# Age and growth of broadbill swordfish (*Xiphias gladius*) from Australian waters

# Jock Young & Anita Drake











FRDC Project 2001/014

# Age and growth of broadbill swordfish (Xiphias gladius) from Australian waters

Jock Young and Anita Drake

**CSIRO** Marine Research

Hobart, 7001

Tasmania, Australia

Contributing authors: Melissa Langridge, Ann-Laure Groison and Bruno Leroy



**Australian Government** 

**Fisheries Research and Development Corporation** 

CSIRO MARINE RESEARCH



Australian Government Australian Fisheries Management Authority

September 2004

Project No. 2001/014

| Contributing authors |
|----------------------|
| Jock Young           |
| Anita Drake          |
| Anne-Laure Groison   |
| Melissa Langridge    |
| Bruno Leroy          |

Young, Jock Wilkie, 1955- . Age and growth of broadbill swordfish (Xiphias gladius) from Australian waters.

Bibliography. ISBN 1 876996 69 2.

Swordfish - Australia.
Swordfish - Age determination.
Swordfish fisheries - Australia.
Drake, Anita D.,
1979- .
II. CSIRO. Marine Research.
III. Title.

597.78

© Fisheries Research and Development Corporation and CSIRO Marine Research 2004

This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission.

DISCLAIMER: The authors do not warrant that the information in this book is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortuous or otherwise, for the contents of this book or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this book may not relate to, or be relevant to, a reader's particular circumstances. Opinions expressed by the authors are the individual opinions of those persons and are not necessarily those of the publisher or research provider.

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry.

#### **TABLE OF CONTENTS**

| PRINC | CIPAL INVESTIGATOR                                                                                                          | 1        |
|-------|-----------------------------------------------------------------------------------------------------------------------------|----------|
| OVER  | ALL OBJECTIVES                                                                                                              | 1        |
| OUTC  | OMES ACHIEVED:                                                                                                              | 1        |
| 1.    | NON TECHNICAL SUMMARY                                                                                                       | 2        |
| 2.    | ACKNOWLEDGEMENTS                                                                                                            | 4        |
| 3.    | BACKGROUND                                                                                                                  | 4        |
| 4.    | NEED                                                                                                                        | 6        |
| 5.    | OBJECTIVES                                                                                                                  | 7        |
| 6.    | PROJECT RESULTS                                                                                                             | 8        |
| 6.1   | AGE AND GROWTH OF BROADBILL SWORDFISH, XIPHIAS GLADIUS, IN THE                                                              |          |
|       | DOMESTIC LONGLINE FISHERY OFF EASTERN AUSTRALIA                                                                             | 8        |
| 6.1.1 | ABSTRACT                                                                                                                    | 8        |
| 6.1.2 | INTRODUCTION                                                                                                                | 9        |
| 6.1.3 | METHODS                                                                                                                     | 10       |
|       | COLLECTION OF SAMPLES                                                                                                       | 10       |
|       | LABORATORY PROCESSING                                                                                                       | 10       |
|       | INDIRECT VALIDATION OF ANNULI                                                                                               | 14       |
|       | GROWTH                                                                                                                      | 14       |
|       | SPATIAL VARIATIONS IN AGE STRUCTURE                                                                                         | 15       |
|       | Age – length key                                                                                                            | 15       |
| 6.1.4 | RESULTS                                                                                                                     | 15       |
|       | SAMPLE COLLECTION                                                                                                           | 15       |
|       | DESCRIPTION OF ANAL FIN RAY                                                                                                 | 18       |
|       | VALIDATION OF ANNULI                                                                                                        | 20       |
|       | PRECISION OF READINGS                                                                                                       | 24       |
|       | AGE AND GROWTH                                                                                                              | 24       |
|       | SPATIAL VARIATIONS IN AGE STRUCTURE                                                                                         | 27       |
|       | AGE STRUCTURE OF THE EASTERN AUSTRALIAN SWORDFISH CATCH                                                                     | 28       |
| 6.1.5 | DISCUSSION                                                                                                                  | 30       |
|       | INDIRECT VALIDATION                                                                                                         | 30       |
|       | GROWTH IN RELATION TO OTHER REGIONS                                                                                         | 31       |
|       | AGE AT MATURITY AND CATCH AT AGE – IMPLICATIONS FOR THE FISHERY                                                             | 32       |
|       | SPATIAL VARIATIONS                                                                                                          | 33       |
| (1)   | CONCLUSIONS                                                                                                                 | 33       |
| 0.1.0 | ACKNUW LEDGEMEN IS                                                                                                          | 33<br>24 |
| 0.1./ | A DDELIMINA DV INVESTICATION OF A CE AND CDOWTH OF SWODDEISH                                                                | 34       |
| 0.2   | A PRELIMINART INVESTIGATION OF AGE AND GROWTH OF SWORDFISH,<br>VIDUAS CLADIUS EDOM WESTEDNIAUSTDALIAN WATEDS USING ANAL EIN |          |
|       | AII IIIAS OLADIUS, FROM WESTERN AUSTRALIAN WATERS USING ANAL FIN<br>DAVG                                                    | 37       |
| 621   | ABSTRACT                                                                                                                    | 37       |
| 622   | INTRODUCTION                                                                                                                | 38       |
| 6.2.3 | METHODOLOGY                                                                                                                 |          |
| 51210 | COLLECTION AND PREPARATION OF SAMPLES                                                                                       | 39       |
|       | AGE DETERMINATION AND MARGINAL INCREMENT READINGS                                                                           | 40       |
|       | DATA ANALYSIS                                                                                                               | 42       |
|       | Sex ratio                                                                                                                   | 42       |
|       | MARGINAL INCREMENT AND EDGE TYPE ANALYSIS                                                                                   | 42       |

|          | AGE AND GROWTH ANALYSIS                                            | . 42 |
|----------|--------------------------------------------------------------------|------|
|          | AGE-COMPOSITION OF CATCH                                           | . 43 |
| 6.2.4    | RESULTS                                                            | . 43 |
|          | READING SUCCESS, LENGTH DISTRIBUTIONS AND SEX RATIOS               | . 43 |
|          | MARGINAL INCREMENT AND EDGE TYPE ANALYSIS                          | . 45 |
|          | AGE AND GROWTH                                                     | . 47 |
|          | AGE STRUCTURE OF THE WESTERN AUSTRALIAN SWORDFISH CATCH            | . 52 |
| 6.2.5.   | DISCUSSION                                                         | . 53 |
|          | ANNUAL INCREMENT FORMATION                                         | . 53 |
|          | AGE AND GROWTH                                                     | . 54 |
|          | CATCH-AT-AGE                                                       | . 56 |
|          | LINKS BETWEEN EASTERN AND WESTERN AUSTRALIAN SWORDFISH POPULATIONS | . 57 |
|          | CONCLUSIONS                                                        | . 58 |
|          | LIMITATIONS OF THE STUDY                                           | . 58 |
| 6.2.6    | ACKNOWLEDGEMENTS                                                   | . 59 |
| 6.2.7    | REFERENCES                                                         | . 59 |
| 6.3      | DAILY AGEING OF JUVENILE BROADBILL SWORDFISH, XIPHIAS GLADIUS      |      |
|          | LINNAEUS 1758, FROM EASTERN AUSTRALIA USING OTOLITHS               | . 62 |
| 6.3.1    | ABSTRACT                                                           | . 62 |
| 6.3.2    | INTRODUCTION                                                       | . 63 |
| 6.3.3    | METHODS                                                            | . 63 |
|          | COLLECTION OF SAMPLES                                              | . 63 |
|          | SAMPLE PREPARATION AND ANALYSIS                                    | . 64 |
| 6.3.4    | RESULTS                                                            | . 67 |
|          | INCREMENT COUNTS FROM SAGITTAL OTOLITHS                            | . 67 |
|          | AGE ESTIMATION                                                     | . 67 |
|          | COMPARISONS WITH SEM                                               | . 71 |
|          | OTOLITH AND FIN RAY COMPARISON                                     | . 71 |
| 6.3.5    | DISCUSSION                                                         | . 72 |
|          | THE SUITABILITY OF OTOLITHS FOR AGEING OF SWORDFISH                | . 72 |
|          | LIGHT MICROSCOPY VERSUS SEM                                        | . 72 |
|          | COMPARISON OF DAILY AND ANNUAL AGE ESTIMATION                      | . 73 |
|          | INDIRECT EVIDENCE OF INCREMENT FORMATION                           | . 73 |
|          | GROWTH RATES OF JUVENILE SWORDFISH                                 | . 73 |
| 6.3.6    | ACKNOWLEDGEMENTS                                                   | . 74 |
| 6.3.7    | REFERENCES                                                         | . 74 |
| 7.       | CONCLUSIONS                                                        | . 76 |
| 7.1      | REFERENCE                                                          | .77  |
| 8.       | BENEFITS AND ADOPTION                                              | .77  |
| 8.1.     | REFERENCE                                                          | .77  |
| У.<br>10 | PLANNED OUTCOMES                                                   | .77  |
| 10.      | FURTHER DEVELOPMENT                                                | .77  |
| 11.      | INTELLECTUAL PROPERTY                                              | . 78 |
| 12.      | <b>KEPOKIS, PUBLICATIONS AND PRESENTATIONS</b>                     | .78  |
|          | W KITTEN MATERIAL                                                  | . /8 |
|          | SEMINAKS                                                           | . /9 |
| STAFF    |                                                                    | . 80 |

# Principal Investigator: Dr Jock W. Young CSIRO Marine Rese

CSIRO Marine Research GPO Box 1538 Hobart Tasmania 7001

# **Overall Objectives**

- 1. Collect sufficient samples from at least five age classes of broadbill swordfish so that a validation study can be completed
- 2. Collect ray samples for known-sex fish from a representative sample of the size range of the fishery
- 3. Determine whether the cycle of increment deposition at the margin of the anal fin ray is annual thus providing a validation that bands are laid down annually
- 4. Dependant on successful validation, provide a sex-separated estimate of mean sizeat-age for the east coast swordfish population.

# Outcomes achieved:

This study provided the first description of age and growth of broadbill swordfish in the Australian region. We found that anal fin rays could be used to age swordfish in Australian waters. The age and growth parameters from this study have already been applied to an operational model used to assess variations in fishing pressure on the species in the Eastern Tuna and Billfish Fishery (Campbell and Dowling 2002). The resulting length at age curve was used to convert size at maturity to age at maturity. The finding that 50% of female swordfish reach sexual maturity at ~10 years is a major concern for the species, particularly when an earlier estimate for female swordfish caught in our region was 4-6 year, and 90% of the female swordfish caught by the fishery are less than ten years old.

We showed that the relationship between age and length for the eastern and western populations of swordfish overlapped supporting the notion that swordfish in the Australian region are linked. We developed an age at length key which we applied retrospectively to the catch by the fishery from 1997 to 2001 for the eastern swordfish fishery and from 1999 to 2002 for the western fishery. Over the study period there was an apparent shift from older to younger age swordfish in the catch by the fishery. Whether this reflected a recruitment pulse or to overfishing is yet to be determined, although the decline in the proportion of older age fish in the catch is similar to swordfish fisheries elsewhere where fishing impacts have been reported. Although our sample size was small for the western fishery we found no evidence of decline in the catch at age during the study period.

#### 1. Non technical summary

The age and growth of broadbill swordfish (*Xiphias gladius*) was examined from fish caught by the domestic longline fishery [the eastern tuna and billfish fishery (ETBF)], off eastern Australia mainly between May 1999 and March 2003. A preliminary study was also completed on the age and growth of swordfish caught by the southern and western tuna and billfish fishery (SWTBF) off Western Australia during the same period. The project was largely funded by the FRDC although additional funding was obtained from AFMA. The project was actively supported by the east coast longline fishery, and also by the SWTBF through collection of samples.

A preliminary study by Clear et al (2000) confirmed earlier studies of swordfish age and growth that counting the annuli in transverse sections of the second anal fin ray was the most efficient and direct way to estimate the age of the fish. We followed this methodology although we also investigated the use of otoliths to determine the growth of fish up to 2 years old using presumed daily growth increments.

We examined the fin rays of 1589 swordfish, consisting of 1064 females and 447 males from eastern Australian waters. Of these, 1511 had annuli sufficiently clear for us to determine their age. Our first objective was to validate that the annuli observed in the rays were deposited annually. There is as yet no way to directly validate their formation as this requires an extensive mark and recapture program, preferably with chemical marking. As swordfish are relatively solitary animals and are difficult to capture and return safely to the wild, the techniques used to directly validate schooling species such as the tunas could not be applied in this study. We therefore used a variety of subjective and objective techniques to examine whether there was an annual cycle of increment formation in the outermost annulus of the fin ray. Using these techniques we observed that when all samples were combined there was a general pattern of increment formation from winter through to completion the following autumn. However, we were unable to verify this pattern, with the exception of female age class 4 and males age 3, for individual age classes, partly due to a lack of sampling over the winter months. Nevertheless, the combination of analyses we used, including a comparison of readings with other laboratories, indicated that the opaque bands we observed were formed annually.

The oldest female we examined was estimated to be 18 years old; the oldest male was 15 years old. Approximately 90% of the females sampled were less than 10 years old: 50% were  $\leq$ 5 years old. Our previous study of swordfish reproductive biology determined that ~200 cm (OFL) was the size at which 50% of the population was reproductively active. This size equated to a 10 year old fish, which was significantly higher than the 4 to 6 years previously reported for swordfish in the Australian region. We determined growth parameters using the Von Bertalanffy relationship for eastern swordfish with parameters of L∞, K and *t*o of 296.0, 0.08, and -3.7 respectively for females and 224.2, 0.13 and -3.0 for males. There was no significant difference in mean length at age between males and females up to age 9. After this time females grew significantly faster and lived longer than

males. The resulting growth curves fell within a range of growth curves established for swordfish from fisheries elsewhere in the world except for that determined for swordfish from the Mediterranean Sea. Because of the rapid growth in the first year in which fish reach ~80 cm in (orbital fork) length, we examined assumed daily increments in 22 juvenile swordfish and were able to establish a growth relationship for the first year of life.

We developed age length keys and retrospectively estimated the age distribution of the swordfish catch by the eastern fishery between 1997 and 2001. The catch at age showed a decline in the age of the catch from predominantly 4 to 6 year old fish to 2 to 4 year olds over the study period. We also noted spatial differences in the age structure of the catch with significantly younger fish caught in inshore waters over the Australian winter.

We also examined a smaller set of rays collected from the SWTBF (n=188) with the support of a CSIRO summer studentship. The resulting growth curve gave parameters of  $L_{\infty} = 296.51$ , k = 0.1096,  $t_0 = -3.0118$ , for females and  $L_{\infty} = 236.90$ , k = 0.0815,  $t_0 = -3.02$  for males. A comparison of growth curves between eastern (ETBF) and western (SWTBF) showed no significant difference in length at age between the two populations of swordfish. Fish aged between three and seven years generally dominated the SWTBF catch, with no trend evident in median age class caught over the study period.

Both studies demonstrated that the Australian swordfish catch was dominated by immature females. Off eastern Australia, the median age of fish caught had decreased. Whether this decrease was the result of increased recruitment or was the result of overfishing has yet to be determined. This pattern of declining age was not evident off Western Australia, possibly reflecting the relative lack of fishing pressure in the region. Recent legislation by the United States to limit entry by longline fishers to spawning grounds in the western Atlantic Ocean to limit the impact of fishing on small swordfish, has resulted in a dramatic rebuilding of swordfish stocks in the region. A similar approach may be necessary for the Australian region to ensure a sustainable future for the swordfish fishery.

#### **Reference:**

Clear, N., Davis, T. L. O. and Carter, T. (2000) Developing techniques to estimate the age of bigeye tuna and broadbill swordfish off eastern Australia: a pilot project. FRDC Grant 98/113

Key words: swordfish, age and growth, marginal increment analysis, fin rays, otoliths, growth curves, age length keys, east coast longline fishery, west coast longline fishery

# 2. ACKNOWLEDGEMENTS

This study would not have been possible without the support of the east coast longline fishery. In particular we would like to thank Tony Jerome, Mark Ebbels and Mark Fields and longline boat owners Brett Taylor and Grant Taylor for allowing us sea time on their vessels and for the collections they made on our behalf. Also, we would like to thank the Executive Director of the East Coast Tuna Boat Owners Association, Hans Jusseit, for ongoing support. We also thank the fishers and observers of the SWTBF for their contribution to this project. The project was funded by FRDC grant 2001/014. Additional funding was provided by AFMA. Technical assistance was provided by Thor Carter at sea and in the laboratory. We are grateful to Natalie Dowling, Rob Campbell and Jessica Farley for advice and support.

# 3. BACKGROUND

Broadbill swordfish, *Xiphias gladius*, is one of four pelagic species targeted by the growing Australian longline fishery. Although swordfish have been fished continuously by the Japanese longline fleet over the past twenty years in our region, the recent development of the eastern Australian longline fishery has seen catches increasing to their present annual catch of 2,400 tonnes, at least twice the amount caught by the Japanese. Annual catches in the western Australian fishery and off New Zealand for this species are greater than 1,000 tonnes each. However, it is as yet unclear whether this level of fishing is sustainable. Recent studies of the genetic makeup of Pacific Ocean swordfish indicate a separate southern hemisphere population extending to Western Australia highlighting the finite nature of this resource (Reeb et al 2000).

To determine whether this level of fishing is sustainable, management requires an assessment of the stock. Such an assessment requires data on mortality both from natural causes and from fishing, and on longevity. Defining these parameters requires accurate age determination, which has not been estimated for broadbill swordfish in Australian waters. Studies in the northern hemisphere indicate that swordfish can reach a maximum age of 9 years for males and 15 years for females (Wilson and Dean 1983), but with significant variations reported from different regions. Similarly, the rate at which these fish grow is affected by seasonal and environmental factors. Further, females grow faster and reach greater sizes than male swordfish.

This variation in age and growth characteristics presents one of the greatest problems for the operational model presently being developed for swordfish in Australian waters by Punt et al (1999). Their model is based entirely on a length-age relationship rather than direct ageing. Thus the resulting conversions have the potential to introduce uncertainty into the catch at age distribution translating into uncertainty in the assessment results. The variation between different ageing studies of swordfish around the world is shown by Table 1 in Ward and Elscot (2000). For example, length at age 8 years for females can range from 181 to 254 cm depending on sampling location and the ageing technique used. Unfortunately, direct validation techniques have not been developed to determine the annual age of swordfish. The absence of information on direct age estimation for both swordfish and tropical tuna has led the ETMAC and the SWTBF MAC to rate these basic biological parameters highly (Priority 3 and 1 respectively) in their list of research priorities. As such, a series of studies have begun to determine key population parameters needed for the assessment of these stocks in Australian waters (e.g. Clear et al 2000, Gunn and Williams 1999, Williams 1997, Farley et al 2003). One of these studies has been monitoring size frequencies of the east coast stock since 1998 (Williams 1997). However, without the information to convert the size frequencies to age frequencies, the data is of limited value in stock assessment.

A pilot study was initiated by CSIRO Marine Research to determine the feasibility of estimating the age of swordfish and to examine which techniques would be most suitable (Clear et al 2000). The study supported Berkley and Houde's (1983) finding that the bands found in cross sections of the second anal fin ray of Atlantic Ocean swordfish showed the greatest potential to accurately determine the age of the fish, and that a full project was logistically feasible. Clear et al (2000) found indications of a seasonal cycle in the widths of the marginal increment - a technique to determine whether bands are deposited annually - from the swordfish they examined. They cautioned, however, that many more fish needed to be examined before a seasonal cycle in annulus formation could be validated. This conclusion reiterated the earlier work of Berkley and Houde (1983) who noted that further validation was essential. Thus, before a thorough age and growth study can begin, an intensive validation study needs to be completed. Failure to do so could lead to inaccurate stock assessments, the consequences of which have been felt by a number of exploited fisheries in the past (Beamish and McFarlane 1983). The recent reinterpretation of the age and growth of juvenile southern bluefin tuna came directly from an age validation study of the species (Clear et al 1999).

This project aimed to determine in the first instance whether the bands seen in cross section of the second anal ray of broadbill swordfish are deposited on an annual basis. This is an essential prerequisite for establishing an age length key for the species in Australian waters.

If these bands can be validated as annual then the determination of an age length key for the species can proceed.

#### References

- Berkeley, S. A. and Houde, E. D. (1983) Age determination of broadbill swordfish,Xiphias gladius, from the straits of Florida, using anal fin spine sections. U. S. Dep.Commer., NOAA Tech. Rep. NMFS 8, 137 143
- Clear, N., Davis, T. L. O. and Carter, T. (2000) Developing techniques to estimate the age of bigeye tuna and broadbill swordfish off eastern Australia: a pilot project. FRDC Grant 98/113

- Clear, N. P., Gunn, J. S., Rees, A. J. (1999) Direct validation of annual increments in the otoliths of juvenile southern bluefin tuna, Thunnus maccoyii, by means of a large-scale mark-recapture experiment with Strontium chloride. Fish. Bull. 98, 25-40
- Farley, J., Clear, N., Leroy, B., Davis, T. and McPherson, G. (2003) Age and growth of bigeye tuna (Thunnus obesus) from the eastern and western AFZ. FRDC Grant 2000/100
- Gunn, J. and Williams, K. (1999) Determining the nature and extent of swordfish movement and migration in the eastern and western AFZ through an industry-based tagging program. AFMA
- Punt, A., Campbell, R. and Smith, T. (1999) Evaluation of performance indicators in the eastern tuna and billfish fishery a preliminary study. Eastern Tuna MAC Fisheries Research Series
- Reeb, C. A., Arcangeli, L. and Block, B. A. (2000) Structure and migration corridors in Pacific populations of the swordfish, Xiphias gladius, as inferred through analysis of mitochondrial DNA. Marine Biology 136, 1123-1131
- Ward, P. and Elscot, S. (2000) Broadbill swordfish: status of world fisheries. Bureau of Rural Sciences, Canberra

Williams, K. (1997) Eastern tuna and billfish fishery size monitoring program. AFMA

- Wilson CA and Dean JM (1983) The potential use of sagittae for estimating age of Atlantic swordfish, *Xiphias gladius*. US Dep. Commer., NOAA Tech. Rep. NMFS 8:151-156
- Young, J. W. and Drake, A. (2002) Reproductive dynamics of broadbill swordfish (*Xiphias gladius*) in the domestic longline fishery off eastern Australia. FRDC Grant 1999/108

#### 4. NEED

The swordfish fishery has expanded rapidly in the past few years off eastern Australia with annual catches greater than 2000 tonnes since 1997 (Campbell 2002a). When the fishery first began AFMA set a 'trigger' point of 800 tonnes, after which they would review the amount of fish taken. This has led to the development of a Total Allowable Effort which is presently being debated (Campbell 2002b). Similar rapid growth has been reported for the fishery for swordfish off Western Australia. Added to this is the developing New Zealand fishery now also reaching 1000 tonnes. This last point is relevant in that recent genetic evidence indicates a single stock encompassing all three fisheries. There is an urgent need, therefore to determine whether these catches are sustainable. However, the population parameters from which accurate stock assessment can be made have not yet been determined for the Australian region. To this end Eastern Tuna MAC and SWTBF MAC listed age and growth determination as priorities three and one respectively in their list of ten priority research issues. Standing Committee on Tuna and Billfish (SCTB 13) held in Noumea also noted the increase in swordfish fishing in the Western Central Pacific Ocean. They listed age and growth as a priority research issue for this species.

Age-based stock assessments of swordfish require input data on mortality, longevity, age at maturity and age structure; estimates that can be obtained from age and growth studies. Therefore, there is a clear need for an age and growth study of swordfish. However, without validation over a number of age classes, incorrect interpretations have lead to the wrong decisions by management. Therefore, before such an ageing study is begun the first priority is validation of the annual cycle of growth. With appropriate validation a length at age key, which is presently lacking, could be provided.

#### **References:**

- Robert Campbell (2002a) Summary of Catch and Effort Information pertaining to Australian Longline Fishing Operations in the Eastern Tuna and Billfish Fishery Background document for Total Allowable Effort Workshop, Canberra, 12-13th December 2002
- Robert Campbell (2002b) Management strategies, the determination of a TAE and the use of decision rules within the Eastern Tuna and Billfish Fishery. Background Document for the ET&BF Assessment Group meeting: Mooloolaba 5-6th March 2002

# 5. OBJECTIVES

- 1. Collect sufficient samples from at least five age classes of broadbill swordfish so that a validation study can be completed
- 2. Collect ray samples for known-sex fish from a representative sample of the size range of the fishery
- 3. Determine whether the cycle of increment deposition at the margin of the anal fin ray is annual thus providing an indirect validation that bands are laid down annually
- 4. Dependent on successful validation, provide a sex-separated estimate of mean sizeat-age for the east coast swordfish population.

# 6. PROJECT RESULTS

# 6.1 Age and growth of broadbill swordfish, *Xiphias gladius*, in the domestic longline fishery off eastern Australia

Jock Young, Anita Drake and Melissa Langridge

# 6.1.1 Abstract

We estimated the age and growth of broadbill swordfish, Xiphias gladius, from 1589 fish collected from the longline fishing grounds off eastern Australia between 1995 and 2003. Significant linear relationships were found for both sagittal otoliths and second anal fin ray size with fish length indicating that both hard parts could be used as a proxy for somatic growth. However, although otoliths were useful for determining the age (in days) of young fish the second anal fin ray was found to be the most convenient hard part for counting annual increments. Two measures of marginal increment formation provided indirect validation of an annual cycle of band deposition in the fin rays. This conclusion was supported by counts of presumed daily increments of sagittal otoliths which agreed with the length at age of one year old fish. Swordfish grow rapidly in the first year after which mean growth rate of females was 11.3 cm per year up to year 10; male growth rate was slightly less for the same period (10.2 cm per year). The oldest female we sampled was estimated at 18 years old; the oldest male was 15 years old. Von Bertalanffy curves fitted to age at (orbital fork) length by sex gave growth parameters of  $L\infty$ , K and to of 296.0, 0.08, and -3.7 respectively for females and 224.2, 0.13 and -3.0 for males. The resulting growth curves were similar to growth curves generated for swordfish from the Atlantic, Pacific and Indian Oceans and were only noticeably different from those for Mediterranean Sea swordfish. However, further refinement of our understanding of swordfish age and growth will be limited until direct age validation through marked recaptures of swordfish is achieved.

### 6.1.2 Introduction

Broadbill swordfish (*Xiphias gladius*) is one of four species targeted by the Australian domestic longline fishery. Although swordfish have been fished continuously by the Japanese longline fleet over the past twenty years off eastern Australia, the recent development of the eastern Australian longline fishery has seen catches increasing to more than 2000 tonnes per year since 1997 (Campbell 2002), at least twice the amount caught by the Japanese. Annual catches in the western Australian fishery and off New Zealand for this species are now at ~1,000 tonnes each. However, it is as yet unclear whether this level of fishing is sustainable. Recent studies of the genetic makeup of Pacific Ocean swordfish indicate a separate southern hemisphere population extending to western Australian waters highlighting the finite nature of this resource (Reeb et al 2000).

To determine whether this level of fishing is sustainable, an assessment of the stock is required. Such an assessment requires a number of inputs, including data on longevity and growth rates. Defining these parameters requires accurate age determination, which has not been estimated for broadbill swordfish in Australian waters. Studies in the northern hemisphere indicate swordfish can reach a maximum size of 9 years for males and 15 years for females (Wilson and Dean 1983), but with significant variations reported from different regions. For example, depending on region, the length at age 8 years for females can range from 181 to 254 cm (orbital fork length) (Ward and Elscot 2000). Further, females grow faster and reach greater sizes than the male swordfish. These variations in age and growth characteristics are a significant obstacle for the operational model being developed for swordfish in Australian waters (Punt et al 1999, Campbell and Dowling 2003). The operational model is based entirely on a length-age relationship rather than direct ageing. Thus, the resulting conversions have the potential to introduce uncertainty into the catch at age distribution translating into uncertainty in the assessment results.

A pilot study was initiated by CSIRO Marine Research to determine the feasibility of estimating the age of swordfish (Clear et al 2000). This study supported previous work that found the second anal fin ray to be the most useful hard part for ageing swordfish (Berkley and Houde 1983, Castro-Longoria and Sosa-Nishizaki 1998). Clear et al (2000) found indications of a seasonal cycle in the widths of the marginal increment – a technique to determine whether bands are laid down annually - from the swordfish they examined. They cautioned, however, that many more fish needed to be examined before a seasonal cycle in annual ring formation could be validated. This conclusion reiterated the earlier work of Berkley and Houde (1983) who noted in their study of the age and growth of Atlantic swordfish that further validation was essential.

The main techniques available to determine the age of swordfish are modal length frequency analysis, mark/recapture studies and examination of hard parts (Porter and Smith 1991). Because of variations in length at age and overlapping of size classes in older fish, modal analysis does not have the precision required to determine accurately the age structure of swordfish populations. Studies involving mark/recapture have only been of limited value because swordfish are solitary creatures and difficult, therefore, to tag

sufficient numbers from which enough recaptures can be made to validate individual age classes. For these reasons most contemporary swordfish studies have concentrated on hard parts, specifically otoliths and anal fin rays. Although improvements in otolith preparation and analysis techniques have made their use more feasible, the use of the relatively larger cross sections of anal fin rays has advantages in terms of collection, processing and analysis (Castro-Longoria and Sosa-Nishizaki 1998).

Our aim in this study was firstly to provide indirect evidence for annual deposition of opaque and hyaline bands in cross section of the second anal fin ray of broadbill swordfish. We then aimed to provide a Von Bertalanffy curve for male and female swordfish and an age length key for the species in eastern Australian waters. Using annual weight frequency data, our objective was to estimate the age structure of the catch.

#### 6.1.3 Methods

#### **Collection of samples**

Anal fins (and otoliths see Chapter 6.3) were collected along with gonad tissue from freshly caught swordfish by CSIRO observers and fishers from Australian waters between 1995 and 2003 (Fig. 1). Sampling was carried out on domestic longliners operating in the eastern EEZ and further collections were made in the western EEZ (see Chapter 6.2). With each sample, OFL (orbital fork length, the distance from the posterior edge of the eye orbit to fork of tail), capture position and date of capture were recorded. Samples were frozen on board and returned to the laboratory for processing.

#### Laboratory processing

For each sample, sex was confirmed, particularly for juveniles, by examination of gonads under stereomicroscope and through histology (Young et al 2003). Anal fins were thawed and the second anal fin ray removed and cleaned of all skin and tissue (Fig. 2). The second fin ray was regarded as the best ray for age estimation due to its small inner matrix and having the widest diameter. The first fin ray was generally very short and stout and often missing altogether. The bilaterally paired ray was split in two and the distance (D) was measured across the widest section of the condyle and a minimum of four transverse sections ~1.0 mm in width were cut along the length of the ray at locations equivalent to distances D/4, D/2, <sup>3</sup>/4D and D. Cuts were made using a diamond saw at either a high or low-speed, depending on the size of the ray. Sections were placed in small plastic vials labeled with a unique identification (ID) number and the section type (i.e. D, <sup>3</sup>/4D, D/2,



Figure 1: Position of capture of broadbill swordfish, *Xiphias gladius*, sampled for age and growth off eastern Australia

D/4), and immersed in 70% ethanol for one hour, before being rinsed with distilled water and placed in dichloromethane for an additional hour to improve band clarity (Berkeley and Houde 1983). Sections were air-dried, mounted with crystal bond on glass slides labeled with the ID number and section type, and stored for later reading.



Figure 2: The second ray of the anal fin split in two. Transverse sections were taken from just above the condyle following the methodology outlined in the text (scale 1cm).

Sections were read using a Leitz stereomicroscope fitted with Phillips CCD camera in conjunction with NIH Image 1.5.4 computer software program. Sections were read at either 6X, 12X or 25X magnification, using transmitted light. The distance from the focus to the edge of the ray was measured along with the distance from the focus to the beginning of each dark growth band. Thick ray sections were sanded with wet and dry (used wet) sandpaper to improve readability. Each ray was given an age estimate by counting the number of paired hyaline and opaque bands (Fig. 3). Increment readings were taken from the start of each opaque band. Readability was scored from 1-5 (1 = highly confident, 2 = confident, 3 = reasonably confident, 4 = uncertain, 5 = unreadable). Each ray was read blind (i.e. no reference to length, date or position of capture) at least twice. A third reading was made on samples where the first two blind readings did not correspond. If a confident age estimate could still not be determined then the sample was removed from further analysis. All samples with a readability of 5 were deemed unreadable and not used in further analyses. Samples where the opaque and translucent areas were not clearly defined were considered unreadable as were some samples that contained multiple bands. Age estimates were given from the best section out of D/4, D/2, 3/4D and D.



Figure 3: Transverse sections through the second anal fins of swordfish with (a) 2, (b) 4, (c) 7, (d) 8 and (e) 11 annuli. An example of a clearly observed marginal increment can be seen in (b)

To determine whether the drying of whole rays before being sectioned altered readability a random selection of 10 rays was left to air dry while the corresponding pair was kept frozen until the time of sectioning. Once sectioned and the processing of the rays was complete there were found to be no significant differences between the readability of rays that were left to dry to those kept frozen (t test, p<0.05).

#### Indirect validation of annuli

The marginal increment -- the relative distance from the last complete increment to the edge of the ray-- was used to determine if individually observed bands composed of alternate hyaline and opaque bands are deposited annually (Berkley and Houde 1983, Campana 2001 and Sun et al 2002). The marginal increment was standardised against the width of the previous increment and plotted against the month of capture. Patterns were also interpreted subjectively using the edge type analysis outlined in Pearson (1996). The margin of each ray was given a score of 1-3. 1 = new dark band (thin opaque, the opaque zone is less than <sup>1</sup>/<sub>4</sub> the width of the previous opaque zone), 2 = thick dark band (wide opaque, the opaque zone is more than <sup>1</sup>/<sub>4</sub> the width of the previous opaque zone), and 3 = hyaline (white edge). Marginal increments were given a confidence reading of 1(highly confident) through to 5 (unreadable). We modeled the annual variation in increment widths following Peterson and Hall (2003). This method models the changes in the index of ring completion over time by fitting a logistic curve to the increments from swordfish collected throughout the year.

#### Growth

Growth functions were fitted to the swordfish length-at-age data by sex using the Von Bertalanffy equation:

Equation 1:  $L_t = L_{\infty}(1 - e^{-k(t-t_0)})$ 

where  $L_t$  is the orbital fork length (cm) at age t,  $L_{\infty}$  is the theoretical maximum orbital fork length, k is the growth parameter (per year), and  $t_0$  is the theoretical age (year) at zero length. A separate growth function substituting  $t_0$  with  $l_0$  (Equation2) was also fitted as length at  $t_0$  using Equation 1 gave length at birth of ~80 cm which is biologically impossible.

Equation 2:  $L_t = L_{\infty} - (L_{\infty} - L_0)e^{-kt}$ 

Equation 1 was used for comparing growth between areas and other studies as this is the most common form in which length at age is presented for the species. Growth parameters were estimated using the least square method. A modified analysis of the residual sum of squares (ARSS) was used to compare the von Bertalanffy growth functions among locations and sexes (Haddon 2001).

#### Spatial variations in age structure

We compared the age distributions of fish sampled with respect to area of capture (west and east of longitude 158°E) and time of year (summer – September through to March) and winter (April through to August) for all fish combined and for sexes separately for the fish we sampled. These divisions were chosen based on the extended spawning period of swordfish over the summer period (Young et al 2003). The spatial division distinguished fish caught on the inshore seamounts and East Australia Current from fish caught to the east which were generally associated with colder water over the Lord Howe Rise (Ridgeway, CSIRO unpublished).

#### Age – length key

Age-length keys were developed for the eastern fishery using our sample of aged fish. Age-length keys give the proportion of fish at age in each 10-cm length class, allowing the conversion of catch-at-length data to catch-at-age. However, although swordfish are sampled routinely for weight via port sampling (Williams 1997), length measurements are scarce, primarily due to the fact that only trunks are brought to shore. We therefore converted weight to length (OFL) using the conversion:  $L = (W/a)^{1/b}$  where a = $2.1355 \times 10^{-5}$  and b = 2.902 for the eastern AFZ (Campbell and Dowling 2003). Catch in numbers-at-length (by 10-cm OFL class) for each annual sub-sample was separated into sex using a sex-ratio algorithm for the region (Young et al 2003). As the function only described sex ratios for swordfish between 80 – 190 cm OFLs, a plausible ratio of 0.5 was applied to fish in length classes <80 cm, and all fish >190 cm were deemed female (Turner et al 1996, Stone and Porter 1997, De Martini et al 2000, Wang et al 2003). Sex-separate age-length keys were then developed for each year by applying the distribution of ages per length class from the pooled-sex length-age key. The combined length-age key was selected as the most appropriate for the purpose of aging the catch at size (Megalofonou et al 1990) as higher sample sizes for each length class created a more robust dataset. The sum of male and female fish per age class was subsequently converted to a proportion of age for the total sub-sample for that year.

# 6.1.4 Results

#### Sample collection

A total of 1589 anal fin rays were collected from swordfish taken in waters off eastern Australia by the domestic longline fishery. Samples were collected between 1995 and 2003 with the majority collected after 2000 (Table 1). Of the fin rays collected, 1511 could be confidently read with 79 (4.97%) unreadable (confidence =5) (Table 1). The

| Year  | Month |      | Female    |           |     | Male      |           | Total |
|-------|-------|------|-----------|-----------|-----|-----------|-----------|-------|
|       |       | n    | OFL (min) | OFL (max) | n   | OFL (min) | OFL (max) |       |
| 1995  | July  | 9    | 114       | 191       |     |           |           | 9     |
| 1995  | Mar   | 1    | 147       | 147       | 1   | 144       | 144       | 2     |
| 1997  | Aug   | 23   | 97        | 212       | 10  | 132       | 202       | 33    |
| 1997  | July  | 34   | 102       | 209       | 11  | 104       | 200       | 45    |
| 1999  | Dec   | 34   | 109       | 263       | 7   | 116       | 177       | 41    |
| 1999  | Nov   | 20   | 101       | 234       | 8   | 96        | 198       | 28    |
| 1999  | Oct   | 38   | 109       | 237       | 24  | 102       | 192       | 62    |
| 2000  | Dec   | 3    | 110       | 213       | 8   | 101       | 175       | 11    |
| 2000  | Feb   | 92   | 99        | 233       | 46  | 100       | 207       | 138   |
| 2000  | May   | 17   | 95        | 210       | 15  | 101       | 171       | 32    |
| 2000  | Sep   | 105  | 88        | 270       | 41  | 95        | 195       | 146   |
| 2001  | Aug   | 14   | 74        | 185       | 12  | 76        | 175       | 26    |
| 2001  | Dec   | 14   | 97        | 230       | 8   | 76        | 170       | 22    |
| 2001  | Feb   | 5    | 97        | 160       | 4   | 67        | 180       | 9     |
| 2001  | Jan   | 39   | 73        | 242       | 24  | 82        | 183       | 63    |
| 2001  | July  | 7    | 73        | 174       | 3   | 73        | 78        | 10    |
| 2001  | Mar   | 30   | 99        | 216       | 20  | 78        | 191       | 50    |
| 2001  | Nov   | 47   | 85        | 258       | 7   | 127       | 178       | 54    |
| 2001  | Oct   | 40   | 130       | 215       | 4   | 135       | 150       | 44    |
| 2001  | Sep   | 4    | 185       | 225       | 1   | 195       | 195       | 5     |
| 2002  | Apr   | 29   | 52        | 225       | 10  | 52        | 227       | 39    |
| 2002  | Aug   | 72   | 62        | 224       | 17  | 78        | 184       | 89    |
| 2002  | Feb   | 65   | 80        | 253       | 26  | 84        | 195       | 91    |
| 2002  | Jan   | 65   | 50        | 255       | 36  | 76        | 211       | 101   |
| 2002  | July  | 26   | 93        | 233       | 7   | 77        | 188       | 33    |
| 2002  | June  | 48   | 95        | 276       | 10  | 110       | 186       | 58    |
| 2002  | Mar   | 58   | 57        | 243       | 31  | 75        | 184       | 89    |
| 2002  | May   | 67   | 79        | 218       | 21  | 61        | 187       | 88    |
| 2002  | Nov   | 59   | 70        | 226       | 22  | 77.5      | 205       | 81    |
| 2002  | Oct   | 48   | 92        | 219       | 23  | 90        | 210       | 71    |
| 2002  | Sep   | 7    | 138       | 225       | 1   | 142       | 142       | 8     |
| 2003  | Feb   | 4    | 171       | 185       | 7   | 148       | 185       | 11    |
| Total |       | 1124 |           |           | 465 |           |           | 1589  |

Table 1. Broadbill swordfish anal fin ray samples collected from eastern Australian waters from March 1995 to February 2003 (n= number collected, OFL=orbital fork length in cm)

number of females to males sampled was 1064: 447 males (an overall sex ratio of 1m:2.38f). The fish examined ranged in length from 50 to 276 cm (OFL) (female length range 50 to 276 cm OFL; male length 52 to 227 cm OFL) (Fig. 4) and were sampled from all months of the year when collections from all years were combined.



(b)



Figure 4: The size-frequency distribution (a) and proportions (b) of male and female swordfish per 10 cm size class collected from the eastern Australian longline fishery between 1995-2003.

#### Description of anal fin ray

A significant relationship between the radius of the second anal fin ray and fish length for both male and female swordfish indicated that rays grew isometrically with fish length and therefore could be used as a proxy for fish length (Fig. 5). Transverse sections taken above the condyle of the fin ray showed a sequence of alternating hyaline and opaque bands as viewed by reflected light (see Fig. 3).





Figure 5: Anal fin ray radius (mm) in relation to length (orbital fork length, OFL, cm) for female and male swordfish



Figure 6: Mean index of completion of the last fin ray annulus of swordfish sampled over the study period using all fin rays regardless of clarity (a, sexes combined, years separated; b, sexes and sampling years combined; c, female and males separated, years combined) (n=numbers of samples per month)

#### Validation of annuli

#### 1. Marginal Increment Analysis (MIA)

The pattern of completion of the marginal increments of swordfish fin rays showed that increments began forming in July or August in both years in which fin rays were collected (Fig. 6a), although no samples over the winter of 2001 limited further clarification of the time of increment formation. When all MIA measurements were grouped by month of capture (regardless of year of capture), an annual cycle in the ratio of the last to the penultimate band was observed indicating that bands were laid over a yearly cycle (Fig. 6b)(Anova, P<0.05). Marginal increments rose to a maximum in autumn and were at their lowest over winter and spring although there was variation between months. The maximum ratio between the last to the penultimate increment occurred in autumn for both sexes: the minimum following immediately after in winter - June for males and August for females (Fig. 6c, Table 2). This cycle was only significant for females (Table 2), although when only sections were used that had a high confidence score (confidence scores 1 and 2 combined) the MIA for males also showed a significant difference between months (Anova, P<0.05).

|                   |    | Female  |         | Male |         |         |  |  |  |
|-------------------|----|---------|---------|------|---------|---------|--|--|--|
|                   | df | F       | Р       | df   | F       | Р       |  |  |  |
| All ages combined | 11 | 2.49096 | 0.00454 | 11   | 1.33965 | 0.20251 |  |  |  |
| Age 2             | 8  | 0.76972 | 0.63186 | 9    | 0.53898 | 0.82657 |  |  |  |
| Age 3             | 10 | 1.20085 | 0.31136 | 11   | 2.64432 | 0.03786 |  |  |  |
| Age 4             | 10 | 1.95845 | 0.05135 | 9    | 1.75471 | 0.17971 |  |  |  |
| Age 5             | 11 | 0.79287 | 0.64622 | 9    | 0.54504 | 0.83377 |  |  |  |
| Age 6-10          | 11 | 1.73774 | 0.06397 | 11   | 0.69423 | 0.74192 |  |  |  |

Table 2 Results of single factor ANOVA examining mean marginal increment ratio to month for all ages combined, age 2-5 inclusive and age 6-10 combined.

When age classes were examined separately, the highly variable nature of the marginal increments, and the lack of samples from some months resulted in very few classes that showed significant differences between months (female age class 4 and male age 3) (Table 2, Fig. 7).



Figure 7: Mean (+-95%CI) marginal increments in relation to time of year for female and male swordfish for age classes 2,3,4,5 and 6-10yr combined

#### 2. Edge Type Analysis (ETA)

Because of the difficulties we encountered in determining at which point to measure the outer increment of the ray-- in some sections it was not clear whether the inner margin of the outer increment was properly identified -- we attempted the more subjective interpretation of ETA. The resulting pattern for the age groups combined showed, although still variable, a clearer pattern of how the rays were formed. Hyaline edges formed mainly from May through to September in both sexes. New opaque bands were present mainly in spring and were replaced by wide opaque bands over summer (Fig. 8).





Figure 8: Edge type analysis showing the development of hyaline bands in autumn followed by new bands in spring and bands nearing completion progressively over summer

#### 3. Logistic method

Because validation of the fin ray annuli was a central objective of the project, we tested a further method to distinguish a cycle of annulus formation in the fin rays (Peterson and Hall 2003). This method relies on joining two linear relationships fitted subjectively to the individual data by age class, and then attempting to link them through a logistic equation (Fig. 9). The steepness of the logistic equation reflects the



Figure 9: Marginal increment (MI) ratios of swordfish fin rays by year class with fitted logistic curves linking linear relationships of MI versus time of year. The linear relationships were limited to periods of pre and post annulus formation suggested by the raw data (following Peterson and Hall 2003)

time at which new increments were formed. Age classes 2, 4 and 6 showed clear transitions around June and July. Conversely, the age class 10 showed a very broad fit reflecting either a broader transition time or that annulus formation was not clearly defined with respect to time of year. Although there was significant individual variation in MIAs within and between months, and between year classes, this method supported the earlier overall result that annuli were completed mid year.

The combination of these investigations, although not conclusive for each age class, showed that annulus formation was completed over a range of months overlapping the Australian winter. We considered this outcome sufficient to allow us to proceed to the development of an age length relationship and an age length key for swordfish from eastern Australian waters.

#### **Precision of readings**

The average percent error (APE) between consecutive readings of fin ray sections for all samples was 8.35% (APE for female swordfish = 8.37%; APE for males = 8.30%). A further two comparisons were made. The first comparison was made between two readers, one from CSIRO and one reader independent laboratories and although little can be drawn from such a small sample there is obvious differences in band interpretation that underline the potential for differences in resulting growth curves. Both these readings showed divergence although the completed reading of all samples fell within the limit of 10% considered reliable.

#### Age and Growth

Significant individual variations in age at length were detected within all length classes for both sexes (Fig. 10, Tables 3 and 4). There was no significant difference between male and female length at age up to year 9. Beyond this age length at age was significantly different between males and females with the latter showing accelerated growth (P<0.05). The oldest female examined from the ETBF was 18 years old; the oldest male was 15 years old. Fifty one percent of the females sampled were  $\leq$  5 years old, 91% were  $\leq$ 10 years old. Sixty one percent of males sampled were  $\leq$  5 years old; 98% were  $\leq$  10 years old (Table 4).

Von Bertalanffy curves fitted to length-at-age for each sex gave growth parameters of  $L^{\infty}$ , K and to of 296.0, 0.08, and -3.7 respectively for females and 224.2, 0.13 and -3.0 for males. The growth curves were significantly different between sexes. Swordfish grew rapidly in the first year to ~75 cm OFL (Table 4) after which mean growth rate of females was ~11.3 cm per year up to year 10; male growth rate was slightly less for the same period (10.2 cm per year).



