r = the capture date, and

d = the date of band formation.

Both » and d are expressed in Julian days since January 1 of the year of
capture. Note that d was assumed to be July 1, but its exact date has no effect on the
results since otoliths collected between June-September were excluded. See

Appendices 3 and 9 for more detail.

Assuming there is no error in the age estimate, the model for fitting the direct

aging data is
li=L.f(a,—a,;0)+y, €))
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where /= a fish’s length
a = its age,
i =the index for an individual fish, and

¥ = measurement and residual model error.

We assume that y is normally distributed with mean 0 and standard deviation

o,. Aswith the tag-recapture data, L_ is modelled as a random normal effect with

mean 4 and standard deviationo_ . We assume that Z_ and y are independent. It

follows that the negative log likelihood for the direct aging data is

~ 1 (7, - E1))
In(4,) = 5 Z ln(2frV(7,~)))+—-————V(]i) } (10)

where
E(]i)::ll'locf(ai —00;9)
and

V(]f)=o-if(ai _ao;e)z +O—;-

The integrated estimation model

Given the likelihood equations developed above for the different sources of -
data, the overall negative likelihood function when fitting to multiple data sources is
simply the sum of the relevant negative log-likelihood functions given above.

Namely,

A =—(In(4,) +In(4,) +In(4,)). (11)

The parameters common to all three components are 6 (the parameters of the growth
function f) and 4, (the mean asymptotic length). The asymptotic variance parameter
o., is common to the tag-recapture and direct aging components. For the length-

frequency component, we are not modelling lengths of individual fish but rather we
are modelling mean lengths (see equation 6). As such, the asymptotic length

parameter should have the same mean but not the same variance as the asymptotic
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length parameter in the tag-recapture and direct aging models. There is no
information on fish older than age 4 in the length-frequency data alone to estimate the
relevant asymptotic variance parameter, so we modelled the asymptotic length as a
fixed effect for this component. Whether the asymptotic length is assumed to be

random or fixed will have virtually no effect for fish aged 1 to 4. The parameter a, is

common to the direct aging and length-frequency components; this parameter is not
present in the tag-recapture model because it is encompassed in the random variable

A. The parameters defining the lognormal distribution of 4, namely 4, , and o, ,,

are unique to the tag-recapture component. The various error parameters are unique

to their corresponding components, namely o, and o, for the tag-recapture
component, ¢, for the length-frequency component, and o, for the direct aging

component.

Simulating growth curves

Extensive simulation testing of the statistical models and estimation
procedures were conducted to ensure that the models were robust and provided
adequate performance in terms of their statistical properties. The simulation studies
were also conducted to provide insight into the selection of an appropriate error

structure to use in modelling SBT growth.

The simulation methods consisted of generating monte-carlo simulated data
sets under a variety of model structures with different levels of underlying variability
and for differing levels of sampling intensity and age coverage. The growth
parameters were then estimated using the maximum likelihood methods described
above under a variety of model assumptions. The results of these fits were then
compared in terms of how well the estimated growth curves captured the “true” or
underlying growth curve in the simulated data sets. Appendix 6 contains further
details on the simulation methods and their evaluation. Results of these simulations

are summarized below and more detail results are contained in Appendices 4 and 6.

Changes in growth
Two primary approaches were used to examine changes in SBT growth over

time. The first approach was to apply the above integrated model to data from
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different periods and compare the resulting estimates. This first approach is
straightforward and required no additional methodological development (see

Appendix 10).

The second approach was to develop a model that would allow for changes in
growth to be estimated and described by time varying parameters within a single
overall model of growth. There has been little previous work on this problem. The
approach we adopted was to model the growth rate parameters as a function of time.
We focussed on modelling changes in growth rates over time since the mean
asymptotic length appears to change by at most a few centimetres over the 40 year
period of the study (see Appendix 10). We examined various ways in which the
growth rate parameters may be modelled in a flexible but parsimonious manner

(Appendix 8).

We developed a model in which the growth rate k() varies according to a
series of superimposed logistic curves. It is clear intuitively that such a model has the
capacity to follow changes in growth. The basic model is aimed at situations in which
a von Bertalanffy growth curve applies, then a change in environment dictates that
growth changes until a new von Bertalanffy growth phase is achieved. Extensions of
the model to the VB log & model were also explored (Appendix 8). The model allows

for several such transitions, often in concert. An expression for A(t) is

K= e s Z(C meo) 1+exp(_1/;(t_a,)) (2

where ¢, <...<a, and f>0. Note that ¢ is time, and hence spans the whole real
line. As t — -0, k(t) > n¢,, and as t — oo, k(t) = z:;lf, . The & values can be any

number, positive or negative subject to k(7) > 0. [ could also be made dependent on 7

but this would likely make the model over-parameterised. Although the above
equation encapsulates the reasoning for this model, it is not a suitable form for
computation. We developed two alternative parameterisations of the model (see
Appendix 8 for details). We also extended this logistic k¥ model to allow for seasonal
differences in growth.
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In Appendix 8, we also considered and developed two alternatives approaches
to the above logistic set of curves for modelling trends in & over time (polynomial and
hyperbolic splines). We concluded that the logistic curve approach appeared more

suitable and used it for estimating trends in & over time for SBT.

In addition, we compared results from the otolith increment data in

relationship to the results we obtained from the above two approaches.

Results

The time of band formation

The results indicate that otolith bands are generally formed between May and
September. There is substantial variability in time of formation among individual fish,
with July 1 being an approximate average. In the study of sister otoliths read whole
and sectioned, no consistent difference was found between the number of bands
counted and the time of year for the two methods. This means that comparison of
number of bands from the same fish using the two methods cannot be used to provide

further information on the timing of band formation (see Appendix 11 for more

detail).

With the available data, it was not possible to further refine the time period
when bands are formed or to reliably assign relative probabilities that a band had
formed by a certain date. As such, uncertainty of a year (plus or minus) exists about
the age of a fish caught during the period of band formation. As noted above, this
uncertainty can induce substantial uncertainty and potential bias into the estimation of
growth curves if fish caught during this transition period are included without
appropriate consideration. Some preliminary results suggested that estimates would be
sensitive if a fixed date were used as the time when a band was formed. We
developed some initial statistical approaches for dealing with this problem (see
Appendix 12). However, their application turned out to be highly complex and
required substantially more data than were available. As such, the application of this
approach was beyond the scope of the current project. An alternative solution was

simply to exclude direct aging data from those months when bands are being formed.
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It is important to note that this solution does not bias the estimation of growth, while
their inclusion with some assumption about the time of band formation could.
Moreover, given the sample sizes, this solution does not have a substantial effect on
the resulting precision of the estimates. Thus, only direct aging data from fish caught
outside the proposed months of band formation (i.e. from October through April)
were included in growth analyses for the current project. In doing this, we believe
that we should have excluded almost all, if not all, fish for which the time of band

formation could potentially confound the estimation of its age.

Although the main purpose of comparing whole and sectioned otolith readings
was to see if the results could be used to refine the time of band formation, the work
produced important results for future direct aging studies. Thus, while the two
methods show quite good agreement (64%), there appears to be a tendency for the
sectioned count to have one more band than the whole count. The discrepancy
between the whole read and the sectioned read does not appear to be related to the
size of the fish (see Appendix 11), although the sample sizes in the smaller length-
classes are too small to be certain. As discussed in Appendix 11, examination of the
length of the smaller fish in relationship to age estimates from the otoliths suggests
that the whole count is more reliable for young (small) fish. However, the whole
method cannot be used for larger fish (fork length >135 c¢cm). Thus, with respect to
using direct aging, it is preferable to use the whole otoliths technique for smaller

sizes, and sectioned method subsequently.

Model fitting — introduction

Given the multiple sources of information and years over which the data were
collected, a stepwise approach was used to arrive at a final integrated model. This
ensured that each of the methods for each of the sub-components of the integrated
likelihood constituted an appropriate and robust estimator for a particular data source.
It also allowed for development and exploration of the “best” statistical approach for a
given set of data without simultaneously having to deal with the complexities arising
from the other sources. This stepwise approach resulted in substantial methodological
developments and results in terms of estimating growth curves from tag-recapture

data and length-frequency data separately. As such, results are presented first in terms
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of fitting these two data sources, before results from the integrated fitting are
provided.

Choice of error structure

Substantialr variability exists in the size of fish at any given age. This
variability stems from a combination of genetic (e.g. individual propensity to grow
faster and/or larger) and environmental factors that can vary throughout the life of a
fish (e.g. food availability, water temperatures, density of con-specifics, etc). In
addition, measurement error will exist both in the determination of age and in the
measurement of lengths. As such, defining appropriate errors structures to represent
how variability in growth translates into variability in length is an important
component of the statistical modelling of growth and the evaluation of the adequacy
of the fit of any model to observed data. Moreover previous work on the estimation of
growth from tag-recapture data has found that the choice of the error structure used in
the estimation of the growth curve is important and that selection of the wrong error
structure can induce substantial bias into the estimates of the parameters (e.g.

(Sainsbury 1980, Maller and deBoer 1988).

The effects of different sources of variability will tend to be confounded,
which can complicate selection of the most appropriate model. There is no a priori
way to determine what sources of variability are the primary contributors to the
observed variation in any particular data set. Different sources of variability will lead
to different patterns in how the amount of observed variability varies with age (see
Appendix 6). These differences can be used to provide guidance in selecting the most
appropriate model. We considered four basic alternatives:

1. that the variability is constant across all ages;

2. that there is individual variability among fish in their asymptotic length (L, );

3. that there is individual variability among fish in their intrinsic growth rates
(e.g. the k parameter in a VB growth model);
4. that there is individual variability among fish in their asymptotic length and in

their intrinsic growth rates.
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In all of the latter three alternatives, we also allowed for an element of constant
variability that reflects a combination of both model error (i.e. random variation due

to environmental variation for example) and measurement error.

Inspection of the length at age distribution from direct otolith data for older
fish approaching their asymptotic length (e.g. fish over 25 years of age) indicated that
there was substantial variability, and that the variability is rather constant and does not
decrease with age (see Figures in Appendix 10). Such a pattern is not consistent with
one in which the dominant source of variability is individual variation in intrinsic
growth rates. In addition, in all cases where we fit growth curves using either the
tagging or direct aging data, inclusion of a term for individual variability in L_
resulted in a significantly better fit than simply assuming a constant variance® (e.g. see
results in Appendices 4, 9 and 10). As such, the above suggests that either the second

or fourth alternative would be the most appropriate.

The simulation study reported in Appendix 6 indicates that only including a
term for individual variability in L_ when there is both individual variability in L_
and in the intrinsic rate of growth has only minimal effects on the estimation of the
growth curve. In addition, results of fitting tagging data with the above four
alternative error structures to a standard VB growth curve indicated that the most
appropriate error structure to use was one that only included individual variability in
L., (Table 1). For these reasons, we chose an error structure in our modelling of SBT
growth that included individual variability in L_ plus an additional random
component. This does not necessarily mean that there is not individual variability in
the intrinsic growth rates, but only that it appears not to be distinguishable from the
residual variance. As such, inclusion of a term for this adds little or nothing to the

estimation of SBT growth within the resolution of the existing data.

At the beginning of this section we noted that previous studies found that
selection of the wrong error structure can induce substantial bias into the parameter

estimates. In these studies, the estimation of growth curves was based on the fitting of

® The length-frequency data are not informative about the appropriateness of including a term for
variability in L_ because the data only provide information on fish up to age 4 (see Appendix 9).
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tag increment data (initially using the Fabens (1965) method). In the simulation
analyses that we conducted, we found that the parameter estimates were generally
highly robust to the choice of the error structure even for tag-recapture data (see
Appendix 6). The difference appears to be due to the estimation method that we
developed in this project for tag-recapture data that jointly models both the release
and recapture lengths, instead of simply the increment data (see Appendix 4). This is
an important property as it suggests that robust and unbiased estimates can be
obtained even in situations where the data may not be informative for discriminating
what is the most appropriate error structure (e.g. because of small sample size or

incomplete age coverage).

Choice of growth curves — fitting the 1980’s tagging data

Previous studies of SBT growth have suggested there is a change in the
growth process for SBT during the transition from juveniles to adults that cannot be
adequately captured by a standard von Bertalanffy growth cutve (Anon. 1994, Hearn
and Polacheck, in press). Anon. (1994) and Hearn and Polacheck (in press) model
SBT growth as a two-stage process in which the growth in‘ each stage follows a
different VB curve, such that there is a discontinuity in the growth rate at the
transition between the two stages. In this project, we have developed an alternate
growth curve that can accommodate a change in the growth pattern at some point in
the life cycle but allows for a gradual, smooth transition between stages (for details
Appendix 4). We call this new curve the von Bertalanffy growth curve with a logistic
growth rate (abbreviated VB log k) to reflect the fact that the change in growth rate is
modelled using a logistic function. The growth function for the VB log & model is
given by

(13)

1 + e_ﬂ(a_ao_a) ~(k2—k1)/ﬂ
1+e%

f(a - aO ;{kl s kz ,a, ﬂ}) = 1 — e"kz(ﬂ—ﬂo){

As a increases, this function makes a smooth transition from a VB curve with

growth rate parameter k, to a VB curve with parameter k,. [ governs the rate of

the transition (being sharper for larger values), and « governs the age at which the

midpoint of the transition occurs. As discussed in Appendix 4, this new growth
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function provides an improved formulation for modelling growth with a transition
phase than the two stage von Bertalanffy model used previously and overcomes some
the statistical problems that Hearn and Polacheck (in press) encountered in fitting the

stage von Bertalanffy to SBT tag-recapture data.

In Appendix 4 results of applying this VB log k model to 1980’s tag-recapture
data are presented using the new estimation method developed in this project. The
results indicate that the VB log k model results in a substantially better fit to the
1980’s SBT tag data than a standard VB curve. Thus, the results confirmed the
importance of allowing for a transition phase when modelling SBT growth. The
results also indicate that the VB log & model can provide an appropriate function for
modelling growth with tag-recapture data when a transition exists and that the
estimation procedure produces unbiased results. As such, in the subsequent modelling
of SBT we used the VB log & function, but also compared the results with those from
fitting a standard VB curve.

Fitting the length-frequency data

The results from fitting length-frequency data independently suggest that
growth patterns within these data do not conform tightly to a particular growth curve
(see Appendix 7 for detail). There appear to be significant additional sources of
variation operating between years (i.e. fishing seasons), between age groups within
years, between half-months within years and between age groups and half-months
within years (interactive effects). We are unable to offer explanations for all of these
effects in terms of covariates, and suggest that initially they should be modelled as
independent hierarchical and crossed random effects. Otherwise standard etrrors of
growth parameters derived from length-frequency data are likely to be optimistically
small. We suspect that a substantial portion of the variability may be due to the
clustered sampling of the population that occurs in the surface fishery (e.g. the
schooling nature of SBT involves apparent size/age segregation overlaid with spatial
clustering of schools and large within and between year variability in location,

migration and residence time within the area of the fishery).

Despite this complexity, the results indicate that southern bluefin tuna

consistently exhibit a seasonal pattern in which growth is fastest over the summer but

26



FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

flattens off in autumn. A sine curve with amplitude and phase parameters estimated
from the data appears to provide an adequate model for capturing this within-year
seasonal effect. The results also indicate that broad changes in growth from year to
year occurred based on the estimated between-year random effects (Appendix 7).
Furthermore, these year effects change rather smoothly over time, and indicate that

they should be modelled as systematic effects rather than random effects.

The results from fitting the length-frequency data indicate that at a qualitative
level, the mean length of one-year-old fish has changed only in minor ways between
1960 and 1989, but age 4 fish in the 1980’s are considerably longer than those in the
1960’s. This question is explored further in the context of the integrated and time
varying k models in Appendices 8 and 10.

The results from modelling the length-frequency data clearly demonstrate that
these data provide unique and valuable information for modelling growth. However,
these data generally do not contain information on older individuals and thus are not
adequate by themselves. The modelling approach we used required an assumed value
for the mean asymptotic length when fitting the length-frequency data alone (this is
not necessary in the integrated model). We chose a value of 185 cm based on results
in Appendix 4 and mean length of older directly measured fish. The results over the
age range represented by the length-frequency data are not sensitive to the value
chosen. Thus, the methods we developed for estimating growth from length-
frequency data provide a robust method for estimating growth of younger fish from
length-frequency data as long as a reasonable estimate of the asymptotic length is

available.

We also note that the approach developed in Appendix 7 could be used to
provide direct estimates of the age distribution of the catches from these length-
frequency distributions. This approach would be preferable to the current practice of
estimating the age distribution using cohort slicing as it takes into account the overlap

in size among age classes.
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An integrated model for the 1980°s

The general integrated likelihood approach that we developed in this project
was first applied to combined data sets for the 1980’s in order to ensure that the
method provided consistent estimates and to determine the appropriate level of model
complexity that needed to be considered when applying the modelling approach to the
full data sets. The results of the model development and evaluation process are

described in detail in Appendix 9.

The results of this fitting process indicated that an integrated model using a
common growth function could be fitted to each of the data sources and that each of
the data sources provided a generally consistent and complementary fit. The only
indication of any substantive inconsistency was in estimates for age 1 fish from the
direct aging and length-frequency data. As discussed in detail in Appendices 3 and 9,
this stems from the fact that within the age 1 fish there is spatial segregation by size
that appears to be related to the actual age (i.e. age in terms of a when fish were
spawned). However, in both of these data sources we are not able to resolve age to a
finer level than individual year-class. SBT are also growing quite rapidly at this young
age. Thus, any estimate for size of one year old fish will be highly sensitive to both
the timing of the sampling and the proportion of fish in the overall sample that come
from different locations. It should be noted that SBT growth during their first six to
nine months is extremely rapid and would be expected to be functionally different
than subsequent growth. Further, in terms of this project’s primary objective for
modelling SBT growth (i.e. for estimation of the age structure of the catch in an
assessment context), precise estimation of the size of fish aged 1 and younger is not

critical.

In developing the integrated model, we considered the addition of a seasonal
component to the basic VB log k¥ model. SBT growth, particularly as juveniles,
appears to be substantially greater during the austral summer months than during the
winter. Seasonality in growth was modelled by replacing a — a, with a —a, + S(¢) in
equation 1, where ¢ is the fractional time of year since January 1. Within year growth

was modelled as a sinusoidal function:
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S(t) = % sin(27(t — w)) (14)

where u is the amplitude and 1 is the phase. The amplitude was constrained to be
between 0 and 1 to prevent negative growth and the phase was constrained to be
between —0.5 and 0.5. (Note any bounds for the latter with a span of one could have
been chosen due to the periodicity of the function.) In this formulation, the rate of
growth is maximal at # =w and diminishes symmetrically about w to a minimum at

t=w-05and t=w+0.5.

Comparison of results for the complete data sets for the 1980’s with and
without this seasonal component indicated that inclusion of the seasonal component
yielded a substantial and statistically significant improvement in the overall fit,
although it had little effect on the parameter estimates for describing the longer-term

growth (e.g. i, k, and k,). The inclusion of the seasonal component resulted in a

noticeable improvement to the residuals for the length-frequency data (see figures in
Appendix 9). It was also important in that it allowed information on growth from tag-
recaptures with short time at liberty to be included in the analyses. Previous studies
had excluded tag returns with less than 270 days at liberty because the strong seasonal
signal in growth was seen as problematic if these shorter term recaptures were
included (Anon. 1994, Hearn and Polacheck in press). There are substantial numbers
of tag returns with times of liberty less than 270 days. Such tags can provide valuable
additional information on the growth at younger ages (since these were the ages that

were tagged) as long as seasonal effects are appropriately accounted for.

It is worth noting that previous questions have been raised about the validity
of estimating mutual growth parameters in an integrated framework using more than
one data source (Francis 1988). The results in Appendix 9 (and additionally in
Appendix 10) demonstrate not only that consistent estimates can be achieved, but also
that there is considerable advantage in combining data from more than one source,
particularly when there is poor or incomplete coverage of the full age range of fish
within any one data source. However, in doing this, it is essential that appropriate
models and likelihood functions be developed that reflect the information on growth

and appropriate error structures for each data source. It is also important that the data
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are comparable in terms of the group of fish (e.g. cohorts) for which growth is being

estimated.

Comparison of growth curves over four decades

The integrated estimation method was applied to the data from cohorts from
the 1960°s through the 1990’s. We separated the data by decade in order to obtain
estimates of the average realized growth by cohorts from each of these decades’. We
applied the VB log & model with a seasonal component to each data set and obtained
estimates for the parameter values (Table 2). Comparison of the parameter values

suggests that there has been little or no change in the mean asymptotic length (x_)

but that there has been an increasing trend in growth rates at younger ages as reflected
in estimates of the k; parameters. Comparison of the estimated average growth curves
from the maximum likelihood fit indicates that the predicted length of juvenile fish
increased between the 1960°s and 1970’s, continued to increase between the 1970’s
and 1980’s, and changed little between the 1980°s and 1990’s (Figure 1). The overall
increase between the 1960’s and 1980°s is quite substantial. Thus, the estimated
average size of a two year old in the 1980’s is neatly equal to that of a three year old
in the 1960°s. Although Figure 1 suggests that there may not be much difference in
growth between the 1980’s and 1990’s, a closer examination of the two curves
suggests that a difference of about 4 cm existed at age 2 and about 2 cm at age 3 (see

Appendix 10). After this age, the estimated differences were generally less than 1 cm.

The results for the data from the 1970’s suggest that the 1970’s were a period
of transition with quite variable growth. The results from the integrated analyses from
this decade suggest that growth rates at younger ages were slightly greater than those
in the 1960’s. Examination of residual plots for the length-frequency data either by
year or cohort (Appendix 10) suggests that growth in the early part of the decade was
substantially slower than in the latter half and even lower in the 1960’s. Similar

7 For the tag-recapture data, we separated the data by decade of release because of the technical
problem that estimates of the age and thus cohort for any individual tag release are only obtainable in
the context of fitting the growth model. (Even in this context, the estimated age/cohort is considered as
a random variable.) Additionally, the length-frequency data (which covered fish up to age 4) were
separated by decade of capture since we did not want to split up data collected within the same year in
our analyses (for reasons given in Appendix 10). This means that in each decadal data set there will be
a small percentage of fish that were actually bomn in the last few years of the previous decade. This
does not have any substantive effect on the results.
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results were also found in the analyses in Appendix 8. The pooled results for this
decade will thus provide intermediate values. Attempts to further resolve the growth
in the 1970’s using this integrated framework were not successful. The data for the
1970°s are relatively sparse and would not, for example, support half-decadal
estimates. The limitations in the 1970’s data are important to recognize in any
interpretation of the results. In particular, there is little information on growth for

intermediate ages (i.e. between 6 and 15 years of age).

Examination of the residuals revealed no systematic deviations from the fitted
curves for any of the different data sources. Thus, the change in growth was
consistently seen in three independently derived data sources, indicating that the
observed difference was not an artefact of differences in the data collection or
processing procedures over time. The estimated difference in the growth curves
between the 1960°s and 1980’s decades is somewhat less than that estimated
previously in either Hearn and Polacheck (1993, in press) and Anon. (1994). These
previous studies were based only on tag-recapture data and used Fabens’ estimation
method (Fabens 1965) without any allowance for individual variability in growth.
Fabens’ approach has been shown to be biased if in fact there is individual variability

in L_(Maller and deBoer 1998). The results in this and previous appendices strongly

suggest such variability exists, and explicitly taking it into account in the model is the

primary source of the difference.

We examined in detail various aspects of the model fits to the data from each
decade, including variance estimates for the estimated parameters (see Appendix 10).
The results suggest that x_ was approximately 3 cm larger for the 1960’s ‘data than
for subsequent decades. They also suggest that for the 1960’s data there is no
significant difference between the standard VB and VB log k model, while a
significantly better fit was obtained for the other decades with the VB log & model.
Interpretations of these results are discussed in detail in Appendix 10. However, in
terms of prediction of lengths within a stock assessment context, issues such as
whether to use a VB or a VB log k model for the 1960’s or whether there is a common

., for all decades will have at most minor effects.
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Changes in SBT growth rates over time — time varying k

Estimates of k(#) from fitting a time varying VB model to the length-
frequency data are illustrated in the upper panel of Figure 2. The estimates of k(¢) are
relatively constant in the 1960°s, decline sharply in the late 1960°s and early 1970’s,
increase to a peak in 1973 and decline again before increasing in the 1980°s to a level
higher than that in the 1960’s. The temporal pattern broadly follows the shape of the
seasonal effect estimated in the length-frequency analyses in Appendix 7 (see Figure
6 in Appendix 7). However, there is a noticeable difference, namely that the level of

the peak in 1973 is about the same as that in 1985.

It is important in interpreting the upper panel of Figure 2 to keep in mind that
what is depicted is the estimated growth rate parameter (adjusted to one point in the
year) and not an estimate of the actual change in size. The predicted size at age a from

this model is the integration of the estimated k(z) from 7r—a to t. As such, the

temporal trend in the predicted size over time for any age can be substantially
different from the temporal pattern of k(7). This is illustrated in the lower panel of
Figure 2, which shows how the predicted mean lengths for age groups 1 to 4 vary
over time. There are important differences from the pattern in the upper panel. Thus,
the 1973 and 1985 peaks are the same height for the one-year-old fish, but the 1985
peak is clearly higher for the four-year-old fish. The two-year-old and three-year-old
fish show intermediate effects. These results are consistent with the decade by decade
results presented above and in Appendix 10. These show that the differences in the
mean length at age of SBT between the 1980°s and previous decades were small for

the one-year-olds, but were progressively larger for older age groups.

In Appendix 7, when comparing half-month Gaussian mixture fits to the
1970’s length-frequency data, we experienced difficulty in following the age group
changes. The fact that the growth rates during the 1970’s appears to have been
following a “sine”-shaped curve through that decade may explain the difficulty.
Inspection of the residuals to the fit of this k(#) suggests that the four-year-old fits are
too low in the 1980°s. This would suggest that the actual change in size is being
underestimated by this model. This in turn indicates that the von Bertalanffy model is
incapable of fully capturing the fast early growth of 1980°s juvenile fish and is yet
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another indicator that a more complex growth model (e.g. VB log k) is more

appropriate.

We encountered technical difficulty in applying the changing k(#) model to

the tag-recapture data. The optimisation method was too slow to use with the full data
set. In order to be able to produce estimates for the tag-recapture data, preliminary
results from a sub-sample of size 1000 was used. We restricted the tagging data to
releases from the 1960’s to the 1980’s to have comparable results with those for the
length-frequency data and to ensure that there was sufficient data to support the

analysis. The estimates of k(¢) and the mean lengths for age groups 1 to 4 are

qualitatively similar to those estimated from the length-frequency data (see Appendix
8), even though the data sets in the two analyses were independent. There are some
differences in the results but taken together the results support the conclusion that the
rate of growth of SBT was faster in the 1980’s than in the 1960°s. The 1970’s saw a
period of change followed by a rise to the 1980°s level starting in the late 1970’s. It
should be stressed that the tag-recapture data set is deficient in the 1970’s. As such,
the estimation of k(z) from these data is likely to be relatively poor during this time.

Changes in SBT growth — otolith increment data

The mean otolith increments by decades indicate a similar pattern of change to
that seen in the decadal estimates of SBT growth from the integrated analyses in
Appendix 10 and discussed above. Thus, on a decadal scale, the mean growth
increment in the otoliths between bands 1 to 2 and between bands 2 to 3 were similar
for the 1960’s and 1970’s and were significantly smaller than for the 1980°s and
1990°s (Table 3). The mean increments in the 1990’s were also greater than those for
the 1980’s. The same tendency is seen in the mean increments for bands 3 to 4,
although the magnitude is much smaller. There is little difference in the mean
increments for bands 4-5. (Note there are few increment data for the 1990°s in this
case.) These results are similar to those presented in Gunn and Farley (1998) and
Gunn et al. (in prep). Interpretation of the increments for these older ages is more
problematic as the absolute magnitude of the increment declines with age and thus the
relative precision of the estimates decreases because measurement errors become

proportionally greater. Moreover, the expected absolute growth increment of a fish
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declines with its size. As such, even if fish were growing faster post 1970’s (e.g. a

greater k), the differences in the absolute growth increment would decrease with age.

It should be noted that the comparisons for growth increments between
different ages in Table 3 are not independent since they are all based on increments
measured from the same set of fish. As can be seen in Table 4, within any cohort,
there tends to be a positive correlation between the growth increments between
successive ages. In other words, a fish with a larger than average growth increment in
its otolith for band 1-2 also tends to have a larger increment for band 2-3, etc. This
positive correlation is consistent with substantive individual variability in growth (i.e.

it supports the importance of considering L_ as a random variate). If substantive

individual variability did not exist, then successive growth increments from the same
fish would be expected to be negatively correlated (as a result of growth being a
function of size and also as a result of measurement error, since consecutive
increment measurements share a common middle band measurement). As such,
comparisons of the increments for different ages are confounded. The overall
cumulative increment for bands 1-4 or bands 1-5 would appear to be the most relevant
measurement in terms of comparing overall trends in juvenile growth rates and for
minimizing the relative contribution of any measurement error. These values are

given in Table 3.

In addition to the decadal comparisons in Table 3, the otolith increment data
can be used to provide an indication of finer temporal resolution in changes in growth.
Figure 3 shows the mean otolith increment between bands 1 to 5 by cohort for cohorts
born between 1960 and 1989. Also shown are the estimated 95% confidence limits.
The increments have been scaled to the overall mean for this period to facilitate
interpretation. The precision of the estimates for any given year is relatively low in
that for all but a few cohorts the confidence intervals for the deviation from the
overall mean overlap zero. Nevertheless, there is a general trend in the mean for
cohorts born in the 1980’s to be greater than the overall mean and those born in the
early 1960’s to be less. The 1977 and 1978 cohorts stand out as the two cohotts with
significantly smaller increments. Overall, this figure suggests a relatively similar

growth for cohorts born prior to 1978 and an increase (and perhaps an increasing
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trend) for the 1980°s cohorts. The transition between these two periods depends in
part on the interpretation given to the 1977 and 1978 cohots.

The correlation in the increments for an individual otolith (Table 4) means
year and cohort effects tend to be confounded in this data set. For example, the
correlation between the mean growth increments for bands 1 to 2 and bands 2 to 3
among cohorts is 0.73, while the mean correlation between the same band increments
within a year is 0.35. This might suggests that cohort effects are stronger than year
effects. However, if the otolith samples are randomly divided within a year into two
groups in order to obtain two independent samples, the correlation with cohort and
year are both reduced and are of similar magnitude (0.28 and 0.22 respectively).
Overall, this confounding between year and cohort means that distinguishing the

specific temporal signals in these data is problematic.

Comparison of the temporal pattern in the otolith increment data (Figure 3)
with the pattern estimated in the time varying k analyses (e.g. Figure 2 and Appendix
8, Figure 5) suggest that there is consistency in all of them in terms of predicting that
there was a decline in growth rates just prior to the increase in the 1980’s. However,
within the otolith increment data, there is no indication of the large decline in growth
rates at the beginning of the 1970’s, a feature seen in both of the analyses in Appendix
8. As such, it is not clear whether the apparent decline in the late 1970’s is merely a
coincidence. The coefficient of variation in the mean otolith increments between ages
1 to 5 for a cohort is on the order of 5%. The difference in the estimated decadal mean
lengths for juvenile SBT is of the order of 10% or less. As such, the power of the
otolith increment data to detect fine scale temporal differences would be small,

particularly given that the otoliths provide an indirect measure of actual growth.

Discussion

The estimation of fish growth is challenging and complex, particularly for
long-lived species such as SBT in which growth processes can be expected to vary in
different components of the life cycle and can change over time, potentially
differentially with age. This necessitates that extensive data be collected over
considerable time periods if reliable estimates are to be obtained. Moreover, given

the long lifespan of SBT, commonly used sources of information on growth (e.g.
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length-frequency and tagging data) are likely only to be informative for portions of
the age range. As such, it is important to have methods that can incorporate and

integrate a variety of data.

The integrated methods developed and applied to the SBT data sources have
been able to provide a comprehensive set of estimates for the growth of SBT over
four decades. In particular, the combining of length-frequency, tag-recapture and
direct aging data has been a powerful mechanism for obtaining estimates for the
1960°s and 1970’s periods, where there are substantive deficiencies in coverage in the
historical data from any particular source. The inclusion of the direct aging data has
been particularly informative with respect to the asymptotic length. None of the
individual data sources, by themselves, were sufficient to provide estimates of growth
for the 1970’s. By being able to combine the different data sets, the overall data sets
for SBT constitute one of the most comprehensive, long-term data sets for a large
pelagic fish stock. Nevertheless, as discussed below and in the appendices, there are
still substantive limitations in the coverage provided by this integrated data set that
need to be taken into account in interpreting the results. The direct ageing data
provided the best information on asymptotic length, the length-frequency data the best
information on within-season growth and the tag-recapture data the best information
on intermediate ages and on between-fish variability (o, ). Thus all three types of

data were essential in developing a comprehensive growth model for SBT.

Another advantage of an integrated approach is that it allows for the
consistency of the data from different sources to be evaluated. Because of the high
correlation among parameter estimates in standard growth models (e.g. k and L_ in
the VB model) comparison of results from independently fitting to separate data
sources can be problematic. In addition, examination of the residuals from an
integrated source provides an indication of the overall robustness of the resulting
estimates and can be a powerful means of gaining insight into the underlying

processes.

It is important to consider what the estimates of the growth parameters

represent when interpreting them. At the most fundamental level, the estimates in
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conjunction with the underlying growth model provide a mathematical description of
the realized average length at age along with associated variances in the distribution
of length at age for the group of fish (i.e. cohorts) over which the data have been
aggregated. To the extent that growth rates vary over time the results do not provide a
direct description of the growth at any particular instant in time. Different
components/ages within the population at any given instance may have been
following very different growth trajectories depending on the cumulative past and

current factors that have affected and are affecting their growth.

At another level, examination of the estimated growth parameters can provide
insight into the underlying growth processes, how they have changed and the factors
responsible for them (see discussion below). However, in doing this, caution is
warranted because of the problem of inferring process from pattern, the large
correlation among some of the estimated parameters, and the potential problems with
the lack of separability in the observed realization of multiple and cumulative effects.
A further complication is that observed growth comes from the individual that
survived to that age. To the extent that there is size specific mortality within an age
group (either natural or fishery induced) the resulting observed growth curves
represent a combination of the underlying growth and mortality processes. Finally all
the observed data on growth comes from fish that were captured in a fishery (in most
cases commercial but “scientific” in the case of tagging). If there is large size
selectivity within an age class, then the resulting growth curves do not provide a fully
unbiased estimate for the underlying population. As discussed above, there appears to
be significant size selectivity due to spatial segregation within the one-year-old age
class and also within ages 8-14 on the spawning grounds during the spawning season.
These have been taken into account in the analyses. Other potential sources of size
selectivity within an age class, particularly ones that may have changed over time,
would appear to be small (e.g. hook selectivity in the longline fishery). However, this
inherent limitation of fishery-collected data on growth should be kept in mind when

interpreting results.

Hypotheses for the changes in growth
The size of a fish at a point in time represents the integration of a complex

mixture of factors that have determined its growth up until that age. At the population
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level, changes in the average size at age indicate that there has been a change in one
or more of the dominant factors that affect growth. Four general categories of factors
at the population level are likely to effect observed changes in growth:
1. the genetic structure of the population with respect to factors controlling
individual growth;
2. the physical environment (e.g. temperature) experienced by the population;
3. the productivity and available resources within the utilized habitat;

4. the size of the population.

More than one of these factors can change over time and be an influential
contributor to changes in growth. Moreover, these factors are not independent and
changes in one factor can induce changes in the other. For example, changes in the
density of the population can affect the availability of food resources and result in
tropic interactions on the productivity of the ecosystem. Alternatively, increases in the
size of the population can result in more marginal habitats being used and thus change
the average physical environment that is experienced. Changes in population size can

also change the selection pressures with respect to growth within a population.

Nevertheless, when substantive changes in growth have been observed, as has
been the case with SBT, it is important to consider possible alternative hypotheses
with respect to the likely dominant factor in terms of their implication for stock
assessments and the provision of management advice. In particular, the potential
effects of changes in the size of the population on growth as the result of fishing are

important to consider.,

In Appendix 10, possible hypotheses for the observed decadal changes in
growth are discussed. In that appendix, it is suggested that a hypothesis entailing a
density dependent response in juvenile growth rates should be considered as one
alternative for the changes in decadal growth observed in the estimates of growth. It is
also suggested that a hypothesis of densityldependent growth in the post adult phase
that entails at least a change in #_ should be considered as an explanation of the lack
of fish greater than 184 cm in the early longline catches. As noted in this appendix,
these two density dependent hypotheses are clearly speculative, but they are at least
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broadly consistent and plausible given the set of estimated growth rate parameters
from this integrated analysis, the history of the fishery and the general trends in the
SBT stock.

The other general alternative to a density dependent hypothesis is that the
changes in SBT growth have been driven primarily by changes in the physical nature
and productivity of SBT habitats. In terms of the decadal growth estimates, a large-
scale climatic “regime shift” in the mid 1970’s has been linked to major ocean basin
productivity changes and flow-on effects for fish populations (Polovina et al. 1995,
Mantua et al. 1997, Beamish et al. 1999). While the best information on these
linkages comes from the North Pacific, the climatic shifts have been linked to other
areas including the Indian Ocean (e.g. Minobe 1997). As such, the changes in SBT
growth could be considered to be broadly consistent with this observed decadal
climatic change. It is less clear what environmental signal could be considered

consistent with a large change in g_, if this is in fact the cause of the absence of fish

in the larger size classes (e.g. >184 cm) in the early longline catches (see Appendix
10).

Unfortunately, the decadal estimates of growth are not very informative in
terms of rejecting or accepting hypotheses about the underlying factors affecting
growth. Thus, they provide estimated growth curves that broadly represent the
average “growth” experienced by cohorts from each of these decades. There is no
information in the estimates to resolve at a finer time scale whether broadly coherent
hypotheses are consistent with the finer scale dynamics of the hypothesised causative

factors (i.e. environmental or abundance changes).

The methods developed and the analyses conducted in Appendix 8 were
undertaken to provide finer scale estimates of how SBT growth has changed over
time. While the methods developed in Appendix 8 appear promising, they expose
general limitations to the modelling and estimation of how growth rates change. It is

now clear that extensive data are required, particularly in the case of tagging data®.

8 problems inherent in tagging data for this purpose are that the age of the fish needs to be estimated as
part of the analysis and for longer-term recaptures the observed change in lengths represent an
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Given the limitations in the temporal coverage within the various data sources (see
below and Appendix 3), the methods in Appendix 8 were only able to provide an
indication of how growth rates may have changed and then only for the juvenile age

classes.

Ideally, for analysing how growth has changed over time, the data should
allow for reasonably precise separation of estimates of growth by age and time period.
Although the data for estimating SBT growth rates are extensive, there are real
limitations in terms of the comparability of the age range within any single source and
the ability to provide a time series of growth rates by age and year. There are inherent
problems in tagging data for being able to do this and substantial gaps exist within the
1960-2000 timeframe because few or no tags were released (e.g. during the 1970’s
and in the mid to late 1980°s). There are also sampling limitations in the direct aging
data. In particular, because the otolith samples were almost all collected in the 1990’s,
the direct aging data provide little information for comparing or modelling growth
rates over time for similar size/age range of fish (e.g. there is no information on
juvenile growth in the direct aging data for the 1960’s and 1970’s). However, it is
worth noting if otolith sampling continues on a routine basis that the resulting direct
aging data would provide a very powerful data set for tracking how growth rates
change in the future and for developing an understanding of the underlying
mechanisms. The length-frequency data provide for a complete time series of growth
rate estimates over a consistent age range. However, the age range in this case is only

for ages 1-4 and no useable data exist for the 1990°s.

Despite the limitations just noted, the results from Appendix 8 provide a set of
finer resolution estimates of both the change in growth rates and the resulting change
in mean size at age (particularly for the transition between the 1960°s and 1980’s).
Given the limitations of the data and model fitting problems, the results should be
considered more as a relative indication of how growth rates may have changed —
particularly since the fits to the length-frequency and tagging data yielded
qualitatively similar temporal patterns but somewhat different quantitative estimates.

The results indicate that the transition between the 1960’s and 1980°s was not a

integration of the growth rates experienced by that fish. Thus, there is no direct observation on how
growth rates may have varied within the interval between release and recapture.
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smooth continuous increase. Instead they suggest that growth rates in fact decreased
in the early 1970’s and that a large fraction of the increase in the average size of
juveniles between the 1960’s and 1980’s occurred rapidly near the end of the 1970’s.
The decrease in the growth rate in the early 1970’s is also consistent with the residual
pattern by year or cohort for the length-frequency data seen in the integrated fits to the
decadal data (Appendix 10). Although the length-frequency data are included in both
cases and thus the two analyses are not ind’ependent, the consistency between the two
different statistical models and approaches lends some additional support to the early
1970’s being a period of depressed growth. However, it should be noted that such a
signal is not apparent in the back-calculated otolith increment data (see above). In
contrast these otolith increment data also suggest that the increase in size between the

1960°s and 1980°s occurred relatively rapidly near the end of the 1970’s (Figure 3).

If the early 1970°s was a period with lower growth rates followed by a period
of rapid growth subsequently, environmental or density dependent effects could be
hypothesized for the underlying factor. Given the imprecision in being able to
estimate the timing and magnitude of the change combined with the shortness of the
time series, attempting to correlate it with a range of specific environmental signals
would probably result in at least one positive, but potentially spurious, result,
especially if lags were also considered. Information on changes in juvenile density
during this period suggests that a density dependent effect would also be broadly
consistent with such a pattern of growth during the 1970’s. Thus, Japanese longline
CPUE trends for juveniles (ages 4 and 5) suggest that the early 1970°s was a period of
high density (Figure 4). This is in spite of the large catches of younger fish being
caught by the Australian surface fishery. The stock assessment models integrate these
CPUE trends and catch data to provide estimates of recruitment. In this regard, the
resulting estimates of the recruitment trends also suggest that the late 1960’s and the
first year of the 1970’s was a period of somewhat elevated recruitment relative to an
overall declining trend and that this was followed by a short period of lower
recruitment in 1971 and 1972 (Figure 5). Allowing for these recruits to age suggests
that the pattern of recruitment is broadly consistent with the estimates of change in

growth rates in Appendix 8.
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Growth rate parameters for use in SBT stock assessment models

As discussed above estimates of the growth rates of SBT are critical for the
SBT stock assessments. Both the traditional VPA assessments and the more recently
developed statistical time series approach require estimates of the expected mean
length of a fish by year and age. In addition, the catch at length based models require
estimates of the variance in length of fish in a given year and age class. The results
from the integrated analyses of SBT growth conducted in this project provide a basis
for generating estimates of the mean lengths at age and their variances that can be
used as input into these stock assessments. However, this is not a straightforward task
because SBT growth rates have varied substantially over time. Thus, the distributions
of lengths at age have changed, while the available data are incomplete for robustly

estimating these changes.

In considering what estimates should be used it is important to bear in mind
what data actually underpin the estimates, particularly in terms of the age ranges and
years covered. The stock assessments need to take into account the uncertainty in the
available growth data and consider plausible alternatives, particularly where data are
sparse or unavailable. The available data provide information on cohorts born
between 1960 and 2000. However, the data provide no direct information on the
growth of fish or length at age for fish existing at the time when the fishery began in
the early 1950’s or for the large catches from the spawning stock that occurred in the
eatly 1960’s (e.g. these spawning catches would have been greater than 8-12 years of
age based on current estimates of maturity). Whatever values are used for these early
cohorts must be based on hypotheses about SBT growth dynamics. As such, the
question of what growth relationships to use in the SBT stock assessments is most
appropriately addressed in two parts: (1) for those cohorts born since 1960 for which
data on growth actually exists and (2) for those cohorts caught in the fishery for which

no direct observations are available (i.e. born before 1960).

The expected length at age for the post-1960 cohorts

For the post 1960 cohorts, ideally, separate estimates for each cohort could be
derived. However, the data are not comprehensive enough to permit this (see
Appendices 3, 8 and 10). Appendix 10 provides estimates of the growth rates by

decades. The results in this appendix can be used to provide one alternative set of
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growth rate parameters. Within this alternative, each set of decadal growth rate
parameters would be used to provide estimates of the expected length at age for
cohorts that were born in that decade. Table 5 provides an example of such estimates
based on the parameters from the best fit to the VB log k& model (Table 2). The

parameter values from constraining all cohorts to have the same x_,, as well as the

parameter estimates for the 1960’s fit to the VB model, could also be considered as an
alternative hypothesis. However, the differences in the expected lengths at age are
small. Given the other elements of uncertainty within the stock assessment, the
differences between these different growth rate estimates would seem rather
inconsequential. As such, it would not seem necessary to consider each as a separate
alternative within the stock assessment. Whatever set of parameters are used, it may
be worth considering smoothing over time the change in mean size at age, instead of
having a discontinuity every 10 years. Whether such a refinement is necessary is best

determined by those actually conducting the assessment.

It should be noted that the estimates in Table 5 represent a different treatment
of the growth estimates for the 1960°s cohort data than is currently utilized in the SBT
stock assessments (e.g. Hearn 1994). Within the SBT stock assessments, the 1960’s
growth curve is used to estimate the mean length at age within a year for catches up to
1969. After this year, the mean length at age is assumed to increase; i.e. the transition
between the growth curves for the 1960°s and 1980°s is assumed to occur across years
and not across cohorts. However, this is logically inconsistent with the data that were
actually used for estimating these growth curves. It was sensible to adopt this
convention at the time. The estimates of the 1960°s and 1980°s growth curves implied
that the mean length at age for some ages and in some years overlapped (i.e. younger
fish were estimated to be larger than older ones). The cohort slicing method being
used for estimating the age structure of the catch could not handle such overlaps.
Given the growth curves estimated here, overlaps no longer occur (Table 5).
Moreover, within the SCALIA catch at length model (Kolody and Polacheck 2001),
such overlaps would not be a problem. As such, it would seem more appropriate to
use estimates for the length at age that are consistent with the time period from which

the data used in the estimation of the underlying growth curves were collected.
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An alternative to simply using the decadal estimates from Appendix 10 would
be to incorporate the year specific changes in k from Appendix 8. However, these
estimates are not sufficient in themselves as they are primarily applicable to juvenile
fish and we were not able to get satisfactory estimates of k(¢) for the 1990’s because
of the lack of length-frequency data and difficulties in applying this to tag-recapture
data. Also, the estimates of A(f) were estimated based on fitting a VB growth model,
and we know that a more complex model such as the VB log k is more appropriate.
One possibility would be to use these estimates of changing k in conjunction with the
decadal VB log k estimates for the k; parameters in Table 2 or Appendix 10. This
alternative would be based on the recognition that the changes in growth since the

1960’s appear to be primarily associated with juvenile fish (see Appendix 10).

Variance estimates for the expected length at age
Catch at length based assessment models generate predicted catch at length
distributions for comparison with observed distributions (e.g. Kolody and Polacheck
2001). The predicted catch at length distributions are generated from modelled
estimates of the catch at age distributions which are transformed into length
distributions based on estimates of the mean length at age and the variances around
this mean. The time step in the assessment models is one year. Thus, the predicted
catch at length distributions generated by these models represent aggregated annual
distributions. The question of an appropriate error structure for modelling growth was
discussed above. In terms of predicting catch at length distributions, there are four
principal components of the variance that need to be considered within a specific set
of parameter values for a growth model:
1. Individual variability in the basic growth process;
2. Temporal variability in the underlying growth process (e.g. environmental
effects);
3. Measurement errors;
4. Growth within a time period (usually annual) as a result of aggregating

catches,

Individual variability in growth within this project has been modelled by

treating L. as a normal random variable. As such, the estimates for o_ provide a
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basis for estimating the first of these components. The estimates of ¢o_ in Appendix
10 range from 3.5 to 4.7 percent of the estimates of u_. The estimates tend to
increase over time. The o_ ’s for the 1980°s and 1990°s would be expected to be less
well determined since in both cases no actual observations are possible for fish at ages
where they would be expected to have approached their asymptotic length (i.e. the
oldest observation possible is for age 20). Thus, the estimates of o for the 1960’s
and 1970’s could be considered more reliable. The average of these two yields an

estimate of 7.46 for o_, .

The second and third components of variance are not completely separable
and each of the different data sources provide a separate estimate which should reflect
a combination of specific measurement errors associated with each data source plus
the temporal variability component that is common to all sources (see Appendix 9 for
further discussion on this). In terms of predicting the distributions of catch at length,
the variance associated with the length-frequency data superficially might appear to
be the most appropriate since these were derived from sampling the commercial
catches. However, these are based on a limited age range and have confounded within
them the ¢_ variance component. As such, the estimates from the tag-recapture data
would appear to provide the most reasonable estimate for this component of the
variance. Taking the average of the variance estimates for scientist measured fish (i.e.
the o ’s) from the results in Appendix 10 (also in Table 2) would suggest that a
value of ~4.4 might be reasonable for those catch length-frequency distributions in

which scientific staff actually performed the measurements.

The estimates from the tag-recapture component also provide estimates of the

additional measurement variance as a result of fishermen making the measurements
(0'12, ). Since, in some years, the length-frequency distributions from the Japanese
longline fleet were made on board vessels by fishermen, the 0'12, ’s (as given in Table 2

and Appendix 10) could be used to provide an estimate of this additional variance.

Taking the average of the 0'12, ’s across decades results in an estimate of 7.4 for this

additional variance component.
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It should be noted that in the actual length-frequency data from the catch, there
is an additional measurement variance component in some years for the Japanese
longline data. This stems from the use of weight measurements that were converted
into lengths. Estimation of this variance component is outside the scope of the current
project, as the data on growth in most cases did not contain associated weight
information. However, the variance in weight at age is likely to increase with age. As
such, those performing the stock assessment would need to develop an appropriate
model if the additional variance due to the conversion of weights into lengths is

Jjudged important to incorporate.

Finally, within the observed length-frequency of the catches used in the stock
assessments, there is an additional component of variance resulting from aggregation
of the length-frequency distributions into an annual distribution. This additional
variation results from within year growth. Thus, even if there was no variation in the
length of a fish at a given age and all fish had the same birth date, there would be
variation in the length of fish caught within a year-class throughout a year because
fish at the beginning of the year would be smaller than later in the year. The
additional variance is related to the amount of within year growth and the temporal
distribution of catches within a year. It is straightforward to show that an expression

for the overall variance that includes this aggregation component is:

P n (o +I° .
i, =3 e I sa) (15)
j=1 a,y

where
. = length of a fish of age a caught in year y
n,,. = the number of fish caught in year y of age a during time period j
0'54_”_", = the variance in length of fish caught in year y of age a during time

period j
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I,,, = thedifference in the expected size for a fish of age a caught in y

and time period j from the overall expected size of a fish®
N,. = thetotal number of fish caught in year y of age a

The variance in length for an age class at any particular time within a year will
be approximately constant and this dependency changes relatively slowly (see

Appendix 8). As such, the above expression can be approximated by:

n, I?

V(]n,y) = EJ?,H,,V + Z{%—uJ (16)

pY

Thus, the additional component of variance due to within-year growth will be
a weighted average of the square of the growth increments (relative to their mean),
where the weights are proportional to the distribution of catches taken within a year.
Clearly, the importance of this additional variance component will vary with age.
Figure 6 provides an example of the estimated variance component that would be
expected for SBT as a function of age for a fishery in which catches were evenly
distributed throughout the year. This additional component is relatively small except
for younger ages (i.e. <5) in which there is substantial growth within a year. The
contribution of this component to the variance will depend upon the distribution of
fishing within a year. The effect, even for younger ages, will be relatively small for
highly seasonal fisheries.

The above four sources of variance for the distribution of lengths at age are
independent. Thus, they can be added together to provide an overall estimate of the
variance. Figure 7 illustrates estimates of the total variance and the relative
contribution of each component for the parameter estimates from the best fit to the
1980°s data. Results for the parameter estimates from the other decades are similar.

The total variance is dominated by the estimated variability in individual growth

(0?2). However, for younger ages, particularly ages 1 and 2, within-year growth
y Y

P

2 iay B0y

? Note that / ay = E (l A ) -2 N where E (I j‘ah‘,) is the expected length of a fish of

14y
a,y

age a in year y caught in time period j (derived from the appropriate growth curve).
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would be the largest source of variance under the assumption of equal distribution of
catches throughout the year. Thus, for fisheries in which there are substantial catches
of juveniles, it will be important to account for the within-year growth and
distribution of fishing effort. Since these fisheries are often seasonal (e.g. the South
Australian swiface fishery), the contribution from within-year growth would be
expected to be smaller than that shown in Figure 7. As such, appropriately accounting
for the seasonal aspects of the catches would be important in appropriately reducing
the magnitude of this variance component. Judicious aggregations and appropriate

time steps within the assessment model would all reduce this source of variance.

The estimated coefficient of variation for the distribution of ages at lengths is
estimated to be around 10% for most age classes (Figure 8). The approximate 95%
confidence intervals for the distributions indicate that a large amount of overlap in
length among age is to be expected, particularly for older ages (Figure 9).
Interestingly, these estimated confidence intervals are almost identical for the
situations where scientists and fishermen measure the lengths. However, the estimate
of the additional variance contributed by fishermen doing the measurements is based
on their measurement of recaptured tagged fish. The extrapolation to length
measurement of the catch by fishermen assumes that the level of measurement error
would be the same. There may be a tendency for recaptured tagged fish to be
measured more carefully than measurements taken during routine moﬁitoring of the
catch. In addition, there may be a large amount of difference between different

fishermen, as well as potential biases.

Growth parameter values for the pre-1960 cohorts
Since no data exist with which to estimate growth rates for cohorts born prior
to 1960, any values used will be based on assumptions about the underlying factors
controlling the changes in the growth. This issue is discussed in Appendix 10. Three
basic hypotheses that could be considered are:
1. that growth for cohorts born prior to 1960 was similar to that observed for
cohorts born in the 1960°s;
2. that SBT growth has a substantial indeterminate component related to adult
density which resulted in a substantial increase in the average asymptotic

length associated with the large declines in the spawning stock in the 1960°s;
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3. that post juvenile growth rates (i.e. k,), as well as the asymptotic lengths,

have a density dependent component which increased in response to the large

declines in the spawning stock in the 1960’s.