Figure 10: Data and fitted Von Bertalanffy growth curves for male (a) and female (b) swordfish from the Eastern tuna and billfish fishery

| FEMALE                                                                                                                                                   | Age class (years)          |                              |                                |                                     |                                     |                                          |                                 |                                          |                                                    |                                               |                                           |                                  |                            |                       |                  |                  |    |    |                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|--------------------------------|-------------------------------------|-------------------------------------|------------------------------------------|---------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------|----------------------------|-----------------------|------------------|------------------|----|----|-----------------------------------------------------------------------------------------------------|
| OFL class<br>(cm)                                                                                                                                        | 0                          | 1                            | 2                              | 3                                   | 4                                   | 5                                        | 6                               | 7                                        | 8                                                  | 9                                             | 10                                        | 11                               | 12                         | 13                    | 14               | 15               | 16 | 18 | Total                                                                                               |
| 50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140<br>150<br>160<br>170<br>180<br>190<br>200<br>210<br>220<br>230<br>240<br>250<br>260<br>270 | 3<br>5<br>4<br>5<br>2<br>1 | 8<br>22<br>23<br>14<br>4     | 5<br>24<br>31<br>26<br>12<br>5 | 2<br>21<br>24<br>32<br>15<br>7<br>2 | 2<br>8<br>28<br>29<br>34<br>13<br>4 | 3<br>8<br>16<br>34<br>29<br>20<br>5<br>1 | 4<br>11<br>15<br>27<br>37<br>10 | 1<br>5<br>11<br>25<br>21<br>15<br>9<br>3 | 1<br>1<br>5<br>14<br>17<br>24<br>13<br>7<br>1<br>2 | 1<br>4<br>13<br>10<br>13<br>11<br>6<br>1<br>2 | 1<br>1<br>5<br>9<br>9<br>7<br>3<br>2<br>1 | 1<br>1<br>8<br>17<br>6<br>3<br>1 | 1<br>1<br>4<br>6<br>5<br>3 | 1<br>1<br>3<br>1<br>2 | 1<br>3<br>1<br>2 | 1<br>3<br>1<br>1 | 1  | 1  | 3<br>5<br>12<br>32<br>53<br>74<br>67<br>86<br>78<br>98<br>95<br>75<br>43<br>22<br>18<br>4<br>4<br>1 |
| Total                                                                                                                                                    | 20                         | 71                           | 103                            | 103                                 | 127                                 | 126                                      | 131                             | 92                                       | 88                                                 | 61                                            | 47                                        | 45                               | 21                         | 8                     | 7                | 9                | 4  | 1  | 1064                                                                                                |
| MALE                                                                                                                                                     | Age                        | clas                         | s (ye                          | ears)                               |                                     |                                          |                                 |                                          |                                                    |                                               |                                           |                                  |                            |                       |                  |                  |    |    |                                                                                                     |
| OFL class                                                                                                                                                | 0                          | 1                            | 2                              | 3                                   | 4                                   | 5                                        | 6                               | 7                                        | 8                                                  | 9                                             | 10                                        | 11                               | 12                         | 13                    | 14               | 15               | 16 | 18 | Total                                                                                               |
| (cm)<br>50<br>60<br>70<br>80<br>90<br>100<br>110<br>120<br>130<br>140<br>150<br>160<br>170<br>180<br>190<br>200<br>210<br>220                            | 1<br>2<br>6<br>2           | 7<br>13<br>15<br>8<br>1<br>1 | 13<br>24<br>17<br>1<br>3       | 1<br>10<br>13<br>14<br>9<br>4<br>1  | 5<br>2<br>7<br>8<br>10<br>3<br>1    | 3<br>5<br>17<br>21<br>8<br>2<br>2        | 1<br>14<br>8<br>2               | 2<br>1<br>4<br>3<br>12<br>13<br>6<br>1   | 2<br>7<br>10<br>7<br>1<br>3                        | 1<br>1<br>2<br>11<br>6<br>4                   | 1<br>5<br>10<br>5<br>2<br>2               | 3<br>1                           | 2<br>1<br>1                | 1                     |                  |                  |    |    | 1<br>2<br>13<br>16<br>29<br>47<br>37<br>30<br>38<br>41<br>47<br>43<br>52<br>33<br>9<br>6<br>2<br>1  |
| Total                                                                                                                                                    | 11                         | 46                           | 58                             | 53                                  | 36                                  | 72                                       | 39                              | 42                                       | 30                                                 | 26                                            | 25                                        | 4                                | 4                          | 1                     |                  |                  |    |    | 447                                                                                                 |

Table 3: Age-length keys for male and female broadbill swordfish from the Eastern Tuna and Billfish fishery (numbers are totals of individual in each age/size class)

Table 4: Mean length-at-age of broadbill swordfish sampled from the eastern tuna and

| Age class | Total  | Female                      | Male                        |
|-----------|--------|-----------------------------|-----------------------------|
| 1         | 74.6   | 75.4                        | 73.0                        |
|           | (4.6)  | (6.4)                       | (5.6)                       |
| 2         | 92.9   | 93.9*                       | 91.4                        |
| _         | (1.9)  | (2.5)                       | (2.9)                       |
| 3         | 109.2  | 109.5                       | 108.4                       |
|           | (1.7)  | (2.1)                       | (2.8)                       |
| 4         | 123.4  | 124.4*                      | 121.5*                      |
| -         | (2.5)  | (3.1)                       | (4.2)                       |
| 5         | 135.4  | 136.3*                      | 133.1*                      |
| 0         | (2.4)  | (2.9)                       | (4.6)                       |
| 6         | 148.7  | 150.3                       | 145.7                       |
| 7         | (2.3)  | (3.0)                       | (3.2)                       |
| 1         | 159.9  | 160.3                       | 158.1                       |
| 0         | (2.5)  | (2.7)                       | (6.0)                       |
| o         | 170.5  | 172.0                       | 166.5                       |
| 0         | (2.8   | (3.5)                       | (4.4)                       |
| 9         | 175.2  | 175.0                       | 175.6*                      |
| 10        | (3.1)  | (4. <i>Z</i> )              | (3.9)                       |
| 10        | 186.0  | 191.7                       | 176.0                       |
| 11        | (3.7)  | (4.4)                       | (4.0)                       |
|           | 191.7  | (5.3)                       | 180.6                       |
| 12        | (4.4)  | (0.0)<br>200 e <sup>#</sup> | 190.9#                      |
|           | 200.0  | 200.0                       | (7.8)                       |
| 13        | (0.0)  | (0.0)<br>214 5 <sup>#</sup> | (7.0)<br>106.6 <sup>#</sup> |
|           | (8.1)  | (9.2)                       | (9.4)                       |
| 14        | 217.3  | (0. <u>_</u> )<br>210 /     | 195.0                       |
|           | (8.8)  | (8.6)                       | (-)                         |
| 15        | 224.9  | 224.9                       | ()                          |
|           | (9.9)  | (9.9)                       |                             |
| 16        | 223.0  | 224.2                       | 210.0                       |
|           | (11.5) | (12.4)                      | (-)                         |
| 17        | 235.2  | 246.8                       | 189.0                       |
|           | (25.5) | (15.2)                      | (-)                         |
| 18        |        | . ,                         |                             |
|           |        |                             |                             |
| 19        | 227.0  | 227 0                       |                             |
|           | 221.0  | 221.0                       |                             |
| Sample    | 1413   | 1000                        | 413                         |
|           |        |                             |                             |

billfish fishery off eastern Australian

#### Spatial variations in age structure

The mean age of sampled swordfish (sexes combined) was significantly lower in inshore waters during winter than it was in summer inshore waters (ANOVA; df 1,972; F=14.06, P<0.001; Fig. 11), summer offshore waters (ANOVA; df 1,836; F=29.78, P<0.001) or winter offshore waters (ANOVA, df 1,307; F= 8.15, P=0.005). As the "inshore" region is dominated by the warmer waters of the East Australia Current, this pattern suggests the area provides a favourable thermal region for the younger age classes, particularly in

winter. There was no significant difference between other time/ area combinations for the combined sexes.



Figure 11: Mean age of swordfish sampled by area and time of year in the ETBF (si, summer inshore; wi, winter inshore; so, summer offshore; wo, winter offshore)

This pattern for the combined sexes was driven largely by the presence of smaller females in inshore waters during winter. Female swordfish were significantly younger than females taken in outside waters in summer (df =1,567; F= 22.9, P<0.001) or winter (df=1,324; F=4.69, P=0.03). Females were significantly younger in inside waters in winter than in inside waters during summer (df=1,470; F=10.72, P= 0.001). This pattern of relatively young fish in inshore waters during winter was also repeated for male swordfish underlying the importance of this region for younger swordfish.

#### Age structure of the eastern Australian swordfish catch

The age-at-length keys (Table 3) were applied to length frequency data to estimate the age distribution of the annual catch of swordfish from the Eastern Tuna and Billfish Fishery from 1997 to 2001. Fish aged between four and six years generally dominated the swordfish catch off eastern Australia. However, in1999 there was an increase in the proportion of 2 year old fish and in the following year one year olds in the catch suggesting a downward trend in the age of the fish taken by the fishery.



Figure 12: The weight, length and age structure of the broadbill swordfish catch taken between 1997 and 2001 off eastern Australia

# 6.1.5 Discussion

#### Indirect validation

The lack of direct validation of swordfish age estimation methods limits the ability to precisely estimate swordfish age and growth. Swordfish are relatively solitary in nature, thus mass tagging is impractical. Direct methods of validation such as tag recapture and associated methodologies such as strontium marking of hard parts have yet to be attempted (Clear et al 1999), although the viability of this method has been established for marlin (Speare 2001). There have been examples of fishery-run tagging initiatives but these have had limited success. Of the ~400 swordfish tagged and released by the ETBF only 8 have been recaptured (as at June 2004, C. Stanley, CSIRO unpublished data). The relatively high morbidity of smaller fish when captured, and the likely shedding of tags by fish once freed, has been cited as reasons for the lack of returns recorded so far.

The main focus for swordfish validation studies, therefore, has been the refining of indirect validation techniques such as marginal increment analysis (MIA) and edge type analysis (Pearson 1996). Sun et al (2002) showed significant differences between seasons in the marginal increments of swordfish from 5 year classes in the Taiwan Sea using MIA. They reported a seasonal cycle of increasing margin width relative to the last complete band initiated in winter and reaching a maximum in summer. More recent developments in the analysis of marginal increments have taken the form of fitting logistic regressions to change in the increase in the relative width of the last increment at capture as demonstrated by Peterson and Hall (2003) for four species of tropical fish and which we applied to the present data. This analysis supported our conclusion that opaque bands are initiated in winter and completed over an annual cycle.

In Chapter 6.3 we examined the relationship between daily otolith count and annulus formation which has previously provided compelling evidence for annual ring formation in some fish species (Campana 2001). However, matching daily increment deposition in otoliths with year old swordfish determined from fin rays is problematic. This is mainly due to the extended spawning period that we determined previously for swordfish in eastern Australian waters (Young et al 2003). Swordfish spawn mainly between September and March off eastern Australia. As opaque bands are deposited in the fin ray in late winter to early spring (July to September), the first annulus could have been deposited as little as two and as much as 10 months after birth. Therefore, a ray with 1 band could be from a fish that is only a few months old, or over 1 year old.

Given the lack of direct validation methods for swordfish, there has been a recent attempt to test whether laboratories involved in age estimation of swordfish using anal fin rays are actually counting the same bands (De Martini, University of Hawaii unpublished). We found initially through this comparison that we were counting a band close to the focus that other laboratories had decided was not an annual increment. This lead to us rereading a number of slides and has significantly increased our confidence in the age estimates we have given.

#### Growth in relation to other regions

Swordfish is a target of pelagic longline fisheries worldwide and has been the focus of many studies similar to the present one. These studies have revealed a range of growth parameters with those from the Mediterranean Sea being the most different (Fig. 13).



Figure 13: Standard Von Bertalanffy curves for female swordfish sampled from the Pacific, Atlantic and Indian Oceans, and from the Mediterranean Sea using anal fin rays

Comparing swordfish age and growth between, and within, regions is difficult because different age estimation techniques are used between studies. Although using anal fin rays is presently the most practical available, there is significant variability in annulus counts between individuals of similar size. Until there are dedicated studies employing mark/recapture techniques over short and long time periods, only limited progress in interregional comparisons is likely. One of the difficulties in the type of study we employed is there is a degree of subjective interpretation in what constitutes an annual band on the sectioned fin rays. We participated in a blind study initiated by de Martini et al (personal communication) from the Hawaii National Marine Fisheries Service to see whether the structures we were recording as annual rings agreed with readers from laboratories from Hawaii, Taiwan, Japan and Mexico. That study showed that we were recording an extra band near the focus of the ray not considered annual by readers
elsewhere. After adjustment we consider our methods, and final readings, to be in line with those from the other participating laboratories.

#### Age at maturity and catch at age - implications for the fishery

In a study of the reproductive biology of swordfish from the same waters, Patterson et al (2002) found that their size at maturity was one of the largest reported for the species. The length at which 50% of the female population was reproductively active, ~200 cm OFL, was well above the median size of fish caught by the fishery. Patterson et al (2002) suggested that this may have been due to the relatively short history of fishing for the species in eastern Australian waters resulting in higher numbers of large mature female swordfish in the wild population. With more intensive fishing pressure over recent years, these larger fish have progressively been removed from the population. The concern raised by the present study is that the size at 50% maturity we reported in that study (~200 cm OFL) equates to a 10 year old female. Continuous monitoring of the size of swordfish taken by the fishery suggested that the median weight of fish has declined. When the age length key was applied retrospectively a lower median age was found as the fishery developed. In 2001 the catch was dominated by a mode of fish between 2 and 4 years old whereas in 1997 the catch was composed mainly of 4 to 6 year old fish. Assuming that there would be little change in the age length relationship for fish caught in 1997 our results show that the median age of fish taken by the fishery has dropped significantly from when the domestic fishery first began (Fig.12). Whether this reflected a recruitment pulse or was the result of overfishing has yet to be determined, although the decline in the proportion of older age fish in the catch is similar to swordfish fisheries elsewhere where fishing impacts have been reported (Anon. 2003).

In the North Atlantic swordfish fishery, where restrictions are now in place to protect the young of the year, there is evidence of replenishment of the mature age fish to the fishery. This initiative came after catches had decreased by almost half between 1988 and 1995 to an annual catch of ~6 million pounds (~3,000 tonnes). At the same time the average size of commercially caught swordfish had also declined; from 120 Kg in 1963 to ~40 Kg in 1995. More than 83% of the female swordfish and 36% of the males caught in 1995 by the domestic industry in the North Atlantic were immature, a situation analogous to that reported for eastern Australian waters (Patterson et al 2002). Off eastern Australia Patterson et al (2002) found immature female swordfish made up 77% of the catch of the females taken by the fishery. In contrast, immature males only accounted for 27% of the male catch.

The U.S. now regulates the commercial swordfish catch by limiting the number of fishermen targeting the stock and implementing seasonal and area closures to protect undersized fish. In 2001, NOAA Fisheries closed 133,000 square miles of coastal waters off the southeast U.S. coast as this area in particular was known as a regular spawning area for the species. As well there are now minimum size restrictions and quota limitations in

place. It should be noted that restricting the landing of immature fish was not in itself enough to effect the changes needed. In 1996, U.S. fishermen discarded dead an estimated 40,000 young swordfish in the North Atlantic alone when size restrictions were first introduced <sup>1</sup>.

#### **Spatial variations**

The comparison of the age of fish caught from inshore and offshore waters at different times of the year revealed that younger fish were consistently taken in inshore waters (west of 158° E) during the Austral winter. This is the time and area, noted previously to be where reproductive activity was concentrated off eastern Australia (Young et al 2003). In that study, it was proposed that spawning took place in waters with a sea surface temperature greater than 24°C and suggested that mature swordfish were targeting the East Australia Current to spawn. The life history strategy we reported for eastern Australian swordfish was very similar to that reported for populations of western Atlantic swordfish (Arocha 1997), and where time area closures and size restrictions appear to have been effective in rejuvenating the depleted stocks in that region (Anon. 2003)<sup>1</sup>

#### Conclusions

Marginal increment analysis was used to indirectly validate the use of anal fin rays to age swordfish for the combined age classes. However, we were unable to determine significant cycles of marginal increment for all year classes examined. A von Bertalanffy growth curve was fitted with estimated parameters of  $L\infty$ , K and to of 296.0, 0.08, and -3.7 respectively for females and 224.2, 0.13 and -3.0 for males (based on orbital fork length). Swordfish caught off eastern Australia have similar length at age relationships to those reported for other regions except for the Mediterranean Sea. Swordfish taken inshore during winter were significantly younger than fish taken offshore at other times of the year. An age-length key was developed that, when applied to the catch by the fishery between 1997 and 2001, showed the average age of the catch by the fishery has decreased significantly since the domestic fishery started. This result, taken together with the reported decrease in catches of swordfish off eastern Australia (Campbell 2002b), underline the need for more stringent management procedures for the fishery.

#### 6.1.6 Acknowledgements

This study was supported enthusiastically by the skippers, managers and processors of the Eastern Tuna and Billfish fishery. We are also grateful for the advice and knowledge shared by members of the CSIRO Pelagic Fisheries and Ecosystems Research Group, particularly Dr Natalie Dowling.

http://www.useu.be/Categories/Trade/Fisheries/Oct1402SwordfishRecoveryAssessmentNOAA.ht

<sup>&</sup>lt;sup>1</sup>(<u>http://www.nrdc.org/wildlife/fish/rnasword.asp;</u>

#### 6.1.7 References

- Anonymous (2003) Report on the 2002 Atlantic swordfish stock assessment session. ICCAT Col. Vol. Sci. Pap., 55 (4): 1289 - 1415
- Arocha, F. (1997) The reproductive dynamics of swordfish Xiphias gladius L. and management implications in the northwestern Atlantic. Ph.D. diss., 350 p. Univ. Miami, FL.
- Beamish, R.J. and Fournier, D.A. (1981) A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Science. 38:982-983
- Berkeley, S. A. and Houde, E. D. (1983) Age determination of broadbill swordfish, *Xiphias gladius*, from the straits of Florida, using anal fin ray sections. U. S. Dep. Commer., NOAA Tech. Rep. NMFS 8, 137 – 143
- Campana, S. (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol. 59, 197 242
- Campbell, R. A. (2002a) Summary of Catch and Effort Information pertaining to Australian Longline Fishing Operations in the Eastern Tuna and Billfish Fishery Background document for Total Allowable Effort Workshop, Canberra, 12-13th December 2002
- Campbell, R.A. (2002b) Sequential changes in swordfish catch rates off eastern Australia and possible implications for the movement dynamics of the local swordfish population. Working paper BBRG-9 presented at the 15<sup>th</sup> meeting of the Standing Committee on Tunas and Billfish, held 23-27 July, Honolulu, Hawaii
- Campbell, R. A. and Dowling, N. (2003) Development of an operational model and evaluation of harvest strategies for the Eastern Tuna and Billfish fishery. Project 1999/107, Fisheries Research and Development Corporation, Canberra
- Castro-Longoria, R. and Sosa-Nishizaki, O. (1998) Age determination of swordfish, *Xiphias gladius* L., from waters off Baja California, Mexico, using anal fin rays and otoliths. *In* Barrett, I., Sosa-Nishizaki, O. and Bartoo, N. (Eds) Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada, Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Technical Report NMFS 142
- Clear, N. P., Gunn, J. S., Rees, A. J. (1999) Direct validation of annual increments in the otoliths of juvenile southern bluefin tuna, *Thunnus maccoyii*, by means of a large-scale mark-recapture experiment with Strontium chloride. Fish. Bull. 98, 25-40
- Clear, N., Davis, T. L. O. and Carter, T. (2000) Developing techniques to estimate the age of bigeye tuna and broadbill swordfish off eastern Australia: a pilot project. FRDC Grant 98/113
- Haddon, M. (2001) *Modelling and Quantitative Methods in Fisheries*. Chapman & Hall/CRC, United States of America
- Megalofonou, P., De Metio, G. and Lenti, M. (1990) Catch, size distribution, age and some population parameters of swordfish, *Xiphias gladius* L., in the Greek Seas. Collect. Vol. Sci.Pap. ICCAT/RECL. Doc Sci. CICTA/COLECC. Doc. Cient. CICAA. 33: 168-178

- Patterson, T., Young, J., O'Reilly, J. and Drake, A. (2002) Size at maturity of broadbill swordfish, *Xiphias gladius*, in relation to catch in the eastern Australian Fishing Zone. In: Young J and Drake A (2002) Reproductive dynamics of broadbill swordfish (*Xiphias gladius*) in the domestic longline fishery off eastern Australia. FRDC Project 1999/108.
- Pearson, D. E. (1996) Timing of hyaline-zone formation as related to sex, location, and year of capture in otoliths of the widow rockfish, Sebastes entomelas. Fishery Bulletin 94, 190 197
- Peterson, P. C. and Hall, N. G. (2003) Quantitative determination of the timing of otolith ring formation from marginal increments in four marine teleost species from northwestern Australia. Fishery Bulletin 101, 900-909
- Porter, J. M. and Smith, S. C. (1991) Literature review of ageing in Atlantic swordfish. ICCAT Collected Volume of Scientific papers 35 (2), pp 449-58., Madrid
- Punt, A., Campbell, R. and Smith, T. (1999) Evaluation of performance indicators in the eastern tuna and billfish fishery a preliminary study. Eastern Tuna MAC Fisheries Research Series
- Reeb, C. A., Arcangeli, L. and Block, B. A. (2000) Structure and migration corridors in Pacific populations of the swordfish, *Xiphias gladius*, as inferred through analysis of mitochondrial DNA. Marine Biology 136, 1123-1131
- Speare, P. (2001) Age and growth of black marlin, *Makaira indica*, in east coast Australian waters. Marine and Freshwater Research 54, 307-315
- Stone, H.H. and Porter, J.M. (1997) Development of a swordfish sex-ratio-at-size relationship for catches from the Canadian fishery. ICCAT Col. Vol. Sci. Pap. 46(3):311-314
- Sun, C., Wang, S. and Yeh, S. (2002) Age and growth of the swordfish (*Xiphias gladius*L.) in the waters around Taiwan determined from anal fin rays. Fishery Bulletin 100, 822-835
- Tserpes, G. and Tsimenides, N. (1995) Determination of age and growth of swordfish, *Xiphias gladius* L., 1758, in the eastern Mediterranean using anal-fin spines. Fishery Bulletin 93: 594-602
- Turner, S.C., Arocha, F. and Score, G.P. (1996) US swordfish catch-at-age by sex. ICCAT Col. Vol. Sci. Pap. 45(2):373-378
- Vanpouille, K., Poisson, R., Taquet, M., Ogor, A. and Troadec, H. (2001) Etude de la croissance de l'espadon. In 'L'espadon: de la recherche a l'exploitation durable'. (eds. Poisson F and Taquet M) pp170-211. Programme Palangre Reunionnais, Rapport final
- Wang, S-P., Sun, C-L. and Yeh, S-Z. (2003) Sex ratios and sexual maturity of swordfish (*Xiphias gladius* L.) in the waters of Taiwan. *Zoological Studies* 42(4): 529-539
- Ward, P. and Elscot, S. (2000) Broadbill swordfish: status of world fisheries. Bureau of Rural Sciences, Canberra
- Williams, K. (1997) Eastern tuna and billfish fishery size monitoring program. AFMA
- Wilson, C.A. and Dean, J.M. (1983) The potential use of sagittae for estimating age of Atlantic swordfish, *Xiphias gladius*. US Dep. Commer., NOAA Tech. Rep. NMFS

#### 8:151-156

Young, J., Drake, A., Brickhill, M., Farley, J. and Carter, T. (2003) Reproductive dynamics of broadbill swordfish, *Xiphias gladius*, in the domestic longline fishery off eastern Australia. Marine and Freshwater Research. 54:1-18

# 6.2 A preliminary investigation of age and growth of swordfish, *Xiphias gladius*, from Western Australian waters using anal fin rays

Melissa K. Langridge\*, Jock W. Young and Anita D. Drake

(\*Present address: Marine and Estuarine Ecology Unit, University of Queensland, Brisbane Queensland 4072; Email: s4011188@student.uq.edu.au)

# 6.2.1 Abstract

This study provides the first estimate of age and growth of swordfish from western Australian waters (eastern Indian Ocean), and includes a comparison with that of swordfish from eastern Australian waters (western Pacific Ocean). Samples were collected between 1997 and 2003 by observers aboard commercial longline vessels operating out of four Western Australian fishing ports. Age was estimated using cross-sections of the second anal fin ray of 188 swordfish (122 females and 66 males) of known orbital fork length. Trends in the marginal increment ratio and percent edge type per month indicated that growth bands formed once a year. Length-at-age data were applied to the standard von Bertalanffy growth equation for each sex, with the following parameters; for females  $L_{\infty} =$ 296.51, k = 0.1096,  $t_0 = -3.0118$ , for males  $L_{\infty} = 236.90$ , k = 0.0815,  $t_0 = -3.0148$ . No consistent differences in mean length were detected between males or females aged 1 – 9 years from the Indian and Pacific Oceans (P>0.05). Fish aged between three and seven years generally dominated the SWTBF catch, with no trend evident in median age class over the study period.

# 6.2.2 Introduction

The domestic longline fishery off Western Australia has expanded rapidly since the exclusion of Japanese longliners from the Australian Fishing Zone (AFZ) in 1998. Broadbill swordfish, *Xiphias gladius*, are now the target species for most Southern and Western Tuna and Billfish Fishery (SWTBF) operations. Annual landings peaked at 2136 t in 2001 from 224 t in 1998, surpassing the largest annual catch by the longer-established Eastern Tuna and Billfish Fishery (ETBF) (Lynch 2004). However, catches have recently declined to below 2000 tonnes in 2002 (Lynch 2004).

Several swordfish fisheries in other parts of the world have reported initial rapid expansion before declining (Ward and Elscot 2000). Significantly, eastern Australian catches of swordfish have declined notably over the past five years despite an increase in fishing effort (Campbell 2002). With concern over the sustainability of swordfish stocks within the Australian Fishing Zone (AFZ), there is a need to undertake rigorous population assessments that will directly contribute to the development of rational management strategies (Clear *et al* 2000).

Information on the age and growth of swordfish stocks are critical for any age-structured stock assessment model. Similarly, knowledge of stock structure and mixing rates are important as fish from genetically distinct stocks may have different biological characteristics (e.g. growth rates) and thus respond differently to fishing pressure (Ward and Elscot 2000). Estimated growth rates of swordfish vary between different oceanic regions (Chapter 6.1). However, genetic studies have been unable to distinguish between the swordfish occurring off western Australia (eastern Indian Ocean) and eastern Australia (western Pacific Ocean) to date (Reeb *et al* 2000, Ward *et al* 2001). Nevertheless, a comparison of the age structures between both populations may help elucidate differences in the stocks as a result of fishing practices, with implications for management.

Previous age determination studies of swordfish have indicated a preference for counts of annuli in cross-sections of the second anal-fin ray due to the practicability of collection, processing and analyses (Berkeley and Houde 1983, Tsimenides and Stirpes 1989, Esteves *et al* 1995, Clear *et al* 2000, Sun *et al* 2002). The validity of this approach lies in the assumption of periodic consistency in band formation. Growth bands are often assumed to be annual in nature; however Ehrhardt (1992) and Sun *et al* (2002) were able to achieve an indirect validation of the anal-fin technique through marginal increment analysis. Accordingly, before an accurate stock assessment can be commenced, validation must be undertaken for the aging technique employed.

The primary goal of this study was to provide a preliminary description of the age and growth of swordfish in the eastern Indian Ocean within the western AFZ using anal-fin rays. Results of these analyses were also compared with the data of Young *et al* (Chapter 6.1) of swordfish samples within the eastern AFZ to determine whether stock/catch characteristics between the fisheries differed significantly. A second objective was to

determine the age structure of swordfish catches by domestic longline in the western AFZ. As such, age-length keys were applied to sub-samples of annual catch-at-length data for the fishery. Any variations between the catch structure of SWTBF and ETBF catches were investigated. These objectives provide a fundamental step towards the development of operational models required for swordfish in the southern and western AFZs. The results of this study can be used as a prelude to further evaluation of the swordfish stock in western Australian waters.

# 6.2.3 Methodology

#### **Collection and preparation of samples**

Swordfish were sampled opportunistically by either trained observers or longline crews aboard commercial fishing vessels operating out of Albany, Geraldton, Fremantle and Esperance, Western Australia (Fig. 1).



Figure 1: Map of Australia showing swordfish fishing ports, fishing grounds and where male and female samples were collected.

A total of 188 (122 female and 66 male) swordfish were sampled from various months between 1995 and 2003, however most were collected from July to September when the majority of catches occur (Ward *et al* 1996, Campbell and Taylor 2000) (Table 1).

| Month     | Female | Male | Total |  |
|-----------|--------|------|-------|--|
| January   | -      | -    | -     |  |
| February  | 8      | 19   | 27    |  |
| March     | -      | -    | -     |  |
| April     | 6      | 3    | 9     |  |
| May       | 7      | 1    | 8     |  |
| June      | 8      | 6    | 14    |  |
| July      | 35     | 16   | 51    |  |
| August    | 11     | 8    | 19    |  |
| September | 28     | 8    | 36    |  |
| October   | -      | -    | -     |  |
| November  | 19     | 5    | 24    |  |
| December  | -      | -    | -     |  |
| Total     | 122    | 66   | 188   |  |
| Year      | Female | Male | Total |  |
| 1995      | 8      | 19   | 27    |  |
| 1997      | 9      | 8    | 17    |  |
| 1999      | 4      | 2    | 6     |  |
| 2002      | 19     | 5    | 24    |  |
| 2003      | 82     | 32   | 114   |  |
| Total     | 122    | 66   | 188   |  |

Table 1: Composition of swordfish samples according to month (A) and year (B) of capture.

Α

В

For each fish, the gonads and first anal fin were removed and labeled with sex, orbital fork length (OFL - straight distance from the eye to the fork of the caudal fin) and date of capture. Samples were frozen and transported to the laboratory where sex was confirmed by stereomicroscopic examination of the gonads. Anal fins were thawed and boiled to remove the bilaterally-paired second ray, which was subsequently cleaned of tissue and split in two. Sections from each ray were processed following the methodology outlined in Chapter 6.1.

#### Age determination and marginal increment readings

Anal fin ray sections were viewed at 6X, 12X or 25X magnification with transmitted light using a stereomicroscope fitted with a digital camera and run with AnalySIS computer software. Distance calibrations were incorporated for each magnification setting. Video images (1040 x 772 pixels) of the clearest section/s of each ray were stored on computer. Each ray section was aged according to the number of paired opaque and hyaline bands visible, taking into account the possible disappearance of the first annulus in larger sections (older fish) and the presence of multiple (false) bands (Berkeley and Houde 1983, Tserpes and Tsimenides 1995, Ehrhardt *et al* 1996) (Fig. 2). As in Young *et al* (Chapter 6.1.), readings were assigned a confidence score of 1 to 5 (Table 2). Images were read at least twice at an average interval of three days apart by one to three readers without reference to the life history details of the sample. Third and fourth readings were made on samples where the first two blind readings did not correspond. If a confident age estimate could not be determined, the sample was read with reference only to the previous age estimates. Samples were excluded from analysis if a final age could not be resolved or if the average confidence of the readings was >4. The precision of readings was evaluated as the average percent error index (APE Index- Beamish and Fournier 1981).



Figure 2: A typical ray section showing the marginal increment (MI), increment prior to the marginal increment ( $I_{prior}$ ), and the focus. Counts are made from the beginning of each annulus. Estimated age is 5+ years.

In order to validate the reading of annuli by marginal increment analysis (MIA), the following measurements were recorded in microns using the AnalySIS software; the distance from the focus to the distal edge, the marginal increment (MI- defined by Prince *et al* 1988) width, and the width of the previous adjacent annulus (opaque + hyaline zones) (Fig. 2). As per the age determination readings, sections were read blindly and a confidence level was assigned to the accuracy of measurements taken (Table 2). Marginal increments were also assigned an 'edge type', based on the colour (hyaline or opaque) and width of the MI relative to the previous opaque zone (Table 3) (Pearson 1995).

| Readability/confidence score | Definition           |
|------------------------------|----------------------|
| 1                            | Highly confident     |
| 2                            | Confident            |
| 3                            | Reasonably confident |
| 4                            | Uncertain            |
| 5                            | Unreadable           |

Table 2: Readability/confidence scores assigned to age estimates and marginal increment analysis.

Table 3: Definitions of edge types used to validate the reading of annuli.

| Edge Type     | Details                                       |
|---------------|-----------------------------------------------|
| Narrow opaque | Opaque zone < ¼ width of previous opaque zone |
| Wide opaque   | Opaque zone > ¼ width of previous opaque zone |
| Hyaline       | White edge                                    |
|               |                                               |

#### **Data Analysis**

#### Sex ratio

Sex ratios were expressed as the proportion of females to the total number of male and female swordfish. The proportion of female samples was modeled against 10-cm OFL class to describe the relationship between sex ratio and orbital fork length for the samples collected. The measure of goodness of fit was  $r^2$ .

#### Marginal increment and edge type analysis

Marginal increment analysis (Berkeley and Houde 1983) and edge type analysis (ETA) (Pearson 1996) were used to ascertain the timing of increment formation. The marginal increment ratio (MIR) was estimated for each specimen according to the formula:  $MIR = (S-S_n)/(S_n - S_{n-1})$  where S = ray radius,  $S_n = \text{distance}$  from the ray focus to band n,  $S_{n-1} = \text{the}$  distance from the ray focus to band n-1 (Prince et al 1988, Esteves et al 1995, Sun et al 2002). The mean MIR and the 95% confidence intervals were calculated for all samples and by sex for each month. Mean MIR's for months with sample sizes of less than three fish were removed from analysis. Owing to the small sample size, analyses of separate ages for each month were not undertaken. Tests (ANOVA and two-sample *t*-tests) for significant differences between months and seasons were performed. The critical level of significance was taken as  $\alpha = 0.05$  in all cases.

#### Age and growth analysis

Length-at-age keys by 10-cm OFL intervals were determined for female and male samples separately and for sexes pooled. Unpaired, two-tailed *t*-tests were used to compare mean length-at-age among sexes and between Indian Ocean and Pacific Ocean data from Young *et al* (Chapter 6.1). Sample sizes of less than four individuals per age were not included in

the analyses. Raw length-at-age data for each sex were applied to the standard von Bertalanffy (VB) growth equation to graphically represent estimates of theoretical growth:  $L_t = L_{\infty}(1 - e^{-k(t-t_0)})$  where  $L_t$  = the mean orbital fork length at age t,  $L_{\infty}$  = the asymptotic length,  $t_0$  = the hypothetical length at age zero and k = the growth coefficient. Parameters of the VB equations for male and female samples were estimated using the least square method (Haddon 2001). Analysis of the residual sum of squares (ARSS- Chen *et al* 1992) was used to test for coincident curves between males and females from the Indian Ocean samples in this study, and between western Pacific Ocean samples obtained by Young *et al* (Chapter 6.1) following Haddon (2001).

In order to compare our growth curves to those of other authors, parameters of the VB equations were also calculated in terms of lower jaw fork length (LJFL). Original OFL data was converted to LJFL by the equation: LJFL = 1.0559OFL + 10.323.

#### Age-composition of catch

Data from random sub-samples of the annual landed swordfish catch from the Southern and Western Tuna and Billfish Fishery were obtained from CSIRO observers aboard vessels operating out of Albany, Geraldton and Fremantle, Western Australia. Although length data was not sufficiently sampled, trunked weight (W) data was available to the nearest kilogram for the years 1999-2002. Weight was converted to the estimated LJFL, then to OFL via the following equations, respectively:

i  $LJFL_{est} = (2.14^{-5}/W)^{-1/2.902}$ ii  $OFL_{est} = (LJFL_{est} - 10.323)/ 1.0559$ 

Catch in numbers-at-length (by 10-cm OFL class) for each annual sub-sample was separated into sex using the previously resolved sex-ratio algorithm. As the function only described sex ratios for swordfish between 80 - 190 cm OFLs, a plausible ratio of 0.5 was applied to fish in length classes <80 cm, and all fish >190 cm were deemed female (Turner *et al* 1996, Stone and Porter 1997, De Martini *et al* 2000, Wang *et al* 2003). Sex-separate age-at-length keys were then developed for each year by applying the distribution of ages per length class from the previously determined pooled-sex length-at-age key. The combined length-at-age key was selected as the most appropriate for the purpose of aging the catch at size (Megalofonou *et al* 1990) as higher sample sizes for each length class ereated a more robust dataset. The sum of male and female fish per age class was subsequently converted to a proportion of fish per age for the total sub-sample for that year.

# 6.2.4 Results

#### Reading success, length distributions and sex ratios

Of the 188 (122 females and 66 males) anal fin rays examined, 187 (122 females and 65 males) were read successfully. Only one fin ray was considered unreadable due to

indefinable annuli. The average percent error (APE) index for all blind readings performed by one to three readers was 8.94%. The average confidence assigned to age determinations was 2.9 ( $\pm 0.05$  SD) for all samples able to be read (n = 187).

Orbital fork lengths (OFL) of all fish sampled ranged from 67 cm to 243 cm for females and from 76 cm to 189 cm for males (Fig. 3A). The proportion of females to the total number of fish sampled varied from 0.4 to 0.8 in fish less than 190 cm OFL, after which size only females were sampled (Fig. 3B). The sex ratio for all samples was 0.65. The relationship between sex ratio (y) and orbital fork length (x) was best described by the polynomial function  $y = 2E-10x^5 - 2E-07x^4 + 5E-05x^3 - 0.0069x^2 + 0.5153x - 14.662$ . ( $r^2 = 0.622$ )(Fig. 4). Due to a lack of sufficient sample sizes below 80 cm, and the constant 1:0 ratio of females to males beyond 190cm, the data were only modeled within this range.



Figure 3: The size-frequency distribution (A) and proportions (B) of male and female swordfish samples collected from the western Australian longline fishery from 1995-2003.



Figure 4: Proportion of females to total number of broadbill swordfish sized 80-190 cm orbital fork length, by 10cm OFL length class (n=170).

#### Marginal increment and edge type analysis

The low sample numbers for this study limited the outcomes of any age validation we attempted. Nevertheless, we followed the techniques outlined in Chapter 6.1 and found, although highly variable, lower values of MIR in the months between May and August than at other times of the year. This result suggested an annual cycle of ring deposition indicating that new annuli formed from late autumn to early spring (Fig. 5). In both female (Fig. 5A) and male (Fig. 5B) samples respectively, the MIR rose in June and dropped in July and August. For female samples and both sexes combined (Fig. 5C), the monthly means of MIR in June were significantly higher than in July (two-tailed *t*-tests P<0.05). The mean MIR in June was also significantly higher than in May for both sexes combined, and in April for male samples (*t*-tests P<0.05).



Figure 5: Monthly and seasonal means of marginal increment ratios of female (A) and male (B) swordfish, and male and female swordfish combined (C), in the Indian Ocean for all ages combined. Vertical bars are 95% confidence intervals; numbers on the top of the vertical bars are sample sizes.

In all cases, the monthly means of MIR did not differ significantly for the period from August to May (ANOVA,  $P_{\odot}=0.59$ ,  $P_{\odot}=0.50$ ,  $P_{\text{both}}=0.38$ ) or over the total months sampled (ANOVA,  $P_{\odot}=0.28$ ,  $P_{\odot}=0.58$ ,  $P_{\text{both}}=0.21$ ). Seasonally, there was a consistent decline in MI widths from summer to (late) autumn and a subsequent increase in MI means over winter. Summer MIR means were always higher than mean MIRs in autumn (*t*-tests P<0.05).

Unlike the MI analysis, which does not apply to samples less than or equal to age one, edge type analysis (ETA) could be performed for samples of all ages. Narrow opaque edges, corresponding to the beginning of a new annulus, reached a peak in June before declining as wide opaque edges subsequently increased from June to July (Fig. 6A). Seasonally, the proportion of wide opaque bands increased steadily from winter through to summer (Fig. 6).



Figure 6: Proportion edge type per month (A) and season (B) for both sexes combined. Includes samples with a confidence <3.5 only. Numbers above points are total sample sizes for that month or season.

#### Age and growth

Up to 15 opaque bands for female and 9 bands for male swordfish were visible in the analfin rays examined. Sample sizes ranged between 1 and 27 for each age class when sexes were separated. Age-length keys were developed for males and females, and sexes combined using the aged fish samples (Table 4). Considerable variations in length were detected within all age classes (Table 5). Unpaired *t*-tests showed that mean orbital fork lengths for each age did not differ significantly between male and female samples aged 1 to 9 (P>0.05). No consistent differences (i.e. across contiguous age classes) in mean length were detected between females (aged 1 – 9 years) from the Indian and Pacific Ocean, likewise for males

| A                                                                                                                                                                                                                                                                                           | Age class (years)          |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    |                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------------------|------------------------------|-------------------------|-----------------------------------|-----------|---------------------|---------------------|---------------------|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFL                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    |                                                                                                                                                                                                                                    |
| class(cm)                                                                                                                                                                                                                                                                                   | 0                          | 1                                        | 2                      | 3                                                                                                                                                                            | 4                                            | 5                                 | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | Total                                                                                                                                                                                                                              |
| 60                                                                                                                                                                                                                                                                                          | 2                          | 1                                        |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    | 3                                                                                                                                                                                                                                  |
| 70                                                                                                                                                                                                                                                                                          |                            | 3                                        |                        | 1                                                                                                                                                                            |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    | 4                                                                                                                                                                                                                                  |
| 80                                                                                                                                                                                                                                                                                          |                            | 5                                        | 1                      | 4                                                                                                                                                                            |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    | 10                                                                                                                                                                                                                                 |
| 90                                                                                                                                                                                                                                                                                          |                            | 6                                        | 4                      | 3                                                                                                                                                                            | 1                                            |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    | 14                                                                                                                                                                                                                                 |
| 100                                                                                                                                                                                                                                                                                         |                            |                                          | 4                      | 5                                                                                                                                                                            | 2                                            |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    | 11                                                                                                                                                                                                                                 |
| 110                                                                                                                                                                                                                                                                                         |                            |                                          |                        | 6                                                                                                                                                                            | 5                                            | 2                                 | 1                                      |                              |                         |                                   |           |                     |                     |                     |    |    | 14                                                                                                                                                                                                                                 |
| 120                                                                                                                                                                                                                                                                                         |                            |                                          |                        | 6                                                                                                                                                                            | 15                                           |                                   | 1                                      |                              |                         |                                   |           |                     |                     |                     |    |    | 22                                                                                                                                                                                                                                 |
| 130                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              | 7                                            | 2                                 | 4                                      |                              | 1                       |                                   |           |                     |                     |                     |    |    | 14                                                                                                                                                                                                                                 |
| 140                                                                                                                                                                                                                                                                                         |                            |                                          |                        | 2                                                                                                                                                                            | 3                                            | 7                                 | 2                                      | 3                            |                         |                                   |           |                     |                     |                     |    |    | 17                                                                                                                                                                                                                                 |
| 150                                                                                                                                                                                                                                                                                         |                            |                                          |                        | 1                                                                                                                                                                            | 3                                            | 4                                 | 5                                      | 2                            |                         | 3                                 |           |                     |                     |                     |    |    | 18                                                                                                                                                                                                                                 |
| 160                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              | 1                                            | 3                                 | 7                                      | 8                            | 3                       |                                   |           |                     |                     |                     |    |    | 22                                                                                                                                                                                                                                 |
| 170                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              | 1                                 | 3                                      | 4                            | 5                       | 3                                 |           |                     |                     |                     |    |    | 16                                                                                                                                                                                                                                 |
| 180                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              | 3                       | 4                                 |           |                     | 1                   |                     |    |    | 8                                                                                                                                                                                                                                  |
| 190                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        | 1                            |                         |                                   | 1         |                     | 1                   | 1                   |    |    | 4                                                                                                                                                                                                                                  |
| 200                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         | 1                                 |           | 2                   |                     |                     |    |    | 3                                                                                                                                                                                                                                  |
| 210                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         | 3                                 |           | 1                   |                     |                     |    |    | 4                                                                                                                                                                                                                                  |
| 220                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     | 1                   |    | 1  | 2                                                                                                                                                                                                                                  |
| 230                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    | 0                                                                                                                                                                                                                                  |
| 240                                                                                                                                                                                                                                                                                         |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     | 1                   |    |    | 1                                                                                                                                                                                                                                  |
| Total                                                                                                                                                                                                                                                                                       | 2                          | 15                                       | 9                      | 28                                                                                                                                                                           | 37                                           | 19                                | 23                                     | 18                           | 12                      | 14                                | 1         | 3                   | 2                   | 3                   | 0  | 1  | 187                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                             |                            |                                          |                        |                                                                                                                                                                              |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    |                                                                                                                                                                                                                                    |
| В                                                                                                                                                                                                                                                                                           | Ag                         | e clas                                   | ss (yea                | ars)                                                                                                                                                                         |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    |                                                                                                                                                                                                                                    |
| B<br>OFL                                                                                                                                                                                                                                                                                    | Ag                         | e clas                                   | ss (yea                | ars)                                                                                                                                                                         |                                              |                                   |                                        |                              |                         |                                   |           |                     |                     |                     |    |    |                                                                                                                                                                                                                                    |
| B<br>OFL<br>class(cm)                                                                                                                                                                                                                                                                       | Ag<br>0                    | e clas                                   | ss (ye:<br>2           | ars)<br>3                                                                                                                                                                    | 4                                            | 5                                 | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | Total                                                                                                                                                                                                                              |
| <b>B</b><br>OFL<br>class(cm)<br>60                                                                                                                                                                                                                                                          | Ag<br>0<br>2               | e clas<br>1<br>1                         | ss (yea<br>2           | ars)<br>3                                                                                                                                                                    | 4                                            | 5                                 | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | Total<br>3                                                                                                                                                                                                                         |
| <b>B</b><br><b>OFL</b><br><b>class(cm)</b><br>60<br>70                                                                                                                                                                                                                                      | <b>Ag</b><br>0<br>2        | e clas                                   | ss (yea<br>2           | ars)<br>3<br>1                                                                                                                                                               | 4                                            | 5                                 | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2                                                                                                                                                                                                             |
| <b>B</b><br><b>OFL</b><br><b>class(cm)</b><br>60<br>70<br>80                                                                                                                                                                                                                                | <b>Ag</b><br>0<br>2        | <b>e clas</b><br><b>1</b><br>1<br>1<br>2 | ss (ye:<br>2           | ars)<br>3<br>1<br>2                                                                                                                                                          | 4                                            | 5                                 | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2<br>4                                                                                                                                                                                                        |
| B           OFL           class(cm)           60           70           80           90                                                                                                                                                                                                     | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | ss (yes<br>2<br>1      | ars)<br>3<br>1<br>2<br>2                                                                                                                                                     | <b>4</b>                                     | 5                                 | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2<br>4<br>8                                                                                                                                                                                                   |
| B           OFL           class(cm)           60           70           80           90           100                                                                                                                                                                                       | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | 2<br>1<br>2            | ars)<br>3<br>1<br>2<br>2<br>4                                                                                                                                                | <b>4</b>                                     | 5                                 | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2<br>4<br>8<br>6                                                                                                                                                                                              |
| B           OFL           class(cm)           60           70           80           90           100           110                                                                                                                                                                         | <b>Ag</b><br><b>0</b><br>2 | <b>e clas 1</b> 1 1 2 4                  | 2<br>1<br>2            | ars)<br>3<br>1<br>2<br>2<br>4<br>5                                                                                                                                           | <b>4</b><br>1<br>4                           | <b>5</b><br>2                     | 6                                      | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2<br>4<br>8<br>6<br>11                                                                                                                                                                                        |
| B           OFL           class(cm)           60           70           80           90           100           110           120                                                                                                                                                           | <b>Ag</b><br>0<br>2        | e clas                                   | 2<br>1<br>2            | <b>ars</b> )<br><b>3</b><br>1<br>2<br>4<br>5<br>3                                                                                                                            | <b>4</b><br>1<br>4<br>11                     | <b>5</b><br>2                     | <b>6</b>                               | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2<br>4<br>8<br>6<br>11<br>15                                                                                                                                                                                  |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130                                                                                                                                             | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | 2<br>1<br>2            | <b>3</b><br>1<br>2<br>4<br>5<br>3                                                                                                                                            | <b>4</b><br>1<br>4<br>11<br>5                | <b>5</b>                          | <b>6</b><br>1<br>1                     | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2<br>4<br>8<br>6<br>11<br>15<br>6                                                                                                                                                                             |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140                                                                                                                               | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | 2<br>1<br>2            | ars)<br>3<br>1<br>2<br>4<br>5<br>3<br>2                                                                                                                                      | <b>4</b><br>1<br>4<br>11<br>5<br>3           | <b>5</b><br>2<br>5                | <b>6</b><br>1<br>1<br>2                | 7                            | 8                       | 9                                 | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b><br>3<br>2<br>4<br>8<br>6<br>11<br>15<br>6<br>13                                                                                                                                                                       |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150                                                                                                                 | <b>Ag</b><br><b>0</b><br>2 | e class<br>1<br>1<br>2<br>4              | 2<br>1<br>2            | ars)<br>3<br>1<br>2<br>2<br>4<br>5<br>3<br>2<br>1                                                                                                                            | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2      | <b>5</b><br>2<br>5<br>1           | <b>6</b><br>1<br>1<br>2<br>2           | <b>7</b><br>1                | 8                       | <b>9</b>                          | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8                                                                                                                                                                                                |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160                                                                                                   | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | ss (yea<br>2<br>1<br>2 | <b>3</b><br>1<br>2<br>4<br>5<br>3<br>2<br>1                                                                                                                                  | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | <b>5</b><br>2<br>5<br>1<br>2      | <b>6</b><br>1<br>1<br>2<br>2<br>6      | 7<br>1<br>1<br>5             | <b>8</b>                | <b>9</b>                          | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8 16                                                                                                                                                                                             |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170                                                                                     | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | ss (yea<br>2<br>1<br>2 | <b>ars</b> )<br><b>3</b><br>1<br>2<br>2<br>4<br>5<br>3<br>2<br>1                                                                                                             | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | <b>5</b><br>2<br>5<br>1<br>2<br>1 | <b>6</b><br>1<br>1<br>2<br>2<br>6<br>1 | <b>7</b><br>1<br>1<br>5<br>2 | <b>8</b><br>2<br>3      | <b>9</b><br>1<br>3                | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8 16 10                                                                                                                                                                                          |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170           180                                                                       | <b>0</b><br>2              | e clas                                   | ss (yes<br>2<br>1<br>2 | <b>ars</b> )<br><b>3</b><br>1<br>2<br>4<br>5<br>3<br>2<br>1                                                                                                                  | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | <b>5</b><br>2<br>5<br>1<br>2<br>1 | <b>6</b><br>1<br>1<br>2<br>2<br>6<br>1 | 7<br>1<br>1<br>5<br>2        | <b>8</b><br>2<br>3<br>3 | <b>9</b><br>1<br>3<br>2           | 10        | 11                  | 12                  | 13                  | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8 16 10 6                                                                                                                                                                                        |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170           180           190                                                         | <b>0</b><br>2              | e clas                                   | ss (yea<br>2<br>1<br>2 | ars)           3           1           2           4           5           3           2           1           2           4           5           3           2           1 | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | 5<br>2<br>5<br>1<br>2<br>1        | <b>6</b><br>1<br>1<br>2<br>6<br>1      | 7<br>1<br>1<br>5<br>2<br>1   | <b>8</b><br>2<br>3<br>3 | <b>9</b><br>1<br>3<br>2           | <b>10</b> | 11                  | <b>12</b>           | 13                  | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8 16 10 6 4                                                                                                                                                                                      |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170           180           190           200                                           | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | ss (yea<br>2<br>1<br>2 | ars)         3           1         2           2         4           5         3           2         1                                                                       | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | <b>5</b><br>2<br>5<br>1<br>2<br>1 | 6<br>1<br>1<br>2<br>2<br>6<br>1        | <b>7</b> 1 1 5 2 1           | <b>8</b><br>2<br>3<br>3 | <b>9</b><br>1<br>3<br>2<br>1      | <b>10</b> | 2                   | <b>12</b>           | 13                  | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8 16 10 6 4 3                                                                                                                                                                                    |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170           180           190           200           210                             | <b>Ag</b><br><b>0</b><br>2 | e clas                                   | ss (yes<br>2<br>1<br>2 | ars)         3           1         2           2         4           5         3           2         1                                                                       | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | <b>5</b><br>2<br>5<br>1<br>2<br>1 | <b>6</b><br>1<br>1<br>2<br>6<br>1      | 7<br>1<br>1<br>5<br>2<br>1   | <b>8</b><br>2<br>3<br>3 | <b>9</b><br>1<br>3<br>2<br>1<br>3 | <b>10</b> | 11<br>2<br>1        | <b>12</b>           | 13                  | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8 16 10 6 4 3 4                                                                                                                                                                                  |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170           180           190           200           210           220               | <b>A</b> g<br>2            | e clas                                   | ss (yea<br>2<br>1<br>2 | ars)       3       1       2       4       5       3       2       1       2       1       2       1       2       1       2       1       2       1                         | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | 5<br>2<br>5<br>1<br>2<br>1        | <b>6</b><br>1<br>1<br>2<br>6<br>1      | 7<br>1<br>1<br>5<br>2<br>1   | <b>8</b><br>2<br>3<br>3 | <b>9</b><br>1<br>3<br>2<br>1<br>3 | <b>10</b> | <b>11</b><br>2<br>1 | <b>12</b><br>1<br>1 | <b>13</b>           | 14 | 15 | Total         3           2         4           8         6           11         15           6         13           8         16           10         6           4         3           4         2                               |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170           180           190           200           210           220           230 | <b>Ag</b><br>2             | e clas                                   | ss (yea<br>2<br>1<br>2 | ars)       3       1       2       4       5       3       2       1       2       2       1       2       1       2       1       2       1                                 | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | <b>5</b><br>2<br>5<br>1<br>2<br>1 | 6<br>1<br>1<br>2<br>2<br>6<br>1        | 7<br>1<br>1<br>5<br>2<br>1   | <b>8</b><br>2<br>3<br>3 | <b>9</b><br>1<br>3<br>2<br>1<br>3 | <b>10</b> | <b>11</b><br>2<br>1 | <b>12</b>           | <b>13</b>           | 14 | 15 | Total           3           2           4           8           6           11           15           6           13           8           16           10           6           4           3           4           2           0 |
| B           OFL           class(cm)           60           70           80           90           100           110           120           130           140           150           160           170           180           190           200           210           230           240 | <b>Ag</b><br>2             | e clas                                   | ss (yea<br>2<br>1<br>2 | ars)       3       1       2       4       5       3       2       1       2       1       2       1       2       1       2       1                                         | <b>4</b><br>1<br>4<br>11<br>5<br>3<br>2<br>1 | <b>5</b><br>2<br>5<br>1<br>2<br>1 | 6<br>1<br>1<br>2<br>2<br>6<br>1        | 7<br>1<br>1<br>5<br>2<br>1   | <b>8</b><br>2<br>3<br>3 | <b>9</b><br>1<br>3<br>2<br>1<br>3 | <b>10</b> | <b>11</b><br>2<br>1 | <b>12</b><br>1<br>1 | <b>13</b><br>1<br>1 | 14 | 15 | <b>Total</b> 3 2 4 8 6 11 15 6 13 8 16 10 6 4 3 4 2 0 1                                                                                                                                                                            |

Table 4: Age-length keys for all (A), female (B), and male (C) Indian Ocean swordfish samples.

| С     | _     | Ag | e class ( | years | )  |   |    |   |   |   |       |
|-------|-------|----|-----------|-------|----|---|----|---|---|---|-------|
| OFL   | class |    |           |       |    |   |    |   |   |   |       |
| (cm)  |       | 1  | 2         | 3     | 4  | 5 | 6  | 7 | 8 | 9 | Total |
| 70    |       | 2  |           |       |    |   |    |   |   |   | 2     |
| 80    |       | 3  | 1         | 2     |    |   |    |   |   |   | 6     |
| 90    |       | 2  | 3         | 1     |    |   |    |   |   |   | 6     |
| 100   |       |    | 2         | 1     | 2  |   |    |   |   |   | 5     |
| 110   |       |    |           | 1     | 1  |   | 1  |   |   |   | 3     |
| 120   |       |    |           | 3     | 4  |   |    |   |   |   | 7     |
| 130   |       |    |           |       | 2  | 2 | 3  |   | 1 |   | 8     |
| 140   |       |    |           |       |    | 2 |    | 2 |   |   | 4     |
| 150   |       |    |           |       | 1  | 3 | 3  | 1 |   | 2 | 10    |
| 160   |       |    |           |       |    | 1 | 1  | 3 | 1 |   | 6     |
| 170   |       |    |           |       |    |   | 2  | 2 | 2 |   | 6     |
| 180   |       |    |           |       |    |   |    |   |   | 2 | 2     |
| Total |       | 7  | 6         | 8     | 10 | 8 | 10 | 8 | 4 | 4 | 65    |

Parameters of the von Bertalanffy were computed for male and female Indian Ocean swordfish (Table 6) and fitted to the OFL data in Fig. 7. A decline in growth rate of males compared to females after age 5 was noted; however results of the ARSS did not reveal any significant growth differences between the sexes (Table 7). A comparison of Indian Ocean to Pacific Ocean samples revealed a highly significant difference between female samples (P<0.0001) but not for males. This difference was still apparent upon comparing ages 1 – 14 years

| Table 5: Mean orbital fork length (cm) at age for swordfish from Indian Ocean and Pacific    |
|----------------------------------------------------------------------------------------------|
| Ocean samples (.). Numbers in parentheses are $\pm 95\%$ confidence intervals, (-) denotes a |
| sample size of 1. Dotted line delineates the age classes tested for differences in means     |
| between and within oceans.                                                                   |

| Age class      | Indian Ocea | n      |        | Pacific Ocean |        |        |  |
|----------------|-------------|--------|--------|---------------|--------|--------|--|
| (years)        | Total       | Female | Male   | Total         | Female | Male   |  |
| 0              | 68.0        | 68.0   |        | 74.6          | 75.4   | 73.0   |  |
|                | (0)         | (0)    |        | (4.6)         | (6.4)  | (5.6)  |  |
| 1              | 85.1        | 84.5*  | 85.9   | 92.9          | 93.9*  | 91.4   |  |
|                | (4.4)       | (6.6)  | (6.3)  | (1.9)         | (2.5)  | (2.9)  |  |
| 2              | 99.4        | 102.0  | 98.2   | 109.2         | 109.5  | 108.4  |  |
|                | (7.2)       | (7.4)  | (6.0)  | (1.7)         | (2.1)  | (2.8)  |  |
| 3              | 110.4       | 111.6* | 107.5* | 123.4         | 124.4* | 121.5* |  |
|                | (4.4)       | (9.0)  | (11.9) | (2.5)         | (3.1)  | (4.2)  |  |
| 4              | 127.0       | 128.7* | 122.3* | 135.4         | 136.3* | 133.1* |  |
|                | (4.4)       | (5.1)  | (8.3)  | (2.4)         | (2.9)  | (4.6)  |  |
| 5              | 145.4       | 144.1  | 147.3  | 148.7         | 150.3  | 145.7  |  |
|                | (7.5)       | (11.5) | (8.7)  | (2.3)         | (3.0)  | (3.2)  |  |
| 6              | 151.8       | 153.8  | 149.2  | 159.9         | 160.3  | 158.1  |  |
|                | (6.5)       | (7.3)  | (11.9) | (2.5)         | (2.7)  | (6.0)  |  |
| 7              | 162.8       | 164.8  | 160.4  | 170.5         | 172.0  | 166.5  |  |
|                | (5.3)       | (7.2)  | (8.2)  | (2.8          | (3.5)  | (4.4)  |  |
| 8              | 171.9       | 176.8  | 162.3* | 175.2         | 175.0  | 175.6* |  |
|                | (7.9)       | (6.7)  | (17.4) | (3.1)         | (4.2)  | (3.9)  |  |
| 9              | 183.5       | 188.8  | 170.3  | 186.0         | 191.7* | 176.0* |  |
|                | (11.0)      | (12.8) | (17.2) | (3.7)         | (4.4)  | (4.6)  |  |
| 10             | 190.0       | 190.0  |        | 191.7         | 196.0" | 180.6″ |  |
|                | (-)         | (-)    |        | (4.4)         | (5.3)  | (5.3)  |  |
| 11             | 206.7       | 206.7  |        | 206.8         | 208.6" | 189.8" |  |
|                | (7.3)       | (7.3)  |        | (3.8)         | (3.6)  | (7.8)  |  |
| 12             | 189.5       | 189.5  |        | 211.2         | 214.5" | 196.6" |  |
|                | (2.9)       | (2.9)  |        | (8.1)         | (9.2)  | (9.4)  |  |
| 13             | 221.3       | 221.3  |        | 217.3         | 219.4  | 195.0  |  |
|                | (28.3)      | (28.3) |        | (8.8)         | (8.6)  | (-)    |  |
| 14             |             |        |        | 224.9         | 224.9  |        |  |
|                |             |        |        | (9.9)         | (9.9)  |        |  |
| 15             | 220.0       | 220.0  |        | 223.0         | 224.2  | 210.0  |  |
| 40             | (-)         | (-)    |        | (11.5)        | (12.4) | (-)    |  |
| 16             |             |        |        | 235.2         | 246.8  | 189.0  |  |
| 17             |             |        |        | (25.5)        | (15.2) | (-)    |  |
| 18             |             |        |        |               |        |        |  |
| 19             |             |        |        | 227.0         | 227.0  |        |  |
| Oningly        |             |        |        | (-)           | (-)    |        |  |
| Sample<br>size | 187         | 122    | 65     | 1413          | 1000   | 413    |  |

\* Significant difference (P<0.05) between inter-ocean samples of the same sex

 $^{\#}$  Significant difference (P<0.05) between sexes intra-ocean

Table 6: Least square estimates for the standard von Bertalanffy growth models using orbital fork length (OFL) (A) and lower jaw fork length (LJFL) (B) for swordfish in the waters around western and eastern Australia. Numbers in parentheses are 95% confidence limits.

| Parameter      | Indian Ocean |          | Pacific Ocean |          |
|----------------|--------------|----------|---------------|----------|
| Α              | Female       | Male     | Female        | Male     |
| L∞             | 296.51       | 236.90   | 294.25        | 222.15   |
|                | (52.61)      | (57.15)  | (19.98)       | (23.01)  |
| k              | 0.0815       | 0.1096   | 0.0811        | 0.1347   |
|                | (0.0145)     | (0.0264) | (0.0055)      | (0.0140) |
| t <sub>o</sub> | -3.0148      | -3.0118  | -3.7472       | -2.9711  |
|                | (0.5350)     | (0.7266) | (0.2545)      | (0.3078) |
| В              |              |          |               |          |
| L∞             | 323.40       | 260.47   | 321.01        | 244.89   |
|                | (57.39)      | (46.22)  | (21.80)       | (25.37)  |
| k              | 0.08148      | 0.1096   | 0.0811        | 0.1347   |
|                | (0.0145)     | (0.0194) | (0.0055)      | (0.0140) |
| t <sub>o</sub> | -3.4130      | -3.3808  | -4.1501       | 3.2907   |
|                | (0.6056)     | (0.5999) | (0.2818)      | (0.3409) |

Table 7: Results of the comparisons between the von Bertalanffy growth models for male and female swordfish and between eastern and western Australian waters using analysis of residual sum of squares (ARSS)

| Group         | Compariso    | Parameter     |        |         |        |
|---------------|--------------|---------------|--------|---------|--------|
| .0100p        | Companso     |               | F      | d.f.    | Р      |
| Indian Ocean  | Females      | Males         | 1.564  | 3, 181  | 0.199  |
| Pacific Ocean | Females      | Males         | 16.556 | 3, 1185 | <0.001 |
| Males         | Indian Ocean | Pacific Ocean | 0.198  | 3, 418  | 0.897  |
| Females       | Indian Ocean | Pacific Ocean | 7.165  | 3, 949  | <0.001 |
| Females*      | Indian Ocean | Pacific Ocean | 6.900  | 3, 916  | <0.001 |

\* ages 1- 14 years old



# Figure 7: Standard von Bertalanffy growth curves for female and male swordfish in the eastern Indian Ocean

#### Age structure of the western Australian swordfish catch

The combined age-at-length key was applied to length frequency data to estimate the age distribution of the annual catch of swordfish for the Southern and Western Billfish Fishery for 1999 to 2002 (Fig. 8). Fish aged between three and seven years generally dominated the catch. Although age distributions varied between years, no trend was evident over the period examined. The proportion of fish age five or younger ranged between 52.2% and 60.0% except for the catch in 2000, in which 38.7% were age five or less. Only 5.3% to 9.1% of the landings were age ten or greater for the years 1999 and 2001-2002. However, of the annual catch for 2000, 18.6% were age 10 or greater. For all years, fish aged 5 or less were ~60% female, while fish aged ten or greater were ~97% female.



Figure 8: Weight (A), length (B) and age (C) distributions of male and female swordfish caught in the Southern and Western Tuna and Billfish Fishery for the years 1999-2002. NA = age not assigned as key did not cover the full range of lengths.

### 6.2.5. Discussion

#### Annual increment formation

Limited sample numbers hindered full resolution of the pattern of marginal increment formation in fin rays sampled from western Australian swordfish. However, when the samples were pooled in terms of sexes and/or season (Fig. 6C), the results indicated annual band formation between late autumn and early spring. Results obtained from the edge type analysis were also consistent with that from marginal increment analysis and were more successful in showing the seasonality of band deposition.

The lack of definition of timing of ring formation appears to be the result of a lack of sufficient samples on a monthly basis to obtain robust estimates, but overlaps the timing of ring formation for swordfish from eastern Australian waters (Chapter 6.1), and also overlaps that determined by Clear et al (2000). The later study showed, also from limited number of samples, the beginnings of ring formation around September to October.

#### Age and growth

This report presents the first preliminary estimates of the age and growth of swordfish from Western Australian waters. Most age-determination studies have been undertaken for swordfish from the Atlantic (e.g. Berkeley and Houde 1983; Radtke and Hurley, 1983; Wilson and Dean, 1983; Ehrhardt 1992; Ehrhardt et al, 1996) and Pacific Oceans (Yabe *et al*, 1959; Castro-Longoria and Sosa-Nishizaki, 1998; Uchiyama *et al* 1998, Sun *et al*, 2002). To our knowledge there has been only one such study from the western Indian Ocean (Vanpouille *et al* 2001). As has been reported for swordfish elsewhere, females were typically larger, and lived for longer than males off Western Australia. Female swordfish in the Indian Ocean appear to grow faster than males after the age of five.

A comparison of the standard VB growth curves estimated by different authors for swordfish from the Pacific and Indian Oceans is shown in Fig. 9. Our parameter estimates are closest to those obtained by Young *et al* (Chapter 6.1) for samples from the east coast of Australia (western Pacific Ocean), and most dissimilar to the estimates of Vanpouille *et al* (2001) for swordfish from the western Indian Ocean. Asymptotic lengths were similar between eastern and western Australia, however larger  $t_0$  values for both male and females from western Australian samples may indicate that these swordfish grow faster in the first several years of their lives. Such a result may also be due to a lack of smaller size classes available in the western Australian data.

The difference in growth between fish from the western Indian Ocean and those examined here is difficult to interpret. There is some evidence to suggest that Indian Ocean stocks of swordfish may be linked historically to Atlantic Ocean swordfish by the Aghulus current that sweeps around southern Africa (Penny and Griffiths 1998, Ward *et al* 2001). However, neither the eastern or western Australian swordfish could be genetically differentiated from swordfish from the western Indian Ocean (Ward *et al* 2001). The difference may simply reflect longer term fishing in the western Indian Ocean resulting in depletion of larger fish from the catch.



(b)



Figure 9: Comparison of standard Von Bertalanffy growth curves of (a) swordfish from eastern and western Australia and (b) female swordfish from the Pacific, Indian and Atlantic Oceans and the Mediterranean Sea

Similarities between the eastern and western Australian growth curves might reflect in part the use of highly consistent techniques and similar interpretation of ray sections. Ward and Elscot (2000) suggest that differences in aging techniques can obscure the differences in growth between regions. In any case, it appears that both male and female swordfish from Australian waters reach greater lengths than swordfish from waters around Taiwan (Sun *et*  *al* 2002) or la Réunion Is. (Vanpouille *et al* 2001) and may be a reflection of the longer fishing histories of both these fisheries.

Statistical comparisons between the VB growth models of swordfish from the present study and those from eastern Australia sampled by Young *et al* (Chapter 6.1) found that there was a highly significant difference between the females, but not the males. However, if the difference found between females were in fact real, consistent differences in contiguous age classes should be apparent for the mean lengths at age between both samples. As no consistent differences were noted, it can be assumed that the differences found were an artifact created by fitting the VB curves.

High variability about the tails of the size distribution due to small sample sizes made fitting the VB growth curve difficult. Although the standard VB curve tended to overestimate values for individuals less than one year (as in Ehrhardt 1992 and Ehrhardt *et al* 1996), Tserpes and Tsimenides (1995) "recommend the use of the standard VB growth curve because the generalized model overestimates the asymptotic length, an essential parameter for population dynamics models". Upon comparing the standard VB growth function to the generalized growth function of Chapman (1961) using the same data, Tserpes and Tsimenides (1995) found that both models described swordfish growth equally well over the age 1-8. The use of any single model, however, is unlikely to precisely represent growth over the entire life span of the species (King 1995). For this reason, age-at-length keys are useful for determining the age structure of a population as the variances of ages per length class can be taken into account.

#### Catch-at-age

The application of age-at-length keys to length data provides the most precise means of identifying the age structure of a sampled fishery. The critical assumption of the method used to determine the age distributions of the catch is that the initial 187 samples used in the age determinations were adequately sampled, i.e. are representative of the real population and are thus applicable to the current population. Also, that the sex-ratio algorithm provides a valid separation of sexes. The polynomial equation resolved for separating the sexes in the present study is similar to that obtained by Young *et al* (2003) and Poisson *et al* (2001) for samples from eastern Australia (western Pacific Ocean) and from the western Indian Ocean respectively.

It is debatable whether the use of the combined-sex age-at-length key to convert catch-atlength data to age is sufficient for an initial assessment. Nevertheless this study provides



Figure 10: Comparison of 2001 (A) and 2002 (B) age distributions of swordfish catches within the Western and Eastern Australian Fishing Zones (AFZ). NA = age not assigned as key did not cover the full range of lengths. Eastern AFZ data from Young *et al.* (Chapter 6.1).

preliminary evidence that the age-distribution of swordfish landings in the SWTBF have remained relatively constant since the expansion of the domestic longline fleet five years ago. No trend toward younger age classes was evident, suggesting limited impact from fishing. However, dramatic differences can be noted upon comparing the age distributions of annual SWTBF and ETBF catches for the years 1999 – 2003 (Fig. 10).

The catch at age of swordfish from eastern Australian landings has declined significantly over the short period of the fishery. If the decline off eastern Australia is fishery-related, it demonstrates that depletion of stocks can occur over a short period of intensive harvesting.

#### Links between eastern and western Australian swordfish populations

Recent studies on the stock heterogeneity of swordfish populations suggested that swordfish from the western Pacific and eastern Indian Ocean formed part of the same gene pool (Reeb *et al* 2000, Ward *et al* 2001). However, both studies lacked sufficient samples from the Indian Ocean and as such were only weakly supported statistically. These studies concluded that if there were distinct stocks then the degree of separation between them was small, with observed differences in growth rates more likely to be environmental than genetic. If the populations are genetically connected, movement between them may occur in one of two ways: The first is that there could be movement of adult swordfish around Tasmania and southern Australia (Ward *et al* 2001). Longline catch data show that swordfish have a relatively continuous distribution around southern Australia, although small catches off South Australia suggests that this region is not a major migration route for swordfish and therefore interchange between the eastern and south-western AFZ is probably slight (Ward *et al* 2001, Ward and Elscot 2000, Campbell and Taylor 2000). Transport of swordfish larvae and juveniles from the western tropical Pacific to the north-east Indian Ocean by the Indonesian through-flow is another possibility (Gordon and Fine 1996, Ward *et al* 2001). However, interchange of adults across northern Australia is less likely due to the warm and shallow waters within the region (Campbell and Taylor 2000). Neither of these scenarios suggests there is a high degree of connection between the two areas.

Whether or not the eastern and western populations are from different stocks is debatable. However, a comparison of the VB curves from the two regions show curves that are more similar than would be expected for two genetically distinct stocks. A combination of tagrecapture and genetics studies focused within and around the AFZ would provide more precise information on the movement and heritability of local swordfish populations.

#### Conclusions

Although swordfish have been taken from Western Australian waters by Japanese longliners since the mid 1980's, prolific spatial and effort expansion of the swordfish industry has occurred rapidly over a brief period of six years. Although our sample size from the western Australian fishery was relatively small and therefore to be viewed with caution, we could find no evidence of a shift in the age structure of the catch over this time. We have provided the first growth curves, age-at-length keys and estimated catch-atage for swordfish in western Australian waters which can be used for future age-based assessment models.

Our study showed that growth rates of Western Australian swordfish were not different from swordfish in eastern Australian waters. However, more research is needed on the spawning stock biomass of swordfish in the region and the geographical extent of the stock (Reeb *et al* 2000, Patterson *et al* 2002). We are confident that the accuracy of our age determinations has allowed for a useful preliminary assessment of swordfish age and growth in the western AFZ. Continued sampling will allow for increased confidence and validation of these estimates.

#### Limitations of the study

The data for this study are widely separated over time (a period of 8 years) and space and as such have not been exposed to similar environmental conditions and exploitation rates

58

(Ehrhardt, 1992) and so could include individuals that experienced different growing conditions. Furthermore, as less than 200 fish examined, we suggest our results should be viewed with caution. Limited sample numbers also prohibited statistical verification of an annual cycle of band deposition. However, this study does provide a baseline from which other studies can be compared.

# 6.2.6 Acknowledgements

The first author is grateful for the opportunity provided by the CSIRO Marine Laboratories Summer studentship to work on this project. She would also like to thank the people of the Pelagic Research Program for their advice and support during her stay.

### 6.2.7 References

- Beamish, R.J. and Fournier, D.A. (1981) A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Science. 38:982-983
- Berkeley, S.A. and Houde, E.D. (1983) Age determination of broadbill swordfish, *Xiphias gladius*, from the Straits of Florida, using anal fin spine sections. US Dep. Commer., NOAA Tech. Rep. NMFS 8:137-143
- Campbell, R.A. (2002) Sequential changes in swordfish catch rates off eastern Australia and possible implications for the movement dynamics of the local swordfish population. Working paper BBRG-9 presented at the 15<sup>th</sup> meeting of the Standing Committee on Tunas and Billfish, held 23-27 July, Honolulu, Hawaii
- Campbell, R.A. and Taylor, N.A. (2000) Data and biological parameter specifications for a spatially structured operating model for broadbill swordfish and bigeye tuna in the south-west Pacific. FRDC 99/107 Milestone Report
- Castro-Longoria, R. and Sosa-Nishizaki, O. (1998) Age determination of swordfish, *Xiphias gladius* L., from waters off Baja California, Mexico, using anal fin rays and otoliths. US Dep. Commer., NOAA Technical Report NMFS 142:231-257
- Chapman, D.G. (1961) Statistical problems in dynamics of exploited fish populations. Univ. Calif. Publs Statis. 4:153-168.
- Chen, Y., Jackson, D.A. and Harvey, H.H. (1992) A comparison of von Bertalanffy and polynomial functions in modelling fish growth data. Canadian Journal of Fisheries and Aquatic Science. 49:1228-1235
- Clear, N., Davis, T. and Carter, T. (2000) Developing techniques to estimate the age of bigeye tuna and broadbill swordfish off eastern Australia: a pilot project. Final Report to FRDC: Project 98/113
- De Martini, E.E., Uchiyama, J.H. and Williams, H.A. (2000) Sexual maturity, sex ratio, and size composition of swordfish, *Xiphias gladius*, caught by the Hawaii-based pelagic longline fishery. Fisheries Bulletin. 98:489-506
- Ehrhardt, N.M. (1992) Age and growth of swordfish, Xiphias gladius, in the northwestern Atlantic. Bulletin of Marine Science 50(2):292-301
- Ehrhardt, N.M., Robbins, R.J. and Arocha, F. (1996) Age validation and growth of swordfish, Xiphias gladius, in the northwestern Atlantic. ACCAT (International

Commission for the Conservation of Tunas) Col. Vol. Sci. Pap. 45(2):385-367

- Esteves, E., Simoes, P., da Silva, H.M. and Pedro, J. (1995) Ageing of swordfish, Xiphias gladius Linnaeus, 1758, from the Azores, using sagittae, anal-fin spines and vertebrae. Arquipelago. Life and Marine Sciences 13A:39-51
- Gordon, A.L. and Fine, R.A. (1996) Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature. 379: 146-149
- Haddon, G. (2001) Modelling and Quantitative Methods in Fisheries. Chapman & Hall/CRC, United States of America
- Kimura, D.K. (1980) Likelihood methods for the von Bertalanffy growth curve. Fishery Bulletin. 77: 765-776
- King, J. (1995) Fisheries Biology, Assessment and Management. Fishing News Books, Blackwell Science Ltd, Australia
- Lynch, A.W. (2004). Southern and Western Tuna and Billfish Fishery Data Summary 2003. Logbook Program, Australian Fisheries Management Authority, Canberra.
- Megalofonou, P., De Metio, G. and Lenti, M. (1990) Catch, size distribution, age and some population parameters of swordfish, *Xiphias gladius* L., in the Greek Seas. Collect. Vol. Sci. Pap. ICCAT/RECL. Doc Sci. CICTA/COLECC. Doc. Cient. CICAA. 33: 168-178
- Patterson, T., Young, J., O'Reilly, J. and Drake, A. (2002) Size at maturity of broadbill swordfish, *Xiphias gladius*, in relation to catch in the eastern Australian Fishing Zone. In: Young J and Drake A (eds) Reproductive dynamics of broadbill swordfish (*Xiphias gladius*) in the domestic longline fishery off eastern Australia. FRDC Project 1999/108.
- Pearson, D.E. (1996) Timing of hyaline-zone formation as related to sex, location, and year of capture in otoliths of the widow rockfish, *Sebastes entomelas*. Fishery Bulletin. 94:190-197
- Penny, A.J. and Griffiths, M.H. (1998) A first description of the developing South African pelagic longline fisher. Working paper SCRS/98 presented at the SCRS Swordfish Working Meeting, ICCAT, Madrid.
- Poisson, F., Marjolet, D. and Fauvel, C. (2001) Biologie de la reproduction de l'espadon (*Xiphias gladius*). In 'L'espadon: de la recherche a l'exploitation durable'. (eds. Poisson F and Taquet M) pp170-211. Programme Palangre Reunionnais, Rapport final
- Prince, E.D., Lee, D.W. and Berkeley, S.A. (1988) Use of marginal increment analysis to validate the anal spine method for ageing Atlantic swordfish and other alternatives for age determination. ICCAT Coll Vol. Sci. Pap. 27:194-201
- Radtke, R.L. and Hurley, P.C.F. (1983) Age estimation and growth of broadbill swordfish, *Xiphias gladius*, from the northwest Atlantic based on external features of otoliths. US Dep. Commer., NOAA Tech. Rep. NMFS 8:-145-150
- Reeb, C.A., Arcangeli, L. and Block, B.A. (2000) Structure and migration corridors in Pacific populations of the swordfish *Xiphias gladius*, as inferred through analyses of mitochondrial DNA. Marine Biology. 136:123-131
- Stone, H.H. and Porter, J.M. (1997) Development of a swordfish sex-ratio-at-size

relationship for catches from the Canadian fishery. ICCAT Col. Vol. Sci. Pap. 46(3):311-314

- Sun, C-L., Wang, S-P. and Yeh, S-Z. (2002) Age and growth of the swordfish (*Xiphias gladius* L.) in the waters around Taiwan determined from anal-fin rays. Fishery Bulletin 100(4): 822-835
- Tserpes, G. and Tsimenides, N. (1995) Determination of age and growth of swordfish, *Xiphias gladius* L., 1758, in the eastern Mediterranean using anal-fin spines. Fishery Bulletin 93: 594-602
- Tsimenides, N. and Tserpes, G. (1989) Age determination and growth of swordfish *Xiphias gladius* L., 1758 in the Aegean Sea. Fisheries Research 8:159-168
- Turner, S.C., Arocha, F. and Score, G.P. (1996) US swordfish catch-at-age by sex. ICCAT Col. Vol. Sci. Pap. 45(2):373-378
- Uchiyama, J.H., Skillman, R.A., Sampaga, J.D. and De Martini, E.E. (1998) A preliminary assessment of the use of hard parts to age central Pacific swordfish, *Xiphias gladius*. US Dep Commer., NOAA Technical Report. NMFS 142:261-273
- Vanpouille, K., Poisson, R., Taquet, M., Ogor, A. and Troadec, H. (2001) Etude de la croissance de l'espadon. In 'L'espadon: de la recherche a l'exploitation durable'. (eds. Poisson F and Taquet M) pp170-211. Programme Palangre Reunionnais, Rapport final
- Wang, S-P., Sun, C-L. and Yeh, S-Z. (2003) Sex ratios and sexual maturity of swordfish (*Xiphias gladius* L.) in the waters of Taiwan. Zoological Studies 42(4): 529-539
- Ward, P.F. Caton, A.E. and Ramirez, C.M. (1996) The geographical and seasonal distribution of the Japanese longline fishery in north-eastern Australian water, 1962-1999. pp 75-144. In Ward PJ (ed) (1996) Japanese longlining in eastern Australian waters 1962-1990. Bureau of Resource Sciences, Canberra.
- Ward, P. and Elscot, S. (2000) Broadbill swordfish: Status of world fisheries. Bureau of Rural Sciences, Canberra
- Ward, R.D., Reeb, C.A. and Block, B.A. (2001) Population structure of Australian swordfish, *Xiphias gladius*. Final Report to Australian Fisheries Management Authority, Canberra.
- Wilson, C.A. and Dean, J.M. (1983) The potential use of sagittae for estimating age of Atlantic swordfish, *Xiphias gladius*. US Dep. Commer., NOAA Tech. Rep. NMFS 8:151-156
- Yabe, H., Ueyanagi, S., Kikawa, S. and Watanabe, H. (1959) Study of the life-history of the swordfish, *Xiphias gladius*, Linnaeus. Rep. Nankai Reg. Fish. Res. Lab. 10:-107-150
- Young, J., Drake, A., Brickhill, M., Farley, J. and Carter, T. (2003) Reproductive dynamics of broadbill swordfish, *Xiphias gladius*, in the domestic longline fishery off eastern Australia. Marine and Freshwater Research. 54:1-18

# 6.3 Daily ageing of juvenile broadbill swordfish, Xiphias gladius Linnaeus 1758, from eastern Australia using otoliths

Anne-Laure Groison, Jock Young and Bruno Leroy\* \*Secretariat of the Pacific Commission, New Caledonia

# 6.3.1 Abstract

The sagittal otoliths of 22 juvenile swordfish collected from the eastern Australian longline fishery between August 1998 and December 2001 were examined for presumed daily increments. Otoliths were observed in transverse plane and viewed under light microscopy. Two otoliths were also examined with scanning electron microscopy. Significant linear relationships were found between fish length, otolith size and increment counts indicating that the increments could be used to age juvenile swordfish. Estimated ages ranged from 90 to 705 days in fish ranging in size from 59 cm to 151 cm OFL. A comparison between SEM and light microscope observations indicated that light microscope readings of increments under reported those from SEM in fish greater than 90 cm OFL. Back-calculated spawning dates indicated year-round spawning for the fish examined, but were concentrated between November and February, which is the main spawning period for swordfish in these waters.

# 6.3.2 Introduction

Broadbill swordfish, *Xiphias gladius*, are one of four pelagic species targeted by the Eastern Tuna and Billfish fishery (ETBF). Annual landings of greater than 2000 tonnes have been maintained since the mid 1990s. However, recent localized depletions within the ETBF have highlighted the need for accurate biological data, including those on age and growth, to support sustainable management of the species (Campbell 2002).

Most studies of swordfish age and growth have relied on increment counts of transverse sections of the second anal fin ray. Their general usage has arisen from their ease of collection and readability over a wide range of size classes. However, the central part of the ray is often vascularised, especially in older fish, making resolution of the early growth stages difficult. An alternative method to estimate growth in young swordfish could therefore help to resolve this period of the fishes' life.

However, otoliths have not been widely used for age estimation of swordfish because of their very small size and fragility, although the development of better techniques to read the otoliths has helped to increase their usefulness, at least in juvenile swordfish (Ward and Elscot 2000). There are several general advantages to using otoliths as ageing structures. Firstly, they are not susceptible to resorption. Second, they grow isometrically as fish grow; and thirdly they undergo little alteration once formed. Microincrements have been observed in the sagittal otoliths of juvenile swordfish from the Atlantic Ocean (Wilson and Dean 1983), Mediterranean Sea (Megalofonou et al 1995) and more recently in larvae from the Atlantic Ocean (Govonni et al 2003). Although their increments have yet to be validated as daily, they are similar to the increments observed in other pelagic species for which at least indirect validation is available (e.g. Jenkins and Davis 1990).

The aims of this study were to (1) estimate the age of growth of juvenile swordfish using otoliths, (2) compare otolith- and fin ray-derived ages and (3) compare resulting back-calculated birthdates with the spawning period of swordfish in eastern Australian waters.

# 6.3.3 Methods

#### **Collection of samples**

Broadbill swordfish otoliths were provided for this study by the tuna and billfish hardparts archive held at CSIRO Marine Research. The otoliths were sampled from swordfish taken by the domestic longline fishery operating off eastern Australia between ~ 25°S and 35°S, from August 1998 to December 2001 (Table 1). Otoliths were either removed at sea by observers, or in the laboratory from samples of fish heads collected by cooperating fishers. In the laboratory, otoliths were teased from surrounding tissue, cleaned and dried (Haake et al. 1982, Wilson and Dean 1983).

#### Sample preparation and analysis

Twenty one sagittae otoliths were selected from fish < 120cm Orbital Fork Length (OFL), the approximate age of a 1 year old (Berkeley & Houde 1983). A sagittal otolith was also selected from one fish 151 cm (OFL) for examination. Lapilli from these fish were also examined but were found unsuitable for further analysis. Otoliths were embedded in resin and sectioned transversely as this provided the clearest view of the increments. Both sides of the otoliths were ground using 220, 600, and 1000 grit wet-dry emery paper. Sections were then polished with an automatic lapping and polishing machine using 6 $\mu$ m and 3 $\mu$ m diamond paste, to remove surface scratches. Sectioning and polishing of sagittae enhanced the light microscopy images, particularly in the area near the core (Fig. 1).

The radius of each sagittae (primordium to ventral edge) was measured to the nearest 0.1mm under a light microscope. Increments were observed in the sectioned otoliths using light microscopy (magnification\*100 with oil) adapted for video viewing. For each sagittal otolith, sequential images (up to 20) from the otolith core to the margin were captured, saved and printed. These were joined together to produce a "poster" of each otolith sections (Fig. 2). Increment counts were made from the core to the distal edge from the printed sheets. For all sagittal otoliths, we found some areas along the section where increments were indistinct. Where this occurred, we measured the length of the area on the poster where the increments were indistinct and estimated the number of increments using the density of increments before and after the region. Leroy (2001) found that the density of increments was consistent along the arm of the otolith. We gave each otolith reading a confidence score by calculating the proportion of indistinct to distinct increments along the length of the otolith. A ratio <10% of indistinct to distinct bands = A (excellent), 10-20% = B (good); and >20% = C (poor) (Table 2).

Counts of increments were made twice for each sample by the same reader. Specimens were examined randomly and without reference to information on the sampled fish. An average percent error was estimated from the two counts (Beamish and Fournier 1981). The mean of the two counts was used as the final number of increments (Table 3) which we assumed to be age in days. Using this information and the capture date, we calculated the birth date of each fish (Table 4).

| BBL# | Date of<br>capture | Sex     | OFL<br>(cm) | Otoliths | Fin spines | Latitude | Longitude |
|------|--------------------|---------|-------------|----------|------------|----------|-----------|
| 2    | 10-Aug-98          | Female  | 116         | Present  | Absent     | 26.25    | 153.97    |
| 3    | 11-Aug-98          | Female  | 112         | Present  | Absent     |          |           |
| 15   | 6-Nov-98           | Unknown | 100         | Present  | Present    | 24.93    | 154.38    |
| 18   | 6-Nov-98           | Unknown | 151         | Present  | Absent     | 25.17    | 154.35    |
| 223  | 22-Feb-00          | Female  | 104         | Present  | Present    | 28.83    | 160.35    |
| 242  | 22-Feb-00          | Male    | 108         | Present  | Present    | 28.83    | 160.33    |
| 251  | 22-Feb-00          | Female  | 99          | Present  | Present    | 28.97    | 160.55    |
| 256  | 18-Feb-00          | Female  | 109         | Present  | Present    | 29.00    | 160.42    |
| 294  | 19-Feb-00          | Male    | 119         | Present  | Present    | 28.92    | 160.33    |
| 507  | 7-Sep-00           | Female  | 88          | Present  | Present    | 27.00    | 161.30    |
| 568  | 5-Jan-01           | Female  | 95          | Present  | Present    | 29.30    | 155.67    |
| 574  | 6-Jan-01           | Male    | 112         | Present  | Present    | 28.68    | 154.08    |
| 606  | 7-Jan-01           | Female  | 73          | Present  | Present    | 27.85    | 154.58    |
| 608  | 6-Jan-01           | Male    | 108         | Present  | Present    | 28.12    | 155.75    |
| 639  | 1-Mar-01           | Male    | 78          | Present  | Present    | 27.83    | 155.38    |
| 677  | 8-Mar-01           | Unknown | 60          | Present  | Present    | 26.88    | 162.47    |
| 678  | 8-Mar-01           | Unknown | 59          | Present  | Present    | 26.88    | 162.27    |
| 842  | 10-Aug-01          | Female  | 79          | Present  | Present    | 33.05    | 152.50    |
| 845  | 10-Aug-01          | Male    | 94          | Present  | Present    | 33.05    | 152.50    |
| 855  | 4-Aug-01           | Male    | 82          | Present  | Present    | 33.30    | 152.67    |
| 859  | 7-Aug-01           | Male    | 80          | Present  | Present    | 33.72    | 152.37    |
| 1089 | 5-Dec-01           | Male    | 76          | Present  | Present    | 27.25    | 157.2     |

Table 1: Collection information and hard parts collected from swordfish sampled from the ETBF (OFL, orbital fork length; U, sex unknown, f=female; m=male)

We compared our daily age estimates with estimates obtained from electron microscopy provided by Leroy (2001). The sagittae otoliths used by Leroy (2001) were also provided by the archive of hard-parts held at CSIRO Marine Research. However, only two otolith samples were common between the studies. A further comparison was made between daily counts of sagittal otoliths and annual counts from fin rays sampled from the same fish (n=19).



Figure 1: Core and edge region of sagittal otolith of a juvenile swordfish showing presumed daily increments. Note the decrease in increment width towards the margin (scale bar  $5 \mu m$ ).



Figure 2: The first author with "posters" of three swordfish sagittae from which increment counts were made

# 6.3.4 Results

#### Increment counts from sagittal otoliths

Sagittae otoliths observed under light microscope contained distinct increments along the transverse plane of the sagittae. Each increment consisted of a light and a dark zone as viewed by transmitted light, equating to the incremental and discontinuous zones referred to respectively by Wilson and Dean (1983). The primordium was clearly visible as a dark spot in the centre of the core and from which increments ~ 5  $\mu$ m wide could be observed, gradually decreasing in width to <1  $\mu$ m at the edge of the otolith (Fig.1). These increments were similar in appearance to the increments observed in otoliths for which daily validation has been achieved (Tanaka et al 1981). The number of increments counted ranged from 90 in a 60 cm OFL fish to 705 for a 151 cm OFL fish. The average percent error between readings was 0.86 % (Table 3).