The first of these is perhaps the least plausible given the lack of very large fish
(e.g. > 184 cm) in the initial catches from spawning grounds and the increases in the
proportion of very large fish over time in the longline catches (see Appendix 10). An
alternative to the second and third hypotheses would be that there were large long-
term environmentally driven changes in growth (see above). There is no information
available to distinguish these hypotheses. However, in terms of the stock assessment,

they would tend to have a similar effect.

Figure 10 provides examples of possible growth curves for pre 1960’s cohorts
that would be consistent with the latter two hypotheses. In constructing these, we have
used a value of 165cm for u_ based on the observed length distributions on the
spawning ground in the initial longline catches (see Appendix 10) and have
considered a range of values for the &, parameter (namely 0.1, 0.125 and 0.15). In
constructing these curves, we have kept the other parameter values equal to those
estimated from the best fit to the VB log & model for the 1960°s data except for the

value of a,. We have adjusted the value of g, so that the expected size of an age 2

fish remained the same as that estimated in the 1960’s. This was necessary because, in

the VB log k model, changing the value of u _ also affects growth during the first

stage. It is not clear what is the most reasonable parameterisation for juvenile growth

in a situation where 4 _ changes. We could have, alternatively, kept a, fixed at the

value estimated for the 1960°s data, which would have implied an associated decrease
in the size of juvenile fish (Figure 11). It should be noted that the curves in Figure 11
clearly do not represent an exhaustive set of plausible hypotheses. However, they do
provide a useful range for discussion and consideration within the SBT stock

assessment.

Growth models for projections
The alternative hypotheses discussed above and in Appendix 10 for the

changes in growth observed historically provide the most appropriate basis for
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possible alternative models for future changes in growth to use in stock projection.
The hypothesis that the changes in SBT growth represent a density dependent
response is broadly consistent with the large reductions in both spawning biomass and
juveniles resulting from the high rates of exploitation. As such, a density dependent
response represents one alternative for future stock projections. Under this general
alternative, juvenile growth should be linked to the projected size of the juvenile
stocks in the future'®. The growth rates in the projections would need to be set so that
when the future juvenile stock sizes in the projections were similar to the historical
stock sizes estimated in a stock assessment then the corresponding growth curve

would be used.

To implement this hypothesis would require specification of which
component(s) in the population (e.g. number at age) is the actual density dependent
driver and the underlying functional relationship. A range of alternatives could be
considered. Given the current stock status, the primary focus for considering such a
density dependent hypothesis within projections would be to evaluate the potential
consequences for obtaining management’s recovery objective (i.e. recovery to the
1980 spawning biomass). The main consequence of including a density dependent
response in this context is that it would tend to slow the rate of any projected recovery
(i-e. as the projected stock begins to recover, cohorts will contribute less per capita to
the spawning stock at any given age and would need to be harvested in greater
numbers to obtain the same yield). In this context, it may be sufficient to use
recruitment as the density dependent driver and an “empirically” based relationship
based on the average recruitment in each decade. Any such density dependent
response would not be expected to have a substantial effect on the projections until
there was some substantive rebuilding (i.e. recruitment or juvenile stock sizes
approaching the 1980 level). As such, the consideration of density dependent growth

responses is probably a secondary effect in terms of shorter-term projections.

1 Potentially, consideration could also be given to density dependent hypotheses linking the mean
asymptotic length to the spawning stock (see above and Appendix 10). However, if the asymptotic
length has changed and if the change is linked to the early reductions in the spawning stock, the
changes would appear to have occurred over the range experienced in the 1950’s and 1960’s and
perhaps eatly 1970’s. Given that the focus of current management is recovery to the 1980 spawning
stock levels, consideration of density dependent hypotheses for asymptotic lengths would be of little
relevance in the projection context.
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Nevertheless, it is a possibility that should be considered in longer-term projection

simulations for evaluating management strategies.

The other general category of hypotheses for the historical change in growth is
that the changes in SBT growth have been driven primarily by changes in the physical
environment and productivity of SBT habitats (i.e. large regime shifts). As discussed
above, the historical estimates of growth are not very informative in terms of
identifying the underlying mechanisms or for providing prediction about the likely
frequency and duration of regime shifts if they are in fact the underlying source of the
historically observed changed. If it is considered that regime shifts hypotheses should
be incorporated into the projections, then a range of magnitudes and durations
consistent with past changes should be allowed for. Thus, consideration would need to
be given to allowing for changes in the asymptotic lengths consistent both with the
relatively minor estimated change between the 1960°s and 1970°s and the more
substantial hypothesized change for fish born prior to 1960 and afterwards.
Consideration would also need to be given to changes in juvenile growth rates that are

at least consistent with those that have been observed in the past.

Benefits

One of the primary direct benefits of this research will be an improved and
more robust basis for the estimation of growth rates that are an essential component of
the SBT stock assessments. The results of this research provided improved methods
for predicting the mean length at age and also provided estimates of variances based
on all available data. The results provide the basis for generating alternative
hypotheses for SBT growth and how it has changed over time. This should ensure that
this source of uncertainty is adequately addressed within the SBT stock assessments

and reflected in the subsequent management advice.

The estimation of growth is integral component of fishery biology and the
assessment of fish stocks. The growth models, the statistical procedures and
integrated methods developed in this project are applicable to a large number of
fisheries. The methods have the potential to provide an improved basis for modelling

and understanding growth in other fisheries. In particular, the ability to combine data

51




FRDC Project Number 99/104 An integrated analysis of the growth rates of SBT

from disparate data sources has been shown to be a powerful mechanism to improve
the overall estimation of growth curves, especially where there are substantive

deficiencies in the coverage in the historical data from any particular source.

Further Development

A number of areas where there is scope for improvements in the analytical and
statistical methods are identified in the appendices of this report. Particular problems
that would warrant further investigation include:

1. Further development of modelling approaches for taking into account the
sources of variation in length-frequency data (Appendix 7). Is it possible to fit
a growth model with hierarchical error structure to the raw data rather than the
summary statistics?

2. Further work on modelling time variation into growth models and the
development of efficient methods for fitting such models to tag-recapture data
as well as to multiple data sources simultaneously (see Appendix 8).

3. Further development and application of appropriate statistical models for the
analysis of direct aging data that take into account variability in the time of
band formation, size segregation in space, errors in age readings and
differences in spawning dates (see Appendix 12);

4. Further development of methods for estimating the standard errors of the
growth curve parameter estimates (Appendix 10).

5. Further development of the analysis of tag-recapture data. Key issues are
computational efficiency; Bayesian analysis (which was attempted, but the
algorithin stalled on the VB log k growth curve for unknown reasons); explicit
inclusion of spatial effects (location of capture and recapture); estimation
equations for general growth curves; non-parametric estimation of the growth
curve for comparison with parametric models; non-parametric estimation of
the age at capture and its consequences for standard errors of growth curve
parameters; the effect of imposing constraints on various parameters to
prevent over-fitting.

In addition, the results from this report identify the importance of obtaining improved

understanding and estimates of the timing of annual band formation within SBT
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otoliths for the interpretation of growth and age data based on the counts of annual

bands (See Appendices 3, 11 and 12).

Finally, this report highlights the importance and value of having long time
series of data available in order to understand and obtain robust estimates of growth.
Such time series are also essential for modelling the way growth rates change over
time and the underlying growth processes. SBT growth has been shown to vary over
time and these changes in growth have important implications for stock assessments
and the management of the SBT resource. In this regard, it is critical that well-
designed data collection programs that are capable of providing information on
growth are maintained within the SBT fisheries so that future changes in growth are
detected and appropriately accounted for in the stock assessment and management of

SBT.

Planned Outcomes

The primary planned outcome for this project was the production of growth
rate parameters for use in the SBT stock assessments. The results in Appendix 4 were
completed in the first year of this project and presented as work in progress to the
CCSBT Scientific Committee (Eveson et al. 2001, Anon. 2002c¢). Although the results
were only preliminary in that they were only based on tag release and recapture data,
they were considered to constitute an improvement over previous estimates being
used in the CCSBT stock assessments. The results were incorporated into the growth
curves used in the SBT stock assessment preformed in 2001 (e.g. Anon. 2002b). It is
anticipated the results from this project will be incorporated into future SBT stock

assessments.

The other primary planned outcome was the development of an integrated
method for the analysis of growth from different data sources. The project produced
an integrated method for combining tagging, length-frequency and direct aging data.
In the process, the project also developed a new growth curve and statistical
estimation approaches, as these were required components in the overall integrated
analysis. These methodological developments are generally applicable to other

species and should have relevance to the estimation of growth beyond the specific
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SBT application. One paper documenting these methodological developments has
already been published (Laslett et al. 2002, which is essentially Appendix 4). We
anticipate preparing at least four additional manuscripts (i.e. one based on Appendices
5,7, 8 and 9 respectively) for publication in the primary scientific literature to ensure

a wider dissemination of the results.

Conclusion

All of the primary objectives of this project have been completed. An
integrated method for modelling SBT growth that uses growth increment data from
tagging experiments, length measurements and direct aging estimates from otoliths,
and length-frequency modal information was developed. These methods were applied
to the available historical data from SBT to produce estimates of SBT growth curves
over four decades. As demonstrated in the report, the parameter estimates from fitting
these curves can be used to estimate the expected length of SBT at age and associated
variances for the cohorts represented in these data. A set of growth curves was
developed for possible use for cohorts caught in the early years of the SBT fishery for
which no direct data exist for estimating their growth rates. The estimates of growth
rate parameters can be used as direct input into length based assessments. Alternative
hypotheses have been developed for the factors underlying changes in SBT growth
that are consistent with the observed growth data and suggestions have been proposed
for how these might be used in future stock projections. However, the scale of
resolution in these hypotheses was limited by the resolution and coverage within the
available data. In addition, a number of new statistical methods and methods for
modelling growth were developed, in particular the VB log k growth curve (Appendix
4), new maximum likelihood approaches for fitting tag-recapture data and length-
frequency data (Appendix 4 and 7), and statistical methods for estimating temporal
changes in growth rates parameters (Appendix 8).

In summary, the results from this project suggest the following conclusions:
1. Length-frequency, tag-recapture and direct aging data can be integrated to
provide a consistent estimate for SBT growth;
2. On a decadal scale, there have been significant changes in the growth of
juvenile SBT born over the last 40 years. SBT from the 1980°s grew
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significantly faster than those from the 1960’s. The results suggest that the
1970’s were a period of transition and that growth of young fish in the 1990’s
was faster than in the 1980’s up to about age 4.

3. Estimates of the mean asymptotic length of SBT born since the 1960’s
indicate at most small changes in the asymptotic length. However, the mean
asymptotic lengths from these cohorts is significantly greater than would be
expected for earlier cohorts based on the length-frequency distribution of
spawning fish captured in the 1950’s and 1960’s. This suggests that the mean
asymptotic length may have increased.

4. The time of year at which SBT deposit a translucent zone in their otoliths can
vary from May to September, with July 1 being an approximate average date,
and there is considerable variability among individual fish.

5. Combining length-frequency, tag-recapture and direct aging data provides a
powerful mechanism for obtaining growth curve estimates where there are
substantive deficiencies in coverage in the available data from any particular

source.
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Table 1: Comparison of the negative log-likelihood value for the best fit of the 1980’s

tagging data to the VB growth curve for four different error models (see text for more

detail).

Error model

Number of error parameters

Neg. log-likelihood

Constant
Random L_ plus a constant

Random £ plus a constant

Random Z_ and % plus a constant

1

2
2
3

14695.59
14622.95
14663.52
14622.98

Table 2: Parameter estimates for the VB log k model with a seasonal growth

component based on the integrated best fit to the complete data set from each decade.

Decade L. O. ki k

a

B u

W /ulog A o-log A O's o-f ag 0-7 O-E

1960s
1970s
1980s
1990s

187.8
184.3
184.7
184.9

7.00 0.14 0.15
7.92 0.15 0.19
8.06 0.22 0.17
8.69 0.25 0.16

5.53
5.66
2.83
2.46

30.00 0.53
30.00 0.92
18.33 0.34
12.40 0.41

-0.069 1.19
0.061 0.77
0.129 0.58
0.255 0.72

0.16
0.12
0.17
0.32

2.40 1.49
2.05 3.06
2.08 2.61
1.81 3.36

-1.57
-1.28
-0.43
-0.31

5.87
0.00 3.54
4.57 4.30
5.57 -

2.01
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Table 3: Comparison of the decadal mean otolith increments for different band

increments.
1960°s 1970°s 1980°s 1990°s
Mean 0.32 0.30 0.36 0.39
Band 1-2 SE 0.008 0.006 0.006 0.009
N 104 157 163 63
Mean 0.24 0.23 0.26 0.27
Band 2-3 SE 0.006 0.005 0.005 0.006
N 104 157 163 63
Mean 0.19 0.19 0.20 0.21
Band 3-4 SE 0.004 0.003 0.004 0.008
N 104 157 163 63
|
Mean 0.16 0.16 0.17 0.19 |
Band 4-5 SE 0.003 0.003 0.003 0.011
N 104 157 157 6
Mean 0.74 0.72 0.82 0.88
Band 1-4 SE 0.014 0.011 0.01 0.018
N 104 157 163 39
mean 0.91 0.88 0.98 1.04
Band 1-5 SE 0.015 0.012 1 0.012 0.037
N 104 157 157 6
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Table 4: The correlation by cohort among the growth increments between different
bands within individual otoliths. For each cohort and band increment, the mean
increment was calculated. The deviations from these means were then calculated for

each otolith and the correlation coefficient for these deviations was then determined.

Bands1-2 Bandsl-2 Bandsl-2 Bands 2-3 Bands 2-3 Bands 3-4

Cohort N & 2-3 & 3-4 & 4-5 & 3-4 & 4-5 & 4-5
1960 3 0.92 0.19 0.56 -0.22 0.19 0.92
1961 4 1.00 0.08 -0.29 0.05 -0.28 0.51
1962 6 0.73 0.97 0.72 0.82 0.59 0.82
1963 7 0.41 0.76 0.53 0.49 -0.01 0.62
1964 13 0.70 0.15 -0.16 0.62 ~0.04 -0.13
1965 11 0.40 -0.06 -0.46 0.79 0.08 0.44
1966 21 0.44 -0.03 -0.12 0.32 0.12 0.27
1967 11 0.66 0.62 -0.30 0.65 -0.22 0.35
1968 16 0.22 0.30 0.45 0.44 -0.13 -0.36
1969 12 0.53 0.20 0.14 0.44 0.74 0.26
1970 18 0.36 0.08 -0.14 0.59 -0.34 0.10
1971 15 0.34 0.06 0.63 0.54 0.58 0.20
1972 17 0.71 0.75 0.38 0.80 0.20 0.38
1973 15 0.31 0.03 -0.45 0.21 0.06 0.36
1974 15 0.72 -0.08 0.34 -0.01 0.37 0.38
1975 14 0.73 0.09 0.09 0.28 0.36 0.74
1976 19 0.84 0.50 -0.06 0.67 -0.17 -0.03
1977 16 0.63 0.12 -0.08 0.33 0.36 0.53
1978 14 0.12 -0.05 -0.33 0.70 -0.02 0.39
1979 14 0.52 0.27 -0.08 0.43 -0.08 0.35
1980 17 0.09 0.15 -0.14 0.64 0.21 0.38
1981 10 0.61 0.38 0.26 0.36 0.53 0.19
1982 14 0.45 0.17 -0.54 0.45 -0.03 0.40
1983 16 0.59 0.33 0.12 0.39 0.25 0.58
1984 15 0.29 0.15 -0.36 0.71 -0.07 0.02
1985 18 0.49 0.24 -0.03 0.56 0.29 0.43
1986 12 -0.18 0.24 0.22 0.41 0.35 0.27
1987 27 0.26 -0.31 -0.31 0.29 0.13 0.62
1988 25 0.35 0.08 -0.13 0.54 0.31 0.79
1989 9 0.55 0.01 0.73 0.33 0.62 0.63
1990 35 0.23 -0.14 -0.43 0.40 -0.37 0.68
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Table 5: The expected average length at age by year based on the application of the
parameters from the best fit to the VB log k model to the decadal data from Table 2.

The mean lengths at age have been applied to cohoits corresponding to data used in

estimating the decadal growth curves. The values represent one alternative hypothesis

for the expected length at age that could be used in the SBT stock assessments.

Year

Age
8

10

11

12

13

14

15

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

58
58
58
58
58
58
58
58
58
56
56
56
56
56
56
56
56
56
56
48
48
48
48
48
48
48

75
75
75
75
75
75
75
75
75
75
74
74
74
74
74
74
74
74
74
74
75
75
75
75
75
75

90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
90
94
94
94
94
94

103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
103
109
109
109
109

115
115
115
115
115
115
115
115
115
115
117
117
117
117
117
117
117
117
117
117
120
120
120

125
125
125
125
125
125
125
125
125
125
129
129
129
129
129
129
129
129
129
129
131
131

134
134
134
134
134
134
134
134
134
134
138
138
138
138
138
138
138
138
138
138
139

141
141
141
141
141
141
141
141
141
141
146
146
146
146
146
146
146
146
146
146

148
148
148
148
148
148
148
148
148
148
153
153
153
153
153
153
153
153
153

153
153
153
153
153
153
153
153
153
153
159
159
159
159
159
159
159
159

158
158
158
158
158
158
158
158
158
158
163
163
163
163
163
163
163

162
162
162
162
162
162
162
162
162
162
167
167
167
167
167
167

166
166
166
166
166
166
166
166
166
166
170
170
170
170
170

169
169
169
169
169
169
169
169
169
169
173
173
173
173

171
171
171
171
171
171
171
171
171
171
175
175
175
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Table 5 (continued):

Age
Year 1 2 3 4 5.6 7 8 9 10 11 12 13 14 15
1986 48 75 94 109 120 131 139 146 153 159 163 167 170 173 175
1987 48 75 94 109 120 131 139 146 152 159 163 167 170 173 175
1988 48 75 94 109 120 131 139 146 152 157 163 167 170 173 175
1989 52 75 94 109 120 131 139 146 152 157 162 167 170 173 175
1990 52 81 94 109 120 131 139 146 152 157 162 165 170 173 175
1991 52 81 98 109 120 131 139 146 152 157 162 165 168 173 175
1992 52 81 98 111 120 131 139 146 152 157 162 165 168 171 175
1993 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173
1994 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173
1995 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173
1996 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173
1997 52 81 98 111 122 131 139 146 152 157 162 165 168 171 173
1998 52 81 98 111 122 131 139 146 152 156 162 165 168 171 173
1999 - 81 98 111 122 131 139 146 152 156 161 165 168 171 173
2000 - - 98 111 122 131 139 146 152 156 161 164 168 171 173
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Table 5 (continued):

Age
Year 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1974 174 - - - = = - = = a e ..o
1975 174 176 - - = = = = = = - - - . .
1976 174 176 177 - - - - = = = - - - - -
1977 174 176 177 179 - - - = - = - - - - -
1978 174 176 177 179 180 - - - - =« - = - - -
1979 174 176 177 179 180 181 - - - - - - - - -
1980 174 176 177 179 180 181 182 - - - - - - - -
1981 174 176 177 179 180 181 182 183 - - - - - - -
1982 174 176 177 179 180 181 182 183 184 - - - - - -
1983 174 176 177 179 180 181 182 183 184 184 - - - - -
1984 177 176 177 179 180 181 182 183 184 184 185 - - - -
1985 177 178 177 179 180 181 182 183 184 184 185 185 - - -
1986 177 178 179 179 180 181 182 183 184 184 185 185 185 - -
1987 177 178 179 180 180 181 182 183 184 184 185 185 185 186 -
1988 177 178 179 180 181 181 182 183 184 184 185 185 185 186 186
1989 177 178 179 180 181 182 182 183 184 184 185 185 185 186 186
1990 177 178 179 180 181 182 183 183 184 184 185 185 185 186 186
1991 177 178 179 180 181 182 183 183 184 184 185 185 185 186 186
1992 177 178 179 180 181 182 183 183 183 184 185 185 185 186 186
1993 177 178 179 180 181 182 183 183 183 184 185 185 185 186 186
1994 175 178 179 180 181 182 183 183 183 184 184 185 185 186 186
1995 175 176 179 180 181 182 183 183 183 184 184 184 185 186 186
1996 175 176 178 180 181 182 183 183 183 184 184 184 184 186 186
1997 175 176 178 179 181 182 183 183 183 184 184 184 184 185 186
1998 175 176 178 179 180 182 183 183 183 184 184 184 184 185 185
1999 175 176 178 179 180 180 183 183 183 184 184 184 184 185 185
2000 175 176 178 179 180 180 181 183 183 184 184 184 184 185 185
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Figure 1: (fop) The optimal integrated seasonal VB log k growth curve for each

decade. (bottom) The same curves plotted relative to the 1960°s curve for better

comparison.
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Figure 2: Results from fitting a time-varying von Bertalanffy growth model to South
Australian length-frequency data. a) The fitted von Bertalanffy growth rate le(r)
versus time ¢. b) The mean lengths for age groups 1 to 4 versus time . Note that the
curves exhibit subtle differences, in that the early 1970s peak moves to the right as

age increases, and the relative heights of the 1973 and 1985 peaks change with age
group. See Appendix 8 for more detail.
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Figure 3: Average deviation for a cohort from the overall mean and 95% confidence

intervals for the band 1-5 increment in SBT otoliths.
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Figure 4: Nominal CPUE (number of SBT per 1000 hooks) trends for ages 4 and 5
for Japanese longline vessels fishing on their feeding grounds (Statistical Areas 4-9)
during the second and third quarters (adapted from Ricard and Polacheck, 2002).
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Figure 6: An example of the coefficient of variation as a function of age for the
variance component resulting from aggregating length-frequency data over a year in
the situation in which catches were evenly distributed throughout the year (see text for

details).
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Figure 7: Estimates for the various variance components as a function of age that
would contribute variance in the observed length-frequency of SBT commercial

catches (see text for details).
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Figure 8: Estimates of the coefficient of variation expected in observed length at age
distributions for SBT. The upper curve represents the situation in which all the length
measurements are made by fishermen and the lower curve represents the situation
where all measurement are made by scientists or trained technicians. The estimates

assume that catches were aggregated and uniformly taken throughout a year.
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Figure 9: Estimates of the expected length and 95% confidence interval for the
observed distribution of lengths at age based on the best fit to the 1980°s data and

using the variance model developed in the discussion (including the additional

component for fishermen-measured lengths).
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Figure 10: Possible growth curves (the three lower lines) for cohorts born prior to
1960 to use as alternative hypotheses in estimating the expected length-frequency
distribution of SBT catches from these cohorts. All curves were calculated assuming a
value of 165 cm for u_ . The lower curve uses a value of 0.100 for k,, 0.125 for the
middle curve and 0.150 for the upper one. The parameter ag has been adjusted so that
each curve yields the same size of an age 2 fish as that estimated for the 1960’s. Also

shown is the curve estimated for the 1960°s (uppermost line).
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Figure 11: The three possible growth curves for cohorts born prior to 1960 shown in
Figure 10 (upper broken lines) compared with the same three growth curves when the
value of ag has been left unadjusted at the value estimated for the 1960°s (lower solid

lines). Only estimates up to age 8 have been shown so the differences in the curves

can be clearly seen.
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Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

Introduction

Three types of data that contain information on the growth of SBT were used in the
analyses conducted within this project:

1) tag-recapture data;

2) length-frequency data from commercial catches; and

3) direct aging data from otoliths.
This Appendix provides a description of each of these and documents the data selection
procedures used to obtain the final data sets that were used in the analyses presented in
this report.

In all data sources, we find that one-year old SBT caught off the coast of Western
Australia are smaller on average than one-year olds caught off the coast of South
Australia at the same time. This is consistent with current beliefs about SBT spawning
and migration. SBT are spawned in the northeast Indian Ocean between Indonesia and
the northwest coast of Australia, generally between the months of September and April.
Catches indicate that there tends to be two peak spawning times, one around
September/October and one around January/February, although there is a high degree of
variability between years (Davis and Nurhakim 2001). Juveniles migrate southward
along the west coast of Australia, and then a large percentage of them turn and travel
eastward along the south coast of Australia to the Great Australian Bight. If SBT are
spawned at two peak times, then we might expect to find the larger, earlier spawned fish
off of South Australia at the same time we find the smaller, later spawned fish off of
Western Australia. There is no indication of this size segregation persisting past age one.

In our analysis of the length-frequency and the direct aging data, we make the
assumption that SBT have a birth date of January 1. This date is chosen since it
represents a midpoint of the spawning season, and thus the mean of the assigned ages

should be close to the true mean.

Tag-Recapture Data

Extensive tagging experiments were conducted by CSIRO from the 1960°s
through the 1990’s in which juvenile SBT were caught, tagged, and released in the
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coastal waters off southern Western Australia, South Australia and southeastern
Tasmania. Most of the tagged fish were initially caught using pole and line gear with a
barbless hook, although a small number were caught with troll lines. After a fish had
been hooked, it was hauled aboard the vessel. In the 1960’s and 1970’s, it was placed on
a measuring board and its nose to caudal fork length was measured; in the 1980’s and
1990’s, it was placed on a vinyl cradle and the same length measurement was taken. The
fish was then tagged with either one or two 12 cm plastic spaghetti dart tags (generally
referred to as “conventional” tags). Tags were inserted into a fish about 4 cm to the rear
of the second dorsal fin on either side of the fish. Tagging operations were designed to
minimize handling time, and fish were re-released to the water within about 30 seconds
of being brought on board. After 1963, almost all fish were double-tagged. The tag
numbers and length of each fish were recorded, together with the location and date of
release. Additional information about the release was also recorded, such as the quality
of tagging, the health of the fish, and the name of the tagger and the vessel. This
information was later transferred to a computer database.

In addition to the tagging conducted directly by CSIRO, a large number of fish
were tagged and measured by contract fishermen in the 1960’s and 1970°s. Fishermen
were paid according to the number and size of the fish released. This would have created
an incentive to exaggerate the length measurement. Examination of the data suggests this

“may have been the case since a high proportion of fish tagged by fishermen had a release
length larger than their recapture length, even after several months at liberty. Return rates
from fishermen-tagged fish were also low relative to those for scientist-tagged fish,
which suggests that there may have been problems of substantial stress and tag-induced
mortality among these fish. In order to ensure that negative biases were not introduced
into the growth analyses, we excluded any data where the tagger was a fisherman, a

crewmember, or unknown.
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Excluding the fishermen-tagged fish, a total of 26740 fish were tagged with
conventional tags and released into the wild' during the 1960’s (including 1959), 6668
during the 1970’s, 10741 during the 1980’s, and 68034 during the 1990’s. Of these fish,
the total number of returns to date (January 2002) by decade has been 1392, 612, 4256
and 7779, respectively. Recaptures occurred throughout the geographical distribution of
SBT, ranging in longitude from 0 to 180°E and in latitude from 30 to 50°S. In a few
cases, recaptured fish were re-released into the wild. The above release and recapture
numbers only include original releases and terminal recaptures (i.e. recaptures for which
the fish was not re-released), and only growth information from terminal recaptures was
used in our analyses. Not all tagged fish that were recaptured will have been reported,
and for some fisheries non-reporting rates have been estimated to be substantial
(Polacheck et al. 1998). However, there is no reason to believe that a fisherman’s choice
to report a tag is related to fish size or growth, so growth analyses based on information
from reported tags should be unbiased.

Upon recapture, the finder measured the caudal fork length of the fish and
recorded this length along with the tag number, the date and location of recapture, and
sometimes the weight of the fish. This information was sent to CSIRO and entered into
the computer database, along with the name of the finder and the vessel and a judgment
about the quality of the recapture information.

The change in length of a fish over the time it was at liberty gives information
about individual growth, and this data can be used collectively to model the growth of the
population.  Unfortunately, some of the tag-recapture data is either unreliable or
unsuitable for studying growth due to various reasons. Using the subsidiary information
recorded on release and recapture, we applied a rigorous screening process as follows.

In cases where for some reason either the release length or recapture length was
not measured, we excluded the entry. For example, the finder did not always record the

length of the fish. Plus, a few of the returns were tags found without a fish on the beach

! CSIRO has also conducted tagging experiments with caged tuna in tuna farming operations and with
archival tags in the 1990’s. Data from these tagging experiments were not included in the analyses
presented in this project.
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for which a fish recapture length was clearly not possible. Entries for which both length
measurements exist were only included if both were reported as being measured
accurately.

In cases where the whole weight or dressed weight of the fish was measured and
recorded on recapture, the relationship between length and weight could be used to
identify questionable data. Specifically, we calculated the expected weight of a fish
using the relationship of Robins (1963),

W =3.131.L*** .10

for fish with length less than 130 cm, and the relationship of Warashina and Hisada
(1970),

W =115-2.178-*** .10°°

for fish with length greater than 130 cm. W is whole weight in kg and L is caudal fork
length in cm. When only a dressed weight was measured for a fish, a factor of 1.15 was
used to convert it to a whole weight (Caton 1991). Note this factor also appears in the
equation of Warashina and Hisada to convert it from dressed weight to whole weight.
We chose to use this composite weight-length relationship based on the 1994 SBT
Trilateral Workshop Report (Anon. 1994). As a check, we fitted a power relationship to
the weight and length data available from the tag-recapture database and the resulting
curve was almost identical to the composite curve used (Figure 1).

If the expected weight was either less than 0.64 or greater than 1.27 of the
reported weight, then the entry was considered an outlier and excluded from our analysis.
These limits were chosen because they are the 2.5% and 97.5% percentiles of the
empirical distribution of expected to observed weight ratios. Unfortunately, the recapture
weight was not measured for a large peréentage of fish, especially in the 1960’s, and
therefore this screening criterion often could not be applied. In the absence of weight
information, we assumed the recapture length to be accurate and included the data.

A few vessels were noted to have a very high proportion of weight-length outliers
and therefore all data from these vessels were considered unreliable and omitted from the
analysis. The criterion used to omit a vessel was as follows. For each vessel, we

calculated a 95% confidence interval on the percentage of recaptures that were outliers
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(using the binomial distribution). If the lower limit of the confidence interval exceeded
20%, then all recapture records from that vessel were omitted. Using the confidence
interval rather than the point estimate takes into account the number of recaptures
actually made by the vessel, so that 1 outlier out of 3 recaptures is not considered too
high but 30 outliers out of 90 is.

The date of recapture was not always known precisely. Uncertainties in the day
of recapture were allowed, but if the month or year was uncertain, then the entry was
excluded.

If the tagger judged the injury to the tuna upon tagging to be anything more than
slight, then the record was excluded since the injury could affect the fish’s growth. Even
well inserted tags may have an initial effect on fish growth. We assumed that, in terms of
length, this initial effect would be unappreciable after 30 days; thus, only fish at liberty
for 30 days or more were included in the analysis.

In the 1990’s, tuna farming commenced and many of the fish that had been tagged
were caught and put into farms. The date of entry into the farm was recorded but the
length of the fish was not measured until it was harvested. We would expect the growth
rate of fish in farms to differ from than that of wild fish, in which case including farm
recaptures in our analysis would bias the results. The length data does not actually seem
to support this hypothesis. It is likely that farmed fish increase more quickly in weight
than wild fish but not in length. Although we do not have initial weights at tagging to
confirm this, the fact that farm fish weigh more at recapture than wild fish of the same
length lends support. In any event, we have opted to err on the side of caution and
exclude the farm fish from our growth analyses. Note that the sample size in the 1990°s
was large so the exclusion of farm fish should not affect the precision of the growth
parameter estimates,

As mentioned earlier, a few fish were recaptured and subsequently re-released,
some of which were recaptured again. We only included information from the terminal
recapture (when there was one) in our growth analyses because usually no length
measurement was taken on the first recapture before the fish was re-released. The

number of re-released tagged fish was very small.
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After applying the above screening criteria, the number of recaptures remaining
for analysis was 791 in the 1960’s, 202 in the 1970’s, 2181 in the 1980°s and 2980 in the
1990’s. The release lengths ranged from 38 to 125 cm with a mean of 68 c¢m, and the
recapture lengths ranged from 38 to 186 cm with a mean of 97 cm. Although the times at
liberty ranged from 30 days (a minimum imposed by the screening process) to 5115 days
(=14 years), the average was 598 days and most fish were at liberty less than three years.

The average growth rate, calculated as centimeters growth per day at liberty, for
fish of similar lengths and relatively similar times at liberty suggest that growth rates
have increased from the 1960’s to the 1980’s, with perhaps a transitional period in the
1970°s and a stabilization in the 1990°s (Figure 2). Subsequently, any long-term growth
analysis should take temporal changes into consideration.

Having two data points for each fish, and thus information about the growth of
individuals, is a valuable feature of tag-recapture data that the other data sources lack.
However, not knowing the age of the fish at release is a drawback. Another limitation is
that the majority of fish have relatively short times at liberty so that growth information
for older fish tends to be lacking.

Length-Frequency Data

We only consider data from the Australian surface fishery in this report. We did
not include length-frequency data from the Japanese longline fishery for several reasons:
the procedure used to collect length samples was not consistent; the data is pooled
quarterly within a year; and fish caught in the longline fishery are generally older fish for
which the length distributions overlap considerably and are not suitable for modal
analysis.

Length-frequency data from commercial catches of SBT caught in the Australian
surface fishery has been gathered from the 1963-64 fishing season (the fishery was
relatively small prior to this) to the present. Not all fish caught were measured for length.
Instead, individual landings were sampled at the place of processing. Sampling protocols
were designed to avoid introducing biases into the selection of fish to be measured. For
details, refer to Majkowski (1982), Majkowski and Morris (1986), and Deriso and Bayliff

(1991). Caudal fork lengths were measured and recorded to the nearest centimeter and
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pooled into one-centimeter bins. The bin counts were scaled up by the total weight of the
landing to give a length-frequency distribution for the landing. The length-frequencies
from individual landings were then pooled across half-months and fishing areas (South
Australia, Western Australia, and New South Wales). Usually not all landings in a half-
month and area were sampled, so the length-frequency distributions were scaled up again
by the total weight of the catch from all landings in that period and area. This was
possible since the bulk catch from every landing was weighed, regardless of whether the
landing was sampled for length.

When using the length-frequency data to study the growth of the population, we
assume that the catch provides a reasonably unbiased sample of the lengths of fish within
an age class. Size-selectivity in the fishery would invalidate this assumption. Prior to
1990, most fish were caught for the canning market using purse seine vessels, which use
nets that catch the majority of a school and do not have the ability to select by size within
a school. However, in the 1990’s, major changes occurred in the fishery to make size-
selectivity a concern. In particular, the focus of the fishery switched to catching tuna for
the sashimi market using pole and line vessels that targeted larger fish within a school. In
order to avoid introducing biases from size-selective fishing into our analyses, we only
include data up to and including 1989.

The length-frequency distributions derived from SBT caught over a short time
interval (in this case, half-monthly) generally exhibit modes that correspond to different
age classes. The progression of these modes over time can be tracked to give an estimate
of population growth. In particular, seasonal growth patterns can often be identified.
Ages are assigned to the modes based on knowledge of the relationship between age and
length, along with some common sense. Because the Australian fishery catches mainly
juvenile SBT aged 5 or less, there is usually a maximum of five modes, and even if older
fish are present, the lengths tend to ovetlap too much for the modes to be distinguished.
Examples of the length-frequency data from South Australia in 1981 and 1983 are given
in Figure 3.

Although the length-frequencies have been aggregated into three fishing areas, we
only include the data from South Australia in our study since it is most abundant and also
appears to be most consistent with respect to the progression of modes. The New South
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Wales data are somewhat sporadic, and, from the mid-1970’s onward, . consist
predominantly of fish aged 3 and older. Furthermore, the New South Wales fishery
collapsed in the mid-1980°s. The Western Australia catches are dominated by one-year-
old fish (based on direct aging estimates). As such, there is little information in these
data on growth of fish older than age one. In addition, for a number of years and periods,
there appeai's to be two one-year old modes, probably due to two peaks in the time of
spawning. This double mode does not follow through to the two-year olds, which
suggests that the smaller fish catch up in size by the age of two, nor does it appear in the
South Australia data, perhaps because the early and late spawned fish have different
migration routes or perhaps because the late spawned fish have not yet reached South
Australian waters by the end of the fishing season. For these reasons, we chose not to
include the Western Australia data in our current analysis.

A complete list of the available South Australian length-frequency data by half-
months for years 1964 to 1989 is given in the Annex at the end of this Appendix. The
catch figures are in numbers of fish, estimated from the weight of the catch using year
and area specific weight-length relationships (hence the non-integer numbers).  As
discussed already, the length-frequency data in the database are scaled up to represent the
total catch for a given half-month and area. Using these data as the raw data in our
analyses would not be correct from a statistical viewpoint since the actual samples sizes
are much smaller than the catch sizes and varied among years. To correct for this scaling
up, we adopted the scale factors proposed by Leigh and Hearn (2000), which take into
account the two-stage nature of the scaling-up procedure. The catch size divided by the
scaling factor gives an estimate of the “effective sample size” had a simple random
sample from the total catch been taken.

Although length-frequency data are subject to biases, and growth information is
limited to the first few years of life, the amount of data is considerable with the advantage
that it exists over the history of the fishery. Furthermore, length-frequency data provides
valuable information about the growth of young fish and about seasonal patterns of
growth, which can be used in conjunction with the other sources of data to model the

entire growth curve.
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Direct Aging Data

Since the late 1980’s, thousands of SBT otoliths have been collected by CSIRO
scientists on tagging expeditions as well as by trained observers on commercial fishing
vessels. The majority of tagging expeditions occurred off the coasts of Western Australia
and South Australia, whereas observers were placed on fishing vessels that operated
throughout the geographical range of SBT. The sampling protocol involved removing
both otoliths whenever possible. The caudal fork length of the fish was measured and
recorded, in addition to other information such as the date and location of recapture. The
fish chosen for sampling were, to the greatest extent possible, a random sample of the
catch.

In recent years, a large number of otoliths have also been collected from tuna on
the spawning grounds. SBT are sampled at the export processing sites at Benoa, Bali as
part of a large-scale catch-monitoring program (Davis et al. 1998). SBT graded as not
suitable for export are available for length measurement and otolith sampling, whereas
export grade SBT are immediately plunged into ice and are unavailable for sampling. The
lengths of most reject SBT are measured, and otoliths are taken from as many reject SBT
as is practical at the time. For example, reject fish will be sampled in the order that they
were handled until the sampler runs out of time. Their order is not based on size. Between
500 and 600 sets of otoliths are sampled each season. SBT are graded for export based on
flesh quality, which is dependent on handling and/or condition. There is no selection
based on length (Davis and Farley 2001); however, fish of poor condition will be lighter
for a given length.

The otolith samples are stored in the CSIRO Hardparts Archives, and the data are
stored in the CSIRO Hardparts Database. A summary of the number of otoliths collected
by year and area is presented in Table 1.

Increments are formed annually in the otoliths of SBT (Clear et al. 2000). Each
increment is comprised of an opaque zone corresponding to a period of fast summer
growth and a narrower, translucent zone corresponding to slower winter growth (Gunn et
al. In press). This translucent zone appears as a dark band when placed on a black
background under a dissecting microscope, so that the number of bands can,

theoretically, be counted to determine the age of the fish. We refer to this procedure as
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“reading” an otolith. In practice, identification of the bands can be difficult, especially in
older SBT for which grow is very slow and annuli are very closely spaced.

An otolith can be read using two methods, one in which the otolith is left whole
and one in which it is sectioned. Details of the methods are given in Gunn et al. (In
press). The whole otolith method can generally only be used for fish less than six years
old (~135 cm fork length). Sectioned otoliths can be used for all ages, however the first
four or five increments can be difficult to distinguish. With both methods, if the start of a
translucent zone can be detected on the outer margin of the otolith, it is counted as one
year.

Approximately 4500 of the archived otoliths have been aged to date. In the
selection of otoliths for age determination, some were selected based on size stratification
(10-cm length categories). This was done to ensure that the youngest and oldest age
classes were represented in the direct aging database. Although it is possible for such a
procedure to introduce bias into the mean length at age, especially at the very young ages,
we do not anticipate the bias to be significant, and if it was, it should be evident through
inconsistencies with the other data sources.

Two trained and experienced CSIRO staff made almost all of the otolith readings.
Over 80% of the otoliths have had multiple independent readings, ranging from two to
seven, made by one or both readers. Each read is assigned a confidence level based on a
discrete scale ranging from very uncertain to very confident. A final band count is then
assigned based on all of the available information. For each sample, the final count as
well as the individual reads and their corresponding reader, confidence level, and method
are recorded in the CSIRO Hardparts Database.

From all otoliths aged to data, the final band counts range from 0 to 41 years, and
the fork lengths of corresponding SBT range from 26 to 216 cm. Such a wide span of

~age-length information is desirable for defining a complete growth curve; however, we
must use caution. Because the otoliths were collected from fish caught in recent years,
all growth information on older fish comes from fish born in the 1950°s to 1970’s,
whereas all information on younger fish comes from fish born in the 1980°s and 1990’s

(Figure 4). This issue will need to be addressed if size-selective mortality exists for SBT
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so that Lee’s phenomenon (Ricker 1969) is present, or if growth rates have changed over
time as the tagging data suggest.

Determining ages from otolith readings is not as straightforward as it may first
appear. Firstly, there is uncertainty in the number of bands counted. Information from
the multiple readings could potentially be used to estimate the variability in the number
of bands counted. Even if we assume the final band count to be accurate, we need to
know the time of band formation (namely whether or not the last band was formed in the
year of catch) in order to assign an age to the fish. For example, if we assume fish are
born on January 1, then a fish caught in September with » bands in its otolith would have
an integer age of » if it had already deposited a band in the year of catch; however, it
would have an integer age of n—1 if it had not yet deposited a band. Information
suggests that for SBT the date of formation can vary from the beginning of May to the
end of August (Appendix 11). Thus, for a fish caught during this time period, we cannot
know whether or not it has yet formed a band in that year, which leads to an uncertainty
in its age of one year. We have chosen to omit any fish for which this uncertainty applies
and only include direct aging data from fish caught between October 1 and April 30 (see
Appendix 11 for more details on why this was done).

Further complications arise from using the direct aging data collected from the
spawning grounds to model growth. Comparing lengths of fish of the same age on and
off the spawning grounds shows that the fish on the spawning grounds are larger, with the
difference in mean length at age being significant for ages 8 (the youngest age on the
spawning grounds to date) to 14 inclusively (Farley et al. 2001). This is consistent with
maturity having a size-dependent component so that larger fish mature earlier and show
up on the spawning grounds before smaller fish of the same age. Since a large number of
otoliths were collected from the spawning grounds, including these data in our growth
analysis could bias the results. Thus, we have chosen to omit the direct aging data for
fish aged 8 through 14 caught on the spawning grounds. In doing so, we could possibly
- bias the results towards smaller fish if fish of ages 8 to 14 off the spawning grounds are
smaller than the population average. This does not appear to be the case; direct age-

length data from the period May to September when fish are not spawning and are not
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found on the spawning grounds look consistent with age-length data of fish caught off the
| spawning grounds during the time of spawning from October to April (Figure 5).

As with the length-frequency data, the one-year old direct aging data from
Western Australia poses some problems. A small number of otoliths have been collected
off the west coast of Western Australia around the latitude of Perth. Fish with one band
in their otolith that were caught off the west coast were very small compared to fish with
one band caught off of the south coast of either‘Westem Australia or South Australia
around the same time. We believe that these small fish were spawned very late in the
season, such that they were younger and not as far in their migration route as those
spawned earlier. We are not attempting to model the very early stage of growth (birth to,
say, 9 months) in our analysis because growth is very rapid during this time and highly
seasonal, and there is insufficient information with which to adequately model it. Thus,
we omit the data from fish caught off the west coast of Western Australia with one otolith
band because we believe that the growth information from these fish is primarily relevant
to growth within the first 9 months. For the same reason, we also omit any data from fish
with no bands in their otoliths.

After excluding data due to the above reasons, the numbers of otoliths left for
analysis is 2530. A breakdown by year and area is presented in Table 1 (in parentheses
underneath the total number in the archives).

The length of each annual increment (i.e. the distance between translucent bands)
has also been measured for a number of fish (approximately 490). If fish length and
otolith length are highly correlated, as evidence suggests (Gunn and Farley 1998), then
the incremental otolith data contains useful information for studying growth. However, a
practical shortcoming of the data is that increments are only measured for the first five
years, after which the bands become too close together to get an accurate measurement.
There are a number of complications in attempting to incorporate these data into the
integrated growth model developed here. In particular, there is no information on the
actual length of a fish at ages corresponding to each measured otolith increment. While
there is a correlation between otolith size and fish length, there is still considerable
variability around this relationship. Moreover, there is no data to assess how this
relationship may have varied over time when substantial changes in growth have
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occurred. Thus, these data provide only limited additional information to estimate
absolute growth rates relative to the large amount of growth data available from other
sources. Consequently, we have not used the incremental data in our estimation of the
integrated growth model. The main information content of the incremental data is on
possible changes in growth rates over time, and we have considered the data within this

context.
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Table 1. Number of otoliths in the CSIRO Hardparts Archives by catch year and area.
The numbers underneath in parentheses are the corresponding numbers of otoliths that

have been aged to date and are remaining for growth analysis after data screening.

Catch South. Westerp I\(I)iﬁl Tas.- New Ind9— In?iliaan Soqth Other Total
Year Australia Australia mania Zealand nesia Africa
Wales Ocean

1983 0 20 0 0 0 0 0 0 0 20
1984 24 45 0 0 0 0 0 0 0 69
1985 277 475 0 0 0 0 0 0 0 752
C)] (10) (14)
1986 5 42 0 0 0 0 0 0 0 47
©6) ©)
1987 1 0 0 0 0 0 0 0 0 1
1988 59 98 0 36 0 0 0 0 5 198
(10) (20) (3) (33)
1989 151 10 0 308 0 0 0 0 18 487
(14) ) (22)
1990 42 89 12 465 0 0 0 5 7 620
(28) (15) (43)
1991 54 21 0 375 0 0 109 0 0 559
(39) ) (22) (15) (80)
1992 71 88 0 350 84 2 413 52 30 1090
(16) 21 (65) (1 (62) (35) (200)
1993 64 299 0 684 0 10 0 105 31 1193
(45) ) (36) (3 @14y
1994 73 93 0 563 0 357 156 74 1 1317
(70 (8) (212) 3) (294)
1995 26 71 17 378 0 500 157 144 3 1296
(23) ® )] (325) (21 (385)
1996 5 0 89 329 0 514 0 0 5 942
(205) (205)
1997 209 0 0 302 0 472 0 0 1 984
(307) (307)
1998 460 0 88 1 547 412 0 0 2 1510
9 (44 (253)
1999 134 0 0 0 0 873 0 0 0 1007
(505) (505)
2000 360 0 0 0 0 502 6 0 0 868
(42) (42)
2001 254 132 6 0 0 470 0 0 0 862
Unknown 32 35 1 10 0 1 0 52 468 599
Total 2446 1521 273 3801 631 4113 841 432 571 14629
(250)  (126) (165) (10) (1840) (101) (35) (3) (2530)
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ANNEX:

A summary of the length-frequency data available from the Australian surface fishery,
1964-1989. Refer to the text for an explanation of the scale factors and effective sample

sizes.

Year Period Catch Scale Effectl.ve

Factor Sample Size
1964 2 39066.8 22.78 1715.0
1964 3 40376.7 33.53 1204.2
1964 4 60828.8 17.29 3518.1
1964 5 41511.9 12.43 3339.7
1964 6 65960.7 27.73 2378.7
1964 7 42242 .4 14.69 2875.6
1964 8 60269.5 18.39 3277.3
1964 9 28625.8 17.17 1667.2
1965 2 9070.8 4.3 2109.5
1965 3 27863.4 4.3 6479.9
1965 4 53407.4 28.15 1897.2
1965 5 41604.8 10.81 3848.7
1965 6 62788 18.9 3322.1
1965 7 52801.2 23.85 2213.9
1965 8 37408.7 12.19 3068.8
1965 9 3714.3 n/a n/a
1966 2 8480 n/a n/a
1966 3 63785.7 10.29 6198.8
1966 4 104452.6 13.16 7937.1
1966 5 85043.7 10.36 8208.9
1966 6 72328.2 19.11 3784.8
1966 7 43536.3 14.67 2967.7
1966 8 39186.8 14.53 2697.0
1967 1 14225.5 13.66 1041.4
1967 2 10657.3 7.28 1463.9
1967 3 45327.6 10.09 44923
1967 4 51425.7 6.8 7562.6
1967 5 56905.3 7.1 8014.8
1967 6 11778 5.2 2265.0
1967 7 14939.8 7.2 2075.0
1967 8 5771.1 15.34 376.2
1967 9 8421.6 10.99 766.3
1967 10 2147.9 5.45 394.1
1967 11 15742.9 13.74 1145.8
1967 12 7910 4.69 1686.6
1968 1 5269.2 26.35 200.0
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. Scale Effective
Year Period Catch Factor Sample Size
1968 2 29155.4 18.9 1542.6
1968 3 41175.9 32.66 1260.7
1968 4 54340.9 22.9 2373.0
1968 5 31668.5 14.34 2208.4
1968 6 19210.7 14.63 1313.1
1968 7 38281.3 15.36 2492.3
1968 8 32203.8 9.55 3372.1
1968 9 8019.2 7.98 1004.9
1968 10 4051.6 9.93 408.0
1969 1 22064.4 152.89 144.3
1969 2 91893.7 31.32 2934.0
1969 3 50102 22.23 2253.8
1969 4 64666.2 17.56 3682.6
1969 5 79212 20.21 39194
1969 6 56819.9 31.85 1784.0
1969 7 16105.7 8.75 1840.7
1969 8 38296.4 24.23 1580.5
1969 9 8556.1 6.75 1267.6
1969 24 10306 28.83 357.5
1970 1 3785 7.42 510.1
1970 2 42734.6 14.14 3022.2
1970 3 59458.2 49.12 1210.5
1970 4 32011.3 27.04 1183.8
1970 5 39262.3 14.02 2800.4
1970 6 71803.9 15.79 4547.4
1970 7 50039.8 12.35 4051.8
1970 8 18045.8 13.38 1348.7
1970 9 3682.2 11.12 331.1
1970 10 2576.1 6.61 389.7
1971 1 42400.5 35 12114
1971 2 38629 10.46 3693.0
1971 3 62297.8 28.83 2160.9
1971 4 48421.1 19.51 2481.9
1971 5 26285.7 10.61 2477.4
1971 6 20246.1 11.89 1702.8
1971 7 47925.3 20.89 2294.2
1971 8 7004.3 7.03 996.3
1971 9 15855.8 12.3 1289.1
1971 10 12654.8 6.64 1905.8
1971 11 13123.1 10.73 1223.0
1971 12 887.7 6.94 127.9
1971 13 7818.4 10.09 774.9
1972 1 10630 23.82 446.3
1972 2 64954.2 33.73 1925.7
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. Scale Effective
Year Period Catch Factor  Sample Size
1972 3 77707.2 39.41 1971.8
1972 4 82433.5 35.97 2291.7
1972 5 81564 44.26 1842.8
1972 6 46640.4 67.54 690.6
1972 7 17416.5 17.03 1022.7
1972 8 13594.3 66.28 205.1
1972 9 229314 27.91 821.6
1972 10 17799.1 8.5 2094.0
1972 11 13984.4 17.12 816.8
1972 12 4360.4 9.98 436.9
1972 24 29769.7 32.08 928.0
1973 1 16173.9 8 2021.7
1973 2 81753 54.17 1509.2
1973 3 80269.2 18.72 4287.9
1973 4 72143.2 18.85 3827.2
1973 5 68896.4 17.68 3896.9
1973 6 87018.9 20.97 4149.7
1973 7 21606.5 5.39 4008.6
1973 8 16530.5 6.19 2670.5
1973 10 28587.3 19.33 1478.9
1973 12 3423.5 17.17 199.4
1974 1 190231.4 n/a n/a
1974 2 105335.3 111.8 942.2
1974 3 59393.5 23.84 2491.3
1974 4 135935.7 50.33 2700.9
1974 5 89873.8 26.28 3419.9
1974 6 28862.8 12.13 2379.5
1974 7 21606.3 15.73 1373.6
1974 8 53015.2 30.77 1723.0
1974 9 39068.3 11.64 3356.4
1974 10 30102.8 11.1 2712.0
1974 11 2701 3.39 796.8
1974 23 43660.1 n/a n/a
1974 24 48244.5 21.05 2291.9
1975 1 48933.7 14.21 3443.6
1975 2 107140.7 53.73 1994.1
1975 3 94083.7 43.93 2141.7
1975 4 66255.4 12.46 5317.4
1975 5 80574.4 13.85 5817.6
1975 6 22220.3 5.28 4208.4
1975 7 18995.7 6.79 2797.6
1975 8 52164.8 17.41 2996.3
1975 9 9865.9 10.02 984.6
1975 10 6905.7 5.07 1362.1
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. Scale Effective
Year Period Catch Factor Sample Size
1975 23 189799.5 60.13 3156.5
1976 1 140522 33.06 4250.5
1976 2 93513.1 39.99 2338.4
1976 3 71541.5 32.68 2189.2
1976 4 90475.1 24.78 3651.1
1976 5 92784.5 15.69 5913.6
1976 6 120908.1 23.21 5209.3
1976 7 30034.6 7.62 3941.5
1976 8 10086.5 2.92 3454.3
1976 9 17016.2 8.82 1929.3
1976 10 8773.7 4.4 1994.0
1976 23 33384.4 21.84 1528.6
1976 24 226382 290.43 779.5
1977 1 248989 75.86 3282.2
1977 2 219755 63.93 3437.4
1977 3 137406.1 61.57 2231.7
1977 4 43826 49.74 881.1
1977 5 77668.3 33.44 2322.6
1977 6 64589.3 59.11 1092.7
1977 7 21936.7 19.48 1126.1
1977 8 62378.7 36.75 1697.4
1977 9 15170.1 17.21 881.5
1977 10 8207.1 23.51 349.1
1977 23 133841.8 113.83 1175.8
1978 1 102331 97.43 1050.3
1978 2 58363.2 41.26 1414.5
1978 3 94733 49.68 1906.9
1978 4 84485.4 39.15 2158.0
1978 5 49657.4 36.33 1366.8
1978 6 10907.9 8.26 1320.6
1978 7 11015.2 2717 405.4
1978 9 2685.2 12.51 214.6
1978 24 109806.5 591.26 185.7
1979 1 55838.3 46.19 1208.9
1979 2 119911.8 84.54 1418.4
1979 3 135040.6 41.9 3222.9
1979 4 98281.7 18.23 5391.2
1979 5 30775.8 31.64 972.7
1979 6 18622.8 75.34 247.2
1979 8 37791.2 191.31 197.5
1979 10 25713.4 60.44 425.4
1979 22 80502.4 205.27 392.2
1979 24 161497.1 323.42 499.3
1980 1 162294 109.96 1475.9
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. Scale Effective
Year  Period Catch Factor  Sample Size
1980 2 185941 128.64 1445.4
1980 3 159338.7 202.18 788.1
1980 4 61118.6 122.85 497.5
1980 5 88531.5 109.21 810.7
1980 7 73045.9 137.14 532.6
1980 8 39075.8 143.99 271.4
1980 9 33870.3 49.92 678.5
1980 10 30649.4 49.65 617.3
1980 11 6711.6 45.63 147.1
1980 22 640.8 n/a n/a
1980 23 61533.3 n/a n/a
1980 24 114055.8 n/a n/a
1981 1 114037.8 159.78 713.7
1981 2 43124 392.04 110.0
1981 3 86564.9 87.04 994.5
1981 4 83599.2 58.44 1430.5
1981 5 47464.2 33.03 1437.0
1981 6 128252.7 53.22 2409.9
1981 7 69314.7 43.13 1607.1
1981 8 33990 18.07 1881.0
1981 9 23487.9 39.34 597.0
1981 10 8715.2 18.06 482.6
1981 11 2508.9 3.06 819.9
1981 12 2110.5 10.55 200.0
1981 23 17487.9 44.25 395.2
1981 24 140031.4 138.22 1013.1
1982 1 170500.4 74.54 2287.4
1982 2 204331.6 63.35 3225.4
1982 3 196890.2 80.58 2443 .4
1982 4 64955.5 27.39 2371.5
1982 5 127111.8 85.45 1487.6
1982 6 78629.7 60.77 1293.9
1982 7 118154.4 89.86 1314.9
1982 8 53963.5 136.32 395.9
1982 9 3110.3 n/a n/a
1982 11 3986.7 8.19 486.8
1982 13 5281.9 9.83 537.3
1982 22 3695.8 34.05 108.5
1982 23 112087.5 179.48 624.5
1982 24 369328.5 2894.34 127.6
1983 1 243447.8 514.52 473.2
1983 2 191300.9 70.53 2712.3
1983 3 166018.2 156.58 1060.3
1983 4 101179.6 41.22 2454.6
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) Scale Effective
Year Period Catch Factor Sample Size
1983 5 32555.9 108.33 300.5
1983 6 15213.4 41.11 370.1
1983 11 4730.1 n/a n/a
1983 13 4581.9 n/a n/a
1983 24 285578.1 507.7 562.5
1984 1 101117.1 n/a n/a
1984 2 183673 177.92 1032.3
1984 3 144167.5 730.52 197.3
1984 4 60020 52.25 1148.7
1984 5 6770.8 20.24 334.5
1984 6 1360.7 85.24 16.0
1984 7 166.2 n/a n/a
1984 8 4516.9 n/a n/a
1984 9 4093.4 n/a n/a
1984 10 27513 n/a n/a
1984 11 11267.6 n/a n/a
1984 12 1550.1 n/a n/a
1984 23 37754.7 58.69 643.3
1984 24 153186.9 24.6 6227.1
1985 1 155835.2 23.22 6711.2
1985 2 102531.5 18.34 5590.6
1985 3 76452 18.27 4184.6
1985 4 24594.7 15.94 1543.0
1985 5 28859.1 9.28 3109.8
1985 6 46413.7 14.3 3245.7
1985 7 33903.2 20.07 1689.2
1985 8 27536 28.24 975.1
1985 9 29165.3 17.07 1708.6
1985 10 8798.4 n/a n/a
1985 11 2199 n/a n/a
1985 23 57567.2 17.88 3219.6
1985 24 70811.9 15.09 4692.6
1986 1 146647.5 26.97 5437.4
1986 2 123718.1 28.78 4298.8
1986 3 123578.9 28.49 4337.6
1986 4 83000.1 28.89 2873.0
1986 5 96871.7 27.61 3508.6
1986 6 92355.6 24.01 3846.5
1986 7 51194.8 28.16 1818.0
1986 8 31243.8 50.73 615.9
1986 9 6663.4 39.22 169.9
1986 10 942 n/a n/a
1986 11 2216.3 n/a n/a
1986 12 242.6 n/a n/a

A3-29



Appendix 3: The data: details of tag recapture, length-frequency and direct aging data

. Scale Effective
Year Period Catch Factor Sample Size
1986 23 1605.2 4.6 349.0
1986 24 63505.4 16.57 3832.6
1987 1 73247.7 25.53 2869.1
1987 2 99417.9 23.13 4298.2
1987 3 164043.9 28.69 5717.8
1987 4 94007.5 27.92 3367.0
1987 5 61121.9 22.25 2747.1
1987 6 44380.4 26.04 1704.3
1987 7 33797.5 19.77 1709.5
1987 8 4302 n/a n/a
1987 9 1038 n/a n/a
1987 10 118.9 n/a n/a
1987 11 49 n/a n/a
1987 12 29.7 n/a n/a
1987 23 7543.7 11.75 642.0
1987 24 21005.7 29.46 713.0
1988 1 68502.1 23.28 2942.5
1988 2 191509.7 30.13 6356.1
1988 3 109463.4 32.93 3324.1
1988 4 69194.5 27.86 2483.7
1988 5 60131.5 32.99 1822.7
1988 6 179547.5 40.13 44741
1988 7 41463.4 54.64 758.8
1988 8 92070.4 78.34 1175.3
1988 9 17812.5 n/a n/a
1988 10 13102.9 n/a n/a
1988 11 167.1 n/a n/a
1988 23 9 n/a n/a
1988 24 21653.6 34.14 634.3
1989 1 92509.3 37.23 2484.8
1989 2 78710.6 20.12 3912.1
1989 3 65978.1 28.59 2307.7
1989 4 75930.1 44.46 1707.8
1989 5 37010.4 19.87 1862.6
1989 6 36536.8 42.1 867.9
1989 7 1404 n/a n/a
1989 8 1919.1 n/a n/a
1989 9 1144.5 n/a n/a
1989 23 9435.2 n/a n/a
1989 24 13893.6 16.29 852.9
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Introduction

Understanding how fish grow is a fundamental component of fish biology,
and quantitative information on growth is critical to the stock assessment process.
However, it is not only mean growth that is important to characterise, but also the
variability among individuals. One of the primary sources of information used for
estimating the growth rates of fish comes from tagging studies. In these studies, the
length of a fish is measured and recorded when the fish is released and recaptured.
The times of release and recapture are also recorded so that the time at liberty is
known. The estimation of growth rates from these data presents a difficult challenge
for several reasons: there are only two measurements per fish, the age at first release
is not precisely known, and fish vary in their growth from individual to individual.

Despite these obvious difficulties, several efficient methods of estimating growth
curves from tag-recapture data have been developed (e.g., Fabens 1965; Francis 1988;
Palmer et al. 1991). The estimation process involves both determining an appro-
priate parametric form for the growth curve and a reliable statistical procedure for
fitting the data to the growth curve. The determination of the appropriate curve is
often an iterative process using standard statistical model selection criteria. Non-
parametric estimation of growth from tag-recapture data is generally not feasible
because of the paucity and structure of the data. In any case, parametric models
can provide insights into the underlying functional processes and allow for direct
comparison of growth curves across time and space or between different populations
or species. Moreover, differences among individuals can be captured by modelling
some of the growth parameters as random variables.

A wide variety of parametric models has been used to model fish growth,
with the von Bertalanffy (VB) growth model being the most ubiquitous. However,
the generalized von Bertalanffy, the Richards, the Gompertz and the logistic models
have all been advocated (see Schnute 1981). In fact, any cumulative statistical
distribution scaled by an asymptotic length could be used, although the growth curve

preferably should have a biological motivation. Almost all modelling of fish growth
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has been based on modelling the growth rate as a continuous, smooth, monotonically
decreasing function of age. However, recent analyses of growth in southern bluefin
tuna (SBT) suggest that there is a marked change in the growth process somewhere
during the transition from the juvenile to sub-adult part of the life cycle (Anon.
1994; Hearn and Polacheck 2002). Hearn and Polacheck (2002) suggest this might
also be a feature in other tuna species. In the SBT case, growth has been modelled
as a two stage process in which growth in each stage follows a different VB curve,
with a discontinuity in the growth rates at the transition point between the two.
However, Hearn and Polacheck (2002) identify problems both with the biological
interpretation of this model and in statistically fitting it. Thus there is a need, at
least in the case of SBT, for alternative growth models that can adequately represent
the complex pattern of growth.

A large scientific literature exists on the statistical estimation of growth curves
from tag-recapture data. The most widely used approach in fisheries’ research has
been the one developed by Fabens (1965). However, this approach does not take
into account variability among individuals in their growth curves, cannot be applied
to the full range of potential growth models, and is not asymptotically consistent
(Maller and de Boer 1988). Extensions to the Fabens approach that can accom-
modate individual variability in growth within a VB model framework have been
developed by Sainsbury (1980) and Hampton (1991), but these methods still bear
some limitations of a Fabens-type approach. James (1991) and Wang (1998) have
developed fitting procedures based on estimating equations as a statistically rigor-
ous alternative to Fabens’ method, but again there are problems in applying the
estimating equations approach to more complicated growth models. As such, there
remains a need for a flexible estimation method that can be adopted to a wide
range of alternative growth models, that can accommodate individual variability
in the growth parameters, and that can provide a statistical basis for selecting the
most appropriate and parsimonious model.

In the cuwrrent paper, we develop an alternative maximum likelihood approach

Ad-3




Appendix 4: Fitting growth curves to tag-recapture data

for estimating growth curves from tag-recapture data which is based on estimating
the joint density of tag and recapture lengths rather than modelling growth incre-
ments. The method allows for individual variability in growth by having selected
parameters considered as random effects. Standard statistical tests based on likeli-
hood theory and Akaike’s information criteria (Akaike 1974) may be used to compare
and select among alternative models. Although Wang et al. (1995) have proposed a
similar approach, ours requires less restrictive assumptions and can easily be applied
to a wide range of growth curves. Furthermore, we have developed a new growth
curve that can accommodate a marked change in the growth pattern at some point
in the life cycle. We apply our estimation method along with the proposed new

growth curve to tag-recapture data for SBT.

Methods

The joint density of tag and recapture lengths for a general

growth model

In this section, we derive the joint density of tag and recapture lengths for a
single fish. This is formulated in terms of a general model for fish growth in which
the asymptotic length varies from fish to fish. Other parameters are fixed. The joint
density is needed for maximum likelihood fitting of the growth model and inference
about its relative fit.

In tag-recapture studies, a fish is tagged at time ¢, with length {; and is
recaptured at time t, with length l5. We know that fish growth during the very
early stages of life (e.g., during the egg and larval stages) follows a different process
from subsequent growth. However, we do not have data with which to model this
initial growth. We define ¢, to be the time at which a fish would have had length 0
if we were to project its post-larval growth trajectory backwards. We acknowledge

that ¢, is a theoretical value with no real biological interpretation.
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Let A = t; — to, then A varies from fish to fish, partly because the fish are
spawned at different times (which results in ¢, varying between fish), and partly be-
cause there may be several tagging expeditions (so that ¢; varies). For convenience,
we will refer to A simply as the age at tagging, keeping in mind that it is age relative
to to, not relative to birth.

We assume that a generic growth function f(t) is available, where f(t) is a
monotone increasing function of time, ¢. It approaches 1 as t — oo, and is 0 when
t is to. The growth of each fish follows the form of f(t), although with individual
variations.

The assumed growth curve for the fish is

It) = Lo f(5A,0), 1)

where Lo, (the asymptotic length) is random from fish to fish with mean po, and
variance o2, A is random from fish to fish with density p(.), 0 is a vector of fixed

unknown parameters, and ¢ is real time. For example, for the von Bertalanffy model,

1—exp(—k(A+t—1 if t >t — A;
f(t:A,0) = p(—k( 1)) 1

0 otherwise,
so § = {k} has only one component. Let 6t = t; — ¢; be the time increment

between tagging and recapture. To analyse tag-recapture data, we need the familiar

equations

Fti AR = 1—exp(—kA)
Flts AR} = 1—exp(—k(A +61)).
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James (1991), Palmer et al.(1991) and Wang et al. (1995) have all discussed the
estimation of von Bertalanffy parameters from tag-recapture data using this style
of model. Our aim is to show that parameter estimation is still feasible for more
complex and realistic growth models f(.) in (1).

In this article we assume that L., and A are both random variables. Models
in which either Lo, or A are the same unknown constants for all fish are implausible,
and models for which L., and A are different constants are over-paraneterised, so
ours is the simplest realistic assumption. We denote random variables by capital
letters. We follow James (1991), Palmer et al. (1991) and Wang et al. (1995) in
assuming that Lo, and A are independent. We have no evidence to the contrary.

We assume for convenience that L., has a normal distribution. Intuitively
this seems reasonable, and we have no data to refute it. We also assume that

measurements are taken at times ¢, and ¢, (with ¢; < ¢3), so that

ll = l(t1)+€1 (2)

la = lt2) +e (3)

where €; and e; represent measurement error. They are also normally distributed
with mean 0 and variance o2, and independent from fish to fish. We assume also
that €; and e; are independent of L., and A.

We are now in a position to derive the joint distribution of {; and l,. For the
moment, we argue conditional upon a known value of A, say A = a. Then /; and
lo are both the sum of normal random variables, and hence are themselves normal.

Their first and second moments are

p(a) = E(lila) = peo f

pe(a) = E(l]a) = poo fo
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(@) = Var(lla) =03, fi +0°
(a
Cov(ly, lz|a

Jf )

o3(a) = Var(lle) =05 fo +o”
) = Ugoflfz

)y = Corr(ly,ls]a) = o5, f1fe

pla (@) oa)

where f1 = f(t1;a,0) and fo = f(ts;a,0). Clearly, I, and [, are joint normal with

conditional density

oo 1 oxp 4 — q12(a)
h(ly, l5|a) 2o (@)a(a) L (@) xp{ 2<1—p<a)2>} (4)

where

If A is random, the unconditional joint density of [;, 5 is

Bl ) = /Oooh(ll,lgia)p(a)da. 5)

There are several points to note. First, the joint density (5) involves a sin-
gle integral, whereas Wang et al. (1995) have a double integral. Second, Iz < [; is
allowed, whereas Wang et al. (1995) do not allow it. Third, a more complex model
for the measurement error may be desirable, and can easily be incorporated. For
example, in the case of SBT, recapture lengths are measured By fishermen and sci-

entists, but tag lengths are measured by scientists only. The fishermen are believed
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to be less precise. Hence it may be desirable to structure the measurement errors
so that Var(ez) > Var(e;) when Iy is measured by fishermen. Fourth, correlation
between €, and e; may also be allowed for very easily, although it is likely to be
poorly identified. Finally, conditioning on non-linear components to simplify the
analysis of partially non-linear models has a long history in statistics. A seminal

paper is Halperin (1963).

The joint density for zero measurement error

It is useful to have a special formula for h(l;,l;) when o? = 0, since it is not
immediately clear what (5) reduces to. We first look at the von Bertalanffy model.
It is possible then to calculate exactly what A must be if [, [, and & are known: it

is

1 lh — 1)
S —— 6
a klog<lz—dll> (6)

where d = exp(—Fk(t, — ¢1)). Arguing from first principles, we obtain

holh ) = — ¢(Z2/f5"“°°>p<a*>%;{l e SG

Uoofz* ) 2 —1 N lo —dly

where f3 = f(t2;a% 0) and ¢(.) is the standard normal density. If I, < [;, then
ho(ly, 15) is set to 0.

For general log-concave growth curves, the formula is

ho(ly, ) = - ¢ <l2/f2* - MOO) p(a”) 0a” (8)

C’-00 fék C’-oo all
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suggesting that an explicit formula for a* in terms of /; and l; is needed for each

model. However, it is easy to prove that

N ) G A
710 2ar ! Ba*

so we really only need to differentiate f(¢;a,d) with respect to a and evaluate it at
(t1,a*) and (t2,a*). Note that a* is the solution to fi/l; = fa/ls, which may need
to be solved numerically. A growth curve f(t) is log-concave if log f(t) is concave:
that is, any straight line joining two points on the curve log f(¢) lies on or beneath
the curve. Many of the commonly used simple growth curves are log-concave. For
several examples, we confirmed numerically that h(l,ls) converges to ho(ly,l2) as

o? = 0.

Numerical computation of the integral

Computation of the integral in (5) is not straightforward. When maximising
a likelihood, the integral needs to be computed separately for each fish at each step
of the likelihood maximisation. If there are 1000 fish in the study, and the likelihood
optimisation routine takes 500 steps to find the optimal parameters, the integral will
need to be computed 500 000 times. For large-scale applications, a fast and accurate
quadrature method is required. We used Gauss-Hermite integration, after using a
robust search method to locate the approximate maximum of the integrand. For

details, refer to the Appendix.

A new growth curve: the von Bertalanffy with logistic growth

rate parameter

Extensive tagging studies of southern bluefin tuna were undertaken during

the 1960s and 1980s. This large data base has enabled researchers to examine the

Ad4-9




Appendix 4: Fitting growth curves to tag-recapture data

adequacy of the von Bertalanffy growth curve, which has traditionally been the
standard for this species. As noted in the introduction, recent analyses suggest that
a more complex model which incorporates a two stage growth process is required
(Hearn and Polacheck 2002).

Wang (1998) has proposed the following generalization of the von Bertalanfty
growth curve. Suppose a fish has length 0 at time 5. Then the growth rate at time

t is given by

where k(t), the function that controls the growth rate, may depend on time. The

solution is

() = Loo[l — exp(—K(to,1))]

where K(to,t) = [i k(u)du. Hearn and Polacheck (2002) argue that for SBT k(t)
should be a constant value, ky say, for juvenile tuna and a lower value, ko, for adult

tuna. Thus k(t) is a step function

ky for t <ty + q
k(t) = (9)

ko otherwise.

In this model, a is the age at which juveniles become adults — it is denoted by ¢*

in Hearn and Polacheck (2002). The Hearn and Polacheck model is slightly more

general than this, but the extra generality is only mildly supported by the data.
The step-function (9) seems harsh from a biological viewpoint. We would at

least like to allow for the possibility of a slower transition between juvenile and adult
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growth. In addition, the step function may cause problems for statistical analysis.
For example, the likelihood in Hearn and Polacheck’s (2002) analysis has two modes,
which might be caused by the step function.

We propose instead modelling k(t) by a logistic curve:

1
1+exp(=B(t -ty —a))

k(t) = ki+ (k2 — k) (10)

For t < to+ o, k(t) = ki, and for ¢ > to + «, k(t) = ko. As ¢ increases, k(t) makes
a smooth transition from k; to k. The rate of transition is governed by (3, being
sharper for larger 3. As 3 — 0o, (10) reduces to the step function given in (9). An
advantage of the logistic form is that it can be explicitly integrated, yielding the

growth curve

. 1+e—ﬁ(t—to—a) —(k2—k1)/8
I(t) = Ly |1—eF2tt)
e [ : aicn

if ¢ > to. Of course, [(t) = 0 if ¢ < t;. In the notation of equation (1), & =
{k1, ko, o, 3} has four components, in contrast to the ordinary von Bertalanfty curve
which has one. We pfopose calling this the von Bertalanffy growth curve with
logistic growth rate, and abbreviating it as the ‘VB log k&’ model. The traditional
von Bertalanffy curve is recouped if k1 = k; = k. Note that the VB logk model is
not a member of the Schnute (1981) class.

The ‘VB log k’ model could be further generalized to three or more phases
in growth, reflecting different growth conditions for multiple life-stages. It is also
possible to generalize the von Bertalanffy by using a logistic rate k() on the length
scale: (t) = Lo (1—e *®(~%)) However, this model does not have a simple growth

rate interpretation, so we leave it for future investigation.
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Estimation

Wang et al. (1995) suggest that a gamma distribution be used for p(.), the
distribution of A, although we shall prefer the lognormal. In fact, an advantage
of our approach is that any well-behaved parametric model for A can be adopted.
Once the models for A and for growth f(¢) have been decided upon, the unknown

parameters can be estimated by maximising the log-likelihood

Zlog R(lyi, los)

i=1

where 7 is the number of fish, and (ly;,ly;) are the two measurements for fish i. A
numerical optimisation algorithm with bound constraints is needed to fit the model.

After successfully maximising the log-likelihood, the user may wish to esti-
mate the realised values of A and L, for each fish. One way to do this is to calculate
the estimated posterior distribution using Bayes’ Theorem.

Thus, for a given fish, we can calculate

h(h, l|a) p(a)

p(A = ally, ly) " 1)

by plugging in the maximum likelihood estimates of the unknown parameters. This
distribution gives the plausible range of values of A compatible with the data l; and
ls. Of course, calculating this conditional distribution might be practical if there
are only a few fish, but often there are hundreds. The user really requires a single
summary statistic for each fish. The mean would probably be chosen, although other
summary statistics, such as the median, mode, trimmed mean and so on, could he
used if desired. The mean requires a one-dimensional integration. It is worth noting

that the mode of A given I; and [s is already determined for each fish if the method
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outlined in the Appendix for calculating the likelihood is followed. Typically, we
find little difference between the mean and the mode.

Similarly, we can calculate ¢(Loo|l1,l2), the density of the the asymptotic
length given the data. In practice, we would probably use the mean of ¢(Le|l1, lo) as
a point estimate of the asymptotic length for a particular fish. The direct approach
yields a double integral, but this can be avoided by exploiting the joint normality

of Lo, I and Iy when a is known. The formula is

I5° E(Loolln, la, @) h(ly, lo|a) p(a) da

E(Leolly, o) = L) (11)

where

0_2

E(Loolllv l2a a) = [ + o2 + o2 E}i? + f22> (fl(ll - /—Loofl> + f2(l2 - /—Loof2>> '(12>

Thus, the conditional means E(L|l1,l3) can be calculated by substituting (12) into
(11) and using one-dimensional integration. It is reassuring to note that this yields
the correct result when ¢? = 0, in which case I} = Lo f1 and lo = Ly fo, and it
is readily checked that E(Lu|l1,l2,a) = Leo. Of course, the bivariate conditional

distribution p(A, Leo|l1, l2) could also be calculated, although there seems little point.

Results

Simulated data

In order to test our proposed model fitting procedure and its generality, we
carried out a number of simulations. We generated growth data according to various
models, looking at the effect of different growth curves, different distributions on the

age at tagging, and different amounts of measurement error.
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Initially we considered the traditional von Bertalanffy (VB) curve. In all
model runs, Lo, was taken to be normally distributed with mean 100 and standard
deviation 5, and &k was taken to be 0.5, such that 95% of the average maximum
length was achieved by age six. The times at liberty were generated according to
a I'(1,1) distribution, which was chosen to be representative of tagging studies in
which the majority of recaptures occur quickly and subsequently decrease (in this
case, 63% within the first year and 95% within three years).

At first, ages at tagging, A, were generated according to a lognormal distri-
bution with mean and standard deviation on the log scale of 0.5 and 0.5 respectively
(which we will denote by A ~ LogN(0.5,0.5)). This gives a positively skewed dis-
tribution with a mode around 1.5 years of age. The effect of varying the amount
of measurement error was investigated by setting o equal to 0, 2, and 4 in different
simulations. For each situation, a total of 100 simulations using a sample size of 100
recaptures per simulation were carried out.

We now summarize the results from the above simulations. The parameter
estimates obtained using the new estimation method were all unbiased, except for a
slight underestimation of the variability in L, as the measurement error increased
(Table 1, rows 1 to 4). Otherwise, the effect of increasing the measurement error
was only to increase the standard deviation of the parameter estimates. Note that
in the case of zero measurement error we ran simulations using both the likelihood
based on the joint density developed for measurement error (equation (5)) and the
likelihood based on the joint density for no measurement error (equation (8)). The
two methods gave comparable estimates (Table 1, rows 1 and 2).

With such a small sample size and relatively short times at liberty, there is
not much information on older fish with which to discern the distribution of L.
Hence, it is not too surprising that the variability in L., is slightly biased; perhaps
more surprising is that the mean value is estimated correctly. Increasing the sample
size from 100 to 500 or, alternatively, changing the distribution on the times at

liberty to be uniform on [1,7] eliminated the slight bias in the standard deviation of
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L., when o was equal to 4.

For many studies, the ages at tagging may not follow a simple distributional
form. For example, in the case of SBT, fish spawn from October to April, and
tagging is performed most commonly during January. This results in a multi-modal
distribution for the release ages. Thus, it is important that our estimation method
works for a variety of distributions for A. We generated values for A that we believe
are representative of the real ages at tagging for SBT using the following steps.
Firstly, from the true tagging data for SBT, we took a random sample of 100 fish
and retained their release date and integer age (an integer age had been assigned to
each fish based on its release length, and this age is likely to be accurate for young
fish). Next, we generated a ‘birth date’ for each fish from a normal distribution
with a mean of zero (representative of January 1) and a standard deviation of 1.5
months (so that roughly 95% of the birth dates fell between October 1 and April
1). Lastly, we calculated a release age for each fish by taking its integer age (in
years) and adding the difference between its release date and birth date (expressed
in decimal years).

The distribution of release ages generated in the above manner has distinct
modes at ages 1 and 2, and is clearly not lognormal (Figure 1). A Gaussian mixture
model appears to be an appropriate choice. Thus, we applied our estimation method
to simulated data that included such ages at tagging assuming that they follow
a two-component Gaussian mixture distribution with means v and v, a common
standard deviation o, and a proportion p belonging to the first component. We
again generated times at liberty according to a I'(1,1) distribution, and tag and
recapture lengths according to a VB curve with & = 0.5 and L, random normal with
mean 100 and standard deviation 5. The standard deviation of the measurement
error was taken to be 2. The mean parameter estimates for L, £ and o were
unbiased (Table 1, second last row), which shows that the method works even for
fairly complex distributions for A.

To investigate the robustness of our method to the distribution assumed for
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A, we reran the above simulations assuming a lognormal distribution for A. Again,
the growth parameter estimates were unbiased (Table 1, last row). In this case, the
lognormal distribution gave a fair approximation to the true distribution of A, as
shown in Figure 1 where the fitted lognormal curve is overlaid on the histogram of
release ages. In most situations, the researcher will have some information about
the release ages, and the method appears to be quite robust provided a reasonable
distribution for A is chosen. For example, in the above simulations, we could have
chosen the gamma distribution instead of the lognormal and achieved equally good

results.

One of the advantages of our estimation method is its ability to generalize
to a wide range of growth curves. To illustrate this, we ran simulations on growth
data generated from a logistic curve, a generalized von Bertalanffy (GVB) curve, as
well as a von Bertalanffy curve with a logistic growth rate (VB logk, as described

in the Methods section). The logistic curve can be expressed as

) = Loo (21 +exp(—k(t - to))) ™ — 1), (13)

parameterized such that /(t) = 0 when t = ¢, and [(¢) approaches Lo, as t — oo.

The equation for a GVB curve is

Ut) = Lo (1 - exp(—h(t —to)), (14)

for r > 0. Note that the logistic and GVB curves are both special cases of the
Richards growth curve. In our simulations for all models, we took L, to be normally
distributed with mean 100 and standard deviation 5, A to be LogN (0.5,0.5), the
times at liberty to be I'(1,1), and o to be 2.

For the logistic curve we set k equal to 0.5, and for the GVB curve we set k

equal to 0.5 and r equal to 2. These two curves have a slower rate of growth than
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the VB curve, and the GVB curve has an inflection point at age log(2)/0.5 ~ 1.4
(Figure 2(a)). For the logistic and GVB models, we ran 100 simulations with 100
recaptures per simulation. For both models, all parameter estimates were accurate
with the exception of oo, which shows a small negative bias and larger variability
(Table 2). As with our simulations for the VB model, this is not surprising since
we are generating data that has very little information on older fish. We illustrate
a typical simulated data set for the logistic model along with the true curve (Figure
2(b)). The asymptotic length is not reached until approximately age ten but there
is little data exceeding age six. Still, ui is estimated very accurately, and with more
extensive data coverage, o, would be estimated with greater accuracy and precision
as well.

For the VB log k model, we set k; equal to 0.8, kg to 0.3, a to 1.5, and (3
to 4, giving a fairly rapid reduction in growth rate from about age 0.5 to age 2.5
(Figure 3). In order to avoid identifiability problems, we did not optimize over /3
since (3 appears to be highly correlated with k; and k,. Furthermore, we increased
the sample size to 500 recaptures in each of the 100 model runs since the data are
otherwise insufficient to discriminate between likelihoods for many sets of parameter
values. Even for this more complex growth model, the parameter estimates were
accurate and unbiased (Table 3, row 1).

The necessity to fix 3 cah be relaxed if the data are more comprehensive
such that there is sufficient information before and after the transitional stage in
the growth rate; however care must still be used. We increased « to 2.5 so there was
more data before the transition and also changed the times at liberty to be uniform
over the interval [1,7], then ran simulations in which 3 was allowed to vary. In
several data sets, either 3, k; or ky converged to one of its set bounds. Nevertheless,
for the 82 of the 100 model runs in which this did not occur, the mean estimates for
the parameters were good (Table 3, row 2). Note that the coeflicient of variation in

(3 is much larger than in any of the other parameters.
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SBT tag-recapture data

To illustrate the method on real data, we used tag-recapture data from SBT
that were released in the 1980s. A total of 1412 recaptures were included in the
analysis. The times at liberty ranged from 270 days (an imposed minimum to
remove the effects of seasonal growth) to 4356 days (12 years), with 95% of the
returns occurring in the first three years.

We began by using our method to fit the standard von Bertalanffy growth
curve. We assumed that the ages at tagging followed a lognormal distribution, since
our simulations in the previous section using release ages generated from the SBT
tagging data indicated this was a reasonable assumption. Furthermore, we assumed
the measurement errors in release and recapture lengths, €; and e,, were normally
distributed with mean 0 and common variance, o2, We proceeded to make the model
more complex by fitting the VB log k& growth curve, leaving all other assumptions
the same. Finally, we fit both the VB and the VB log k growth curves incorporating
a more complicated error structure in which the error variance in recapture lengths
differed according to the measurer, scientific staff or fishermen. Scientists measured

all release lengths so there was no need to make this distinction for €,. In particular,

Var(e;) = o

o? if measured by a scientist

Var(e;) =

0% + a;zc if measured by a fisherman

For a given growth curve (either the VB or VB log k), the estimates of the
growth parameters were very similar regardless of the error structure assumed (Table
4). However, the fits were significantly better when the measurer-dependent error
structure was included, as indicated by the smaller Akaike information criteria (AIC)
values (Table 4). This suggests that the more complex error structure is a worthwhile

addition as it explains a significant amount of the residual variation.
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Both of the VB log £ models gave a significantly improved fit compared to the
VB model with an equivalent error structure. Again this is indicated by the smaller
AIC values. The mean fitted curves for the VB and VB log & models with measurer-
dependent error variance are very similar up until an age of about seven, at which
point the VB log k curve becomes progressively higher than the VB curve (Figure 4).
To further compare and evaluate these models, we calculated residuals for the fitted
recapture lengths (Figure 5). To calculate these fitted values requires a realised
value of A and L, for each fish, which we estimated using the procedures described
in the Methods section (under Estimation). Briefly, for each fish we calculated the
mean of the posterior distribution for A and for L., given the fish’s release length
and recapture length. T'wo features of the residual plots are worth noting. First, the
improved fit of the VB log k model over the VB model is apparent in the residuals
for large fish. We see that the mean asymptotic length is being underestimated in
the VB model. Secondly, the reason for incorporating a measurer-dependent error
structure seems clear since the residuals are markedly smaller for lengths measured
by scientists than for those measured by fishermen.

Approximate errors for thé parameter estimates can be obtained by invert-
ing the observed information matrix {9%1/0p;Op;}, where [ is the maximum log-
likelihood and p is the vector of parameters. Parameters on the boundary of the
parameter space must be regarded as fixed. We used this method for the VB log &
model with simple error structure (Table 4, row 3). The estimates 0.220 of k, and
0.163 of k, have standard .errors of 0.011 and 0.013 respectively, with correlation
0.918. Thus the estimate of k; — ks is 0.057 with standard error 0.017, confirming
that k; and k, are significantly different, and that a simple VB model is inadequate.
Similarly, for the VB log k model with measurer-dependent error variance (Table 4,
row 4), the estimate of k; — ko is 0.053 with standard error 0.019, leading to the
same conclusion.

For the VB log k models, 3, the parameter that governs the rate at which the

growth rate changes in the VB log &k model, was optimised at a set upper bound of
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30. This means an almost instantaneous switch in growth rate from k; to ko at age
a. However, in the previous section we saw that the estimate of 3 can be high even
if the true value of 3 is low when the data coverage is inadequate. To check this,
we ran a number of simulations of 1400 fish with parameters close to those for the
fitted VB log & model with simple error structure (Table 4, row 3), but with 3 = 3.
The times at liberty were sampled from the observed times. We found that [ was
estimated correctly more than half the time, but converged to 30 (the upper bound)
in the remaining runs. The other parameters were all estimated with minimal bias
and good precision regardless of the estimate of 3. Hence we cannot be certain of the
rate of transition between the phases, but we expect the other parameter estimates

to be unaffected.

Discussion

The results from this paper show that the maximum likelihood method we
propose for fitting growth models to tag-recapture data is a viable alternative to the
methods already in existence. By modelling the joint density of /; and I, we avoid
the inconsistency problems that result from applying Fabens’ method. However, in
return, we must model the distribution of A.

Wang (1998) has recommended fitting growth models using first-order esti-
mating equations. This appears attractive because it also is statistically rigorous,
yet it avoids the need to model A. We therefore consider this method more closely
for our own situation. James (1991) has described the method for the von Berta-
lanffy model, but it may be extended to other more realistic models following the

principles outlined by Wang (1998). For the VB log & model, let

2

ko — ky

B [log(1+ e_ﬁ(tz‘“—“)) —log(1 + eaﬁ)] .

S(tl, tz) - k’z(tz - tl) +
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and
77(t1)t27 ll) ZZ) = l2 - ll — (,uoo _ ll)(l —_ e—S(tl,tz)) .

For fish 4, let S; = S(¢1;, t2;) and n; = n(t1s, t24, lis, l2:). The five unknown parameters

{1t k1, k2, o, B} may be estimated by solving the five non-linear equations

n nasi_'”?_%._.n?_%‘_.n@._
Zni"'o’ Z_a_klm_o’ ZOka_O’ Zaani—o, 1':186772“0.

i=1 i=1 g==1 =1

We attempted to solve these equations for the 1980s tagging data using com-
mercial routines, with starting values near the maximum likelihood estimates for the
VB log k model with simple error structure. We obtained fi, = 164.5, key = 0.265,
ko = 0.263, & = —0.606 and B = 12.5. These are suspiciously close to a simple
VB solution. Suppose that k and [ie, are the solutions of the simple VB estimating
equations. It is then easy to show that setting &y = k; = k,a =0, 8 — oo and
Loo = fieo Will solve the VB log k estimating equations — in fact, a and 3 merely
need to satisfy 7, Gim; = 0, where ¢ = log(1+e~#t2i=4i=2)) 's0 other combinations
of a and 3 may suffice. Hence a simple VB model always provides one solution. It is
possible that the equations have other solution classes, but the existence of a simple
VB solution is already an unsatisfactory feature.

There are other problems with these estimating equations: they do not yield
estimates of 0., and the residual variance parameters, and there is no way of esti-
mating and testing for structure in the residual variation. These problems might be
solved by moving to second-order estimating equations. However, we recommend
staying with maximum likelihood, at least until the estimating equations approach

is better understood.
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Although the literature on fitting growth models to tag-recapture data is
vast, most methods in existence bear some limitation. Either they do not allow
for individual variability in growth, are restrictive in the way in which individual
variability can be incorporated, give inconsistent parameter estimates, are inflexible
in the error structures that can be assumed, or are not easily generalized to growth
functions other than the von Bertalanffy. Our proposed maximum likelihood method
appears to overcome these weaknesses.

In the case of a random L, the method can easily be generalized to any
growth function. This was suggested in the derivation of the likelihood, which used
a generic growth function, f(t), and illustrated in our simulations using a range of
growth functions.

Although we only allowed for individual variability in growth through a ran-
dom asymptotic length, the likelihood equations can be derived for other random
effects. For example, in the von Bertalanffy model, we might want to assume a
random £ parameter instead. We can adapt the argument presented in the Methods
section and condition on both A and k, but a double integration is now required
and would be time-consuming computationally. Alternatively, we can use modified
Sheiner-Beal linearisation to make the model linear in its random effects (Jones 1993,
Chapter 7). If these are Gaussian, we avoid any integration problems, even where
Ly and k are both random. However, we concur with the arguments summarized
in the discussion of Wang et al. (1995) that reject the need for letting both k& and
Lo, vary.

As a final point, the VB log k growth curve that we proposed shows potential
as a growth curve for modelling SBT and other large pelagic species. The improved
fit from applying this model compared to the simple von Bertalanffy lends support
to the idea of a two-stage growth process for SBT.
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Appendix

We discuss the efficient and accurate numerical computation of the integral

in equation (5). Denote the integrand by

g(a) = h(ly,lxla)p(a)

for given [; and l,. Note that g(a) is proportional to the conditional distribution
of A given [; and l. Consideration of several examples with A lognormal suggests
that g(a) is often unimodal, and nearly Gaussian in appearance. We can exploit this
observation to integrate g(a) efficiently. We first need to find the mode and spread

of g(a). After considerable experimentation, we decided on the following scheme:

1. Use an efficient and robust search method (e.g., Brent’s method) to locate
the maximum of g(a) (Brent, 1973, Chapter 5). This is best done on the
log scale, since g(a) is approximately Gaussian near its maximum, and hence

approximately quadratic on the log scale. Denote the location of the maximum

by ug-

2. Estimate the standard deviation of g(a) by

og = \=1/2"(ke),

where z(a) = log g(a). A simple way of calculating z”(u,) is to fit a quadratic
to log g(a) in the neighbourhood of p,.

Once we have good estimates of i, and o, we can use any accurate quadrature

method to calculate (5). We preferred to use Gauss-Hermite integration because it
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does not require many function evaluations. Define g(a) = 0 for ¢ < 0. Thus

Wi, l) = / “ g(a) da
0
= /oo g(a)da
= \/509/ 9(V2z 0,4 pg) da

m

\/ioJ Zw;\e i \/§1kag+ug)

Q

where z;. (k = 1,2,...,m) and wy. (k = 1,2,...,m) are the abscissae and weights
of m-point Gauss-Hermite quadrature. Note that 37, wy, = /7 for any m, so that
the above version of Gauss-Hermite quadrature is exact if g(a) is proportional to a
Gaussian density with mean p, and standard deviation o4. For 20-point quadrature,
the composite factors wy, e range from 0.491 to 0.899, whereas the weights wj, range
from 0.462 down to 2.23 x 1071*. Hence it is best to use the composite factors w, %
directly. Experimentation with this integration scheme confirmed that it is very

accurate provided good values of ji; and o, have been found.

For maximum likelihood estimation, log /1(ly, l) is required rather than h(ly,l5).

A stable method of computing this is

logh(ly,lz) = logg(uy) +log/ exp(log g(a) — log g(u,)) da,

= logg(u,) +log/ (a)da,
m

~ logg(uy) +logog +1log ) wiek {V/2 20(V2xp0, + 11g)} (15)
k=1

where zp(a) = exp(logg(a) — logg(ug)) if @ > 0 and is 0 otherwise. In zo(a),
log g(a) is computed directly, not by taking logs of exponentials. Thus log g(a) =
log (11, l2|a) + log p(a), where
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C_hz(ar)
log h(ly,1 = —log(2n) —1 —1 ) — 0.51log(1 — p(a)?) — ,
0og (lh Z2|a) Og( 7T) 0g 01 (CL) 0og 02(a) Og( p(a) ) 2(1 — p(a)z)
and, if p(a) is log normal with parameters fuos 4 and oo 4,
logp(a) = —0.5log(2m) —logoieg 4 — loga — 0.5(loga — ,ulogA)z/alzogA :

Computation of log g(a) rather than g(a) avoids overflow problems: a value of g(a)

of 6—1000

may be truncated to 0 on a computer, but log g(a) = —1000 is computed
very accurately. In zo(a), log g(a) — log g(uy) is computed before exponentiating.
Also, zo(pg) = 1 at gy and 0 < zp(a) < 1 for all a, so that the sum in (15) and its
log may be computed accurately for any set of parameters. If g(a) is proportional
to a Gaussian curve with mean p, and standard deviation o, (0, < pg), then
Y wee {2 20(V2zp04 + 1)} = V27 = 2.5066. However, when fitting the
model in row 1 of Table 4, for example, we found that this quantity varied between
about 1.8 and 3.5, so that approximating g(a) by a Gaussian curve (a common
statistical procedure, sometimes called Laplace’s approximation) is not accurate.
When the measurement error is small, g(a) can exhibit a very small spread.
In this case, Gauss-Hermite integration is particularly useful since it makes use of the
mode and spread of the distribution. However, precise values of these parameters are
required in order to achieve accurate integration. Occasionally we have encountered
situations in which A given [; and /3 is not unimodal. This seems to occur when A
has a complicated distribution, or when the growth curve is complex, and when the
measurement error is substantial. We have found that Simpson’s rule or the extended
trapezoidal rule is satisfactory under such circumstances, although it tends to be

slower than Gauss-Hermite integration.
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Table 1. Mean parameter estimates (and standard deviations) from applying our new estimation method to simulated von Bertalanffy
growth data. For each model we ran 100 simulations with 100 recaptures per simulation. Data were generated with L_~ N(100, 25)
and k = 0.5. Times at liberty were taken to be I'(1,1) distributed. The standard deviation of the measurement error, & was varied, as
was the distribution on the true and assumed age at tagging, 4. LogN(x, v) denotes a lognormal distribution with mean « and standard
deviation v on the log scale; Gaus.Mixt.(x,v, 6., p) denotes a Gaussian 2-component mixture with means # and v, common standard

deviation , o, and proportion p belonging to the first component.

Distribution of 4 Mean growth parameter estimates Mean parameter est.'nn.ates for A
(standard deviation) (standard deviation)

True Assumed (o} U, o.. k (o} u v Or P
T B A
LogN(0.5,0.5)  LogN(z, v) 2 100.1(22) 47(1.0) 050(0.04)  2.0(0.2)  0.50(0.06) 0.50(0.04) - .
LogN(0.5,0.5)  LogN(y, v) 4 99.7(3.0) 43(22) 0.51(0.05)  3.9(0.4) 0.49(0.08) 0.50 (0.04) _ -
Multi-modal Gaus.Mixt.(x,v, G, p) 2 1000(3.3) 5.1(1.1) 0.50(0.05)  2.1(0.5) 1.1(0.06) 2.1(0.14) 0.20(0.03) 0.80 (0.05)
Multi-modal LogN(z, v) 2 100.6(2.9) 4.8(l.1) 0.49(0.04)  2.0(0.2)  021(0.05) 0.31(0.03) - -

? Parameters were estimated using likelihood for measurement error and setting lower bound on O at 0.001.
® Parameters were estimated using likelihood for no measurement error.
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Table 2. Mean parameter estimates (and standard deviations) from applying our new estimation method to simulated logistic and

generalized von Bertalanffy (GVB) growth data. For each model we ran 100 simulations with 100 recaptures per simulation. Data

were generated assuming L_~ N(100, 25), k = 0.5, age at tagging 4 ~ LogN(0.5, 0.5) ando = 2. Times at liberty were taken to be

I'(1,1) distributed.
Mean growth parameter estimates Mean parameter estimates for A
(standard deviation) (standard deviation)
Growth curve M o, k r o HMigg 4 Olog 4
Logistic 100.0 (2.9)  4.2(1.5)  0.50 (0.03) - 2.0 (0.2) 0.51 (0.07) 0.49 (0.03)
GVB (r=2) 1002(3.3) 44(1.3) 0.50(0.05)  2.1(0.6) 2.0 (0.2) 0.49 (0.15) 0.50 (0.07)
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Table 3. Mean parameter estimates (and standard deviations) from applying our new estimation method to simulated von Bertalanffy
logistic k growth data. We ran » =100 simulations with 500 recaptures per simulation. Data were generated with L_~ N(100, 25),
k1=0.38, =03, o = 1.5 or 2.5 (as specified in the table), # = 4, age at tagging A ~ LogN(0.5, 0.5), and ¢ = 2. The distribution on

the times at liberty, df, was varied from a gamma distribution (I'(1,1)) to a uniform distribution (Unif{(1,7)).

Mean growth parameter estimates Mean parameter estimates for 4
(standard deviation) (standard deviation)
dt ~ n 04 ﬂw O-oo kl kz (24 ﬁ o} ﬂlogA O-logA
99.7 5.0 0.81 0.31 1.5 4°? 2.0 0.50 0.50
ran - 10015 22) (0.4 0.06)  (0.04) (1.1) (0.1) (0.05) (0.02)
. b 100.4 5.0 0.83 0.30 24 4.3 1.9 0.48 0.51
Unif(1,7) 82" 2.5 2.1 (0.3) (0.08) (0.09) (0.3) (1.8) (0.4) (0.08) (0.02)

® Fixed at 4 to avoid identifiability problems.
® Of the 100 simulations, 18 had identifiability problems in which £, kor k, converged to a set bound.
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Table 4. Parameter estimates from applying our estimation method to 1980s southern bluefin tuna tag-recapture data (n = 1412).
Negative log-likelihood values and Akaike’s information criteria (AIC) are also given. Results are for the von Bertalanffy (VB) and
von Bertalanffy logistic k (VB log k) growth curves with both simple and measurer-dependent error structures.

Parameter estimates

S\Ir(z/‘zth i?ufme He. O k k2 & B° Fhoga  Croga o % Iikglifug;od AIC

VB Simple 160.6 8.8 0.28 - - - 0.55 0.17 3.9 - 9633.1 19278.2
VB Sci./Fish. 162.0 7.1 0.27 - —_ - 0.56 0.18 2.9 4.2 9611.3 19236.6
VB log k& Simple 188.2 10.9 0.22 0.16 3.0 30 0.58 0.16 3.7 - 9609.7 19237.4
VB log k£ Sci./Fish. 186.6 9.3 0.22 0.17 2.9 30 0.58 0.18 2.6 4.1 9585.7 19191.4

¢ [ constrained to be < 30

A4-31




Appendix 4: Fitting growth curves to tag-recapture data

Figure 1. Histogram of simulated realistic ages at tagging for southern bluefin tuna,
scaled such that the total area of the bars is one. The line shows the fitted probability

density function (pdf) assuming a lognormal distribution.
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Figure 2. (a) Comparison between the von Bertalanffy (VB), logistic, and generalized
von Bertalanffy (GVB) growth curves with L_= 100 and &k = 0.5 for all curves and =2

for the GVB curve. (b) A typical simulated data set to which we are fitting the logistic
growth curve.
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Figure 3. (a) Logistic growth rate with &, = 0.8, k&,= 0.3, &= 1.5 and S=4. (b) von

Bertalanffy curve with logistic growth rate (parameters as above) and L_= 100.
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Figure 4. Mean growth curves for the 1980s southern bluefin tuna tag-recapture data.
The solid line is the von Bertalanffy fit and the broken line is the von Bertalanffy logistic
k fit, both from models incorporating a measurer-dependent error structure. The dotted

vertical line shows the estimated transition point, ¢, for the von Bertalanfty logistic &

model.
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Introduction

Growth curves are an essential component of stock assessments in fisheries.
These assessments govern the management of the fishery, inclnding the assessment
of long-term sustainability and, ultimately, quota setting. For southern bluefin tuna
(SBT) and other species, tag-recapture studies are the main source of information
for determining growth. A capture-recapture study has two stages: in the first, the
fish are caught, tagged, measured and released; in the second, the fish are caught
and measured. In the case of SBT, the first stage is usually undertaken on specially
commissioned scientific vovages, but the second is a byproduct of commercial ac-
tivity. Incentives (t-shirts, cash rewards, et cetera) are often provided for each tag
returned to the tagging laboratories.

The resulting data consist of two lengths and times (I, 1,12, t) for those fish

tagged and recaptured. The statistical model for a tagged and recaptured fish is

L= I(t)+e (1a)

Z? = l(tg)—f—fg (1]))

where [(t) is the true length of the fish at time ¢, and €; and e, represent measurement
error. It is usually assumed that the errors are Gaussian distributed with mean 0
and variance o2, and independent from fish to fish.

It is standard practice in fisheries to assume a parametric form for the growth
curve [(t). For example, for the von Bertalanffy model, the length of a fish at time

t1s

1) = Loo(1 —exp(—=k(A+t—1t))) ift >t — A; @

0 otherwise,

where L, is the asymptotic length, A is the time from spawning to tagging and k is
a growth rate parameter. The age of the fish is @ = A+t —¢#,. Typically, L., and 4
are regarded as random from fish to fish, and % is an unknown fixed effect, although

more complex models may be considered if the data seem to warrant them. In
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addition, Le is usually taken as Gaussian (Lo ~ N(pioo, 0%)), A might be Gamma,
lognormal or a mixture of Gaussians truncated at 0, and L, and A are statistically
independent. In addition, €; and e, are independent of Lo and A. The model
might be fitted using likelihood methods, estimating equations or Bayesian analysis.
The random effects A and Lo are usually estimated using the minimum variance
predictors A = E[A|l}, 5] and Ly = E{Ls|l1,12]. The fitted growth curve is, in the
von Bertalanffy example, fio(1 — exp(—fca)), where o is the mean of L., and k is
the fitted value of k, and a is the age of the fish in years. Maller and de Boer (1988),
James (1991), Palmer et al. (1991) and Wang et al. (1995) have all discussed this

style of model for capture-recapture data.

Once the model has been fitted, it is natural to plot the fitted growth curve,
and to superimpose [; versus A and I, versus Atty— t1, to see if the model fits.
Figure 1 gives an example for 1412 southern bluefin tuna caught in South Australian
waters in the 1980s. The von Bertalanffy growth curve has been fitted to the capture-
recapture data by maximum likelihood (11 = 0.276, [i, = 160.65 cm, 6, = 8.76 cm,
& = 3.912 cm), where A ~ lognormal with the mean of log A estimated as 0.547
and the standard deviation of log A as 0.172. Only the estimated release ages and
lengths (A, 1;) have been plotted for clarity.

Two features stand out. First, there is a disparity between the data and the
fitted model. Second, the degree of variation of the lengths [; for a given value of A
is much less than we might have anticipated from the parameter estimates ., and

&. This article explains these phenomena using classical statistical methods.

Alternative growth model formulations

It is natural to ask why we have chosen L., and A to be random variables
in (2). That the asymptotic length and the age at tagging vary from fish to fish
is indisputable, but we could let them be different unknown constants for each
fish. However, this implies more unknown parameters than data values. The next

possibility is to let Lo, be a random variable but A be a fixed effect — we would
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choose this rather than the reverse because Lo, is likely to have a simple distribution
(e.g. Gaussian) whereas A might be quite complex. However, this formulation causes
trouble.

To illustrate the problem, consider the growth model

1 4 e—Blt—to—a) }*(’f‘z—’“)/ﬁJ

(3)

14 efa

(1) = poo [l — e h2(t=to) {

where g is the theoretical time at which the fish has 0 length. Thus 4 = ¢, — to,
and t, is assumed to be a different constant for each fish. This model, introduced
in Appendix 4, captures the separate juvenile and adult growth phases in southern
bluefin tuna. When this model is fitted by maximum likelihood to the data set of
the Introduction, different solutions are obtained depending on the starting values.

Two such solutions are presented in Table 1.

Table 1: Two solutions to fitting a growth model with a

separate spawning time for each fish.

fhoo k1 ko & 5} residual
sum-of-squares
170.64 0.210 0.245 2.049 10 31650.5

186.77 0.207 0.165 3.988 10 32112.9

In both fits, 8 has hit a preset upper bound of 10. There are 2824 data values
and 1418 parameters. It appears that the large number of parameters combined
with the flexible growth model has created a multimodal likelihood surface. A plot
of the profile log-likelihood versus « is distinctly bimodal (Figure 2). Neither the
number of modes in the likelihood surface nor the location of the global maximum
is known. Other growth data from direct ageing studies suggest that o, = 170.6 is
too low, so the mode with the lower log-likelihood (higher residual sum-of-squares)
has more biological credibility.

To reduce these problems, we let the age at tagging A be a random variable.

While this does not guarantee that the likelihood surface will be unimodal, the num-
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ber of parameters is now relatively small (< 10), and we expect that the likelihood

will be better behaved.

The linear model

A simple linear growth model

We first look at the problem illustrated in the Introduction for a very simple

linear growth model. The data are generated by

Lh = bA+«q (4a)
la = D(A+6t)+e6 (4b)

where 6t = ¢, — t1, b is a known constant, A ~ N(u,,02) and ¢; ~ N(0,0?). There
are two measurements per fish, and A varies randomly from fish to fish. The ¢;
represent independent measurement errors. Thus (A,[;,[;) are trivariate normal,

and hence the best linear unbiased predictor (BLUP) of A is

N bo?

A= E(A!ll, lg) = Ugq + ;2—:_—2%2‘0—_‘201 - b,LLa + lg - b(/_,ba + 5t)) .

Note in passing that if 02 > 0, A is conditionally biased for A, because

2002

BIA|A] = ptg + ——
A = 1a + 0

(A - ,ua) :

Thus E[A|A] < Aif A > p, and E[A|A] > A if A < pe.
Set d = (I, — I +b6t)/2, noting that E[d] = 0. Then it is readily proved that

(20202 + 0?) | -

L =b(pe + 2707 (A—pa))+d

and that Cov[A,d] = 0. Because /; and A are bivariate Gaussian, E[d|A] = 0, and
so B[li|A] = b(1 + 7)A — rpq, where 7 = 0%/(20%02). The plot of ; versus A tends
to have slope bigger than b, the value expected for [; versus A. However, the slope

— b as 0?2 — 0. Further, the intercept should be 0, but in fact is —ru,. Each
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fish supplies an independent realisation of (I, I, A, d) according to this model. This

explains, in a linear context, the biases seen in Figure 1.

2

a

The parameters b, p, and o are confounded in this example, although we
are treating them as known. This example is a lead-in to non-linear growth models,

where the confounding disappears.