#### Age estimation

A positive linear relationship was found between sagittal otolith radius and OFL ( $r^2=0.81$ ) (Fig. 3). The relationship between otolith radius and number of increments was also linear ( $r^2=0.81$ ) (Fig. 4) as was the relationship between fish length and number of increments ( $r^2=0.93$ ) (Fig. 5). The close relationships between OFL and otolith size, and between OFL and increment counts support their use as a proxy for age in these fish. Although sample size (n=22) prohibited any statistical comparison between male and female swordfish within the size range examined, no obvious differences were found between the growth rates between sexes (Fig. 5). Back-calculated birth dates from the increment counts of the swordfish showed that although spawning ranged over the year there was a concentration of spawning in the Australian spring and summer (Table 4).
| BBL# | Sex | OFL  | Radii       | Distinct   | Indistinct | Total      | Otolith's total | Distance on        | Percentage of | Count   |
|------|-----|------|-------------|------------|------------|------------|-----------------|--------------------|---------------|---------|
|      |     | (cm) | measurement | increments | increments | increments | length on the   | otoliths poster of | estimation    | quality |
|      |     |      | (mm)        | (A)        | (B)        | (A + B)    | poster (cm)     | indistinct         |               |         |
|      |     |      |             |            |            |            |                 | increments (cm)    |               |         |
| 2    | F   | 116  | 0.34        | 291        | 74         | 365        | 132             | 16                 | 12.10%        | В       |
| 3    | F   | 112  | 0.45        | 294        | 76         | 370        | 150             | 14                 | 9.30%         | А       |
| 15   | U   | 100  | 0.86        | 280        | 70         | 350        | 110             | 12                 | 10.90%        | В       |
| 18   | U   | 151  | 0.58        | 564        | 564        | 1128       | 160             | 29                 | 18.10%        | В       |
| 223  | F   | 104  | 0.48        | 345        | 10         | 355        | 155             | 2                  | 1.30%         | А       |
| 242  | М   | 108  | 0.68        | 210        | 160        | 370        | 130             | 33                 | 25.40%        | С       |
| 251  | F   | 99   | 0.81        | 279        | 66         | 345        | 125             | 19                 | 15.20%        | В       |
| 256  | F   | 109  | 0.66        | 355        | 45         | 400        | 190             | 9.5                | 5.00%         | А       |
| 294  | М   | 119  | 0.79        | 300        | 90         | 390        | 170             | 27                 | 15.90%        | В       |
| 507  | F   | 88   | 0.69        | 272        | 63         | 335        | 140             | 24                 | 17.10%        | В       |
| 568  | F   | 95   | 0.83        | 310        | 20         | 330        | 135             | 3                  | 2.20%         | А       |
| 574  | М   | 112  | 0.76        | 230        | 130        | 360        | 130             | 29                 | 22.30%        | С       |
| 606  | F   | 73   | 0.6         | 100        | 65         | 165        | 87              | 10                 | 11.50%        | В       |
| 608  | М   | 108  | 0.67        | 280        | 95         | 375        | 115             | 20                 | 17.40%        | В       |
| 639  | М   | 78   | 0.54        | 190        | 25         | 215        | 97              | 4                  | 4.10%         | А       |
| 677  | U   | 60   | 0.64        | 80         | 10         | 90         | 105             | 4                  | 3.80%         | А       |
| 678  | U   | 59   | 0.81        | 85         | 35         | 120        | 100             | 20                 | 20.00%        | С       |
| 842  | F   | 79   | 0.78        | 105        | 61         | 166        | 105             | 22                 | 21.00%        | С       |
| 845  | М   | 94   | 0.84        | 200        | 60         | 260        | 100             | 18                 | 18.00%        | В       |
| 855  | М   | 82   | 0.81        | 195        | 25         | 220        | 90              | 8                  | 8.90%         | А       |
| 859  | М   | 80   | 0.8         | 175        | 25         | 200        | 85              | 21                 | 24.70%        | С       |
| 1089 | М   | 76   | 1.12        | 100        | 100        | 200        | 75              | 19                 | 25.30%        | С       |

Table 2. Final increment counts and associated confidence given to sagittal otoliths of the swordfish examined

| Table 3 Calculation of Average | Percentage of Error (A | PE) (Beamish and Fournier 198 | 31) |
|--------------------------------|------------------------|-------------------------------|-----|
| between increment counts.      |                        |                               |     |

| BBL# | Count n <sup>o</sup> 1 of | Count n°2 of | # Read | Mean  | APE   |
|------|---------------------------|--------------|--------|-------|-------|
|      | number of                 | number of    |        |       |       |
|      | increments                | increments   |        |       |       |
| 2    | 362                       | 368          | 2      | 365   | 0.822 |
| 3    | 364                       | 376          | 2      | 370   | 1.622 |
| 15   | 346                       | 353          | 2      | 349.5 | 1.001 |
| 18   | 704                       | 706          | 2      | 705   | 0.142 |
| 223  | 354                       | 356          | 2      | 355   | 0.282 |
| 242  | 370                       | 370          | 2      | 370   | 0.000 |
| 251  | 346                       | 345          | 2      | 345.5 | 0.145 |
| 256  | 397                       | 403          | 2      | 400   | 0.750 |
| 294  | 387                       | 393          | 2      | 390   | 0.769 |
| 507  | 335                       | 335          | 2      | 335   | 0.000 |
| 568  | 333                       | 327          | 2      | 330   | 0.909 |
| 574  | 358                       | 362          | 2      | 360   | 0.556 |
| 606  | 162                       | 168          | 2      | 165   | 1.818 |
| 608  | 373                       | 376          | 2      | 374.5 | 0.401 |
| 639  | 217                       | 213          | 2      | 215   | 0.930 |
| 677  | 88                        | 92           | 2      | 90    | 2.222 |
| 678  | 124                       | 117          | 2      | 120.5 | 2.905 |
| 842  | 165                       | 167          | 2      | 166   | 0.602 |
| 845  | 261                       | 260          | 2      | 260.5 | 0.192 |
| 855  | 224                       | 216          | 2      | 220   | 1.818 |
| 859  | 194                       | 196          | 2      | 195   | 0.513 |
| 1089 | 199                       | 201          | 2      | 200   | 0.500 |

| BBL# | Date caught | Total      | Birth date |
|------|-------------|------------|------------|
|      |             | increments |            |
| 2    | 10-Aug-98   | 365        | 11-Aug-97  |
| 3    | 11-Aug-98   | 370        | 5-Aug-97   |
| 15   | 6-Nov-98    | 350        | 21-Nov-97  |
| 18   | 6-Nov-98    | 705        | 8-Aug-96   |
| 223  | 22-Feb-00   | 355        | 4-Mar-99   |
| 242  | 22-Feb-00   | 370        | 17-Feb-99  |
| 251  | 22-Feb-00   | 345        | 14-Mar-99  |
| 256  | 18-Feb-00   | 400        | 14-Jan-99  |
| 294  | 19-Feb-00   | 390        | 25-Jan-99  |
| 507  | 7-Sep-00    | 335        | 8-Oct-99   |
| 568  | 5-Jan-01    | 330        | 10-Feb-00  |
| 574  | 6-Jan-01    | 360        | 12-Jan-00  |
| 606  | 7-Jan-01    | 165        | 26-Jul-00  |
| 608  | 6-Jan-01    | 375        | 28-Dec-99  |
| 639  | 1-Mar-01    | 215        | 29-Jul-00  |
| 677  | 8-Mar-01    | 90         | 8-Dec-00   |
| 678  | 8-Mar-01    | 120        | 8-Nov-00   |
| 842  | 10-Aug-01   | 166        | 25-Feb-01  |
| 845  | 10-Aug-01   | 260        | 23-Nov-00  |
| 855  | 4-Aug-01    | 220        | 27-Dec-00  |
| 859  | 7-Aug-01    | 195        | 24-Jan-01  |
| 1089 | 5-Dec-01    | 200        | 19-May-01  |

Table 4: Back-calculated birth dates of swordfish determined from increment counts using light microscopy



Figure 3 Relationship between orbital fork length and sagittal radius of juvenile swordfish collected from the eastern Australian longline fishery



Figure 4: Relationship between otolith radius and number of increments in the sagittal radius of juvenile swordfish collected from the eastern Australian longline fishery



Figure 5: Relationship between fish length (OFL cm) and number of increments in the sagittal radius of juvenile swordfish determined from increment counts from transverse sections

### **Comparisons with SEM**

Figure 6 shows a comparison of the daily age estimates from light microscopy compared with estimates by Leroy (2001) using SEM. Apart from samples 1 and 2 the otoliths counts came from fish from widely separated regions, so may reflect different growing environments rather than differences in methodology, but indicate that light microscopy failed to detect all increments in fish larger than 100 cm OFL. The two samples that were examined by both methods suggest that light microscope counts were able to resolve increments for fish to at least 90 cm OFL. The increment counts by both techniques of sample 1 (Fig.6), an 88 cm OFL swordfish, were nearly identical. The comparison for sample 2, however, appeared to be underestimated by light microscopy.



Figure 6: Number of growth increments from otoliths in relation to the length of swordfish (OFL in cm) using light microscopy (filled triangles) and SEM (open diamonds). Samples 1 and 2 were readings of the same otolith by either light microscopy or SEM.

### Otolith and fin ray comparison

All swordfish from which otoliths were examined were also aged using anal fin rays. All had a minimum of one annulus. However, increment counts showed that many of these fish were less than 1 year old. The wide range of daily increment counts for these 0+ fish reflecting the extended spawning period known for swordfish in these waters.



Figure 7: Comparison between daily age estimates from otoliths and annulus counts from anal fin rays for "year old" swordfish.

# 6.3.5 Discussion

### The suitability of otoliths for ageing of swordfish

The similarity of increments in swordfish otoliths to other species where such increments have been validated as daily have been noted previously (e.g. Megalofonou et al 1995). However, the use of otoliths generally as a practical ageing tool for swordfish is limited, particularly if the aim is to determine length-at-age for a large number of fish across a wide range of ages. Counting otolith increments is time consuming and requires more preparation time than the anal fin ray method (see Chapter 6.1). Typically, most studies of swordfish otoliths, including the present study, relied on counts from relatively few individuals. Megalofonou et al (1995) examined otoliths from 21 juvenile swordfish; Govonni et al (2003) examined 37 specimens. However, with the limitations imposed by the lack of any direct validation of any presently used age estimation method, supporting methodologies such as otolith examination can add useful information to our understanding of swordfish growth, particularly for juveniles.

#### Light microscopy versus SEM

Previous studies reported no difference between increment readings of otoliths obtained from either light or scanning electron microscopy (Wilson and Dean 1983, Megalofonou et al 1995). Megalofonou et al (1995) found that there was no significant difference between counts made using light microscopy, SEM and video projection for swordfish within a size range of 51 to 74 cm LJFL (38.5 - 59.9 cm OFL). In the present study, however, although we matched light microscopy and SEM increment counts for an 88 cm OFL fish, we were unable to match counts for a fish 99 cm OFL in length. Although direct comparison was limited to only two specimens, the higher increment counts obtained for the fish larger than 100 cm OFL, suggests that accuracy is compromised when using light microscopy on otoliths from fish beyond this size.

### Comparison of daily and annual age estimation

Although anal fin rays appear to provide the most useful estimate of swordfish age, overall rapid growth within the first year and an extended spawning period (Young et al 2003), means that the timing of first annulus formation is difficult to detect. Fish aged with fin rays and given an age of 1 yr may be less than 1 yr old or almost, but not quite 2 yr old. If, for example, annuli are deposited in the ray around September/October (Chapter 6.1), then the first annulus is deposited between 7-10 months depending on when spawning occurred. Also, because of the initial rapid growth it is extremely difficult to fit a realistic growth curve using the Von Bertalanffy model which includes young fish. That we computed a length at  $t_0$  (time of birth) of ~80cm for the species, which is biologically impossible, underlines this fact (Chapter 6.1). A number of attempts have been made to use alternatives or variations to the standard VB curve but most studies have returned to, or at least included, the standard form for comparison (reviewed also in Chapter 1). From this perspective therefore, providing information on the early period of the fishes' life history supports the inclusion of otoliths in support of wider studies of swordfish age and growth.

#### Indirect evidence of increment formation

As we have no direct way to validate the timing of increment formation, other lines of evidence are needed to at least examine whether the counts have biological meaning. Megalofonou et al (1995) found that back-calculated birth dates of 21 juvenile swordfish from the Mediterranean Sea coincided with timing of gonad maturation in mature females and the presence of swordfish larvae in the plankton. In a study of the reproduction of swordfish from the eastern Australian region, Young et al (2003) showed that the majority of swordfish are spawned between September and March. Larval collections of swordfish off eastern Australia are very scarce. However, Bruce (CSIRO unpublished) reported two larval specimens collected in January and May 1983 from the same region. Also, records from the Australian Museum note 2 larvae collected from the Coral Sea in November 1983 and a further 4 larvae collected in January 1990. Seventy percent of the back-calculated birth dates from the fish examined here were between November and March.

#### Growth rates of juvenile swordfish

Recent studies of larval and juvenile swordfish have revealed a complex growth trajectory in swordfish larvae that extends at least till 75 cm LJFL (~60 cm OFL) (Megalofonou et al 1995, Govonni et al 2003). Larval swordfish grow to 120 mm in a two step trajectory, the second significantly faster than the first, reaching 11 mm per day, one of the fastest recorded for pelagic fishes (Govonni et al 2003). At 60 cm LJFL growth is slower at ~6 mm per day (Megalofonou et al 1995). Our estimate of growth rate for fish up to one year old of ~3 mm per day suggests that growth slows relative to the preceding stages.

However, growth rates for the overall period are relatively fast and comparable to other pelagic tuna and billfishes (e.g. Brother et al 1983, Prince et al 1991).

### 6.3.6 Acknowledgements

We thank John Gunn (CSIRO Marine Research) and Georges Coffy for the opportunity for Ms Groison to work at CSIRO Marine Research. We also thank Jessica Farley, Naomi Clear, and Thor Carter for advice and support.

# 6.3.7 References

- Beamish R.J., and Fournier D.A., 1981. A method for comparing the precision of a set of age determinations. Can. J. Fish. Aquat. Sci. 38(8): 982-983
- Berkeley, S., Sosa-Nishizaki, O. Review of ageing swordfish, *Xiphias gladius*, using otoliths session. Papers from the international Second Symposium on Pacific Swordfish, March 3-6, 1997, Hawaii.
- Brothers, E. B., Prince, D. W. and Lee, D. W. (1983) Age and growth of young of the year bluefin tuna, *Thunnus thynnus*, from otolith microstructure. NOAA Tech. Rep. NMFS 8, 49-59
- Campbell, R.A. (2002) Sequential changes in swordfish catch rates off eastern Australia and possible implications for the movement dynamics of the local swordfish population. Working paper BBRG-9 presented at the 15<sup>th</sup> meeting of the Standing Committee on Tunas and Billfish, held 23-27 July, Honolulu, Hawaii
- Castro-Longoria, R., and Sosa- Nishizaki, O. (1994) Age determination of swordfish, *Xiphias gladius L.*, from waters off Baja California, Mexico, using anal fin rays and otoliths. In I. Barrett (ed.) Proceedings of the international symposium on Pacific swordfish, December 11-14, 1994, Ensenada, Mexico.
- Clear N., Davis T. and Carter T. (2000) Developing techniques to estimate the age of bigeye tuna and broadbill swordfish off eastern Australia: A pilot project. FRDC Final Report 98/113.
- Govonni, J. J., Laban, E. H. and Hare, J. A. (2003) The early life history of swordfish (*Xiphias gladius*) in the western North Atlantic. Fishery Bulletin 101, 778 789
- Haake, W., Wilson, C.A., and Dean J. M. (1982) A technique for the examination of otoliths with applications to larval fishes. In, Proceedings of the 5<sup>th</sup> Annual Larval Fish Conference, edited by C. Bryan, J.V. Conner & F.M. Truesdale, Baton Rouge, Louisiana, pp. 12-15.
- Jenkins G. P., and Davis T.L.O. (1990) Age, growth-rate, and growth trajectory determined from otolith microstructure of southern bluefin tuna *Thunnus maccoyii* larvae. Marine Ecology-Progress Series 63: 93-104
- Megalofonou, P., Dean, J.M., De Metrio, G., Wilson, C. and Berkeley, S. (1995) Age and growth of juvenile swordfish, *Xiphias gladius Linnaeus*, from the Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, Vol 188, 79-88.
- Prince, E.D., Lee, D.W. Zweifel, J. R. and Brothers, D. B. (1991) Estimating age and growth of young Atlantic blue marlin, *Makaira nigricans*, from otolith

microstructure. Fishery Bulletin 89, 441 - 459

- Secor, D., Dean J.M. and Baldeverona R. (1989) Comparison of otolith growth and somatic growth bases on otolith-fish length relationships. ICES Symposium on the early Life History of Fishes, edited by J.H. Blaxter. Rapp. P.-v Reun. Cons. Int. Explor. Mer., Vol. 191, 431-438.
- Tanaka, K., Mugiya Y. and Yamada J. (1981) Effects of photoperiod and feeding on daily growth patter in otoliths of juvenile *Tilapia nilotica*. Fishery Bulletin 70, 459-466.
- Uchiyama, J.H., Skillman R., and Sampaga J.D. (In press). Ageing of north Pacific swordfish using hard parts. In I. Barrett (ed.) Proceedings of the international symposium on Pacific swordfish, December 11-14, 1994, Ensenada, Mexico.
- Wilson, C.A. and Dean, J.M. (1983) The potential use of sagittae for estimating age of Atlantic swordfish *Xiphias gladius*. U.S. Dept. Commer., NOAA Tech. Rep NMFS., Vol. 8, 151-156.
- Wilson, C.A., Dean, J.M., Prince, E. and Lee, D. (1991) An examination of sexual dimorphism in Atlantic and Pacific blue marlin using body weight, sagittae weight, and age estimates. J. Exp. Mar. Biol. Ecol., Vol. 151, 209-225.
- Young, J. and Stanley, C. (2000) Archival Hard Part Collection A basis for routine aging of tuna and billfish, 1998-99. Project F99/0171 Final Report to Southern Tuna and Billfish MAC, Eastern Tuna and Billfish MAC And Western Tuna and Billfish MAC
- Young J. and Drake, A. (2002). Reproductive dynamics of broadbill swordfish (*Xiphias gladius*) in the domestic longline fishery off eastern Australia. Project FRDC 1999/108.
- Young, J., Drake, A., Brickhill, M., Farley, J. and Carter, T. (2003) Reproductive dynamics of broadbill swordfish, *Xiphias gladius*, in the domestic longline fishery off eastern Australia. Marine and Freshwater Research. 54:1-18

### 7. Conclusions

Our primary objective of establishing whether the growth rings observed in transverse sections of swordfish fin rays were laid down over a yearly cycle was met for male and female swordfish when age classes were combined. There was a clear pattern of increment formation starting in late winter, presumably at the time of slower somatic growth (Objective 3). However, when year classes were examined separately, not all years showed significant differences in the marginal increment between different times of the year. This may partly be due to uneven sample sizes from the different seasons/year class combinations. Although the fishery operates year round swordfish were not always targeted and were sometimes actively avoided. Thus sample numbers were low for some year classes, particularly from the winter months when marginal increments first formed (Objectives 1 and 2). It should be noted here that the introduction of observers in 2003 to the fishery will help in the collection of samples for future studies of this kind.

Other methods used to indirectly validate swordfish age determinations included an examination of presumed daily increments of swordfish otoliths, an inter-laboratory comparison of our reading techniques and a range of statistical analyses. The combination of these activities indicated a seasonal cycle of opaque band deposition supporting the continuation of the study.

We found that female swordfish grew significantly faster, to an older age and to a larger size than male swordfish, although growth rates were indistinguishable for fish less than 9 years old. The oldest female we examined was 19 years and the oldest male was 15 years old. The resulting growth curve for the eastern fishery fitted within an albeit wide range of growth curves provided by previous studies from the northern hemisphere. Notably different were those from the Mediterranean Sea and from the Indian Ocean. As both these fisheries have a long history of fishing the difference may be the result of fishing down of the older age classes in those fisheries.

Using information gathered on the size at maturity of swordfish from the same region (Young et al 2003), we found that female swordfish reached age at 50% maturity at 10 years of age. Males reached 50% maturity at ~2 years old. The age of sexual maturity determined for females was significantly older than that determined for swordfish elsewhere and may help to explain why swordfish are particularly vulnerable to overfishing.

We provided a sex-separated estimate of mean size-at-age (Objective 4). We used the resulting lengths-at-age calculations to estimate the age distribution of the swordfish catch for both the eastern and western Australian swordfish catch. We found that for the ETBF there was a general decrease in the age of the swordfish caught by the fishery over the period of the study. Whether this was due to overfishing or successful recruitment has yet to be determined, although similarities with other heavily fished populations of swordfish indicate that the stock may be overfished. In contrast, a similar comparison of the SWTBF,

where fishing has been less intense, found no difference in the catch at age over the short life of that fishery.

#### 7.1 Reference

Young, J., Drake, A., Brickhill, M., Farley, J. and Carter, T. (2003) Reproductive dynamics of broadbill swordfish, *Xiphias gladius*, in the domestic longline fishery off eastern Australia. Marine and Freshwater Research. 54:1-18

## 8. Benefits and Adoption

This study provides the first assessment of age and growth of swordfish in Australian waters. It has revealed a number of features of the animal's biology and proposed areas for future study that will support sustainable management of the fishery.

The benefits of studies such as this one usually take some time to flow through to management. However, this study was developed in conjunction with an operational model for the fishery (Campbell and Dowling 2003). This model presents scenarios based on the biology of the species and different strategies and intensities of fishing. As such, the information gained will be directly integrated into our understanding of the fishery. The developing operational model relied on data from northern hemisphere studies. However, this study has shown that different population parameters exist for the species in Australian waters.

### 8.1. Reference

Campbell, R. A. and Dowling, N. (2003) Development of an operational model and evaluation of harvest strategies for the Eastern Tuna and Billfish fishery. Project 1999/107, Fisheries Research and Development Corporation, Canberra

### 9. Planned outcomes

The planned outcomes of the project were to improve the biological parameters required for age-based stock assessments of broadbill swordfish in the Australian region. The results of this project have contributed to the body of knowledge of the biology, lifehistory traits and population dynamics of swordfish. The parameters we determined for the age and growth of swordfish in the region will support age-based stock assessments for the species in Australian waters.

# 10. Further Development

The accuracy of swordfish age and growth studies would benefit immensely from a coordinated catch and release tagging program which incorporated chemical marking of

hard-parts. Such a study would enable direct validation of increment formation and thus confirm what presently relies on indirect methods of increment validation. Present work towards developing appropriate techniques for handling and releasing swordfish in relation to archival tagging experiments may help towards resolving the problem of post handling mortality of swordfish.

The study showed the age of maturity for female swordfish in Australian waters was the highest reported yet for female swordfish. This result relied on interpretation of reproductive stage determined from histology (Young et al 2003). In that study the methodology used to obtain the resulting size at maturity, although justified, differed from other studies. As age at maturity is an important consideration in determining impacts of fishing, an evaluation of the histological criteria used to assign maturity stage to eggs in mature and maturing swordfish would help resolve uncertainty in the reproductive parameters used in stock assessments of this species. If our interpretation is correct it may help to explain the observed rapid declines in swordfish stocks elsewhere in the world.

To understand whether the smaller size classes of swordfish are the result of enhanced recruitment or to fishing impacts will need careful monitoring. The ongoing size monitoring work being carried out at processors along the eastern seaboard is the most cost effective way of following the size structure of the catch. The developing database should be able to identify significant long term changes in the size composition of the catch. As such this monitoring work should be continued and potential methodologies for identifying the sex of swordfish trunks post processing should be investigated.

Finally, the techniques and expertise developed for this and other studies by this organization in recent years could provide a platform for similar studies of target and bycatch species of the Eastern Tuna and Billfish fishery for which key population parameters are missing.

# 11. Intellectual Property

No intellectual property is claimed

# 12. Reports, publications and presentations

#### Written material

- Young, J. W., Drake, A. and Groison, A. L. (2003) Age and Growth of Broadbill
  Swordfish (*Xiphias gladius*) from Eastern Australian Waters preliminary results.
  BBRG 8 SCTB 16, Mooloolaba July 9 -15 2003
- Young, J. W., Drake, A. and Langridge, M. (in preparation for MFR) Age and growth of broadbill swordfish, *Xiphias gladius*, from Australian waters

#### Seminars

- Young, J. W., Drake, A. and Groison, A. L. (2003) Age and Growth of Broadbill Swordfish (*Xiphias gladius*) from Eastern Australian Waters – preliminary results. BBRG 8 - SCTB 16, Mooloolaba July 9 -15 2003
- Young, J. W. (2004) Age and Growth of Broadbill Swordfish (*Xiphias gladius*) from Australian Waters. 55<sup>th</sup> Annual Tuna Conference, Lake Arrowhead, California USA
- Young, J. W. (2004) Age and Growth of Broadbill Swordfish (*Xiphias gladius*) from Australian Waters. 3<sup>rd</sup> International Otolith Symposium, Townsville

### Staff

Staff Jock Young Anita Drake Anne-Laure Groisson Melissa Langridge Thor Carter

#### Position

Principal Investigator Laboratory technician Research associate CSIRO Student scholar Field technician

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI     | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|--------|------------|
|      |           |            |           |     | Final |        |     | Confidence |        | Confidence |
| 13   | 06-Nov-98 | -25.024999 | 154.375   | 153 | 176   |        | 3   | 2          | 1.0999 | 2          |
| 14   | 06-Nov-98 | -25.024999 | 154.375   | 130 | 152   |        | 3   | 3          | 0.9000 | 3          |
| 15   | 06-Nov-98 | -25.024999 | 154.375   | 100 | 118   |        | 1   | 3          | 0.7999 | 3          |
| 16   | 06-Nov-98 | -25.024999 | 154.375   | 146 | 166   |        | 3   | 2          | 0.7000 | 2          |
| 17   | 06-Nov-98 | -25.024999 | 154.375   | 153 | 171   |        | 3   | 3          | 0.3999 | 3          |
| 19   | 07-Nov-98 | -25.383333 | 154.19999 | 170 | 192   |        | 6   | 3          | 0.2999 | 3          |
| 20   | 08-Nov-98 | -25.583332 | 154.60000 | 153 | 175   |        | 6   | 3          | 0.2000 | 3          |
| 22   | 08-Nov-98 | -25.583332 | 154.60000 | 154 | 179   |        | 5   | 3          | 0.3000 | 3          |
| 23   | 08-Nov-98 | -25.583332 | 154.60000 | 87  | 101   |        | 1   | 3          | 0.6999 | 3          |
| 24   | 08-Nov-98 | -25.583332 | 154.60000 | 176 | 195   |        | 6   | 2          | 0.4000 | 2          |
| 25   | 08-Nov-98 | -25.583332 | 154.60000 | 209 | 228   |        | 7   | 3          | 0.5    | 3          |
| 26   | 08-Nov-98 | -25.583332 | 154.60000 | 138 | 160   |        | 4   | 3          | 0.5    | 3          |
| 27   | 08-Nov-98 | -25.583332 | 154.60000 | 115 | 132   |        | 3   | 1          | 0.2000 | 1          |
| 28   | 08-Nov-98 | -25.583332 | 154.60000 | 157 | 180   |        | 6   | 3          | 0.5    | 3          |
| 29   | 09-Nov-98 | -25.549999 | 154.875   | 170 | 191   |        | 5   | 2          | 0.4000 | 2          |
| 30   | 09-Nov-98 | -25.549999 | 154.875   | 179 | 201   |        | 12  | 4          | 0.1999 | 4          |
| 31   | 09-Nov-98 | -25.549999 | 154.875   | 90  | 104   |        | 1   | 2          | 0.6000 | 2          |
| 32   | 09-Nov-98 | -25.549999 | 154.875   | 134 | 152   |        | 2   | 3          | 0.9000 | 3          |
| 34   | 29-Nov-98 | -26.766666 | 155.10000 | 129 | 148   |        | 4   | 3          | 0.3000 | 3          |
| 35   | 29-Nov-98 | -26.766666 | 155.10000 | 167 | 188   |        | 5   | 2          | 0.4000 | 2          |
| 36   | 29-Nov-98 | -26.766666 | 155.10000 | 167 | 188   |        | 4   | 3          | 0.2000 | 3          |
| 38   | 29-Nov-98 | -26.766666 | 155.10000 | 158 | 179   |        | 6   | 3          | 0.1999 | 3          |
| 39   | 30-Nov-98 | -26.133333 | 155.125   | 136 | 155   |        | 3   | 3          | 0.2999 | 3          |
| 40   | 30-Nov-98 | -26.133333 | 155.125   | 176 | 198   |        | 7   | 2          | 0.1999 | 2          |
| 41   | 30-Nov-98 | -26.133333 | 155.125   | 138 | 157   |        | 4   | 3          | 0.4000 | 3          |
| 42   | 30-Nov-98 | -26.133333 | 155.125   | 122 | 140   |        | 3   | 2          | 0.7999 | 2          |
| 43   | 30-Nov-98 | -26.133333 | 155.125   | 173 | 195   |        | 6   | 3          | 0.1999 | 3          |
| 44   | 30-Nov-98 | -26.133333 | 155.125   | 142 | 161   |        | 4   | 3          | 0.7000 | 3          |
| 80   | 27-Feb-95 | -18        | 151       | 154 | 171   |        | 5   | 1          | 0.1999 | 1          |
| 81   | 12-Mar-95 | -15        | 152       | 113 | 129   |        | 2   | 4          | 0.7999 | 4          |
| 82   | 09-Mar-95 | -15        | 152       | 147 | 167   | female | 5   | 4          | 0.1999 | 4          |
| 83   | 10-Mar-95 | -19        | 154       | 144 | 167   | male   | 3   | 2          | 0.5999 | 2          |
| 84   | 30-Nov-98 | -26.133333 | 155.125   | 162 | 183   |        | 7   | 3          | 0.0999 | 3          |
| 85   | 30-Nov-98 | -26.133333 | 155.125   | 122 | 140   |        | 3   | 2          | 0.2000 | 2          |
| 86   | 06-Nov-98 | -25.024999 | 154.375   | 145 | 163   |        | 3   | 2          | 0.9000 | 2          |
| 87   | 03-Sep-95 |            |           |     | 106   |        | 1   | 2          | 0.3999 | 2          |
| 88   | 03-Sep-95 |            |           | 125 | 145   |        | 3   | 2          | 0.9999 | 2          |
| 89   | 04-Sep-95 | -35        | 159       | 187 | 207   |        | 7   | 2          | 0.8000 | 2          |
| 90   | 04-Sep-95 | -35        | 159       | 117 | 132   |        | 2   | 2          | 0.6000 | 2          |
| 91   | 05-Sep-95 | -30        | 158.5     |     |       |        | 2   | 2          | 1.1000 | 2          |
| 92   | 05-Sep-95 | -30        | 158.5     | 122 | 140   |        | 2   | 2          | 1.2999 | 2          |
| 93   | 06-Sep-95 | -30        | 159       | 169 | 196   |        | 4   | 2          | 0.2000 | 2          |
| 94   | 06-Sep-95 | -30        | 159       | 129 | 146   |        | 2   | 3          | 1.1000 | 3          |
| 95   | 07-Sep-95 | -30        | 159       | 103 | 117   |        | 1   | 2          | 0.9999 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI     | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|--------|------------|
|      |           |            |           |     | Final |        |     | Confidence |        | Confidence |
| 96   | 07-Sep-95 | -30        | 159       | 143 | 163   |        | 4   | 2          | 0.5    | 2          |
| 97   | 07-Sep-95 | -30        | 159       | 179 | 202   |        | 4   | 2          | 0.5999 | 2          |
| 98   | 09-Sep-95 | -30        | 158       | 174 | 193   |        | 4   | 2          | 0.3000 | 2          |
| 99   | 09-Sep-95 | -30        | 158       | 169 | 189   |        | 4   | 2          | 0.3999 | 2          |
| 100  | 31-Jul-97 | -32        | 155       | 141 | 160   | male   | 3   | 2          | 0.5    | 2          |
| 101  | 08-Aug-97 | -28.850000 | 158.57499 | 138 | 160   | male   | 5   | 2          | 0.3000 | 2          |
| 102  | 20-Sep-99 | -11        | 96        | 134 | 151   | male   |     | 5          |        | 5          |
| 103  | 22-Sep-99 | -12        | 108       | 92  | 108   |        | 2   | 3          | 0.22   | 3          |
| 104  | 20-Sep-99 | -11        | 96        | 134 | 153   |        | 4   | 3          | 0.14   | 3          |
| 105  | 20-Sep-99 | -11        | 96        | 90  | 106   | female | 2   | 4          | 0.19   | 4          |
| 106  | 20-Sep-99 | -11        | 96        | 157 | 176   | male   | 8   | 4          | 0.27   | 4          |
| 108  | 20-Sep-99 | -11        | 96        | 129 | 145   | female | 5   | 3          | 0.3    | 3          |
| 109  | 17-Sep-99 | -13        | 96        | 68  | 82    | female | 1   | 2          | 0.46   | 2          |
| 110  | 21-Oct-99 | -27.75     | 155.85000 | 152 | 172   | female | 4   | 2          |        | 2          |
| 111  | 20-Oct-99 | -27.466667 | 155.92500 | 148 | 168   | female |     | 5          |        | 5          |
| 112  | 20-Oct-99 | -27.466667 | 155.92500 | 166 | 187   | female | 4   | 2          |        | 2          |
| 113  | 20-Oct-99 | -27.466667 | 155.92500 | 143 | 163   | male   | 5   | 3          |        | 3          |
| 115  | 22-Oct-99 | -27.783332 | 155.82501 | 138 | 157   | female | 6   | 3          | 0.33   | 3          |
| 116  | 21-Oct-99 | -27.75     | 155.85000 | 150 | 170   | female | 4   | 3          |        | 3          |
| 118  | 20-Oct-99 | -27.466667 | 155.92500 | 220 | 245   | female | 11  | 4          | 0.26   | 4          |
| 119  | 21-Oct-99 | -27.75     | 155.85000 | 162 | 183   | male   | 9   | 4          | 0.06   | 4          |
| 120  | 21-Oct-99 | -27.75     | 155.85000 | 167 | 188   | female | 7   | 4          | 0.77   | 4          |
| 121  | 20-Oct-99 | -27.466667 | 155.92500 | 195 | 218   | female | 7   | 3          | 0.38   | 3          |
| 122  | 20-Oct-99 | -27.466667 | 155.92500 | 125 | 143   | male   | 3   | 4          | 0.15   | 4          |
| 124  | 22-Oct-99 | -27.783332 | 155.82501 | 157 | 177   | male   | 5   | 2          |        | 2          |
| 125  | 22-Oct-99 | -27.783332 | 155.82501 | 162 | 183   | female | 7   | 4          |        | 4          |
| 126  | 21-Oct-99 | -27.75     | 155.85000 | 130 | 149   | female | 5   | 1          |        | 1          |
| 127  | 22-Oct-99 | -27.783332 | 155.82501 | 208 | 232   | female | 7   | 2          | 0.39   | 2          |
| 128  | 21-Oct-99 | -27.75     | 155.85000 | 163 | 184   | female | 7   | 3          | 0.22   | 3          |
| 129  | 22-Oct-99 | -27.783332 | 155.82501 | 187 | 209   | male   | 10  | 3          | 0.22   | 3          |
| 131  | 22-Oct-99 | -27.783332 | 155.82501 | 198 | 221   | female | 7   | 2          |        | 2          |
| 132  | 21-Oct-99 | -27.75     | 155.85000 | 155 | 175   | female | 5   | 2          |        | 2          |
| 133  | 22-Oct-99 | -27.783332 | 155.82501 | 159 | 180   | male   | 5   | 2          |        | 2          |
| 134  | 21-Oct-99 | -27.75     | 155.85000 | 196 | 219   | female | 11  | 3          | 0.14   | 3          |
| 135  | 22-Oct-99 | -27.783332 | 155.82501 | 113 | 131   | female | 5   | 2          | 0.27   | 2          |
| 136  | 22-Oct-99 | -27.783332 | 155.82501 | 153 | 173   | male   | 7   | 2          | 0.25   | 2          |
| 137  | 22-Oct-99 | -27.783332 | 155.82501 | 160 | 181   | female | 7   | 3          | 0.18   | 3          |
| 138  | 22-Oct-99 | -27.783332 | 155.82501 | 151 | 171   | male   | 6   | 1          | 0.25   | 1          |
| 139  | 22-Oct-99 | -27.783332 | 155.82501 | 168 | 189   | male   | 7   | 2          |        | 2          |
| 140  | 22-Oct-99 | -27.783332 | 155.82501 | 193 | 216   | female | 8   | 3          | 0.39   | 3          |
| 141  | 22-Oct-99 | -27.783332 | 155.82501 | 179 | 201   | male   | 9   | 2          | 0.14   | 2          |
| 142  | 22-Oct-99 | -27.783332 | 155.82501 | 108 | 125   | male   | 5   | 3          | 0.21   | 3          |
| 143  | 18-Oct-99 | -27.200000 | 155.08332 | 167 | 188   | female | 6   | 2          |        | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL | Sex    | AGE    | Age | MI   | MI |
|------|-----------|------------|-----------|-----|------|--------|--------|-----|------|----|
| 144  | 21 Oct 00 | 27.75      | 155 85000 | 149 | 168  | famala | 4      | 2   | 0.1  | 2  |
| 144  | 21-Oct-99 | -27.75     | 155.76666 | 140 | 100  | fomale | 4      | 2   | 0.1  | 2  |
| 145  | 19-001-99 | -27.549999 | 155.76666 | 107 | 215  | male   | 0<br>0 | 3   | 0.27 | 3  |
| 140  | 19-001-99 | -21.349999 | 155.70000 | 192 | 192  | mala   | 0      | 2   | 0.27 | 2  |
| 14/  | 21-Oct-99 | -21.15     | 155.85000 | 102 | 105  | famala | 0      | 5   | 0.22 | 5  |
| 140  | 21-Oct-99 | -21.15     | 155.85000 | 200 | 210  | famale | 12     | 1   | 0.27 | 1  |
| 149  | 21-Oct-99 | -21.15     | 155.85000 | 200 | 223  | lemale | 12     | 2   |      | 2  |
| 150  | 19-Oct-99 | -27.549999 | 155./0000 | 126 | 144  | female | 2      | 1   | 0.1  | 1  |
| 151  | 18-Oct-99 | -27.200000 | 155.08332 | 136 | 155  | Temale | с<br>7 | 2   | 0.1  | 2  |
| 152  | 20-Oct-99 | -27.466667 | 155.92500 | 169 | 190  | male   | /      | 4   | 0.07 | 4  |
| 153  | 21-Oct-99 | -27.75     | 155.85000 | 123 | 141  | male   | 4      | 4   | 0.27 | 4  |
| 154  | 21-Oct-99 | -27.75     | 155.85000 | 129 | 148  | female | 3      | 2   |      | 2  |
| 155  | 18-Oct-99 | -27.200000 | 155.08332 | 172 | 193  | female | 9      | 3   |      | 3  |
| 156  | 18-Oct-99 | -27.200000 | 155.08332 | 201 | 224  | female | 8      | 2   |      | 2  |
| 157  | 20-Oct-99 | -27.466667 | 155.92500 | 168 | 189  | male   | 6      | 4   | 0.4  | 4  |
| 158  | 21-Oct-99 | -27.75     | 155.85000 | 173 | 195  | male   | 6      | 3   |      | 3  |
| 159  | 19-Oct-99 | -27.549999 | 155.76666 | 143 | 163  | female | 6      | 3   | 0.59 | 3  |
| 160  | 18-Oct-99 | -27.200000 | 155.08332 | 109 | 126  | female | 3      | 1   |      | 1  |
| 161  | 21-Oct-99 | -27.75     | 155.85000 | 230 | 255  | female | 12     | 3   | 0.3  | 3  |
| 162  | 21-Oct-99 | -27.75     | 155.85000 | 166 | 187  | female | 5      | 2   |      | 2  |
| 163  | 21-Oct-99 | -27.75     | 155.85000 | 120 | 138  | female | 3      | 2   |      | 2  |
| 164  | 20-Oct-99 | -27.466667 | 155.92500 | 180 | 202  | male   | 6      | 4   |      | 4  |
| 165  | 18-Oct-99 | -27.200000 | 155.08332 | 102 | 119  | male   | 3      | 3   | 0.2  | 3  |
| 166  | 21-Oct-99 | -27.75     | 155.85000 | 168 | 189  | female | 8      | 3   |      | 3  |
| 170  | 17-Oct-99 | -27.083332 | 154.80833 | 164 | 185  | male   | 7      | 4   |      | 4  |
| 171  | 19-Dec-99 | -27.383335 | 157.70834 | 209 | 233  | female | 9      | 2   | 0.18 | 2  |
| 172  | 20-Dec-99 | -28.566665 | 157.42500 | 184 | 206  | female | 10     | 2   | 0.1  | 2  |
| 173  | 20-Dec-99 | -28.566665 | 157.42500 | 206 | 230  | female | 9      | 4   | 0.49 | 4  |
| 174  | 16-Dec-99 | -28.558332 | 158.25833 | 195 | 218  | female | 8      | 3   |      | 3  |
| 175  | 17-Dec-99 | -28.741666 | 157.75833 | 202 | 225  | female | 9      | 3   |      | 3  |
| 176  | 17-Dec-99 | -28.741666 | 157.75833 | 189 | 212  | female | 8      | 3   | 0.3  | 3  |
| 177  | 18-Dec-99 | -28.875    | 157.74166 | 157 | 177  | female | 6      | 2   | 0.11 | 2  |
| 178  | 17-Dec-99 | -28.741666 | 157.75833 | 109 | 126  | female | 2      | 3   | 0.47 | 3  |
| 179  | 16-Dec-99 | -28.558332 | 158.25833 | 175 | 197  | female | 9      | 2   | 0.07 | 2  |
| 180  | 17-Dec-99 | -28.741666 | 157.75833 | 135 | 154  | female | 4      | 2   | 0.33 | 2  |
| 181  | 18-Dec-99 | -28.875    | 157.74166 | 195 | 218  | female | 7      | 2   | 0.41 | 2  |
| 182  | 18-Dec-99 | -28.875    | 157.74166 | 156 | 176  | male   | 6      | 4   |      | 4  |
| 183  | 20-Dec-99 | -28.566665 | 157.42500 | 122 | 140  | female | 2      | 2   | 0.52 | 2  |
| 184  | 18-Dec-99 | -28.875    | 157.74166 | 171 | 192  | female | 7      | 3   |      | 3  |
| 186  | 18-Oct-99 | -27.200000 | 155.08332 | 152 | 172  | male   | 7      | 2   | 0.15 | 2  |
| 187  | 17-Oct-99 | -27.083332 | 154.80833 | 132 | 151  | female | 6      | 3   |      | 3  |
| 188  | 16-Oct-99 | -26.383333 | 154.91667 | 127 | 146  | female | 4      | 2   | 0.1  | 2  |
| 189  | 17-Oct-99 | -27.083332 | 154.80833 | 152 | 172  | male   | 6      | 2   |      | 2  |
| 191  | 18-Oct-99 | -27.200000 | 155.08332 | 110 | 127  | male   | 2      | 2   | 0.62 | 2  |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 192  | 17-Oct-99 | -27.083332 | 154.80833 | 121 | 141   | female | 6   | 4          | 0.31 | 4          |
| 193  | 19-Dec-99 | -27.383335 | 157.70834 | 131 | 150   | female | 4   | 2          | 0.3  | 2          |
| 195  | 18-Dec-99 | -28.875    | 157.74166 | 263 | 290   | female | 15  | 3          |      | 3          |
| 196  | 16-Dec-99 | -28.558332 | 158.25833 | 257 | 284   | female | 15  | 4          | 0.16 | 4          |
| 197  | 21-Dec-99 | -28.599998 | 157.23333 | 174 | 196   | female | 7   | 4          | 0.18 | 4          |
| 198  | 19-Dec-99 | -27.383335 | 157.70834 | 150 | 170   | male   | 5   | 3          |      | 3          |
| 199  | 21-Dec-99 | -28.599998 | 157.23333 | 164 | 185   | male   | 8   | 3          | 0.12 | 3          |
| 200  | 20-Dec-99 | -28.566665 | 157.42500 | 133 | 152   | female |     | 5          |      | 5          |
| 201  | 17-Dec-99 | -28.741666 | 157.75833 | 197 | 220   | female | 8   | 4          | 0.42 | 4          |
| 202  | 18-Dec-99 | -28.875    | 157.74166 | 217 | 241   | female | 11  | 3          | 0.18 | 3          |
| 203  | 17-Dec-99 | -28.741666 | 157.75833 | 150 | 170   | female | 6   | 3          |      | 3          |
| 204  | 17-Dec-99 | -28.741666 | 157.75833 | 156 | 176   | male   | 6   | 2          | 0.28 | 2          |
| 205  | 21-Dec-99 | -28.599998 | 157.23333 | 179 | 201   | female | 6   | 3          |      | 3          |
| 206  | 18-Dec-99 | -28.875    | 157.74166 | 163 | 184   | male   | 5   | 2          | 0.42 | 2          |
| 207  | 18-Dec-99 | -28.875    | 157.74166 | 177 | 199   | male   | 5   | 4          | 0.25 | 4          |
| 208  | 18-Dec-99 | -28.875    | 157.74166 | 150 | 170   | female | 5   | 2          |      | 2          |
| 209  | 18-Dec-99 | -28.875    | 157.74166 | 160 | 181   | female | 6   | 3          | 0.24 | 3          |
| 210  | 20-Dec-99 | -28.566665 | 157.42500 | 133 | 152   | female | 4   | 1          |      | 1          |
| 211  | 16-Dec-99 | -28.558332 | 158.25833 | 210 | 234   | female | 10  | 4          | 0.16 | 4          |
| 212  | 19-Dec-99 | -27.383335 | 157.70834 | 175 | 197   | female | 10  | 4          | 0.37 | 4          |
| 213  | 16-Dec-99 | -28.558332 | 158.25833 | 140 | 159   | female | 4   | 2          | 0.44 | 2          |
| 214  | 16-Dec-99 | -28.558332 | 158.25833 | 212 | 236   | female | 11  | 4          |      | 4          |
| 215  | 20-Dec-99 | -28.566665 | 157.42500 | 159 | 180   | female | 6   | 3          | 0.41 | 3          |
| 217  | 18-Feb-00 | -28.858333 | 160.29167 | 149 | 169   | female | 5   | 2          | 0.64 | 2          |
| 218  | 12-Feb-00 | -27.591667 | 160.28332 |     |       | female | 9   | 3          |      | 3          |
| 219  | 24-Feb-00 | -28.875    | 160.23333 | 220 | 245   | female | 11  | 4          | 0.32 | 4          |
| 220  | 12-Feb-00 | -27.591667 | 160.28332 | 214 | 238   | female | 9   | 4          | 0.13 | 4          |
| 221  | 12-Feb-00 | -27.591667 | 160.28332 | 207 | 231   | male   | 8   | 4          |      | 4          |
| 222  | 22-Feb-00 | -28.908332 | 160.39166 | 161 | 182   | female | 6   | 2          | 0.64 | 2          |
| 223  | 22-Feb-00 | -28.908332 | 160.39166 | 104 | 121   | female | 3   | 2          | 0.44 | 2          |
| 224  | 18-Feb-00 | -28.858333 | 160.29167 | 219 | 244   | female | 11  | 4          | 0.2  | 4          |
| 225  | 14-Feb-00 | -28.233333 | 160.27499 | 213 | 237   | female | 7   | 3          |      | 3          |
| 226  | 14-Feb-00 | -28.233333 | 160.27499 | 120 | 138   | female | 4   | 3          | 0.28 | 3          |
| 227  | 22-Feb-00 | -28.908332 | 160.39166 | 181 | 203   | female | 6   | 2          | 0.13 | 2          |
| 228  | 14-Feb-00 | -28.233333 | 160.27499 | 230 | 255   | female |     | 5          |      | 5          |
| 229  | 14-Feb-00 | -28.233333 | 160.27499 | 162 | 183   | female | 6   | 3          | 0.23 | 3          |
| 230  | 14-Feb-00 | -28.233333 | 160.27499 | 177 | 199   | male   | 7   | 2          | 0.17 | 2          |
| 231  | 22-Feb-00 | -28.908332 | 160.39166 | 172 | 193   | male   | 8   | 4          |      | 4          |
| 232  | 14-Feb-00 | -28.233333 | 160.27499 | 147 | 167   | female | 4   | 2          | 0.28 | 2          |
| 233  | 22-Feb-00 | -28.908332 | 160.39166 | 148 | 168   | male   | 7   | 3          | 0.22 | 3          |
| 234  | 14-Feb-00 | -28.233333 | 160.27499 | 134 | 153   | female | 4   | 2          | 0.24 | 2          |
| 235  | 22-Feb-00 | -28.908332 | 160.39166 | 153 | 173   | female | 5   | 2          | 0.33 | 2          |
| 237  | 22-Feb-00 | -28.908332 | 160.39166 | 212 | 236   | female | 8   | 3          | 0.4  | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 238  | 22-Feb-00 | -28.908332 | 160.39166 | 141 | 160   | female | 6   | 2          | 0.25 | 2          |
| 239  | 22-Feb-00 | -28.908332 | 160.39166 | 102 | 119   | female | 3   | 2          | 0.34 | 2          |
| 240  | 22-Feb-00 | -28.908332 | 160.39166 | 134 | 153   | female | 4   | 2          | 0.35 | 2          |
| 241  | 14-Feb-00 | -28.233333 | 160.27499 | 142 | 161   | male   | 4   | 2          | 0.49 | 2          |
| 242  | 22-Feb-00 | -28.908332 | 160.39166 | 108 | 125   | male   | 2   | 2          | 0.3  | 2          |
| 244  | 14-Feb-00 | -28.233333 | 160.27499 | 162 | 183   | male   | 5   | 3          | 0.17 | 3          |
| 245  | 22-Feb-00 | -28.908332 | 160.39166 | 142 | 161   | female | 5   | 3          | 0.16 | 3          |
| 246  | 22-Feb-00 | -28.908332 | 160.39166 | 100 | 117   | male   | 3   | 2          | 0.18 | 2          |
| 247  | 14-Feb-00 | -28.233333 | 160.27499 | 165 | 186   | male   | 6   | 2          | 0.3  | 2          |
| 248  | 23-Feb-00 | -28.966667 | 160.39999 | 106 | 123   | female | 4   | 2          | 0.16 | 2          |
| 249  | 14-Feb-00 | -28.233333 | 160.27499 | 147 | 167   | male   | 4   | 2          | 0.45 | 2          |
| 250  | 14-Feb-00 | -28.233333 | 160.27499 | 109 | 126   | male   | 3   | 3          | 0.09 | 3          |
| 251  | 22-Feb-00 | -28.908332 | 160.39166 | 99  | 116   | female | 2   | 4          |      | 4          |
| 252  | 17-Feb-00 | -28.575000 | 160.31668 | 165 | 186   | female | 6   | 3          | 0.19 | 3          |
| 253  | 17-Feb-00 | -28.575000 | 160.31668 | 104 | 121   | male   | 2   | 4          | 0.4  | 4          |
| 254  | 18-Feb-00 | -28.858333 | 160.29167 | 101 | 118   | male   | 4   | 4          |      | 4          |
| 255  | 17-Feb-00 | -28.575000 | 160.31668 | 125 | 143   | female | 4   | 3          | 0.42 | 3          |
| 256  | 18-Feb-00 | -28.858333 | 160.29167 | 109 | 126   | female | 2   | 3          | 0.33 | 3          |
| 257  | 12-Feb-00 | -27.591667 | 160.28332 | 123 | 141   | female | 3   | 3          | 0.14 | 3          |
| 258  | 17-Feb-00 | -28.575000 | 160.31668 | 107 | 124   | male   | 2   | 2          | 0.33 | 2          |
| 259  | 17-Feb-00 | -28.575000 | 160.31668 | 118 | 136   | female | 4   | 4          | 0.29 | 4          |
| 260  | 13-Feb-00 | -27.408332 | 160.43333 | 153 | 173   | male   | 5   | 3          | 0.26 | 3          |
| 261  | 13-Feb-00 | -27.408332 | 160.43333 | 120 | 138   | female | 3   | 4          | 0.28 | 4          |
| 262  | 13-Feb-00 | -27.408332 | 160.43333 | 179 | 201   | male   | 6   | 2          | 0.17 | 2          |
| 263  | 13-Feb-00 | -27.408332 | 160.43333 | 177 | 199   | male   | 10  | 3          | 0.13 | 3          |
| 264  | 19-Feb-00 | -28.841667 | 160.29165 | 147 | 167   | female | 5   | 4          | 0.3  | 4          |
| 265  | 19-Feb-00 | -28.841667 | 160.29165 | 176 | 198   | female | 7   | 3          | 0.34 | 3          |
| 266  | 13-Feb-00 | -27.408332 | 160.43333 | 165 | 186   | female | 7   | 1          | 0.34 | 1          |
| 267  | 17-Feb-00 | -28.575000 | 160.31668 | 118 | 136   | male   | 2   | 2          | 0.1  | 2          |
| 268  | 18-Feb-00 | -28.858333 | 160.29167 | 103 | 120   | female | 3   | 4          | 0.56 | 4          |
| 269  | 12-Feb-00 | -27.591667 | 160.28332 | 154 | 174   | female | 6   | 3          | 0.32 | 3          |
| 270  | 19-Feb-00 | -28.841667 | 160.29165 | 146 | 166   | female | 5   | 3          | 0.2  | 3          |
| 271  | 18-Feb-00 | -28.858333 | 160.29167 | 190 | 213   | female | 8   | 3          | 0.22 | 3          |
| 272  | 13-Feb-00 | -27.408332 | 160.43333 | 119 | 137   | male   | 3   | 4          |      | 4          |
| 273  | 14-Feb-00 | -28.233333 | 160.27499 | 233 | 259   | female | 11  | 3          |      | 3          |
| 274  | 17-Feb-00 | -28.575000 | 160.31668 | 102 | 119   | male   | 2   | 3          | 0.29 | 3          |
| 275  | 13-Feb-00 | -27.408332 | 160.43333 | 113 | 131   | female | 4   | 4          | 0.42 | 4          |
| 276  | 13-Feb-00 | -27.408332 | 160.43333 | 189 | 212   | male   | 11  | 4          | 0.11 | 4          |
| 277  | 12-Feb-00 | -27.591667 | 160.28332 | 121 | 139   | female | 6   | 2          | 0.21 | 2          |
| 278  | 17-Feb-00 | -28.575000 | 160.31668 | 122 | 140   | female | 3   | 4          | 0.43 | 4          |
| 279  | 19-Feb-00 | -28.841667 | 160.29165 | 167 | 188   | male   | 6   | 3          | 0.28 | 3          |
| 280  | 13-Feb-00 | -27.408332 | 160.43333 | 124 | 142   | male   | 3   | 4          | 0.36 | 4          |
| 281  | 13-Feb-00 | -27.408332 | 160.43333 | 103 | 120   | male   | 2   | 4          | 0.34 | 4          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 282  | 19-Feb-00 | -28.841667 | 160.29165 | 130 | 149   | female | 3   | 3          | 0.26 | 3          |
| 283  | 17-Feb-00 | -28.575000 | 160.31668 | 165 | 186   | male   | 8   | 2          | 0.45 | 2          |
| 284  | 19-Feb-00 | -28.841667 | 160.29165 | 180 | 202   | female | 8   | 2          | 0.25 | 2          |
| 285  | 13-Feb-00 | -27.408332 | 160.43333 | 173 | 195   | male   | 7   | 3          | 0.13 | 3          |
| 286  | 12-Feb-00 | -27.591667 | 160.28332 | 117 | 135   | female | 3   | 2          | 0.33 | 2          |
| 287  | 17-Feb-00 | -28.575000 | 160.31668 | 127 | 146   | female | 4   | 4          |      | 4          |
| 288  | 13-Feb-00 | -27.408332 | 160.43333 | 175 | 197   | male   | 9   | 3          | 0.31 | 3          |
| 289  | 19-Feb-00 | -28.841667 | 160.29165 | 171 | 192   | male   | 9   | 3          |      | 3          |
| 290  | 19-Feb-00 | -28.841667 | 160.29165 | 188 | 211   | male   | 5   | 4          | 0.29 | 4          |
| 291  | 13-Feb-00 | -27.408332 | 160.43333 | 114 | 132   | male   | 2   | 2          | 0.45 | 2          |
| 292  | 12-Feb-00 | -27.591667 | 160.28332 | 181 | 203   | male   | 7   | 2          |      | 2          |
| 293  | 18-Feb-00 | -28.858333 | 160.29167 | 143 | 163   | female | 4   | 3          | 0.32 | 3          |
| 294  | 19-Feb-00 | -28.841667 | 160.29165 | 119 | 137   | male   | 2   | 4          |      | 4          |
| 295  | 19-Feb-00 | -28.841667 | 160.29165 | 177 | 199   | female | 8   | 3          | 0.22 | 3          |
| 296  | 13-Feb-00 | -27.408332 | 160.43333 | 157 | 177   | female | 6   | 3          | 0.26 | 3          |
| 297  | 24-Feb-00 | -28.875    | 160.23333 | 222 | 247   | female | 9   | 3          | 0.3  | 3          |
| 298  | 20-Feb-00 | -28.783332 | 160.25    | 190 | 213   | female | 8   | 3          | 0.28 | 3          |
| 299  | 20-Feb-00 | -28.783332 | 160.25    | 170 | 191   | female | 6   | 4          | 0.46 | 4          |
| 300  | 20-Feb-00 | -28.783332 | 160.25    | 216 | 240   | female | 9   | 3          |      | 3          |
| 301  | 20-Feb-00 | -28.783332 | 160.25    | 162 | 183   | male   | 4   | 3          | 0.19 | 3          |
| 302  | 20-Feb-00 | -28.783332 | 160.25    | 142 | 161   | male   | 4   | 2          | 0.16 | 2          |
| 303  | 20-Feb-00 | -28.783332 | 160.25    | 100 | 117   | female | 2   | 4          |      | 4          |
| 304  | 21-Feb-00 | -28.908332 | 160.51666 | 194 | 217   | female | 10  | 3          | 0.08 | 3          |
| 305  | 21-Feb-00 | -28.908332 | 160.51666 | 117 | 135   | male   | 4   | 4          | 0.25 | 4          |
| 306  | 21-Feb-00 | -28.908332 | 160.51666 | 213 | 237   | female | 12  | 3          | 0.17 | 3          |
| 307  | 21-Feb-00 | -28.908332 | 160.51666 | 218 | 243   | female | 12  | 4          | 0.3  | 4          |
| 308  | 21-Feb-00 | -28.908332 | 160.51666 | 161 | 182   | female | 7   | 4          | 0.09 | 4          |
| 309  | 20-Feb-00 | -28.783332 | 160.25    | 233 | 259   | female | 13  | 4          | 0.05 | 4          |
| 310  | 21-Feb-00 | -28.908332 | 160.51666 | 146 | 166   | female | 6   | 4          | 0.18 | 4          |
| 311  | 21-Feb-00 | -28.908332 | 160.51666 | 184 | 206   | male   | 8   | 4          | 0.24 | 4          |
| 312  | 21-Feb-00 | -28.908332 | 160.51666 | 152 | 172   | male   | 5   | 3          | 0.71 | 3          |
| 313  | 21-Feb-00 | -28.908332 | 160.51666 | 141 | 160   | female | 4   | 4          | 0.35 | 4          |
| 314  | 21-Feb-00 | -28.908332 | 160.51666 | 152 | 172   | male   | 1   | 4          | 0.85 | 4          |
| 315  | 21-Feb-00 | -28.908332 | 160.51666 | 122 | 140   | female | 4   | 3          | 0.22 | 3          |
| 316  | 21-Feb-00 | -28.908332 | 160.51666 | 133 | 152   | female | 4   | 4          |      | 4          |
| 317  | 21-Feb-00 | -28.908332 | 160.51666 | 168 | 189   | female | 6   | 3          | 0.26 | 3          |
| 318  | 20-Feb-00 | -28.783332 | 160.25    | 103 | 120   | female | 3   | 1          | 0.17 | 1          |
| 319  | 20-Feb-00 | -28.783332 | 160.25    | 146 | 166   |        | 4   | 1          | 0.2  | 1          |
| 320  | 20-Feb-00 | -28.783332 | 160.25    | 146 | 166   | female | 5   | 2          | 0.2  | 2          |
| 321  | 21-Feb-00 | -28.908332 | 160.51666 | 118 | 136   | male   |     | 5          |      | 5          |
| 322  | 20-Feb-00 | -28.783332 | 160.25    | 131 | 150   | female | 3   | 3          | 0.23 | 3          |
| 324  | 21-Feb-00 | -28.908332 | 160.51666 | 131 | 150   | female | 5   | 3          | 0.22 | 3          |
| 325  | 20-Feb-00 | -28.783332 | 160.25    | 152 | 172   | female | 5   | 3          | 0.2  | 3          |

| BBL#       | DATE               | LAT                     | LON       | OFL | LJFL  | Sex     | AGE    | Age        | MI   | MI         |
|------------|--------------------|-------------------------|-----------|-----|-------|---------|--------|------------|------|------------|
|            |                    |                         |           |     | Final |         |        | Confidence |      | Confidence |
| 326        | 21-Feb-00          | -28.908332              | 160.51666 | 161 | 182   | female  | 6      | 3          | 0.12 | 3          |
| 327        | 21-Feb-00          | -28.908332              | 160.51666 | 207 | 231   | female  | 9      | 3          | 0.46 | 3          |
| 328        | 21-Feb-00          | -28.908332              | 160.51666 | 145 | 165   | female  | 3      | 3          | 0.15 | 3          |
| 329        | 21-Feb-00          | -28.908332              | 160.51666 | 228 | 253   | female  | 10     | 4          |      | 4          |
| 330        | 21-Feb-00          | -28.908332              | 160.51666 | 157 | 177   | female  | 6      | 4          | 0.31 | 4          |
| 331        | 21-Feb-00          | -28.908332              | 160.51666 | 197 | 220   | female  | 9      | 3          |      | 3          |
| 332        | 21-Feb-00          | -28.908332              | 160.51666 | 171 | 192   | female  | 6      | 2          |      | 2          |
| 333        | 21-Feb-00          | -28.908332              | 160.51666 | 175 | 197   | female  | 7      | 3          |      | 3          |
| 334        | 21-Feb-00          | -28.908332              | 160.51666 | 205 | 229   | female  | 10     | 4          | 0.13 | 4          |
| 335        | 23-Feb-00          | -28.966667              | 160.39999 | 194 | 217   | female  | 9      | 3          |      | 3          |
| 336        | 23-Feb-00          | -28.966667              | 160.39999 | 194 | 217   | male    | 9      | 2          | 0.15 | 2          |
| 337        | 23-Feb-00          | -28.966667              | 160.39999 | 101 | 118   | female  | 2      | 2          | 0.53 | 2          |
| 338        | 23-Feb-00          | -28.966667              | 160.39999 | 141 | 160   | female  | 6      | 4          | 0.27 | 4          |
| 339        | 24-Feb-00          | -28.875                 | 160.23333 | 106 | 123   | female  | 3      | 4          | 0.05 | 4          |
| 340        | 23-Feb-00          | -28.966667              | 160.39999 | 151 | 171   | female  | 5      | 2          |      | 2          |
| 341        | 23-Feb-00          | -28.966667              | 160.39999 | 104 | 121   | male    | 3      | 3          |      | 3          |
| 342        | 16-Feb-00          | -28.458333              | 160.47500 | 141 | 160   | female  | 7      | 4          | 0.13 | 4          |
| 343        | 16-Feb-00          | -28.458333              | 160.47500 | 109 | 126   | male    | 4      | 2          | 0.14 | 2          |
| 345        | 16-Feb-00          | -28.458333              | 160.47500 | 118 | 136   | female  | 3      | 3          |      | 3          |
| 346        | 16-Feb-00          | -28.458333              | 160.47500 | 232 | 257   | female  | 11     | 2          | 0.12 | 2          |
| 348        | 18-Feb-00          | -28.858333              | 160.29167 | 160 | 181   | female  | 8      | 2          |      | 2          |
| 349        | 16-Feb-00          | -28.458333              | 160.47500 | 106 | 123   | female  | 3      | 4          | 0.16 | 4          |
| 350        | 16-Feb-00          | -28.458333              | 160.47500 | 106 | 123   | female  | 3      | 2          |      | 2          |
| 352        | 16-Feb-00          | -28.458333              | 160.47500 | 100 | 117   | female  | 3      | 4          | 0.21 | 4          |
| 353        | 18-Feb-00          | -28.858333              | 160.29167 | 161 | 182   | male    | 7      | 3          |      | 3          |
| 354        | 18-Feb-00          | -28.858333              | 160.29167 | 171 | 192   | female  | 6      | 3          |      | 3          |
| 355        | 16-Feb-00          | -28.458333              | 160.47500 | 196 | 219   | female  | 8      | 4          |      | 4          |
| 356        | 16-Feb-00          | -28.458333              | 160.47500 | 150 | 170   | male    | 4      | 3          |      | 3          |
| 357        | 12-Feb-00          | -27.591667              | 160.28332 | 116 | 134   | male    | 5      | 2          |      | 2          |
| 358        | 16-Feb-00          | -28.458333              | 160.47500 | 100 | 117   | male    | 1      | 2          |      | 2          |
| 359        | 16-Feb-00          | -28.458333              | 160.47500 | 170 | 191   | female  | 7      | 2          |      | 2          |
| 360        | 16-Feb-00          | -28.458333              | 160.47500 | 141 | 160   | female  | 8      | 4          | 0.32 | 4          |
| 361        | 16-Feb-00          | -28.458333              | 160.47500 | 210 | 234   | female  | 11     | 3          | 0.22 | 3          |
| 362        | 16-Feb-00          | -28 458333              | 160 47500 | 197 | 220   | female  | 13     | 4          | 0.07 | 4          |
| 363        | 21-Dec-99          | -28 599998              | 157 23333 | 226 | 251   | female  | 8      | 4          | 0.36 | . 4        |
| 364        | 22-May-00          | -20 450000              | 157.25555 | 154 | 174   | male    | 6      | 4          | 0.50 | 4          |
| 365        | 22 May 00          | -20.575000              | 153.40007 | 115 | 133   | female  | 4      | 4          | 0.18 | - 4        |
| 366        | 27-101ay-00        | -23 640000              | 154 55000 | 113 | 133   | mala    | ד<br>ר | 4<br>1     | 0.10 | 4<br>1     |
| 367        | $27 - M_{OV} = 00$ | -23.0+7777              | 154 55000 | 124 | 1/1   | female  | 2      | 4          |      | 4          |
| 360        | 27 May 00          | -23.049999<br>23.640000 | 154 55000 | 124 | 142   | fomale  | с<br>л | ے<br>۸     |      | ے<br>۸     |
| 260        | 27 Max 00          | -23.047777<br>23.640000 | 154.55000 | 120 | 144   | formela | 4<br>1 | 4          |      | 4          |
| 270        | 27 May 00          | -23.047777<br>22.640000 | 154.55000 | 110 | 127   | formala | 4      | 5          |      | 5          |
| 370<br>271 | 27-iviay-00        | -23.049999<br>20.575000 | 152 75922 | 113 | 131   | mala    | 5      | 5          | 0.24 | 5          |
| 5/1        | 24-iviay-00        | -20.373000              | 100./0800 | 128 | 147   | male    | Э      | 2          | 0.24 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 372  | 24-May-00 | -20.575000 | 153.75833 | 101 | 118   | male   |     | 5          |      | 5          |
| 373  | 24-May-00 | -20.575000 | 153.75833 | 137 | 156   | male   | 5   | 4          | 0.39 | 4          |
| 374  | 25-May-00 | -20.983333 | 154.76666 | 148 | 168   | female | 4   | 4          | 0.56 | 4          |
| 375  | 22-May-00 | -20.450000 | 153.46667 | 150 | 170   | male   | 5   | 4          | 0.05 | 4          |
| 376  | 24-May-00 | -20.575000 | 153.75833 | 119 | 137   | female | 4   | 2          | 0.15 | 2          |
| 377  | 22-May-00 | -20.450000 | 153.46667 | 145 | 165   | female |     | 5          |      | 5          |
| 378  | 22-May-00 | -20.450000 | 153.46667 | 168 | 189   | male   | 9   | 4          |      | 4          |
| 379  | 26-May-00 | -22.158332 | 154.47500 | 123 | 141   | female | 3   | 4          | 0.53 | 4          |
| 380  | 26-May-00 | -22.158332 | 154.47500 | 115 | 133   | male   | 3   | 3          | 0.29 | 3          |
| 381  | 23-May-00 | -20.191665 | 153.5     | 130 | 149   | male   | 4   | 4          | 0.43 | 4          |
| 382  | 22-May-00 | -20.450000 | 153.46667 | 105 | 122   | male   | 3   | 3          | 0.33 | 3          |
| 383  | 25-May-00 | -20.983333 | 154.76666 | 171 | 192   | male   | 8   | 3          | 0.37 | 3          |
| 384  | 23-May-00 | -20.191665 | 153.5     | 123 | 141   | male   | 1   | 4          |      | 4          |
| 385  | 24-May-00 | -20.575000 | 153.75833 | 125 | 143   |        | 2   | 3          | 0.53 | 3          |
| 386  | 26-May-00 | -22.158332 | 154.47500 | 130 | 149   | female | 4   | 4          | 1.01 | 4          |
| 387  | 25-May-00 | -20.983333 | 154.76666 | 126 | 144   | female | 3   | 3          | 0.2  | 3          |
| 388  | 26-May-00 | -22.158332 | 154.47500 | 137 | 156   | female | 2   | 4          | 0.22 | 4          |
| 389  | 26-May-00 | -22.158332 | 154.47500 | 109 | 126   | female | 3   | 2          | 0.22 | 2          |
| 390  | 23-May-00 | -20.191665 | 153.5     | 131 | 150   | male   | 4   | 4          | 0.48 | 4          |
| 391  | 23-May-00 | -20.191665 | 153.5     | 125 | 143   | male   | 3   | 3          | 0.14 | 3          |
| 392  | 23-May-00 | -20.191665 | 153.5     | 153 | 173   | male   | 7   | 3          | 0.18 | 3          |
| 393  | 22-May-00 | -20.450000 | 153.46667 | 95  | 111   | female | 1   | 3          | 0.49 | 3          |
| 394  | 22-May-00 | -20.450000 | 153.46667 | 108 | 125   | female | 3   | 3          | 0.27 | 3          |
| 395  | 23-May-00 | -20.191665 | 153.5     | 99  | 116   | female | 2   | 3          | 0.41 | 3          |
| 396  | 24-May-00 | -20.575000 | 153.75833 | 210 | 234   | female | 11  | 3          | 0.25 | 3          |
| 397  | 21-May-00 | -20.283332 | 153.55000 | 125 | 143   |        | 3   | 2          | 0.34 | 2          |
| 398  | 21-May-00 | -20.283332 | 153.55000 | 152 | 172   |        | 3   | 3          | 0.12 | 3          |
| 399  | 27-May-00 | -23.649999 | 154.55000 | 92  | 108   |        | 2   | 3          | 0.36 | 3          |
| 400  | 22-May-00 | -20.450000 | 153.46667 | 152 | 172   |        |     |            |      |            |
| 401  | 17-Dec-99 | -28.741666 | 157.75833 | 166 | 187   | female | 8   | 4          |      | 4          |
| 402  | 11-Sep-00 | -25.950000 | 160.13333 | 202 | 225   | female | 8   | 3          | 0.26 | 3          |
| 403  | 10-Sep-00 | -27.183332 | 161.18333 | 176 | 198   | female | 7   | 3          | 0.42 | 3          |
| 404  | 07-Sep-00 | -27        | 161.26666 | 140 | 159   | male   | 6   | 4          | 0.29 | 4          |
| 405  | 08-Sep-00 | -27.183332 | 161.18333 | 101 | 118   | female | 2   | 4          | 0.39 | 4          |
| 406  | 07-Sep-00 | -27        | 161.26666 | 183 | 205   | male   | 9   | 4          | 0.39 | 4          |
| 407  | 08-Sep-00 | -27.183332 | 161.18333 | 117 | 135   | female | 3   | 3          | 0.42 | 3          |
| 408  | 08-Sep-00 | -27.183332 | 161.18333 | 168 | 189   | male   | 7   | 4          | 0.37 | 4          |
| 409  | 07-Sep-00 | -27        | 161.26666 | 104 | 121   | female | 2   | 3          | 0.6  | 3          |
| 410  | 08-Sep-00 | -27.183332 | 161.18333 | 186 | 208   | female | 7   | 3          | 0.39 | 3          |
| 411  | 08-Sep-00 | -27.183332 | 161.18333 | 131 | 150   | female | 3   | 4          | 0.18 | 4          |
| 412  | 08-Sep-00 | -27.183332 | 161.18333 | 183 | 205   | female | 10  | 2          | 0.15 | 2          |
| 413  | 08-Sep-00 | -27.183332 | 161.18333 | 133 | 152   | male   | 5   | 2          | 0.21 | 2          |
| 414  | 10-Sep-00 | -27.183332 | 161.18333 | 129 | 148   | female | 7   | 2          | 0.16 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 415  | 10-Sep-00 | -27.183332 | 161.18333 | 134 | 153   | male   | 5   | 3          | 0.31 | 3          |
| 416  | 10-Sep-00 | -27.183332 | 161.18333 | 110 | 127   | female | 2   | 1          | 0.42 | 1          |
| 417  | 10-Sep-00 | -27.183332 | 161.18333 | 144 | 164   | male   | 4   | 3          | 0.23 | 3          |
| 418  | 10-Sep-00 | -27.183332 | 161.18333 | 182 | 204   | male   | 7   | 4          | 0.03 | 4          |
| 419  | 10-Sep-00 | -27.183332 | 161.18333 | 109 | 126   | female |     | 5          |      | 5          |
| 420  | 10-Sep-00 | -27.183332 | 161.18333 | 135 | 154   | male   | 6   | 3          | 0.2  | 3          |
| 421  | 11-Sep-00 | -25.950000 | 160.13333 | 148 | 168   | female | 4   | 4          | 0.34 | 4          |
| 422  | 10-Sep-00 | -27.183332 | 161.18333 | 150 | 170   | female |     | 5          |      | 5          |
| 423  | 11-Sep-00 | -25.950000 | 160.13333 | 154 | 174   | female | 7   | 4          | 0.04 | 4          |
| 424  | 10-Sep-00 | -27.183332 | 161.18333 | 126 | 144   | female | 5   | 4          | 0.43 | 4          |
| 425  | 11-Sep-00 | -25.950000 | 160.13333 | 136 | 155   | female | 5   | 4          | 0.36 | 4          |
| 426  | 11-Sep-00 | -25.950000 | 160.13333 | 138 | 157   | female | 4   | 3          | 0.21 | 3          |
| 427  | 11-Sep-00 | -25.950000 | 160.13333 | 131 | 150   | female | 8   | 4          | 0.1  | 4          |
| 428  | 11-Sep-00 | -25.950000 | 160.13333 | 172 | 193   | male   | 10  | 3          | 0.32 | 3          |
| 429  | 11-Sep-00 | -25.950000 | 160.13333 | 184 | 206   | male   | 12  | 3          |      | 3          |
| 430  | 11-Sep-00 | -25.950000 | 160.13333 | 108 | 125   | female | 2   | 1          | 0.54 | 1          |
| 431  | 13-Sep-00 | -25.516666 | 160.33332 | 190 | 213   | female | 8   | 4          |      | 4          |
| 432  | 11-Sep-00 | -25.950000 | 160.13333 | 148 | 168   | female | 4   | 4          |      | 4          |
| 433  | 13-Sep-00 | -25.516666 | 160.33332 | 110 | 127   | male   | 4   | 3          | 0.27 | 3          |
| 434  | 13-Sep-00 | -25.516666 | 160.33332 | 159 | 180   | female | 5   | 2          | 0.57 | 2          |
| 435  | 13-Sep-00 | -25.516666 | 160.33332 | 140 | 159   | female | 6   | 3          | 0.3  | 3          |
| 436  | 13-Sep-00 | -25.516666 | 160.33332 | 156 | 176   | female | 6   | 2          | 0.36 | 2          |
| 438  | 13-Sep-00 | -25.516666 | 160.33332 | 155 | 175   | female | 6   | 2          | 0.09 | 2          |
| 439  | 13-Sep-00 | -25.516666 | 160.33332 | 233 | 259   | female | 11  | 2          |      | 2          |
| 440  | 13-Sep-00 | -25.516666 | 160.33332 | 113 | 131   | male   | 5   | 2          | 0.36 | 2          |
| 441  | 13-Sep-00 | -25.516666 | 160.33332 | 127 | 146   | male   | 7   | 3          | 0.11 | 3          |
| 442  | 13-Sep-00 | -25.516666 | 160.33332 | 220 | 245   | female | 12  | 3          | 0.13 | 3          |
| 443  | 13-Sep-00 | -25.516666 | 160.33332 | 108 | 125   | female | 3   | 2          | 0.04 | 2          |
| 444  | 13-Sep-00 | -25.516666 | 160.33332 | 163 | 184   | male   | 5   | 4          |      | 4          |
| 445  | 13-Sep-00 | -25.516666 | 160.33332 | 161 | 182   | female | 4   | 4          | 0.43 | 4          |
| 446  | 13-Sep-00 | -25.516666 | 160.33332 | 165 | 186   | female | 7   | 4          | 0.15 | 4          |
| 447  | 13-Sep-00 | -25.516666 | 160.33332 | 109 | 126   | male   | 3   | 2          | 0.11 | 2          |
| 448  | 13-Sep-00 | -25.516666 | 160.33332 | 142 | 161   | female | 4   | 3          | 0.17 | 3          |
| 449  | 13-Sep-00 | -25.516666 | 160.33332 | 123 | 141   | female | 5   | 3          | 0.14 | 3          |
| 450  | 14-Sep-00 | -26.966667 | 160.36666 | 190 | 213   | female | 10  | 4          |      | 4          |
| 451  | 13-Sep-00 | -25.516666 | 160.33332 | 164 | 185   | female | 10  | 4          | 0.05 | 4          |
| 452  | 14-Sep-00 | -26.966667 | 160.36666 | 125 | 143   | female | 7   | 4          | 0.36 | 4          |
| 453  | 14-Sep-00 | -26.966667 | 160.36666 | 157 | 177   | female | 7   | 4          |      | 4          |
| 454  | 14-Sep-00 | -26.966667 | 160.36666 | 98  | 115   | female | 2   | 2          | 0.36 | 2          |
| 455  | 14-Sep-00 | -26.966667 | 160.36666 | 120 | 138   | female | 4   | 3          | 0.13 | 3          |
| 456  | 14-Sep-00 | -26.966667 | 160.36666 | 126 | 144   | male   | 5   | 3          | 0.54 | 3          |
| 457  | 14-Sep-00 | -26.966667 | 160.36666 | 182 | 204   | male   | 8   | 3          | 0.25 | 3          |
| 458  | 16-Sep-00 | -25.566667 | 160.33332 | 193 | 216   | female | 11  | 3          | 0.21 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 460  | 16-Sep-00 | -25.566667 | 160.33332 | 170 | 191   | female | 6   | 3          | 0.27 | 3          |
| 461  | 16-Sep-00 | -25.566667 | 160.33332 | 120 |       | male   |     | 5          |      | 5          |
| 462  | 16-Sep-00 | -25.566667 | 160.33332 | 95  | 111   | male   | 2   | 2          | 0.2  | 2          |
| 463  | 16-Sep-00 | -25.566667 | 160.33332 | 161 | 182   | female | 7   | 3          | 0.03 | 3          |
| 464  | 16-Sep-00 | -25.566667 | 160.33332 | 232 | 257   | female | 10  | 4          | 0.36 | 4          |
| 465  | 16-Sep-00 | -25.566667 | 160.33332 | 188 | 211   | female | 10  | 4          | 0.24 | 4          |
| 466  | 16-Sep-00 | -25.566667 | 160.33332 | 195 | 218   | male   | 5   | 2          | 0.05 | 2          |
| 467  | 16-Sep-00 | -25.566667 | 160.33332 | 120 | 138   | female | 3   | 3          | 0.19 | 3          |
| 468  | 16-Sep-00 | -25.566667 | 160.33332 | 132 | 151   | female | 6   | 4          | 0.29 | 4          |
| 469  | 16-Sep-00 | -25.566667 | 160.33332 | 111 | 128   | female | 3   | 2          | 0.09 | 2          |
| 470  | 16-Sep-00 | -25.566667 | 160.33332 | 144 | 164   | female | 4   | 2          | 0.07 | 2          |
| 471  | 16-Sep-00 | -25.566667 | 160.33332 | 176 | 198   | female |     | 5          |      | 5          |
| 472  | 16-Sep-00 | -25.566667 | 160.33332 | 198 | 221   | female | 7   | 2          | 0.49 | 2          |
| 473  | 17-Sep-00 | -25.649999 | 160.68333 | 101 | 118   | female | 3   | 3          | 0.4  | 3          |
| 474  | 17-Sep-00 | -25.649999 | 160.68333 | 184 | 206   | female | 6   | 4          | 0.4  | 4          |
| 475  | 17-Sep-00 | -25.649999 | 160.68333 | 124 | 142   | male   | 3   | 3          | 0.22 | 3          |
| 476  | 17-Sep-00 | -25.649999 | 160.68333 | 120 | 138   | female | 4   | 3          | 0.11 | 3          |
| 477  | 17-Sep-00 | -25.649999 | 160.68333 | 168 | 189   | male   | 11  | 4          | 0.1  | 4          |
| 478  | 17-Sep-00 | -25.649999 | 160.68333 | 162 | 183   | female | 7   | 3          | 0.35 | 3          |
| 479  | 17-Sep-00 | -25.649999 | 160.68333 | 116 | 134   | female | 3   | 3          | 0.57 | 3          |
| 480  | 17-Sep-00 | -25.649999 | 160.68333 | 149 | 169   | female | 5   | 4          |      | 4          |
| 481  | 17-Sep-00 | -25.649999 | 160.68333 | 114 | 132   | female | 0   | 2          |      | 2          |
| 482  | 17-Sep-00 | -25.649999 | 160.68333 | 116 |       | female | 5   | 3          | 0.48 | 3          |
| 484  | 17-Sep-00 | -25.649999 | 160.68333 | 178 | 200   | female | 8   | 3          | 0.1  | 3          |
| 485  | 17-Sep-00 | -25.649999 | 160.68333 | 180 | 202   | male   | 8   | 4          |      | 4          |
| 486  | 18-Sep-00 | -25.75     | 160.45834 | 177 | 199   | male   | 10  | 4          | 0.1  | 4          |
| 487  | 17-Sep-00 | -25.649999 | 160.68333 | 150 | 170   | male   | 6   | 3          | 0.06 | 3          |
| 488  | 18-Sep-00 | -25.75     | 160.45834 | 133 | 152   | female | 5   | 3          |      | 3          |
| 489  | 18-Sep-00 | -25.75     | 160.45834 | 191 | 214   | male   | 8   | 4          | 0.3  | 4          |
| 490  | 18-Sep-00 | -25.75     | 160.45834 | 173 | 195   | female | 6   | 2          |      | 2          |
| 491  | 18-Sep-00 | -25.75     | 160.45834 | 104 | 121   | female | 4   | 2          |      | 2          |
| 492  | 18-Sep-00 | -25.75     | 160.45834 | 123 | 141   | female | 4   | 2          | 0.1  | 2          |
| 493  | 18-Sep-00 | -25.75     | 160.45834 | 149 | 169   | female | 5   | 2          | 0.04 | 2          |
| 494  | 18-Sep-00 | -25.75     | 160.45834 | 157 | 177   | male   | 7   | 3          | 0.07 | 3          |
| 495  | 18-Sep-00 | -25.75     | 160.45834 | 122 | 140   | female | 4   | 3          | 0.05 | 3          |
| 496  | 18-Sep-00 | -25.75     | 160.45834 | 141 | 160   | female | 4   | 3          | 0.16 | 3          |
| 497  | 18-Sep-00 | -25.75     | 160.45834 | 141 | 160   | female | 6   | 3          | 0.09 | 3          |
| 498  | 18-Sep-00 | -25.75     | 160.45834 | 131 | 150   | male   | 2   | 3          | 0.83 | 3          |
| 499  | 18-Sep-00 | -25.75     | 160.45834 | 167 | 188   | male   |     | 5          |      | 5          |
| 500  | 18-Sep-00 | -25.75     | 160.45834 | 105 | 122   | male   | 1   | 3          | 0.09 | 3          |
| 501  | 07-Sep-00 | -27        | 161.26666 | 123 | 141   | female | 4   | 3          |      | 3          |
| 502  | 07-Sep-00 | -27        | 161.26666 | 178 | 200   | male   | 8   | 4          | 0.07 | 4          |
| 503  | 07-Sep-00 | -27        | 161.26666 | 193 | 216   | male   | 9   | 3          | 0.28 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 504  | 07-Sep-00 | -27        | 161.26666 | 157 | 177   | female | 6   | 3          | 0.21 | 3          |
| 505  | 07-Sep-00 | -27        | 161.26666 | 235 | 261   | female | 7   | 3          | 0.29 | 3          |
| 506  | 07-Sep-00 | -27        | 161.26666 | 119 | 137   | female | 3   | 2          | 0.26 | 2          |
| 507  | 07-Sep-00 | -27        | 161.26666 | 88  | 104   | female | 1   | 2          | 0.56 | 2          |
| 508  | 07-Sep-00 | -27        | 161.26666 | 137 | 156   | female | 5   | 2          | 0.57 | 2          |
| 509  | 07-Sep-00 | -27        | 161.26666 | 188 | 211   | male   |     | 5          |      | 5          |
| 510  | 07-Sep-00 | -27        | 161.26666 | 174 | 196   | male   |     | 5          |      | 5          |
| 511  | 07-Sep-00 | -27        | 161.26666 | 116 | 134   | male   | 2   | 3          |      | 3          |
| 512  | 08-Sep-00 | -27.183332 | 161.18333 | 180 | 202   | female | 10  | 4          | 0.1  | 4          |
| 513  | 08-Sep-00 | -27.183332 | 161.18333 | 176 | 198   | female | 7   | 2          | 0.1  | 2          |
| 514  | 08-Sep-00 | -27.183332 | 161.18333 | 117 | 135   | female | 4   | 2          | 0.06 | 2          |
| 515  | 08-Sep-00 | -27.183332 | 161.18333 | 121 | 139   | female | 3   | 2          | 0.07 | 2          |
| 516  | 08-Sep-00 | -27.183332 | 161.18333 | 176 | 198   | female | 7   | 3          | 0.62 | 3          |
| 517  | 15-Sep-00 | -25.316667 | 160.39999 | 118 | 136   | female | 3   | 4          | 0.27 | 4          |
| 518  | 08-Sep-00 | -27.183332 | 161.18333 | 190 | 213   | female | 8   | 2          | 0.37 | 2          |
| 519  | 15-Sep-00 | -25.316667 | 160.39999 | 165 | 186   | female | 6   | 3          | 0.1  | 3          |
| 520  | 15-Sep-00 | -25.316667 | 160.39999 | 179 | 201   | female | 9   | 2          | 0.37 | 2          |
| 521  | 15-Sep-00 | -25.316667 | 160.39999 | 120 | 138   | female | 4   | 2          | 0.26 | 2          |
| 522  | 15-Sep-00 | -25.316667 | 160.39999 | 178 | 200   | female | 9   | 3          | 0.26 | 3          |
| 523  | 15-Sep-00 | -25.316667 | 160.39999 | 166 | 187   | male   |     | 5          |      | 5          |
| 524  | 15-Sep-00 | -25.316667 | 160.39999 | 138 | 157   | female | 7   | 3          | 0.13 | 3          |
| 525  | 15-Sep-00 | -25.316667 | 160.39999 | 201 | 224   | female | 10  | 3          | 0.18 | 3          |
| 526  | 15-Sep-00 | -25.316667 | 160.39999 | 140 | 159   | female | 8   | 2          | 0.06 | 2          |
| 527  | 15-Sep-00 | -25.316667 | 160.39999 | 153 | 173   | female | 7   | 3          | 0.47 | 3          |
| 528  | 15-Sep-00 | -25.316667 | 160.39999 | 183 | 205   | female | 8   | 3          | 0.28 | 3          |
| 529  | 12-Sep-00 | -25.716667 | 160.21665 | 172 | 193   | female | 5   | 3          | 0.41 | 3          |
| 530  | 14-Sep-00 | -26.966667 | 160.36666 | 179 | 201   | female | 11  | 4          | 0.08 | 4          |
| 531  | 12-Sep-00 | -25.716667 | 160.21665 | 137 | 156   | male   | 5   | 2          | 0.22 | 2          |
| 532  | 12-Sep-00 | -25.716667 | 160.21665 | 182 | 204   | female | 8   | 3          | 0.1  | 3          |
| 533  | 12-Sep-00 | -25.716667 | 160.21665 | 171 | 192   | male   | 7   | 3          | 0.26 | 3          |
| 534  | 12-Sep-00 | -25.716667 | 160.21665 | 121 | 139   | female | 5   | 3          | 0.15 | 3          |
| 535  | 12-Sep-00 | -25.716667 | 160.21665 | 132 | 151   | female | 7   | 3          | 0.06 | 3          |
| 536  | 12-Sep-00 | -25.716667 | 160.21665 | 100 | 117   | female | 2   | 2          | 0.05 | 2          |
| 537  | 12-Sep-00 | -25.716667 | 160.21665 | 111 | 128   | female | 3   | 2          | 0.15 | 2          |
| 538  | 12-Sep-00 | -25.716667 | 160.21665 | 158 | 179   | female |     | 5          |      | 5          |
| 539  | 12-Sep-00 | -25.716667 | 160.21665 | 127 | 146   | female | 5   | 2          | 0.08 | 2          |
| 540  | 12-Sep-00 | -25.716667 | 160.21665 | 209 | 233   | female | 11  | 3          | 0.17 | 3          |
| 541  | 12-Sep-00 | -25.716667 | 160.21665 | 126 | 144   | female | 4   | 4          | 0.05 | 4          |
| 542  | 12-Sep-00 | -25.716667 | 160.21665 | 146 | 166   | female | 4   | 4          |      | 4          |
| 543  | 14-Sep-00 | -26.966667 | 160.36666 | 114 | 132   | male   | 3   | 4          | 0.08 | 4          |
| 544  | 14-Sep-00 | -26.966667 | 160.36666 | 147 | 167   | male   | 4   | 3          | 0.34 | 3          |
| 545  | 14-Sep-00 | -26.966667 | 160.36666 | 136 | 155   | female | 4   | 2          | 0.23 | 2          |
| 546  | 14-Sep-00 | -26.966667 | 160.36666 | 113 | 131   | female | 5   | 3          | 0.3  | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 547  | 14-Sep-00 | -26.966667 | 160.36666 | 149 | 169   | female | 5   | 3          | 0.59 | 3          |
| 548  | 12-Sep-00 | -25.716667 | 160.21665 | 105 | 122   | male   |     | 5          | 0.24 | 5          |
| 549  | 14-Sep-00 | -26.966667 | 160.36666 | 270 | 298   | female |     | 5          |      | 5          |
| 550  | 14-Sep-00 | -26.966667 | 160.36666 | 211 | 235   | female | 9   | 4          | 0.44 | 4          |
| 551  | 15-Sep-00 | -25.316667 | 160.39999 | 93  | 109   |        | 2   | 2          |      | 2          |
| 553  | 04-Dec-00 | -24.799999 | 154.16667 | 170 | 191   | male   | 9   | 4          | 0.27 | 4          |
| 554  | 04-Dec-00 | -24.799999 | 154.16667 | 165 | 186   | male   | 6   | 4          | 0.39 | 4          |
| 555  | 07-Dec-00 | -24.474998 | 153.55833 | 110 | 127   | male   | 5   | 2          | 0.25 | 2          |
| 557  | 07-Dec-00 | -24.474998 | 153.55833 | 101 | 118   | male   | 3   | 3          | 0.35 | 3          |
| 558  | 08-Dec-00 | -24.233333 | 153.56666 | 111 | 128   | male   | 2   | 3          | 0.43 | 3          |
| 559  | 08-Dec-00 | -24.233333 | 153.56666 | 102 | 119   | male   | 2   | 4          | 0.19 | 4          |
| 560  | 08-Dec-00 | -24.233333 | 153.56666 | 110 | 127   | female | 2   | 2          | 0.56 | 2          |
| 561  | 08-Dec-00 | -24.233333 | 153.56666 | 138 | 157   | female | 6   | 4          | 0.16 | 4          |
| 562  | 08-Dec-00 | -24.233333 | 153.56666 | 175 | 197   | male   | 10  | 3          | 0.1  | 3          |
| 563  | 08-Dec-00 | -24.233333 | 153.56666 | 126 | 144   | male   | 5   | 3          | 0.12 | 3          |
| 565  | 08-Dec-00 | -24.233333 | 153.56666 | 213 | 237   | female | 10  | 3          | 0.21 | 3          |
| 566  | 05-Jan-01 | -29.299999 | 155.66667 | 123 | 141   | male   | 3   | 2          | 0.3  | 2          |
| 567  | 05-Jan-01 | -29.299999 | 155.66667 | 123 | 141   | female | 2   | 2          | 0.53 | 2          |
| 568  | 05-Jan-01 | -29.299999 | 155.66667 | 95  | 111   | female | 1   | 4          | 0.65 | 4          |
| 569  | 06-Jan-01 | -28.625    | 154.10000 | 132 | 151   | female | 4   | 3          | 0.21 | 3          |
| 570  | 06-Jan-01 | -28.625    | 154.10000 | 91  | 107   | male   | 1   | 1          | 0.15 | 1          |
| 571  | 05-Jan-01 | -29.299999 | 155.66667 | 88  | 104   | female | 1   | 2          | 0.41 | 2          |
| 572  | 05-Jan-01 | -29.299999 | 155.66667 | 160 | 181   | female | 8   | 3          |      | 3          |
| 573  | 05-Jan-01 | -29.299999 | 155.66667 | 177 | 199   | female | 7   | 3          | 0.25 | 3          |
| 574  | 06-Jan-01 | -28.625    | 154.10000 | 112 | 130   | male   | 2   | 3          | 0.46 | 3          |
| 575  | 06-Jan-01 | -28.625    | 154.10000 | 87  | 103   | female | 2   | 3          | 0.18 | 3          |
| 576  | 06-Jan-01 | -28.625    | 154.10000 | 82  | 98    | male   | 1   | 2          |      | 2          |
| 577  | 06-Jan-01 | -28.625    | 154.10000 | 101 | 118   | male   | 2   | 3          | 0.18 | 3          |
| 578  | 06-Jan-01 | -28.625    | 154.10000 | 182 | 204   | male   | 8   | 4          | 0.14 | 4          |
| 579  | 05-Jan-01 | -28.283332 | 155.71665 | 137 | 156   | female | 3   | 2          |      | 2          |
| 580  | 05-Jan-01 | -28.283332 | 155.71665 | 114 | 132   | male   | 1   | 3          | 0.47 | 3          |
| 581  | 05-Jan-01 | -28.283332 | 155.71665 | 75  | 90    | female | 1   | 3          | 0.39 | 3          |
| 582  | 05-Jan-01 | -28.283332 | 155.71665 | 186 | 208   | female | 8   | 2          | 0.13 | 2          |
| 583  | 05-Jan-01 | -28.283332 | 155.71665 | 182 | 204   | male   | 7   | 3          | 0.22 | 3          |
| 584  | 05-Jan-01 | -28.283332 | 155.71665 | 140 | 159   | female |     | 5          |      | 5          |
| 585  | 05-Jan-01 | -28.283332 | 155.71665 | 138 | 157   | female | 4   | 4          |      | 4          |
| 586  | 05-Jan-01 | -28.283332 | 155.71665 | 155 | 175   | male   | 5   | 3          | 0.18 | 3          |
| 587  | 05-Jan-01 | -28.283332 | 155.71665 | 116 | 134   | female | 4   | 3          | 0.2  | 3          |
| 588  | 07-Jan-01 | -28.566667 | 154.11666 | 164 | 185   | male   | 6   | 4          | 0.13 | 4          |
| 589  | 07-Jan-01 | -28.566667 | 154.11666 | 161 | 182   | male   | 5   | 4          | 0.38 | 4          |
| 590  | 07-Jan-01 | -28.566667 | 154.11666 | 157 | 177   | female | 6   | 4          | 0.27 | 4          |
| 591  | 08-Jan-01 | -29.399999 | 153.94999 | 116 | 134   | female | 2   | 2          | 0.53 | 2          |
| 592  | 08-Jan-01 | -29.399999 | 153.94999 | 183 | 205   | male   | 6   | 4          | 0.35 | 4          |