A more general linear growth model
Explaining and correcting the bias in growth model plots

For a given fish, generalise (4a) and (4b) to
Zj = a; + qu + € (5)

for i« = 1,...,n, where a; and b; are known constants, the vector of errors ¢ ~
N(0,%), A ~ N(pq,02) and A and e are independent. Of course, a; could be
absorbed into [; and b; into A, but the generalisation to non-linear models is easier
if we keep them explicit. In growth models, a; = b;8t;, where 6t; = 0 and 0t;
is the time increment from the first capture to the (i — 1)th recapture. Hence
l; = bi(A+ 6t;) + ¢;. The BLUP of A is

. o2
A = p,+ ﬁ&ﬁﬁ VSl —a — bug) (6)
where [, @ and b are the vectors of observed lengths, intercepts and slopes respec-
tively.

We assert that

1402/ .

Li = a;+bi(pe + 25T (A=) +d;. (7)

where d;, defined later, and A are independent Gaussian random variables and
E[d;] = 0. In the growth model context, a plot of [; versus A will have slope larger
than b; on average.

Given that the plot of {; versus the BLUP A of A does not reproduce the

model correctly, it is natural to ask if there is an estimator of A that does. Now
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(5) looks like a regression model with A as an unknown parameter. The regression
estimate of the realised value of A, treated as a fixed effect, should reproduce the

linear model (5) in an unbiased way. Define

IS =177
A — ua+ b_g.__u

Vst ®)

1 1g—1 _
-1} b'x (l —a— b/la‘) -

Note that A = A+ n, where n = VS~ 1e/b'S71h and € is the vector of errors. Set

d; =1; — a; — b;A. Then, using standard regression calculations,

Cov[A,dj] = Cov[A+mn,—bin+ €]

= Cov[n, —bin + €]
—~b; + 'S 1Covle, €]
by-1h
—b; + V'e;
b1
= 0,

where e; is the vector of length n with ith entry 1 and the rest 0. Hence

This equation mimics the true relationship (5), because A and d; are conditionally
independent. In regression, it is usual to plot ; versus b; for a given fish, but in
growth models, it is more natural to plot {; versus A+ 6t;.

How may A be formally interpreted in the random effects context, to contrast
it with the BLUP estimator? Since E[A|4] = A4, A is a linear conditionally unbiased
estimator of A. We assert also that A minimises the conditional variance Var[A*|A]

amongst all linear conditionally unbiased estimators A*.

Explaining the reduced scatter in growth model plots

We now explain, in the linear model context, why the scatter about the curve
in Figure 1 is much less than we might anticipate from the fitted parameters. We
do this for {; versus A rather than I, versus A, but the arguments are essentially

identical.
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The correlated error effect: The variance of d; may be considerably smaller than
the variance of ¢;. Let n = 2, b) = by = b and €; and ¢, have common
variance 02 and correlation p. Then d; = —d, = (€1 — €2)/2, so that Var[d;] =
0*(1 — p)/2. If p is near 1, Var[d;] < Varle;]. Hence a scatterplot of I; versus
A will follow the true line a; + bA, but the scatter around the line will be

considerably less than for the true line.

In model (5) it is customary to think of the ¢; as measurement errors, but they
could represent more than that. The growth model (2) in the Introduction
has two latent random variables Lo, and A that could be estimated from the

data {; and /. By analogy, consider the linear model
li = ¢+ blA + miL + (51' (10)

for i = 1,...,n, where A ~ N(p4,02), L ~ N(m,0?), the vector of errors
0 ~ N(0,%5), A, L and ¢ are mutually independent and all fixed effects are

known. Then
l.i = a; + bLA + €

where a; = ¢;+mypy and ¢ = m;(L— ;) +0;. Hence Varle] = X = Ys+atmm/,
where m is the vector of m; values. The theory for the linear model carries
through without change, except that the scatterplot I; versus A clearly follows
the mean line ¢; + m;py + b; A rather than the individual lines ¢; + b; A + m; L.
Further, the term o?mm’ is likely to induce a strong positive correlation in the

residuals ¢;, so that the estimated residuals d; will exhibit very small scatter.

The changing slope effect: In capture-recapture studies of growth curves, the
slope of the growth curve at capture is usually much larger than the slope
at recapture. Consider a linear example in which the capture length I; and

recapture length l, are modelled as

L = hAd+e

lQ - bQ(A+6t) + €9
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where by < by, ¢; ~ N(0,0?) and € and ¢, are independent. Then d; = byd and
dy = —b1d where d = (€;by—e3by)/V'b. Tt follows that Var[d;] < Var[dy]. In real
studies, it is common that by, < by, so that the scatterplot of {; versus A will
" exhibit considerably less scatter around the growth curve than the scatterplot

of I, versus A + 6t. We shall see this effect in Figure 5.

The reduced scatter seen in Figure 1 is caused by a combination of the correlation

and changing slope effects.

Linear growth models with non-Gaussian random effects

We finish with a final comment about non-Gaussianity, because in practice
A is usually not Gaussian. We drop the assumption that A and € are Gaussian in
(5), but retain all other assumptions. We ignore A given by (6) and commence with
the formula for A given by (8). Then A is still conditionally unbiased for A, and A
and d; are uncorrelated. This does not immediately imply that {; plotted against A
will follow the linear growth model, in the sense that E[lilfl] = a; + b; A, but there
are two reasons for believing that this will be nearly true. Firstly, under the usual
regularity conditions, the central limit theorem applies to both A and d;; for example,
n = b0'Y"le/V'S71 is closer to normality than any individual ¢;. Secondly, we proved
that Cov[fl, d;] = 0, which implies that A and d; are globally uncorrelated. But it is
just as easy to demonstrate a stronger result, Cov[A, d;|A] = 0, which implies that

A and d; are locally uncorrelated as well.

Nonlinear growth models

In fisheries’ research, growth models are typically non-linear. We focus on
the problem of correcting the bias in the plot of I, versus A seen in Figure 1. A

common generic growth model in fisheries’ research is

I, = Loof(A + (5t7',) + €, (11)
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where ¢ = 1 for capture, and 7 = 2,3 ... for subsequent recaptures, f(.) is a monoton-
ically increasing curve with asymptote 1, the asymptotic length L., ~ N(fioo, 02),
the errors ¢; ~ N(0,0?) and A, Ly and €y, €9, ... are independent. An obvious ap-
proach is to produce an estimator Am of A that is conditionally median unbiased.
Then, since f is monotone increasing, fioo f(flm + dt) will be conditionally median
unbiased for jigo f(A + dt). However, we do not know how to construct A,,, except
by correcting the median bias in a nearly conditionally unbiased estimator, so we
discuss three alternatives for doing so: linearising the growth model about an initial
estimate of A4; treating the realised value of the random effect A as a fixed effect; and
estimating A by a conditionally unbiased estimator. In linear growth models, these
approaches are equivalent. The linear estimators are Gaussian under certain condi-
tions, and we expect that the non-linear estimators will be approximately Gaussian
under the same conditions, so that they will be approximately conditionally me-
dian unbiased. If desired, they could be used as a starting point for a conditionally

median unbiased estimator.

Linearising the non-linear growth model

Cousider the generic growth model (11). Let Ay, a known constant, be an
initial guess at the realised value of A; Ay = E[Al},...,[,] is often a good choice.
We can use the method of Vonesh and Carter (1992) to linearise the model with

respect to the random effects:

i & oo f(Ao + 0t:) + poo f'(Ao + 1) (A — Ag) + (Ao 4 6t:) (Lo — fo) + €
= +b7jA+5.,j, (12)

where a; = oo (f( Ao +0t;) — f'(Ao + 6t:)Ao), b = poo f/(Ag + 0t;) and §; = f(Ap +
6ti) (Loo — Hoo) + € . It is usual to assume that A and L., are independent. The

theory of the general linear growth model then applies. We denote the estimator by

Ay
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Treating the realised value of A as a fixed effect

The second option is to treat the realised value of A as an unknown fixed

effect. For simplicity, we consider only the case of a single recapture. The data are

ll - Loof1+€1 (13)

ly = Leofr+ e (14)

where fi = f(A), fo = f(A+6t), Lo ~ N(loo,0%) and ¢ ~ N(0,07). Here
the errors and Ly, are all mutually independent. We assume that all parameters,
apart from A, are known, or have been estimated from all fish assuming that A
is distributed according to a parametric model. The problem then is to estimate
the realised value of A for a given fish, treating it as an unknown fixed effect. Let
r; = l; — leo fi- The log-likelihood is

olr3+03r?+ 0% (1 fa — 12 f1)?

o1V |

1
—§1og|V] -

where |V| = 02 (0} f2 + 0 f}) + o} 03.

The likelihoods for all fish may be maximised simultaneously by using a vec-
torised version of Brent’s method (Brent, 1973, Chapter 5). We denote the estimate
by A . The conditional mean and variance of A s may be calculated by numerical
integration. The variance of A s may also be approximated using likelihood theory.

We emphasise that we are only treating A as a fixed effect at this stage, and
only for the purpose of graphical model checking. If we were to treat A as a fixed
effect when fitting the parameters of the model, then fc, fiso and the other parameter

estimates would be different from those used above.

A conditionally unbiased non-linear random effects estimator

As a lead-in, we examine a general situation in which we wish to predict a
random variable X from a random vector Y. We set X = E[X|Y] as the standard
minimum variance estimator of the random effect X given Y, but we wish to modify

X to a conditionally unbiased estimator X.
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Let 1i(X) = E[X]|X]. We argue that the estimator X', obtained by solving

MX) =X,

is, under mild conditions, much closer to being conditionally unbiased than X. There
is a simple geometrical interpretation of X', shown in Figure 3. It is the inverse
estimator, obtained by plotting the curve E[J\A’IX] versus X, drawing a horizontal
line from X on the y-axis until it hits the curve, and then dropping down to X on
the z-axis. In this sense, X is a natural estimator.

It is immediately obvious that we can refine X to X®| obtained by solving
X = E[X’IX’(Q)] .

Since X has a much smaller conditional bias than X in general, we expect that X2
will have a smaller conditional bias than .
In principle, a sequence of estimators X ) could be computed, starting from

X =X and X® = X. Each would satisfy
XU = E[XW| XU+,

However, for practical purposes computation of X2 should be adequate. We could
start with a different estimator from X to derive X@, but X is a stable starting

estimator.

We briefly indicate why X is almost conditionally unbiased. Suppose that
hMX™) =~ (X)+ A (X)(X* - X)

for X* in the neighbourhood of X. For example, for bivariate Gaussian random
variables (X, Y) with means 0, unit variances and correlation p, h(X) = p?X. The

iterative scheme XU = X and
X; = X+X,, - E[X|X;_] (15)
for j =1,2,... yields
Xy~ X+ X — h(X) = H(X)(X,_; — X).
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Take conditional expectations on X, and set 3; = E[X’j]X]. Then

Bi ~ WX)+ B — MX) = (X)(Bj-1 — X)
= Bj-1 — V(X)(Bjm — X).

If 8; = B, then clearly g = X, so that E[X’j]X] is asymptotically unbiased for X.
Further, if v; = §; — X, then v; = (1 — A (X))7, so that B; converges geometrically
to X if 0 < W(X) < 2.

In fact, this argument depends on local linearity of A(X), and non-linearity
may imply some conditional bias in X. For this reason, we recommend calculating
X® to reduce this conditional bias.

When applied to capture-recapture growth data, we suggest that /; should be
plotted against A or, even better, A® rather than A. Similarly, I, should be plotted
against A® 4t — ¢,

Southern bluefin tuna

We illustrate some of these ideas on the southern bluefin tuna study that

motivated this article.

Linearising the von Bertalanffy growth model

We first calculated A; for the von Bertalanffy growth curve by setting Ay = pq,
but the resulting estimate of A using (8) was very poor. So we set Ay = A We
computed 7;(A) = E[4;|A]— A on a fine grid of log 6t and A values (each combination
of logdt = —0.5,—0.4,...,2.5and A = 1.0,1.1,...,3.0). The average value of |r;(A)]
was 0.004 (~ 0.2%), equivalent to about 1.5 days. This conditional bias is probably
small enough for exploratory work, since capture and recapture times are recorded

to the nearest day, and the conditional standard error of 4, is about 10%.

Although the linearisation method worked on this data set, we have found
data sets for which it fails, even when Ay = A. We cannot recommend it in general,

even though it has superficial appeal.
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Treating the realised value of A as a fixed effect

The computation of A 7 was straightforward, but the conditional moments

were not. In theory
E[dk|4, 6] = /0 /0 A5 1y, 1| A, 6t) dly di,

for any integer k, where h(ly,l5|A, dt) is the density of [},[, for release age A and
recapture age A+ dt. However, A 7 could not be computed for extreme combinations
of I1, 13 not found in real data. Consider /; = 100 cm at age A = 3 years and I, = 50
cm at age 6 years. This is unrealistic for two reasons: [; > I, and 6 year-old-fish are
much longer than 50 cm. To overcome these problems, we simulated 50,000 lengths
for fish of a given age a and fitted a lower envelope curve \(a) and an upper envelope
curve v(a) so that all the lengths fell between A(a) + 3 em and v(a) — 3 cm. That
is, A(a) and v(a) were slightly expanded beyond the range of the data. We then

evaluated the moments by

Ak

v(A) pu(AL6E)
/ / A5 (1, 1) A, 6t) dly dl,
A+§f

The average value of |r(A)|, where r;(A) = E[A|A] — A, on the test grid of A and
ot values was 0.002, smaller than for A;. Because it is easy to calculate and is nearly
conditionally unbiased, we recommend Ay as an estimator of A for graphical model

checking.

A conditionally unbiased non-linear random effects estimator

Finally we computed 121(2), which was non-trivial: both A, and A ¢ are much
quicker to calculate than A?), The average value of |rr(4)], where r(A) = E[A®)]4]—
A, on the test grid of A and &t values was 0.0001, smaller than for 4; and A 7, and
confirming that A® is, for practical purposes, conditionally unbiased.

The first panel in Figure 4 shows the resulting estimates 4; of A plotted
against A®. The estimates agree closely, although they are not identical. The

second panel shows 4, — A® plotted against A®), There is a small but obvious bias.
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Further, although we do not show the plot, the agreement between Var[fl@)]A] and
Var[A;|A] was excellent. Similar plots with A; replacing A;, not shown here, were
even more impressive. The agreement between A® and A 7 is better, in that the
small bias disappears.

We briefly return to the problem outlined in the Introduction, and analyse
it using the tools developed here. The upper panel of Figure 5 shows [, versus A®
and the fitted von Bertalanffy growth curve. The fit is much better than in Figure
1. The lower panel of Figure 5 displays [, versus A® 4 6t which shows clearly that
the model underpredicts longer lengths. To emphasise this, we have simulated 20
data sets from the fitted model using the same 6t values as in the tuna study. A
cubic smoothing spline curve fitted to the 28240 simulated (A® + 6t,1,) is so close
to the growth curve we have decided to omit it. We have shown the running 5%
and 95% quantiles fitted to the simulated data as short broken lines. They confirm
that the data should fall symmetrically about the curve if the model is correct.
The simulations are very quick, and are an essential aid to interpreting the plot. If
we used A instead of A® in the lower panel of Figure 5, we could not necessarily
be confident that the pattern in this panel indicated model failure. The mismatch
between model and data seen in Figure 1 may carry over to some extent to the plot
of I, and A+6t — whether it does depends on the link between [; and [, and between
A and A +6t. The lack of fit can be established more traditionally by embedding the
von Bertalanffy growth model in a larger parametric family, and formally testing for
the adequacy of the embedded model. However, it is useful to see this conclusion
supported in a plot of the data.

Computation of E[A|A], E[A|A], E[A®|A] and Var[A®|A] in this example
presented a mild challenge. Each fish had its own time interval 6t between capture
and recapture, which meant that E[A|A] differed for each fish. Precise computation
of E[A]AJ] at each step of (15) separately for each of the 1412 fish would be very
slow: 20 iterations of (15) would require 28240 computations of E[A|A] by numerical

integration, which would take about 50 hours of computing time using the excellent
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routines of Berntsen et al. (1991a,b) on a 500 MHz Pentium PC. Instead we com-
puted E[A]|A] and E[A]A4] for 0.5 < A < 8 and —0.5 < log 5t < 2.5 on a fine 76 x 31
grid, which took less than 5 hours of computing time, and estimated the required
values by bicubic spline interpolation when solving A = E[A]|A] and A = E[A]A®)
by iteration. The number of iterations of (15) is then not limited by time consider-
ations. Additional covariates could be handled the same way in principle, but this

could cause problems if there are too many covariates.

Estimating the distribution of A4

A final disadvantage of A is that a density plot of its values does not match
the true density of A. Figure 6(a) shows the fitted lognormal density of A. The
mean of the lognormal is 1.754, almost identical to 1.757, the mean of A, However,
the estimates A are overdispersed with respect to the true distribution of A, so we
rescale them around their mean to have the same standard deviation as the fitted
lognormal:

It Oin

4422) - ,[La2 + (A(Q) - ﬂu?) y

Ta2

where fi,o and 645 are the mean and standard deviation of the A® values and Gin
is the standard deviation of the fitted lognormal distribution. A histogram of the
A® values is also plotted on F igure 6(a). It is immediately evident that a more
skewed and longer-tailed distribution needs to be fitted. There is a suggestion that
A may be a mixture. Of course, if a new model for A is chosen, the estimates A2
will change.

A more sophisticated method involves estimating the density of A from A
(j > 1) by modelling A9 as

AD = A 4e,

where e is an error with 0 mean and variance Var[A¥)|A]. Such a model is consis-
tent with AY) being conditionally unbiased for A. The variance may be computed

explicitly as a function of A using the maximum likelihood parameter estimates,
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and then estimated by Var[AW|A]| ,_ ;¢ for each fish. Nonparametric estimation of
the distribution of A when it is observed with error has been researched intensively,
and there are dozens of papers on this topic in the mainstream statistical literature,
although many assume that e has constant variance. Notable exceptions are Goutis
(1997), Cordy and Thomas (1997) and various papers in the empirical Bayes litera-
ture (e.g. Maritz and Lwin 1989). For our data, the standard deviation of e ranges
from about 0.1 to 0.5 when j = 2, and increases with A®) | For the purposes of ex-
ploratory analysis, we assunie that the errors e are independent, which is true if the
population parameters are known, and Gaussian, which is a convenient approxima-
tion. Figure 6(b) shows the density of A estimated using the method of Cordy and
Thomas (1997). This confirms that the lognormal is inadequate. The distribution
of A appears complex, and its estimation may warrant the nonparametric method
of Palmer et al. (1991).

It should be evident that conditionally unbiased estimates of random effects

can play a diagnostic role in capture-recapture studies for growth.

Concluding remarks

Conditionally unbiased estimators of random effects are an important didac-
tic tool in capture-recapture studies used to estimate growth curves. When the
capture lengths are plotted against the traditional minimum variance estimates
A = E[A|data] of the times to first capture, the points do not fit the growth
model even when it is correct. This causes alarm amongst those unfamiliar with
the regression-to-the-mean property of random effects estimators. Because of this,
the estimates A do not match the statistical properties of the quantities A they
estimate, and this causes the apparent lack of fit. The problem can be crystallised
by calculating conditionally unbiased estimators, and contrasting their behaviour

with the traditional ones. In particular, they can be shown to
° largély correct the misfit in the plot of /1 versus A;
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e have a higher mean squared error than A;
e be over-dispersed with respect to the distribution of A.

This, hopefully, will lead to better appreciation of the relative merits of A and of
conditionally unbiased estimators of random effects.

Conditionally unbiased estimators of random effects can play a diagnostic
role in growth curve modelling from capture-recapture data. A plot of [, versus
AW 1 6t may exhibit lack of fit in a parametric growth model. The histogram of
AW for J = 2, say, can, after rescaling, be compared with the fitted distribution of
A to see if the chosen form is reasonable. Alternatively, 4@ can be deconvoluted
nonparametrically to yield an estimate of the density of A. The minimum variance
estimator A can be misleading in these roles.

In the growth curves we have studied, approximate conditionally unbiased
random effects estimators A; and A s of the time to capture A may be calculated,
although we have experienced data sets for which A, fails. Thus A s in particular
may be used as a practical alternative to A®. Conditional moments, and hence
the variance, may be calculated by two-dimensional integration over the space of
possible [; and [, values.

We have mainly discussed the case of a single recapture, by far the most com-
mon case 1n pelagic fisheries. With other species, such as lobsters and terrestrial
animals in a local habitat, multiple recaptures are possible. The two-dimensional in-
tegration needed to calculate E[A|data] will need to be replaced by high-dimensional
integration. It is possible that simulation techniques may be needed to estimate

E[A]data] in those circumstances.
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Figure 1. Plot of capture length /, against A. A von Bertalanffy growth curve with
random asymptotic length has been fitted to capture-recapture data for 1412 southern
bluefin tuna tagged and released in Australian waters in the 1980s. The time A from
spawning to capture is assumed to be lognormally distributed. The mean growth curve,

fitted by maximum likelihood, is shown as a solid line. The capture length 7, is plotted

against A, but does not follow the growth curve.
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Figure 2. Profile log-likelihood for a two-phase growth model versus « . The parameter
« is the age of transition between juvenile and adult growth phases in the new growth
model (3). The profile log-likelihood is clearly bimodal, and its complex shape suggests
that the log-likelihood surface may possess additional modes.
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Figure 3. A graphical interpretation of A. We assume that 4, the time between
spawning and capture, is a two-component Gaussian mixture, and let A=E[4 |7,,1,] be
the traditional random effects estimator of 4. The solid curve is E[ﬁ | A= a] versus a.

To obtain A4, plot A on the y-axis, draw a horizontal line from A to the curve, and then

read off 4 as the corresponding ordinate.
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! t ! i

2 4 6 8
release age A (yr)
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Figure 4. An approximate conditionally unbiased estimator of 4. In panel (a), an
approximate estimator Z, of 4 obtained from (12) and (8) is plotted against A?  and in
panel (b) the difference Z, -A? s plotted against 4®. These plots indicate that the

approximate estimator is slightly biased, but suggest that it is possibly adequate for

exploratory work.
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Figure 5. Growth curve for the southern bluefin tuna data. Panel (a) shows the capture

length 7, versus the estimated age at capture 4 and panel (b) shows the recapture

length 7, versus the estimated age at recapture 4 +7, —¢, with the fitted von
Bertalanffy growth curve. The bias in Figure 1 is largely corrected in (a), but (b)

suggests that the model is still inadequate. Running 5% and 95% quantiles of /, versus

A +1¢, —1t,, estimated from simulated data, are shown as short broken lines.
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Figure 6. The distribution of the time to capture for the southern bluefin tuna data. In
panel (a), the solid line is the fitted lognormal model, and the histogram represents values

of A® scaled around their mean to have the same standard deviation as the lognormal.
The plot suggests that the time to capture is much more complicated than lognormal. In

panel (b), 4® has been deconvoluted nonparametrically using the method of Cordy and
Thomas (1997). The comparison between the fitted lognormal (solid line) and the

nonparametric density estimate (broken line) confirms that the lognormal is inadequate.
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Introduction

Modelling the growth of a species is a widely studied topic. A key step is to
determine a functional form that describes the growth process. In fisheries literature, it is
most often assumed that the mean growth of the population follows a von Bertalanffy

(VB) curve, namely

I(a)=L_(1-exp(—k(a—a,))) 1)
where a and 7 are the age and length of a fish respectively. The parameter L_ represents
asymptotic length, k governs the growth rate, and a, is the theoretical age of length zero.

It is generally accepted that the growth of individuals will vary from the mean, however
the sources of variation are usually unknown.
Individual variation from the mean population growth curve can occur through

variability in one or more of the growth parameters (Z_ and k for the VB curve) and/or

through a random process error, due perhaps to environmental influences. Hampton
(1991) discusses these sources of variation, in addition to measurement error, and he
analyses a set of southern bluefin tuna tag-recapture data assuming various combinations
of them. Measurement error can undoubtedly be a source of variability, but without any
external information with which to estimate it, it is confounded with any constant term in
the process error. Thus, we do not include measurement error as a separate source of
variability in our investigation. It is also possible that variability from the mean growth
curve occurs because the underlying growth process (i.e. the functional form) varies
between individuals. For example, individuals may not grow according to a VB
relationship even though the mean growth of the population follows a VB curve. Wang
et al. (1995) examine this situation, however we will not consider it here.

Our goal is to investigate, through simulations, the effect of assuming different
sources of variation given some truth, and to do so for various truths. The motivation for
such a study is that in practice we cannot know without uncertainty what is the true cause
of variability in growth. We must use our best discretion to choose a model based on the
data and our knowledge of the species’ biology. Thus, it is important to know the

consequences of choosing an incorrect model formulation in practical terms, such as the
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effect on prediction. Does it really matter if we assume that variability is due to a random

asymptotic length L_ when it is actually due to a random k? Or if we assume a constant
process error term when in fact L_ varies between individuals? What if we make the

random process error an increasing function of length, such that a fish strays further from
the mean curve as it grows? This is plausible, for example, if a fish lives for a prolonged
period in an environment of poor or favourable feeding conditions.

Of course, the phrase “does it matter” depends on the researcher’s purpose and
also on the method chosen to evaluate the adequacy of the model. In simulation studies,
we can compare the estimated parameter values with the true values to look for evidence
of bias. However, with a model such as the von Bertalanffy where the parameters are
highly correlated, two different parameter sets can lead to very similar length predictions
over a restricted range of ages. Thus, we consider alternative methods of evaluation as
well. For example, plots of the difference in length between the fitted curve and the true
curve across ages are very useful.

The results will presumably depend on the type of growth data being modelled
and the method used to fit the model. In the case of direct age and length data, a
straightforward maximum likelihood method can be applied. However, in the case of
tag-recapture data, where the ages of the fish at release and recapture are not known,
there are several possible approaches. The traditional approach has been to analyse the
length increments and times at liberty assuming a VB growth model and using the fitting
method proposed by Fabens (1965). It is well documented that using Fabens’ method
when individual variability in the growth parameters exists results in biased parameter
estimates (Sainsbury 1980, Maller and deBoer 1988). In particular, Sainsbury (1980)
shows that the mean value of k is underestimated when variability in k exists but is not
accounted for; this is true for both age-length data and length-increment data but the bias
is much greater in the latter case. More recent approaches to analysing tag-recapture data
model the joint density of the release and recapture lengths as opposed to modelling
length increments (Wang et al. 1995, Laslett et al. 2002). Such approaches require the

age at release to be modelled.
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Other factors that will affect the results are the variability and comprehensiveness
of the data. In this Appendix, we concentrate on direct age and length data, considering
situations with low and high variability and complete and incomplete coverage. It would
be too lengthy to include the full suite of situations for tag-recapture data as well;
however, we realize that for many marine species, tag-recapture data is the most
abundant source of growth information. Thus, we include an abbreviated set of results

for tag-recapture data as well.

Methods

Direct age and length data
When we have direct age and length observations, we can formulate a growth
model based on the von Bertalanffy curve given in (1) as
I(a)=L_(1-exp(—k(a—a,)))+e(a) 2)

for a>a,. The component £(a) represents process error and it is assumed to be

independent random normal with mean 0 and variance ¢’(a). In our simulations, we

considered the following five model variations:

a) fixed L_, fixed £, and constant error variance, namely o(a) = &

b) fixed L_, fixed £, and error variance that increases with mean length, namely
o(a)=(1-exp(-k(a—a,)))’c (6>0)

¢) random/_ (normally distributed with mean g_ and variance o), fixed k, and
constant error variance

d) fixed I_, random k (gamma distributed with mean g, and variance o), and
constant error variance

e) random/_ (normally distributed with mean 4_ and variance &), random k
(gamma distributed with mean 4, and variance o7} ), and constant process error.

In models where either Z_ or k are random effects we assume that they are independent

of the process error, and in the model where they both are random we assume they are
also independent of each other.
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Maximum likelihood methods were used to fit all of the models. Assuming L
and k are fixed effects, the density of / is normal. This is also true when L is a random
normal variable. When k has a gamma distribution, the exact expectations and variances
for / can be calculated (see Sainsbury (1980) for the exact formulation). The distribution
of / is now unknown, but using the approximation that it is normal should be reasonable,
as our simulation results confirm.

There are a couple of points worth noting. First, the assumption that k is gamma
distributed seems quite realistic for most species, including southern bluefin tuna.
However, if there is reason to doubt this assumption, the exact expectation and variance
of / can be calculated for a number of distributions (those with explicit moment-
generating functions). Second, the exact distribution of / can be calculated for any

distributions of Z_ and/or k by conditioning. Suppose both Z_ and k are random with
densities p(L_) and g(k) respectively. Then the conditional distribution of / given L _
and k, h(/|L_,k), is normal. To determine the unconditional distribution of / requites a
double integration, namely

[[n¢1L . 0)p(L.) q(k)dL., ak 3)
This reduces to a single integration if either L_ or k is ﬁXed (or if L_ has a normal

distribution). Even for a single integration, computing (3) for every fish can be very
time-consuming.

In generating age-length data, two sets of model parameter values were chosen —
one that corresponds to fairly low variability (a coefficient of variation' of approximately
0.2), and one that corresponds to much higher Va1iabi1ity (a coefficient of variation of
approximately 0.4). In all cases, we kept the mean value of L_ at 200, the mean value of

k at 0.2, and the value of g, at 0. For the low-variability case, the parameter values we

chose for the five models were as follows:

P (lri —-E(]n)

I The coefficient of variation for a data set was calculated as Z E(] )
2

r=1 i=1

2
] , where 7 indexes

release or recapture and i indexes the fish.
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a) L =200, k=02, c=10

b) L. =200, k=02, 0=20,60=0.6

c) u,.=200,0_=15,k=02, c=8

d L =200, y, =02,0,=003,0=7

e) u.,=200,0_ =15, u,=02,0,=0.03,0=5
For the high-variability case, the parameter values we used were:

ay L_=200, k=02, 0=20

by L, =200, k=02, c=40, 6=0.6

c) u.=200,0_=35,k=02, 0=15

d) L_=200, y, =0.2, o, =0.05, c=15

€) M.=200,0_ =35, u,=02,0,=005 0=9

Figure 1 shows how the error structures of model a) through e) differ in their
patterns across ages. Although we have displayed the results for the low-variability
parameter values, the general pattern is the same for the high-variability case as well.

To carry out the simulations, we first generated age data as described below. We
then generated corresponding length data according to model a) initially, using the low-
variability parameter values. We fitted the data five times, assuming each of models a) to
¢) to be true. This was repeated for models b) to €). Finally, the whole procedure was
repeated using the high-variability parameter values. In all cases, 100 simulated data sets
consisting of 1000 age-length points were fitted.

We initially generated ages according to a uniform distribution over the interval

0.1 to 20 years. For a VB curve with L_ =200, k=0.2, and a,=0, the asymptotic

length is achieved around age 20, so this choice for an age distribution gives rather
comprehensive growth information. In order to see how much the age distribution affects
the results, we also generated ages according to a lognormal distribution with mean and
standard deviation on the log scale of 1 and 0.7 respectively. This gives a highly right-
skewed distribution with a median of 2.7 years and a 95™ percentile of 8.6 years. The
actual age distribution expected in a field study will depend on the species and the

sampling procedures used; almost any distribution seems possible. For southern bluefin
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tuna, the assumption of a uniform distribution that spans the range of common ages is

fairly realistic.

Evaluation methods

In order to evaluate how well a model performed, we calculated the mean of the
parameter estimates over all 100 runs and compared these to the true parameter values.
We also calculated the average difference in length between the 100 fitted mean curves

and the true mean curve as a function of age, a, namely

1 oo, R .
g(@) =75 (L. (- exp(-F (a=,)) 20001 - exp(~0.20) . @)
i=1
A plot of g(a) versus a is a useful tool to evaluate how well a model fits. From this

plot, we can determine the maximum error in the fitted length at age. More generally, we
can visualize the fit across a range of ages. The latter is important in cases where a
model has a very large error at a particular age', or range of ages, but fits well elsewhere.
The above methods assess how well the mean growth curve is being fitted.
Another evaluation method, which indicates the overall goodness of fit of the models to
the data, is to compare likelihood values. For each of the five assumed models, we
calculated the average negative log-likelihood over the 100 runs. We expect that the true
model will have the smallest average negative log-likelihood value; however, this is not
necessarily the case when the true model is nested within another model. For example, if

the true model has a random k, then when we fit the data assuming a random L_ and %,

we can get an equally good fit. In these cases, taking the number of parameters into
account will most often result in the true model coming out the winner. Thus, we also
calculated the average Akaike’s information criterion (AIC) value for the purpose of

comparison (Akaike 1974).

Tag-recapture data

In tag-recapture studies, the length of a fish on release and recapture (/; and /) are
measured and recorded, as are the times of release and recapture (¢; and #,). Because age
is unknown, the way to model the data is not as clear-cut now. We chose to use the

maximum likelihood method of Laslett et al. (2002), which models the joint density of /;
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and 7, since it can accommodate a wide range of error structures. Briefly, this method

models the age at release relative to the time of theoretical length zero, ¢, —¢,, as a

random variable denoted by 4. For the von Bertalanffy growth curve, the model is
formulated as

I(0)=L (1—exp(-k(A+t—1))+e(A+1-1) &)
for 7 >t — A. Then the release and recapture lengths can be expressed as

I, =L_(1—-exp(—kA))+ £(A)
and
L=L (1—exp(=k(A+t,~1))+e(4+1,~-1).

Again, £(A4+t—1) represents process error and is assumed to be independent random

normal with mean 0 and variance &°(4 +t—t). In models where [_ and/or k are
random, we assume L_, k, and 4 are all independent of each other as well as independent

of the process error.
To derive the likelihood function, we need to know the joint density of /; and /,.
First consider the joint likelihood conditional on 4. When L_ and % are fixed effects, the

joint density of /; and /, given 4 is bivariate normal. This is true even if L_ is a random

normal variable. If £ is random, we take the same approach as we did with the direct age-
length simulations and assume that it has a gamma distribution. As such, we can
calculate the exact expectations and variances of /; and /, given A, then make the
assumption that the joint density of /; and /, given A is approximately bivariate normal.
Once we have the conditional density, the derivation of the (unconditional) likelihood is
straightforward, involving a single integration over 4. See Laslett et al. (2002) for the
exact formulation.

The exact joint density of /; and /, can be calculated for any distributions of

L_and k by conditioning on the random parameters and then integrating (analogously to

the direct age-length case). However, calculation of the likelihood is already slow since
it involves a single integration for each fish; further integrations would be very expensive

(and perhaps unfeasible) time-wise to perform.
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We carried out simulations on tag-recapture data using the same five model
variations as we did for the direct age-length simulations. For every combination of true
and assumed models, 100 simulated data sets consisting of 500 pairs of release and
recapture information were fitted.

We generated release ages, A, using a lognormal distribution with mean and
standard deviation on the log scale of 0.5 and 0.3 respectively. This translates to a mean
age of release of 1.7 years and a standard deviation of 0.5 years. The times at liberty
were generated according to a gamma distribution with shape parameter 3.0 and rate
parameter 0.5, giving an average time at liberty of 6 years and 95% of the recaptures
occurring within 12 years. Corresponding release and recapture lengths were generated
according to each of the models using the high-variability parameter values. For
conciseness, we only present the results for one set of parameters; we chose the high-
variability case because it accentuates the problems in the model fits where they exist.

- The same evaluation methods were used, with a slight modification to the average

error in length formula, g(a), given in equation (4). In tag-recapture simulations we do
not get an estimate of a,; instead we get an estimate of the parameters for the lognormal

distribution of 4. Thus, we calculate the average difference in length between the fitted
and true growth curve as a function of age relative to a,, say o, in which case the

function is

100

g (@)= "1%6 S (2., (1 exp(—k, ) - 200(1 - exp(~0.20)).

Results

Direct age and length data using a uniform age distribution

Before discussing the results, it may be of interest to look at a typical data set for
each of the model variations a) to ), generated assuming a uniform age distribution over
0.1 to 20 years. Figure 2 shows data corresponding to the low-variability parameter
values, and Figure 3 shows data corresponding to the high-variability parameter values.
The data are very comprehensive, giving good information about both the asymptotic

length and the rate of growth. We can see how the different patterns in the error
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structures, as illustrated in Figure 1, carry through to the data. The difference in
variability between the data generated using the low-variability parameter values and the
high-variability parameter values is apparent. The low-variability data is more
representative of the age-length data seen for southern bluefin tuna. We imagine it is
more likely to represent the variability in length-at-age for other species as well;
however, for completeness, we consider a more extreme situation as well.

We first present the results for the low-variability case. To see how well each of
the assumed models estimates the true mean growth curve, we plotted the average error
in the fitted mean length, g(a), versus age, a (Figure 4). As we expect, the true model
estimates the mean growth curve accurately in all cases, even for models d) and e) where
an approximation was used for the likelihood. More interestingly, we see that in almost
all cases the incorrect models estimate the mean growth curve equally well. In the few
cases where the fitted model shows an error — this occurs when the true model has
increasing process error and when the true model involves a random % — the error is less
than 2 cm across all ages shown. The estimates of the growth curve parameters

(namely 4, u,, and a,) reinforce the observation that the mean curve is estimated well

regardless of the true model and the model being assumed (Table 1).

Of course, this does not mean that all models describe the data equally well. With
respect to the AIC values, the true model gave the best fit in all cases (Table 1). This
reflects the fact that the incorrect models are generally not capable of capturing the error
structure; that is, they do not explain the variability in the data very well. There are a few
exceptions. Clearly when the true model is nested within another, the other model always
comes a close runner-up. For example, when the true model has constant process error,
all other models have similar AIC values. Likewise, when the true model is the random

L., model or the random % model, then the model with both a random _ and & fits the
data just as well. The more interesting exceptions are that the random Z_ and & model
captures the error structure of the increasing process error model fairly well, and vice
versa. Also, the random Z_ model provides a reasonable fit to the increasing process

error model, and vice versa. For all other models, the AIC value is considerably larger

than the best fit. Nevertheless, the researcher’s primary interest may be the mean growth
A6-10



Appendix 6: Investigating sources of individual variability in von Bertalanffy growth models

of the population, and this is being estimated without bias regardless of which model is
assumed.

We now turn to the results for the high-variability simulations (Table 2; Figure 5).
We have kept the y-axis scale the same in the plots of the low- and high-variability
results for easy comparison. For the most part, the observations made for the low-
variability case remain true. A notable exception is that the random k model shows a
significant bias when being fitted to the model with increasing process error.
Furthermore, models that showed a small bias in the low-variability simulations now
show a larger bias and the nature of the bias, while still the same, is more obvious. In

particular, the random L_ and k model being fitted to the increasing process error model
slightly overestimates u_, whereas the random L, model slightly underestimates it.

Also, any of the incorrect models being fitted to the random & model (with the exception

of the random Z_ and k& model within which it is nested) underestimate both x_ and y, .

Similarly, all of the incorrect models show biases when being fitted to the random L

and k model; however, the nature of the biases differs between them.

Again, a model that estimates the mean growth curve accurately does not
necessarily provide a good overall fit to the data. In fact, if we use the AIC value as our
measure of goodness-of-fit, then many of the models that show a bias in their estimate of
the mean growth curve actually describe the data better than some of the models that get
the mean curve right (Table 2). For example, consider the case when the true model has
increasing process error. Then the model with constant process error is the only other
model that estimates the mean growth curve without a noticeable error. However, the
AIC value for the constant error model is much larger than the AIC value for either the

random _ model or the random L_ and k model.

Direct age and length data using a lognormal age distribution

Our next step is to see how the results differ when we use age and length data
with less extensive coverage. We again start by plotting typical age-length data sets for
each of the five model variations, this time with ages generated according to a lognormal

distribution with mean and standard deviation on the log scale of 1 and 0.7 respectively.
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Figure 6 shows data corresponding to the low-variability parameter values, and Figure 7
shows data corresponding to the high-variability parameter values. The data is far less
comprehensive than when a uniform distribution was used to generate the ages. In
patticular, growth information for older fish is lacking, which not only makes the mean
curve (in particular the asymptotic length) more difficult to estimate, but also obscures
the error structure,

The low-variability and high-variability simulation results show almost identical
patterns, with the magnitude of the errors being significantly larger for the high-
variability case. This observation is true with respect to the mean growth curve, and is
apparent if we compare plots of the errors in the fitted mean length for the low- and high-
variability simulations (see Figures 8 and 9 — note that y-axis scales are different this time
since the magnitude of the errors is very different). It is also true for the overall fits of
the models to the data, as indicated by the fact that the ranking of the AIC values for the
five models fitted to any true model is the same between the low- and high-variability
results (Tables 3 and 4). Thus, we will discuss the errors for both cases collectively,
keeping in mind that the size of the errors for the low-variability case are generally less
than 4 ¢cm and not likely to be of real concern whereas the errors for the high-variability
case are in the order of three times larger.

The random k model does not fit very well when the true model is the increasing

process error model, the random L_ model, or the random Z_ and & model. In all three
cases, the mean curve is estimated poorly (4. is overestimated and 4, is

underestimated), and the overall fit to the data as measured by the AIC value is also poor.
In terms of estimating the mean growth curve, the random & model produces the most
notable errors; however several other models also show some biases. We will not specify
all cases here, as they can be ascertained from the tables and figures.

In comparison to the simulation results for uniformly distributed ages, the errors
are of much greater magnitude. In fact, the magnitude of the errors for the low-
variability simulations using lognormal ages is in line with the magnitude of the errors for
the high-variability simulations using uniform ages. Not only are the sizes of the errors

similar in these two situations, but the patterns of the errors are also very similar in
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general. One noticeable difference is that the bias in the fit of the random % model to the
random Z_ model and to the random L_ and k model is quite a bit larger. A more subtle
difference is the shape of the error across ages when the true model involves a random k
parameter — the error curves tend to be more rounded and have larger errors at young
ages when the ages are uniformly distributed compared to when the ages are lognormally

distributed. This shape difference results from the fact that both ,_ and 4, are
underestimated when the ages are uniform, but only x_ is underestimated when the ages

are lognormal.

Tag-recapture data

So far we have only considered the consequences of assuming various etror
models when fitting direct age and length data. Because tag-recapture data is a common
source of growth information for many species, we take an abridged look at how the
results change when tag-recapture data is used.

A typical data set generated according to each of the five model variations using
the high-variability parameter values is shown in Figure 10. The amount of growth
information available diminishes with age — a feature we would expect in most tag-
recapture studies.

The mean parameter estimates are presented in Table 5, and plots of the mean
error in length at age (i.e. g (@) versus &) are shown in Figure 11. The results are
somewhat similar to those obtained from the direct age and length data in the case of
high-variability and lognormal ages (for which growth information also diminishes with
age). In both cases, incorrectly assuming a random & model produced the largest biases
in the estimated mean growth curve, and the errors in length at age were around the same
magnitude. The differences include:

e With tag-recapture data, all models except the random % model estimated the mean
curve accurately when the true model had increasing process error; this was not true

with direct age-length data for which the random L_ model and the random L_ and k

model also showed biases (of much smaller magnitude than the random & model).
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e With tag-recapture data, the models with constant process error and increasing
process error showed faitly large biases when fitted to the model with both a random

L, and £, and to a lesser extent so did the increasing process error model fitted to the
model with a random L_. None of these biases existed with the direct age-length

data.
® The nature of the biases differs somewhat. For tag-recapture data, the tendency is for

L., to be overestimated and k to be underestimated; this leads to S-shaped error-in-

length plots that transition from a negative error to a positive error with age. For the
direct age-length data, this pattern is only present when incorrectly fitting the random

k model. Otherwise k tends to be estimated well, and the biases are the result of _

being underestimated.

Discussion

The consequences of assuming an incorrect error structure for a growth model are
dependent on the type of data being modelled; for this reason we considered both direct
age and length data and tag-recapture data in our simulations. The results will also
depend on the variability and completeness of the data. With direct age and length data,
it is feasible to have comprehensive growth information covering all ages and lengths;
this is less likely for tag-recapture data because it would require fish of all ages to be
tagged or else long times at liberty to be common. The amount of variability in length-at-
age between individuals will depend on the species.

For the direct age and length data, we carried out simulations for four cases, using
two levels of data variability (low and high) and two levels of data coverage (complete
and incomplete). While there is obviously a continuum of situations between those
considered, results for these situations can be inferred from the results presented. For the
sake of brevity, we only considered one case for tag-recapture data, that of high
variability and fairly comprehensive data coverage. We simulated tag-recapture data that
diminished with age, since this is an expected feature of most tag-recapture studies,
however the times at liberty that we generated gave more complete data coverage than

might be expected in many studies. We ran some simulations with much shorter times at
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liberty (maximum ages of approximately 10 years) and, not surprisingly, the errors in the
mean length-at-age increased where present. However, the errors within the range of the
data were generally of the same magnitude as the errors obtained using long times at
liberty; it was beyond the range of the data that large errors sometimes occurred.

It is difficult to concisely summarize all of the results obtained, however a few
observations stand out. When considering direct age and length data, most of the biases
occurred when incorrectly assuming a random k model, and these biases were probably
only large enough to be of concern in the case of high-variability data and incomplete
data coverage. Otherwise, assuming any of the models that we presented gave a
reasonable estimate of the mean growth curve, regardless of the true model. A similar
observation can be made regarding the tag-recapture simulations — the largest errors
occutred when incorrectly fitting a random k& model. The only other errors of a similar
magnitude occurred when fitting the constant process error model and the increasing

process error model to the model with both a random Z_ and k. On the other hand, the

errors in the mean growth curve obtained from fitting any of the incorrect models to the
random k model were not severe, regardless of the type of data or the case being
considered. This would suggest that in the absence of knowledge about the true error
structure, it is generally wise not to assume a random & model.

For the tag-recapture simulations, an interesting outcome resulted from modelling
the release age as a random variable. The fitting routine is able to manipulate the
distribution of the release ages to make the data better agree with the etror structure of the
model being assumed. There were many cases where the parameter estimates for the
distribution of 4 were highly biased, and this occurred even in cases where the mean
growth curve was estimated well. Realistic bound constraints could be put on the
parameters of A based on prior knowledge about the size of the fish that were released.

Our investigation of model selection using Akaike’s information criterion proved
to be fairly predictable in qualitative terms. Histograms of the best fitting models for the
direct age and length simulations using the low-variability parameter values and
lognormal ages are presented in Figure 12. The same results for the high-variability
parameters are shown in Figure 13. In the vast majority of cases, AIC chose the correct

style of model, the only exception being the case when the true model was €), in which
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L., and k are both random. In this case, AIC confused models b) and e). According to

Figure 1, the curves of standard deviation versus the mean are somewhat similar for these
models. Hence the patterns in Figures 12 and 13 can be interpreted as a tendency for AIC

to choose the most parsimonious model that fits the data. In particular, Z_ and k are both

random only if necessary. When a less complex model is chosen, it has a similar mean-
variance relationship to the true model. Very similar remarks apply when considering the
results from the direct age and length simulations using uniform ages (not shown). The
results in Figure 14 for the tag-recapture data are harder to explain. The AIC often
chooses a more complex model than the truth. The reason for this is unknown, but it
almost certainly reflects the flexibility of the tag-recapture model, which includes
parameters modelling the time to capture in addition to the growth model and error
structure parameters. The results suggest that more hard information should be included
in the tag-recapture model, such as realistic constraints on the release ages and prior
distributions on the growth parameters. Bayesian methods of model fitting might be

required.
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Table 1. Mean parameter estimates for the direct age and length simulations using the
low-variability parameter values and assuming a uniform age distribution over the
interval 0.1 to 20 years. The average negative log likelihood and Akaike’s information

criterion (AIC) are also given. All values are averaged over the 100 simulation runs.

132321 A;S:ﬁd Ho  Ou M O 4 00 likelli(l)l%)od AIC
2) a) 2000 0.0 0200 0000 000 100 000 3717.4 74427
2) b) 2000 0.0 0200 0.000 000 100 0.02 3717.1 7444
2) ¢) 2000 1.6 0200 0000 0.00 98 000 3717.1 74442
2) d) 2001 0.0 0200 0004 0.00 99 000 37172 74444
2) & 2001 1.9 0200 0005 000 9.6 000 37169 7445.7
b) a) 2001 0.0 0200 0000 000 17.0 000 42532 851435
b) b) 2000 0.0 0200 0.000 0.00 200 060 41809 8371.8
b) ¢) 1997 204 0201 0000 0.00 58 000 4189.6 83892
b) d) 2001 0.0 0200 0001 000 17.0 0.00 42533 85165
b) &) 2007 194 0200 0025 0.00 34 000 41822 8376.5
o) a) 2002 0.0 0.99 0000 -0.01 144 0.00 4083.8 8175.6
) b) 2005 0.0 0.197 0000 -0.03 158 034 40510 8112.1
S ¢) 2002 150 0.199 0000 -0.01 7.9 0.00 40444 8098.8
5 d) 2002 0.0 0199 0001 -0.01 144 000 4083.8 8177.7
o) & 2003 150 0.199 0006 -001 7.7 000 40442 8100.4
d) a) 1993 0.0 0.198 0000 -0.01 103 0.00 37495  7506.9
d) b) 1993 0.0 0198 0000 -001 103 001 37494 7508.8
d) ¢) 1993 0.0 0198 0000 -0.01 103 000 37495 7508.9
d) d) 2001 0.0 0200 0030 000 69 000 37122 74343
d) &) 2001 13 0200 0030 000 66 000 37119 7435.8
5) a) 1993 0.0 0.98 0000 -0.01 150 0.00 41242 82565
¢) b) 1991 0.0 0199 0000 000 168 039 40909 8191.8
e) ¢) 1988 153 0200 0000 000 89 000 41019 8213.8
¢ d) 1995 0.0 0.198 0011 -0.01 14.6 000 4123.6 82573
¢) &) 2001 149 0200 0030 000 50 000 40872 8186.5
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Table 2. Mean parameter estimates for the direct age and length simulations using the
high-variability parameter values and assuming a uniform age distribution over the
interval 0.1 to 20 years. The average negative log likelihood and Akaike’s information

criterion (AIC) are also given. All values are averaged over the 100 simulation runs.

133221 Aﬁ?&"é’fd Ho On M Op 4 00 likeii(;fgood AIC

2) ) 2001 0.0 0200 0000 000 199 000 44105 8829.0
2) b) 2001 00 0200 0.000 000 20.0 0.02 44103 88305
2) & 2001 32 0200 0000 000 195 000 44103 8830.5
2) d) 2002 0.0 0200 0.008 00l 197 000 44104 88307
2) & 2003 38 0200 0009 001 191 000 4410.0 8832.0
b) ) 2003 0.0 0199 0000 000 340 000 49464 9900.8
b) b) 2001 0.0 0200 0.000 001 39.9 060 48740 9758.0
b) o) 1984 397 0205 0000 0.02 12.1 0.00 4883.1 97762
b) d) 2094 00 0183 0052 -0.05 28.1 0.00 4951.9 99137
b) &) 2030 388 0201 0050 001 67 000 48754 97628
5 a) 2004 00 0198 0000 -002 31.6 0.00 48734 975438
%) b) 2022 0.0 0190 0.000 -0.09 357 043 4827.0 9664.0
%) ) 2005 351 0198 0.000 -0.02 147 0.00 4819.6 9649.1
0 d) 2010 0.0 0197 0007 -0.03 30.0 0.00 4876.6 97633
o) & 2009 350 0197 0011 -002 143 0.00 48193 96507
d) ) 1979 00 0195 0000 -0.04 197 000 43979 88037
d) b) 1979 0.0 0196 0.000 -0.04 198 0.02 4397.6 8805.1
d) o 1979 00 0195 0000 -0.04 197 0.00 4397.9 88057
d) d 2002 0.0 0199 0049 -001 150 0.00 43802 8770.5
d) & 2001 34 0200 0.049 -0.01 144 000 43799 87719
) 2 1979 00 0.195 0000 -0.05 30.0 0.00 4878.6 97652
&) b) 1976 0.0 0.196 0.000 -0.03 36.5 051 4820.5 9650.9
&) o 1957 367 0203 0.000 -0.01 13.0 0.00 48265 9662.9
&) d) 2005 0.0 0191 0.027 -0.05 293 0.00 48762 9762.4
&) & 2001 349 0200 0050 -001 8.6 0.00 4818.1 9648.2
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Table 3. Mean parameter estimates for the direct age and length simulations using the

low-variability parameter values and assuming a lognormal age distribution with mean

and standard deviation on the log scale of 1 and 0.7 respectively. The average negative

log likelihood and Akaike’s information criterion (AIC) are also given. All values are

averaged over the 100 simulation runs.