| BBL#       | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
| <b>500</b> | 07.1.01   | 00 54445   | 1         | 154 | Final | c 1    |     | Confidence | 0.46 | Confidence |
| 593        | 07-Jan-01 | -28.566667 | 154.11666 | 174 | 196   | female | 6   | 3          | 0.46 | 3          |
| 594        | 06-Jan-01 | -28.116666 | 155.75    | 154 | 174   | male   | 8   | 3          | 0.09 | 3          |
| 595        | 07-Jan-01 | -27.850000 | 154.58332 | 100 | 11/   | male   | 2   | 3          | 0.24 | 3          |
| 596        | 07-Jan-01 | -27.850000 | 154.58332 | 142 | 161   | female | 5   | 2          | 0.17 | 2          |
| 597        | 07-Jan-01 | -27.850000 | 154.58332 | 113 | 131   | male   | 3   | 2          | 0.14 | 2          |
| 598        | 09-Jan-01 | -27.850000 | 154.60000 | 76  | 91    | female | 1   | 1          | 0.32 | 1          |
| 599        | 09-Jan-01 | -27.850000 | 154.60000 | 180 | 202   | male   | 9   | 4          | 0.07 | 4          |
| 600        | 09-Jan-01 | -27.850000 | 154.60000 | 133 | 152   | female | 4   | 4          | 0.67 | 4          |
| 601        | 06-Jan-01 | -28.116666 | 155.75    | 176 | 198   | female | 8   | 3          | 0.08 | 3          |
| 602        | 09-Jan-01 | -27.850000 | 154.60000 | 128 | 147   | female | 4   | 3          | 0.17 | 3          |
| 603        | 06-Jan-01 | -28.116666 | 155.75    | 168 | 189   | female | 6   | 2          | 0.24 | 2          |
| 604        | 09-Jan-01 | -27.850000 | 154.60000 | 137 | 156   | male   | 5   | 1          | 0.25 | 1          |
| 605        | 09-Jan-01 | -27.850000 | 154.60000 | 117 | 135   | female | 1   | 1          | 0.74 | 1          |
| 606        | 07-Jan-01 | -27.850000 | 154.58332 | 73  | 88    | female | 1   | 3          | 0.21 | 3          |
| 607        | 09-Jan-01 | -27.850000 | 154.60000 | 176 | 198   | male   | 10  | 3          | 0.34 | 3          |
| 608        | 06-Jan-01 | -28.116666 | 155.75    | 108 | 125   | male   | 1   | 2          |      | 2          |
| 609        | 08-Jan-01 | -27.600000 | 154.19999 | 144 | 164   | female | 7   | 3          | 0.61 | 3          |
| 610        | 06-Jan-01 | -28.116666 | 155.75    | 120 | 138   | female | 3   | 3          | 0.29 | 3          |
| 611        | 08-Jan-01 | -27.600000 | 154.19999 | 167 | 188   | female | 5   | 2          | 0.2  | 2          |
| 612        | 08-Jan-01 | -27.600000 | 154.19999 | 104 | 121   | female | 2   | 2          | 0.4  | 2          |
| 613        | 08-Jan-01 | -27.600000 | 154.19999 | 123 | 141   | female | 4   | 2          | 0.68 | 2          |
| 614        | 08-Jan-01 | -27.600000 | 154.19999 | 141 | 160   | female | 5   | 4          | 0.09 | 4          |
| 615        | 08-Jan-01 | -29.399999 | 153.94999 | 197 | 220   | female | 7   | 3          | 0.06 | 3          |
| 616        | 08-Jan-01 | -27.600000 | 154.19999 | 208 | 232   | female | 8   | 3          |      | 3          |
| 617        | 08-Jan-01 | -27.600000 | 154.19999 | 76  | 91    | female | 1   | 1          | 0.14 | 1          |
| 618        | 06-Jan-01 | -28.116666 | 155.75    | 148 | 168   | female | 5   | 3          | 0.26 | 3          |
| 619        | 04-Mar-01 | -26.641666 | 163.29165 | 165 | 186   | female | 6   | 2          | 0.1  | 2          |
| 620        | 04-Mar-01 | -26.641666 | 163.29165 | 188 | 211   | male   | 10  | 4          | 0.11 | 4          |
| 621        | 01-Mar-01 | -27.808334 | 155.45834 | 191 | 214   | male   | 8   | 3          | 0.27 | 3          |
| 622        | 28-Feb-01 | -28.141666 | 155.68333 | 139 | 158   | female | 3   | 3          | 0.6  | 3          |
| 623        | 04-Mar-01 | -26.641666 | 163.29165 | 199 | 222   | female |     | 5          |      | 5          |
| 624        | 04-Mar-01 | -26.641666 | 163.29165 | 102 | 119   | male   | 2   | 2          | 0.26 | 2          |
| 625        | 28-Feb-01 | -28.141666 | 155.68333 | 67  | 82    | male   | 0   | 3          |      | 3          |
| 626        | 06-Mar-01 | -26.791666 | 163.05833 | 172 | 193   | male   | 7   | 2          | 0.31 | 2          |
| 627        | 01-Mar-01 | -27.808334 | 155.45834 | 136 | 155   | female | 4   | 3          | 0.27 | 3          |
| 628        | 28-Feb-01 | -28.141666 | 155.68333 | 97  | 114   | female | 2   | 3          | 0.38 | 3          |
| 629        | 28-Feb-01 | -28.141666 | 155.68333 | 160 | 181   | female | 7   | 3          | 0.4  | 3          |
| 630        | 04-Mar-01 | -26.641666 | 163.29165 | 169 | 190   | female | 6   | 2          | 0.18 | 2          |
| 631        | 28-Feb-01 | -28.141666 | 155.68333 | 180 | 202   | male   | 7   | 3          | 0.15 | 3          |
| 632        | 28-Feb-01 | -28.141666 | 155.68333 | 98  | 115   | male   | 3   | 2          | 0.42 | 2          |
| 633        | 01-Mar-01 | -27.808334 | 155.45834 | 143 | 163   | male   | 3   | 4          | 0.26 | 4          |
| 634        | 04-Mar-01 | -26.641666 | 163.29165 | 172 | 193   | male   | 9   | 4          | 0.25 | 4          |
| 635        | 04-Mar-01 | -26.641666 | 163.29165 | 134 | 153   | female | 2   | 2          | 0.19 | 2          |

| BBL#       | DATE             | LAT                    | LON       | OFL        | LJFL     | Sex    | AGE     | Age        | MI   | MI         |
|------------|------------------|------------------------|-----------|------------|----------|--------|---------|------------|------|------------|
|            |                  |                        |           |            | Final    |        |         | Confidence |      | Confidence |
| 636        | 28-Feb-01        | -28.141666             | 155.68333 | 172        | 193      | male   | 6       | 3          | 0.2  | 3          |
| 637        | 28-Feb-01        | -28.141666             | 155.68333 | 135        | 154      | female | 5       | 2          | 0.32 | 2          |
| 638        | 01-Mar-01        | -27.808334             | 155.45834 | 110        | 127      | female | 3       | 2          | 0.35 | 2          |
| 639        | 01-Mar-01        | -27.808334             | 155.45834 | 78         | 93       | male   | 1       | 3          | 0.69 | 3          |
| 640        | 01-Mar-01        | -27.808334             | 155.45834 | 210        | 234      | female | 9       | 3          | 0.12 | 3          |
| 641        | 06-Mar-01        | -26.791666             | 163.05833 | 190        | 213      | female | 10      | 2          | 0.24 | 2          |
| 642        | 08-Mar-01        | -26.908332             | 162.36666 | 139        | 158      | female | 7       | 3          | 0.19 | 3          |
| 643        | 08-Mar-01        | -26.908332             | 162.36666 | 211        | 235      | female | 11      | 4          | 0.18 | 4          |
| 644        | 08-Mar-01        | -26.908332             | 162.36666 | 123        | 141      | female | 6       | 3          | 0.28 | 3          |
| 645        | 09-Mar-01        | -26.933334             | 162.41667 | 122        | 140      | female | 3       | 2          | 0.27 | 2          |
| 646        | 08-Mar-01        | -26.908332             | 162.36666 | 138        | 157      | female | 4       | 3          | 0.18 | 3          |
| 647        | 08-Mar-01        | -26.908332             | 162.36666 | 145        | 165      | male   | 6       | 3          | 1.29 | 3          |
| 648        | 09-Mar-01        | -26.933334             | 162.41667 | 122        | 140      | female | 3       | 2          | 0.25 | 2          |
| 649        | 08-Mar-01        | -26.908332             | 162.36666 | 130        | 149      | female | 7       | 4          | 0.2  | 4          |
| 650        | 09-Mar-01        | -26.933334             | 162.41667 | 215        | 239      | female | 12      | 4          | 0.24 | 4          |
| 651        | 09-Mar-01        | -26.933334             | 162.41667 | 210        | 234      | female | 12      | 4          |      | 4          |
| 652        | 08-Mar-01        | -26.908332             | 162.36666 | 165        | 186      | male   | 5       | 3          | 0.39 | 3          |
| 653        | 09-Mar-01        | -26.933334             | 162.41667 | 131        | 150      | female | 5       | 2          | 0.43 | 2          |
| 654        | 08-Mar-01        | -26.908332             | 162.36666 | 134        | 153      | male   | 5       | 3          |      | 3          |
| 655        | 07-Mar-01        | -26.799999             | 162.80000 | 158        | 179      | male   | 5       | 4          | 0.28 | 4          |
| 656        | 07-Mar-01        | -26.799999             | 162.80000 | 137        | 156      | male   | 5       | 4          | 0.2  | 4          |
| 657        | 05-Mar-01        | -26.516666             | 163.67500 | 128        | 147      | female | 3       | 4          | 0.76 | 4          |
| 658        | 07-Mar-01        | -26.799999             | 162.80000 | 118        | 136      | female | 3       | 3          | 0.47 | 3          |
| 659        | 07-Mar-01        | -26.799999             | 162.80000 | 183        | 205      | male   | 10      | 4          | 0.27 | 4          |
| 660        | 06-Mar-01        | -26.791666             | 163.05833 | 160        | 181      | male   | 6       | 3          | 0.28 | 3          |
| 661        | 07-Mar-01        | -26.799999             | 162.80000 | 172        | 193      | female | 6       | 3          | 0.42 | 3          |
| 662        | 05-Mar-01        | -26.516666             | 163.67500 | 150        | 170      | female | 7       | 4          | 0.63 | 4          |
| 663        | 05-Mar-01        | -26.516666             | 163.67500 | 145        | 165      | female | 5       | 3          | 0.33 | 3          |
| 664        | 05-Mar-01        | -26.516666             | 163.67500 | 90         | 106      | male   | 1       | 1          | 0.49 | 1          |
| 665        | 06-Mar-01        | -26.791666             | 163.05833 | 188        | 211      | male   | 11      | 4          | 0.06 | 4          |
| 666        | 05-Mar-01        | -26.516666             | 163.67500 | 129        | 148      | male   | 3       | 2          | 0.4  | 2          |
| 667        | 06-Mar-01        | -26.791666             | 163.05833 | 208        | 232      | female | 12      | 4          | 0.1  | 4          |
| 668        | 06-Mar-01        | -26.791666             | 163.05833 | 130        | 149      | female | 5       | 4          |      | 4          |
| 669        | 06-Mar-01        | -26 791666             | 163 05833 | 105        | 122      | female | 2       | 3          |      | 3          |
| 670        | 07-Mar-01        | -26 799999             | 162.80000 | 202        | 225      | female | 10      | 3          | 0.2  | 3          |
| 671        | 07-Mar-01        | -26 799999             | 162.80000 | 99         | 116      | female | 0       | 2          | 0.2  | 2          |
| 672        | 06-Mar-01        | -26 791666             | 163.05833 | 170        | 191      | male   | 5       | - 3        | 0.17 | - 3        |
| 673        | 05-Mar-01        | -26 516666             | 163 67500 | 170        | 138      | male   | 5       | 3          | 0.10 | 3          |
| 674        | 05-Mar-01        | 26.516666              | 163 67500 | 120        | 156      | famala | 9       | 3          | 0.17 | 3          |
| 675        | $0.7 M_{or} 0.1$ | -20.310000             | 162 80000 | 137<br>214 | 240      | female | 0<br>10 | С<br>Л     | 0.23 | л          |
| 676        | 07 - 101 ar - 01 | -20.199999<br>26701666 | 162.00000 | 210<br>107 | 240      | mela   | 10      | 4          | 0.03 | 4<br>F     |
| 0/0<br>677 | 00-mar-01        | -20.791000             | 162 26666 | 10/        | 209      | male   | 0       | )<br>1     |      | 5          |
| 0//<br>270 | 00-IVIdF-U1      | -20.908332             | 162 26000 | 50         | /4<br>72 |        | 0       | 1          |      | 1          |
| 0/8        | U8-Mar-U1        | -20.908332             | 102.30000 | 39         | 13       |        | U       | 1          |      | 1          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 679  | 05-Jan-01 | -23.316667 | 154.55000 | 159 | 180   | female | 6   | 3          | 0.27 | 3          |
| 680  | 06-Jan-01 | -23.291667 | 154.90832 | 146 | 166   | male   | 7   | 2          | 0.28 | 2          |
| 681  | 06-Jan-01 | -23.291667 | 154.90832 | 175 | 197   | male   | 5   | 2          | 0.43 | 2          |
| 682  | 06-Jan-01 | -23.291667 | 154.90832 | 174 | 196   | male   | 9   | 4          | 0.25 | 4          |
| 683  | 08-Jan-01 | -25.491666 | 154.96667 | 154 | 174   | male   | 6   | 3          | 0.05 | 3          |
| 684  | 11-Jan-01 | -25.416666 | 155.05000 | 139 | 158   | female | 4   | 2          | 0.59 | 2          |
| 685  | 08-Jan-01 | -25.491666 | 154.96667 | 217 | 241   | female | 8   | 3          | 0.14 | 3          |
| 686  | 05-Feb-01 | -26.433332 | 154.06666 | 154 | 174   | female | 10  | 3          | 0.15 | 3          |
| 688  | 22-Nov-99 | -31.083333 | 161.16667 | 206 | 229.7 | female | 10  | 4          | 0.34 | 4          |
| 690  | 22-Nov-99 | -31.083333 | 161.16667 | 171 | 192   | female | 8   | 2          | 0.04 | 2          |
| 691  | 22-Nov-99 | -31.083333 | 161.16667 | 185 | 207   | female | 5   | 1          | 0.12 | 1          |
| 692  | 22-Nov-99 | -31.083333 | 161.16667 | 129 | 148   | male   | 5   | 3          | 0.37 | 3          |
| 693  | 22-Nov-99 | -31.083333 | 161.16667 | 107 | 124   | female | 6   | 3          | 0.07 | 3          |
| 694  | 22-Nov-99 | -31.083333 | 161.16667 | 122 | 140   | female | 4   | 4          | 0.26 | 4          |
| 696  | 26-Nov-99 | -30.950000 | 161.25    | 96  | 112   | male   | 2   | 3          | 0.17 | 3          |
| 697  | 23-Nov-99 | -30.966667 | 161.39999 | 142 | 161   | male   | 5   | 3          | 0.21 | 3          |
| 698  | 23-Nov-99 | -30.966667 | 161.39999 | 183 | 205   | female | 6   | 3          | 0.11 | 3          |
| 699  | 23-Nov-99 | -30.966667 | 161.39999 | 112 | 130   | female | 2   | 2          | 0.41 | 2          |
| 701  | 23-Nov-99 | -30.966667 | 161.39999 | 189 | 212   | female | 8   | 3          | 0.19 | 3          |
| 702  | 23-Nov-99 | -30.966667 | 161.39999 | 223 | 248   | female | 15  | 4          | 0.27 | 4          |
| 703  | 23-Nov-99 | -30.966667 | 161.39999 | 137 | 156   | female | 4   | 2          | 0.32 | 2          |
| 704  | 23-Nov-99 | -30.966667 | 161.39999 | 99  | 116   | male   | 3   | 3          | 0.15 | 3          |
| 705  | 23-Nov-99 | -30.966667 | 161.39999 | 120 | 138   | female | 3   | 3          | 0.04 | 3          |
| 706  | 24-Nov-99 | -30.950000 | 161.39999 | 171 | 192   | female | 7   | 2          | 0.03 | 2          |
| 709  | 24-Nov-99 | -30.950000 | 161.39999 | 166 | 187   | male   | 8   | 2          | 0.16 | 2          |
| 710  | 24-Nov-99 | -30.950000 | 161.39999 | 198 | 221   | male   | 10  | 4          | 0.12 | 4          |
| 711  | 24-Nov-99 | -30.950000 | 161.39999 | 180 | 202   | male   | 9   | 3          | 0.1  | 3          |
| 712  | 24-Nov-99 | -30.950000 | 161.39999 | 181 | 203   | female | 7   | 4          | 0.31 | 4          |
| 713  | 24-Nov-99 | -30.950000 | 161.39999 | 161 | 182   | female | 7   | 4          | 0.25 | 4          |
| 714  | 24-Nov-99 | -30.950000 | 161.39999 | 190 | 213   | female | 9   | 3          | 0.4  | 3          |
| 716  | 27-Nov-99 | -31.066667 | 161.14999 | 167 | 188   | female | 8   | 2          | 0.12 | 2          |
| 717  | 27-Nov-99 | -31.066667 | 161.14999 | 196 | 219   | female | 12  | 4          | 0.26 | 4          |
| 718  | 27-Nov-99 | -31.066667 | 161.14999 | 234 | 260   | female | 15  | 4          | 0.29 | 4          |
| 719  | 27-Nov-99 | -31.066667 | 161.14999 | 188 | 211   | female | 5   | 4          | 0.14 | 4          |
| 720  | 27-Nov-99 | -31.066667 | 161.14999 | 101 | 118   | female | 3   | 2          | 0.32 | 2          |
| 721  | 27-Nov-99 | -31.066667 | 161.14999 | 107 | 124   | male   | 2   | 4          | 0.51 | 4          |
| 723  | 19-Jul-97 | -26.799999 | 155.80000 | 171 | 188   | female | 11  | 4          | 0.1  | 4          |
| 724  | 14-Jul-97 | -26.233333 | 155.21665 | 136 | 153   | male   | 5   | 3          | 0.18 | 3          |
| 725  | 23-Jul-97 | -26.966667 | 156.38333 | 104 | 117   | female | 5   | 4          | 0.22 | 4          |
| 726  | 21-Jul-97 | -27.116666 | 156.41667 | 157 | 173   | female | 4   | 4          | 0.31 | 4          |
| 727  | 19-Jul-97 | -26.799999 | 155.80000 | 104 | 120   |        | 3   | 3          | 0.21 | 3          |
| 728  | 14-Jul-97 | -26.233333 | 155.21665 | 157 | 173   | female | 6   | 2          | 0.18 | 2          |
| 729  | 12-Jul-97 | -25.933332 | 156.18333 | 108 | 123   | male   | 3   | 2          | 0.39 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI     | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|--------|------------|
| 720  | 20 I-1 07 | 27 56667   | 150 02224 | 166 | Final | 1-     | 10  | Confidence | 0.24   | Confidence |
| 730  | 20-Jul-97 | -27.300007 | 150.05554 | 100 | 184   | famala | 10  | 3          | 0.24   | 3          |
| 731  | 13-Jul-97 | -20.100000 | 155.51000 | 102 | 206   | famala | 3   | 3          | 0.21   | 3          |
| 734  | 12 I-1 07 | -32        | 155 21666 | 191 | 200   | famale | 9   | 4          | 0.25   | 4          |
| /30  | 13-Jul-97 | -26.166666 | 155.31000 | 185 | 201   | female | 8   | 3          | 0.19   | 3          |
| 737  | 19-Aug-97 | -28.5      | 150       | 212 | 238   | female | 9   | 3          | 0.27   | 3          |
| /38  | 19-Jun-97 | -32.75     | 112.5     | 1/1 | 191   | female | 6   | 4          | 0.28   | 4          |
| 739  | 18-Jun-97 | -32.849998 | 112.71666 | 175 | 195   | male   | 8   | 4          | 0.21   | 4          |
| 740  | 08-Aug-97 | -28.850000 | 158.57499 | 174 | 196   | female | 6   | 3          | 0.23   | 3          |
| 742  | 20-Aug-97 | -25.549999 | 156.14999 | 172 | 191   | male   |     |            |        |            |
| 743  | 19-Aug-97 | -28.5      | 156       | 108 | 126   |        | 3   | 1          | 0.1800 | 1          |
| 744  | 16-Jun-97 | -32.299999 | 112.63333 | 188 | 210   | female | 12  | 4          | 0.24   | 4          |
| 745  | 21-Aug-97 | -25.666666 | 155.80000 | 176 | 199   |        | 8   | 3          |        | 3          |
| 746  | 21-Aug-97 | -25.666666 | 155.80000 | 124 | 141   |        | 2   | 3          | 0.47   | 3          |
| 748  | 19-Jun-97 | -32.75     | 112.5     | 169 | 179   | male   | 5   | 3          | 0.24   | 3          |
| 749  | 19-Jul-97 | -24.516666 | 155.38333 | 110 | 128   |        | 1   | 2          | 1.3    | 2          |
| 750  | 20-Jul-97 | -24.108333 | 154.91665 | 145 | 163   |        | 6   | 3          | 0.1200 | 3          |
| 751  | 20-Jul-97 | -24.108333 | 154.91665 | 137 | 157   |        | 3   | 2          | 0.6899 | 2          |
| 752  | 18-Jun-97 | -32.849998 | 112.71666 | 165 | 184   | female | 6   | 3          | 0.3    | 3          |
| 753  | 19-Jun-97 | -32.75     | 112.5     | 175 | 197   | male   | 6   | 3          | 0.21   | 3          |
| 755  | 11-Jun-97 | -32.400001 | 113.13333 | 162 | 179   |        | 7   | 3          | 0.1000 | 3          |
| 756  | 23-Sep-99 | -13        | 98        | 150 | 168   | female | 4   | 3          | 0.5    | 3          |
| 757  | 19-Jul-97 | -24.516666 | 155.38333 | 161 | 184   |        | 7   | 3          | 0.29   | 3          |
| 758  | 28-Jul-97 | -32.950000 | 155.38333 | 149 | 166   |        | 5   | 3          |        | 3          |
| 759  | 20-Jul-97 | -24.108333 | 154.91665 | 129 | 148   | female | 4   | 3          | 0.15   | 3          |
| 760  | 19-Jun-97 | -32.75     | 112.5     | 163 | 182   | female | 6   | 2          | 0.15   | 2          |
| 761  | 22-Jul-97 | -24.100000 | 156.10000 | 147 | 169   | female | 5   | 3          | 0.47   | 3          |
| 762  | 21-Aug-97 | -25.666666 | 155.80000 | 142 | 165   | male   | 6   | 3          | 0.15   | 3          |
| 763  | 17-Jul-97 |            |           |     |       |        | 7   | 3          |        | 3          |
| 767  | 20-Aug-97 | -25.549999 | 156.14999 | 207 | 230   |        | 11  | 3          |        | 3          |
| 769  | 22-Jul-97 | -31        | 155.33332 | 164 | 180   | female | 8   | 2          | 0.21   | 2          |
| 770  | 01-Jul-97 | -33.583332 | 112.66666 | 157 | 176   | male   | 6   | 2          | 0.17   | 2          |
| 771  | 23-Jul-97 | -32.25     | 155.25    | 141 | 158   | female | 3   | 1          | 0.52   | 1          |
| 772  | 30-Jun-97 | -33.183334 | 113.88333 | 123 | 139   | female | 5   | 4          | 0.29   | 4          |
| 774  | 24-Jul-97 | -30        | 155       | 167 | 188   | female | 7   | 4          | 0.24   | 4          |
| 778  | 22-Jul-97 | -31        | 155.33332 | 200 | 220   | male   | 8   | 2          | 0.13   | 2          |
| 779  | 07-Aug-97 | -28.633333 | 160.36666 | 202 | 227   | male   | 9   | 4          | 0.17   | 4          |
| 782  | 16-Aug-97 | -28.366666 | 160.26666 | 163 | 180   | male   | 9   | 4          |        | 4          |
| 784  | 13-Aug-97 | -28.233333 | 158.73333 | 172 | 196   | female | 9   | 3          | 0.14   | 3          |
| 785  | 19-Jul-97 | -26.799999 | 155.80000 | 157 | 175   | female | 7   | 4          | 0.18   | 4          |
| 786  | 26-Aug-97 | -28.649999 | 159.64999 | 185 | 207   | female | 8   | 4          | 0.24   | 4          |
| 788  | 24-Aug-97 | -29.75     | 159.44999 | 177 | 196   | male   | 10  | 4          | 0.12   | 4          |
| 789  | 03-Jul-97 | -32.950000 | 113.76667 | 202 | 223   | female | 11  | 3          | 0.12   | 3          |
| 791  | 30-Aug-97 | -30.700000 | 160.43333 | 131 | 151   | female | 5   | 4          | 0.22   | 4          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI     | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|--------|------------|
|      |           |            |           |     | Final |        |     | Confidence |        | Confidence |
| 792  | 26-Aug-97 | -29.033332 | 161.25    | 190 | 214   |        |     |            |        |            |
| 793  | 22-Aug-97 | -29.633333 | 160.76666 | 170 | 187   |        |     |            |        |            |
| 794  | 23-Aug-97 | -28.983333 | 160.36666 | 156 | 173   | female | 8   | 2          | 0.29   | 2          |
| 795  | 23-Aug-97 | -28.983333 | 160.36666 | 165 | 183   | female | 6   | 4          |        | 4          |
| 796  | 24-Jul-97 | -30        | 155       | 166 | 190   | female | 7   | 4          | 0.18   | 4          |
| 797  | 20-Jul-97 | -27.566667 | 156.03334 | 178 | 193   | male   | 9   | 2          | 0.24   | 2          |
| 799  | 23-Jul-97 | -26.966667 | 156.38333 | 171 | 191   | female | 9   | 2          | 0.06   | 2          |
| 800  | 20-Jul-97 | -27.566667 | 156.03334 | 190 | 210   | female | 8   | 3          | 0.42   | 3          |
| 801  | 29-Jul-97 | -32.133335 | 154.73333 | 176 | 195   | male   | 7   | 3          | 0.16   | 3          |
| 802  | 23-Jul-97 | -26.966667 | 156.38333 | 114 | 130   | female | 3   | 2          | 0.43   | 2          |
| 803  | 21-Jul-97 | -27.116666 | 156.41667 | 144 | 160   | male   | 5   | 4          | 0.24   | 4          |
| 805  | 22-Jul-97 | -27.566667 | 155.03334 | 139 | 157   | male   | 4   | 2          | 0.53   | 2          |
| 806  | 29-Jul-97 | -32.133335 | 154.73333 | 156 | 176   | female | 6   | 2          | 0.17   | 2          |
| 810  | 16-Jul-97 | -27.066667 | 155.19166 | 153 | 168   | female | 6   | 2          | 0.03   | 2          |
| 811  | 16-Jul-97 | -27.066667 | 155.19166 | 186 | 209   | female | 8   | 2          | 0.2    | 2          |
| 812  | 23-Jul-97 | -26.966667 | 156.38333 | 157 | 174   | female | 5   | 4          | 0.13   | 4          |
| 817  | 12-Jul-01 | -35.175003 | 151.41665 | 72  | 87    |        | 1   | 2          | 0.42   | 2          |
| 818  | 13-Jul-01 | -35.066665 | 151.58332 | 172 | 193   | female | 5   | 2          | 0.39   | 2          |
| 819  | 13-Jul-01 | -35.066665 | 151.58332 | 74  | 89    |        | 0   | 1          |        | 1          |
| 820  | 13-Jul-01 | -35.066665 | 151.58332 | 150 | 170   | female | 6   | 4          | 0.2    | 4          |
| 821  | 14-Jul-01 | -35.700000 | 151.78334 | 73  | 88    | male   | 1   | 2          | 0.23   | 2          |
| 822  | 14-Jul-01 | -35.700000 | 151.78334 | 165 | 186   | female | 5   | 3          |        | 3          |
| 823  | 14-Jul-01 | -35.700000 | 151.78334 | 78  | 93    | male   | 1   | 4          | 0.09   | 4          |
| 824  | 14-Jul-01 | -35.700000 | 151.78334 | 91  | 107   | female | 2   | 1          | 0.37   | 1          |
| 825  | 14-Jul-01 | -35.700000 | 151.78334 | 73  | 88    | female | 1   | 4          | 0.17   | 4          |
| 826  | 14-Jul-01 | -35.700000 | 151.78334 | 174 | 196   | female | 8   | 3          | 0.33   | 3          |
| 827  | 14-Jul-01 | -35.416667 | 151.58332 | 74  | 88    | male   | 1   | 4          | 0.37   | 4          |
| 828  | 14-Jul-01 | -35.416667 | 151.58332 | 78  | 92    | female | 1   | 3          | 0.33   | 3          |
| 842  | 10-Aug-01 | -33.049999 | 152.5     | 79  | 94    | female | 1   | 4          | 0.26   | 4          |
| 843  | 10-Aug-01 | -33.049999 | 152.5     | 137 | 156   | female |     | 5          |        | 5          |
| 844  | 10-Aug-01 | -33.049999 | 152.5     | 162 | 183   | female | 6   | 3          | 0.08   | 3          |
| 845  | 10-Aug-01 | -33.049999 | 152.5     | 94  | 110   | male   | 1   | 3          | 0.42   | 3          |
| 846  | 10-Aug-01 | -33.049999 | 152.5     |     |       | female | 5   | 3          | 0.5799 | 3          |
| 847  | 10-Aug-01 | -33.049999 | 152.5     | 146 | 166   | female | 7   | 3          | 0.04   | 3          |
| 848  | 10-Aug-01 | -33.049999 | 152.5     | 122 | 140   | female | 7   | 3          | 0.04   | 3          |
| 849  | 11-Aug-01 | -32.733333 | 153.13333 | 131 | 150   | female | 5   | 4          | 0.3    | 4          |
| 850  | 11-Aug-01 | -32.733333 | 153.13333 | 145 | 165   | male   | 6   | 2          | 0.45   | 2          |
| 851  | 11-Aug-01 | -32.733333 | 153.13333 | 135 | 154   | male   | 3   | 3          | 0.4    | 3          |
| 852  | 11-Aug-01 | -32.733333 | 153.13333 | 151 | 171   | male   | 10  | 3          | 0.1    | 3          |
| 853  | 04-Aug-01 | -33.275001 | 152.68333 | 175 | 197   | male   | 10  | 3          | 0.12   | 3          |
| 854  | 04-Aug-01 | -33.275001 | 152.68333 | 152 | 172   | male   | 8   | 3          | 0.03   | 3          |
| 855  | 04-Aug-01 | -33.275001 | 152.68333 | 82  | 98    | male   | 3   | 3          | 0.34   | 3          |
| 856  | 04-Aug-01 | -33.275001 | 152.68333 | 185 | 207   | female | 7   | 3          | 0.44   | 3          |

| BBL#       | DATE       | LAT        | LON       | OFL | LJFL  | Sex     | AGE    | Age        | MI   | MI          |
|------------|------------|------------|-----------|-----|-------|---------|--------|------------|------|-------------|
|            |            |            |           |     | Final |         |        | Confidence | 0.10 | Confidence  |
| 857        | 04-Aug-01  | -33.275001 | 152.68333 | 74  | 89    | female  | 1      | 2          | 0.12 | 2           |
| 858        | 07-Aug-01  | -33.083335 | 152.50833 | 160 | 181   | female  | 9      | 4          | 0.03 | 4           |
| 859        | 07-Aug-01  | -33.083335 | 152.50833 | 80  | 95    | male    | 2      | 2          | 0.06 | 2           |
| 860        | 08-Aug-01  | -33.75     | 152.48333 | 131 | 150   | female  | 4      | 1          | 0.1  | 1           |
| 862        | 08-Aug-01  | -33.75     | 152.48333 | 169 | 190   | female  | 7      | 3          | 0.04 | 3           |
| 863        | 08-Aug-01  | -33.75     | 152.48333 | 185 | 207   | female  | 12     | 3          | 0.1  | 3           |
| 864        | 03-Aug-01  | -33.466667 | 152.53334 | 177 | 199   | female  | 6      | 3          | 0.42 | 3           |
| 865        | 08-Aug-01  | -33.099998 | 152.81666 | 184 | 206   | female  | 5      | 4          | 0.4  | 4           |
| 866        | 08-Aug-01  | -33.099998 | 152.81666 | 129 | 148   | male    | 4      | 2          | 0.44 | 2           |
| 867        | 05-Aug-01  | -37.516666 | 151.06666 | 76  | 91    | male    | 0      | 2          |      | 2           |
| 868        | 05-Aug-01  | -37.516666 | 151.06666 | 76  | 91    | male    | 1      | 3          |      | 3           |
| 869        | 05-Aug-01  | -37.516666 | 151.06666 | 77  | 92    | male    | 1      | 1          | 0.27 | 1           |
| 870        | 08-Jan-01  | -29.399999 | 153.94999 | 242 | 268   | female  | 14     | 4          | 0.27 | 4           |
| 871        | 08-Jan-01  | -29.399999 | 153.94999 | 189 | 212   | female  | 9      | 2          | 0.15 | 2           |
| 872        | 08-Jan-01  | -29.399999 | 153.94999 | 173 | 195   | male    | 8      | 3          |      | 3           |
| 873        | 16-Dec-99  | -28.558332 | 158.25833 | 177 | 199   | female  | 7      | 3          | 0.35 | 3           |
| 875        | 17-Feb-95  | -16        | 118       | 132 | 151   | male    | 6      | 3          | 0.13 | 3           |
| 876        | 03-Jul-95  | -30.333333 | 154.80000 | 127 | 146   | female  |        | 5          |      | 5           |
| 877        | 02-Jul-95  | -27.799999 | 154.80000 | 145 | 164   | female  | 4      | 2          | 0.36 | 2           |
| 879        | 03-Jul-95  | -30.333333 | 154.80000 | 165 | 187   | female  | 5      | 2          | 0.12 | 2           |
| 883        | 27-Feb-95  | -17        | 118       | 78  | 94    | female  | 3      | 2          | 0.07 | 2           |
| 885        | 20-Feb-95  | -16        | 118       | 76  | 88    | male    | 2      | 3          | 0.31 | 3           |
| 887        | 13-Feb-95  | -16        | 119       | 86  | 98    | male    | 1      | 2          | 0.45 | 2           |
| 888        | 17-Feb-95  | -16        | 118       | 137 | 159   | male    | 8      | 3          | 0.26 | 3           |
| 889        | 18-Feb-95  | -16        | 118       | 126 | 144   | male    |        | 5          |      | 5           |
| 891        | 17-Feb-95  | -16        | 118       | 76  | 89    | male    | 3      | 2          | 0.21 | 2           |
| 892        | 19-Feb-95  | -16        | 118       | 88  | 101   | female  | 2      | 2          | 0.06 | 2           |
| 894        | 25-Feb-95  | -16        | 118       | 87  | 102   | male    | 3      | 1          | 0.05 | 1           |
| 895        | 21-Feb-95  | -16        | 118       | 67  | 83    | female  | 1      | 1          | 0.1  | 1           |
| 896        | 12-Feb-95  | -17        | 118       | 82  | 97    | male    | 1      | 2          | 0.48 | 2           |
| 897        | 20-Feb-95  | -16        | 118       | 122 | 140   | male    | 4      | 1          | 0.3  | 1           |
| 899        | 16-Feb-95  | -16        | 119       | 82  | 99    | female  | 3      | 4          | 0.11 | 4           |
| 902        | 16-Feb-95  | -16        | 119       | 160 | 183   | female  |        | 5          |      | 5           |
| 903        | 15-Feb-95  | -16        | 119       | 164 | 185   | male    | 6      | 4          | 0.16 | 4           |
| 905        | 27-Feb-95  | -17        | 118       | 133 | 150   | male    | 4      | 4          | 0.32 | 4           |
| 906        | 02-Jul-95  | -27 799999 | 154 80000 | 125 | 143   | female  | 3      | 3          | 0.55 | 3           |
| 907        | 17-Feb-95  | -16        | 118       | 123 | 148   | Ternule | 5      | 4          | 0.55 | 4           |
| 908        | 17-Feb-95  | -16        | 110       | 110 | 135   | male    | 4      | +<br>2     | 0.20 | -<br>-<br>2 |
| 000        | 17-Fab 05  | -10        | 119       | 117 | 155   | male    | 4      | 2          | 0.29 | 2           |
| 909<br>010 | 1/-FCU-93  | -10<br>16  | 110       | 144 | 104   | famale  | 7      | 2          | 0.15 | 2           |
| 011        | 14-1700-93 | -10<br>16  | 119       | 104 | 105   | male    | 7      | 2          | 0.15 | 2           |
| 911        | 19-Feb-93  | -10        | 110       | 112 | 127   | fam1-   | د<br>د | Δ          | 0.20 | <u>ک</u>    |
| 912        | 22-FeD-93  | -10        | 118       | 141 | 102   | iemaie  | د<br>- | 4          | 0.55 | 4           |
| 915        | 1/-red-95  | -16        | 118       | 126 | 144   | male    | 5      | 3          | 0.17 | 3           |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 914  | 03-Jul-95 | -30.333333 | 154.80000 | 176 | 198   | female | 6   | 3          | 0.28 | 3          |
| 915  | 02-Jul-95 | -27.799999 | 154.80000 | 122 | 140   | female | 4   | 4          | 0.53 | 4          |
| 916  | 03-Jul-95 | -30.333333 | 154.80000 | 191 | 213   | female |     | 5          |      | 5          |
| 917  | 03-Jul-95 | -30.333333 | 154.80000 | 114 | 132   | female | 4   | 3          | 0.1  | 3          |
| 918  | 15-Feb-95 | -16        | 119       | 108 | 125   | male   | 6   | 3          | 0.42 | 3          |
| 919  | 19-Feb-95 | -16        | 118       | 214 | 239   | female | 11  | 2          | 0.26 | 2          |
| 920  | 17-Feb-95 | -16        | 118       | 210 | 234   |        |     | 4          |      | 4          |
| 921  | 17-Feb-95 | -16        | 118       | 150 | 168   | male   | 6   | 3          | 0.2  | 3          |
| 922  | 03-Jul-95 | -30.333333 | 154.80000 | 115 | 129   | female |     | 5          |      | 5          |
| 923  | 19-Feb-95 | -16        | 118       | 136 | 157   | male   | 6   | 3          | 0.13 | 3          |
| 925  | 12-Feb-95 | -17        | 118       | 89  | 105   | male   | 2   | 2          | 0.23 | 2          |
| 926  | 20-Feb-95 | -16        | 118       | 142 | 162   | male   | 7   | 4          | 0.28 | 4          |
| 927  | 18-Jul-97 | -27.383333 | 156       |     | 222   | female | 8   | 4          | 0.51 | 4          |
| 928  | 14-Jul-97 | -26.850000 | 156.36666 |     | 186   | female | 4   | 4          | 0.68 | 4          |
| 929  | 27-Jul-97 | -28.549999 | 156.38333 |     | 219   | female | 10  | 2          | 0.42 | 2          |
| 930  | 23-Jul-97 | -27.766666 | 156.69999 |     | 139   | female | 4   | 1          | 0.34 | 1          |
| 931  | 18-Jul-97 | -27.383333 | 156       |     | 178   | female | 6   | 3          | 0.31 | 3          |
| 932  | 15-Jul-97 | -27.149999 | 156.44999 |     | 181   | female | 6   | 3          | 0.95 | 3          |
| 933  | 23-Jul-97 | -27.766666 | 156.69999 |     | 229   | female | 9   | 4          | 0.66 | 4          |
| 934  | 23-Jul-97 | -27.766666 | 156.69999 |     | 189   | female |     | 5          |      | 5          |
| 935  | 22-Jul-97 | -27.516666 | 156.06666 |     | 203   | female |     | 5          |      | 5          |
| 936  | 20-Jul-97 | -27.383333 | 156.28334 |     | 179   | female | 6   | 3          | 0.38 | 3          |
| 937  | 23-Jul-97 | -27.766666 | 156.69999 |     | 168   | female | 6   | 2          | 0.25 | 2          |
| 938  | 14-Jun-97 | -32.299999 | 112.48332 | 115 | 134   | male   | 6   | 3          | 0.13 | 3          |
| 939  | 12-Jun-97 | -32.150001 | 112.86666 |     |       | female |     | 4          |      | 4          |
| 940  | 15-Jun-97 | -31.866666 | 112.33333 | 200 | 221   | female | 9   | 3          | 0.25 | 3          |
| 941  | 16-Jun-97 | -32.299999 | 112.63333 | 176 | 193   | male   | 8   | 2          | 0.38 | 2          |
| 942  | 15-Jun-97 | -31.866666 | 112.33333 | 180 | 202   | female | 9   | 4          | 0.21 | 4          |
| 943  | 15-Jun-97 | -31.866666 | 112.33333 | 165 | 187   | female | 8   | 3          | 0.08 | 3          |
| 944  | 14-Jun-97 | -32.299999 | 112.48332 | 173 | 191   | male   | 9   | 3          | 0.11 | 3          |
| 945  | 14-Jun-97 | -32.299999 | 112.48332 |     |       | female |     |            |      |            |
| 946  | 06-Aug-97 | -28.916666 | 161       |     | 132   | female | 5   | 4          | 0.56 | 4          |
| 947  | 31-Jul-97 | -28.799999 | 160.68333 |     | 156   | female | 5   | 2          | 0.82 | 2          |
| 948  | 03-Aug-97 | -29.033332 | 161.08332 |     | 162   | female |     | 5          |      | 5          |
| 949  | 30-Jul-97 | -30.600000 | 157.73333 |     | 233   | female |     | 5          |      | 5          |
| 950  | 02-Aug-97 | -29.033332 | 161.13333 |     | 226   | female | 8   | 2          | 0.38 | 2          |
| 951  | 21-Jul-97 | -30.75     | 155.25    | 130 | 154   | female | 6   | 2          | 0.2  | 2          |
| 952  | 30-Jul-97 | -32.766666 | 154.76666 | 184 | 218   | male   | 10  | 3          | 0.29 | 3          |
| 953  | 29-Jul-97 | -32.066665 | 154.71665 | 104 | 127   | male   | 3   | 2          | 0.07 | 2          |
| 954  | 01-Aug-97 | -32.566665 | 154.66667 | 132 | 150   | male   | 6   | 4          | 0.09 | 4          |
| 955  | 01-Aug-97 | -32.566665 | 154.66667 | 108 | 123   | female | 4   | 3          | 0.12 | 3          |
| 956  | 09-Aug-97 | -28.616666 | 159.98333 |     | 175   | female | 5   | 3          | 0.39 | 3          |
| 957  | 11-Aug-97 | -28.450000 | 159.33332 | 161 | 180   | male   | 7   | 4          | 0.07 | 4          |