1113)321 Aljlscl)lclijjd He T H T 9o o o lil(e_llicilgood AIC
a) a) 2000 0.0 0.200 0.000 0.00 10.0 0.00 37162 7440.5
a) b) 2000 0.0 0200 0.000 0.00 10.1 0.02 3716.0 7442.0
a) ¢) 2000 1.7 0200 0.000 000 99 0.00 3716.0 7442.0
a) d) 2000 0.0 0201 0.005 001 98 000 37160 7442.0
a) e) 2000 1.4 0201 0004 001 97 0.00 37159 7443.7
b) a) 2000 0.0 0201 0000 0.01 12.4 0.00 3933.1 78742
b) b) 2002 0.0 0200 0.000 0.00 199 0.60 3853.1 77163
b) c)  199.0 22.5 0202 0.000 0.01 6.1 0.00 3858.0 7726.0
b) d 2079 0.0 0.188 0.034 -0.03 56 0.00 38932 77963
b) e) 2013 17.8 0200 0.025 0.00 4.4 0.00 38534 7718.9
c) a) 1999 0.0 0201 0.000 0.00 10.8 0.00 3796.8 7601.7
c) b) 2006 0.0 0.199 0.000 -0.01 14.1 032 3768.4 7546.8
c) c)  200.1 14.8 0200 0.000 0.00 8.0 0.00 3765.0 7540.0
c) d 2029 00 019 0.023 -001 82 0.00 3786.8 7583.7
¢) e) 2003 142 0200 0.006 0.00 7.8 0.00 3764.7 7541.4
d) a) 1987 0.0 0.200 0.000 -0.01 112 0.00 38373 7682.6
d) b) 1982 0.0 0201 0.000 000 142 027 38214 7652.9
d) ¢) 197.7 12.6 0202 0.000 0.00 9.4 0.00 38286 7667.2
d) d) 2000 0.0 0200 0.031 000 68 000 38145 7638.9
d) e) 199.8 1.8 0201 0.030 0.00 6.8 0.00 38143 7640.6
e) a) 1988 0.0 0200 0.000 -0.01 124 0.00 3937.4 7882.8
e) b) 1983 0.0 0201 0.000 0.00 19.0 0.52 3878.1 7766.3
e) ¢) 1969 21.6 0203 0.000 0.00 7.0 0.00 38843 7778.6
e) d 2045 0.0 0.192 0.036 -0.02 55 0.00 38946 77992
e) e) 2002 14.4 0200 0.030 0.00 4.9 0.00 38762 7764.4
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Table 4. Mean parameter estimates for the direct age and length simulations using the

high-variability parameter values and assuming a lognormal age distribution with mean

and standard deviation on the log scale of 1 and 0.7 respectively. The average negative

log likelihood and Akaike’s information criterion (AIC) are also given. All values are

averaged over the 100 simulation runs.

m?(I)EZI Alins::i]gd Ho O Hr T Do o 0 ]jkelli(;l%)od AIC
a) a) 200.0 0.0 0.201 0.000 0.01 19.9 0.00 4409.4 8326.8
a) b) 200.0 0.0 0.201 0.000 0.01 202 0.02 4409.2 88283
a) c) 200.0 3.4 0201 0.000 0.01 19.7 0.00 4409.2 8828.3
a) d) 200.2 0.0 0201 0.009 0.01 19.5 0.00 4409.2 88283
a) e) 2002 2.8 0.201 0.008 0.01 194 0.00 4409.0 8830.0
b) a) 2003 0.0 0.202 0.000 0.01 247 0.00 46263 9260.5
b) b) 200.5 0.0 0.200 0.000 0.00 39.8 0.60 45463 91025
b) c) 189.8 399 0.223 0.000 0.06 13.4 0.00 45529 91158
b) d) 2294 0.0 0.164 0.064 -0.08 6.1 0.00 4567.0 9144.0
b) e) 205.0 353 0.199 0.051 0.01 8.8 0.00 4546.6 9105.2
c) a) 200.1 0.0 0.201 0.000 0.01 22.6 0.00 45364 9080.8
c) b) 203.5 0.0 0.193 0.000 -0.03 31.8 0.41 4491.6 8993.1
c) c) 200.5 34.7 0.200 0.000 0.00 15.0 0.00 4487.4 8984.8
c) d) 2221 0.0 0.169 0.050 -0.09 13.3 0.00 45122 9034.3
c) e) 201.6 33.5 0.199 0.012 0.00 14.6 0.00 4487.1 8986.1
d) a) 197.2 0.0 0.198 0.000 -0.03 20.8 0.00 44523 89125
d) b) 1964 0.0 0.200 0.000 -0.02 24.5 0.19 44439 8897.7
d) c) 195.6 184 0.202 0.000 -0.01 18.6 0.00 44475 8905.0
d) d) 200.3 0.0 0.199 0.048 -0.01 152 0.00 4440.5 8891.0
d) e) 199.9 3.3 0.200 0.047 0.00 152 0.00 4440.3 8392.6
e) a) 196.8 0.0 0.200 0.000 -0.02 23.9 0.00 4593.7 91954
e) b) 196.4 0.0 0201 0.000 -0.02 38.2 0.59 45164 9042.9
e) c) 191.1 42.7 0.212 0.000 0.01 11.7 0.00 4519.7 90494
e) d) 2239 0.0 0.166 0.063 -0.09 6.8 0.00 4533.6 9077.2
e) e) 200.6 33.8 0.200 0.050 0.00 8.7 0.00 45153 9042.7
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Table 5. Mean parameter estimates for the tag-recapture simulations using the high-

variability parameter values. The average negative log likelihood and Akaike’s

information criterion (AIC) are also given. All values are averaged over the 100

simulation runs.

vt mots e 0L My O My Oy o 6 %I
a) a)  199.6 0.0 0201 0.000 050 029 199 0.00 4525.1 9060.2
a) b))  199.5 0.0 0202 0.000 0.50 0.30 20.1 0.02 45249 9061.8
a) ¢ 1994 3.0 0202 0000 050 030 197 0.00 45249 9061.7
a) d) 2002 0.0 0202 0009 049 030 19.6 0.00 4524.5 9060.9
a) e 2001 22 0202 0.007 049 030 195 0.00 45244 9062.7
b))  a) 2009 0.0 0201 0.000 052 0.01 292 000 4791.6 9593.1
b) b) 2007 0.0 0201 0.000 049 031 39.7 0.60 4742.6 9497.2
b) ¢  201.0 29.0 0202 0.000 051 0.02 24.0 000 47612 9534.4
by d) 2131 0.0 0178 0.037 058 0.01 263 000 47839 9579.8
b) e  201.0 29.0 0202 0.001 051 0.02 24.0 0.00 47612 9536.4
¢) a) 2030 0.0 0.192 0000 0.55 0.19 262 000 4724.0 94581
) b)) 2108 0.0 0172 0.000 0.58 037 343 058 4666.0 9344.1
c) ¢  198.8 347 0204 0.000 049 030 150 0.00 46294 9270.7
) d) 2220 0.0 0163 0.054 062 0.05 18.5 0.00 4654.1 93202
¢) e 2005 343 0200 0.011 0.50 029 150 0.00 46259 9265.8
d a) 2041 0.0 0.177 0000 058 038 183 0.00 45184 9046.9
d) b 2034 0.0 0179 0.000 056 041 21.0 025 45083 9028.5
d) ¢ 1981204 0.194 0.000 0.52 038 143 0.00 44983 9008.7
d) d 1997 0.0 0201 0051 050 030 14.8 0.00 44839 8979.8
d) e 1993 3.6 0202 0.050 049 030 146 0.00 44839 8981.8
e) a) 2189 0.0 0.149 0.000 0.69 0.37 242 0.00 47373 9484.6
e) b)) 2242 0.0 0.140 0.000 0.70 047 399 1.00 4620.1 9252.1
e) ¢ 1968 40.9 0.198 0.000 0.51 035 82 0.00 4531.1 9074.1
e) d) 2214 0.0 0162 0069 059 021 11.8 0.00 4561.3 9134.5
e) e  199.0 364 0.200 0.043 050 031 8.6 000 4527.1 9068.2
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Figure 1. Comparison of the error structures for models a) through e). The lines show
the standard deviation in length at age for the five model variations, calculated using the

parameter values for the low variability case.
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Figure 2. Examples of simulated direct age and length data sets for models a) through e),
using the low-variability parameter values and assuming a uniform age distribution over

the interval 0.1 to 20 years.
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Figure 3. Examples of simulated direct age and length data sets for models a) through e),
using the high-variability parameter values and assuming a uniform age distribution over

the interval 0.1 to 20 years.
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Figure 4. Results from the direct age and length simulations using the low-variability
parameter values and assuming a uniform age distribution over 0.1 to 20 years. The
figure shows the difference between the fitted and true mean length (averaged over 100
runs) versus age, i.e. g(a) versus a. Panels a) to e) correspond to the results when the
true models are models a) to e) respectively. The lines correspond to the models being
assumed: — for model a); *+ for model b); —-— for model c); ——— for model d); and

—+— for model e).
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Figure 5. Results from the direct age and length simulations using the high-variability
parameter values and assuming a uniform age distribution over 0.1 to 20 years. See

Figure 4 for a complete description.
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Figure 6. Examples of simulated direct age and length data sets for models a) through e),
using the low-variability parameter values and assuming a lognormal age distribution

with mean and standard deviation on the log scale of 1 and 0.7 respectively.
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Figure 7. Examples of simulated direct age and length data sets for models a) through e),
using the high-variability parameter values and assuming a lognormal age distribution

with mean and standard deviation on the log scale of 1 and 0.7 respectively.
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Figure 8. Results from the direct age and length simulations using the low-variability
parameter values and assuming a lognormal age distribution with mean and standard
deviation on the log scale of 1 and 0.7 respectively. See Figure 4 for a complete

description.

T W e b e s e+ s sy~

———— —— —

——— —
e st
Py

Error in Length, g (cm)
N

e S T
e —
—
—
——
—

A6 - 30



Appendix 6: Investigating sources of individual variability in von Bertalanffy growth models

Figure 9. Results from the direct age and length simulations using the high-variability
parameter values and assuming a lognormal age distribution with mean and standard
deviation on the log scale of 1 and 0.7 respectively. See Figure 4 for a complete

description.
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Figure 11. Results from the tag-recapture simulations using the high-variability

parameter values. The details are the same as in Figure 4 except the ages are now relative

to a,, such that we are plotting g (a) versus ¢
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Appendix 6: Investigating sources of individual variability in von Bertalanffy growth models

Figure 12. Histograms showing the best fitting models for the direct age and length
simulations using the low-variability parameter values and lognormal ages. Moving from
top to bottom, the 5 panels show the results when the true model is model a to e
respectively. In panel x, the bars show the number of times (out of 100 simulations) that

each of models a to e had the minimum AIC value when fitted to data from true model x.
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Figure 13. Histograms showing the best fitting models for the direct age and length
simulations using the high-variability parameter values and lognormal ages. Moving from
top to bottom, the 5 panels show the results when the true model is model a to e
respectively. In panel x, the bars show the number of times (out of 100 simulations) that

each of models a to e had the minimum AIC value when fitted to data from true model x.
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Figure 14. Histograms showing the best fitting models for the tag-recapture simulations
using the high-variability parameter values. Moving from top to bottom, the 5 panels
show the results when the true model was model a to e respectively. In panel x, the bars
show the number of times (out of 100 simulations) that each of models a to e had the

minimum AIC value when fitted to data from true model .
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Introduction

Commercial catch data contain important information on the growth of south-
ern bluefin tuna. In one sense they are more informative than any other data source
because commercial fishing data are more abundant and more consistent over time
than data from scientific research programs. In principle, fish can be sampled for
measurement every time that a boat comes in to port. This provides a regular time
series of length-frequency data for the researcher to work with.

Extracting the information on growth from commercial data is not straight-
forward. First, a large number of age groups are potentially represented in the
commercial catch. There is no quick way to calculate the age of a tuna, so length-
frequency data do not come with any age attribution. For growth work the researcher
has to assign the fish to age groups, either explicitly or statistically. Second, tuna
are spawned over a period of several months, and nothing is known about the rel-
ative growth patterns of fish that were spawned early versus those spawned late in
the season. Third, commercial fishing is not a random sampling exercise, and in one
week boats can return with almost no one-year-olds, for example, but in an adjacent
week the one-year-olds can be plentiful. Finally, measurement error exists and may
be dependent on the measurer. There appear to be minor irregular inconsistencies
in growth patterns from year to year, week to week and age-group to age-group. It
1s important to build methods that capture these sources of variation.

The biggest southern bluefin tuna fishery in Australia operates out of Port
Lincoln in South Australia. The length-frequency data from this fishery provide
information on two aspects of southern bluefin tuna growth. First, yearly growth
can be estimated by comparing the average length of one-year-olds, two-year-olds,
three-year-olds and so on caught at the same time. Second, the Port Lincoln fishery
operates during the Southern summer, when tuna are growing fastest. Seasonal
growth can be inferred by comparing the growth of a particular age-group from
week to week and month to month. Other data sources, such as those derived from

tag-recapture surveys and otolith studies, are usually too coarse to provide detailed
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information on seasonal growth. Length-frequency data are vital for this reason
alone.

This Appendix presents our method for extracting growth information from
length-frequency data. Ours has some features in common with other methods pre-
sented in the quantitative fisheries’ literature, but we depart from them in significant
ways. In particular, we develop a two-phase approach to the analysis. In the first
phase each half-month of length-frequency data is decomposed into age-groups using
a Gaussian mixture model, and relevant summary statistics are extracted. In the
second phase, the summary statistics are used as raw data for growth modelling.
This approach allows us to explore and visualise the sources of variation in the
data prior to final modelling. More direct methods are likely to overlook the many
possible complications in real length-frequency data.

In this Appendix we first discuss the form of the length-frequency data to
which we have access, and some of its features. Next is a critical review of the Leigh
and Hearn (2000) analysis of length-frequency data, summarising our reasons for
rejecting a combined analysis of the data for each season using a separate linear
growth model for each age group. We outline our alternative method, in which we
fit a growth model to summary statistics derived from fitting mixture models to
each half-month of length-frequency data. The final section is more speculative.
It discusses how we might model or understand some of the additional sources of

variation in length-frequency data.

The data

Length frequency data are measurements of lengths of fish caught in a partic-
ular season at a particular location, usually from commercial fishing. For southern

bluefin tuna, the data look like
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Table 1: Typical length-frequency data.

catch period period period statistical class  class  catch
year type # start area width centre count
1960 H 2 01/16/1960 SA 1 57 5.8
1960 15 2 01/16/1960 SA 1 58 8.2
1960 H 2 01/16/1960 SA 1 59 11.0
1960 H 2 01/16/1960 SA 1 60 8.2
1960 o 2 01/16/1960 SA 1 61 2.8

Most columns are self-explanatory. The period type H means half-monthly:
Australian data are generally recorded twice a month, but Japanese data only once,
and is then listed as M. These tuna have been caught in South Australia (SA),
but New South Wales and Western Australia also have tuna fisheries. The catch
is divided into one centimetre classes, so that the first line says that 5.8 fish are
between 56.5 and 57.5 cm in length. The reader will immediately ask: why 5.8,
rather than a whole number? The number of fish is scaled up from a sample, as
explained below.

We specify more exactly the definition of the half-monthly periods. The half-

months start on day 1 or 16 of each month:

Table 2: Half-month indices

Period # Period start

1 1/1
2 16/1
3 1/2
4 16/2
5 1/3
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Table 2: continued

6 16/3

24 16/12

Note that February has only 28 or 29 days, so period 4 is relatively short.
These period numbers are used in the output from the mixture fitting programs.
In South Australia the fishing season extends from the first half of October to the
second half of September the following year. For example, the 1964-65 season covers
period 19 in 1964 to period 18 in 1965. Thus when analysing a season of South
Australian data, period 24 — 0, 23 — -1 and so on.

There are a two major issues that arise in the analysis of length frequency

data, and a number of minor issues. We discuss the major issues immediately.

Mixture of ages

The length data from a given year and area come from fish of all ages, although
the fish belonging to a particular age group have been spawned over a relatively short
period, and hence exhibit a limited range of lengths. In addition, the younger fish
are growing fast, so the histogram of lengths will often show obvious modes for the
1, 2, 3 and 4 year-olds, but for older fish the modes cannot be distinguished. Leigh
and Hearn (2000) have published a mixture decomposition method that attempts
to decompose the length data into their constituent age groups. Their method is
somewhat different from a widely-used industry method, MULTIFAN (Fournier et
al., 1990).

Scaling up of catches

Not all fish caught in a given period are measured for length, and the fre-

quencies are scaled up so that the total catch reflects that of the whole fishery. The
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scaling up is in two phases: firstly the measured sample from a landing is scaled
up by the weight of fish in that landing; and secondly the catches from sampled
landings are scaled by the weight of the entire catch from all landings in the fishery,

to allow for landings that were not sampled.

This scaling-up means that a conventional statistical analysis is not appro-
priate, because the recorded catch is larger than the sampled catch. Standard error
estimates from treating the recorded data as raw data would be too small, in general.

We need to correct for this scaling in the analysis if we are to obtain mean-
ingful results. Leigh and Hearn (2000) argue for a rather complicated scaling factor,
based on the variance of the mean. They assume that k landings have been sampled,
and that landing 7 contains n; fish of which ¢; are measured. They then propose
the scaling factor o = (n,/n2) ©%  n?/q;, where n, is the scaled-up estimate of the
total number of fish caught and n, = Zf:l n; is the number of fish caught in the &
landings. We have no information on which to base any alternative scaling factor,

so we continue to use the Leigh and Hearn scaling factors in this study.

The Leigh and Hearn method

Leigh and Hearn (2000) assumed that the data were generated from a simple
Gaussian mixture. For a given sample, suppose there are my; fish of length [; for
J =1,...,n. Here and elsewhere m; is the recorded catch count divided by the Leigh
and Hearn scaling factor, so that m; is effectively the number of fish in class j if a
random sample of fish had been collected. The lengths are assumed to be generated
from a K component mixture in which the probability density of component & is

g,(y). The likelihood is

n

H {Z Wkgk(lj)} :
j=1 k=1

The log-likelihood is
n K
h = Y m;log (Z Tk gk(l]-)> . (1)
=1 k=1
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To estimate parameters, we would like to maximise the log-likelihood of the data
from several samples. After considerable experimentation, it transpires that we
need an optimisation method that uses first and second derivatives. Derivative-free
optimisation methods for this problem may be slow and do not necessarily converge

to the maximum likelihood estimates.

First derivatives of the log-likelihood

We calculate the first derivatives of the log-likelihood h with respect to the

various parameters. We assume that g (/;) is a Gaussian density

1 lj — g )?
nt) = e (-0

2o

Some basic tools we shall use are

89(” (l_:u“)_.
c’;uk] = gullj) L= = gilly) mj

and

ggig(glg — olly) (M — 1) = gk (l3) Oj -

Also for convenience we define

K
S; = Z Tegr(ly) -
k=1
Thus

oh " gl
— = T M = Nk
a/ik k ng ] Sj Nk

To compute this robustly, we should use the form

oh n 9 (15)/ g ()
—_— = T E T e TR
(r‘);u/k‘ ; j=1 ’ S;( ok

where St = Y0 mrge(l)/ gr(s)(l;) and k(4) is the index of the maximum value of
gr(l;) for a given l;. We shall take the robust computational forms as understood

in this section.
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The derivative with respect to logo is

oh  oh & K megn(ly) 0
:Ua—g—:ij k=1 Sj e

=1

dlogo

We have parameterised the proportions so that there are I{ —1 free parameters

T1yeeo, T, and
ek
T = ———————
k 1+ZK 1,
fork=1,...,K —1 and
1

T = —————.
K=17 ST ea
Thus, for k¥ < K — 1,

oh oh or,
o ;1 o, a—
= Z Z m] (mpd(r = k) — m,7mp)
r= 1] 1 J

n
gk: "
= WA,E m; SJ —7rk§ m; .
i=1 j=1

Second derivatives of the log-likelihood

We now calculate the second derivatives of h with respect to the various
parameters. Thus

9%h
o2

gr(l; - gr(l;)?
Zm] + Tk Zm] 5(, )77]2~k —~ TE ij é;) 77‘,}2,‘1
J

j=1 J
where S; = /%, mgi(l;). Also

0?h g6(1)gs (1)
= Tk 2] Mg«
a:u’ka,us ks Z n ] ] 77]/‘ 1

The second derivative with respect to logo is

h z": o T e gelly) 0% N im_ Skt 7 gr(l) (=205 — 2)
8(10ga)2 j=1 I Sj j=1 I S]‘
z": (Chsy T gk (1) Oy
— 772_7' 5
. Sj
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The partial derivative with respect to logo and p; is

02]?/ nk (l )9““
— _9 Ik \L5)Mjk ik 71
9108 00k ), Z m] + Jz:l m] S,
Z m gi(l5) 051
. Z NI .8 S;( )
The partial derivative with respect to logo and 7y, is
0%h - ;)05
- Tm, AN ijg Zz L mai(ly)

0log o0my, = S; 52
We need this quantity in terms of the dummy variable z;. Then
o%h i 0%h  Om,
dlogodxy, = Olog o0m, Oz,
K azh
Z dlog a@w,
&h K &h
= Tk log 007y, T ; 9 log 00,
0*h
Ty
*Ologodmy’

ml(r = k) — mm)

8%h —
since Y./, 7, Flogodm, — O

The partial derivative with respect to p and 7y is

2h Li)nikgs (1)
Oupdmy Tk Z Sz
when s # k. Otherwise
02]7, n n]k 77]h
— Ty m;
O, Omy, z:: S; Z ]

We need this quantity in terms of the dummy variable z,. Then

d%h B i o*h  Om,
oupdzs 1 O Om, Oz
K 82 h
- Ezza 9
Hi: 7T7
02 K 02 h
= " gmom " 2™ G,
0%h
" BT

I(r =s) — mms)

aﬂh aﬂ-s
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. K h_ _
since 30,— Tr g, 57 = 0

The partial derivative with respect to z;, and =, is

&2h = gklly)gs (L)
Tucon. — T ]2 m; 52
when s # k. Otherwise
0*h 5oall) & = gell)
deom = jzzlmj s, Jg m; — ; m; ——§J2—

We need this quantity in terms of the dummy variable z,. Then

9%h i 0*h O,
0,01, ‘= Ox,0m, Ox,
K 92h
= (Ml (r=38) —mm
gl Ox1,0m, (m I( ) =)
9*h Ii 0*h
= Mym——— — T, My ————
* O O Y= Oxy o,
9%h "
= Mg + W nr
? 6$k67rs /_Zl ‘]7
s K h n
smce 27':1 T dupOm, — Tk J=1 -

Individual samples

We can apply this method of analysis to each half-month of data separately,
so we choose a particular half-month to illustrate the issues. The first period for
which reliable data were collected was period 2 in the 1964/5 season. Before we can

analyse the data, we need to make some decisions as follows.

Number of groups: We have to choose K. Hunt and Jorgensen (1999) discuss
this issue for fisheries length-frequency data, highlighting the point that some
older groups may have no fish or very few fish in the sample. Hence K is
impossible to choose from sample data alone. They conclude, and we concur,
that K should be chosen by the modeller. Our strategy was to eliminate data

greater than 130 cm, and to start with ' = 5. If one or more parameters
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was on the boundary of the parameter space, K was reduced by 1, and the
model refitted. It was quite common to end up with I{ = 3 or I = 4, but

occasionally ' = 2 or even K = 1.

Starting values: The starting values for py were derived from a growth model

fitted to corresponding tag-recapture data. For this, the k-year-old group was
assigned the age k + (7 — 0.5)/24 years, where j is the half-month index and
24 is the number of half-months. Thus, the five groups for period 2 in 1965
would be assigned the ages 1.0625, 2.0625, 3.0625, 4.0625 and 5.0625 years,
where 0.0625=1.5/24. From a seasonal VB logk growth model fitted to tag-
recapture data (Appendix Tag-Recapture), the estimated mean lengths are
fn = 55.0, fi, = 72.8, i3 = 87.8, i = 100.9 and ji5 = 112.2 cm. These
are taken as starting values for py. So that the optimisation routine could
not switch groups, the u; were assumed to lie between the bounds I, and wuy,
where I} = fi; — 30, Iy = (jie_1 + fix)/2 for k > 2, up =y for 1 <k < K -1
and ux = fig + 30 cm. The initial values of ji;, and the bounds for the South

Australian 1964/5 data are thus

Table 3: Initial estimates of pj, and bounds.

age group Iinitial value lower bound upper bound

k fk Uk U,

1 55.0359 25.0359 63.9349
2 72.8338 63.9349 80.3305
3 87.8271 80.3305 94.3443
4 100.8616 94.3443 106.5274
5 112.1933 106.5274 142.1933

The starting value for o was generally o = 4, and the proportions were assumed

to be equal.
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Proceeding in this way, we fitted a Gaussian mixture model to each half-month of
South Australian length-frequency data from 1964/5 to 1998/89. The results for
odd half months in the 1981/2 season are shown in Figure 1. The patterns seen
there are typical: the data display a number of modes, although the number of
components of the fitted mixture does not necessarily equal the number of modes;
the fit is sometimes excellent, and sometimes problematic; when the half-month has
only a few fish, the fit can appear very bad, and the fitted modes are little more than
mathematical artefacts. In most half-months, the allocation of fitted components to
age groups was easy and unequivocal. However, in a few cases an extra age group
(usually a young one-year-old group in the latter part of the season) appeared. This
mainly happened in the 1970s (1974 was the worst case). In such cases we usually
fitted a single age component to the bimodal group, although in 1974 half-months 8
to 11 we omitted the one-year-old modes from the summary statistics. The retained
data for the next phase of analysis were the fitted modes and their standard errors,
estimated by inverting the observed information matrix. We also kept the estimated
number of fish in each group. For example, for the most complex panel in Figure 1,

half month 7 of 1982, the summary statistics are set out in Table 4 .

Table 4: Fitted modes, half-month 7 in 1982.

age group fitted mode s.e. estimated
k fige # in group
1 63.0032 0.5611 225
2 81.1072 0.3419 648
3 102.5016 0.9188 259
4 113.9566 0.8886 182

The fitted modes for the 1960s, 1970s and 1980s are shown in Figures 2,
3 and 4 respectively. Here the estimated means [, from the maximum likelihood
fitting program are plotted against half-month, and means for different age-groups

are distinguished by a different plotting symbol. We estimate the number of fish
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in each age-group by multiplying the effective sample size (3 m;) by the estimated
proportions in each age-group. Groups with less than 50 fish are not included in
the next phase of analysis, because we doubt their accuracy in general. The three
figures show a consistent pattern. Although there are inconsistencies between years,
on average the means for a particular age group tend to increase up to about half-
month 6 and then flatten off. This is consistent with a seasonal growth pattern in
which growth is most pronounced over summer, but is quite minimal over winter.
Figure 5 overplots the summary data for all three decades. This suggests that growth

in the 1960s and 1970s was similar, but that fish grew faster in the 1980s.

Multiple samples: the Leigh and Hearn approach

Leigh and Hearn (2000) proposed a method for the combined analysis of
multiple half-month data, which we now discuss. When there are S independent

samples, the combined log-likelihood is

S

n K
h = Z Z mi; log <Z Wikgz‘k(lij)> .
k=1

i=1j=1
Leigh and Hearn (2000) assume that the components are Gaussian, with

1 lij — iie)?
gin(lyy) = exp <_(__J__H_’~)_> .

2ro 202

They could quite easily assume that o? varies with time, with component or with
the mean, but they assume it is constant for simplicity.

We shall be applying this model to the half-monthly length-frequency data
from Australian tuna fisheries. A season usually consists of three to six months of
fishing, so we typically have data from 6 to 12 half-months. Leigh and Hearn (2000)

assumed that the mean growth curve over a season is linear, so that

pir = ag + Br(ti — 1)

where t; is the time of the mid-point of the ith half-month, and ¢ is the mean of the
t;. The proportions 7, satisfy the usual constraints 0 < my < 1 and Z}[le ik = 1

but are otherwise completely unconstrained.
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If there are I{ components and S half-months, there are (K — 1)S proportioné
to estimate, 2/C trend parameters and o. This is (I — 1)S + 2/ 4 1 parameters in
total. For South Australia in 1966-67, for example, there were S = 12 half-months,
K = 4 components so that 45 parameters required estimation.

Maximisation of the likelihood was not straightforward. Initially we chose a
derivative-free optimisation algorithm, but it took several hours to converge. We
switched to a routine in which the user supplied first and second derivatives, which
converged in seconds.

Let

2
L[ o
96,00,

be the observed information matrix, where 6 is the vector of parameters, and 6y, is a
generic component. The asymptotic variance-covariance matrix is 7=!. We actually
want the submatrix corresponding to «y, £ and logo. In all trials, 7= could be
calculated directly without problem, and the relevant submatrix extracted.

We illustrate the method on the South Australian 1964/5 length-frequency
data. When we fitted the Leigh and Hearn mixture model with 4 age groups to the

1964/5 data, we obtained the results in Table 5.

Table 5: Leigh and Hearn (2000) estimates of linear

growth parameters: 1964/5 season.

age group  growth parameters

k Qay, B
1 59.69 1.81
2 77.84 1.28
3 92.76 0.60

.y

109.01 0.99

The estimates are derived from data from half-months 2 to 9, so that 59.69
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cms is the estimated mean length of one-year-olds at 5.5 half-months (mid-March)
and 1.81 cms is the expected increase in growth per half-month. We immediately
see a potential weakness of this method: if we extrapolate the one-year-old linear
growth model for 24 half-months, we predict that two-year-olds in mid-March will
be 59.69 + 24 x 1.81 = 103.13 cms, whereas the direct estimate is 77.84 cms.

It transpires that this is a bigger problem than might be anticipated. The
within-season growth for a particular age-group is being reduced to two summary
statistics (mean growth and slope), and this is simply insufficient to capture the
more complex growth patterns evident in Figures 2, 3 and 4. For this reason we
preferred to carry out the individual half-month analyses first, and to use the sum-
mary statistics from these as raw data for fitting growth models. This approach
does not come without some cost: first, the Leigh and Hearn (2000) approach is
unambiguous with respect to allocation of fitted means to age-groups, whereas the
individual analyses can be more problematic; second, the number of groups for a
Leigh and Hearn (2000) analysis is easier to determine.

It may be possible to compromise, and to fit a non-linear growth model us-
ing the Leigh and Hearn approach. The most common parametric models (such
as quadratics or exponentials) are not well-tailored to the data. However, a suit-
able model for initial analysis might be a monotonically increasing hyperbolic spline
growth model with an asymptote, somewhat similar to the models fitted by Grif-
fiths and Miller (1973). However, this is then quite complicated, and for simplicity
we prefer the two-phase approach of fitting the mixture model to each half-month
separately, generating suitable summary statistics, and then fitting a global growth

model from the summary statistics.
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Fitting a growth model to half-month summary
statistics

We assume that we have performed a mixture decomposition on the data for
each half-month, and we have generated a mode and an accompanying standard
error for each age group. Denote these by fi and s respectively. The standard error
s is obtained by inverting the observed information matrix. Let 7 index the seasoil,
J the half-month and & the age-group. We assume that we can allocate a mean age

a to the fish at half-month j and age-group k. Then our initial model is
fajk = p(@ijr) + 75 + vij + wip + ek + €4

where ju(a) is the mean growth of fish of age a, and 7, v, w, e and ¢ are all independent
random effects. We assume that 7 ~ N(0,02), v ~ N(0,02), w ~ N(0,02), € ~
N(0,0?) and € ~ N(0,s2). Thus 7 represents a random seasonal effect, v a within-
season random half-month effect, w a within-season random age effect and e is a
within-season half-month age interaction. Finally, ¢ represents sampling error, and
1ts variance is assumed known. Strictly speaking, €5k and e for k # k' and a given
¢ and j should be correlated, because ftizr; and fi;;1 have been derived from the same
mixture decomposition. In our experience such correlations are usually weak, and
they should be absorbed in the v;; random effects. Note that v;j and wyy, are crossed
within seasons — this is an occasion in which crossed random effects make sense.
The mean growth curve can depend on several (at least three) parameters.

A minimal model is the von Bertalanffy growth curve:

p(a) = pioo (1 — exp(—x(a — ag)))

where 1o, £ and ag are parameters to be estimated. It would be possible to add
the random effects to /i, to make x depend on cohort and to make ag vary with
age-group, for example, but we prefer to fit the most parsimonious model we can

to the data. However, one complication cannot be ignored. We have already seen
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that growth within seasons is faster in summer than winter, and any model fitted to
length-frequency data must capture this effect. The seasonal von Bertalanffy growth

I(t) = Loo|l —exp(—r(t —to+ (us/2m) sin(2m(t — wy)))]

where u; is the amplitude of the seasonal growth pattern and w; is the phase. The
condition —1 < u, < 1 guarantees that growth is monotone, and it is customary for
length frequency data to impose the constraint —0.5 < w, < 0.5 on the phase.

We assume that we estimate the parameters by maximising the likelihood of
the data. The data for each season are assumed independent, so we can add up the

log-likelihoods for each season. We can write the model in vector form as
i = p+ 1+ Xpv + Nyw; +e; + €

where fi; is vector of data and g is the vector of mean growths. Also, X, and X,
are design matrices: thus, X, ,,; = 1 if element m belongs to half-month j and is
zero otherwise.

We need to compute the likelihood within a season. The log-likelihood is
log A = —0.51og [V]| = 0.5(s — )’V (e — p)
and V is the variance-covariance matrix of the data. Now
V=02I+D,+011'+ 02X, X, + 02X X,

where D, is the diagonal matrix with diagonal elements d,,, = s . We can write V
as

V=D+XX

where D = 02 I + D, is a diagonal matrix and X = (0,1 0,X, 0,X,) is a design
matrix. Most software packages are unable to solve the likelihood equations for
this model, because the user cannot specify in advance the value of any variance

component. We now indicate how to maximise the likelihood from first principles.
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We assume that we are in an iteration trial of an optimisation routine, so that all
parameter values are known, and we need to compute the likelihood.

When calculating the likelihood we need to compute |D + X X'|, where X is
an n x p matrix, where n is the number of data values in the season, and p is the
number of design levels. Generally, n > p and sometimes n > p. For example, for

the 1980s length-frequency data from South Australia, we have

Table 6: Dimension of X' by season.

season n P
1979/80 26 17
1980/81 30 17
1981/82 31 17
1982/83 24 14
1983/84 11 10
1984/85 34 16
1985/86 36 16
1986/87 30 14
1987/88 29 15
1988/89 18 12
Total 269 148

Computations involving matrices of order n are generally proportional to n3,
so if we can make the computations of order p rather than n, we should increase
speed by about (269/148)% ~ 6 times. It turns out that this means about 2 or 3
minutes instead of 15 minutes, which is substantial.

We can use the following well-known identity to reduce the amount of com-
putation in this way: |[,, + XX'| = |, + X'X|, where |A| denotes the determinant

of the square matrix 4, and I, is the r x r identity matrix. Now |I, + X X'| is the
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determinant of an n x n matrix and |I, + X'X] is that of a p x p, so the latter
requires much less computer time to calculate. In fact, we need |D + XX'|. Set

Y = D71/2X and note that
D+ XX'=DYV?(I+YY")D'?.

Thus |D + XX'| = |D||I +YY'| = |D||[ +Y'Y].
We also need to be able to compute (I + XX')~'. We simply note that

T+XX)'1=T-X(I+X'X)'X".
This result is easily checked. In fact, we need (D + X X')~'. Note again that
D+ XX'=DV2(I+YY")DY?,

Hence
(D + XXYI)—l = D"l/Q([ 4 }_f}.’/)—lD_l/Q .
We need to compute (3 — /(D + XX') (i = o). Set a = D™2(j — p).
Then
(ﬂ — N)I(D + X}(,)ml(ﬂ - ‘u) — Q’I(I n y'}r/)—la
= (I -V +YY) Ve
_ a,/a o BI(I + yrllf)—lﬁ
= da-—fy

where « is the solution of the equations (I +Y'Y)y = f and 8 = Y'a.

Finally, we compute the log-likelihood as
log A = —0.5d; — 0.57.

Using this methodology we can explicitly include the sampling exrror with known
variance. It appears to be impossible to do this in any of the major statistical

packages using the inbuilt commands for mixed modelling.
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It is sometimes helpful to calculate the gradient of the likelihood as well as the
likelihood itself. This can speed up optimisation routines. For a growth parameter

0;, we have

ap
89

dlog A

— ‘f 1
20, (=)'

For a given suite of parameters, we first compute v, = V"1(1 — p) efficiently, using
the dimension-reductions techniques described above. The vector of partial deriva-
tives 0p1/ 00 is then computed — sometimes there are specific features of the growth
curve that can be exploited to help calculate these quickly.

The variance parameters are slightly more problematic. For a generic additive

error structure,
7 21/,
V= Z o;V;
J=1

the general rule is that

dlog A

5o = O[TV 4 (= W) VTV (= )]
0

where tr(.) stands for the trace of a matrix. Usually Vj is either diagonal or of
the form X;X7, where the number of columns in X; is small. The second term on
the right is just v, Vj vy, and we have already computed v,, so this term is readily

computed for either form of V;. If V; = D; is diagonal, then
r(V71D;)) ZD] i/ Di — tr(D; V2DV (1 + Y'Y) "1y D=2 ?)
If V; = X; X7, then
(VTIXGA)) = (X, DTLYG) — (XD (14 YY) Y'DVEX,).

The trace of a matrix M is the sum of its diagonal elements, but it is not always
necessary to compute all elements of A/ and then sum the diagonals. Thus for n x p
matrices 4 and B it is readily verified that tr(A'B) = Y1, %1 AijB;;. This can

be used to reduce the computational burden in most cases.
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Once the likelihood has been maximised, we need to calculate the random

effects. It is usual to use the BLUPs:

o= 21UV —p)
b= X,V (-
& = 62X Vi — p)

& = GV (-
Using our usual notation,
V(i =) = D7 (a—Y7).

The standardised BLUPs are obtained by dividing through by the relevant

standard deviation:

7i/6, = 6, UV - p)
0/, = 6, X, V(= p)
D)6y = Gu XV (i p)

&6 = GV (i—p)

These are scale invariant. The corresponding true standardised random effects (e.g.
7:/0,) have mean 0 and variance 1. If 4, = 0 for any random effect 7, then the
BLUPs and standardised BLUPs are obviously 0.

Trials of this method proved reasonably satisfactory when analysing length-
frequency data alone. The parameter estimates when fitting a seasonal von Berta-
lanffy growth model to the 1960s, 1970s and 1980s summary statistics are set out
in Table 7. We fixed s at 185 cm, because there were no data bearing on this

parameter.
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Table 7: Fitted VB growth model parameters, South Aus-

tralian Length-Frequency data,

~ ~ ~ ~ ~ ~ ~ ~

decade Moo R ag g Wy Or Oy 0w Oe

1960s 185 0.146 -1.46 0.878 0.088 0.557 0.620 1.182 0.997
1970s 185 0.141 -1.51 0.902 0.108 1.551 1.171 2.306 1.780
1980s 185 0.170 -1.16 0.720 0.185 1.428 0.010 1.461 1.911
combined 185 0.154 -1.32 0.753 0.130 2.454 0.831 2.152 1.738

The fits for the separate decades were not perfect: for example, the one-
year-olds in the 1980s did not quite fit the growth model. However, the fits were
adequate for preliminary interpretation. The growth parameters for the 1960s and
1970s are almost identical, but growth appears to be faster in the 1980s. The
seasonal parameters u, and w, appear to be quite sensible. The random effects
standard deviations do not show much consistency: about the only real pattern is
that o, and o, tend to be larger than o, and o,. This inconsistency may simply
reflect the lack of fit of the growth model.

A rather interesting pattern of random effects emerged from a combined anal-
ysis of all the length-frequency data. The estimated seasonal effects 75 are shown
in Figure 6. These are supposed to be estimated realisations of independent ran-
dom eftects, but they follow a reasonably smooth trend. It seems likely that growth
has been changing systematically over these three decades, and that this should be
incorporated into a time-dependent growth model. We attempt this in Appendix 8.

The method was not robust when used in an integrated analysis of tag-
recapture, otolith and length-frequency data: for example, either 6, = 0 or &,
was very large. Partly for this reason, and partly because of the inconsistency in

the estimates of o, 0,, 0, and o,, we decided to employ a simpler model
figr = paie) + eir + €ijk
when doing an integrated analysis.
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Other approaches

The approach adopted by Leigh and Hearn (2000) and the two-phase method
recommended in this paper are convenient, but more general approaches are theo-

retically possible. Here we outline two possible directions for future work.

Mixtures with multiple components of variation

A Gaussian mixture model with K components may be written as

K
L=S L%
k=1
where Zj, ~ N(pk,0%), Z1,Z0,...,Zx are independent and the I; are indicator

random variables such that I =0 or 1 and Z{.(zl I, = 1. There are various ways of

generating Iy, but a sequential method is appealing:
1. I = Jy;
2. I, = (1= Jy)Jy;
3. Iy = (1—J)(1 — Jo)J5;

and so on, where Jj, are independent Bernoulli random variables with Pr{J; = 1} =
Pk, so that Pr{l; = 1} = m, where 7, = H?;ll(l — pj)pk. It is convenient to define
the vectors I = (I1,...,Ix) and Z = (Z1,...,Zk)".
When we have a sample of size n, the model becomes
K
Li=Y LiZ
k=1
where Iy = (I, ..., Lix)' ~ I and Z) = (Zity. .., Zix) ~ Z are independent from
fish to fish. This model generates the likelihood (1) that we maximise for a single
sample.
If there are multiple sources of variation, then we can generalise the mixture

model by setting
Zik =T + V; + T/Vk + E’ik
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where T ~ N(0,02), V; ~ N(0,02) (i = 1,...,n), Wy ~ N(0,02) (k =1,...,K)
and Ey. ~ N(u,07) (i=1,...,n;k =1,..., K) are all independent. Then

K

Li=T+Vi+ > Li(Wy+ Ey).

k=1
Note that the marginal distribution of W = YK | I, W, is N (0,02), but that
the correlation between W; and W is .77 when i # /. Hence W* represents
covariation between L; and L; intermediate between that caused by T° (correlation
1) and V; (correlation 0). For this reason, it is probably more realistic than either
T or V.

We first look at the effect of V;. Consider a single observation, so that the

model is

K
L - ‘? + Z [kEk .
k=1
where V.~ N(0,07), Ej. ~ N(uy,02) and V and (Ey,..., Fg) are independent. We

write the density of V" as g(v) and of Ej, as g;(e). Then
Pr{L =1} = /OO Pr{V = v} Pr{L =]V = v} dv

0 K
= / Pr{V =v} Pr{d LE,=1-v|V =v}dv

k=1

= /_O:Og(V) {k: Tege(l — V)} dv
= éwk /_O:O g() gl —v)dv.

Now [Z5, g(v) gx(l — v) dv is the density of V' + Ej, which is N(j, 02 4+ ¢2). Hence

Pr{L=1} =Y moi(l)
k=1

where ¢y is the density of a N(u, 02 + of) variate. Thus L is a K-component
Gaussian mixture, in which component & has mean gy, and variance o2+ o2, At first
sight this result seems rather curious, because (V 4+ E;,...,V + Er) are correlated
through the common V. However, (I;V,..., IxV) are uncorrelated. In words, only

one Ej. of (E,..., Ek) is chosen, and the realised value is V + F.. If component
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k is chosen, the value of the other components is effectively 0, so their dependence
on V is irrelevant. From an inferential viewpoint, we can forget V' in the model,
because its effect is to simply inflate the variance of component k.

Hence, without loss of generality, the mixture model with multiple compo-

nents of variation can be reduced to a hierarchical model
Z,jk =T+ I/Vk + Ez’k

where T~ N(0,02), Wy, ~ N(0,02) (k = 1,...,K) and Ejy ~ N(u07) (i =
1,...,n;k=1,...,K) are all independent.
Temporarily drop T" and consider the model

K
Li = I(Wy + Ey)
k=1

The log-likelihood of data generated from this model is difficult to compute, because
the data are dependent. However, we can ameliorate the situation somewhat by
writing

where Z; is the Gaussian mixture,

K
Zi = Y IuEy,
k=1
K

T = Y nuW
k=1

and
K

"fi = Z (ij - 7Tk)I/Vk .
k=1

Then T and Z; are independent, T and V; are uncorrelated, and V; and V; are
uncorrelated for 7 # j. If we treat T and V; as independent, then we can calculate

the likelihood of the data. We leave this for future investigation.

Variable spawning times

The spawning period for a species can be quite broad; for southern bluefin

tuna, spawning lasts for several months. Thus far, our modelling has not taken into
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account variable spawning times. To explore this issue, consider fitting a generic
growth model to a single sample. The growth model for a single fish of length L
and age a is

L=1Lsfla—ap0) +e,

where L is asymptotic length, ag is the extrapolated age (usually negative) at which
the fish has length 0, and f is a monotonic increasing function with parameter set
6 that equals 0 when @ = «qg and approaches 1 as @« — oco. For the familiar von
Bertalanffy curve, f =1 —exp(—r(a—ag)) with # = {x}. We normally assume that
Lo 1s Gaussian with mean ji, and variance o2, and that e is Gaussian with mean

0 and variance o?. Hence L is Gaussian with mean and variance

pr{a) = peo fla—ag;0) (2a)

or(a) = o2 f*a—ay;b)+ o> (2b)

Recall that the majority of southern bluefin tuna spawn between about
October and March, with the midpoint estimated to be January 1. The youngést
fish present in South Australian waters in a given year (say 1970) will be the one-
year olds spawned during the previous spawning season (between October 1968 and
March 1969). We assign them the index k& = 1, and denote the proportion of one-
vear-olds by ;. In general, there are m fish of age k. For a k-year-old fish caught
at fractional time ¢ into the year, the age of the fish is k +¢+ A, where A represents
the variable spawning time. We assume that A ~ N(0,0%). The mean is 0 because
peak spawning is assumed to occur on January 1, and ox is about 6/52, so that
about 70% of spawning takes place over a 12 week period centred around January
1. Note that A > 0 for fish spawned early in the season (prior to January 1), and
A < 0 otherwise.

Let the random variables I and L denote the age group and length respec-

tively of a randomly caught fish. Then

Pi{L=1} = Y /°° Pr{L = I|A = 6, = k} Pr{ = k, A = 6} d§
k —o0
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T $(0/05) 45

oA

where p15 = pg(as), o5 = or(as) (see equations (2a) and (2b)), ag = k + ¢ + 4§ is the
age of the fish and ¢ is the standard Gaussian density function. The integration
must be carried out numerically. This is not difficult in principle, although we have
not seen such an analysis in the fisheries’ literature. If we make the assumption that
o5 = or,(k+1) so that it does not depend on ¢, and that p is (locally) linear in § (so
that us =~ pr(k+t)+ 89, where g = p (k+1)), then we can carry out the integration
explicitly,. We end up with a Gaussian mixture model in which component k has
mean jur,(k 4 t) and a slightly inflated variance 0% (k +t) + %0%. This is effectively
what we are doing in our data analysis, where we assign all fish in age group k
the age k +t. For most commonly-used growth models, oy, (k + t) increases with
age-group k, but 3 declines with k. These counter-balance to some extent, and as
a compromise we fit constant group variances when fitting Gaussian mixtures to
length-frequency data.

In practice, the proportions m will vary considerably between half-months
because of the schooling nature of southern bluefin tuna, their highly patchy distri-
bution and differential movement/migration with age. Additionally, there is proba-
bly considerable year-to-year variability in the porportion of an age-class that comes

from a particular period in the spawning season

Conclusions

The results in this Appendix confirm the usefulness of length-frequency data
for understanding growth processes, and that within-season growth can be detected
and modelled. A number of previous publications have investigated how such growth
information can be extracted. However, our study emphasises features that previous

studies have not considered in detail.

1. Length-frequency growth patterns do not conform tightly to parametric growth

curves. There appear to be significant additional sources of variation operat-
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ing between seasons, between age-groups within seasons, between half-months
within seasons and between age-groups and half-months within seasons (in-
teractive effects). We are unable to offer explanations for all of these effects
in terms of covariates, and suggest that initially they should be modelled as
independent hierarchical and crossed random effects. Otherwise standard er-
rors of growth parameters derived from length-frequency data are likely to be

optimistically small.

. Despite this complexity, each decade of southern bluefin tuna data consistently
exhibits a seasonal pattern, in which growth is fastest over the summer, but
flattens off in autumn. We propose that this seasonal growth can be modelled
using a sine curve with amplitude and phase parameters estimated from the

data.

. Broad changes in growth from year to year can also be observed from the esti-
mated between season random effects. For southern bluefin tuna these appear
to be rather smooth, and suggest that they should be modelled as systematic
effects rather than random effects. At a qualitative level, the mean length of
one-year-old fish has changed only in minor ways between 1960 and 1990, but
the age four fish in 1990 are considerably longer than those in 1960. Quanti-
tative modelling of this trend is a large topic, which consider in Appendices 8

and 10.

Although length-frequency data provide unique and valuable information for

modelling growth, they generally do not contain information on older individuals

and thus are not adequate by themselves. The modelling approach used in this

Appendix required us to assume a mean asymptotic length for southern bluefin

tuna. We chose a value of 185 cm based on other studies, but the results over the age

range represented by the length-frequency data are not sensitive to the value chosen.

Tag-recapture data uniquely provide good information on individual fish variation,

because there are two measurements per fish rather than one. The available otolith
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data are biased towards older fish, and thus provide direct information on the mean
asymptotic length. A comprehensive model for southern bluefin tuna growth requires
an integrated analysis of length-frequency, tag-recapture and otolith data, each of

which provides essential input into the final model.
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Figure 1. South Australian 1981/2 length-frequency data and fitted Gaussian mixtures.
The scaled length-frequency data are plotted for the first half of December, January,
February, March, April and June (half-months -1, 1, 3, 5, 7 and 11 respectively). For each
period, a Gaussian mixture with 2, 3, 4, 3, 4 and 2 components respectively has been
fitted. For the vast majority of half-months the number of components to fit was self-
evident. Mostly the fits were excellent, but the 1981/2 season has been chosen

deliberately to illustrate a case where the fit was problematic (half-month 7).
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Figure 2. Fitted modes for age-groups 1, 2, 3, 4 and 5+ in the 1960s plotted against half-
month. The estimated modes from the Gaussian mixture fitting program have been
assigned to age-groups, with 1, 2, 3 and 4 year-olds plotted as circles, triangles, plusses
and crosses respectively. (Diamonds correspond to 5+ year-olds, but we do not use this
data in subsequent analyses.) The 2 and 3 year-olds are numerically dominant, and on
average their modes tend to increase up to half-month 6 and then flatten off, reflecting

faster summer growth.
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Figure 3. Fitted modes for age-groups 1, 2, 3, 4 and 5+ in the 1970s plotted against half-

month. The symbols are the same as in Figure 2. Although the seasonal growth pattern is

still evident, the plot is not as ‘clean’.
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Figure 4. Fitted modes for age-groups 1, 2, 3, 4 and 5+ in the 1980s plotted against half-
month. The symbols are the same as in Figure 2. There is good separation between age

groups and a clear seasonal growth pattern.
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Figure 6. Estimated between-season effects plotted against season. These are supposed to
be estimated realisations of independent random effects, but they follow a reasonably
smooth trend. It seems likely that growth has been changing systematically over these
three decades, and that this should be incorporated into a time-dependent growth model.

The complex pattern in the 1970s may explain the poor separation between age groups in

Figure 3.
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Introduction

The von Bertalanffy curve is the dominant and primary model of fish growth.
It states simply that a fish grows exponentially in length as it ages. More exactly,
fish growth is proportional to 1 — exp(—ka), where x is an unknown constant and
a is the age of the fish. The proportionality factor is sometimes a constant, but in
modern studies is more often a random variable representing the asymptotic length
specific to a given fish quite. The von Bertalanffy curve adequately describes fish
growth for many species, and, although many alternative models of fish growth
have been proposed, its prevalence persists. Part of its popularity can be ascribed
to its simplicity, and part to its derivation from a differential equation that is easily
generalisable to more complex growth environments.

Modelling fish growth is important because it forms a direct input into stock
assessments, from which sustainability of the fishery can be assessed, and quotas and
other management measures can be determined. Southern bluefin tuna are of huge
commercial importance to Australia, and have been intensively studied over many
decades. A large spatio-time series of data has been accumulated, which, for our
purposes, means that changes in growth might be estimated. Very few Australian
fisheries enjoy such a sustained level of recording. With southern bluefin tuna levels
falling to marginally sustainable levels, it has become more important than ever to
understand the growth patterns of this species.

In this Appendix we generalise the von Bertalanffy growth curve by making x
a smooth function of time. We adopt a parametric modelling approach, but employ
enough parameters to capture long-term changes in growth. Our parametric model
is sufficiently flexible to imitate regression splines, but nevertheless is an explicit
expression that can be stably evaluated without recourse to any recurrence relation.
Our philosophy is to commence with a simple growth model with complex error
structure. We estimate the error components, examine the estimates for non-random
structure, and transfer such structure to the growth model. OQur final model is a

reasonably complex growth model with non-trivial error structure.
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In this Appendix we introduce some alternative time-varying von Bertalanfty
growth 1110dels, including a link to polynomial splines. We demonstrate how to in-
corporate seasonal growth rigorously and suggest how to generalise the time-varying
von Bertalanffy growth model to a more complex growth curve. Finally we fit the
time-varying von Bertalanffy growth model to some length-frequency data and some

tag-recapture data.

The von Bertalanffy growth curve in a changing
environment

Wang (1998) has proposed the following generalisation of the von Bertalanfly
growth curve. Suppose a fish has length 0 at time ;. Then the growth rate at time

t is given by

U(t) = (Lo —U(B)K(), (1)

where k(t), the function that controls the growth rate, may depend on time, but
the asymptotic length L, although random, does not change its distribution with

time. The solution is
I(t) = Luo|l —exp(—K(to,1))]

where K(to,t) = [ k(u)du. The von Bertalanffy growth curve is recovered if
k(t) = k for all ¢, but we wish to model the growth curve in an environment in
which the growth curve is changing with time. An advantage of this approach is
that covariates that explain the change in growth may easily be introduced into
the model, as Wang (1998) has indicated. However, our thrust in this paper is to
provide models when it has been observed that growth is changing, and we merely
wish to describe the change in growth through modelling. We first propose various

ways in which k(¢) may be modelled in a flexible but parsimonious manner.

It would be rather simpler to generalise the von Bertalanfty by substituting a

time-dependent growth rate function k(t) for K in
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Loo(1 — exp(—r(t — to))). However, the derivative of this form does not have a

simple interpretation.

Logistic time trends

We first suppose that the growth rate k(t) varies according to a series of su-
perimposed logistic curves. It is clear intuitively that such a model has the capacity
to follow changes in growth. It is aimed at situations in which a von Bertalanffy
growth curve applies, then a change in environment dictates that growth changes,
until a new von Bertalanffy growth phase is achieved. The model allows for several

such transitions, often in concert. Thus, set

n 1
where a; < ap < ... < «, and B > 0. Note that ¢ is time, and hence spans the

whole real line. Ast — —oo, k() — n&, and as t — oo, k(t) - X, &. The
& values can be any number, positive or negative subject to k(t) > 0. We could
also make 3 depend on 7, but that is likely to make the model over-parameterised.
Although equation (2) encapsulates the reasoning for this model, it is not a suitable
form for computation. In fact, we investigate two alternative parameterisations of
the model. The first compares and contrasts owr approach with that of polynomial
splines. The second is computationally robust, and is particularly suitable for non-
gradient optimisation methods.
First alternative parameterisation

There is an indirect link between (2) and quadratic B-splines, which we ex-
plore further in a later section. This provides some insight into the behaviour of the

model. We set the scene here. Set

where
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bilt) = ! for i =1 q
i(t) = - ori=1,...,n—
1+exp(—=B(t—oy)) 1+4exp(=B( — air1))
1

bo(t) =

1+exp(=B(t —an))

The ¢s may be recovered from the ks by & = ro/n and & = k;—Ki_1++o/n. The bi(t)
functions share some of the properties of natural polynomial B-splines, particularly
quadratic B-splines (Schumaker, 1981, Section 8.2). They are non-negative, and for
1 <i<n—1, bt) is unimodal with its peak at (a; + a;11)/2. In addition, b(2)
decreases from 1 to 0 and b, (¢) increases from 0 to 1 as ¢ increases, as with natural
B-splines. Obviously 3% ,0;(t) = 1 for any t. The b;(t)s differ from B-splines in
that they have infinite rather than finite support; that is, they are non-negative fbr
all ¢, not just a finite range. Also, they depend on a parameter, 3, unlike B-splines.
They are more easily computed than B-splines, which is why we prefer them.