| BBL# | DATE              | LAT                     | LON        | OFL | LJFL  | Sex    | AGE      | Age        | MI   | MI         |
|------|-------------------|-------------------------|------------|-----|-------|--------|----------|------------|------|------------|
|      |                   |                         |            |     | Final |        |          | Confidence |      | Confidence |
| 958  | 08-Aug-97         | -28.850000              | 158.57499  | 138 | 160   | male   |          | 5          |      | 5          |
| 959  | 08-Aug-97         | -28.850000              | 158.57499  | 183 | 207   | female | 9        | 3          | 0.52 | 3          |
| 960  | 11-Aug-97         | -28.450000              | 159.33332  | 170 | 192   | male   | 8        | 4          | 0.18 | 4          |
| 961  | 06-Jul-97         | -30.783332              | 110.98332  | 189 | 206   | male   | 10       | 3          | 0.06 | 3          |
| 962  | 13-Aug-97         | -27                     | 156.90832  |     | 184   | female |          | 5          |      | 5          |
| 963  | 13-Aug-97         | -27                     | 156.90832  |     | 140   | female | 3        | 4          | 0.09 | 4          |
| 964  | 13-Aug-97         | -27                     | 156.90832  |     | 147   | female | 3        | 4          | 0.34 | 4          |
| 965  | 13-Aug-97         | -27                     | 156.90832  |     | 168   | female |          | 5          |      | 5          |
| 966  | 12-Aug-97         | -28.700000              | 157.71665  |     | 116   | female | 2        | 2          |      | 2          |
| 967  | 06-Aug-97         | -28.916666              | 161        |     | 132   | female |          | 5          |      | 5          |
| 968  | 09-Aug-97         | -28.616666              | 159.98333  |     | 175   | female |          | 5          |      | 5          |
| 969  | 11-Aug-97         | -28.600000              | 156.83332  |     | 190   | female |          | 5          |      | 5          |
| 970  | 17-Aug-97         | -23.200000              | 154.66667  |     | 113   | female | 4        | 4          | 0.1  | 4          |
| 971  | 11-Aug-97         | -28.600000              | 156.83332  |     | 187   |        |          | 4          |      | 4          |
| 975  | 23-Oct-01         | -27                     | 157.75     | 180 | 202   | female | 13       | 4          | 0.27 | 4          |
| 976  | 26-Oct-01         | -27.524999              | 157.41665  | 215 | 239   | female | 15       | 4          | 0.38 | 4          |
| 977  | 21-Oct-01         | -27                     | 157.53334  | 150 | 170   | female |          | 5          |      | 5          |
| 978  | 24-Oct-01         | -26.416666              | 157.5      | 180 | 202   | female | 7        | 4          |      | 4          |
| 979  | 16-Oct-01         | -27                     | 157.5      | 160 | 181   | female | 9        | 4          | 0.2  | 4          |
| 980  | 28-Oct-01         | -27.166667              | 157.58334  | 170 | 191   | female | 11       | 2          | 0.19 | 2          |
| 981  | 28-Oct-01         | -27.166667              | 157.58334  |     |       | male   | 7        | 2          | 0.1  | 2          |
| 982  | 22-Oct-01         | -27                     | 157.41665  | 150 | 170   | female | 8        | 4          | 0.27 | 4          |
| 983  | 01-Oct-01         | -27.5                   | 157.32499  | 175 | 197   |        |          | 4          |      | 4          |
| 984  | 22-Oct-01         | -27                     | 157.41665  | 130 | 149   | female | 5        | 3          | 0.19 | 3          |
| 985  | 26-Oct-01         | -27.524999              | 157.41665  | 155 | 175   | female | 6        | 4          | 0.82 | 4          |
| 986  | 26-Oct-01         | -27.524999              | 157.41665  | 135 | 154   | male   | 6        | 3          | 0.27 | 3          |
| 987  | 22-Oct-01         | -27                     | 157.41665  | 160 | 181   | female | 10       | 4          | 0.14 | 4          |
| 988  | 17-Oct-01         | -27                     | 157.56666  | 190 | 213   | female | 10       | 4          | 0.35 | 4          |
| 989  | 25-Oct-01         | -26.375                 | 157.5      | 145 | 165   | female |          | 5          |      | 5          |
| 990  | 28-Oct-01         | -27.166667              | 157.58334  | 150 | 170   | female | 5        | 3          | 0.13 | 3          |
| 991  | 23-Oct-01         | -27                     | 157.75     | 175 | 197   | female | 11       | 3          | 0.13 | 3          |
| 992  | 22-Oct-01         | -27                     | 157.41665  | 140 | 159   | female |          | 5          |      | 5          |
| 993  | 25-Oct-01         | -26.375                 | 157.5      | 155 | 175   | female | 6        | 4          | 0.71 | 4          |
| 994  | 28-Oct-01         | -27.166667              | 157.58334  |     |       | female |          | 4          |      | 4          |
| 995  | 28-Oct-01         | -27.166667              | 157.58334  | 170 | 191   | female | 11       | 4          | 0.09 | 4          |
| 996  | 29-Oct-01         | -28.533332              | 158.48333  | 201 | 224   | female | 14       | 4          | 0.04 | 4          |
| 997  | 29-Oct-01         | -28 533332              | 158 48333  | 208 | 232   | female | 9        | 3          | 0.04 | 3          |
| 998  | 11-Oct-01         | -28 450000              | 154 94999  | 158 | 179   | female |          | 5          | 0.12 | 5          |
| 999  | 01-Oct-01         | _20.+50000              | 157 37490  | 201 | 224   | female | Q        | 2          | 0.07 | 2          |
| 1000 | $29_{\rm San_01}$ | -27.5                   | 158 05833  | 201 | 224   | female | )        | 5          | 0.12 | 5          |
| 1000 | 29-500-01         | -20.775001              | 157 0/000  | 199 | 230   | female | Q        | 5          | 0.12 | 3          |
| 1001 | 20  Oct  01       | -27.710007              | 158 10222  | 100 | 152   | fomale | 0<br>5   | 2          | 0.29 | 2          |
| 1002 | 29-000-01         | -20.333332<br>28 775001 | 150.40333  | 104 | 210   | male   | <i>с</i> | 3          | 0.30 | 3          |
| 1005 | 29-sep-01         | -20.773001              | 100.000000 | 195 | 210   | male   | 9        | 3          | 0.15 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1004 | 29-Oct-01 | -28.533332 | 158.48333 | 145 | 165   | male   | 5   | 3          | 0.14 | 3          |
| 1005 | 01-Oct-01 | -27.5      | 157.32499 | 205 | 229   | female | 11  | 2          | 0.06 | 2          |
| 1006 | 29-Sep-01 | -28.775001 | 158.05833 | 210 | 234   | female | 13  | 4          | 0.17 | 4          |
| 1007 | 29-Oct-01 | -28.533332 | 158.48333 | 170 | 191   | female | 7   | 3          | 0.34 | 3          |
| 1008 | 30-Sep-01 | -29.450000 | 158.03334 | 185 | 207   | female | 10  | 4          | 0.06 | 4          |
| 1009 | 28-Oct-01 | -27.166667 | 157.58334 | 155 | 175   | female | 8   | 4          | 0.07 | 4          |
| 1010 | 31-Oct-01 | -28.716667 | 158.35000 | 145 | 165   | female | 5   | 4          | 0.65 | 4          |
| 1011 | 31-Oct-01 | -28.716667 | 158.35000 | 143 | 163   | female | 8   | 4          | 0.07 | 4          |
| 1012 | 31-Oct-01 | -28.716667 | 158.35000 | 168 | 189   |        | 9   | 3          | 0.16 | 3          |
| 1013 | 31-Oct-01 | -28.716667 | 158.35000 | 196 | 219   | female | 11  | 3          | 0.19 | 3          |
| 1014 | 31-Oct-01 | -28.716667 | 158.35000 | 135 | 154   | male   | 5   | 3          | 0.11 | 3          |
| 1015 | 31-Oct-01 | -28.716667 | 158.35000 | 175 | 197   | female | 9   | 4          |      | 4          |
| 1016 | 31-Oct-01 | -28.716667 | 158.35000 | 185 | 207   | female | 12  | 4          | 0.32 | 4          |
| 1017 | 31-Oct-01 | -28.716667 | 158.35000 | 173 | 195   | female | 8   | 2          | 0.08 | 2          |
| 1018 | 28-Oct-01 | -27.166667 | 157.58334 | 197 | 220   | female | 8   | 3          | 0.09 | 3          |
| 1019 | 29-Oct-01 | -28.533332 | 158.48333 | 185 | 207   | female | 8   | 2          | 0.35 | 2          |
| 1020 | 29-Oct-01 | -28.533332 | 158.48333 | 150 | 170   | female | 8   | 3          | 0.13 | 3          |
| 1021 | 28-Oct-01 | -27.166667 | 157.58334 | 145 | 165   | female | 5   | 4          | 0.43 | 4          |
| 1022 | 28-Oct-01 | -27.166667 | 157.58334 | 155 | 175   | female | 6   | 3          | 0.2  | 3          |
| 1023 | 26-Oct-01 | -27.524999 | 157.41665 | 150 | 170   | male   | 6   | 3          | 0.26 | 3          |
| 1024 | 01-Oct-01 | -27.5      | 157.32499 | 147 | 167   | female | 5   | 3          | 0.34 | 3          |
| 1025 | 06-Oct-01 | -27.116666 | 157.16667 | 150 | 170   | female | 5   | 4          | 0.37 | 4          |
| 1026 | 01-Oct-01 | -27.5      | 157.32499 | 135 | 154   | female | 5   | 4          | 0.13 | 4          |
| 1027 | 04-Oct-01 | -26.333333 | 157.05000 | 145 | 165   | female | 5   | 3          | 0.2  | 3          |
| 1028 | 30-Nov-01 | -36.166667 | 152.53332 | 230 |       | female | 10  | 4          | 0.17 | 4          |
| 1029 | 30-Nov-01 | -36.166667 | 152.53332 | 183 |       | female | 9   | 3          |      | 3          |
| 1030 | 30-Nov-01 | -36.166667 | 152.53332 | 85  |       | female | 1   | 1          | 0.27 | 1          |
| 1031 | 23-Nov-01 | -25        | 156.625   | 145 |       | female | 6   | 4          | 0.12 | 4          |
| 1032 | 23-Nov-01 | -25        | 156.625   | 110 |       | female | 3   | 2          | 0.33 | 2          |
| 1033 | 27-Nov-01 | -24.5      | 156       | 240 |       | female | 15  | 2          | 0.14 | 2          |
| 1034 | 23-Nov-01 | -25        | 156.625   | 180 |       | female |     | 5          |      | 5          |
| 1035 | 23-Nov-01 | -25        | 156.625   | 180 |       | female | 10  | 4          | 0.24 | 4          |
| 1036 | 25-Nov-01 | -25        | 156.625   | 170 |       | female | 7   | 3          | 0.47 | 3          |
| 1037 | 24-Nov-01 | -25        | 156.73333 | 175 |       | female | 9   | 2          | 0.38 | 2          |
| 1038 | 22-Nov-01 | -25        | 157       | 165 |       | female | 9   | 2          | 0.08 | 2          |
| 1039 | 27-Nov-01 | -24.5      | 156       | 240 |       | female | 10  | 4          | 0.14 | 4          |
| 1040 | 25-Nov-01 | -25        | 156.625   | 180 |       | female | 7   | 3          | 0.26 | 3          |
| 1041 | 25-Nov-01 | -25        | 156.625   | 170 |       | female | 7   | 2          | 0.2  | 2          |
| 1042 | 05-Dec-01 | -27.375    | 157.38333 | 97  |       | female | 3   | 4          | 0.13 | 4          |
| 1043 | 05-Dec-01 | -27.375    | 157.38333 | 150 |       | female | 3   | 4          | 0.68 | 4          |
| 1044 | 26-Nov-01 | -27.183333 | 156.63333 | 95  |       | female | 2   | 4          |      | 4          |
| 1045 | 27-Nov-01 | -27.15     | 156.51666 | 87  |       | female | 2   | 4          |      | 4          |
| 1046 | 26-Nov-01 | -27.183333 | 156.63333 | 127 |       | male   | 5   | 3          | 0.42 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1047 | 27-Nov-01 | -27.15     | 156.51666 | 146 |       | female |     | 5          |      | 5          |
| 1048 | 27-Nov-01 | -27.15     | 156.51666 | 153 |       | female | 7   | 2          | 0.25 | 2          |
| 1049 | 23-Nov-01 | -27.883333 | 160.86666 | 190 |       | female | 8   | 2          | 0.43 | 2          |
| 1050 | 23-Nov-01 | -27.883333 | 160.86666 | 190 |       |        |     |            |      |            |
| 1051 | 24-Nov-01 | -27.516666 | 160.4     | 155 |       | female | 5   | 2          | 0.43 | 2          |
| 1052 | 23-Nov-01 | -27.883333 | 160.86666 | 200 |       | female | 8   | 3          | 0.52 | 3          |
| 1053 | 23-Nov-01 | -27.883333 | 160.86666 | 134 |       | female | 4   | 3          | 0.29 | 3          |
| 1054 | 24-Nov-01 | -27.516666 | 160.4     | 130 |       | female | 6   | 4          | 0.19 | 4          |
| 1055 | 24-Nov-01 | -28.041667 | 161.125   | 170 |       | female | 6   | 4          | 0.24 | 4          |
| 1056 | 23-Nov-01 | 27.883333  | 160.6     | 165 |       | female | 9   | 2          | 0.25 | 2          |
| 1057 | 28-Nov-01 | -27.533332 | 161.58334 | 176 |       | female | 9   | 3          | 0.26 | 3          |
| 1058 | 27-Nov-01 | -27.549999 | 161.64166 | 202 |       | female | 15  | 4          | 0.11 | 4          |
| 1059 | 26-Nov-01 | -27.541667 | 161.55833 | 130 |       | female | 6   | 2          | 0.25 | 2          |
| 1060 | 26-Nov-01 | -27.541667 | 161.55833 | 175 |       | female | 5   | 3          | 0.37 | 3          |
| 1061 | 06-Dec-01 | -25.683332 | 157.11666 | 203 |       | female | 12  | 3          | 0.13 | 3          |
| 1062 | 27-Nov-01 | -27.549999 | 161.64166 | 205 |       | female |     | 5          | 0.13 | 5          |
| 1063 | 24-Nov-01 | -28.041667 | 161.125   | 153 |       |        | 6   | 3          |      | 3          |
| 1064 | 27-Nov-01 | -27.549999 | 161.64166 | 258 |       | female | 16  | 4          |      | 4          |
| 1065 | 28-Nov-01 | -27.533332 | 161.58334 | 176 |       | male   | 8   | 2          | 0.11 | 2          |
| 1066 | 26-Nov-01 | -27.541667 | 161.55833 | 180 |       | female | 8   | 3          | 0.23 | 3          |
| 1067 | 28-Nov-01 | -27.533332 | 161.58334 | 197 |       | female | 11  | 4          | 0.11 | 4          |
| 1068 | 26-Nov-01 | -27.541667 | 161.55833 | 220 |       | female | 11  | 3          | 0.15 | 3          |
| 1069 | 27-Nov-01 | -24.5      | 156       | 200 |       | female | 10  | 3          | 0.18 | 3          |
| 1070 | 26-Nov-01 | -25        | 156.75    | 90  |       | female | 4   | 2          | 0.38 | 2          |
| 1071 | 26-Nov-01 | -27.183333 | 156.63333 | 143 |       | male   | 5   | 3          | 0.18 | 3          |
| 1072 | 26-Nov-01 | -27.183333 | 156.63333 | 151 |       | male   | 5   | 4          |      | 4          |
| 1073 | 24-Nov-01 | -27.516666 | 160.4     | 163 |       | female | 7   | 4          | 0.4  | 4          |
| 1074 | 26-Nov-01 | -27.183333 | 156.63333 |     |       | female | 4   | 3          | 0.36 | 3          |
| 1076 | 23-Nov-01 | -27.883333 | 160.86666 | 140 |       | female | 3   | 2          | 0.43 | 2          |
| 1077 | 24-Nov-01 | -27.516666 | 160.4     | 148 |       | female | 6   | 2          | 0.21 | 2          |
| 1078 | 23-Nov-01 | -27.883333 | 160.86666 | 152 |       | male   | 5   | 4          | 0.4  | 4          |
| 1079 | 23-Nov-01 | -27.883333 | 160.86666 | 149 |       | female | 6   | 4          | 0.21 | 4          |
| 1080 | 23-Nov-01 | -27.883333 | 160.86666 | 133 |       | male   | 4   | 4          | 0.37 | 4          |
| 1081 | 23-Nov-01 | -27.883333 | 160.86666 | 203 |       | female | 14  | 4          | 0.09 | 4          |
| 1082 | 23-Nov-01 | -27.883333 | 160.86666 | 226 |       | female | 8   | 3          | 0.18 | 3          |
| 1083 | 23-Nov-01 | -27.883333 | 160.86666 | 204 |       | female | 10  | 3          | 0.11 | 3          |
| 1084 | 24-Nov-01 | -27.516666 | 160.4     | 234 |       | female | 16  | 2          | 0.23 | 2          |
| 1085 | 24-Nov-01 | -27.516666 | 160.4     | 134 |       |        |     |            |      |            |
| 1086 | 24-Nov-01 | -27.516666 | 160.4     | 178 |       | male   | 10  | 4          | 0.06 | 4          |
| 1087 | 23-Nov-01 | -27.883333 | 160.86666 | 190 |       | female | 8   | 3          | 0.17 | 3          |
| 1088 | 24-Nov-01 | -27.516666 | 160.4     | 166 |       | female | 7   | 2          | 0.16 | 2          |
| 1089 | 05-Dec-01 | -27.375    | 157.38333 | 76  |       | male   | 1   | 2          | 0.17 | 2          |
| 1090 | 04-Dec-01 |            |           | 230 |       | female | 15  | 4          | 0.28 | 4          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1091 | 15-Dec-01 | -24.166666 | 153.9     | 145 |       | female | 5   | 4          | 0.58 | 4          |
| 1092 | 15-Dec-01 | -24.166666 | 153.9     | 219 |       | female | 10  | 3          | 0.42 | 3          |
| 1093 | 20-Dec-01 | -23.916666 | 153.56666 | 139 |       | female | 5   | 1          | 0.38 | 1          |
| 1094 | 21-Dec-01 | -24.016666 | 153.55    | 200 |       | female | 8   | 2          | 0.48 | 2          |
| 1095 | 21-Dec-01 | -24.016666 | 153.55    | 138 |       | male   | 6   | 3          | 0.14 | 3          |
| 1096 | 21-Dec-01 | -24.016666 | 153.55    | 125 |       | male   | 4   | 2          | 0.41 | 2          |
| 1097 | 21-Dec-01 | -24.016666 | 153.55    | 170 |       | male   | 8   | 4          | 0.31 | 4          |
| 1098 | 30-Dec-01 | 28.833333  | 153.26666 | 131 |       | male   | 4   | 4          | 0.46 | 4          |
| 1099 | 30-Dec-01 | 28.833333  | 153.26666 | 104 |       | female | 3   | 3          | 0.06 | 3          |
| 1100 | 01-Dec-01 |            |           | 215 |       | female | 11  | 3          | 0.25 | 3          |
| 1101 | 01-Dec-01 |            |           | 170 |       | female | 7   | 3          | 0.5  | 3          |
| 1102 | 01-Dec-01 |            |           | 190 |       | female |     | 5          |      | 5          |
| 1103 | 02-Dec-01 |            |           | 170 |       | female | 9   | 3          | 0.2  | 3          |
| 1104 | 02-Dec-01 |            |           | 130 |       | male   | 5   | 3          | 0.26 | 3          |
| 1105 | 02-Dec-01 |            |           | 125 |       | male   | 5   | 2          | 0.22 | 2          |
| 1106 | 02-Jan-02 | -25        | 156       | 130 |       | male   |     | 5          |      | 5          |
| 1107 | 01-Jan-02 |            |           | 185 |       | male   | 5   | 3          | 0.54 | 3          |
| 1108 | 02-Jan-02 | -25        | 156       | 130 |       | male   | 3   | 2          | 0.26 | 2          |
| 1109 | 01-Jan-02 |            |           | 162 |       | female | 9   | 3          | 0.27 | 3          |
| 1110 | 01-Jan-02 |            |           | 132 |       | male   | 5   | 3          | 0.39 | 3          |
| 1111 | 02-Jan-02 | -25        | 156       | 190 |       | female | 8   | 4          | 0.24 | 4          |
| 1112 | 02-Jan-02 | -25        | 156       | 100 |       | female | 3   | 3          | 0.42 | 3          |
| 1113 | 02-Jan-02 | -25        | 156       | 50  |       | female | 1   | 2          | 0.13 | 2          |
| 1114 | 02-Jan-02 | -25        | 156       | 140 |       | female | 9   | 4          | 0.15 | 4          |
| 1115 | 01-Jan-02 |            |           | 125 |       | female | 4   | 3          | 0.28 | 3          |
| 1116 | 01-Jan-02 |            |           | 148 |       | male   | 6   | 3          | 0.31 | 3          |
| 1117 | 02-Jan-02 | -25        | 156       | 165 |       | male   | 9   | 3          |      | 3          |
| 1118 | 02-Jan-02 | -25        | 156       | 140 |       | female | 4   | 3          | 0.13 | 3          |
| 1119 | 02-Jan-02 | -25        | 156       | 130 |       | female | 6   | 3          | 0.35 | 3          |
| 1120 | 01-Jan-02 |            |           | 126 |       | male   | 3   | 3          | 0.13 | 3          |
| 1121 | 01-Jan-02 |            |           | 150 |       | male   | 6   | 3          | 0.11 | 3          |
| 1122 | 02-Jan-02 | -25        | 156       | 120 |       | female | 3   | 2          | 0.9  | 2          |
| 1123 | 02-Jan-02 | -25        | 156       | 160 |       | female | 7   | 4          | 0.29 | 4          |
| 1124 | 02-Jan-02 | -23.566666 | 156.71666 | 185 |       | female | 9   | 3          | 0.12 | 3          |
| 1125 | 02-Jan-02 | -23.566666 | 156.71666 | 126 |       | male   | 4   | 2          | 0.14 | 2          |
| 1126 | 02-Jan-02 | -23.566666 | 156.71666 | 144 |       | female | 8   | 3          | 0.13 | 3          |
| 1127 | 03-Jan-02 | -25.25     | 157.05    | 150 |       | female | 7   | 3          | 0.19 | 3          |
| 1128 | 03-Jan-02 | -25.25     | 157.05    | 220 |       | female | 14  | 3          | 0.26 | 3          |
| 1129 | 03-Jan-02 | -25.25     | 157.05    | 201 |       | female | 9   | 4          | 0.14 | 4          |
| 1130 | 03-Jan-02 | -25.25     | 157.05    | 238 |       | female | 12  | 3          | 0.32 | 3          |
| 1131 | 04-Jan-02 | -25.183333 | 157       | 156 |       | female | 5   | 2          | 0.37 | 2          |
| 1132 | 04-Jan-02 | -25.183333 | 157       | 175 |       | female | 7   | 3          | 0.24 | 3          |
| 1134 | 04-Jan-02 | -25.183333 | 157       | 195 |       | male   | 11  | 3          | 0.18 | 3          |
| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1135 | 27-Nov-01 | -27.549999 | 161.64166 | 143 |       | female | 8   | 3          | 0.25 | 3          |
| 1136 | 22-Jan-02 | -28.45     | 161.5     | 115 |       | female | 3   | 2          | 0.29 | 2          |
| 1137 | 22-Jan-02 | -28.45     | 161.5     | 139 |       | female | 5   | 4          | 0.24 | 4          |
| 1138 | 22-Jan-02 | -28.45     | 161.5     | 186 |       | female | 8   | 3          | 0.14 | 3          |
| 1139 | 22-Jan-02 | -28.45     | 161.5     | 184 |       | male   | 8   | 3          |      | 3          |
| 1140 | 22-Jan-02 | -28.45     | 161.5     | 146 |       | female | 4   | 3          | 0.48 | 3          |
| 1141 | 22-Jan-02 | -28.45     | 161.5     | 183 |       | male   | 9   | 3          | 0.29 | 3          |
| 1142 | 25-Jan-02 | -28.5      | 161       | 140 |       | female | 6   | 4          | 0.23 | 4          |
| 1143 | 23-Jan-02 | -28.5      | 161       | 186 |       | female | 9   | 3          | 0.17 | 3          |
| 1144 | 25-Jan-02 | -28.5      | 161       | 163 |       | female | 7   | 3          | 0.12 | 3          |
| 1145 | 23-Jan-02 | -28.5      | 161       | 148 |       | male   | 5   | 3          | 0.2  | 3          |
| 1146 | 25-Jan-02 | -28.5      | 161       | 87  |       | female | 2   | 3          | 0.17 | 3          |
| 1147 | 25-Jan-02 | -28.5      | 161       | 123 |       | female | 4   | 2          | 0.09 | 2          |
| 1148 | 25-Jan-02 | -28.5      | 161       | 111 |       | female | 4   | 3          | 0.23 | 3          |
| 1149 | 24-Jan-02 | -28.5      | 161       | 199 |       | female | 8   | 4          | 0.3  | 4          |
| 1150 | 25-Jan-02 | -28.5      | 161       | 131 |       | female |     | 5          |      | 5          |
| 1151 | 24-Jan-02 | -28.5      | 161       | 150 |       | female | 6   | 4          | 0.33 | 4          |
| 1152 | 26-Jan-02 | -28.416666 | 161       | 132 |       | female | 4   | 4          | 0.6  | 4          |
| 1153 | 24-Jan-02 | -28.5      | 161       | 181 |       | male   | 9   | 3          | 0.22 | 3          |
| 1154 | 26-Jan-02 | -28.416666 | 161       | 140 |       | male   | 5   | 3          | 0.29 | 3          |
| 1155 | 24-Jan-02 | -28.5      | 161       | 162 |       | female | 7   | 3          | 0.35 | 3          |
| 1156 | 26-Jan-02 | -28.416666 | 161       | 111 |       | female | 2   | 2          | 0.13 | 2          |
| 1157 | 24-Jan-02 | -28.5      | 161       | 150 |       | female | 7   | 4          | 0.28 | 4          |
| 1158 | 26-Jan-02 | -28.416666 | 161       | 167 |       | female | 8   | 2          | 0.18 | 2          |
| 1159 | 24-Jan-02 | -28.5      | 161       | 141 |       | male   | 6   | 2          | 0.07 | 2          |
| 1160 | 26-Jan-02 | -28.416666 | 161       | 255 |       | female | 16  | 3          |      | 3          |
| 1161 | 24-Jan-02 | -28.5      | 161       | 130 |       | female | 5   | 2          | 0.32 | 2          |
| 1162 | 26-Jan-02 | -28.416666 | 161       | 200 |       | female | 10  | 2          | 0.17 | 2          |
| 1163 | 24-Jan-02 | -28.5      | 161       | 162 |       | male   |     | 5          |      | 5          |
| 1164 | 27-Jan-02 | -28.5      | 161       | 211 |       | male   | 12  | 4          |      | 4          |
| 1165 | 22-Jan-02 | -28.45     | 161.5     | 134 |       | male   | 5   | 3          | 0.18 | 3          |
| 1166 | 24-Jan-02 | -28.5      | 161       | 200 |       | male   | 10  | 4          |      | 4          |
| 1167 | 27-Jan-02 | -28.5      | 161       | 150 |       | female | 6   | 4          | 0.2  | 4          |
| 1168 | 24-Jan-02 | -28.5      | 161       | 191 |       | male   |     | 5          |      | 5          |
| 1169 | 24-Jan-02 | -28.5      | 161       | 163 |       | female | 7   | 4          | 0.07 | 4          |
| 1170 | 24-Jan-02 | -28.5      | 161       | 177 |       | male   | 8   | 2          | 0.26 | 2          |
| 1171 | 25-Jan-02 | -28.5      | 161       | 130 |       | female | 2   | 2          | 0.67 | 2          |
| 1172 | 25-Jan-02 | -28.5      | 161       | 155 |       | female | 8   | 3          | 0.12 | 3          |
| 1173 | 25-Jan-02 | -28.5      | 161       | 181 |       | male   | 7   | 3          | 0.24 | 3          |
| 1174 | 25-Jan-02 | -28.5      | 161       | 160 |       | male   | 10  | 3          | 0.16 | 3          |
| 1175 | 25-Jan-02 | -28.5      | 161       | 161 |       | female | 7   | 3          | 0.2  | 3          |
| 1176 | 01-Feb-02 | -23.733333 | 154.56666 | 162 |       | female | 8   | 2          |      | 2          |
| 1177 | 03-Feb-02 | -23.683333 | 154.5     | 116 |       | male   | 5   | 2          | 0.27 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1178 | 03-Feb-02 | -23.683333 | 154.5     | 120 |       | male   | 5   | 2          | 0.14 | 2          |
| 1179 | 04-Feb-02 | -23.533333 | 155.83333 | 216 |       | female | 10  | 3          | 0.2  | 3          |
| 1180 | 05-Feb-02 | -23.366666 | 156.05    | 210 |       | female | 10  | 3          | 0.22 | 3          |
| 1181 | 05-Feb-02 | -23.366666 | 156.05    | 120 |       | female | 3   | 2          | 0.39 | 2          |
| 1182 | 07-Feb-02 | 27.016666  | 156.93333 | 174 |       | female | 10  | 4          | 0.22 | 4          |
| 1183 | 07-Feb-02 | 27.016666  | 156.93333 | 148 |       | female | 7   | 3          | 0.3  | 3          |
| 1184 | 07-Feb-02 | 27.016666  | 156.93333 | 127 |       | female | 5   | 3          |      | 3          |
| 1185 | 08-Feb-02 | -27.4      | 156.95    | 178 |       | male   |     | 5          |      | 5          |
| 1186 | 08-Feb-02 | -27.4      | 156.95    | 195 |       | male   | 8   | 4          | 0.37 | 4          |
| 1187 | 09-Feb-02 | -27.216666 | 156.25    | 124 |       | female | 3   | 2          | 0.57 | 2          |
| 1188 | 09-Feb-02 | -27.216666 | 156.25    | 179 |       | female | 9   | 3          | 0.21 | 3          |
| 1189 | 02-Feb-02 | -29.366666 | 160.01666 | 220 |       | female | 11  | 2          | 0.17 | 2          |
| 1190 | 31-Jan-02 | -26.333333 | 160.16666 | 172 |       | female | 7   | 2          | 0.2  | 2          |
| 1191 | 03-Feb-02 | -29.416666 | 160.5     | 220 |       | female | 12  | 4          | 0.13 | 4          |
| 1192 | 03-Feb-02 | -29.416666 | 160.5     | 188 |       | female | 8   | 3          | 0.25 | 3          |
| 1193 | 31-Jan-02 | -26.333333 | 160.16666 | 189 |       | male   | 8   | 4          |      | 4          |
| 1194 | 02-Dec-01 |            |           | 180 |       | female | 9   | 2          | 0.17 | 2          |
| 1195 | 19-Jan-02 | -29.666666 | 156.5     | 198 |       | female |     | 5          |      | 5          |
| 1196 | 19-Jan-02 | -29.666666 | 156.5     | 154 |       | male   | 5   | 3          | 0.21 | 3          |
| 1197 | 19-Jan-02 | -29.666666 | 156.5     | 84  |       | female | 1   | 3          |      | 3          |
| 1198 | 20-Jan-02 | -29.666666 | 156.5     | 152 |       | female | 8   | 3          |      | 3          |
| 1199 | 20-Jan-02 | -29.666666 | 156.5     | 182 |       | female | 8   | 4          | 0.19 | 4          |
| 1200 | 20-Jan-02 | -29.666666 | 156.5     | 164 |       | female | 5   | 2          | 0.34 | 2          |
| 1201 | 20-Jan-02 | -29.666666 | 156.5     | 100 |       | male   | 4   | 2          | 0.23 | 2          |
| 1202 | 22-Jan-02 | -28.266666 | 161.83333 | 172 |       | male   | 7   | 3          | 0.27 | 3          |
| 1203 | 22-Jan-02 | -28.266666 | 161.83333 | 152 |       | female | 6   | 3          | 0.05 | 3          |
| 1204 | 22-Jan-02 | -28.266666 | 161.83333 | 132 |       | male   | 6   | 3          | 0.24 | 3          |
| 1205 | 22-Jan-02 | -28.266666 | 161.83333 | 190 |       | female | 9   | 2          | 0.2  | 2          |
| 1206 | 22-Jan-02 | -28.266666 | 161.83333 | 171 |       | male   | 7   | 3          | 0.22 | 3          |
| 1207 | 22-Jan-02 | -28.266666 | 161.83333 | 139 |       | female | 3   | 3          | 0.6  | 3          |
| 1208 | 22-Jan-02 | -28.266666 | 161.83333 | 172 |       | male   | 8   | 3          | 0.16 | 3          |
| 1209 | 22-Jan-02 | -28.266666 | 161.83333 | 120 |       | male   | 4   | 4          | 0.11 | 4          |
| 1210 | 22-Jan-02 | -28.266666 | 161.83333 | 150 |       | male   | 5   | 2          | 0.4  | 2          |
| 1211 | 22-Jan-02 | -28.266666 | 161.83333 | 210 |       | female | 11  | 3          | 0.22 | 3          |
| 1212 | 22-Jan-02 | -28.266666 | 161.83333 | 173 |       | male   | 8   | 3          | 0.16 | 3          |
| 1213 | 22-Jan-02 | -28.266666 | 161.83333 | 140 |       | male   | 7   | 3          | 0.2  | 3          |
| 1214 | 23-Jan-02 | -28.266666 | 161.66666 | 128 |       | female | 3   | 2          | 0.99 | 2          |
| 1215 | 23-Jan-02 | -28.266666 | 161.66666 | 215 |       | female | 9   | 3          | 0.32 | 3          |
| 1216 | 23-Jan-02 | -28.266666 | 161.66666 | 172 |       | female | 6   | 4          | 0.19 | 4          |
| 1217 | 23-Jan-02 | -28.266666 | 161.66666 | 186 |       | female | 8   | 3          | 0.12 | 3          |
| 1218 | 23-Jan-02 | -28.266666 | 161.66666 | 171 |       | female | 10  | 4          | 0.14 | 4          |
| 1219 | 23-Jan-02 | -28.266666 | 161.66666 | 167 |       | female | 6   | 3          | 0.45 | 3          |
| 1220 | 23-Jan-02 | -28.266666 | 161.66666 | 170 |       | female | 8   | 3          | 0.27 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1221 | 23-Jan-02 | -28.266666 | 161.66666 | 205 |       | female | 11  | 3          | 0.32 | 3          |
| 1222 | 20-Jan-02 | -28.6      | 160.95    | 70  |       | female | 1   | 1          |      | 1          |
| 1223 | 20-Jan-02 | -28.6      | 160.95    | 76  |       | male   | 1   | 1          |      | 1          |
| 1224 | 22-Jan-02 | -28.45     | 161.5     | 80  |       | female | 1   | 1          | 0.37 | 1          |
| 1225 | 23-Jan-02 | -28.5      | 161       | 96  |       | female | 3   | 2          | 0.18 | 2          |
| 1226 | 20-Feb-02 |            |           | 166 |       | female | 7   | 3          | 0.32 | 3          |
| 1227 | 20-Feb-02 |            |           | 108 |       | male   | 2   | 2          | 0.63 | 2          |
| 1228 | 22-Feb-02 |            |           | 218 |       | female | 9   | 3          | 0.23 | 3          |
| 1229 | 22-Feb-02 |            |           | 124 |       | male   | 3   | 3          |      | 3          |
| 1230 | 22-Feb-02 |            |           | 124 |       | female | 5   | 4          | 0.28 | 4          |
| 1231 | 22-Feb-02 |            |           | 132 |       | male   | 5   | 3          | 0.37 | 3          |
| 1232 | 22-Feb-02 |            |           | 145 |       | male   | 5   | 2          | 0.14 | 2          |
| 1233 | 22-Feb-02 |            |           | 226 |       | female | 12  | 4          |      | 4          |
| 1234 | 23-Feb-02 |            |           | 240 |       | female | 14  | 4          |      | 4          |
| 1235 | 24-Feb-02 |            |           | 220 |       | female | 12  | 3          | 0.14 | 3          |
| 1236 | 04-Mar-02 |            |           | 232 |       | female | 13  | 4          |      | 4          |
| 1237 | 04-Mar-02 |            |           | 156 |       | male   | 7   | 4          | 0.13 | 4          |
| 1238 | 02-May-02 | -29        | 155.66666 | 160 |       | female |     | 5          |      | 5          |
| 1239 | 02-May-02 | -29        | 155.66666 | 165 |       | female | 7   | 4          | 0.37 | 4          |
| 1240 | 02-May-02 | -29        | 155.66666 | 130 |       | female | 2   | 2          | 0.42 | 2          |
| 1241 | 02-May-02 | -29        | 155.66666 | 100 |       | male   | 3   | 2          | 0.5  | 2          |
| 1242 | 02-May-02 | -29        | 155.66666 | 195 |       | female | 9   | 3          | 0.21 | 3          |
| 1243 | 02-May-02 | -29        | 155.66666 | 155 |       | female | 5   | 2          | 0.53 | 2          |
| 1244 | 02-May-02 | -29        | 155.66666 | 165 |       | female | 6   | 3          | 0.36 | 3          |
| 1245 | 02-May-02 | -29        | 155.66666 | 160 |       | female | 6   | 3          | 0.6  | 3          |
| 1246 | 02-May-02 | -29        | 155.66666 | 210 |       | female | 9   | 2          | 0.1  | 2          |
| 1247 | 03-May-02 | -28.833333 | 155.5     | 160 |       | female | 5   | 3          | 0.42 | 3          |
| 1248 | 03-May-02 | -28.833333 | 155.5     | 125 |       | male   | 5   | 4          | 0.32 | 4          |
| 1249 | 03-May-02 | -28.833333 | 155.5     | 165 |       | female |     | 5          |      | 5          |
| 1250 | 03-May-02 | -28.833333 | 155.5     | 150 |       | female | 7   | 4          | 0.3  | 4          |
| 1251 | 03-May-02 | -28.833333 | 155.5     | 145 |       | male   | 5   | 3          | 0.36 | 3          |
| 1252 | 24-May-02 |            |           | 135 |       | female | 4   | 3          | 0.32 | 3          |
| 1253 | 24-May-02 |            |           | 200 |       | female | 10  | 3          | 0.16 | 3          |
| 1254 | 24-May-02 |            |           | 150 |       | female | 4   | 3          | 0.22 | 3          |
| 1255 | 24-May-02 |            |           | 155 |       | female | 5   | 3          | 0.29 | 3          |
| 1256 | 24-May-02 |            |           | 145 |       | female | 6   | 4          | 0.5  | 4          |
| 1257 | 24-May-02 |            |           | 140 |       | female | 4   | 2          | 0.19 | 2          |
| 1258 | 24-May-02 |            |           | 120 |       | female | 3   | 2          | 0.28 | 2          |
| 1259 | 24-May-02 |            |           | 100 |       | male   | 2   | 2          | 0.28 | 2          |
| 1260 | 27-May-02 |            |           | 175 |       | female | 10  | 4          | 0.62 | 4          |
| 1261 | 27-May-02 |            |           | 170 |       | female | 9   | 3          | 0.43 | 3          |
| 1262 | 27-May-02 |            |           | 160 |       | male   | 11  | 3          | 0.21 | 3          |
| 1263 | 27-May-02 |            |           | 165 |       | male   | 9   | 4          | 0.35 | 4          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1264 | 27-May-02 |            |           | 150 |       | female | 8   | 3          | 0.15 | 3          |
| 1265 | 27-May-02 |            |           | 135 |       | male   | 7   | 3          | 0.39 | 3          |
| 1266 | 29-May-02 |            |           | 190 |       | female | 9   | 4          | 0.26 | 4          |
| 1267 | 29-May-02 |            |           | 160 |       | female | 5   | 3          | 0.42 | 3          |
| 1268 | 29-May-02 |            |           | 165 |       | female | 6   | 2          | 0.53 | 2          |
| 1269 | 29-May-02 |            |           | 145 |       | female | 5   | 3          | 0.35 | 3          |
| 1270 | 30-May-02 |            |           | 170 |       | female |     | 5          |      | 5          |
| 1271 | 30-May-02 |            |           | 145 |       | female | 6   | 3          | 0.62 | 3          |
| 1272 | 02-Mar-02 | -30.133333 | 154.16666 | 228 |       | female | 13  | 4          | 0.26 | 4          |
| 1273 | 03-Mar-02 | -30.216666 | 154.16666 | 183 |       | female | 7   | 4          | 0.37 | 4          |
| 1274 | 04-Apr-02 | -28.683333 | 155.78333 | 187 |       | female | 8   | 3          | 0.42 | 3          |
| 1275 | 26-Apr-02 | -23.533333 | 155.96666 | 227 |       | male   | 10  | 4          | 0.41 | 4          |
| 1276 | 25-Apr-02 | -23.8      | 156.01666 | 120 |       | female |     | 5          |      | 5          |
| 1277 | 24-Apr-02 | -23.566666 | 156       | 225 |       | female | 15  | 4          | 0.24 | 4          |
| 1278 | 25-Apr-02 | -23.8      | 156.01666 | 161 |       | female | 5   | 3          | 0.2  | 3          |
| 1279 | 25-Apr-02 | -23.8      | 156.01666 | 92  |       | female | 2   | 2          | 0.26 | 2          |
| 1280 | 26-Apr-02 | -23.533333 | 155.96666 | 155 |       | female | 7   | 3          | 0.36 | 3          |
| 1281 | 26-Apr-02 | -23.533333 | 155.96666 | 93  |       | male   | 2   | 2          | 0.61 | 2          |
| 1282 | 16-May-02 | -23.366666 | 154.83333 | 136 |       | female | 4   | 2          | 0.42 | 2          |
| 1283 | 17-May-02 | -23        | 154.75    | 170 |       | female | 6   | 2          | 0.32 | 2          |
| 1284 | 17-May-02 | -23        | 154.75    | 114 |       | female | 4   | 3          | 0.59 | 3          |
| 1285 | 17-May-02 | -23        | 154.75    | 94  |       | male   | 2   | 2          | 0.31 | 2          |
| 1286 | 18-May-02 | -22.6      | 154.65    | 129 |       | female | 4   | 3          | 0.38 | 3          |
| 1287 | 19-May-02 | 22.383333  | 154.53333 | 147 |       | female | 8   | 2          | 0.26 | 2          |
| 1288 | 20-May-02 | -22.666666 | 154.41666 | 185 |       | female | 8   | 4          | 0.23 | 4          |
| 1289 | 25-May-02 | -29.066666 | 157.06666 | 194 |       | female | 5   | 2          | 0.11 | 2          |
| 1290 | 25-May-02 | -29.066666 | 157.06666 | 218 |       | female | 9   | 3          | 0.28 | 3          |
| 1291 | 26-Apr-02 | -23.533333 | 155.96666 | 162 |       | female | 6   | 4          | 0.6  | 4          |
| 1292 | 26-May-02 | -28.533333 | 157.63333 | 173 |       | male   | 7   | 3          | 0.12 | 3          |
| 1293 | 27-May-02 | -28.35     | 157.53333 | 171 |       | female | 5   | 2          | 0.33 | 2          |
| 1294 | 27-May-02 | -28.35     | 157.53333 | 164 |       | female | 9   | 3          | 0.29 | 3          |
| 1295 | 27-Apr-02 | -23.6      | 155.52    | 194 |       | female | 9   | 3          | 0.44 | 3          |
| 1296 | 27-May-02 | -28.35     | 157.53333 | 164 |       | female | 9   | 2          | 0.56 | 2          |
| 1297 | 28-May-02 | -28.9      | 157.18333 | 187 |       | male   |     | 5          |      | 5          |
| 1298 | 28-May-02 | -28.9      | 157.18333 | 156 |       | male   | 6   | 3          | 0.26 | 3          |
| 1299 | 28-May-02 | -28.9      | 157.18333 | 169 |       | female | 7   | 3          | 0.12 | 3          |
| 1300 | 28-May-02 | -28.9      | 157.18333 | 152 |       | female | 4   | 4          | 0.68 | 4          |
| 1301 | 28-May-02 | -28.9      | 157.18333 | 160 |       | female | 6   | 3          | 0.32 | 3          |
| 1302 | 29-May-02 | -29.2      | 157.26666 | 96  |       | male   | 2   | 3          | 0.13 | 3          |
| 1303 | 29-May-02 | -29.2      | 157.26666 | 183 |       | female | 7   | 4          | 0.15 | 4          |
| 1304 | 29-May-02 | -29.2      | 157.26666 | 162 |       | male   | 5   | 1          | 0.3  | 1          |
| 1305 | 29-May-02 | -29.2      | 157.26666 | 165 |       | male   | 9   | 3          | 0.36 | 3          |
| 1306 | 29-May-02 | -29.2      | 157.26666 | 167 |       | female | 6   | 4          | 0.53 | 4          |

| BBL# | DATE      | LAT   | LON | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|-------|-----|-----|-------|--------|-----|------------|------|------------|
|      |           |       |     |     | Final |        |     | Confidence |      | Confidence |
| 1307 | 03-May-02 |       |     | 61  |       | male   | 0   | 1          |      | 1          |
| 1308 | 03-May-02 |       |     | 93  |       | female | 1   | 2          | 0.55 | 2          |
| 1309 | 03-May-02 |       |     | 79  |       | female | 1   | 1          | 0.53 | 1          |
| 1310 | 03-May-02 |       |     | 85  |       | female | 1   | 1          | 0.6  | 1          |
| 1311 | 03-May-02 |       |     | 92  |       | female | 0   | 3          |      | 3          |
| 1312 | 03-May-02 |       |     | 92  |       | female | 2   | 3          | 0.23 | 3          |
| 1313 | 03-May-02 |       |     | 92  |       | female | 1   | 2          | 0.65 | 2          |
| 1314 | 04-May-02 |       |     | 115 |       | female | 4   | 3          | 0.41 | 3          |
| 1315 | 04-May-02 |       |     | 99  |       | female | 2   | 2          | 0.31 | 2          |
| 1316 | 04-May-02 |       |     | 80  |       | female | 1   | 2          | 0.48 | 2          |
| 1317 | 04-May-02 |       |     | 100 |       | female | 2   | 2          | 0.25 | 2          |
| 1318 | 12-May-02 |       |     | 98  |       | male   | 2   | 1          | 0.47 | 1          |
| 1319 | 17-Apr-02 |       |     | 52  |       | male   | 0   | 2          |      | 2          |
| 1320 | 23-Apr-02 |       |     | 61  |       | female | 0   | 2          |      | 2          |
| 1321 | 29-Apr-02 |       |     | 63  |       | female | 0   | 1          |      | 1          |
| 1322 | 29-Apr-02 |       |     | 152 |       | female |     | 5          |      | 5          |
| 1323 | 24-Apr-02 |       |     | 61  |       | female | 0   | 2          |      | 2          |
| 1324 | 24-Apr-02 |       |     | 110 |       | male   | 3   | 2          | 0.48 | 2          |
| 1325 | 24-Apr-02 |       |     | 115 |       | female | 2   | 2          | 0.36 | 2          |
| 1326 | 24-Apr-02 |       |     | 90  |       | male   | 1   | 2          | 0.28 | 2          |
| 1327 | 25-Apr-02 |       |     | 142 |       | female | 3   | 3          | 0.6  | 3          |
| 1328 | 24-Apr-02 |       |     | 82  |       | male   | 1   | 2          | 0.76 | 2          |
| 1329 | 24-Apr-02 |       |     | 150 |       | female | 6   | 4          | 0.08 | 4          |
| 1330 | 24-Apr-02 |       |     | 157 |       | female | 7   | 3          | 0.3  | 3          |
| 1331 | 24-Apr-02 |       |     | 87  |       | female | 1   | 3          | 0.58 | 3          |
| 1332 | 29-Apr-02 |       |     | 103 |       | female | 2   | 2          | 0.22 | 2          |
| 1334 | 21-Mar-02 | -34   | 158 | 144 |       | female | 4   | 2          | 0.6  | 2          |
| 1335 | 21-Mar-02 | -34   | 158 | 109 |       | female | 4   | 4          | 0.19 | 4          |
| 1336 | 23-Mar-02 | -34   | 161 | 163 |       | male   | 7   | 3          | 0.28 | 3          |
| 1337 | 23-Mar-02 | -34   | 161 | 97  |       | female | 2   | 2          | 0.15 | 2          |
| 1338 | 24-Mar-02 | -34.5 | 161 | 87  |       | male   | 1   | 2          | 0.4  | 2          |
| 1339 | 24-Mar-02 | -34.5 | 161 | 208 |       | female | 11  | 2          | 0.25 | 2          |
| 1340 | 24-Mar-02 | -34.5 | 161 | 232 |       | female | 10  | 3          | 0.27 | 3          |
| 1341 | 25-Mar-02 | -34.5 | 161 | 208 |       | female | 8   | 2          | 0.29 | 2          |
| 1342 | 25-Mar-02 | -34.5 | 161 | 185 |       | female | 7   | 3          | 0.32 | 3          |
| 1343 | 25-Mar-02 | -34.5 | 161 | 142 |       | male   | 4   | 2          | 0.21 | 2          |
| 1344 | 25-Mar-02 | -34.5 | 161 | 171 |       | female | 7   | 3          | 0.16 | 3          |
| 1345 | 25-Mar-02 | -34.5 | 161 | 180 |       | female | 7   | 2          | 0.39 | 2          |
| 1346 | 25-Mar-02 | -34.5 | 161 | 150 |       | female | 9   | - 3        | 0.25 | - 3        |
| 1347 | 25-Mar-02 | -34.5 | 161 | 95  |       | male   | 1   | 3          | 0.45 | 3          |
| 1348 | 25-Mar-02 | -34.5 | 161 | 115 |       | female | 4   | 3          | 0.18 | 3          |
| 1349 | 25-Mar-02 | -34 5 | 161 | 132 |       | male   | . 4 | 3          | 0.21 | 3          |
| 1350 | 25-Mar-02 | -34.5 | 161 | 135 |       | female | 3   | 3          | 0.48 | 3          |

| Append | dix 2 |
|--------|-------|
|--------|-------|

| BBL# | DATE      | LAT   | LON | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|-------|-----|-----|-------|--------|-----|------------|------|------------|
|      |           |       |     |     | Final |        |     | Confidence |      | Confidence |
| 1351 | 25-Mar-02 | -34.5 | 161 | 195 |       | female | 9   | 4          | 0.37 | 4          |
| 1352 | 25-Mar-02 | -34.5 | 161 | 110 |       | female | 3   | 3          | 0.37 | 3          |
| 1353 | 26-Mar-02 | -34.5 | 161 | 162 |       | male   | 6   | 3          | 0.11 | 3          |
| 1354 | 25-Mar-02 | -34.5 | 161 | 75  |       | male   | 1   | 2          | 0.46 | 2          |
| 1355 | 26-Mar-02 | -34.5 | 161 | 92  |       | male   | 1   | 3          | 0.69 | 3          |
| 1356 | 26-Mar-02 | -34.5 | 161 | 165 |       | male   | 8   | 3          | 0.18 | 3          |
| 1357 | 26-Mar-02 | -34.5 | 161 | 150 |       | female | 6   | 4          | 0.34 | 4          |
| 1358 | 26-Mar-02 | -34.5 | 161 | 170 |       | female | 8   | 4          | 0.1  | 4          |
| 1359 | 26-Mar-02 | -34.5 | 161 | 97  |       | male   | 2   | 2          | 0.5  | 2          |
| 1360 | 26-Mar-02 | -34.5 | 161 | 227 |       | female | 18  | 4          | 0.15 | 4          |
| 1361 | 26-Mar-02 | -34.5 | 161 | 182 |       | female | 6   | 2          | 0.53 | 2          |
| 1362 | 26-Mar-02 | -34.5 | 161 | 127 |       | female | 3   | 4          | 0.55 | 4          |
| 1363 | 26-Mar-02 | -34.5 | 161 | 91  |       | female | 1   | 1          | 0.68 | 1          |
| 1364 | 27-Mar-02 | -34.5 | 161 | 89  |       | female | 1   | 1          | 0.65 | 1          |
| 1365 | 27-Mar-02 | -34.5 | 161 | 109 |       | male   | 5   | 4          | 0.28 | 4          |
| 1366 | 27-Mar-02 | -34.5 | 161 | 136 |       | female | 8   | 3          | 0.16 | 3          |
| 1367 | 27-Mar-02 | -34.5 | 161 | 101 |       | male   | 2   | 4          | 0.39 | 4          |
| 1368 | 27-Mar-02 | -34.5 | 161 | 181 |       | female | 6   | 2          | 0.3  | 2          |
| 1369 | 27-Mar-02 | -34.5 | 161 | 243 |       | female |     | 5          |      | 5          |
| 1370 | 27-Mar-02 | -34.5 | 161 | 135 |       | male   | 6   | 3          | 0.18 | 3          |
| 1371 | 27-Mar-02 | -34.5 | 161 | 140 |       | male   | 5   | 2          | 0.29 | 2          |
| 1372 | 27-Mar-02 | -34.5 | 161 | 135 |       | female | 2   | 4          |      | 4          |
| 1373 | 27-Mar-02 | -34.5 | 161 | 100 |       | female |     | 5          |      | 5          |
| 1374 | 27-Mar-02 | -34.5 | 161 | 146 |       | male   | 6   | 3          | 0.13 | 3          |
| 1375 | 27-Mar-02 | -34.5 | 161 | 89  |       | female | 2   | 3          | 0.23 | 3          |
| 1376 | 27-Mar-02 | -34.5 | 161 | 130 |       | female | 5   | 3          | 0.27 | 3          |
| 1377 | 29-Mar-02 | -32   | 158 | 149 |       | female | 4   | 2          |      | 2          |
| 1378 | 29-Mar-02 | -32   | 158 | 178 |       | female | 13  | 4          |      | 4          |
| 1379 | 29-Mar-02 | -32   | 158 | 84  |       | female | 1   | 1          |      | 1          |
| 1380 | 29-Mar-02 | -32   | 158 | 124 |       | male   | 3   | 2          |      | 2          |
| 1381 | 29-Mar-02 | -32   | 158 | 124 |       | male   | 4   | 2          |      | 2          |
| 1382 | 30-Mar-02 | -32   | 158 | 188 |       | female | 5   | 2          |      | 2          |
| 1383 | 20-Feb-02 |       |     | 178 |       | male   | 6   | 4          |      | 4          |
| 1384 | 20-Feb-02 |       |     | 170 |       | female | 6   | 4          |      | 4          |
| 1385 | 20-Feb-02 |       |     | 120 |       | female | 3   | 3          |      | 3          |
| 1386 | 20-Feb-02 |       |     | 181 |       | female | 6   | 2          |      | 2          |
| 1387 | 21-Feb-02 |       |     | 154 |       | male   | 4   | 2          |      | 2          |
| 1388 | 21-Feb-02 |       |     | 193 |       | female | 7   | 1          |      | 1          |
| 1389 | 21-Feb-02 |       |     | 150 |       | female | 4   | 2          |      | 2          |
| 1390 | 21-Feb-02 |       |     | 110 |       | male   | 3   | 2          |      | 2          |
| 1391 | 21-Feb-02 |       |     | 253 |       | female | 11  | 3          |      | 3          |
| 1392 | 21-Feb-02 |       |     | 150 |       | male   | 5   | 1          |      | 1          |
| 1393 | 21-Feb-02 |       |     | 193 |       | female | 9   | 2          |      | 2          |