The B-spline properties of the b;(t) functions have important consequences
for modelling. First, as t — —oo, k(t) — ko and as t — 00, k(t) — Ky, so that ko
and k,, are easily interpreted. Also, it can be important when fitting the model to
data to confine k(t) to a sensible range of values. If k; < k; < K, for all 4, then
K < k(t) < K, for all t. When fitting this model to data, one or more of the bounds
may be reached during the fitting process. Such bounds need to be expanded and
the fitting routine re-run. Even though it is much preferable to (2), convergence can
still be quite slow with this parameterisation.

Suppose the fish is of length 0 at time #y. An advantage of the logistic form
is that it can be explicitly integrated. The key identity is

dt _, log(1 + exp(=8(t — @)))
1+exp(—B(t—a)) tt+ &) '
Thus
/t: bo(u)du = “‘[771(15); M (to)]
/tt bi(u) du = [7:(¢) — ms(to)] — [/;7i+1(t) — )] 1

t o, () —m(t)
/tobn(u)du = g
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where 7;(t) = log(1 + exp(—3(t — «;))). Hence the growth curve for a fish with

1 4 e—Bt—a) —(ki—Ki—1)/B
{ 1 + e—Bto—ay) } (3)

if £ > t5. Of course, I(t|tp) = 0 if t < ¢5. Note that the growth depends on all n

length 0 at time ¢, is

n

I(tlto) = Lo (1—e-~n<f—fo>

=1

component logistic growth rate curves, even if ¢, > «; for some 1.
Suppose we set x; = « for all 2. Then (3) becomes the simple von Bertalanffy
model with growth rate parameter x.

For model building, we suggest two approaches:

(a) fixing the o; values on a regular grid spanning the data, with a maximum
density of one a per year, and then estimating the x; values with the other

parameters associated with A and the error structure;

(b) fitting the o; values, but making n as small as the data allows.

Capture-recapture data: Suppose that the time from ¢, to first capture is a random
variable A, initially assumed to be identically distributed for all fish. Then,

conditional on A = a, we can set to = ¢; — a, so that (3) becomes

14 e—Bt—a) —(Ki=~Ki~1)/8
{1 + e Bt1—a—ay) } (4)

Hence we can write down the joint likelihood of /;, the capture length at time

n

l(t|t1, (L) = Loo (1 _ 6~Hn(t_t1+a')

1

t1, and [, the recapture length at time ¢,. At time ¢t =#;, ¢t — ¢, + @ = a, the

age at capture, and at time t = ¢5, t — t; + a = ay, the age at recapture.

A complication is that the distribution of A may depend on ¢, particularly if
the tag-recapture data extend over three decades, as is the case with southern
bluefin tuna. The modelling can still be done, but requires that p(alt), the
density of A, must depend on time. If A was log-normal for example, we might

assume that the mean of log A depends on time, but not the variance.
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Length-frequency and otolith data: For length-frequency and otolith data, we know
the age a and the time ¢ of length measurement for each fish. We also know
the time ¢. To model the data, we set tg = t — a+ ag, where a¢ is a parameter
to be estimated. It is possible that we may need to allow ag = ao(t) to be a
simple function of time. Note that ¢ > 0 and usually ao < 0, so that ¢, < t.
Thus when analysing otolith or length-frequency data we do not have to worry

about forcing I(t|tg) = 0 for t < t,.

Second alternative parameterisation
Although B-splines are often recommended for computation, there is another
way to parameterise the model that is more robust, in our experience. It can be used
for all data types, although we illustrate it with length-frequency data. Choose n+1
times Oy < 0; < ... < 0,, and let ly, ... I, be the mean lengths of, say, two-year-old
fish at these times. It is important to choose an age group ag heavily represented in
the data, and two-year-olds dominate the tuna catch. The 6, ..., 8, may be fixed or
variable. One possibility is to set 6; = (aj+a;41)/2for j =1,...,n—1, and 6, and
0,, the start and end of the data collection period. We use lo, ...,[, as parameters
in place of kg, ...,k Given all the parameters, solve the following n + 1 linear
equations for k, and Kjq = K; — Kj_1:
n
log(1 —l;/pee) = — Z:ldij Kja — (ag — Qo) Kn
j=

where

di; = [log(l+ exp(—B(6; — a;))) —log(1 + exp(—F(0; — ag + a0 — a;)))|/B -

fori =0,...,n. In d;;, and elsewhere in this Appendix, we calculate log(1+ exp(z))
in a stable way as log(1 + exp(z_)) + z; +log(1 + exp(—z4)) — log(2), where z; =
max(z,0) and z_ = x—xz. This is suitable for scalars, vectors, matrices and arrays.

Solvers for such linear sets of equations are available in most mathematical
computing packages. The kjq (j = 1,...,n) and &, are precisely the quantities

required for calculating the mean lengths for all the data. The advantage of this
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parameterisation is that the data bear directly on the /; parameters, and it is very
easy to constrain them to sensible values. Such stable parameterisations for non-
linear models were promoted heavily by Ross (1975), and in more detail by Ross
(1990). They are very useful when used in conjunction with gradient-free opti-
misation methods, but gradients and Hessians can be tedious to compute. Stable
parameterisations of fish growth models have been promoted by Schnute (1981) and

Francis (1988).

Polynomial spline trends

It is not compulsory to use logistic curves to model the trend, and we illustrate
alternatives. Perhaps the most obvious is to use cubic splines, which can also be
explicitly integrated. Thus, set

k(u) = Zl n;Bi(u)

where B;(u) are the B-splines for a fixed set of knots. A cubic B-spline typically
consists of a set of 4 smoothly linked cubics on 4 adjacent intervals: the B-spline
has finite support and looks somewhat like a unimodal hill. To compute B-splines
in a stable way, it is necessary to use a recursive algorithm. Mathematical packages
will often have routines to calculate B-splines. However, we need the integrals of
the B-splines, which are not generally available, so we move on to another type of
spline.

It is important to clear up immediately the differences between the logistic
b-splines b;(t) and the polynomial B-splines. For equally spaced knots, the logistic
b-splines have their maximum half-way between the knots, as do the even order
polynomial B-splines (quadratic, quartic and so on). We examine quadratic B-

splines, which we differentiate from cubic B-splines by using the symbol Q. For
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knots at 0, 1, 2, 3 the quadratic B-spline with maximum at 3/2 is

z?/2 0<z<1;
(—22% + 62 —3)/2 1<z <2;
Qi(z) =
(3 —x)%/2 2<x <3
0 otherwise.
\
For knots at 0, 2, 4, 6 the quadratic B-spline is
{
(x/2)%/2 0<z<Y
(—2(z/2)? 4+ 6(x/2) —3)/2 2<x <4
Q) =
(3 —z/2)%/2 4 <z <6
0 otherwise.

The relationship is clearly Qo(z) = Q1(x/2). If the spacing is h, then Qn(z) =
Q1(z/h). This of course covers changes in scale.

We first compare @Q;(z) with the logistic b-spline b;(x) with knots at 1 and 2
and maximum at 3/2. If we search for the 3 that minimises [(b;(z) —Q1(z))? dz, we
find that 8 = 3.988. As an aid to memory, we adopt 3 = 4 as a good approximation.
Visual inspection suggests that b;(z) and Q;(z) are very similar, with the maximum
absolute difference being 0.021 at z = 0.1 and 2.9. The peak values are about 0.75.

It follows immediately that if the spacing between the knots is h, then by(x)
(with knots at k and 2h) and Qn(x) (with knots at 0, k, 2k, 3h) agree most closely
when 3 = 4/h. If we choose n uniformly spaced knots to span data with range r,
then h = r/n. Hence we recommend choosing § = 4n/r when fitting the logistic
model (3) to such growth data. This argument assumes evenly spaced knots, but
we suggest that this choice of § is reasonable when fitting unequally spaced knots
as well. We suggest that 3 should be fixed at this value at least until the final form

of the model is established.
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Hyperbolic splines

We can also use hyperbolic splines. Thus

k(t) = po+mt+> nihi(t), (5)

=1

1
hi(t) = 5 <\/(t~ai)2+')’2+t~ \/az-2+'y2> :

It transpires that h;(¢) has an explicit integral. Let

hMz)= /22 +~2 + .

where

Then
2 /h(:c)d:c = zh(z) + logh(z) + ¢ =4r(z) +c

where ¢ = 4% log2 is a constant. Thus

2hi(t) = h(t — o) + ¢

where ¢; = a; — \/a? + 2. Hence

¢ ¢
41 h(u)du = 2/ (h(u — ;) 4 ¢;) du
to to
t—o;
= 2 (h(u) + ¢;) du
to—a;

= (t—ay)h(t — ;) — (to — ay)h(to — o)

+*log h(t — ay) — ~* log h(ty — o) + 2(t — to)ey

If

4(7’(t - Cl’i) - 7’(t0 - QCL)) + Q(t — tO)Ci .
Hence the growth curve for a fish with initial length time ¢, is

I(tlte) = Leo (1 — e Hot—to)—m (~13)/24+> " | ‘rh'[T(t—ai)—7‘(to—ai)+(t—to)cz'/2]) .

The logistic trend curve model seems a bit neater. Of course, we could difference

the hyperbolic functions to express the model in terms of hyperbolic B-splines.

A8-10



Appendix 8: The von Bertalanffy growth curve in a changing environment

Seasonal effects

Southern bluefin tuna, in common with many other fish species, grow much
faster in summer than in winter. We would like to be able to incorporate such
seasonal effects into our growth model. A common model for the seasonal von

Bertalanffy curve is
U'(t) = (Lo —1(t)) k(1 +uscos(2m(t —wy))),

where & is a constant and u, is the amplitude and w; is the phase of the seasonal
effect. The amplitude has bounds —1 < u, < 1 so that I’() is non-negative, and it
is convenient to constrain the phase to —0.5 < w,; < 0.5 for southern bluefin tuna.

When integrated we get the model
() = Lol —exp(—r(t—to+ (us/2m) {sin(2n(t — w;)) — sin(27(to — ws)})]
It is usual to just fit the model
I(t) = Le|l —exp(—r (t —ty+ (us/27) sin(27(t — wy))))

by combining the constants ¢, and (u/27) sin(27(to — w,)) into ;, but is must be
borne in mind that ¢; is no longer the time of 0 length.

We now turn to the situation in which x is a function of time, k(t). For
explicitness, focus on the logistic trend model for k(¢). There is a trick to including
the seasonal effect in this type of model. Let s(t) = (us/27) sin(27(t — w,)) be the

seasonal effect. Then we generalise (1) to
I(t) = (Lo —1(t) k(t+5)(1+5), (6)

where s’ = ds/dt. Of course, this is the same general form as (1), because k(¢ +
s)(1 + &) is just a function of time. The trick is to include k(t + s) in (6), rather
than k(¢). Now note that

1+ B log(1 + exp(—f(t + 5 — a)))
1+ exp(—B(t+ s —a)) dt=(t+s)+ B .
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Hence

I(tlto) — Loo <1 t+S to— SO) H

1 4+ e~ Blths—ay) | ~Kimri=1)/B
{ 1 + 6—6 t0+30_01) }

Thus we have an explicit rigorously derived equation including the seasonal effect.
If desired, so may be absorbed into t,.
) Y
When analysing data, we use the following forms.

Capture-recapture data: Equation (4) generalises to

1 4 e=BltHs—ay) ) ~(wi—ri1)/B
{1 + 6—/3 tl Q+So Qz)}

where a is a realisation of A, the random time between length 0 and capture, and

l(t]tl,a,) = L (1 n(t—t1+a— so)H

so = s(t; —a). When t =t; — a, I(t|t;,a) = 0.

Length-frequency and otolith data: We know the age « of the fish at capture. Hence

1+6—B(t+3 Qz) —(Hi_’{'i—l)/ﬁ
{ 1 4+ e—B(t~ataotso—a;) } ")

where 5o = s(t — a + ag). When ¢t = t3, a = ao and s = S0, so (t|a,ap) = 0. For

to =1 — a—+ ag and

l(tla,a0) = Lo <1—e (a~ GO+HO>H

length-frequency data, and sometimes for otolith data, southern bluefin tuna are

assigned 1 January as a birth date, so that ¢ — ¢ is an integer. Hence sy = s(ap).
When using optimisation routines to fit this model, it is helpful to have ex-

plicit expressions for the first derivatives. For the record, the formulae are given

below. For a generic model of the type
1(t;0) = Loo (1 — €/59)

where 6 is a vector of parameters and p(.) is a function, the partial derivative of

I(t; 0) with respect to one of the parameters is

ol(t; 0 t: 9)
ég. ) = —(Leo — U(£;0)) ( :
For the model (7)
pt;0)= = —rpla—ag+s— 50) — Z (_’L”____/jii“_l_)a
i=1
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where

P, = log(1 4 e Pt+s=e0) _1og(1 + g~ Altataotso—ai)y

Hence the derivatives with respect to x are

%

Orkig = Pl/ﬁ;

(:)9/) = (Pj—Pj1)/8 for1<j<n—-1;
Kj

0

{-),fn P./B — (a—ag+s— o).

The derivatives with respect to a are

ap ) i 1 1
"(r_)'a; - _(fvj - /‘vj—l) 14+ e—B{t—atao+so—a;) - (1 + e—B(t+s—aj))
for 1 < j < n. The derivative with respect to ao is

dp
- = (1 !

aao ( + 80) Q
where s = §'(t — a+ ag) = u, cos(27(t — a + ap — w,)) and

1
1 4+ e—B(t—atao+so—as)

Q=Ko+ Z(f% — K1) )
i=1

The derivatives with respect to u; and w; are

ap _ ) Os dso Os & ) ) 05y & )
Ou, - (aus - aus) B Ou, ;(hl - M_l.)RIL - Ous ;(hl - H/?'“l)ROZ
ap B ) Os dso ds &, ) 05¢g & i i
w, - <aws a aw3> B Ows ;("% )R w, Z;(M ~ 1) o
where
1
Rj - 1+e—5(t+s~«a]~);
1
Roj -

1 + e~ Bt—ataotso—a;)

A time-varying VB log k£ model

So far we have only discussed the time-varying von Bertalanffy model. There

are many other growth models that may be preferred. In Appendix 4, we introduced
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the ‘VB log &’ model, defined by

1
1 4+ exp(—Fo(t —to — ap))

k() = k14 (k2 —Fky) (8)

Here ¢ represents time, but the model only depends on age t — ¢,. For t < ty + v,
k(t) = ki, and for ¢ > to + v, k(t) = k. As t increases, k(t) makes a smooth
transition from £; to k. The rate of transition is governed by S, being sharper for
larger By. We discovered that the model provided a significantly better fit to 1980s
southern bluefin tag-recapture data than a simple von Bertalanffy model.

The obvious way to make this model depend on time is to make %; and k-

functions of time:

1
1+ exp(—Lo(t — to — ag))

k() = kai(®) + (Ra(t) — ka(2)) (9)

In general this model is intractable, and probably over-parameterised, but there is
one obvious tractable case, namely to set k1(t) = k(¢), defined in equation (2), and
ka(t) — ki(t) = ka1, a constant. This case assumes that k;(¢) and Eo(t) vary in
parallel. If k) (t) = & for all ¢, it becomes the VB logk model, and if ko = 0, it
reduces to the time-varying von Bertalanffy model.
For the tractable case,
¢ ¢
/to Elu)du = /to Ei(w) du + ko (¢ — to)

+ %)1- (log[1 + exp(—PBo(t — to — ap))] — log[1 + exp(aofh)]) -

Hence the growth curve for a fish with initial length time ¢, is

[(tlto) = Leo (1— €07 g(t,t,)) (10)
where
n 1 + e‘ﬁ(t“ﬁ'i) —Kid/B 1 € e—ﬁo(t—to—ﬁ‘o) —k21/B0
gtte) = Il |\ == ‘ (11)
1 1 4+ e—Blto—ai) 1+ efoao

for t > to, k = kp + ko1 and kg = K; — k1. Of course, I(t|ty) = 0 if t < to. We shall

not attempt to fit this model to any data in this chapter.
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The seasonal version of (10) is
l(t‘to) — Loo (1 _ e—n(t—i—s—to—-so) g(t + s, to + 30)> .

Decade by decade analysis of both length-frequency data and tag-recapture
data suggests that the traditional von Bertalanffy model is an adequate approxi-
mation for the 1960s, but that the VB logk model is needed for the 1980s. The
time-varying VB log k model that we have described in (10) is not flexible enough to
capture such a transition. A first modification would be to make kog; (t) = ka(t)—ka(t)
a linear function of ¢ (as in kg () = a + bt). Unfortunately, k(t) does not have an
explicit integral in terms of elementary functions. However, we can use the fol-
lowing trick. For a fish with starting time %y, and for given g, write ki (t) =
a + b(ty + ap) + b(t — to — ap). Then the contribution of the linear component of
k21 (%) to the integral is

/t u—ty — oy d 1 /t* y p
U = — _
o 1+ exp(—fo(u — fo — ag)) 3 Jis T+exp(—y) "

_ 1 / __y___dy_/to v
B2 |J-300 1 + exp(—y) ~300 1+ exp(—y)

- %{f(t*) _I(t))

where t* = Bo(t — to — o) and t§ = —8y ag. The lower integration limit of -300 in
I(t) is imposed because oo and [y have upper bounds of 10 and 30 respectively in
practice. The integrand y/(1 + exp(—y)) does not depend on any parameters, so we
can compute I(t) on a fine grid t = —300 + nd for n = 1,2,3... using an accurate
numerical integration algorithm prior to parameter estimation. During parameter
estimation, I(¢) can be calculated by interpolation: I(t) ~ (1 — f)I(—300 + n:5) +
fI(—300 + (ng + 1)8), where ny = (¢t + 300)/6] and f =t — n,d.

Alternatively, we could take a pragmatic approach, and make ko in (10) a
suitable function of . Given that the linear model for ko () is an approximation,
this is probably the best compromise.

There is another exact approach that can bypass the need to integrate. Let
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z(t) be a monotone increasing function of time, and set

le(]. + Z/(t))
1+ exp(—Po(t — to + 2(t) — 2(to) — ag))

Then the length model is given by (10), but with the factor

{ 1 4 e—Po(t—to—ao) }_km/ﬁo

k(t) = ky (t) +

1+ ePo oo
in g(¢,t0) (equation (11)) replaced by

1 4 e—Bolt—toF2()—2(to)—ao) } ~X(1)/Fo
{ 1+ ePoao }

where X(¢) = k21(1 + 2'(¢)). The seasonal model generalises in the obvious way, by
replacing ¢ by ¢ 4 s and ¢y by to + s¢ everywhere.
The important point is that ) (¢) can change with time. Judicious choice of

X(t) can allow for the transition from von Bertalanffy to VB log k model with time.

Fitting the time-varying von Bertalanffy model to

southern bluefin tuna data

South Australian length-frequency data

We first fit the time-varying von Bertalanffy model to South Australian
length-frequency data. The raw data are length measurements generated from com-
mercial fishing operations. They represent samples of landed fish accumulated over
each half-month of the fishing season. The analysed data are the estimated compo-
nent means and standard errors for age-groups 1 to 4 from 1964/5 to 1988/89. We
use the estimation procedure described in Appendix Length-Frequency: the model

for season 7 of data is, in vector form,
Yi= i+ 11+ Xovs + Xow; + € + ¢

where y; is vector of data and y; is the vector of mean growths. Here 7;, Vi, Wi,

e; and ¢; are independent random effects, representing a random seasonal effect, a
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within-season random half-month effect, a within-season random age effect and a
within-season half-month age interaction respectively. Finally, ¢; denotes sampling
error, and is assumed known from previous data analysis. Also, X, and X, are
design matrices: thus, X, ,,; = 1 if element m belongs to half-month j and is zero
otherwise. We calculate x from the relevant model, in this case equation (7). We
tried fitting this model using the b-spline parameterisation with and without first
derivatives of the likelihood, and the stable parameterisation of Ross (1990), Schnute
(1981) and Francis (1988) without derivatives. We can only recommend the gradient
method — it converged about 10 times faster than the derivative-free methods.
We fixed oo = 185 cm. Extensive analysis of other data suggests that the
asymptotic mean length has varied at most between about 183 cm and 187 cm
between 1960 and 2000, and we use 185 cm as a representative figure. The length-
frequency data do not bear on the asymptotic mean length. We tried fitting between

1 and 10 knots. The maximum log-likelihood log A for each case is shown in Table

1.

Table 1: Optimal negative log-likelihood for time-varying von
Bertalanffy growth model with K knots: complex error struc-

ture

K —logh K —logA

1 893.23 6 873.23
2 889.97 7 872.25
3 889.77 8 871.47
4 884.65 9 870.47

5 §873.94 10 869.87

It is clear that the data are adequately fitted using K = 5 knots, since there
is no significant improvement in the log-likelihood with the addition of extra knots.

The results for the 5 knot solution are
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Table 2: Fitted parameters for the seasonal von Bertalanffy
growth model with logistic growth rate: South Australian

length-frequency data,

oo 185 6, 0.010 & 0.155  &; 1970.86

ap  -1.187 5, 0.800 A -0.850 Gy 1971.36

G 0.743 6, 1.817 & 1.185 &3 1971.86

n 0.128 be 1741 i 0.141 &, 1978.79

Jé; 0.833 iy 0.169  a&s 1984.13
s 0.164.

Note that Ao = 0.155 and &5 = 0.164 may be compared to x for a traditional
von Bertalanffy growth model. It is interesting to compare these estimates with the
corresponding values when fitting the model with constant  to the same data, with
Moo = 185 cm. Then A = 0.154, 4y = —1.32, 4, = 0.753, W, = 0.130, 6, = 2.454,
0, =0.831, 6, = 2.152 and &, = 1.738. The estimates are all reasonably similar to
those in Table 2, except that 6, = 2.454 in the constant ~ model reduces to &, = 0.01
(the lower bound) in the variable x model. This suggests that the variable x model
has been successful in capturing the variation in x with season.

We now illustrate some features of the model. Figure 1, top panel, shows how
k(t), with the seasonal parameter u, set to 0, varies with time. It broadly follows
the shape of Figure 6 in Appendix 7. Rather surprisingly, there is a noticeable
difference: the level of the peak at 1973 is about the same as that at 1985. It is of
interest to compare fc(t) with the estimates of £ in a simple von Bertalanffy model
fitted to the component decades: & = 0.146 for the 1960s, & = 0.141 for the 1970s
and & = 0.170 for the 1980s. The average values of k(t) for these periods are 0.151,
0.153 and 0.165 respectively. Although similar, these are not identical to the decade
by decade estimates — it would appear that the fitting of a single smooth curve k(%)
has a regression-to-the-mean effect.

The lower panel shows how the mean lengths for age groups 1 to 4 vary with

A8 - 18



Appendix 8: The von Bertalanffy growth curve in a changing environment

season. The pattern differs in an important way from that in the upper panel: the
1973 and 1985 peaks are the same height for the one-year-old fish, but the 1985 peak
is clearly higher for the four-year-old fish. The two-year-old and three-year-old fish
show intermediate effects. These results are consistent with the decade by decade
results presented in Figure 5 in Appendix 7, which shows that the differences between
the 1980s and previous decades was small for the one-year-olds, but progressively
larger for older age groups. When comparing half-month Gaussian mixture fits to
the 1970s length-frequency data, we experienced difficulty in following the age group
changes. The fact that the growth curve appears to have been following a sine curve
through that decade may explain the difficulty.

Figure 2 examines the fit of the model. The raw data are plotted as points,
and the fitted values as smooth curves. The model captures the major variation
with season. Some age-groups in some seasons do not fit very well. This is the
reason for including the random effect w;;, in the model. It is not surprising that
Gy is the largest estimated random effect variance. Close inspection suggests that
the four-year-old fits are too low in the 1980s. This may reflect the inadequacy of
the von Bertalanffy growth model for this decade. The von Bertalanffy model is
incapable of capturing the fast early growth of 1980s juveniles. This is yet another
indicator that a more complex growth model may be required.

The fit can be examined further by plotting the estimated random effects in

various ways. The traditional BLUP estimates of the random effects are
% o= 21UV Ty — )
o= G, X,V Ty — i)
& = 62X,V Ny — i)
& = 6.V (y — hatu)

where

V=02I+D, +c1l' + 02X, X, + 02X, X,

W W W

is the variance-covariance matrix of the data, and D, is the diagonal matrix of
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sampling variances. In Figure 3 we plot &;, estimated for each season, against year
for each age group. If the model is correct these plots should show no obvious
structure, but there is a clear downward trend in the panels for one and two-year-
olds, an upward trend with time for the three-year-olds and more complex structure
for the four-year-olds. Studies in Appendices 4 and 9 indicate that this lack of fit can
be ascribed to two causes: firstly, the lengths of one-year-olds in the length-frequency
data set are bigger than those of corresponding fish in the tag-recapture and otolith
data sets; and secondly, the von Bertalanffy growth curve does not describe 1980s
tuna length data very well. The first problem must be resolved before more complex
time-varying growth curves can be fitted. The objective of fitting more complex
time-varying growth models is to remove such trends — the growth model becomes
more complex, and removes the obvious non-random structure in the random effects.

Figure 4 shows some selected cohort growth curves, illustrating how they
change with the season. The mean lengths for fish of ages 1 to 4 on January 1 are
shown as broken lines. The model clearly includes an ameliorated cohort effect: the
peaks and troughs in these mean length curves move to the right as age increases,
but a given cohort does not follow this movement exactly. Cohort growth is strongly
seasonal.

It is useful to know how much the solution changes if we fit the much simpler

model
Yi = M+ e+ € (12)
to the data in season 7. In this case the log-likelihoods are

Table 3: Optimal negative log-likelihood for time-varying von
Bertalanffy growth model with K knots: simple error struc-

ture

K —log\ K —log\
1 1090.44 6 985.69

2 1078.39 7 983.04
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Table 3: continued

3 1062.41 8  980.25
4 994.51 9 976.25
5 990.65 10 975.36

The choice of K is no longer definitive. The simple error model forces some
of the seasonal and within-season variation to be treated as trend, and this trend
becomes more complex as K increases. The complex error model with hierarchical
and crossed random effects allows deviations from a simple trend model to be treated

as structured errvor rather than trend. We therefore prefer the complex error model.

Tag-recapture data

We now move on to fitting the time-varying von Bertalanffy growth curve to
tag-recapture data. We have attempted to use the method of Appendix 4. The data
file records the time ¢, and length I, at the time of tagging, and the time ¢, and
length I, upon recapture for 6154 tuna. This is the total tag-recapture data base
after quality control screening (see Appendix 3). The times ¢; range between 1959

and 1997. The model for fish 7 is

li = Looif(tu; As, 0) + e

loy, = Leoif(tas; Aiy8) + €2

where L., ; is the asymptotic mean length, f (t; A, 6) is the monotone increasing
growth curve with asymptote 1 and parameter set 6, A; is the time to first capture
and ey; and e,; represent measurement error. All random variables are independent.
We assume that Le,; ~ N(teo, 0%), Ai ~ LOgN (fliog 45 Tlog 4) and €j; ~ N(0,c?) for
j=1,2.

We have encountered a technical difficulty in analysing these data with a
growth model with more than 4 parameters in §: the optimisation method used

to maximise the likelihood is very slow. We need to calculate the gradients of the
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log-likelihood analytically, which should speed up the calculations by an order of
magnitude. In the meantime we report some preliminary results from a sub-sample
of size 1000 from this data set. We fit the model (4) with 4 knots and 3 = 1. We
omit any seasonal parameters from # to speed up the algorithm and again fix s at

185 cm. The results are

Table 4: Fitted parameters for the von Bertalanffy growth

model with logistic growth rate: tag-recapture data

Moo 185 ko 0.173 a1 1969.37
o 9.75 A1 0.040 do  1972.80
fliog A 0.926 Ro  0.527 a3z 1973.30
Olog A 0.246 ks 0.141 &g 1981.11

& 4.15 Ry 0.196

The estimates of £(t) and the mean lengths for age groups 1 to 4 are shown in
Figure 5. Qualitatively l:(t) is the same as that in Figure 1, even though this is an
independent data set. There are obvious differences between Figures 1 and 5, but
taking them together, we can safely conclude that the rate of growth of southern
bluefin tuna is faster now than in 1960. The 1970s saw a period of change followed
by a slow rise to its current level starting in the late 1970s. It must be stressed that
the tag-recapture data set is deficient in the 1970s, so that estimation of k(t) is likely
to be relatively poor during this time. There were significant tagging voyages in the
1960s, 1980s and 1990s, but only about 200 taggings in the 1970s. In retrospect,
the decision to scale down tagging in the 1970s was unfortunate, given the apparent
change in growth in that decade.

Our first sample deliberately omitted data from the 1990s. We attempted to
supplement the first analysis with a second analysis of a sample of 1000 data points
from the 1980s and 1990s. The fitting program failed to converge. Inspection of
the data reveals that there were no fish tagged between mid-February 1984 and late

October 1990, a period of almost 7 years. We suspect that this caused the problem.
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Much technical work remains to be done before we can fit dynamically changing

growth curves with confidence.

Otolith data

We also attempted to fit the von Bertalanffy model with changing k(¢) to the otolith
data. We confined our attention to 1980s and 1990s data with a maximum otolith
age of 4 years. Older fish could have come from previous decades. There were only
420 points, and 25% of these came from one year (1993), with only 101 from the
1980s. In the end the data proved too sparse to model. The otolith data may be
used to supplement other data sources, but fitting a model to these data alone is
impractical. Currently we have not developed the changing k(t) model to allow

integrated fitting of growth curves to data of multiple types.

Concluding remarks

There is an extensive literature on parametric growth models, particularly
applied to fish growth. Methods for fitting them have been developed for data
generated from individual studies. However, models for changing growth over long
time periods are virtually unknown. In this Appendix we have attempted to provide
a new class of models for time-dependent von Bertalanfly growth. Fitting of this
model to length-frequency and tag-recapture data sets of southern bluefin tuna
revealed a common pattern, in which growth changed dramatically in the 1970s,
with recent growth rates substantially higher than in the 1960s. The reason for these
changes are unknown, although they undoubtedly reflect, in part, fishing pressure
and changing stock levels.

Despite this success, there is more to be done. Time-variation needs to be
incorporated into other growth models, and efficient methods of fitting such models
to tag-recapture data in particular need to be developed. It may be desirable to move

to non-parametric growth models. Once such models can be fitted successfully, the
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ultimate challenge will be to fit them to length-frequency and tag-recapture data

sets simultaneously.
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Figure 1: Results from fitting a time-varying von Bertalanffy growth model to South
Australian length-frequency data. a) The fitted von Bertalanffy growth rate l:(t)
versus time ¢. b) The mean lengths for age groups 1 to 4 versus time ¢. Note that
the curves exhibit subtle differences, in that the early 1970s peak moves to the right
as age increases, and the relative heights of the 1973 and 1985 peaks change with

age group.
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Figure 2: The fit of the time-varying von Bertalanffy growth model for South Aus-

tralian length-frequency data. The raw data ave plotted as points, and the fitted

values as smooth curves. The fit is not perfect - for example, the 1980s four-year-old

fitted values tend to fall below the data.
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Figure 3: Estimated within-season age effects versus year. The plots exhibit trends
and other structure inconsistent with a well-fitting model, confirming the problems

with the model suspected from Figure 2.
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Figure 4: Selected cohort growth curves plotted against year. The subtle changes

in cohort growth with time are illustrated.
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Figure 5: Results from fitting a time-varying von Bertalanffy growth model to tag-
recapture data. a) The fitted von Bertalanffy growth rate l:(t) versus time ¢. The
trend is qualitatively similar to the upper panel of Figure 1 although there are
obvious differences. For example, the peak in Figure 1 in the early 1970s is largely
missing, possibly because of limited tagging in the 1970s. b) The mean lengths for

age groups 1 to 4 versus time.
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Introduction

The growth of a fish is a fundamental component of fisheries research. Growth
models are used either directly or indirectly in stock assessments to estimate the age
composition of the catch, plus changes in growth have important implications about stock
health and size. Information for studying fish growth can be obtained from a number of
sources. Probably the three most common are: 1) release and recapture length data from
tagging experiments; 2) length-frequency data from the commercial catches; and 3) direct
age and length measurements, where age is estimated from annual deposits in hard tissue
such as otoliths, scales, or vertebrae.

Various methods for fitting growth models to any one of these data sources
individually have been developed. For tag-recapture data, the age of a fish at release is
unknown so the traditional approach has been to model the incremental change in length
of the fish over the time it was at liberty (Fabens 1965; Francis 1988b; James 1991).
More recently, maximum likelihood approaches have been developed that model the joint
density of the release and recapture lengths as opposed to the modelling the length
increment (Palmer e al. 1991; Wang ef al. 1995; Laslett et al. 2002). In these cases, the
age at release is modelled as a random variable.

For a species that has a peak spawning period, the length-frequency distribution
of the catch taken over a limited time interval will ordinarily exhibit modes that
correspond to different age-classes, at least for younger ages. The progression of these
modes over time can be tracked to give an estimate of growth. In particular, seasonal
growth patterns can often be identified. Methods have been developed to analytically
separate the modes by assuming the distribution is a finite mixture of normal or log-
normal distributions (Hasselblad 1966; Macdonald and Pitcher 1979). Approaches that
also incorporate the estimation of growth parameters into the length-frequency analysis
have subsequently been developed (Schnute and Fournier 1980; Fournier ef al. 1990;
Leigh and Hearn 2000).

Direct age data is a useful source of growth information for species that deposit
annual growth rings in their scales, otoliths, vertebrae or other hard tissue. The ability to

determine age by counting the number of growth bands has been validated for many
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species, including southern bluefin tuna (Clear er al. 2000). The best tissue and
technique to use depends on the species and the specimen, and successful aging methods
have not been found for many species. Direct age and length information has been used
to estimate growth parameters in a number of studies (Yukinawa 1970; Thorogood 1987,
Gunn and Farley 1998; Alves ef al. 2002).

While many studies exist that estimate growth using one of the above data
sources, analyses that integrate multiple data sources have been much rarer. Some papers
have compared estimates of growth obtained from different data sources (Labelle et al.
1993). Others have used one data source to supplement another, such as Hearn and
Polacheck ( Submitted) who used the mean length of age one SBT from length-frequency
data to convert the length-time relationship estimated from tag-recapture data to a length-
age relationship. Although these studies make use of more than one data source, they do
not attempt to model the data jointly. An exception is Kirkwood ( 1983), who performed
a joint analysis of length-increment and age-length data (determined from length-
frequency data) to estimate growth parameters for southern bluefin tuna.

We know of no analysis that integrates all three data sources into a unified growth
model, and this provided the motivation for our current paper. These data sources will
often be most informative about different portions of the life cycle. As such, the
development of an integrated approach would allow for the different data sources to
complement each other and provide a more robust and comprehensive basis for
modelling growth. Questions have been raised about the validity of estimating mutual
growth parameters using more than one data source (Francis 1988a). However, we
believe that this is not an issue if an appropriate estimation method is used. We present a
maximum likelihood approach for modelling growth that incorporates a likelihood
component for each tag-recapture data, length-frequency data, and direct age-length data.

Our method was developed and will be illustrated in the context of southern
bluefin tuna (SBT). However it should be broadly applicable to other species with
perhaps small adjustments for the specific situation. SBT is an important species to both
Australian and Japanese fisheries, and hence its growth has been intensely studied.

Nevertheless, previous growth models are not fully satisfactory in that they have been

A9-3



Appendix 9: An integrated model for growth

estimated using only one source of data, and the data from any one source does not
provide complete information about growth over the lifespan of SBT.

We begin by discussing the three SBT data sets used in our analysis. We then
describe the integrated model and estimation method that we have developed. The
integrated model was developed in a piece-wise manner. We derived a statistical model
in terms of a generic family of growth curves, and a likelihood function for fitting the
model, for each data set separately. The likelihood components for the three data sources
were then added together to obtain an overall objective function for the integrated model.
Finally, we apply the integrated model with several variations to the SBT data, and

discuss the results.

The Data

All of the tag-recapture, length-frequency, and direct aging data that are available
for SBT are described in detail in Appendix 3, as are the screening processes applied in
determining the data suitable for inclusion in a growth analysis. Some of the merits and
limitations of each of the data types with respect to studying growth are also discussed
there.

Although information on the growth of SBT exists from the 1950’s until present,
we chose to only include data for fish that experienced their early years of growth in the
1980’s. Previous studies have found that the average growth rate of SBT increased from
the 1960’s to the 1980°s (Hearn and Polacheck in press; Anon. 1994). This makes a
combined analysis of all the data more complicated and is the topic of Appendices 8 and
10. We chose to analyse the 1980’s data because extensive data sets exist in this decade
for each of the data sources, with a large degree of overlap among data sets with respect
to ages and lengths of SBT. Thus, the 1980’s provided the best data for testing the
integrated methods that we developed.

Following is a brief summary of the 1980’s data that we used in the analysis

presented in this Appendix.
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Tag-Recapture Data

During the 1980’s (in years 1980, 1983 and 1984), a total of 10741 fish aged 0 to
4 were tagged with conventional tags and released into the wild. Of these tagged fish,
there have been 4341 reported recaptures to date (January 2002). Recaptures occurred
throughout the geographical distribution of SBT, ranging in longitude from 0 to 180°E
and in latitude from 30 to 50°S. After applying the screening criteria described in
Appendix 3 to exclude data that were considered unsuitable for studying growth, 2181
recaptures from fish released in the 1980’s remained for analysis. The release lengths
ranged from 40 to 115 cm and the recapture lengths from 47 to 173 cm. The distribution
of the times at liberty was highly skewed towards shorter times at liberty, and ranged
from 30 to 4356 days (=12 years) with a median value of 340 days. A plot of the change
in length of the fish versus the time at liberty is shown in Figure 1.

Length-Frequency Data

For reasons discussed in Appendix 3, we only included length-frequency data
from the Australian surface fishery operating in South Australia in our analysis. For the
South Australian fishery, the sampling of fish for lengths occurred in a two-step
procedure in which a sample of fish was taken from a sample of landings. In each half-
monthly period, the length-frequency data were scaled up from the sample data using the
weight of the total catch to represent a length-frequency distribution for the catch. Scale
factors have been calculated which take into account the two-stage nature of the
sampling, so that dividing the catch size in a period by the scale factor gives an estimate
of the effective sample size if a simple random sample had been taken. The fishing
season in South Australia generally spans from November to July. Length-frequency
data exist for every year in the 1980’s, but the half-monthly periods for which there are
data depend on the year. Almost all years have data from mid-December to mid-April.
Table 1 in Appendix 3 lists the years and periods for which data are available, as well as
the corresponding catch sizes, scale factors, and effective sample sizes. For the 1980’s,
the effective sample size in a period ranged from a few fish to several thousand. The
lengths of fish ranged from 31 to 229 cm. However, we only included data up to 130 cm

in our analysis since modes cannot be distingunished beyond this length. Examples of the
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length-frequency distributions for South Australia in 1981 and 1983 are shown in Figure
3 of Appendix 3.

Direct Aging Data

In our analysis, we included direct aging data from fish that were born in the
1980°s, where birth year was estimated from the catch year and the number of bands in
the otolith. Although otoliths from 1780 SBT born in the 1980°s have been aged to date,
not all of these were deemed suitable for inclusion in our growth analysis (see Appendix
3). In brief, SBT caught during the winter months of May to September were excluded
since band formation occurs during these months and we cannot be sure whether or not a
fish caught during this time has yet laid down a band. Fish up to and including age 14
that were caught on the spawning grounds were also excluded because for these ages
maturity is associated with larger sizes within an age-class fish and thus there is a bias in
the length-at-age of these fish (see Farley et al. 2001). Furthermore, fish with one band
caught off the west coast of Western Australia were excluded since we believe they are
less than 9 months old and we are not attempting to model such early growth in this
analysis. The number of direct age-length observations in the 1980’s remaining for
analysis was 668, for which the number of bands ranged from 1 to 21 and the lengths of
fish ranged from 45 to 200 cm. SBT from all geographical areas where fishing occurs are
represented. However the majority of data is from older fish caught on the Indonesian

spawning grounds.

Methods

We adopted a maximum likelihood approach in order to jointly analyse the three
sources of growth information. For each data source, we developed a statistical model
and a corresponding likelihood component. The likelihood components were then added
together to obtain a final objective function that could be optimised to estimate the model
parameters. The addition of likelihood components is an appropriate procedure provided
that the data from the different sources are independent, which is a reasonable assumption

in this situation.
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An important feature of any growth model is the functional form for the
relationship between fish length (7) and age (a). The most common in fisheries literature
is the von Bertalanffy growth curve. However, there is evidence that SBT growth is
better described by a function that allows for a transition in the growth rate (Laslett,
Eveson, and Polacheck 2002; Hearn and Polacheck Submitted). In the derivation of our
integrated model, we will leave the model very general by assuming a generic growth

curve of the form

Ha)=L_f(a—a,;6),
where L_ is asymptotic length and fis a monotone increasing function with parameter set
{a,,0} that approaches 1 as @ — o and equals 0 when a=a,. We can think of a, as

the theoretical age at which a fish would have had length 0 if we were to project its
growth curve backwards. For the familiar von Bertalanffy curve, 6={k} and

fla—ay;k)=1-exp(-k(a—a,)). As would be expected in an integrated growth
model, we assumed a common growth function f throughout the model components for

the different data sources.

Tag-Recapture Component

The method used to analyse the tag-recapture data is described in Appendix 4. It
is based on estimating the joint density of tag and recapture lengths rather than modelling

growth increments. In summary, a fish is tagged at time ¢, with release length /; and
recaptured at time ¢, with length 7,, all of which are known. Let 4=t —1,, where ¢ is
the theoretical time at which a fish has length zero (analogous to the parameter a, on the
age scale). Then 4 is a random variable, which we assume has density p(-) and whose
parameters will be estimated in the model.

Although the age at release is unknown, if we denote it by a,, then A4 is
equivalent to a, —a,. Similarly, 4+¢, —t,is equivalent to a, —a,, where a, denotes

the age at recapture. We introduce this notation to be consistent with the formulation of
the growth function presented at the beginning of the section. Thus, we can specify the

models for the release and recapture lengths respectively as
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I,=L_f(4;0)+¢

lL=L_f(A+t,—t:;0)+¢&,.
We allow the asymptotic length to vary from fish to fish by modelling L_ as a random
normal effect with mean 4, and standard deviation o_ . The terms ¢, and &, represent

measurement error. It is important to note that what we refer to as measurement error
throughout this paper actually encompasses several sources of variation. Although
measurement error is one principal source of variation in length, there may also be
random variations due to environmental factors and genetic factors not captured by the
random L_ parameter. Without further knowledge, we cannot separate this pooled
source of error into its various components.

W assume &, and &, are independent from fish to fish, and also independent of
L, and 4. Furthermore, we assume they are normally distributed with mean 0 and
variance dependent on the length measurer (o if a scientist or trained staff measured the
length and an additional component, O';, if a fisherman or factory staff measured the

length). We expect measurements made by scientists to be more accurate than
measurements made by fishermen. Note that scientists measured all release lengths.
Explicitly, we can specify the variances by

Vie)= o

o’ if measured by a scientist

Vie,)= { ’

ol +0c} if measured by a fisherman.

These error variances are specific to the SBT data, but the method is very flexible with
regard to the choice of variance functions.

If we condition on A4, then /,and 7, are both the sum of random normal variables
and their joint distribution, 4 (/,,/, |a), is bivariate normal. Their unconditional joint
density can then by obtained by integrating over 4. Namely,

h(l, 1) = [k, 1, | @) p(a)da.

The product of the joint densities over all fish gives the likelihood function for the tag-
recapture data. Thus, the negative log-likelihood function can be expressed as
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~In(4) ==Y In i .h,) ()

where i indexes the fish.

Length-Frequency Component

Analysis of the length-frequency data entailed a two-step procedure. First, we
performed a mixture decomposition on each half-monthly sample independently to
generate a mode and an accompanying standard error for each age-class represented in
the sample. Second, we used the summary information from step one as input into the
likelihood component for our length-frequency model.

The first step is described in detail in Appendix 7. Essentially, each length-
frequency sample was assumed to be a mixture of Gaussian components, where the user
specified the number of components and the age-classes to which they corresponded.
Since we did not try to separate modes beyond age five, the modes were usually quite
distinct and the corresponding age-classes were generally clear based on the length.
There were several exceptions, of course, in which we simply had to use our best
discretion. The estimation of the modes was unconstrained except for simple bound
constraints. This differs from Leigh and Hearn ( 2000), who constrained mean growth
over a season to be linear, and from Schnute and Fournier ( 1980), who constrained the
means to follow a von Bertalanffy growth curve. The standard deviation of the
components was assumed to be common within a sample, but was allowed to differ
between samples. A standard error associated with each mode was calculated by
inverting the observed information matrix. The estimation procedure took into account
the fact that the data were scaled up from the actual sample size to the size of the catch
(refer to Appendix 7). Figure 4 in Appendix 7 shows a plot of the summary modes
versus the half-month index. The separation of modes into age-classes is evident in this
figure, as is the seasonal pattern of growth (especially for age groups one and two).

In the second step, we modelled mean fish length using the estimated modes and
standard errors from step one. We only included the data for age-classes one through
four, even though a fifth mode was sometimes fitted. The fifth mode likely encompasses

several age-classes since a maximum of five modes was fitted, and thus the fifth mode
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acted as a catch-all for any data beyond age four. Furthermore, we only included data for
modes where the estimated number of fish in the mode was greater than 50. The
estimated number of fish in an age-class was obtained by multiplying the effective
sample size for the period by the estimated proportion of fish in the age-class (which was
obtained in step 1).

Let i index the year, j the half-month, and & the age group. We will denote the

estimated mean length for a mode and its associated standard error by iy and

s, respectively. Let a,, be the mean age assigned to a mode. To allocate a mean age to

ik
the fish from a given age group and half-month, we used the following procedure.
Firstly, we assumed that fish are spawned on January 1 since this is the approximate mid-
point of the spawning season for SBT (refer to Appendix 3). We then used the middle of
the half-month to calculate a fractional age relative to January 1. Because the fishing
season in South Australia generally runs from November to July, fish caught prior to
January will not yet be as old as their assigned age-class. For example, the so-called age
2 mode in the first half of December will correspond to the age 2 mode in the first half of
January, even though these fish are not yet age 2 according to their assumed birth date.

Thus, we indexed the half-months by j =—-4,-3,...,20, where —4 corresponds to the first

half of November, 0 corresponds to the first half of January, et cetera. Then, fish
belonging to age group & and half-month j were allocated a final mean age of
k+(j—0.5)/24, since there are 24 half-months in total.

The model we used can be expressed as
Iaijk =, fay _a0;9)+eﬁk + Ey (2)
where eand ¢ are independent random effects representing sampling error and residual

model etror respectively. We assume e, ~N (O,s;k), where the s, are the known
standard errors estimated in step one, and ¢, ~ N (0, 0?). The parameter 1/ represents

the average asymptotic length for a group of fish, which we model as a fixed effect. We
could model it as a random effect; however, in practice, there is almost no information
from the length-frequency data on the mean asymptotic length of fish, let alone its

variance. The negative log-likelihood for the model is given by
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4 (ﬂyk - E(ﬂijk ))2
V(i)

-—w»%—ZZ; (27 (4,,)) 3)

where
E(ﬁyk) = Iuoof(aijk - ao;g)
and

V(/[IUA) = Syz'k + O-Z'

A more complex model could have been used that takes into account other
structural aspects of the data. We explored models that incorporate a random fishing
season effect, a within-season random half-month effect, and a within-season random age
effect (refer to Appendix 7 for details). Although this might be desirable, the parameter
estimates were unstable in practice, suggesting that there were insufficient data to fit a

more complex model as well as possible confounding of parameters. The above model

was found to provide an adequate fit without excessive unexplained variance.

Direct Age-Length Component

To model the direct aging data, we need to assign an age to a fish based on the
number of bands in its otolith. The difficulties in doing so were discussed in Appendix 3.
In this appendix, we assumed that the final otolith reads (i.e. the final band counts) were
correct, and also that all fish were born on January 1 (the approximate mid-point of the
spawning season). As such, a decimal age could be assigned to each fish as follows:

{ n+r/365 ifr<d
age =

) 4)
n-1+r/365 ifr=d

where 7 is the final band count, r is the capture date, and d is the date of band formation.
Both r and d are expressed in Julian days since January 1 of the year of capture.

The capture date is known accurately for almost all fish from which otoliths were
collected. However, the time of band formation, d, is unknown and is variable among
fish. An investigation into the time of band formation (see Appendix 11) could only
conclude that bands can form any time during May through September. For fish caught
during these months there is an uncertainty of one year in their age, so we omitted direct

aging data from fish caught within this period from our analysis. This omission should
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not induce biases into the growth parameter estimates, however it will result in them
having higher variance.

For the remaining fish, there is still uncertainty in their assigned decimal age due
to uncertainty in their birth date and possible errors in the band count. We adopted the
simplest approach and used the decimal ages calculated using (4) as if they were exact in
our analysis. Again, this should not induce biases in the growth parameter estimates
since the age estimates should not be biased. However the precision of the estimates will
be higher than if we had incorporated the uncertainty in ages.

We explored approaches for modelling these age uncertainties, including
uncertainties in the time of band formation, the band couﬁt, and the birth date. These
approaches are discussed in Appendix 12. They are still very much in the developmental
stage and more work is required before we would be incorporating them into the
integrated model.

Because we assume the age estimates to be accurate, the model for the direct
aging data is relatively straightforward. Let / and a denote the length and age of a fish
respectively, then the model can be expressed as

I=L_f(a—ay;0)+y
where ¥ represents measurement error (and other unknown model error) and is assumed

to be normally distributed with mean 0 and standard deviation o,. As with the tag-

recapture data, we model L_ as a random normal effect with mean 4_ and standard
deviationo_ . We assume that L_ and y are independent. Let i index a fish. Then the

negative log-likelihood is given by

I —E())
—111(/13)=—%-Z m(znV(z,))+(—'—-£'-))— (5)

; 40

where
E(]i)=ﬂwf(a, —ao;g)
and

V()= O'if(a,. —ao;é’)2 +0'; .
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The integrated model

The overall objective function to be optimised, which we will denote by A, is
simply the sum of the three negative log-likelihood functions given in equations (1), (3)
and (5). Thatis,

A =—(In(4,) + In(4,) + In(4,)).
The parameters common to all three components are 6 (the parameters of the growth
function f) and u_ (the mean asymptotic length). The asymptotic variance parameter
o is common to the tag-recapture and direct aging components. For the length-

frequency component, we are not modelling lengths of individual fish but rather we are
modelling mean lengths (see equation 2). As such, the asymptotic length parameter
should have the same mean but not the same variance as the asymptotic length parameter
in the tag-recapture and direct aging models. There is no information on fish older than
age 4 in the length-frequency data alone to estimate the relevant asymptotic variance
parameter, so we modelled the asymptotic length as a fixed effect for this component.
Whether the asymptotic length is assumed to be random or fixed will have virtually no
effect for fish aged 1 to 4. The parameter a, is common to the direct aging and length-
frequency components; this parameter is not present in the tag-recapture model because it
is encompassed in the random variable 4. The parameters defining the lognormal

distribution of 4, #,,, and ©,,,, are unique to the tag-recapture component. The
various error parameters are unique to their corresponding components, namely o, and
o, for the tag-recapture component, o, for the length-frequency component, and o, for

the direct aging component.

Results

In order to apply the integrated growth model to the SBT data, a growth function,
f, must be selected. Initially, we used the growth function corresponding to the
traditional von Bertalanffy (VB) curve, namely

fla—ay;k)y=1-e,
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Previous analyses (Laslett, Eveson, and Polacheck 2002; Hearn and Polacheck
Submitted) suggest there is a change in the growth process for SBT during the transition
from juveniles to adults that cannot be adequately captured by a VB model. Hearn and
Polacheck ( Submitted) model SBT growth as a two-stage process in which the growth in
each stage follows a different VB curve, such that there is a discontinuity in the growth
rate at the transition between the two stages. In Appendix 4, we developed an alternate
growth curve that can accommodate a change in the growth pattern at some point in the
life cycle but allows for a gradual, smooth transition between stages. We call this new
curve the von Bertalanffy growth curve with a logistic growth rate (abbreviated VB log k)
to reflect the fact that the change in growth rate is modelled using a logistic function.
The growth function for the VB log & model is given by

X 14 ¢ Al ) “HTIE
f(a—ao;{kl,kz,a,ﬂ})zl—e_“"""“{-—E—ea—ﬂ——} .
As a increases, the function makes a smooth transition from a VB curve with growth rate
parameter k, to a VB curve with growth rate parameter k,. The parameter S governs
the rate of the transition (being sharper for larger values), and @ governs the age at
which the midpoint of the transition occurs.

We obtained parameter estimates for both the VB and VB log k& models by
optimising the objective function, A, with the appropriate growth function (Table 1).
Comparison of the results indicates that the asymptotic length is somewhat higher in the
VB log k model. The initial rate of growth in the VB log &k model is very similar to the
growth rate in the VB model; however the VB log k model suggests that the growth rate

slows considerably between ages two and three. Recall that « is the age of transition
relative to a,, so we estimate the midpoint of the transition to be at age @ +a,. The fact
that [ converged to a preset upper bound of 30 suggests that the rate of transition
between the two growth phases is very fast.

According to Akaike’s information criterion (AIC) (Akaike 1974), the VB log &
fit is significantly better than the VB fit (Table 2). To further evaluate how well the two
models fit the data, we calculated residuals (fitted minus observed length) for each of the

data sets. In order to calculate the fitted release and recapture lengths in the tag-recapture
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data, we required a realised value of 4 and L_ for each fish. The approach outlined in
Appendix 4 is to use the mean of the posterior distribution for 4 and L_, respectively,

conditioned on the fish’s release and recapture lengths. This approach yields unbiased

estimates of L_, but, as discussed in Appendix 5, it leads to biased estimates of A.
Instead, we used the approximately conditionally unbiased estimator 4 , that is described

in Appendix 5.

The improvement in the fit of the VB log k£ model over the VB model is evident in
the residual plots. (compare Figures 2.1-2.3 with Figures 3.1-3.3). For the direct-aging
component, the VB model overestimates the length of middle-aged fish (around ages 5
through 12); this is corrected by using the VB log k model. A local linear smooth of the
recapture length residuals for the VB model shows a pattern in which the length of
younger fish is underestimated and the length of older fish is overestimated; the transition

occurs between recapture “ages” three and five (recall this is age relative to a,). This

pattern clearly supports a two-stage growth function, such as the VB log k curve. The
recapture residuals for the VB log k model show no such pattern. The release residuals
are also improved slightly in the VB log k model. The length-frequency residuals are
more complicated. In both models, the predominant feature of the residuals is the
overestimation of age-class one and the underestimation of age-classes two to four.
However, overlooking this general lack of fit, which we discuss below, the fit to the four-
year olds is better in the VB log k model.

In the introduction to Appendix 3, we discuss the fact that one-year old fish
caught off of Western Australia (WA) are smaller on average than one-year old fish
caught off of South Australia (SA) around the same time. Likely the WA fish were
spawned later in the spawning period than the SA fish and are younger. Our method of
assigning ages assumes all fish are spawned on the same day so this age difference
cannot be captured. Because all of the length-frequency data is from SA, the length data
for one-year olds will be biased towards bigger fish. This is evident in the model fits.

We assigned ages to both the length-frequency data and the direct aging data
assuming a birth date of January 1. This introduces an uncertainty of several months into

the age depending on the true time of spawning. This is primarily a problem for very
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young fish whose growth is rapid enough that an age difference of a few months
translates to a significant difference in length. The model for the tag-recapture data
incorporates the estimation of the age-at-release, and hence has the ability to deal with
variable spawning times by assigning suitable ages based on size. Ideally, we would like
the model components for the length-frequency and direct aging data to incorporate this
uncertainty as well; Appendix 7 and Appendix 12 discuss possible future approaches for
doing so.

As an immediate and unbiased approach of dealing with the problem, we refit the
integrated VB log & model leaving out the length-frequency data for age-class one and the
direct aging data for fish with an estimated age of less than 1.5 years. Our justification
for doing so is that the uncertainty in age has the most significant effect on the expected
length of one-year old fish, with the effect diminishing exponentially with age.
Moreover, by age two, the difference in lengths of fish from WA and SA appears to be
negligible; perhaps the later-spawned fish catch up in size by age two, or perhaps the fish
from the two areas mix during their second year of life so that the two-year old fish off
WA and SA no longer correspond to late-spawned and early-spawned fish. Although the
uncertainty in age is still present in fish older than age one, we expect only an increase in
the variance of their length-at-age (which will diminish rapidly with age), and not a bias.

The largest impact of leaving out the one-year old length-frequency and direct
aging data is that the initial stage of growth is steeper, as reflected by the increase in the
parameters k, and a, (Table 1). The improvement in the fit to the length-frequency data

is apparent in the residual plot (Figure 4.2). The fit to the other two data sets appears
relatively unaffected (Figures 4.1 and 4.3).

SBT experience a period of fast growth during the southern summer (Hearn
1986); we see evidence of this in the length-frequency data and it is also the reason that
SBT otoliths display annual growth bands. Neither of the above models captures this
seasonality, and it is important to determine whether doing so could significantly improve
the fits. A seasonal component can be incorporated into any growth function by adding

an annually periodic function, S(-), to the independent age variable. Explicitly, a —a,

can be replaced with a — a, + S(t), where ¢ is the fractional time of year since January 1.
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In the tag-recapture data, we know the date of release and recapture so we can calculate ¢
for both events. Similarly, we know the date of catch for the direct aging data. For each
mode in the length-frequency data, we use the mid-point of the half-month as the catch
date. Note that for the direct aging and length-frequency summary data, ¢ simply
corresponds to the decimal part of the fish’s age, a, since we assumed a birth date of
January 1 in assigning ages.

We considered a sinusoidal function for the seasonal effect, parameterised as
u o,
S(t) = —sin(27(t — w))
2

where u is the amplitude and w is the phase. The amplitude is constrained to be between
0 and 1 to prevent negative growth, whereas we constrained the phase to be between —0.5
and 0.5. Any bounds with a span of one could have been chosen due to the periodicity of
the function. The rate of growth is maximal at # =w and diminishes symmetrically about
wto a minimum at t=w—0.5 and t=w+0.5.

We refit the VB log k model with a seasonal component to the data including and
excluding age one length-frequency and direct aging data. The estimates of the mean
growth curves are almost identical to the mean curves estimated from fitting the non-
seasonal VB log k model to the corresponding data (see the parameter estimates in Table
1). However, the estimates of the seasonality parameters, which are almost identical
whether the age one data is included or not, suggest there is an appreciable seasonal
pattern to growth. The estimate of the phase, w, suggests that SBT experience their
fastest growth in mid-February, which is consistent with our prior expectation. A
comparison of the AIC values between the seasonal and non-seasonal models fitted to the
same data suggests that incorporating a seasonal component significantly improved the
fits (Table 2). The improvement is visible in a plot of the fitted curve through the length-
frequency data (Figure 5.2, top panel). Although the fits to the other two data sets do not
look much different (Figures 5.1 and 5.3), the negative log-likelihood component for the
tag-recapture data was reduced significantly for both the model with and without age one
data. Note that these figures only show the results obtained without age one data; the
same observations can be made for the equivalent figures for the model with age one data

(see Figures 2a-2c¢ in the Annex to Appendix 10).
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Discussion

It is important to have a method for modelling growth that can incorporate all of
the available data sources because any one data source does not usually contain complete
information on growth over the entire lifespan of the species. Oftentimes, where one data
set is deficient, another can provide valuable information. For example, in the case of
SBT, the length-frequency and tag-recapture data lack the information on older fish that
is available from the direct aging data. Conversely, the length-frequency data has
information on seasonality not available from the other two data sources, whereas the tag-
recapture data is the only source of information on the growth of individuals, which is
important for understanding variability in the growth process. However, it only makes
sense to combine data sets into a single analysis if the information between them is
consistent; otherwise, the benefit gained from having multiple data sources becomes a
weakness as the data sets work against each other. The SBT data sets show a very high
level of consistency, with the exception of the one-year olds for reasons already
discussed. We can infer this from the fact that the integrated model fitted all of the data
sets well. However a plot with the data sets overlaying one another shows the consistency
cleatly (Figure 6). We have omitted the age one length-frequency and direct aging data
from the plot. The ages of release and recapture for the tag-recapture data are the
estimated values from the seasonal VB log & model fit to the reduced (without age one)
data sets. Recall that when we obtain these age estimates, they are actually relative to

a,. Thus, we have added to them the a, value estimated from the model for the length-

frequency and direct aging data in order to make the age-axis comparable between all
data sets.

Data from all of the sources discussed will not always be available. An advantage
of developing an integrated model of growth under a likelihood framework is the ease
with which data sources can be excluded from (or included in) the model. If one of the
data sources is not available for a species, then the likelihood component corresponding
to the missing data set can be removed from the overall objective function. On the other

hand, if a data set other than the three we discussed exists, then it is possible to add on a
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likelihood component for this data set. Of course, the development of an appropriate
model for these new data may not be trivial.

We modelled the seasonal growth pattern of SBT using a sinusoidal function.
There is some suggestion in the length-frequency summary data (see Figures 1 to 3 in
Appendix 7) that the growth of SBT is fast over the summer season before levelling off
sometime around May and remaining almost flat for the winter. Lack of data over the
entire year makes the pattern difficult to confirm. If this were the case, an alternative
seasonality function may be more appropriate. Even so, the sinusoidal function appears
to have performed adequately.

With regard to the direct aging data, research scientists and trained staff collect
the otoliths and also measure the lengths of the fish; therefore, it seems reasonable to
assume that the measurement error should be the same as that for length measurements

made by scientists in the tag-recapture data (i.e. 0, =0,). In our results, o, is actually

much greater than o, . The tag-recapture model estimates the age-at-release intrinsically,

so the data points can be adjusted along the age axis to put them closer to the mean curve.
For the direct aging data, we assign an age assuming a common birth date for all fish and
take this age as precise. Therefore, it is not surprising that the residual variability in

length-at-age (above and beyond the variation due to a random L_) is greater for the

direct aging data than the tag-recapture data.

The questions raised by Francis (1988a) about the validity of estimating common
growth parameters using tagging and age-length data are only relevant when growth
increments are being modelled for the tagging data. When the release and recapture
lengths are modelled directly as opposed to the change in length, these issues are no
longer relevant. In this appendix, we have successfully demonstrated that data from three

sources can be integrated to obtain consistent estimates of growth.
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Table 1: Parameter estimates from applying the integrated growth model to 1980’s southern bluefin tuna data. Results are for various

growth curves and data subsets, as specified.

Growth Exclude Parameter estimates

curve Age 1? M., o. kl k2 (24 ﬂ ! u w /ulogA o-logA a, o-: o-f o-e‘ o-}/
VB No 179.7 61 021 — -  — - — 066 017 -057 27 45 42 55
VB log k No 1849 78 022 017 29 300 - ~ 058 017 -044 23 43 44 45
VBlogk  Yes 1839 84 024 018 25 300 - — 052 017 -018 23 41 26 41
Seasonal No 1847 81 022 017 28 183 034 0.13 058 017 -043 21 42 46 43
VB log &

Seasonal

VBlogk  Yes 1838 87 024 018 25 300 035 012 052 017 018 21 40 25 41

! B constrained to be < 30
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Table 2: Negative log likelihood values and Akaike’s information criterion (AIC) for the

various model fits.

Growth curve E,Z\(;u?; paraieters likezlli(l)lgood AIC

VB No 10 17752.1 35524.1
VB log k No 13 17649.5 35325.1
VB log k Yes 13 17259.1 34544.2
Seasonal VB log k£ No 15 17607.1 35244.3
Seasonal VB log k& Yes 15 17209.1 34448.2
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Figure 1: Southern bluefin tag-recapture data for fish released in the 1980°s (only data

remaining for analysis after screening is shown).
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Figure 2.1: Diagnostic plots for the optimal integrated VB model fitted to the 1980’s
southern bluefin tuna growth data. Panel (i) shows the direct aging data along with the

mean fitted curve. Panel (ii) shows the corresponding residuals (observed — fitted).
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Figure 2.2: Diagnostic plots for the optimal integrated VB model fitted to the 1980’s
southern bluefin tuna growth data. Panel (i) shows the summary modes and ages
obtained from the length-frequency data along with the mean fitted curve. Panel (ii)

shows the corresponding residuals (observed — fitted).
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Figure 3.1: Diagnostic plots for the optimal integrated VB log k model fitted to the
1980’s southern bluefin tuna growth data. Panel (i) shows the direct aging data along

with the mean fitted curve. Panel (ii) shows the corresponding residuals (observed —

fitted).
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Figure 3.2: Diagnostic plots for the optimal integrated VB log k model fitted to the
1980’s southern bluefin tuna growth data. Panel (i) shows the summary modes and ages
obtained from the length-frequency data along with the mean fitted curve. Panel (ii)

shows the corresponding residuals (observed — fitted).
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Figure 4.1: Diagnostic plots for the optimal integrated VB log & model fitted to the
1980’s southern bluefin tuna growth data excluding the age one direct aging and length-
frequency data. Panel (i) shows the direct aging data along with the mean fitted curve.

Panel (ii) shows the corresponding residuals (observed — fitted).
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Figure 4.2: Diagnostic plots for the optimal integrated VB log k model fitted to the
1980’s southern bluefin tuna growth data excluding the age one direct aging and length-
frequency data. Panel (i) shows the summary modes and ages obtained from the length-
frequency data along with the mean fitted curve. Panel (ii) shows the corresponding

residuals (observed — fitted).
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Figure 5.1: Diagnostic plots for the optimal integrated VB log k model with seasonality
fitted to the 1980°s southern bluefin tuna growth data excluding the age one direct aging
and length-frequency data. Panel (i) shows the direct aging data along with the mean

fitted curve. Panel (ii) shows the corresponding residuals (observed — fitted).
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Figure 5.2: Diagnostic plots for the optimal integrated VB log & model with seasonality
fitted to the 1980°s southern bluefin tuna growth data excluding the age one direct aging
and length-frequency data. Panel (i) shows the summary modes and ages obtained from
the length-frequency data along with the mean fitted curve. Panel (ii) shows the

corresponding residuals (observed — fitted).
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Introduction

Understanding how growth changes over time can provide important insights
into the processes underlying population and ecosystem dynamics (e.g. density
dependent growth and regime shifis in the environment). In addition, estimates of
growth rates are fundamental to most stock assessments and the provision of scientific
advice on the consequences of future management actions. In the absence of any
direct information, growth rates are generally assumed to remain static over time in
stock assessments. However, if growth rates are changing and these changes are not
accounted for, they can result in substantial biases in estimates of stock productivity,
sustainable catch levels and recovery in the case of a depleted stock.

In spite of the importance of knowing how growth may have changed,
estimates of long-term temporal trends and variability in growth are seldom available
for most commercially exploited fish stocks. Often this is due to the absence of long-
term data series. In other cases a variety of different sources of growth information
(e.g. tagging, length-frequency and direct aging data) may be available, but the data
collection processes have resulted in fragmented time series for any single source.
When such fragmented data exist, a statistical framework is required that can integrate
information from the different sources and can also cope with temporal changes in
growth. Even the simpler problem of integrating several data sources from a period of
static growth is not straightforward. Eveson et al. (submitted) have developed an
estimation framework that integrates growth data from tagging studies, from direct
aging of hard parts, and from modal length analyses of length-frequency data. In the
current paper, we apply this framework to southern bluefin tuna data collected in each
of the four decades from 1960 to 2000, assuming that growth remained relatively
stable within each decade. The results are used to quantify changes in SBT growth
over this 40-year period.

A large amount of data relevant to the estimation of growth for SBT has been
collected since the early 1960°s. Several previous studies have used subsets of data
from a single source to address the question of changes in SBT growth. Comparisons
of growth increment data from tag experiments conducted in the 1960’s and 1980°s
have demonstrated that there was a substantial increase in SBT growth rates between
these two periods (Hearn and Polacheck 1993, 2003, Anon. 1994). Concurrently,
there was a substantial decline in the SBT stock, suggesting the change in growth may
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have been density dependent. Analyses of length-frequency data for juvenile fish
caught in the Australian domestic fishery also demonstrated a substantial increase in
the growth of juveniles between these two periods (Leigh and Hearn 2000). Previous
studies have been unable to provide estimates of growth rates in the 1970’s and
1990’s because of the limited data available for these decades at the time of analyses.

Direct aging techniques were developed and verified in the 1990°s for aging
SBT using their otoliths (Clear et al. 2000). The direct aging data that have
accumulated since then provide important growth information on fish born in the
1970’s, and they also have the potential to clarify uncertainties that previous studies
had in comparing asymptotic lengths (Heam and Polacheck 2003). Moreover,
substantial information on growth of fish spawned in the 1990’s is now available.
With all of the data currently available and with an integrated analysis method, we
were able to obtain rigorous estimates of growth in each of the past four decades and
to identify significant changes in growth over this time.

Recent SBT stock assessments suggest that the stock continued to decline
from the 1980’s until the mid 1990°s, after which the trend is uncertain (Polacheck
and Preece 2001, Kolody and Polacheck 2001). Given the previously documented
changes in SBT growth, the depleted status of the SBT stock and uncertainty about
the most recent stock trends (Anon. 1998a, 1998b, 2001, Polacheck et al. 1999),
knowing how SBT growth rates in the 1990’s compare with previous periods has been
seen as an important indicator of the current stock status (Gunn et al. 1998), and may

provide insight into possible mechanisms underlying growth changes.

Material and Methods

Data

Data from three sources were used in the analyses considered here:

1) release and recapture length and time data from tag-recapture experiments;

2) modal progression within a year from length-frequency data from commercial
catches; and

3) direct age estimates from otolith readings combined with the length of a fish at
the time of capture.
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For each of these data sources, extensive documentation exists (see Appendix
3 and references cited therein). Table 1 summarizes the extent of available data for
each source by decade.

All of the tag-recapture data come from fish tagged as juveniles (primarily
ages 1-4). Only tagging data from fish tagged and measured at release by trained
tagging personnel are used here. Recapture information (particularly recapture
lengths) was obtained from commercial fishermen, factory personnel and
scientifically trained staff. Data from the trained staff had lower measurement errors
and hence were assigned a different factor level in the analyses. The maximum time at
liberty for which release and recapture data are available is approximately 14 years.
However, the majority of recapture times are less than 4 years. As such the tagging
data are most informative about growth rates for juvenile and sub-adult SBT. (SBT
can live past 40 years of age and the mean age of maturity appears to be on the order
of 10-12 years; Kalish et al. 1996, Davis et al. 2001). Tagging experiments were
conducted during each of the four decades considered, but the number of releases and
release years varied substantially. Consequently the extent of growth data differs
considerably. In particular, tagging data from the 1970’s are limited, and all of the
tagging data from the 1980°s comes from the first half of the decade (Table 1).

Length-frequency distributions of the commercial catches landed in South
Australia each half-month exhibit modes corresponding to age classes. The
progression in length of these modes over the year provides information on growth
rates. The catch was sampled either in canning processing plants or at the time of
landing. The data consisted of length measurements from a sample of the landings
within a half-month period. Caudal fork lengths were measured and recorded to the
nearest centimetre and pooled into one-centimetre groups. Trained technicians made
all measurements. The sample length frequencies from an individual landing were
scaled up by the total weight of the landing relative to the weight of the sample to
provide an estimate of the length-frequency distribution for an individual landing.
The length-frequencies from individual landings were then pooled across half-months
to provide an estimate of the length-frequency of the catch for that half-month period.
Not all landings in a half-month were sampled, so the length-frequency distributions
from the sampled landings were raised by the total weight of the catch from all

landings in that period and area.
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For South Australia, length-frequency data are available since the 1964/65
fishing season (Table 1). Data after 1989 are not used in the current paper because
the nature of the surface fishery changed dramatically to one dominated by small
landings aimed at the sashimi market and later to farming. In both cases, there are
indications of a high level of size selectivity. In addition, the level of sampling in the
farms has been quite low.

Verified methods for directly aging SBT from their otoliths were developed in
the 1990°s (Clear et al. 2002) and extensive collection of otoliths was undertaken
during this period. Otoliths were collected from juvenile fish landed in the surface
fishery and from fish caught during tagging programs. Otoliths were also collected by
observers aboard Japanese longline vessels operating in the Australian EEZ as well as
on the high seas. In addition, a large number of otoliths were collected at the time of
landing in Indonesia from longline vessels operating on the spawning grounds. The
age range of fish sampled covers 40 age classes. Thus, these data provide information
on growth for fish born in each of the four decades considered in this paper. However,
the degree of overlap in ages among the decades is low because almost all the otoliths
were collected in the 1990’s (Table 1). In order to avoid aging errors due to
uncertainty in the time of band formation, direct aging data were only used for fish
collected from October through April (see Appendix 12). Also, there is evidence of
size selectivity in spawning within an age-class below age 14 (Farley et al. 2001).
Therefore, only the direct aging data for fish 14 and older from fish caught on the

spawning grounds were used to avoid biasing the results for younger ages.

Growth Model

The basic growth function used in this paper for describing SBT growth is the
VB log k& model, which is described in Appendix 4. There is evidence in SBT of a
significant departure from the commonly used von Bertalanffy (VB) model (Anon.
1994, Hearn and Polacheck 2003, Laslett et al. 2002, Appendix 9). All of these
analyses suggest that there is a discernible change in the growth process during the
transitional period from juveniles to sub-adults. The VB log k£ model was developed
by Laslett et al. (2002) to accommodate such a transition in growth. It provides a
more flexible framework with better statistical properties using the same number of

parameters than the two-stage VB growth model used for SBT and similar species
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(Bayliff 1991, Hearn and Polacheck 2003). The VB log k& model uses six parameters
to describe length, /, as a function of age, a:

(M

ooy ~Ka k) B
(a)=L_|1 -kz(a_ao){l"'e plato a)} o
a)=L_|1-e™" —_—

1+e®

where
a, is the theoretical age when a fish would have length zero;
L_, is the asymptotic length;
ky 1s the growth rate parameter for the first stage of growth;
kz is the growth rate parameter for the second stage of growth;
[ is a parameter governing the rate of transition between k; and ks ;

« is a parameter determining the central age of transition.

As age increases, this function makes a smooth transition (according to a logistic
function) from a VB curve with growth rate parameter k, to a VB curve with growth
rate parameter k,. If k1 equals k,, the model reduces to the standard VB curve.

In addition to this basic model, a seasonal component was included in the
model to reflect the fact that SBT growth, particularly as juveniles, appears to be
substantially greater during the austral summer months than during the winter.
Seasonality in growth was modelled by replacing a—a, with a—a, +S(t) in
equation 1, where ¢ is the fractional time of year since January 1. Within-year growth

was modelled as a sinusoidal function:
S(t) = — sin(27(t — )) )
2r

where u is the amplitude and w controls the phase shift. Both parameters were
estimated in the growth model, with u constrained to be between 0 and 1 to prevent
negative growth and w constrained to be between —0.5 and 0.5 (any bounds with a
span of one could have been chosen due to the periodicity of the function). In this

formulation, the rate of growth is maximal at =1 and diminishes symmetrically
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about w to a minimum at t=w—0.5 and t=w+0.5. Other formulations for S(#)

could have been considered, but a sinusoidal function provided an adequate fit and
data limitations did not allow for further resolution of the within-season growth

pattern.

Parameter Estimation

The model was fit to the data from each of the four decades separately. For the
otolith data, we separated the data into decades according to cohorts (i.e. year of
birth), as determined from the year of capture and the estimated age. For the tag-
recapture data, we separated the data into decades according to the year of release
because the age of the fish at release (and hence its cohort) is not known. Similarly,
the length-frequency data were separated into decades according to the year of
capture. To separate based on cohorts would have required the data collected within
the same year to be split up in some years. We did not do so because the initial step
of the analysis involves fitting a mixture decomposition to the length-frequency data
from each year, and also because we explored estimating year effects in the
subsequent stage of the analysis. As such, in both the tag-recapture and length-
frequency decadal data sets, there may be a small proportion of fish that were actually
born in the last few years of the previous decade. This does not have any substantive
effects on the results.

In fitting the model to the data, several sources of variation were taken into
account. It is well known that if allowance is not made for individual variability in
growth, the resulting estimates can be substantially biased depending upon the
estimation method. Individual variability in growth was modelled by allowing the
asymptotic length to vary from fish to fish. Thus, L_ was assumed to be a random
normal variable with mean g and standard deviation o . Other formulations for
individual variability in growth were considered, but treating L_ as a random normal
variate appears to provide both an adequate representation of the error and leads to
similar predictions as other possible formulations (e.g. random growth rate
parameters). In addition to individual variability in growth we allowed for additional
measurement and model error. This was achieved by assuming that for any given
observed length at age there was an additional normal random variability associated

with the observation. The source and magnitude of the variation would be expected to
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be different among the different data sources and this was taken into account in the
estimation model (see Appendix 9 for details). In total, four different

model/measurement variance parameters were estimated. These were:

o? = the variance of the model and measurement error components for the

tagging data when the (either release or recapture) lengths were measured by
scientists

0'; = the additional variance components for the tagging data when the tag

recapture lengths were measured by fishermen

2 =

Oy

the variance of the model and measurement error component for the

direct aging otolith data

o’ = the variance of the model and measurement error component for length-

frequency data

A maximum likelihood approach was used to obtain the parameter estimates.
For each of the data sources a separate likelihood function was defined. The
likelihood functions that are used here were developed and described in detail in
Appendices 4 and 9. As such, the details are not repeated here and the reader is
referred to these appendices for a complete description. Since each of the data sources
were independent, the integrated log-likelihood across all of the data sources is simply
the sum of the log-likelihood components. The integrated likelihood incorporated
common parameters across components for the parameters defining the mean growth

function (ie. 4., k, k», a,, B, @, u and w) and for the asymptotic variance
parameter (o, ), but had component-specific parameters for the measurement/model
variance terms for each data source. Two additional parameters, Mg 4 and o, ,,

were estimated in the fitting of the tag-recapture data; they define the lognormal
distribution that was used to model the unknown ages at release. These parameters are
not of primary interest and the estimates of the growth rate parameters are generally
insensitive to how the distribution of initial ages is modelled, as long as a reasonably
appropriate distribution is used (see Laslett et al. 2002). Overall, the integrated VB

log k model has 15 parameters to be estimated.
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We also compared the fit of the VB log & model to that of a standard VB
growth curve:

Ia)=L.(1-e™*) 3)

where the parameters have the same definition as in equation 1 above. In this case, we
used the same basic likelihood functions and still retained the seasonal component.
The number of parameters is reduced by three (i.e. B, o and one of the k parameters
are eliminated).

To evaluate how well a model fit the data, we calculated residuals (fitted
minus observed length) for each of the data sets. In order to calculate the fitted
release and recapture lengths in the tag-recapture data, we required a realised value of
A and L_ for each fish. The approach outlined in Appendix 4 is to use the mean of
the posterior distribution for 4 and L_, respectively, conditioned on the fish’s release
and recapture lengths. This approach yields unbiased estimates of L_, but, as
discussed in Appendix 5, it leads to biased estimates of 4. Instead, we used the
approximately conditionally unbiased estimator 4 , that is described in Appendix 5.

We computed approximate variances and co-variances of the parameter
estimates by evaluating the inverted Hessian matrix at the minimum of the negative
log-likelihood function. In some cases this matrix was not positive definite. We were
forced to treat the estimates of some of the less “well-behaved” parameters as known

quantities. As such, no variance or co-variance estimates were calculated for these

parameters.

Results and Discussion

Table 2 ‘provides the parameter estimates for the individual decadal maximum
likelihood fits to the overall growth model. Comparison of the parameter values
suggests that there has been little or no change in the asymptotic length ( 4_,), at least
since 1970, but that there has been an increasing trend in growth rates at younger ages
as reflected in estimates of the k; parameters. Comparison of the estimated average
growth curves from the maximum likelihood fits indicates that the predicted length of

juvenile fish increased between the 1960’s and 1970’s, continued to increase between
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the 1970°s and 1980°s, and changed little between the 1980°s and 1990’s (Figure 1).
The overall increase between the 1960°s and 1980°s is quite substantial; the estimated
average size of a two year old in the 1980’s is nearly equal to that of a three year old
in the 1960’s. Although Figure 1 suggests that there may not be much difference in
growth between the 1980°s and 1990’s, a closer examination of the two curves
suggest that a difference of about 4 cm existed at age 2 and of about 2 cm existed at
age 3 (Figure 2). After this age, the estimated differences were generally less than 1
cm (see below for more discussion of this).

In order to test formally whether the growth curves estimated for each decade
were different, the fit when the data for two adjacent decades were combined was
compared to the fits to each decade separately (Table 3). In all cases, there was a very
substantial and statistically significant decrease in the negative log-likelihood when

separate curves were fitted to the data from each decade.

Common y_?

Comparison of the parameter estimates for 4_ in Table 1 raises the question
of whether 4, has varied over time — in particular whether the apparently lower value
for 4., of around 3 cm for fish born after 1970 is associated with the higher growth
rates in these later years. Fitting all four decades unconstrained with a common z_
parameter resulted in a significant increase in the negative log-likelihood (Table 4). It
is clear from Table 4 that the difference is driven primarily by the higher estimate of
4., for the 1960’s, with little difference in the other three decades. However, it should
be noted that the likelihood profile for 1 for the 1990’s data is quite flat (Figure 3)
and there is little basis for distinguishing whether y_ is different in this decade from
any of the other decades including the 1960’s. This is not surprising as the oldest fish
in the data sets for the 1990’s is around age 10 (by necessity) and fish are still
exhibiting substantial growth (i.e. they are only ~80% of their asymptotic length). For
the 1980’s, the likelihood profile with respect to 4 is substantially steeper than for
the 1990°s and the estimate of 4 is signiﬁcantly different from that for the 1960°s
(Figure 3). Nevertheless, there are no fish older than age 20 in the 1980°s data sets
and some indeterminacy might be expected in the estimate of y_ since SBT still

appear to exhibit appreciable growth after this age.
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Thus, the main basis for assessing whether there has been a change in #_

comes from the comparison of the estimates for 1970’s with that of the 1960°s. For
both decades there are a substantial number of length observations for animals
estimated to be over 25 years of age. For these two decades, the estimates of £ are
significantly different based on differences in the log-likelihoods (Table 5, Figure 3).
Moreover, a non-model based comparison of the mean length of fish estimated to be
older than 25 also suggests a significant difference in the asymptotic length (Table 6).
In spite of a significant difference existing in the estimates of u_, the estimates of
length at age for the 1960’s are relatively insensitive to the value used for y_ (Figure
4). Thus, for the range of ages for prediction of the age structure likely to be important
within a stock assessment context, there is at most 1.5 centimetres difference (e.g.

below age 20) and the differences in g have little effect on the residual patterns
(Annex 1). The parameter estimates for the other decades are similar whether 4, is

estimated separately or a common value is estimated for all four decades (Tables 2

and 7).

VB log k or Standard VB model?

Comparison of the k; and k; parameters suggests that, for the 1960’s and
perhaps for the 1970’s, they may be equal (Table 2), in which case the VB log &
model is equivalent to the standard VB growth model. In order to see if this was the
case, the data from each decade were fitted separately to a standard VB model, and
the resulting likelihoods compared (Table 8). The results indicate that there is no
significant difference between the standard VB and VB log k& model for the 1960’s. A
comparison of the residuals for the 1960°s data sets suggests the same conclusion
(Figures la-c in Annex 1 versus Figures la-c in Annex 2). The VB log k model
provides a significantly better fit to the 1970’s data, as well as to the 1980’s and
1990°s data. Table 9 provides the parameter estimates for the fit to the VB model for
the 1960’s.

The lack of difference between the VB log k and VB models for the 1960’s is
not consistent with results in Hearn and Polacheck (2003) and Anon. (1994). Using
only tagging data, these previous studies found a significant difference for the 1960°s
between the standard VB model and the two-stage VB model, which they were using
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to model a change in growth rates between juvenile and adult phases’. (This model is
similar to the VB log k except the transition is abrupt.) The reason for the difference
appears due, at least in part, to the inclusion of the direct aging data in the current
study. The direct aging data are highly informative with respect to #_. In contrast, as
discussed in Hearn and Polacheck (2003), the tagging data provide only minimal
information for estimating g _. The direct aging data clearly indicate that u_ is
around 185-190 cm (Table 6 and Figure 1a(i) in Annex 1) compared to the estimate
of 211 cm in Hearn and Polacheck (2003). Reducing the estimate of 4_ will increase
the estimate of & in order to achieve a relatively similar fit to the growth information

on intermediate ages since k> and 4 are highly negatively correlated. There are other
possible reasons for the difference, such as L_ was modelled as a random variable in

the current paper and the estimation methods used are different.

In any case, it is not clear whether the available data would have sufficient
statistical power to distinguish between the VB and VB log &k models. Most of the
data on growth rates for the cohorts born prior to 1970 provides information on
growth either below around age 5 or greater than age 25. These latter data provide

informative data for estimating 4_ but would be equally compatible with a wide

range of growth rate models for the intervening ages. The only data in the
intermediate age ranges from 5 to 20 comes from tag return data in which the return
lengths were measured by fishermen. The amount of data is small, and there is clearly
large measurement error associated with these return lengths as indicated by the large

residuals for these data (see Annex 1) and the large estimate of the additional variance

component for fishermen-measured return lengths, 0'} (Table 1).

For the 1970’s data, it is worth noting that the estimate of k; is in fact less than
the estimate of k. This is the reverse of the situation for the 1980’s and 1990°s
cohorts and contrary to what was expected given previous discussions and
suggestions for why a transition may occur in SBT (e.g. Hearn and Polacheck 2003).

This issue is discussed further below.

! Hearn and Polacheck (in press) found that the first stage of the two-stage VB model could be

equivalently represented as a linear function.
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Examination of Residuals

Examination of the residuals for each data set in each decade indicates that in
general the growth model provides a reasonable and consistent fit (Annex 1). There is
no indication of any substantive inconsistency among the different data sources. This
provides additional confidence in the overall estimates since each of the data sources
was collected independently and suggests that substantial selection biases did not
occur. This is particularly true for the 1980°s and 1990°s where the data are extensive
and there is a large overlap in the age ranges for which these sources are providing
information on growth.

The only substantive systematic pattern in the residuals that would suggest a
serious lack of fit to the model occurs in the modal length-frequency data for age 1 in
the 1980’s. In this case the modal data suggest that the length of an age 1 fish was
larger than that predicted by the model. As discussed in Appendix 3, there is
substantial spatial segregation in size for age 1 between fish found in Western
Australia and South Australia. On average, one-year-old fish are larger in South
Australia than Western Australia. This appeats to reflect a combination of effects. The
actual range of biological ages within the one-year-old age class is large relative to
their true age due to the protracted six-month spawning season of SBT. Thus, fish
that are classified as age 1 based on a January 1 birthday may differ by as much as six
months in their actual age. For an age 1 fish this would induce large differences in
their expected size. There also appears to be a tendency for the older/larger fish to
migrate farther east and into the Great Australian Bight (i.e. South Australia), which is
consistent with the current understanding of the general migration of young fish
from the spawning grounds off Indonesia, along the west Australian coast and then
into the waters south of Australia. As such, estimates of the size and growth for age 1
fish will be sensitive to the relative proportion that came from early and late spawners
in a given year and also sensitive to relative sampling intensity in South Australia and
Western Australia.

A consequence of this is that modelling the growth of SBT below age 2 will
contain some ambiguity and uncertainty. In theory, by using daily rings in the otolith
(Rees et al. 1996, Itoh and Tsuji 1996), it might be possible to resolve some of the
problems by estimating the actual birth date of individual fish and thus correct for
differences in age among age 1 fish. Besides the practical difficulty in doing this
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(counting daily rings is both expensive and time intensive), the results would likely be
confounded by compensation in growth during these early ages (i.e. faster growth
during the first year by late spawners). In terms of the objectives of this project and
the overall use of estimates of growth within the assessment context (i.e. assigning
cohort to the catch at length data and estimating the weight of the spawning biomass),
this uncertainty and ambiguity about the best estimate of the growth and length of fish
below age 2 is of little consequence. In terms of the assignment of cohorts, the
growth at these earliest ages is very rapid. As such, the difference in the length at age
for ages 1 and 2 provides a reasonably robust basis for assigning cohorts as long as a
1'ea§0nable value is used for the size of an age 1 fish (i.e. the modes in the length-
frequency distributions tend to be quite distinct). Moreover, in terms of the current
SBT fishery, the amount of fish being caught below age 2 is quite small (Precce et al.
2001). Finally, since SBT appear to mature around age 10-14 with no indication of
maturity before age 8 (Davis et al. 2001), estimates of the size of an age 1 fish have

no relevance to the estimation of the spawning stock biomass.

Variances/Covariances for the Parameter Estimates

Estimates of the standard errors indicate that most of the non-variance related
parameters are estimated with a high degree of precision. All of the parameters that
are used in the estimation of the expected or average length at age have a coefficient
of variation (CV) less than 7% except for u and w (Table 10). These latter two
parameters determine the seasonal pattern of growth. It is not surprising that « and w
are less precisely estimated as the amount of information within the data on the
seasonal component is substantially less (e.g. only from the shorter term tag returns
and the within-year pattemn of the means in the length-frequency distributions over a
limited portion of the year). Moreover, there appears to be some year-to-year variation
in the period of peak growth within the austral summer months (Appendix 7). This
would be expected given annual variation in environmental conditions. Nevertheless,
even for v and w, the estimates of the CV’s are less than 35%.

It should be noted that there was one parameter related to the expected value
of the growth curve for which we were not able to estimate its standard error. This

was the parameter S, which govems the rate of transition between the two growth

rate parameters ky and k. In all cases, the estimates of S were large and frequently
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equal to the upper bound of 30 that we set for this parameter. For values of 3 over 10
the rate of transition is very rapid and any difference in the predicted length at age for

larger values would be restricted to a very narrow age range within a year. As such

the likelihood function for higher values of S is very flat. Thus, the model is
predicting with a high degree of certainty that the rate of transition between k; and k>
is very rapid. The fact that we are not able to estimate a variance for S reflects the
fact that there is basically no predictive or practical difference in the value chosen for
B once [ is estimated to be large (e.g. >10).

Many of the variance related parameters are estimated with reasonably high
precision. In most cases their estimated CV is less than 12%. One exception is the

variance for the parametero, (the residual measurement standard deviation in the

model for the direct aging data). In the two cases where we were able to estimate the
standard error of this variance parameter it had a CV of over 100%. However, in
most instances, we had to assume that this parameter was known in order to be able to
achieve a positive definite Hessian. The reason for this is not obvious. Nevertheless,
the estimates of this parameter appear to have little correlation with the other
parameters. As such, the fact that we had to assume that it was fixed in estimating the
variance and co-variance matrix should have little effect on the results for the other
parameters.

The correlation matrix of the parameter estimates has some high entries,
mostly negative (Annex 3). Most of these are expected given the structural form of
the model. Thus, high negative correlations between p_ and the growth rate

parameters (k’s) are a well known feature of VB type growth models. Similarly, the
variance related parameters are often frequently highly negatively correlated. This is
not surprising as they are providing alternative ways of explaining the residuals
around the mean growth curve (e.g. increasing the value of one results in less variance
that needs to be explained by the others).

The estimates of the variance-covariance matrix can be used to produce
estimates of the confidence intervals around the predicted growth curves based on
normality assumptions. We calculated these confidence intervals and found that they
are very narrow. The upper and lower 95% confidence intervals are almost
indistinguishable from the predicted curves when plotted on the same scale as Figure

1. The small CV’s for the growth parameter estimates and the narrowness of the

Al10-15




Appendix 10: Comparison of growth rates of SBT over four decades — 1960 to 2000

confidence intervals indicate that the growth model is estimating the mean length at
age with a very high level of precision. Such high precision reflects the large amount
of data going into each of the estimated curves and the high degree of consistency
across the different data sources.!

Nevertheless, these estimates of the variances, covariances and confidence
intervals are too precise. We would not recommend that these be used to represent the
actual uncertainty in the mean growth of SBT during these decades. There are at least
five reasons why the uncertainty is being under-represented: (1) model uncertainty

(e.g. the choice of modelling L_ as a random effect); (2) lack of normality in the

parameter estimates; (3) non-independence in the data (e.g. non-independence among
fish tagged in the same school; over-estimation of the effective sample size in the
length-frequency data; reader biases in the otolith data, etc); (4) non-representative
sampling from the SBT population (e.g. all tagging was done in near-shore surface
fisheries close to Australia; potential size selectivity in the catch; etc); and (5) the tag-
recapture model fitting procedure is very flexible and may overfit the data with
respect to the age at release, 4, as explained in Appendix 6 (this is a quite recent
discovery). Alternative methods for estimating the variances (e.g. Bayesian) would
likely result in somewhat larger variance estimates because we would not have to
regard any of the unknown parameters as fixed. However, application of these
approaches was not feasible given the size of the data sets and the time required to
achieve a single solution. Moreover, there is little information for incorporating many
of the unaccounted sources of uncertainty in the estimation of the variances. The

estimation of the variances for the parameters is an area requiring further research.

Model Simplification?
In addition to considering whether the VB log k model could be simplified to

the standard VB model, consideration was also given to whether inclusion of the
seasonal component with the two additional parameters provided a significantly better
fit. In all cases, it did. As would be expected, addition of this seasonal component had
almost no effect on the estimates of the parameters describing the overall longer term

growth patterns (for more detail see Appendix 9).

! Note that while the variability in the estimated mean growth curve is very small, there is clearly a

large amount of individual variability around the mean curve.
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The estimates for a number of the variance related parameters are similar
among some or all of the decades. This is particularly encouraging as it suggests
consistency in the growth processes and measurement processes and that the model is
capturing these reasonably well. In particular, it was somewhat surprising that the

estimates of o_ across the four decades were as similar as they were (ranging fro 7.0

to 8.7) as there are no observations for the 1980’s and 1990’s for ages that have
essentially reached their asymptotic lengths. We have not attempted to fit models in
which any of these variance related parameters were assumed to be common across
decades. This was due in part to practical considerations. Attempting to fit models
with common parameters proved to be highly computer intensive, requiring extensive
amounts of time because of the magnitude of the data sets, the number of parameters
that needed to be estimated, and the large number of different parameter combinations
that needed to be tested. More importantly, the results of such an exercise would not
provide any substantial improvement for modelling the growth within a decade or for

predicting the expected distribution of lengths at age for these different decades.

General Discussion

The results from applying the integrated model to the data from the 1960’s and
1980°s confirm previous results that the latter cohorts grew substantially faster at
younger ages. They also demonstrate that this difference was consistently seen in
three independently derived data sources, indicating that the observed difference was
not an artefact of differences in the data collection or processing procedures over
time. The estimated difference in the growth curves between these two decades is
somewhat less than that estimated in either Hearn and Polacheck (1993, 2003) or
Anon. (1994). These previous studies were based only on tag-recapture data and used
Fabens’ estimation method (Fabens 1966) without any allowance for individual
variability in growth. Fabens’ approach has been shown to be biased if there is
individual variability in L_ (Maller and deBoer 1988). The results in this and previous

appendices strongly suggest such variability exists, and taking into account this
variability is probably the primary source of the difference.

The results in this appendix also indicate that growth of young fish in the
1990°s was faster than in the 1980°s up to about age 4. The estimated growth curve
suggests that after this age growth slowed down so that fish from the 1990°s are
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predicted to be the same size on average as those born in the 1980°s (Figure 2).
However, the limitations in the 1990’s data need to be recognized. Only half of the
cohorts born in the 1990°s can possibly contribute data on growth for fish older than
age 5 because 2000 was the last year for which data were available for inclusion in
this study (cohorts born after 1995 would be younger than age 5 in 2000). In addition,
the last tag releases of SBT were of age 1 and 2 fish in 1997. The most recent cohort
for which an otolith was read was from the 1995 cohort and only 7 otoliths were read
from fish collected after 1995. As such, the estimated growth curve for the 1990°s,
particularly for ages past 5, is based almost exclusively on the growth experienced in
the first part of the decade. Thus, if growth rates have on average been increasing in
the 1990’s, the estimates for the older ages may be biased downward relative to what
may be observed when more complete and representative data are available. In this
regard, it is worth noting that in the tag-recapture data there is a tendency for the
residuals for the oldest fish from the 1990’s to be negative (Figure 4-6, Annex 1).
These fish were born in the first few years of the 1990°s or in some cases in the late
1980°s.

The 1970’s results suggest that this decade saw a period of transition with
quite variable growth. The results from the integrated analyses for the combined data
from this decade suggest that growth rates at younger ages were slightly greater than
those in the 1960’s. Examination of residual plots for the length-frequency data either
by year or cohort (Figures 5 and 6) strongly suggests that growth in the early part of
the decade was substantially slower than in the latter years (see also Appendix 7).
Thus, when the data are pooled for this decade they will provide intermediate values.
Attempts to further resolve the growth in the 1970’s using this integrated framework
were not successful. The data for the 1970’s are relatively sparse and would not, for
example, support half-decadal estimates. The limitations in the 1970’s data are
important to recognize in any interpretation of the results. In particular, there s little
information on growth for intermediate ages (i.e. between 6 and 15 years of age).

The estimates of x_ suggest that there may have been a small decrease in the

average asymptotic length between the 1960°s and 1970°s. As discussed above, it is
difficult to evaluate whether this represents a real change in the underlying growth
dynamics or is the result of other factors (e.g. sexual dimorphism in growth or

sampling/age-reading effects). More significant in this regard is the fact that the
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estimates of £ appear to be larger than the size distribution of adult fish that were

caught historically. In the first 20 or so years of the SBT fishery (prior to 1970) less
than 0.05% of all fish caught on the spawning ground by Japanese longliners were
estimated to be greater than 184 cm and the proportion never exceeded 0.4% in any
year (Figure 7). The proportion of fish greater than 184 cm in the spawning stock
would have been expected to have been in excess of 9% for a stable age distribution if
[_was at post-1960 levels, given current estimates of age of maturity (10-14) and
adult survival rates (0.08-0.10)". The observed proportion in the catch is about 200
times less than what would be expected in an unexploited population. Fish greater
than 184 cm were similarly rare in the longline catches off the spawning grounds in
the years of the fishery (Figure 8). Interestingly, in the spawning ground catches, fish
over 184 cm began to make a non-negligible contribution to the catches around 1970
and in the feeding ground catches around 1980 (Figure 9). Their contribution after
1980 has generally been increasing. In addition, the contribution of larger fish to the
catch showed a rather steady increase (Figures 8 and 9, see also Anon 1994 for further
details). Under constant growth conditions, such an increase is contrary to what is
expected in the initial period of exploitation of a fishery, namely that the age and size
distributions shift towards younger and smaller fish (i.e. the increase in mortality
reduces average life expectancy).

The spawning ground fisheries operating prior to 1970 would have been
catching adult SBT born prior to 1950 for fish older than age 20. The contrast
between the estimates of g, from all fish born after 1960 and the absence of fish in
the corresponding size range in the pre-1970 spawning ground fisheries raises the

question of whether x_ was substantially less prior to the commencement of the
fishery. The hypothesis that x_ was substantially smaller would be consistent with a

density dependent response in the post-juvenile phase of the SBT life cycle. Under
this hypothesis, the large catches of adult fish in the late 1950’s and early 1960’s and

the corresponding large reduction in the adult SBT biomass would have permitted

! This 9% figure is derived from calculating the proportion of the SBT stock aged 10 and above that
would be over age 25 years based on a stable age distribution and assuming that half of these would be
greater then 184 cm. This provides a conservative estimate since a substantial number of fish appear to

reach lengths of 184 cm prior to attaining 25 years of age.
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SBT, particularly those bom after around 1950 (i.e. less than age 10), to have
developed a positive response to the reduction in the adult and sub-adult biomass
(possibly as the result of reduced competition for food). This would be consistent with
fish larger than 184 cm appearing in non-negligible proportions in the spawning
ground and feeding ground catches in the 1970’s and 1980’s and would suggest that
there is a large element of indeterminate growth in SBT.

The above hypothesis is clearly speculative. Unfortunately there are no
available data or biological material from which to estimate growth rates for cohorts
born prior to 1960 or for determining the age of larger fish that were caught in the
1950°s and 1960’s. However in the SBT stock assessment, values for the growth rates
or alternatively the distribution of the lengths at age are required. As such, developing
plausible hypotheses for the growth prior to and during the early years of exploitation
is an essential component of the stock assessment. The estimates that are used can
potentially have a large effect on current levels of depletion and the productivity of
the stock. While the above hypothesis is speculative, it does provide a consistent and
plausible explanation for the lack of larger fish in the early catches. It needs to be
considered in relationship to other plausible hypotheses.

In the current stock assessments, the underlying hypothesis is that growth rates
for cohorts born prior to 1960 were similar to those observed for the cohorts born in
the 1960°s. While this is the simplest parsimonious hypothesis in terms of the direct
information on growth, it raises the question of why only negligible amounts of fish
around the hypothesized asymptotic length were captured in the early years of the
fishery, and why they began to be caught in increasing proportions beginning in the
1970’s and continuing until present. There are at least three potential alternative
hypotheses:

1. A period of sustained very low recruitment existed such that very few
adults greater than 20 years of age were alive at the beginning of the
fishery and for the next 15-20 years (e.g. a major “regime shift”).

2. High natural mortality existed prior to the fishery such that fish did not
generally live to age 20 and older, and thus did not attain their potential
asymptotic length,
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3. Strong negative size selectivity for very large fish existed in the Japanese
longline fishery (particularly on the spawning ground), but this diminished
overtime.

4. Large sampling or measurement biases exist in the earlier size data
collected from the Japanese longline fishery.

The first two hypotheses would seem equally as speculative as a changing
asymptotic length with no direct data to support them. In addition, with respect to the
first hypothesis, a period of low recruitment is not consistent with the estimates of
recruitment trends in the assessments (e.g. an extended period of low recruitments
prior and during the’early years of exploitation would be inconsistent with the large
catches and estimated spawning biomass in the late 1950°s and early 1960°s).

The third of these alternative hypotheses seems rather less plausible. It is
difficult to imagine a mechanism in terms of the longline gear that would generate
such strong negative selectivity only for very large fish. Originally, there was very
intensive fishing effort for SBT on the spawning grounds. As such, it is hard to
conceive of a temporal/spatial refuge only for very large fish. Finer scale analyses of
the shift in size towards larger fish on the spawning grounds suggest that this was not
a consequence of temporal or spatial shifts in the distribution of effort (Anon. 1994).
Moreover, there appears to have been a shift towards targeting bigeye tuna during the
1960’s and the residual fishing on the spawning ground after 1970 has been reported
to generally be fishing deep. This should have resulted in an increasing selectivity
towards smaller fish (Davis et al. 2001) and is the opposite of what has been
observed. Finally, the current Indonesian fishery operating in the same general area
and period catches substantial numbers of large SBT (i.e. they are a primary source of
the otolith samples for large fish — see Appendix 3).

Measurement bias seems an unlikely source for the lack of large fish being
reported in the Japanese catch considering all of the early size measurements of the
Japanese catches were made in port by trained scientific samplers. It also seems
unlikely that there were large selection biases against large fish in the choice of fish
that were sampled. There have been hearsay suggestions that in the earliest years of
the fishery (during the 1950’s) there may have been some selection bias due to large

SBT being cut in half to fit intb available storage space. Even if this practice was
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extensive (which it would have had to have been to explain the lack of large fish in
the samples), it would not explain the persistent lack of large fish up to 1970.

The hypothesis that y_ was substantially less prior to the commencement of
the fishery could also provide a possible explanation for why there is no significant
difference between the VB and the VB log & models in the data from the 1960°s. If the
underlying growth process of SBT involves a substantjal transition between the
juvenile and sub-adult stages as suggested by the post 1960’s data, the lack of a
transition in the 1960’s could have stemmed from the fact that during the 1960’s there
was a substantial increase in the growth rate associated with the post-juvenile stage in
conjunction with the increase in g . The resulting change in growth rates could have
been such that k; and k; became essentially equivalent. Such a hypothesis would be
consistent with a density dependent response in the post-juvenile phase to the large
declines that occurred in the spawning stock during the 1960’s.

A hypothesis for the subsequent increase in the juvenile growth rate (k;) in the
1980’s and 1990°s would also be that it was a density dependent response. In this
case, the response would have been primarily to the declining recruitment combined
with even larger proportional declines in juveniles as a result of the large increases in
juvenile catches in the surface fishery (Caton 1991, Polacheck and Preece 2001,
Kolody and Polacheck 2001). The small but continued increase in the juvenile growth
rate estimated to have occurred in the 1990’s is consistent with the estimated
continuing, but slowed, declines in recruitment. These two hypotheses are speculative,
but they are at least broadly consistent and plausible given the set of estimated growth
rate parameters from this integrated analysis, the history of the fishery and the general
trends in the SBT stock. Under these hypotheses, juvenile SBT growth rates would be
expected to decline if substantive increases in recruitment occur, while adult growth

rates and 4, would be expected to decline only if quite substantial rebuilding of the

spawning stock occurs.
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Table 1: Summary of data used in estimation of decadal growth curves.

Otolith Readings Tag-Recapture Data Length-Frequency Data
No. bon Age Release No. Sampled Mean no. length No. estimated
Decade  indecade  range’ years® recaptures years samples per year (sd)° modes
1960°s 277 22-38 1961-66 791 1965-1969 24019 (6 937) 119
1970°s 1298 12-30 1973-74,1977-78 202 1970-1979 21 788 (8903) 288
1980°s 668 1-21 1983-84 2181 1980-1989 17 865 (10 875) 269
1990°s 281 1-6 1991-95 2980 - - -

* All otoliths were collected in the 1990°s so fish born in progressively earlier decades were progressively older by the time of catch.

® Years with at least 5% of the total releases for that decade.

° Length samples were taken using a two-stage procedure; the sample sizes shown are estimates of the equivalent sample size had a simple random sample been taken (refer
to Leigh and Hearn 2000 for details).

Table 2: Parameter estimates for the VB log & model with a seasonal growth component based on the integrated best fit to the data from each

decade.

Decade M., o, kl kz (94 ﬁ ap u w aulog A O-log A O, O-f O-y O-g

1960°s 187.8 7.0 0.14  0.15 55 30,0 -16 053 -007 1.2 0.16 2.4 3.1 59 2.0
1970°’s 1843 7.9 0.15 0.19 5.7 30.0° 1.3 092  0.06 0.8 0.12 2.1 4.7 0.0 35
1980°s  184.7 8.1 022  0.17 2.8 183 -04 034 0.13 0.6 0.17 2.1 4.2 4.6 4.3
1990°’s 1849 8.7 0.25 0.16 2.5 124 -03 041 026 0.7 0.32 1.8 4.9 5.6 -

ES
Estimate is equal to the upper or lower bound set for this parameter.
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Table 3: Comparison of the negative log-likelihood values when a single growth

curve is fitted to the pooled data from two consecutive decades compared to when

individual growth curves are fitted to data from each decade separately.

Negative Log-Likelihood ~Number of Additional  Difference in

Decades Compared ~ Separate Combined Parameters Log-Likelihood
1960°s & 1970°s 12973.8 13319.5 15 345.7
1970’s &1980°s 24169.0 24560.8 15 391.7
1980’s & 1990’s 40482.6 41272.9 14 790.3

Table 4: Comparison of the negative log-likelihood values when 4, is estimated

separately for each decade (values in Table 2) versus when a common gy, is

estimated across all decades (in which case the best fit estimate of _ is 185.6 cm)

Decade Separate [ Common g,
1960’s 6411.9 6417.3
1970’s 6561.9 6564.1
1980’s 17607.1 17607.6
1990°s 22875.4 22875.5
Sub-total 70°s-90’s 47044.5 47047.2
Total 53456.3 53464.5
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Table 5: Comparison of the negative log-likelihood values when u_ is estimated

separately for the 1960°s and 1970°s and when a common value is estimated for the

two decades. (The estimated common value for y_ is 186 cm.)

Decade Separate (1 Common y_
1960’s 6411.9 6415.5
1970’s 6561.9 6565.6
Total 12973.8 12981.1

Table 6: Mean length and standard error (SE) for fish over 25 years of age based on
direct age estimates from otolith readings. (Note that sufficient time has not elapsed

for otoliths of this age to exist in the 1980°s and 1990°s.)

Decade @ N  Mean Length SE

1960°s 263 186.0 0.53
1970’s 225 184.0 0.57
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Table 7: Parameter estimates for the VB log k model with a seasonal growth
component based on the integrated best fit to the data for each decade, but with a

common g value for all decades.

Decade M. 0. ki ke a B u w Hioga Owga 0, Oy gy 9y O,

1960°’s 185.6 6.59 0.14 0.16 5.59 30.00 0.54 -0.07 1.19 0.16 241 3.09 -1.56 6.60 2.01
1970°’s 185.6 7.98 0.15 0.17 5.66 30.00 0.91 0.06 0.77 0.12 197 474 -128 0.00 3.54
1980°s 185.6 8.12 022 0.17 2.86 15.75 0.34 0.13 0.58 0.17 2.08 4.20 -043 456 4.29
1990’s 185.6 8.71 025 0.16 2.46 1240 041 026 072 031 1.81 485 -031 5.58 -

Table 8: Comparison of the differences in the negative log-likelihood values for the
best fit to the standard VB model and the VB log k model.

Number of additional  Difference in

Decade VB VB log k& parameters log-likelihood
1960’s  6414.9 6411.9 3 3.0
1970’s 65753 6561.9 3 13.4
1980°s 17708.7 17607.1 3 101.6
1990°’s  23040.9 2275.4 3 65.5

Table 9: Parameter estimates for the standard VB model with a seasonal growth
component based on the integrated best fit to the 1960’s data.

Decade 4. O. Kk u w  Mioga Ctoga Oy Oy q O, O,

1960’s 188.8 7.86 0.14 0.49 -0.06 1.18 0.16 2.35 3.01 -1.53 4.75 1.99
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Table 7: Estimates of the coefficient of variation (100*SE/mean) for the best fit to the
VB log k& model for each decade. Also shown are the estimated coefficients of
variation for the best fit to the VB model for the 1960°s data (in which case k; denotes
the single growth rate parameter k). A dash indicates that the parameter needed to be
treated as fixed.

VB log k VB
1960°s 1970°s 1980°s 1990°s  1960°s
.. 03 03 04 03 0.3
o. 3.6 32 33 - 3.8
3 12 1.6 16 09 1.1
ks 40 53 24 12 n/a
o 45 34 42 20 n/a
B - - - - n/a
ao 27 40 6.6 - 2.5
u 16.5 139 12.1 153 17.2
W 30.7 308 122 193 35.7
Hiog 4 1.1 24 26 13 1.0
Clog 4 31 80 18 15 3.1
o 49 350 60 57 5.4
o 112 222 54 40 11.5
Oy - - 159.3 - 318.4
o, 7.1 44 47 v/ 7.0
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Figure 1. (top) The optimal integrated seasonal VB log k growth curve for each

decade. (bottom) The same curves plotted relative to the 1960’s curve for better

comparison.

150 1
=
)
=
© 100 -
()]
-

50 7
0 5 10 15 20
101 NRA.
g AVIRAVAVA
-o'E . "A"';/ N ;/;\ /"}v\
8) 5 l " /"r'\,}r\‘\}.’ \\7/’\ ;\\'—7‘\.,_
Q I~ ; -\V i V ~\ i ,‘.‘—. \:\\;\‘ -
2 o LY IR S N
.E I\.\!‘ \'\I \/ - S
8 \\.i V
§ _5 - \.II[
£ 2
8 .10 {'
0 5 10 15 20

Age (yr)

Al10-31



Appendix 10: Comparison of growth rates of SBT over four decades — 1960 to 2000

Figure 2. The optimal integrated seasonal VB log k& growth curve for the 1990°s
decade plotted relative to the 1980’s curve.

Difference in Length (cm)

Age (yr)

Al10-32



Appendix 10: Comparison of growth rates of SBT over four decades — 1960 to 2000

Figure 3. Change in the negative log-likelihood relative to its minimum value as a

function of w4, .
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Figure 4. (fop) Integrated seasonal VB log k growth curves for the 1960’s with z_
fixed at: 1) the optimal value for the 1960°s data alone (187.8); 2) the optimal value
when 4, is constrained to be the same in all decades (185.6); 3) the optimal value
when 4 is constrained to be the same in the 1970’s, 1980’s, and 1990°s (184.4).
(bottonr) The same-curves plotted relative to the optimal 1960°s curve (with _ =

187.8) for better comparison.
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Figure 5. The residual (observed minus fitted) for the length-frequency data as a
function of year for the best fit to the VB log k model for each decade.
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Figure 6. The residual (observed minus fitted) for the length-frequency data as a
function of cohort for the best fit to the VB log & model for each decade.
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Figure 7. The proportion of the catch by spawning season by Japanese longliners from
the SBT spawning ground (Statistical Area 1) estimated to be over 184 cm. (See
Caton, 1991, for definitions of the statistical areas.)
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Figure 8. The proportion of the annual catch by Japanese longliners from the SBT
feeding grounds (Statistical Areas 4-9) estimated to be over 184 cm. The lower dotted
line is for the proportion of the total catch and the upper solid line is the proportion of
the catch for fish larger than 130 cm. (See Caton, 1991, for definitions of the

statistical areas.)
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Appendix 10: Comparison of growth rates of SBT over four decades — 1960 to 2000

ANNEX 3: Estimates of the Correlation Matrix for the Parameter
Estimates from the Best Fit to the VB log kK Model for Each Decade
and to the Standard VB Model for the 1960°s

Table 1: Correlation matrix for the parameter estimates from the VB log £ model fit to

the 1960°s data.

H, O. Kk k> a ap u w  Higa Oiga O, O, O,
Mo 11.00 0.04 -0.36 -0.65 -0.15 0.00 -0.06 0.03 0.00 -0.02 -0.03 0.01 -0.01
o. 1.00 0.01 -0.11 0.00 0.03 -0.01 -0.01 -0.02 -0.01 -0.23 0.06 0.00
ki 1.00 0.12 0.11 0.86 -0.32 0.38 -0.81 0.16 -0.03 -0.04 -0.22
ks 1.00 0.34 -0.10 0.11 -0.04 0.11 0.00 0.07 -0.01 0.02
a 1.00 0.01 0.03 -0.04 -0.04 0.03 -0.09 0.05 0.10
ao 1.00 -0.11 0.48 -0.81 0.13 -0.02 -0.03 -0.23
u 1.00 0.12 030 -0.14 0.06 0.05 0.10
w 1.00 -0.43 0.20 -0.03 0.02 -0.34
Hiog 4 1.00 -0.16 0.03 0.04 0.22
Olog 4 1.00 -0.18 0.06 -0.09
o, 1.00 -0.41 0.01
o 1.00  0.01
o, 1.00
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Table 2: Correlation matrix for the parameter estimates from the VB model fit to the

1960’s data.

U, o. k O, a u w  Miga Ciga O, Oy O,
4. |1.00 0.00 -0.58 -0.01 -0.30 0.08 -0.09 0.30 -0.06 0.01 0.02 0.04
c.. 1.00 -0.03 -0.01 -0.04 0.02 -0.05 0.05 -0.04 -0.20 0.03 0.02
k 1.00 . 0.01 0.80 -0.25 035 -0.73 0.11 0.04 -0.08 -0.17
o, 1.00 -0.01 -0.06 -0.02 -0.01 -0.01 -0.01 -0.04 -0.02
ao 1.00 -0.02 0.47 -0.77 0.11 0.06 -0.07 -0.20
u 1.00 0.13 023 -0.12 0.01 0.08 0.06 |
W 1.00 -0.42 020 0.0 0.00 -0.32
Hiog 4 1.00 -0.13 -0.06 0.09 0.20
Olog 4 1.00 -0.18 0.06 -0.08
o, 1.00 -0.44 0.00
Oy 1.00 0.01
o, 1.00
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Table 3: Correlation matrix for the parameter estimates from the VB log & model fit to

the 1970’s data.

H, O, ki kb g ao u w  Higa Olga O, Op O,

M. | 1.00 0.06 -0.35 -0.92 -0.04 -0.08 0.00 0.02 0.09 -0.02 0.03 -0.01 0.01
o.. 1.00 -0.18 -0.05 0.09 -0.07 0.52 -0.05 0.05 0.38 -0.72 0.60 -0.04
ki 1.00 0.29 -0.19 0.89 -0.29 -0.07 -0.77 -0.10 0.20 -0.30 0.22

k> 1.00 0.10 0.04 0.04 -0.02 -0.06 0.03 -0.05 0.04 -0.02

o 1.00 -0.21 0.15 0.02 0.16 0.07 -0.12 0.15 -0.09

ap 1.00 -0.09 -0.28 -0.81 -0.05 0.08 -0.19 0.23

u 1.00 -0.19 0.12 0.34 -0.69 0.62 -0.06

W 1.00 031 0.03 0.06 -0.07 -0.07

Hiog 4 1.00 0.03 -0.05 0.15 -0.20
Olog 4 1.00 -0.56 0.46 -0.03
o, 1.00 -0.83 0.05
Oy 1.00 -0.07
O, 1.00
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Table 4: Correlation matrix for the parameter estimates from the VB log & model fit to

the 1980’s data.

U, o, ki k a 0, a u 0w HyO,gq O O; O,

“.l 100 008 -0.54 -0.84 0.32 -0.01 -0.23 -0.04 0.03 0.22 -0.09 0.03 0.3 -0.05
o. 1.00 0.15 -0.08 -0.18 0.01 0.14 0.6 -0.01 -0.18 -0.05 -0.62 0.24 0.04
k1 1.00 0.54 -0.89 0.01 0.89 -0.05 -0.12 -0.91 0.09 -0.12 -0.16 0.29

ks 1.00 -0.50 0.01 0.32 0.05 -0.06 -0.29 0.08 -0.01 -0.04 0.07

a 1.00 -0.01 -0.81 0.03 0.15 0.86 -0.09 0.19 0.05 -0.20

Oy 1.00 0.00 -0.04 -0.03 -0.01 0.00 -0.04 0.00 -0.03
ao 1.00 -0.12 -0.24 -0.90 0.08 -0.04 -0.22 0.32

u 1.00 022 0.4 0.0 -0.05 0.00 -0.04

w 1.00 023 -020 0.00 0.12 -0.03

Hiog 4 1.00 -0.08 0.12 0.16 -0.30
O log 4 1.00 -0.08 0.02 0.01
O 1.00 -0.51 0.02
Oy 1.00 -0.12
O, 1.00
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Table 5: Correlation matrix for the parameter estimates from the VB log k model fit to

the 1990°s data.

Ho ki ko o u w HigaOiga O, O
H. ] 1.00 0.11 -0.65 -0.69 0.50 0.37 0.14 0.00 0.20 0.00
ki 1.00 -0.44 -0.66 0.61 0.49 -0.58 -0.13 -0.08 0.09
k> 1.00 0.50 -0.68 -0.48 0.01 0.17 -0.10 -0.04
o 1.00 -0.65 -0.49 0.30 -0.03 -0.09 -0.06
u 1.00 0.38 -0.07 -0.17 0.28 -0.10
W 1.00 0.04 -0.31 -0.05 0.13
Hiog 4 1.00 -0.07 0.17 -0.09
Clog 4 1.00 -0.06 0.02
O, 1.00 -0.54
O 1.00
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Introduction

Otoliths are calcified ‘ear-stones’ in teleost fishes used for balance and/or hearing.
They are metabolically inert and, unlike other hard parts of fish such as scales and
vertebrae, are not subject to resorption (Campana 1999). In addition, otoliths continue to
grow throughout the life of a fish and hence contain a permanent chronological record.

Otolith growth is not constant. During periods of fast growth the accreted otolith
material is opaque whereas it is translucent during slow growth periods. An opaque zone
and subsequent translucent zone is referred to as an ‘increment’ and they appear as a light
and a dark band, respectively, when placed on a black background and viewed under a
dissecting microscope with reflected light.

Increments in the otoliths of southern bluefin tuna, Thunnus maccoyii, (SBT) are
formed annually (Clear et al. 2000), with fast growth occurring during the southern
summer and slow growth during the southern winter. Thus, the number of increments can
be counted to give an age estimate of SBT in years. We refer to this procedure as making
a “reading” from an otolith.

There are three pairs of otoliths; in most fishes, including tunas, the sagittae are
the largest pair. Because of their size, sagittae are the easiest to handle and prepare so
they are most often the otoliths chosen for research, as they were for this study. Previous
studies involving direct age estimates of SBT have included two methods of preparing
sagittal otoliths for “reading”, one in which the otolith was left whole and the other in
which the otolith was sectioned (Gunn et al. In press). The whole otolith method has been
used successfully for fish less than about 6 years old (~ 135 cm fork length); after this
age subsequent increments are deposited too closely to differentiate them. Sectioned
otoliths have been used for all ages, however the first 4 or 5 increments are particularly
difficult to decipher. With both methods, if the start of a new translucent zone (or band) is
detected on the otolith margin an additional increment (known as the marginal increment)
is counted as a year.

Using the number of increments as an estimate of fish’s (integer) age is not
straightforward because variation occurs in the time of year when individual fish form
their translucent band. Consider two fish from the same cohort. One fish is caught in
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April and has not yet started to form the translucent band within the marginal increment.
There are N increments visible on its otolith, so the fish is assigned age N. The other fish
is caught two months later. By this time it has started to form a translucent band, so it is
estimated to be age N + 1, despite the fact that the two fish came from the same cohort.

If we know the date, d, when the translucent band becomes detectable, then we
can estimate the cohort to which a fish belongs. For example, if we assume that all fish
are born on January 1% (the approximate mid-point in the SBT spawning season), then we
can correct the ages such that all fish from the same cohort are assigned the same age as

follows:

N if capture date<d
age=
e N -1 if capture date=d

where N is the number of bands counted, and both d and the capture date are expressed in
Julian days since January 1 of the year of capture.

As part of this Appendix, we carried out an investigation to determine d, the time
when the translucent band is formed, using data from a previous age-validation study
(Clear et al. 2000). In the Clear et al. (2000) study, a number of SBT that were caught as
part of a large-scale tagging program were injected with strontium chloride at the time of
tagging. Strontium chloride (SrCl,) is a harmless salt that deposits in the otolith and
provides a “time-stamp” of the date of tagging. When the fish are recaptured and the
otoliths are removed, the number of increments formed subsequent to marking is
determined by counting the number of translucent zones (‘bands’) deposited after the
strontium mark; the translucent zones are narrower and more defined than the opaque
zones and hence easier to count. Because the amount of time the fish has been at liberty is
known, we can determine whether or not the translucent zone for the recapture year has
yet been formed (or is yet detectable).

The results of this investigation did not provide as fine a resolution for
determining when during the winter period the translucent band was formed as we had
anticipated. This was considered a significant issue for the current growth project because

a substantial number of otoliths had been aged from fish captured during these winter
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months. Results of fitting growth curves to the otolith age and length data were found to
be sensitive to assumptions about the time of band formation. As a consequence,
additional work was undertaken to see if a more precise and accurate estimate of the time
of band formation could be determined.

A pilot study was conducted in which a small number of unread strontium-marked
otoliths from fish caught during the winter months were selected from the CSIRO
archives. In addition to counting the number of bands formed subsequent to the
strontium mark, several additional observations were also made. In particular, the
samples were chosen from fish that had had both otoliths extracted so that one otolith
could be read using the whole method and the other could be read using the sectioned
method. Some preliminary exploration of existing otolith data suggested that the ability
to detect a translucent zone forming on the margin may differ between the two methods.
The results from the pilot study further indicated that this was a possibility.
Consequently, a larger study was conducted in which otolith pairs were read both

sectioned and whole and the readings compared.

Methods

Time of band formation study based on strontium chloride marked otoliths

As part of the Clear et al. (2000) age-validation study, 59 otoliths were read from
fish that had been strontium injected and recaptured. Details on the strontium chloride
tagging experiment can be found in Clear et al. (2000).

Using the release date of the fish (at which point the strontium mark was
deposited in the otolith), the recapture date, and the number of increments subsequent to
the strontium mark, we can determine if a translucent band had yet been formed in the
year of recapture. For example, if a fish released in January 1990 and recaptured in July
1994 has four translucent bands in its otolith after the strontium mark, we can assume that
its translucent band for 1994 has not yet been formed, or at least cannot yet be seen. In
doing so, we are assuming that the count of increments subsequent to the strontium mark
is accurate. We are also assuming that the only uncertainty in the number of translucent

bands that should have formed comes from the year of recapture, and not the year of
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release. The majority of fish were tagged and released during the summer months of
December to March; months during which a translucent band would not be forming.
However, two of the 59 fish were released in June and one in May, and we cannot be sure
whether the band corresponding to the year of release would have been formed prior or
subsequent to the strontium mark. Thus, we excluded these three fish from our analyses.
For each month of recapture, we tabulated how many fish had already formed a
band in the year of recapture. We could then estimate the range of months during which
band formation can occur, and also an average date by which SBT otoliths exhibit a

translucent band.

Pilot study

A pilot study was conducted in which 24 unread strontium-marked otoliths from
fish caught during the winter months (May-September) were extracted from the CSIRO
archives. The number of bands formed subsequent to the strontium mark were counted
and checked against the time at liberty to determine if a band had yet been formed by the
recapture date. Several additional observations were also made.

Two methods have been developed for reading otoliths — one in which the otolith
is left whole and one in which it is sectioned (Gunn et al. In press). Preliminary
exploration of existing otolith data suggested that the ability to detect a translucent zone
forming on the margin may differ between the two methods. In particular, a plot of fork
length versus estimated age showed obvious disparities in the lengths-at-age of young
fish that had been caught in the winter months. Further investigation revealed that these
disparities were consistent with fish aged using the sectioned method being one year too
young, which would occur if a band forming on the otolith margin was not being detected
in the sectioned otoliths. However several confounding factors also existed which could
explain the differences, one being that the same fish that were aged using the sectioned
method were also caught in a very different area of the ocean than the fish that had been
aged using the whole method. We used the pilot study to investigate this issue further.
The 24 otoliths that were selected for the pilot study came from fish for which both
otoliths had been collected (called sister otoliths). One otolith was read whole and the
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other otolith was read sectioned. In addition, for both methods the reader recorded

whether or not a translucent band was counted on the margin of the otolith.

Whole versus sectioned otoliths study

Exploratory data analyses in conjunction with results from the pilot study
suggested that there may be a consistent difference in the time at which the translucent
band being formed on the margin of an otolith becomes detectable between otoliths read
whole and otoliths read sectioned. For fish caught during the winter months while a
marginal band is forming, it is important to know whether in fact a difference does exist.
If it does, then the age assigned to these fish could be one year different depending on the
method used. A difference in age of one year for small fish can have a significant impact
on the estimation of growth rates. Furthermore, it was trealized that if a significant
difference did exist, it could be exploited to refine the time when bands become
detectable with both methods by comparing otolith readings using both methods from the
same fish. For example, the first month in which a difference in the number of bands was
found between the two methods would indicate the month when bands first became
detectable with the method yielding the higher number of bands. This month would mark
the beginning of the potential period of band formation. The subsequent month in which
both methods yielded the same number of bands would indicate the month when bands
were consistently detectable by both methods, and would mark the end limit of the period
of band formation.

In order to address the problem of whether a consistent difference did exist and
whether it could be used to refine the estimates of the time of detectable band formation,
we conducted a study using pairs of sagittal otoliths from the same fish. One otolith was
read whole and the other was read sectioned to see if there was a consistent difference in
the readings around the time of band formation, and if so, for what months the difference
was present.

Pairs of sagittal otoliths (paired otoliths from the same fish are referred to as
‘sister otoliths’) were chosen from the CSIRO Hard Parts Archives. Samples were
selected from fish with lengths less than 135 cm since whole otoliths from fish larger
than this are usually very difficult to read. Furthermore, otoliths were selected from fish
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caught during the months of March to November since the translucent zone would almost
surely have been deposited sometime within this period. In three of these months (April,
August and November), fewer than 20 intact pairs of otoliths were available from the
Archives. The small sample sizes could possibly obscure a pattern in the development of
the translucent band through the year. However, the numbers of fish in the adjacent
months are high, which should still allow for a general pattern to be detected if it exists.
Furthermore, the length distribution is fairly similar across months, especially in the
potential months of band formation (Figure 1). This would be important if the ability to
detect the marginal band using a particular method is related to the size of the otolith, and
hence the size of the fish.

Sister sagittal otoliths were prepared using two techniques: one otolith for reading
whole and one for reading sectioned. The otolith to be read whole was burned on a
400°C hot plate until it turned golden brown. This accentuates the opaque-translucent
banding pattern since the colour change in the translucent zones is greater, making them
more visible (Figure 2). The other sagitta of the pair was sectioned along the transverse
axis (Figure 3a), producing a 0.35 mm thick cross-section containing the primordium
(Figure 3b).

Age estimates were successfully made using both the whole and sectioned method
for 227 pairs of sister otoliths. Regardless of the method, two counts were made ‘blindly’
from each otolith (without knowledge of the size of fish or any previous estimates). A
third reading was made to determine a final age estimate (FAE); this reading was made
with the knowledge of the previous two readings. Two readers, both with extensive
experience in age and growth studies of SBT, made all of the readings. The average
percentage error (APE) of Beamish and Fournier (1981) was calculated to compare age
estimates between the FAEs from each method. This index provides a measure of the

precision or reproducibility of age estimates.
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Results

Time of band formation based on strontium chloride marked otoliths

None of the fish recaptured in the months of January to May (inclusive) had a
detectable band on the otolith margin, i.e. the band had not yet begun to form during the
year of recapture (Table 1). Of the 11 fish caught in June, two had formed a band in that
year, while three of the four fish caught in July had formed a band. All fish recaptured
after July had already deposited a band in their otolith by the time of recapture. This data
implies that band formation can occur during June and July, with July being most
common. Unfortunately, we have no data for August so we cannot say anything about
band formation during this month. Likewise, the sample sizes in all months surrounding
the identified period of band formation are so small that we cannot be sure about the
boundaries of the period, or reliably estimate the probability of a band being formed and
becoming detectable during these transition periods. From the available information, we
infer that band formation can occur any time during the months of May to September,
with July 1 as the approximate average time.

It is important to note that all of the otoliths used in this strontium chloride
marking study had been read using the whole otolith method. Thus, the results only apply
to the time when bands become detectable with this method, but this also means that
there is no potential confounding based on the method of reading. In addition, all of the
otoliths came from fish recaptured in years 1992 to 1995 in waters south of Australia
between 110°E and 170°E and 32°S and 44°S, with the majority caught in the Great
Australian Bight or off Tasmania.

It is conceivable that the year or the spatial environment of the fish may affect the
timing of band formation. The formation of otoliths is thought to be determined in part
by the environmental conditions experienced by the fish (temperature, salinity, etc.) and
in part by other factors such as ontogeny, growth rates and physiological processes,
although their relative contributions remain uncertain (Campana 1999). To add to this
complex picture, the ability of SBT to maintain body temperature above ambient
temperature may possibly obscure the water temperature signal to some unknown degree.

However, if fast and slow growth periods are related in part to hot and cold water
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temperatures respectively, then either a year with an unusually warm autumn, or else a
warm place of residence during autumn, might prolong the fast growth period and hence
delay the formation of the translucent zone. For this reason we stratified the data in
Table 1 by recapture year and by recapture area respectively (Table 2 shows the results
stratified by year). We found the pattern in the number of bands formed by each month
to be similar across years and across areas.

The recapture ages of the fish (as determined by the number of increments in the
otolith) ranged from one to six, with the majority of fish aged three or four. The
detection of the marginal band may be affected by the age of the fish. In juvenile SBT
the width of the new translucent zone decreases with each subsequent increment formed,
so for older fish the marginal band might be more difficult to detect until it has been more
fully formed. Thus, we stratified the data in Table 1 by recapture age. Again, we found
the pattern in the number of marginal translucent bands formed by each month to be
similar across ages.

Caution must be used in interpreting these results because the sample sizes in
each month after stratification are so small that the data are not very informative. The
results certainly cannot be taken as conclusive, and they cannot be generalized outside the
range of the data. The fish included in the study came from a fairly narrow range of the
population with respect to years, areas, and ages. It is possible that one or more of these

factors play a role in the formation or detection of bands that we were unable to identify.

Pilot study

Of the 24 pairs of sister otoliths selected for the pilot study there were 3 pairs that
had to be omitted completely from the study due to both otoliths being unreadable or the
release and recapture information being unbelievable. Of the remaining otolith pairs, the
whole otolith was unreadable in 3 cases and the sectioned otolith was unreadable in 2
cases. For investigating the time of the band formation, this left 18 whole otoliths and
19 sectioned otoliths; for comparing the two reading methods, this left only 16 pairs with
both readings available.

The results from the investigation on the time of band formation (Table 3) were

not very informative for clarifying the period of band formation. This was due largely to
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the small sample sizes. The results from both the sectioned readings and whole readings
indicate that bands can form in May, June and July. Only one sample from each of
August and September was included in the study. In both cases, the whole otolith was
unreadable and the sectioned otolith exhibited a band on the margin, but clearly nothing
can be concluded about these months with a sample size of one. The small sample sizes
are unfortunate but were due to several reasons: a) this was only intended as pilot study
and resources were limited (the process of preparing an otolith and obtaining a final
reading is expensive and time-consuming), b) there are limited numbers of strontium-
marked otoliths available (only 2 remain in August, which is a critical month for defining
the period), and c) strontium-marked otolith samples for which both sister otoliths are
available are even more limited.

Recall that for each sectioned otolith, the number of bands deposited after the
strontium mark was counted, and it was also recorded whether a band was detected on the
margin of the otolith. For 100% of the sectioned otoliths, if a band was detected on the
margin of the otolith, then the post-strontium count indicated the presence of a band in
the year of recapture; if a band was not detected on the margin, then the post-strontium
count indicated a band was not present in the year of recapture. Because both sets of
results are equivalent, we will only refer to the detection of a marginal band results for
sectioned otoliths.

Despite the small amount of data, some interesting results were obtained. The
proportion of fish with a marginal band in May was high, whereas the proportion of fish
with a marginal band in July was small, and these observations were consistent whether
using the whole otolith or sectioned otolith. These results are somewhat contradictory to
those from the previous study (see Table 1), but the difference is not startling since the
sample sizes for May and July are so small in both studies. A more interesting result is
that the proportion of fish with a marginal band in June was high based on whole otoliths

and low based on sectioned otoliths.’

' In the previous study, which used only whole otoliths, June had a low proportion of otoliths with a band
detected in the year of catch. However, the results from the two studies are not completely comparable —

(continued on next page)
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In comparing the whole and sectioned readings on sister otoliths, the whole
reading was generally one greater than the sectioned reading for fish caught in June
(Table 4). The two readings tended to agree in the other months, although June is the
only month with a reasonable sample size for comparison. This finding supported our
hypothesis that the ability to detect a marginal band may differ between the two methods,
with a band becoming detectable sooner with whole otoliths than with sectioned otoliths.
This led to a more comprehensive study comparing whole and sectioned readings on

sister otoliths, the results of which are presented below.

Whole versus sectioned otoliths study

Using the final age estimates (FAEs) from 227 pairs of sister otoliths, where one
sister was read using the whole otolith method and the other using the sectioned otolith
method, we calculated the average percent error (APE) between the methods to be 5.8%.
This is well within the acceptable level of 10%. For each pair we also calculated the
difference between the whole and the sectioned read. Of the 227 pairs included in the
study, the whole and sectioned readings agreed in 146 cases (64.3%). The whole reading
was one greater than the sectioned reading in 17 cases (7.5%) and two greater in 4 cases
(1.8%); it was one less in 55 cases (24.2%) and two less in 5 cases (2.2%). This trend is
consistent across months (Figure 4). This would suggest that there is a tendency to count
an extra band using the sectioned method versus the whole method. If the difference was
due to new bands being detectable earlier in the year in sectioned otoliths than whole
otoliths, then we would expect the sectioned readings to be one greater during the early
months of band formation and equal later in the year. Instead, all months show the same
pattern, which implies that the difference is not due to the timing of band formation.

The main purpose of this study was to see if the method used to read the otolith

affects the perceived time of band formation. However, out of interest, we plotted the

the results from the previous study are based on counts of the number of bands after the strontium mark in
whole otoliths, whereas the results obtained from whole otoliths in the pilot study are based on whether or
not a band was detected on the margin of the otolith. Post-strontium counts were only made on sectioned

otoliths in the pilot study.
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fork length of the fish versus the whole and sectioned readings (Figure 5). The sectioned
readings show greater variability in length at age than the whole readings, especially at
younger ages. From our knowledge about the length-at-age distribution of young SBT,
the sectioned readings show a greater range than expected. For example, it is unlikely
that a fish of age two is over 100 cm in length. This suggests that the whole readings
may be more precise, at least at young ages. This result may not be overly surprising
since it has been documented that the first four or five increments are difficult to interpret

in sectioned otoliths (Gunn et al. In press).

Discussion

From the data available, we found that the time of year at which SBT deposit a
translucent zone in their otoliths can vary from May to September, with July 1 being an
approximate average date. Although some of the variability may be due to errors in the
increment counts, most of the variability is likely due to the fact that the time of
translucent band formation differs considerably from fish to fish. Growth in SBT, and
hence the formation of otolith increments, is believed to be related in part (and indirectly)
to water temperature, with slow growth occurring when the water is cooler. SBT are
found throughout a large area of the ocean with very different environmental conditions.
As such, it is not surprising that the time at which the band forms can vary greatly
between fish. The annual formation of increments in otoliths may also be, at least in part,
physiologically controlled; this too could cause the timing of band formation to differ
between fish. |

In our comparison of sister otoliths read whole and sectioned, we found no
relationship between the difference in the readings and the time of year. This means that
comparison of number of bands from the same fish using the same method cannot be
used to provide further information on the timing of band formation. However, it also
means that the fact that all the otoliths read in the Clear et al. (2000) strontium-chloride
experiment were read whole should not affect our findings about the period of band
formation, and that the conclusions from this study can be applied to otoliths read with
either method.
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Although the main purpose of comparing whole and sectioned otolith readings
was to see if the methods differed in their detection of the marginal increment, some
other interesting results came from the study. For example, although the methods show
quite good agreement (64%), there appears to be a tendency for the sectioned count to
have one more band than the whole count. The discrepancy between the whole reading
and the sectioned reading does not appear to be related to the size of the fish (Figure 6),
although the sample sizes in the smaller length-classes are too small to be certain. Based
on Figure 5 and our prior knowledge of the length-at-age distribution of young fish, we
believe the whole count is more reliable for young (small) fish. However, the whole
method cannot be used for larger fish (fork length >135 cm). Thus, with respect to using
direct aging data to model growth, it might be preferable to use only data from otoliths
read whole up to a given size, and then use data from the sectioned method subsequently.
Of course, one would need to decide (probably somewhat arbitrarily) an exact figure to
use for the transition size.

There are still some unread otoliths in the CSIRO Hard Parts Archives that were
collected from strontium-injected SBT. These otoliths could pethaps be used to better
define the period of band formation, but preparation and reading of them was beyond the
scope of this study. There are at least 20 unread strontium-marked otoliths collected in
each month from January to June (with the exception of 16 in May) that could help to
define the start of the period. Unfortunately, there are only 7 unread otoliths from fish
caught in July, 2 from August, and 5 from both September and October. This means that
there are insufficient samples to reliably estimate the end of this period with any
confidence.

All of the strontium-mark otoliths included in our investigation-of the time of
band formation came from fish aged six or less that were caught in southern Australian
waters in years 1992 to 1995. The time of band formation may differ for fish outside
these ranges since the physical environment in other regions may differ and there may be
differences in habitat use with age. By proposing a faitly broad range of months in which
band formation can occur (May to September), we hope to have enveloped the time of

band formation for the vast majority of fish.
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Without more information, uncertainty of one year exists about the age of a fish
caught during the period of band formation. In turn, this uncertainty could induce
substantial uncertainty into the estimation of growth curves if fish caught during this
transition period are included. While statistical approaches can be developed to deal with
this problem (see Appendix 12), their application is complex, requires substantial
amounts of data and was outside the scope of the current project. It is important to note
that the exclusion of direct aging data from fish captured during the months when bands
are being formed would not bias the estimation of growth, but their inclusion with some
assumption about the time of band formation could. Thus, only direct aging data from
fish caught outside the proposed months of band formation (i.e. from October through
April) were included in growth analyses for the current project. In doing this, we believe
that we should have excluded almost all, if not all, fish for which the time of band

formation could potentially confound the estimation of its age.
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Table 1. Direct aging data from 56 southern bluefin tuna that were part of a tag-recapture
experiment with strontium chloride. The table shows how many of the fish recaptured in

each month had yet deposited a detectable band in their otolith for that year.

Recapture Band deposited yet?

Month No Yes Total
January 3 3
February 9 9
March 14 14
April 3 3
May 2 2
June 9 2 11
July 1 3 4
August

September 2 2
October 4 4
November 1 1
December 3 3
Total 41 15 56
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Table 2. The data from Table 1 stratified by year of recapture. The time when bands are
formed does not appear to be affected by year; however, the sample sizes in each month

are much too small to be conclusive.

Band deposited yet?
Recapture Recapture Total
Yegr Moﬁth No Yes

1992 3 1 1

4 1 1

6 1 1

7 2 2

10 1 1

1992 Total 2 4 6
1993 1 1 1

2 4 4

3 8 8

4 1 1

5 2 2

6 1 1

7 1 1

10 2 2

11 1 1

12 3 3
1993 Total 17 7 24
1994 1 1 1

2 1 1

3 3 3

6 4 4

7 1 1

9 2 2

10 1 1
1994 Total 10 3 13
1995 1 1 1

2 4 4

3 2 2

4 1 1

6 4 1 5
1995 Total 12 1 13
Grand Total 41 15 56
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Table 3. Summary results from the pilot study. The table shows how many of the fish
captured in each month had a detectable band forming on the margin of their otolith

according to a) the whole method and b) the sectioned method.

Recapture Whole Method Sectioned Method
Month No Yes No Yes
May 1 3 2 3
June 2 8 7 1
July 3 1 3 1
August 0 0 0 1
September 0 0 0 1

Table 4. Difference between whole reading and sectioned reading for otoliths read as
part of the pilot study. Only 16 of the otolith pairs could be included in the comparison

due to one or both of the otoliths being unreadable using the method for which it was

prepared.

Recapture Whole — Sectioned

Month -1 0 +1 Total
May 0 4 0 4
June 0 2 6 8
July 1 2 1 4
August 0 0 0 0
September 0 0 0 0
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Figure 1. Fork length versus month caught for the 227 fish selected for the study
comparing whole and sectioned readings from sister otoliths. The length distributions are
reasonably similar across months, especially in the most probable months of band
formation, so length should not be a confounding factor in whether or not a method can

detect a band in a particular month.
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Figure 2. In preparation for being read whole, the sagittal otoliths were burnt on a hot

plate accentuating the translucent zones (bands). Scale bar: 1 mm.
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Figure 3. a) Sagittal otoliths were sectioned along the transverse axis, producing a 3.5-
mm thick cross-section that contained the primordium. b) Age estimates were made by
counting increments along the longer arm of the cross-section, from primordium to

margin. Scale bar: lmm.
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Figure 4. Batplots of the difference in whole versus sectioned readings made from sister
otoliths broken down by month. a) Each bar shows the number of otolith pairs from that
month for which the whole reading minus the sectioned reading was 2, 1, 0, -1, and -2

respectively. b) Same as a) but showing percents instead of absolute numbers.

a)

50
N=227 42
_-5 m2
..“é o1
= 0o
2
-1
E
> o-2
4
3 4 5 6 7 8
Month Caught
b)
100% -
80% -
< m2
E 60% - [
2 oo
§ 40% | -1
= O-2
o
20% -
0% - T
3 4 5 6 7 8
Month Caught

All-22






Appendix 11: Investigating the timing of annual growth deposits in otoliths of SBT

Figure 6. Barplot of the difference in whole versus sectioned readings made from sister
otoliths broken down by 10-cm length classes. The x-axis label gives the start of the
length class. Each bar shows the number of otolith pairs coming from fish in that length-

class for which the whole reading minus the sectioned reading was 2, 1, 0, —1, and -2

respectively.
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Introduction

The growth of southern bluefin tuna is much faster in summer than in winter.
This seasonal growth pattern is reflected in the tuna’s otolith (ear-bone), which
exhibits bands corresponding to slower winter growth. These bands can be counted,
yvielding a measure of the age of the fish (Clear et al. 2000). When a fish is caught
and its otoliths are extracted, its length [ is also measured. The number of bands
in one or both of the otoliths is counted under an optical microscope. This is
called reading an otolith. An otolith can be read by two methods, either whole or
sectioned. It has been common to use the whole otolith on young fish, partly for
cost considerations. As a fish ages, its growth slows and the otolith bands crowd
together. On older fish (over age six), the otolith must be sectioned so that adjacent
bands can be distinguished better.

The analysis of otolith data represents a considerable statistical challenge.
Even if counting is correct, the age of the fish is known only to within a year because
of uncertainty in the birth date. Moreover, the time when bands are formed varies
among fish so errors of plus or minus a year can be induced in the age estimates
of fish caught during this time. In addition to age uncertainties, there are other
sources of variation that may need to be accounted for, such as possible reader
effects, method effects and regional differences. In the current growth project, we
avoided the worst of these complications by excluding otolith data from fish captured
during the period of band formation (see Appendices 3 and 11) as well as otolith
data from the spawning grounds that was known to have size biases (see Appendix
3). However, this resulted in potentially useful data being omitted. We also made
simplifying assumptions with respect to birth dates, measurement error, et cetera.
While these assumptions should not induce biases into the parameter estimates of
the growth model, they will result in them having higher variances. It was beyond
the scope of this project to develop rigorous statistical theory to deal with all these
issues. However, we have developed some initial ideas and approaches which we

present in this Appendix. These are preliminary ideas that need further development
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and testing, but we present them as a basis for stimulating further work.

A first approach

There are two response variables measured on an aged fish: the length [ and
the number of bands z. We also know the time ¢ at which the fish was caught. We
require a statistical model of the data. The length [ is assumed to follow a growth

curve

l=Lef(a;0)+¢

where Lo, (the asymptotic length) is random from fish to fish with mean p and
variance o2, a is age, 0 is a vector of fixed unknown parameters and € ~ N (0,0%)
represents measurement error. For example, for the von Bertalanffy growth curve
1 —exp(—k(a —ao)) if a > aop;
fla;0) =
0 otherwise,
so that 6/ = {k, ao}.
The age a of the fish is not measured directly, but we can assume that the

age and the number of bands z are related by
a=z+17—m-—20

where 0 < 7 = t — [t] < 1 is the time of the year at which the fish was caught,
m = 1 if the fish has laid down a band during the current calendar year and is 0
otherwise and § ~ N(0,02) reflects the variable spawning time of southern bluefin
tuna. The distribution for § implicitly assumes that the mean time of spawning is
January 1. The band is laid down in the winter, so that m = 0 at the beginning
of the year when 7 is close to 0, and m = 1 at the end of the year when 7 is close
to 1. Imagine a given fish passing through the stroke of midnight at the end of a
calendar year: then m switches from 1 to 0 and 7 simultaneously switches from 1 to

0. For the purposes of this Appendix, we assume that the time of laying down the
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band is symmetric about July 1 with a standard deviation of about 1 month, but
we recognize that further work on this is needed (see Appendix 11). A reasonable

model for m is therefore
logit Pr[m = 1|7] = 30 (r — 0.5).

We assume that the standard deviation o; of § is about 0.1, and that § and m are
independent. This may not be true for fish in their first year of life, but we suspect
that it is true in later years. However, we have very few fish less than one year old,
so we ignore this point, and note that the growth rates of fish below this age are not
important in terms of their use in the stock assessment.

Note, in passing, that we could model dependence between m and ¢ quite

easily by setting, for example,
logit Pr[m = 1|, 7] = 30 (1 — ad|d]* — 0.5).

The function [d]* ensures that the correlation between m and § declines as the age
of the fish increases. Other functions could be used. If § > 0, the fish was spawned
after January 1, and we suspect that the first band would tend to be laid down after
July 1 the next year, so that o > 0. However, we leave this for future work.

For a fish caught at time 7 let

g(l|z,0,m,T) = L exp | — 1 w
3y Y 3 ,—271_ /Uoob_—f2 _'_ 0_2 2 o.go f2 +O'2 .
where f = f(z+7 —m — §;6). We can therefore write down the likelihood of the

length [ given z as

1

9]z, 7) = / " ST g(llz,8,m, 7) Prlmlr] 1(5) do

T m=0

M) = o (-j—)

and ¢(.) is the standard normal density. If 7 and § are correlated, we simply replace

Pr[m|7] by Pr[m|d, 7].

where

Al12 - 4



Appendix 12: Statistical models for growth curve estimation using otolith data

The unknown parameters could be estimated by maximising the log-likelihood

> log g(li]zs,7i) -
=1

This involves either one integral per fish, or, if the summation is moved before
the integral, two integrals for each fish, one for m = 0 and one for m = 1. If
we do one integration, the integrand might be quite complicated, so we might
need to use Simpson’s rule, but if we do two, the integrals could be handled by
Gauss-Hermite quadrature. However, it is probably adequate to approximate the
integral by a sum, particularly as there are no unknown parameters in the distri-
bution of §. Thus we could make the distribution of § discrete, with probabilities
of say 0.01, 0.10, 0.39, 0.39, 0.10, 0.01 of being spawned in October, November,
December, January, February and March respectively, which would correspond to
§ = —0.21,—-0.13, —0.04,0.04,0.13,0.21. An advantage of this approach is that a
non-Gaussian (e.g. bimodal) distribution for ¢ could be handled easily. Also, the
cell sizes do not need to be equal, so we could divide December and January into
two, say.

In practice there are complications. First, the observed number of bands z
might be the true number of bands z* measured with error, and this error may
depend on the reader, the method used, and the age of the fish. One possibility is to
condition on the number of bands reported, and to work out a distribution for the
number of true bands given the number of reported bands. This is called a Berkson

error model. An obvious first candidate is
Pr[z*|2] = ®((z* + 0.5 — 2z — B)/0.) — ®((z* = 0.5 — 2z — 3) /o)

where the second term on the right is omitted if z* = 0. The probabilities then sum
to 1. We should probably make o. depend on z too. For example, if counting errors
are expected to have a 10% coefficient of variation, set o, = 0.1(z+0.5). The bias 8
would change with the reader/method combination — for one such combination, say

Reader 1 with sectioned otoliths, set 3 = 0, and estimate a different 3 for the other
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reader/method combinations. This of course adds an extra sum into the likelihood:

gz, ) =>"3">" g(l|=*,8,m, 1) Pr[m|7] Pr[6] Pr[z*|z].
v 5 0m

Note that 8 and o, could be made to depend on covariates. For example, we might
expect a greater bias or error around the time of band formation, in which case 3
could be made a suitable function of .

The second complication is that fish in different areas might exhibit slightly
different growth rates or times of band formation. There are several possible ways
to model this. We might make some of the growth parameters, k or ao, depend on

the area.

A more pragmatic approach

In this Appendix we shall take a more pragmatic approach. Let 7 index the

region and j the fish within that region. We let the age be
a=z+4+17-—-M

where M = 1if 7 > 0.5 and M = 0 otherwise. We are ignoring the randomness in
a, because we believe that other sources of variation may be more important, and
we wish to concentrate on them initially. Our first model is
Ro
lij = Loogj fai; 0) + w; + Y _ 800 + €5,
=1
where

Leoij = Moo + vy

and R, is the number of reader/method combinations. Here u, v and ¢ are all
independent random effects. We assume that « ~ N(0,02), v ~ N(0, 02) and € ~
N(0,0?). Thus u represents a random regional effect and v the natural variability
of fish lengths. In addition, € represents sampling error, and its variance is assumed

known — although in practice it will be estimated from other data.
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The final component of the model is the reader/method combination «,

which we treat as a fixed effect. Thus

5 1 if fish otolith 77 is read with method r;
o 0 otherwise.

We need to avoid redundancy in the o, parameters by setting >..c, = 0. Once
again, it is possible to make this effect depend on covariates such as 7. For example,
we could replace o, by Vi, = ar sin? (m7;;). This implies that there is virtually
no reader effect if the fish is caught in December or January, but the reader effect
becomes very pronounced if the fish is caught in June or July. It should be noted
that the reader effect is likely to vary randomly from fish to fish, and will not just
be a fixed amount captured by the parameter .. This could be modelled by adding
in a term w;;, so the model becomes

R,

lij = Looyj f(aij30) + us + Zl 8ijr0ir + Wi + €55,

—
where w;; ~ N(0,02). Analysis of independent replicate measurements suggests
that o, &~ 0.1(z + 0.5). In practice, v;; f(ds;;0) and wy; are likely to be highly con-
founded, and therefore we omit w;; from the model. However, it might be necessary
to include w;; explicitly if the tag-recapture data are being analysed at the same
time. Alternatively, we could assume that o,, is known.

We assume that we estimate the parameters by maximising the likelihood of

the data. It would be normal to write the model in vector form as
=T+ Uu+d

where [ is the vector of length data, T = (f A), f is the vector of growth function
values, A is a fixed effects design matrix such that A;;, = 1 if fish 7j is measured
using reader/method 7 and is 0 otherwise, U is a random effects design matrix such
that U;;; = 1 if fish 4j is caught in region ¢ and is zero otherwise and d = fv + ¢
where v and € are the vectors of v;; and €;; values respectively. All of the linear

parameters are placed into a single vector 3; that is, 5’ = (too, v)'. However, we
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need to be aware that some parameters will be common to other data sets in an

integrated analysis, and hence we shall write the model as
l=p+Aa+Uu+d

where pt = o f. We emphasise that when analysing data we need to take into
account the constraint that Y, a,. = 0, or, equivalently, that the rows of A sum to
1, so that the columns are not independent vectors. It is simplest to omit the final
column of A to overcome this problem, so that we estimate aiy, . ..,q._1, and then
calculate a, = — Zf:"l_l a,. In what follows, it shall be be implicitly assumed that
the final column of A has been omitted.

We need to compute the likelihood. There are two approaches. The first is
to calculate the log-likelihood of the full data in one operation. The second is to
recognise that regions are independent, and to compute the log-likelihood separately

for each region.

The full log-likelihood

The log-likelihood is
log A= —0.51log [V| — 0.5(y — Aa) V" y — Aa),
where y = [ — 1 and V is the variance-covariance matrix of the data. Now
V=D+sUuU

where D = 2] + o2 D,, and D, is the diagonal matrix with diagonal elements
f?. There are multitudinous papers on how to solve the likelihood equations in the
most efficient manner, but we want to use a vector-based statistical language, in
which we maximise the likelihood from first principles with an efficient optimisation
routine. We assume that we are in an iteration trial of the routine, so that the
parameters [io,, 02 and o2 are known, that U and A have been computed and we

need to calculate a and compute the likelihood.

There are three steps to perform when computing the log-likelihood.
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1. |[V]: When calculating the likelihood we need to compute |D+X X'|, where X =

o, U is an n x p matrix, where n is the number of data values in the season, and
p is the number of design levels. Generally, n > p. Computations involving
matrices of order n are generally proportional to n®, so if we can make the
computations of order p rather than n, we should increase speed substantially.
We can use the following result to reduce the amount of computation in this
way.

I+ XX =|T+X'X|.

Now |I + X X’| is the determinant of an n x n matrix and |7 + X'X]| is that

of a p X p, so the latter requires much less computer time to calculate.

In fact, we need |D 4+ X X'|. Set Y = D71/2X and note that
D+ XX =DY*(I+YY"\DY2.
Thus |D 4+ XX'| = |D||I +YY'| = |D||I +Y'Y].
: We need to calculate @ = (A'V-1A)LA'V~1y. Note first that
T+ XXV '=T-XT+XX)'X".
This result is easily checked. In fact, we need (D + XX’)~1. Note again that
D+ XX'=DY>(I+YY'\D'Y2.

Hence

(D + XX/)——I — D—~1/2 (I + 1/}.//)~1D_1/2 ]
First let P = D™Y2A and Q = Y’ P. Then

AVIIA = ADVHI-Y(I+Y'Y)'Y)DTV2A
= PP-QU+YY)'Q
= PP-RQ,
where R is the solution of (I +Y'Y)R = Q.
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Similarly let 7 = D~Y2y and € = Y'n. Then

AVTy = ADVX(I-Y(I+Y'Y) YY)D 12y
= Pn—-QU+Y'V)'Q
= Pn-R¢.

Finally, é& is obtained by solving (P/P — R/Q) a=Pn-R¢

3. (y —A&)V~l(y — AQ): We need to compute, as part of the log likelihood, the
residual sum of squares (y—AQ) (D+XX') 1 (y—Ad). Set v = D~V2(y—A4)

and w = Y'v. Then

(y—A&) (D+XX)Hy—Ad) = /I+YY) W
= VI-Y{I+Y'Y)YV)W
= Vv—w(I+ YY) lw

= Vr—uwy
where <y is the solution of the equations (I + Y'Y )y = w.
Finally, we compute the log-likelihood as
A = —0.5d; — 0.57.

Once the likelihood has been maximised, we need to calculate the random

effects. It is usual to use the BLUPs:

@ = AUV — - Ad)

Using our usual notation,

V- = A&) = D7V — V).
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The standardised BLUPs are obtained by dividing through by the relevant

standard deviation:

;)60 = 6, UV —p—Ad)

— Y(r—Yr).

These are scale invariant. The corresponding true standardised random effects (e.g.
u;/o,) have mean 0 and variance 1. If 6, = 0 for any random effect », then the
BLUPs and standardised BLUPs are obviously 0.

We apply this method to southern bluefin tuna otolith data, as described in
Appendix 3, using the full suite of data prior to screening. Briefly, each otolith has
been read whole, sectioned or both, and assigned a final read by one of two readers.
We assume that growth followed the VB log k growth curve introduced in Appendix
4. For a fish with zero length at time tq, the length at time ¢ is

1 + C_ﬁ(t_to+s—so—ao) —(k2_‘k1)/60
1 + ePoao }

l(t) = L [1 _ 6—k2(t~to+s__30) {

where s(t) = u,sin(2n(t — w,))/(27) is the seasonal effect. We can write t — %y as
a — ag, where a is the age of the fish at time ¢ and ao is the extrapolated age at

which the fish has length 0. The results are set out in Table 1.

Table 1: Fitted parameters for the VB logk growth model

fitted to otolith data

~

fioo  186.79 by 0179 & -1.489
6o T28 by 0144 &, 5.044
4, 0930 & 3.780 o 35
Wy 0456 By 10

The parameters 3y and o are held fixed. It is very difficult to estimate 0o
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unless there is a huge amount of data, and o, cannot be estimated well because there
are only 8 regions. The estimates of o, and o are likely to be heavily confounded.

We therefore fix o at 3.5, derived from the analysis of tag-recapture data.
The regions in which the fish were caught were treated as random effects.

The estimated standardised random effects are

Table 2: Estimated random effects of regions

Region estimate # tuna
Farm 0.024 9
Indonesia 0.157 1548
New Zealand -0.257 299
South Australia -1.057 250
South Africa 0.227 297
South East Indian Ocean  0.213 311
Tasmania -0.271 559
Western Australia -2.553 181

The fitted growth model and the data from the 8 regions are plotted in Figure
1. The fits seem adequate to the eye. Of most concern is the non-trivial negative
estimates for the South Australian and Western Australian regions. These are the
two areas from which substantial numbers of relatively small fish are caught. The
estimates need to be multiplied by &, = 5.9 cm, and suggest that for these two
regions the model misses by 5 to 10 cm. These failures suggest that more work

needs to be done.

We also estimated the reader/method combinations as fixed effects.

Table 3: Estimated fixed effects of readers and otolith meth-

ods

Reader Method estimate # tuna
1 Whole -0.233 474
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Table 3: continued

1 Both 0.974 126
1 Sectioned -0.500 369
2 Sectioned -0.241 2485

Reader 2 in fact read two otoliths both whole and sectioned, but this was too
small to estimate a separate effect, so these two data points were pooled with the
2483 measured using sections only. The interesting feature is that the measurements
using only one method tend to agree. However, when Reader 1 used both methods,
one to two more rings seem to be counted. These estimates could easily change
with different growth models, so we caution that these estimates should not be
over-interpreted.

We note that the analysis has not proved convincing, and take a closer look

at the data. A table of reader/method combination by region yields

Table 4: Confounding between reader/method combinations

and regions

Reader/method Farm Indonesia NZ SA SAfrica SEIO TAS WA

1/whole 9 0 0 227 6 9 44 179
1/both 0 0 0 21 10 8 86 1
1/sectioned 0 53 0 2 6 72 236 0
2/both 0 0 0 0 1 0 1 0
2/sectioned 0 1495 299 0 274 222 192 1

This table suggests that comparisons between reader/method combinations
should best be done on Tasmanian data, where all four combinations are reason-
ably well represented. Further comparisons between Readers 1 and 2 on sectioned
data could emerge from Indonesian and South-East Indian Ocean data, and some

comparison between Reader 1 whole and both could be derived from the South Aus-
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tralian data. Other comparisons are likely to be highly confounded with regional

differences.

Independent regions

The log-likelihood for a given region is
log \, = —0.510g|V;| = 0.5(yr — &)’V Yy — Avay),
where y, = [, — i, and V. is the variance-covariance matrix of the data. Now
V, =D, 4+ 01,1,

where D,., A,, y. and «, refer only to the submatrices and subvectors of D, Ay
and « for the region in question, and 1, is a vector of ones with the same length as
Yr. The computation proceeds as for the full-likelihood case. The log-likelihood to

be maximised is

Z log A, .

Concluding remarks

We have presented some preliminary approaches for rigorously analysing
otolith data. These approaches are still in the developmental stage, but there is
a need for models of this type in order to fully utilize direct aging data, includ-
ing data collected during the period of band formation. We have reported some
preliminary analyses of the pooled otolith data set, which suggests that Western
Australian and South Australian data still exhibit some deviation from a common
model. There are at least two possible explanations for this. First, there appears
to be a size segregation in one-year-old fish caught off Western Australia and South
Australia and in the general eastward movement of young fish within a fishing sea-
son. The Western Australian fish may have been spawned late in the season, and

hence their assigned age is too high (Appendix 3). Second, other work suggests a
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bias in the Indonesian data. Fish caught in Indonesian waters are usually spawn-
ers. Tuna in the age range 8 to 14 years exhibit size-dependent maturity, and those
seen in the spawning grounds tend to be longer at a given age than the population
average. Since there are a large number of otoliths from fish caught in Indonesian
waters in the 8 to 14 age range, these data may be dominating the analysis and
causing a misfit in the young fish from Western Australia and South Australia. A
more sophisticated model would take this into account. We have also assessed reader
effects, but the results must be treated with great caution.

We have not reported analyses of the otolith data using the first approach,
taking into account uncertainty in the time of spawning and the time of band for-
mation. We have developed both classical and Bayesian methods to fit this model,

but we were unable to implement these methods within the extent of this project.
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