| BBL# | DATE      | LAT        | LON    | OFL | LJFL  | Sex    | AGE | Age        | MI | MI         |
|------|-----------|------------|--------|-----|-------|--------|-----|------------|----|------------|
|      |           |            |        |     | Final |        |     | Confidence |    | Confidence |
| 1394 | 21-Feb-02 |            |        | 99  |       | female | 2   | 3          |    | 3          |
| 1395 | 22-Feb-02 |            |        | 200 |       | female |     | 5          |    | 5          |
| 1396 | 22-Feb-02 |            |        | 118 |       | female | 4   | 1          |    | 1          |
| 1397 | 22-Feb-02 |            |        | 175 |       | female | 7   | 1          |    | 1          |
| 1398 | 22-Feb-02 |            |        | 191 |       | female | 9   | 3          |    | 3          |
| 1399 | 22-Feb-02 |            |        | 167 |       | male   | 5   | 4          |    | 4          |
| 1400 | 22-Feb-02 |            |        | 189 |       | female | 7   | 2          |    | 2          |
| 1401 | 22-Feb-02 |            |        | 123 |       | male   | 3   | 1          |    | 1          |
| 1402 | 22-Feb-02 |            |        | 215 |       | female | 14  | 2          |    | 2          |
| 1403 | 22-Feb-02 |            |        | 142 |       | female | 4   | 3          |    | 3          |
| 1404 | 22-Feb-02 |            |        | 145 |       | male   | 6   | 2          |    | 2          |
| 1405 | 22-Feb-02 |            |        | 100 |       | female | 2   | 2          |    | 2          |
| 1406 | 22-Feb-02 |            |        | 125 |       | female | 2   | 2          |    | 2          |
| 1407 | 22-Feb-02 |            |        | 210 |       | female | 9   | 3          |    | 3          |
| 1408 | 23-Feb-02 |            |        | 97  |       | male   | 2   | 2          |    | 2          |
| 1409 | 23-Feb-02 |            |        | 147 |       | female | 4   | 1          |    | 1          |
| 1410 | 23-Feb-02 |            |        | 91  |       | female | 1   | 1          |    | 1          |
| 1411 | 23-Feb-02 |            |        | 96  |       | male   | 2   | 2          |    | 2          |
| 1412 | 23-Feb-02 |            |        | 200 |       | female |     | 5          |    | 5          |
| 1413 | 23-Feb-02 |            |        | 187 |       | female | 5   | 3          |    | 3          |
| 1414 | 23-Feb-02 |            |        | 155 |       | female | 7   | 2          |    | 2          |
| 1415 | 23-Feb-02 |            |        | 88  |       | male   | 1   | 2          |    | 2          |
| 1416 | 24-Feb-02 |            |        | 128 |       | female | 5   | 1          |    | 1          |
| 1417 | 23-Feb-02 |            |        | 123 |       | female | 4   | 2          |    | 2          |
| 1418 | 23-Feb-02 |            |        | 117 |       | female | 2   | 3          |    | 3          |
| 1419 | 23-Feb-02 |            |        | 162 |       | female | 6   | 2          |    | 2          |
| 1420 | 23-Feb-02 |            |        | 85  |       | male   | 1   | 1          |    | 1          |
| 1421 | 24-Feb-02 |            |        | 105 |       | male   | 3   | 1          |    | 1          |
| 1422 | 24-Feb-02 |            |        | 162 |       | female | 6   | 2          |    | 2          |
| 1423 | 24-Feb-02 |            |        | 172 |       | male   | 7   | 3          |    | 3          |
| 1424 | 24-Feb-02 |            |        | 209 |       | female | 8   | 4          |    | 4          |
| 1425 | 24-Feb-02 |            |        | 99  |       | female | 1   | 1          |    | 1          |
| 1426 | 24-Feb-02 |            |        | 177 |       | female | 5   | 1          |    | 1          |
| 1427 | 24-Feb-02 |            |        | 112 |       | male   | 3   | 3          |    | 3          |
| 1428 | 24-Feb-02 |            |        | 179 |       | female | 6   | 2          |    | 2          |
| 1429 | 25-Feb-02 |            |        | 118 |       | female | 2   | 1          |    | 1          |
| 1430 | 25-Feb-02 |            |        | 250 |       | female |     | 5          |    | 5          |
| 1431 | 01-Dec-01 |            |        | 156 |       | male   | 6   | 3          |    | 3          |
| 1432 | 29-Mar-02 | -26.366666 | 157.25 | 84  |       | female | 1   | 2          |    | 2          |
| 1433 | 29-Mar-02 | -26.366666 | 157.25 | 178 |       | male   | 9   | 3          |    | 3          |
| 1434 | 29-Mar-02 | -26.366666 | 157.25 | 87  |       | male   | 1   | 1          |    | 1          |
| 1435 | 29-Mar-02 | -26.366666 | 157.25 | 91  |       | female | 1   | 1          |    | 1          |
| 1436 | 30-Mar-02 | -26.6      | 157.25 | 150 |       | female | 6   | 1          |    | 1          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1437 | 31-Mar-02 | -27.216666 | 157.93333 | 157 |       | male   | 6   | 3          |      | 3          |
| 1438 | 31-Mar-02 | -27.216666 | 157.93333 | 158 |       | female | 5   | 4          |      | 4          |
| 1439 | 01-Apr-02 | -27.216666 | 157.83333 | 143 |       | female | 6   | 3          | 0.17 | 3          |
| 1440 | 03-Apr-02 | -26.75     | 158       | 157 |       | female | 7   | 3          | 0.5  | 3          |
| 1441 | 03-Apr-02 | -26.75     | 158       | 98  |       | male   | 1   | 3          | 0.46 | 3          |
| 1442 | 03-Apr-02 | -26.75     | 158       | 113 |       | female | 2   | 3          |      | 3          |
| 1443 | 04-Apr-02 | -26.5      | 157.26666 | 135 |       | male   | 3   | 3          | 0.42 | 3          |
| 1444 | 04-Apr-02 | -26.5      | 157.26666 | 105 |       | female | 1   | 2          | 0.88 | 2          |
| 1445 | 30-Mar-02 | -26.6      | 157.25    | 102 |       | female | 2   | 2          | 0.47 | 2          |
| 1446 | 29-Mar-02 | -26.366666 | 157.25    | 163 |       | male   | 7   | 3          | 0.05 | 3          |
| 1447 | 18-Jul-02 | -24        | 157.45    | 198 |       | female | 9   | 4          | 0.28 | 4          |
| 1448 | 19-Jul-02 | -26.7      | 157.23333 | 178 |       | male   | 10  | 4          | 0.09 | 4          |
| 1449 | 19-Jul-02 | -26.7      | 157.23333 | 146 |       | female | 4   | 4          | 0.36 | 4          |
| 1450 | 19-Jul-02 | -26.7      | 157.23333 | 140 |       | female | 4   | 3          | 0.53 | 3          |
| 1451 | 22-Jun-02 | -28        | 157.28333 | 179 |       | male   | 11  | 3          | 0.3  | 3          |
| 1452 | 22-Jun-02 | -28        | 157.28333 | 112 |       | female | 4   | 2          | 0.2  | 2          |
| 1453 | 22-Jun-02 | -28        | 157.28333 | 148 |       | female | 6   | 3          | 0.14 | 3          |
| 1454 | 22-Jun-02 | -28        | 157.28333 | 98  |       | female | 1   | 2          | 0.43 | 2          |
| 1455 | 22-Jun-02 | -28        | 157.28333 | 155 |       | male   | 6   | 4          | 0.42 | 4          |
| 1456 | 22-Jun-02 | -28        | 157.28333 | 186 |       | male   | 6   | 4          | 0.32 | 4          |
| 1457 | 23-Jun-02 | -28.25     | 158.33333 | 173 |       | male   | 9   | 3          | 0.29 | 3          |
| 1458 | 23-Jun-02 | -28.25     | 158.33333 | 172 |       | female | 10  | 2          | 0.1  | 2          |
| 1459 | 23-Jun-02 | -28.25     | 158.33333 | 149 |       | female | 6   | 3          | 0.19 | 3          |
| 1460 | 23-Jun-02 | -28.25     | 158.33333 | 118 |       | female | 3   | 3          | 0.27 | 3          |
| 1461 | 23-Jun-02 | -28.25     | 158.33333 | 165 |       | female | 8   | 4          | 0.42 | 4          |
| 1462 | 24-Jun-02 | -28.083333 | 158.08333 | 106 |       | female | 3   | 2          | 0.53 | 2          |
| 1463 | 24-Jun-02 | -28.083333 | 158.08333 | 95  |       | female | 2   | 1          | 0.1  | 1          |
| 1464 | 24-Jun-02 | -28.083333 | 158.08333 | 170 |       | female |     | 5          |      | 5          |
| 1465 | 24-Jun-02 | -28.083333 | 158.08333 | 162 |       | female | 7   | 3          | 0.11 | 3          |
| 1466 | 25-Jun-02 | -27.833333 | 158.41666 | 165 |       | female | 8   | 3          | 0.12 | 3          |
| 1467 | 25-Jun-02 | -27.833333 | 158.41666 | 172 |       | female | 7   | 4          |      | 4          |
| 1468 | 25-Jun-02 | -27.833333 | 158.41666 | 135 |       | female | 6   | 2          | 0.23 | 2          |
| 1469 | 25-Jun-02 | -27.833333 | 158.41666 | 148 |       | female | 6   | 3          | 0.19 | 3          |
| 1470 | 25-Jun-02 | -27.833333 | 158.41666 | 138 |       | female | 6   | 3          | 0.38 | 3          |
| 1471 | 26-Jun-02 | -28.166666 | 158.33333 | 236 |       | female | 10  | 2          | 0.29 | 2          |
| 1472 | 26-Jun-02 | -28.166666 | 158.33333 | 133 |       | female | 6   | 2          | 0.08 | 2          |
| 1473 | 26-Jun-02 | -28.166666 | 158.33333 | 163 |       | female | 5   | 4          | 0.64 | 4          |
| 1474 | 18-Jun-02 |            |           | 207 |       | female |     | 5          |      | 5          |
| 1475 | 18-Jun-02 |            |           | 112 |       | male   | 6   | 4          | 0.26 | 4          |
| 1476 | 18-Jun-02 |            |           | 151 |       | female | 3   | 2          | 0.5  | 2          |
| 1477 | 19-Jun-02 |            |           | 159 |       | female | 5   | 4          |      | 4          |
| 1478 | 22-Jun-02 |            |           | 159 |       | female | 6   | 4          | 0.64 | 4          |
| 1479 | 22-Jun-02 |            |           | 147 |       | female | 6   | 3          | 0.28 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1480 | 24-Jun-02 |            |           | 122 |       | female | 4   | 4          | 0.33 | 4          |
| 1481 | 24-Jun-02 |            |           | 276 |       | female | 12  | 4          | 0.31 | 4          |
| 1482 | 24-Jun-02 |            |           | 122 |       | female | 8   | 4          | 0.14 | 4          |
| 1483 | 24-Jun-02 |            |           | 181 |       | female | 7   | 4          | 0.43 | 4          |
| 1484 | 24-Jun-02 |            |           | 193 |       | female | 10  | 4          |      | 4          |
| 1485 | 24-Jun-02 |            |           | 160 |       | female | 5   | 3          | 0.18 | 3          |
| 1486 | 24-Jun-02 |            |           | 152 |       | female | 7   | 4          | 0.19 | 4          |
| 1487 | 24-Jun-02 |            |           | 166 |       | female | 7   | 3          | 0.36 | 3          |
| 1488 | 29-Jun-02 |            |           | 134 |       | female | 5   | 2          | 0.08 | 2          |
| 1489 | 24-Jun-02 |            |           | 164 |       | female | 8   | 4          | 0.39 | 4          |
| 1490 | 24-Jun-02 |            |           | 155 |       | female | 6   | 4          | 0.11 | 4          |
| 1491 | 25-Jun-02 |            |           | 149 |       | male   | 6   | 4          | 0.44 | 4          |
| 1492 | 25-Jun-02 |            |           | 153 |       | male   | 6   | 3          | 0.08 | 3          |
| 1493 | 25-Jun-02 |            |           | 160 |       | female | 6   | 3          | 0.15 | 3          |
| 1494 | 25-Jun-02 |            |           | 199 |       | female | 10  | 3          | 0.07 | 3          |
| 1495 | 25-Jun-02 |            |           | 146 |       | female | 5   | 3          | 0.62 | 3          |
| 1496 | 25-Jun-02 |            |           | 185 |       | female | 8   | 3          | 0.16 | 3          |
| 1497 | 25-Jun-02 |            |           | 144 |       | male   | 5   | 4          | 0.45 | 4          |
| 1498 | 26-Jun-02 |            |           | 120 |       | female | 3   | 2          | 0.44 | 2          |
| 1499 | 26-Jun-02 |            |           | 158 |       | male   | 5   | 4          |      | 4          |
| 1500 | 26-Jun-02 |            |           | 169 |       | female | 5   | 2          | 0.24 | 2          |
| 1501 | 26-Jun-02 |            |           | 127 |       | female | 4   | 2          | 0.45 | 2          |
| 1502 | 26-Jun-02 |            |           | 158 |       | female | 7   | 3          | 0.45 | 3          |
| 1503 | 26-Jun-02 |            |           | 178 |       | female | 7   | 3          | 0.19 | 3          |
| 1504 | 18-Jul-02 | -33.816666 | 152.23333 | 188 |       | male   | 10  | 4          | 0.13 | 4          |
| 1505 | 22-Jul-02 | -33.9      | 152.05    | 185 |       | female |     | 5          |      | 5          |
| 1506 | 23-Jul-02 | -33.9      | 152.05    | 112 |       | female | 3   | 2          | 0.14 | 2          |
| 1507 | 23-Jul-02 | -33.9      | 152.05    | 169 |       | female | 6   | 2          | 0.24 | 2          |
| 1508 | 23-Jul-02 | -33.9      | 152.05    | 160 |       | female | 7   | 4          | 0.35 | 4          |
| 1509 | 23-Jul-02 | -33.9      | 152.05    | 233 |       | female | 14  | 4          | 0.14 | 4          |
| 1510 | 23-Jul-02 | -33.9      | 152.05    | 97  |       | male   | 1   | 2          | 0.19 | 2          |
| 1511 | 23-Jul-02 | -33.9      | 152.05    | 165 |       | female | 6   | 3          | 0.77 | 3          |
| 1512 | 28-Aug-02 |            |           | 103 |       | female | 2   | 1          |      | 1          |
| 1513 | 28-Aug-02 |            |           | 93  |       | female | 2   | 1          |      | 1          |
| 1514 | 28-Aug-02 |            |           | 104 |       | female | 3   | 2          |      | 2          |
| 1515 | 28-Aug-02 |            |           | 93  |       | female | 2   | 1          |      | 1          |
| 1516 | 01-Aug-02 |            |           | 214 |       | female | 13  | 2          | 0.01 | 2          |
| 1517 | 01-Aug-02 |            |           | 96  |       | female | 2   | 2          | 0.45 | 2          |
| 1518 | 01-Aug-02 |            |           | 95  |       | female | 2   | 2          | 0.24 | 2          |
| 1519 | 20-Aug-02 |            |           | 88  |       | female | 1   | 2          | 0.31 | 2          |
| 1520 | 20-Aug-02 |            |           | 102 |       | female | 2   | 2          | 0.36 | 2          |
| 1521 | 20-Aug-02 |            |           | 88  |       | female | 2   | 2          | 0.19 | 2          |
| 1522 | 22-Aug-02 |            |           | 167 |       | male   |     | 4          |      | 4          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1523 | 22-Aug-02 |            |           | 62  |       | female | 0   | 1          |      | 1          |
| 1524 | 22-Aug-02 |            |           | 95  |       | male   | 2   | 2          | 0.2  | 2          |
| 1525 | 22-Aug-02 |            |           | 90  |       | female | 1   | 2          | 0.78 | 2          |
| 1526 | 22-Aug-02 |            |           | 160 |       | female | 6   | 3          |      | 3          |
| 1527 | 02-Aug-02 |            |           | 178 |       | female | 6   | 2          | 0.09 | 2          |
| 1528 | 02-Aug-02 |            |           | 132 |       | female | 5   | 2          | 0.18 | 2          |
| 1529 | 02-Aug-02 |            |           | 125 |       | female | 5   | 3          | 0.44 | 3          |
| 1530 | 01-Aug-02 |            |           | 138 |       | female |     | 4          |      | 4          |
| 1531 | 01-Aug-02 |            |           | 160 |       | female | 9   | 3          | 0.06 | 3          |
| 1532 | 27-Jul-02 | -26.166666 | 154.08333 | 200 |       | female | 7   | 2          | 0.32 | 2          |
| 1533 | 01-Aug-02 | -28.916666 | 154.1     | 125 |       | female | 4   | 2          | 0.08 | 2          |
| 1534 | 01-Aug-02 | -28.916666 | 154.1     | 115 |       | female | 2   | 2          | 0.23 | 2          |
| 1535 | 01-Aug-02 | -28.916666 | 154.1     | 120 |       | female | 4   | 2          | 0.19 | 2          |
| 1536 | 01-Aug-02 | -28.916666 | 154.1     | 110 |       | female | 1   | 3          | 0.43 | 3          |
| 1537 | 01-Aug-02 | -28.916666 | 154.1     | 115 |       | male   | 2   | 2          | 0.26 | 2          |
| 1538 | 01-Aug-02 | -28.916666 | 154.1     | 95  |       | female | 2   | 2          | 0.28 | 2          |
| 1539 | 01-Aug-02 | -28.916666 | 154.1     | 105 |       | female | 2   | 3          | 0.52 | 3          |
| 1540 | 01-Aug-02 | -28.916666 | 154.1     | 135 |       | female | 3   | 1          | 0.22 | 1          |
| 1541 | 01-Aug-02 | -28.916666 | 154.1     | 110 |       | female | 3   | 2          | 0.29 | 2          |
| 1542 | 01-Aug-02 | -28.916666 | 154.1     | 100 |       | female | 2   | 1          | 0.19 | 1          |
| 1543 | 01-Aug-02 | -28.916666 | 154.1     | 130 |       | female | 3   | 2          | 0.11 | 2          |
| 1544 | 01-Aug-02 | -28.916666 | 154.1     | 135 |       | female | 4   | 3          | 0.17 | 3          |
| 1545 | 02-Aug-02 | -27.5      | 154.08333 | 114 |       | female | 4   | 3          | 0.07 | 3          |
| 1546 | 03-May-02 |            |           | 104 |       | female | 4   | 3          | 0.13 | 3          |
| 1547 | 02-May-02 |            |           | 96  |       | female | 1   | 2          | 0.47 | 2          |
| 1548 | 04-May-02 |            |           | 112 |       | female | 2   | 2          | 0.19 | 2          |
| 1549 | 19-Sep-02 | -26.666666 | 159.16666 | 165 |       | female | 9   | 2          | 0.19 | 2          |
| 1550 | 19-Sep-02 | -26.666666 | 159.16666 | 145 |       | female |     | 4          | 0.29 | 4          |
| 1551 | 19-Sep-02 | -26.666666 | 159.16666 | 175 |       | female | 8   | 2          | 0.23 | 2          |
| 1552 | 20-Sep-02 | -26.416666 | 159.08333 | 142 |       | male   | 7   | 3          | 0.08 | 3          |
| 1553 | 20-Sep-02 | -26.416666 | 159.08333 | 178 |       | female | 6   | 2          | 0.19 | 2          |
| 1554 | 02-Mar-02 | -30.783333 | 153.86666 | 94  |       | female | 1   | 2          | 0.24 | 2          |
| 1555 | 02-Mar-02 | -30.783333 | 153.86666 | 57  |       | female | 0   | 1          |      | 1          |
| 1556 | 02-Mar-02 | -30.783333 | 153.86666 | 206 |       | female | 11  | 2          | 0.14 | 2          |
| 1557 | 02-Mar-02 | -30.783333 | 153.86666 | 147 |       | male   | 6   | 2          | 0.16 | 2          |
| 1558 | 02-Mar-02 | -30.783333 | 153.86666 | 96  |       | female | 2   | 3          |      | 3          |
| 1559 | 02-Mar-02 | -30.783333 | 153.86666 | 90  |       | male   | 1   | 2          | 0.36 | 2          |
| 1560 | 03-Mar-02 | -31.316666 | 153.83333 | 143 |       | male   | 5   | 2          | 0.11 | 2          |
| 1561 | 03-Mar-02 | -31.316666 | 153.83333 | 85  |       | female | 1   | 2          | 0.24 | 2          |
| 1562 | 03-Mar-02 | -31.316666 | 153.83333 | 114 |       | male   | 2   | 2          | 0.15 | 2          |
| 1563 | 03-Mar-02 | -31.316666 | 153.83333 | 170 |       | female | 5   | 3          | 0.24 | 3          |
| 1564 | 04-Mar-02 | -31.366666 | 153.88333 | 80  |       | female | 1   | 1          | 0.37 | 1          |
| 1565 | 04-Mar-02 | -31.366666 | 153.88333 | 84  |       | male   | 1   | 2          | 0.43 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1566 | 04-Mar-02 | -31.366666 | 153.88333 | 108 |       | female | 4   | 2          | 0.08 | 2          |
| 1567 | 04-Mar-02 | -31.366666 | 153.88333 | 82  |       | female | 1   | 1          | 0.4  | 1          |
| 1568 | 04-Mar-02 | -31.366666 | 153.88333 | 106 |       | female | 1   | 1          | 0.48 | 1          |
| 1569 | 05-Mar-02 | -31.566666 | 153.96666 | 90  |       | female |     | 4          |      | 4          |
| 1570 | 13-Jul-02 | -34.433333 | 151.48333 | 113 |       | female | 3   | 2          | 0.08 | 2          |
| 1571 | 13-Jul-02 | -34.433333 | 151.48333 | 74  |       |        | 0   | 1          |      | 1          |
| 1572 | 15-Jul-02 | -34.65     | 151.85    | 154 |       | female | 6   | 2          | 0.05 | 2          |
| 1573 | 15-Jul-02 | -34.65     | 151.85    | 81  |       |        | 2   | 3          | 0.15 | 3          |
| 1574 | 15-Jul-02 | -34.65     | 151.85    | 131 |       | male   | 5   | 3          | 0.14 | 3          |
| 1575 | 15-Jul-02 | -34.65     | 151.85    | 97  |       | female | 1   | 2          | 0.76 | 2          |
| 1576 | 15-Jul-02 | -34.65     | 151.85    | 120 |       | female | 4   | 2          | 0.28 | 2          |
| 1577 | 16-Jul-02 | -34.65     | 151.85    | 142 |       | female | 5   | 2          | 0.16 | 2          |
| 1579 | 16-Jul-02 | -34.65     | 151.85    | 114 |       | male   | 2   | 2          | 0.42 | 2          |
| 1580 | 16-Jul-02 | -34.65     | 151.85    | 77  |       | male   | 0   | 2          |      | 2          |
| 1581 | 19-Jul-02 | -34.933333 | 152.18333 | 109 |       | female | 2   | 2          | 0.13 | 2          |
| 1582 | 19-Jul-02 | -34.933333 | 152.18333 | 115 |       | female | 2   | 3          |      | 3          |
| 1583 | 22-Jul-02 | -34.6      | 151.58333 | 93  |       | female | 2   | 2          | 0.28 | 2          |
| 1584 | 22-Jul-02 | -34.6      | 151.58333 | 230 |       | female | 11  | 2          | 0.12 | 2          |
| 1585 | 22-Jul-02 | -34.6      | 151.58333 | 108 |       | female | 3   | 3          |      | 3          |
| 1586 | 22-Jul-02 | -34.6      | 151.58333 | 103 |       | female | 2   | 2          | 0.03 | 2          |
| 1587 | 23-Jul-02 | -35.6      | 151.68333 | 106 |       | male   | 2   | 2          | 0.33 | 2          |
| 1588 | 27-Jul-02 | -34.983333 | 151.73333 | 177 |       | female | 8   | 3          | 0.24 | 3          |
| 1589 | 28-Jul-02 | -35.233333 | 151.71666 | 175 |       | female | 9   | 3          | 0.04 | 3          |
| 1591 | 28-Jul-02 | -35.233333 | 151.71666 | 187 |       | female |     | 4          |      | 4          |
| 1592 | 28-Jul-02 | -35.233333 | 151.71666 | 206 |       | female | 8   | 3          | 0.73 | 3          |
| 1593 | 31-Jul-02 | -35.416666 | 151.6     | 151 |       | female | 4   | 3          | 0.08 | 3          |
| 1594 | 01-Aug-02 | -35.616666 | 152.05    | 144 |       | female | 4   | 3          | 0.05 | 3          |
| 1595 | 01-Aug-02 | -35.616666 | 152.05    | 87  |       |        | 1   | 1          | 0.37 | 1          |
| 1596 | 19-Aug-02 | -35.133333 | 151.86666 | 93  |       | female | 1   | 1          | 0.6  | 1          |
| 1597 | 19-Aug-02 | -35.133333 | 151.86666 | 81  |       | female | 1   | 2          | 0.3  | 2          |
| 1598 | 19-Aug-02 | -35.133333 | 151.86666 | 220 |       | female | 12  | 3          | 0.29 | 3          |
| 1599 | 19-Aug-02 | -35.133333 | 151.86666 | 105 |       | female | 3   | 2          | 0.09 | 2          |
| 1601 | 19-Aug-02 | -35.133333 | 151.86666 | 173 |       | female | 9   | 3          | 0.08 | 3          |
| 1603 | 19-Aug-02 | -35.133333 | 151.86666 | 101 |       | male   | 1   | 2          | 0.36 | 2          |
| 1604 | 19-Aug-02 | -35.133333 | 151.86666 | 108 |       | female | 2   | 2          | 0.11 | 2          |
| 1605 | 19-Aug-02 | -35.133333 | 151.86666 | 118 |       | female | 5   | 3          | 0.31 | 3          |
| 1606 | 19-Aug-02 | -35.133333 | 151.86666 | 67  |       | female | 0   | 1          |      | 1          |
| 1607 | 19-Aug-02 | -35.133333 | 151.86666 | 162 |       | female | 7   | 3          | 0.09 | 3          |
| 1608 | 19-Aug-02 | -35.133333 | 151.86666 | 172 |       | female | 7   | 3          | 0.1  | 3          |
| 1609 | 20-Aug-02 |            |           | 105 |       | female | 2   | 2          | 0.16 | 2          |
| 1610 | 21-Aug-02 | -35.066666 | 151.86666 | 170 |       | female | 9   | 2          |      | 2          |
| 1611 | 21-Aug-02 | -35.066666 | 151.86666 | 215 |       | female | 11  | 3          | 0.09 | 3          |
| 1612 | 21-Aug-02 | -35.066666 | 151.86666 | 127 |       | female | 5   | 3          | 0.22 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1613 | 25-Aug-02 | -34.383333 | 151.51666 | 146 |       | female | 5   | 2          | 0.14 | 2          |
| 1614 | 25-Aug-02 | -34.383333 | 151.51666 | 110 |       | female | 2   | 2          | 0.31 | 2          |
| 1615 | 25-Aug-02 | -34.383333 | 151.51666 | 132 |       | male   | 4   | 2          | 0.21 | 2          |
| 1616 | 25-Aug-02 | -34.383333 | 151.51666 | 212 |       | female |     | 4          |      | 4          |
| 1617 | 25-Aug-02 | -34.383333 | 151.51666 | 78  |       | male   | 1   | 2          | 0.11 | 2          |
| 1618 | 25-Aug-02 | -34.383333 | 151.51666 | 93  |       | male   | 1   | 3          | 0.45 | 3          |
| 1619 | 25-Aug-02 | -34.383333 | 151.51666 | 116 |       | female | 3   | 3          | 0.48 | 3          |
| 1620 | 25-Aug-02 | -34.383333 | 151.51666 | 111 |       | female | 2   | 3          | 0.41 | 3          |
| 1621 | 25-Aug-02 | -34.383333 | 151.51666 | 201 |       | female | 11  | 3          | 0.2  | 3          |
| 1622 | 25-Aug-02 | -34.383333 | 151.51666 | 142 |       | female | 5   | 3          | 0.09 | 3          |
| 1623 | 26-Aug-02 | -34.583333 | 151.78333 | 158 |       | female | 5   | 3          | 0.08 | 3          |
| 1624 | 26-Aug-02 | -34.583333 | 151.78333 | 87  |       | female | 1   | 2          | 0.61 | 2          |
| 1625 | 26-Aug-02 | -34.583333 | 151.78333 | 224 |       | female | 10  | 2          | 0.15 | 2          |
| 1626 | 26-Aug-02 | -34.583333 | 151.78333 | 102 |       | female | 1   | 2          | 0.89 | 2          |
| 1627 | 26-Aug-02 | -34.583333 | 151.78333 | 149 |       | female | 6   | 3          | 0.17 | 3          |
| 1629 | 26-Aug-02 | -34.583333 | 151.78333 | 149 |       | female | 6   | 2          | 0.23 | 2          |
| 1630 | 26-Aug-02 | -34.583333 | 151.78333 | 162 |       | female | 5   | 3          | 0.09 | 3          |
| 1631 | 26-Aug-02 | -34.583333 | 151.78333 | 112 |       | female | 2   | 3          | 0.17 | 3          |
| 1632 | 26-Aug-02 | -34.583333 | 151.78333 | 163 |       | female | 6   | 3          | 0.54 | 3          |
| 1633 | 26-Aug-02 | -34.583333 | 151.78333 | 83  |       | male   | 1   | 2          | 0.05 | 2          |
| 1634 | 26-Aug-02 | -34.583333 | 151.78333 | 125 |       | female | 4   | 2          | 0.38 | 2          |
| 1635 | 26-Aug-02 | -34.583333 | 151.78333 | 101 |       | male   | 2   | 1          | 0.32 | 1          |
| 1636 | 26-Aug-02 | -34.583333 | 151.78333 | 145 |       | male   | 4   | 3          | 0.16 | 3          |
| 1637 | 26-Aug-02 | -34.583333 | 151.78333 | 97  |       | male   | 2   | 2          | 0.22 | 2          |
| 1638 | 26-Aug-02 | -34.583333 | 151.78333 | 184 |       | male   | 12  | 3          | 0.02 | 3          |
| 1639 | 27-Aug-02 | -34.45     | 151.65    | 161 |       | female | 6   | 3          | 0.44 | 3          |
| 1640 | 27-Aug-02 | -34.45     | 151.65    | 95  |       | female | 1   | 2          | 0.58 | 2          |
| 1641 | 27-Aug-02 | -34.45     | 151.65    | 91  |       | male   | 2   | 2          | 0.09 | 2          |
| 1642 | 27-Aug-02 | -34.45     | 151.65    | 97  |       | female | 2   | 3          | 0.21 | 3          |
| 1643 | 27-Aug-02 | -34.45     | 151.65    | 103 |       | female | 2   | 3          | 0.28 | 3          |
| 1644 | 27-Aug-02 | -34.45     | 151.65    | 163 |       | female | 5   | 3          | 0.28 | 3          |
| 1645 | 27-Aug-02 | -34.45     | 151.65    | 173 |       | male   | 7   | 2          | 0.12 | 2          |
| 1646 | 27-Aug-02 | -34.45     | 151.65    | 182 |       | female | 6   | 2          | 0.21 | 2          |
| 1647 | 27-Aug-02 | -34.45     | 151.65    | 112 |       | female | 3   | 3          | 0.35 | 3          |
| 1648 | 27-Aug-02 | -34.45     | 151.65    | 162 |       | female | 6   | 3          | 0.23 | 3          |
| 1649 | 27-Aug-02 | -34.45     | 151.65    | 102 |       | male   | 1   | 2          | 0.5  | 2          |
| 1650 | 27-Aug-02 | -34.45     | 151.65    | 166 |       | female | 4   | 3          |      | 3          |
| 1651 | 27-Aug-02 | -34.45     | 151.65    | 100 |       | male   | 2   | 2          | 0.05 | 2          |
| 1652 | 27-Aug-02 | -34.45     | 151.65    | 115 |       | male   | 3   | 2          | 0.13 | 2          |
| 1653 | 27-Aug-02 | -34.45     | 151.65    | 221 |       | female | 12  | 3          | 0.04 | 3          |
| 1654 | 17-Dec-99 | -28.741666 | 157.75833 | 116 |       | male   | 2   | 2          |      | 2          |
| 1655 | 16-Oct-99 | -26.383333 | 154.91667 | 137 |       | male   | 3   | 2          | 0.26 | 2          |
| 1656 | 17-Dec-99 | -28.741666 | 157.75833 | 140 |       | female | 5   | 2          | 0.15 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1657 | 04-Jun-02 |            |           | 106 |       | female | 2   | 3          | 0.26 | 3          |
| 1658 | 05-May-02 |            |           | 101 |       | female | 1   | 2          | 0.14 | 2          |
| 1659 | 06-Jun-02 |            |           | 102 |       | female | 1   | 2          | 0.86 | 2          |
| 1660 | 06-Jun-02 |            |           | 110 |       | male   | 3   | 2          | 0.07 | 2          |
| 1661 | 07-Jun-02 |            |           | 140 |       | female | 5   | 2          | 0.39 | 2          |
| 1662 | 30-Apr-02 |            |           | 124 |       | female | 2   | 2          | 0.07 | 2          |
| 1663 | 01-May-02 |            |           | 96  |       | female | 1   | 2          | 0.6  | 2          |
| 1664 | 01-May-02 |            |           | 97  |       | male   | 2   | 2          | 0.41 | 2          |
| 1665 | 01-May-02 |            |           | 110 |       | male   | 1   | 2          | 0.68 | 2          |
| 1666 | 01-May-02 |            |           | 86  |       | male   | 1   | 2          | 0.75 | 2          |
| 1667 | 15-Feb-02 |            |           | 81  |       | female | 0   | 2          |      | 2          |
| 1668 | 24-Feb-02 |            |           | 80  |       | female | 1   | 3          | 0.21 | 3          |
| 1669 | 25-Feb-02 |            |           | 82  |       | female | 1   | 1          | 0.39 | 1          |
| 1670 | 28-Feb-02 |            |           | 83  |       | female | 1   | 2          | 0.39 | 2          |
| 1671 | 02-Apr-02 |            |           | 87  |       | male   | 1   | 2          | 0.3  | 2          |
| 1672 | 02-Apr-02 |            |           | 85  |       | male   | 1   | 2          | 0.22 | 2          |
| 1673 | 04-Apr-02 |            |           | 165 |       | female | 7   | 2          | 0.22 | 2          |
| 1674 | 30-Apr-02 |            |           | 118 |       | female | 2   | 2          | 0.87 | 2          |
| 1675 | 15-May-02 |            |           | 160 |       | female |     | 4          |      | 4          |
| 1676 | 16-May-02 |            |           | 112 |       | male   | 2   | 2          | 0.34 | 2          |
| 1677 | 16-May-02 |            |           | 85  |       | female | 2   | 2          | 0.18 | 2          |
| 1678 | 24-May-02 |            |           | 95  |       | female | 1   | 2          | 0.61 | 2          |
| 1679 | 24-May-02 |            |           | 92  |       | female | 1   | 2          | 0.75 | 2          |
| 1680 | 24-May-02 |            |           | 114 |       | female | 4   | 3          | 0.08 | 3          |
| 1681 | 24-May-02 |            |           | 104 |       | female | 2   | 2          | 0.3  | 2          |
| 1682 | 24-May-02 |            |           | 86  |       | female | 0   | 2          |      | 2          |
| 1683 | 24-May-02 |            |           | 107 |       | female | 2   | 3          |      | 3          |
| 1684 | 24-May-02 |            |           | 109 |       | male   | 2   | 1          | 0.39 | 1          |
| 1685 | 27-May-02 |            |           | 106 |       | female | 2   | 2          | 0.09 | 2          |
| 1686 | 15-Feb-02 |            |           | 93  |       | female | 3   | 2          | 0.12 | 2          |
| 1687 | 04-Mar-02 |            |           | 150 |       | male   | 5   | 3          | 0.13 | 3          |
| 1688 | 18-Mar-02 |            |           | 127 |       | female | 4   | 3          | 0.38 | 3          |
| 1689 | 06-Jun-02 |            |           | 167 |       | female | 6   | 3          | 0.56 | 3          |
| 1691 | 25-Apr-02 |            |           | 100 |       | female | 2   | 2          | 0.12 | 2          |
| 1692 | 25-Apr-02 |            |           | 109 |       | female | 3   | 2          | 0.51 | 2          |
| 1693 | 25-Apr-02 |            |           | 157 |       | female | 6   | 3          | 0.37 | 3          |
| 1694 | 25-Apr-02 |            |           | 52  |       | female | 0   | 1          |      | 1          |
| 1696 | 01-Nov-02 | -25.766666 | 111.96666 | 104 |       | male   | 4   | 3          | 0.06 | 3          |
| 1697 | 01-Nov-02 | -25.766666 | 111.96666 | 169 |       | male   | 7   | 3          | 0.27 | 3          |
| 1698 | 01-Nov-02 | -25.766666 | 111.96666 | 147 |       | female | 5   | 3          | 0.25 | 3          |
| 1699 | 02-Nov-02 | -23.75     | 111.73333 | 121 |       | female | 4   | 3          | 0.38 | 3          |
| 1700 | 02-Nov-02 | -23.75     | 111.73333 | 161 |       | female | 6   | 3          | 0.06 | 3          |
| 1701 | 02-Nov-02 | -23.75     | 111.73333 | 95  |       | female | 3   | 3          | 0.19 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1703 | 06-Nov-02 | -20.933333 | 110.88333 | 191 |       | female | 12  | 3          | 0.32 | 3          |
| 1704 | 06-Nov-02 | -20.933333 | 110.88333 | 159 |       | male   | 10  | 3          | 0.19 | 3          |
| 1705 | 06-Nov-02 | -20.933333 | 110.88333 | 130 |       | male   | 4   | 2          | 0.15 | 2          |
| 1706 | 08-Nov-02 | -21.333333 | 113.33333 | 211 |       | female |     | 4          |      | 4          |
| 1707 | 08-Nov-02 | -21.333333 | 113.33333 | 243 |       | female | 13  | 3          |      | 3          |
| 1708 | 09-Nov-02 | -21.733333 | 113.51666 | 194 |       | female | 10  | 3          | 0.23 | 3          |
| 1709 | 09-Nov-02 | -21.733333 | 113.51666 | 216 |       | female | 9   | 3          | 0.3  | 3          |
| 1710 | 10-Nov-02 | -22.6      | 113.3     | 91  |       | female | 1   | 3          |      | 3          |
| 1711 | 10-Nov-02 | -22.6      | 113.3     | 173 |       | female | 8   | 3          |      | 3          |
| 1712 | 10-Nov-02 | -22.6      | 113.3     | 161 |       | female | 6   | 3          | 0.09 | 3          |
| 1713 | 10-Nov-02 | -22.6      | 113.3     | 123 |       | female | 4   | 2          | 0.12 | 2          |
| 1715 | 10-Nov-02 | -22.6      | 113.3     | 92  |       | male   | 2   | 2          | 0.12 | 2          |
| 1716 | 10-Nov-02 | -22.6      | 113.3     | 128 |       | female | 4   | 3          | 0.19 | 3          |
| 1717 | 06-Nov-02 | -20.933333 | 110.88333 | 80  |       | female | 1   | 2          | 0.27 | 2          |
| 1718 | 06-Nov-02 | -20.933333 | 110.88333 | 95  |       | female | 1   | 2          | 0.07 | 2          |
| 1719 | 06-Nov-02 | -20.933333 | 110.88333 | 68  |       | female | 0   | 2          |      | 2          |
| 1720 | 25-Feb-02 |            |           | 98  |       | male   | 1   | 3          | 0.21 | 3          |
| 1721 | 25-Feb-02 |            |           | 170 |       | male   | 8   | 2          | 0.09 | 2          |
| 1722 | 26-Feb-02 |            |           | 90  |       | female | 1   | 1          | 0.57 | 1          |
| 1723 | 28-Feb-02 |            |           | 184 |       | female | 10  | 2          | 0.08 | 2          |
| 1724 | 28-Feb-02 |            |           | 191 |       | female | 11  | 3          | 0.18 | 3          |
| 1725 | 28-Feb-02 |            |           | 164 |       | male   | 9   | 2          | 0.09 | 2          |
| 1726 | 28-Feb-02 |            |           | 118 |       | female | 3   | 2          | 0.37 | 2          |
| 1727 | 28-Feb-02 |            |           | 188 |       | female | 10  | 3          | 0.08 | 3          |
| 1728 | 28-Feb-02 |            |           | 106 |       | female | 3   | 2          | 0.24 | 2          |
| 1729 | 28-Feb-02 |            |           | 175 |       | female | 10  | 2          | 0.06 | 2          |
| 1730 | 28-Feb-02 |            |           | 84  |       | male   | 0   | 3          |      | 3          |
| 1731 | 28-Feb-02 |            |           | 184 |       | female | 9   | 3          | 0.28 | 3          |
| 1732 | 01-Mar-02 |            |           | 122 |       | female | 3   | 3          |      | 3          |
| 1733 | 01-Mar-02 |            |           | 88  |       | female | 2   | 3          | 0.23 | 3          |
| 1734 | 01-Mar-02 |            |           | 218 |       | female | 14  | 2          | 0.1  | 2          |
| 1735 | 01-Mar-02 |            |           | 168 |       | male   | 7   | 3          | 0.2  | 3          |
| 1736 | 01-Mar-02 |            |           | 183 |       | male   | 10  | 3          | 0.27 | 3          |
| 1737 | 01-Mar-02 |            |           | 184 |       | male   | 8   | 3          | 0.29 | 3          |
| 1738 | 25-Mar-02 |            |           | 96  |       | female | 2   | 3          | 0.12 | 3          |
| 1739 | 25-Mar-02 |            |           | 146 |       | female | 5   | 2          | 0.22 | 2          |
| 1740 | 26-Mar-02 |            |           | 165 |       | female | 7   | 2          | 0.26 | 2          |
| 1741 | 23-Nov-02 | -27.966666 | 157.01666 | 196 |       | female | 9   | 3          | 0.27 | 3          |
| 1742 | 23-Nov-02 | -27.966666 | 157.01666 | 106 |       | female | 1   | 3          | 0.42 | 3          |
| 1743 | 23-Nov-02 | -27.966666 | 157.01666 | 95  |       | female | 2   | 2          | 0.41 | 2          |
| 1744 | 23-Nov-02 | -27.966666 | 157.01666 | 185 |       | female | 10  | 3          | 0.19 | 3          |
| 1745 | 23-Nov-02 | -27.966666 | 157.01666 | 205 |       | male   | 10  | 3          | 0.35 | 3          |
| 1746 | 23-Nov-02 | -27.966666 | 157.01666 | 159 |       | male   | 9   | 3          | 0.08 | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1747 | 23-Nov-02 | -27.966666 | 157.01666 | 191 |       | female | 11  | 3          |      | 3          |
| 1748 | 23-Nov-02 | -27.966666 | 157.01666 | 98  |       | female | 2   | 2          | 0.33 | 2          |
| 1749 | 23-Nov-02 | -27.966666 | 157.01666 | 182 |       | male   | 11  | 3          | 0.21 | 3          |
| 1750 | 24-Nov-02 | -28.166666 | 157.28333 | 102 |       | female | 1   | 2          | 0.45 | 2          |
| 1751 | 24-Nov-02 | -28.166666 | 157.28333 | 120 |       | female | 4   | 3          | 0.24 | 3          |
| 1752 | 24-Nov-02 | -28.166666 | 157.28333 | 166 |       | female | 7   | 3          | 0.26 | 3          |
| 1753 | 24-Nov-02 | -28.166666 | 157.28333 | 104 |       | male   | 2   | 3          | 0.27 | 3          |
| 1754 | 24-Nov-02 | -28.166666 | 157.28333 | 179 |       | female | 7   | 2          | 0.04 | 2          |
| 1755 | 24-Nov-02 | -28.166666 | 157.28333 | 201 |       | female | 12  | 3          | 0.3  | 3          |
| 1756 | 25-Nov-02 | -28.366666 | 157.11666 | 197 |       | female | 8   | 3          |      | 3          |
| 1757 | 25-Nov-02 | -28.366666 | 157.11666 | 224 |       | female | 15  | 3          | 0.26 | 3          |
| 1758 | 25-Nov-02 | -28.366666 | 157.11666 | 141 |       | male   | 7   | 3          | 0.19 | 3          |
| 1759 | 25-Nov-02 | -28.366666 | 157.11666 | 184 |       | female | 11  | 3          | 0.26 | 3          |
| 1760 | 25-Nov-02 | -28.366666 | 157.11666 | 147 |       | female | 7   | 3          | 0.22 | 3          |
| 1761 | 25-Nov-02 | -28.366666 | 157.11666 | 106 |       | male   | 2   | 2          | 0.36 | 2          |
| 1762 | 25-Nov-02 | -28.366666 | 157.11666 | 216 |       | female | 14  | 3          | 0.05 | 3          |
| 1763 | 25-Nov-02 | -28.366666 | 157.11666 | 142 |       | female | 5   | 3          | 0.12 | 3          |
| 1764 | 25-Nov-02 | -28.366666 | 157.11666 | 107 |       | female | 3   | 3          | 0.18 | 3          |
| 1765 | 25-Nov-02 | -28.366666 | 157.11666 | 137 |       | male   | 3   | 2          | 0.53 | 2          |
| 1766 | 25-Nov-02 | -28.366666 | 157.11666 | 106 |       | male   | 2   | 2          | 0.4  | 2          |
| 1767 | 25-Nov-02 | -28.366666 | 157.11666 | 142 |       | female | 4   | 3          |      | 3          |
| 1768 | 25-Nov-02 | -28.366666 | 157.11666 | 88  |       | female | 1   | 3          | 0.41 | 3          |
| 1769 | 25-Nov-02 | -28.366666 | 157.11666 | 204 |       | female | 13  | 2          | 0.09 | 2          |
| 1770 | 25-Nov-02 | -28.366666 | 157.11666 | 194 |       | female | 11  | 3          | 0.25 | 3          |
| 1771 | 26-Nov-02 | -28.55     | 157.21666 | 120 |       | male   | 2   | 1          | 0.55 | 1          |
| 1772 | 26-Nov-02 | -28.55     | 157.21666 | 100 |       | female | 3   | 3          | 0.25 | 3          |
| 1773 | 26-Nov-02 | -28.55     | 157.21666 | 161 |       | female | 6   | 2          | 0.13 | 2          |
| 1774 | 26-Nov-02 | -28.55     | 157.21666 | 178 |       | female | 6   | 3          |      | 3          |
| 1775 | 26-Nov-02 | -28.55     | 157.21666 | 141 |       | female | 6   | 3          | 0.38 | 3          |
| 1776 | 26-Nov-02 | -28.55     | 157.21666 | 188 |       | female | 9   | 3          | 0.11 | 3          |
| 1777 | 26-Nov-02 | -28.55     | 157.21666 | 177 |       | male   | 10  | 3          |      | 3          |
| 1778 | 26-Nov-02 | -28.55     | 157.21666 | 148 |       | female | 8   | 3          | 0.08 | 3          |
| 1779 | 27-Nov-02 | -28.016666 | 157.45    | 124 |       | female | 3   | 2          | 0.42 | 2          |
| 1780 | 27-Nov-02 | -28.016666 | 157.45    | 144 |       | female | 5   | 3          |      | 3          |
| 1781 | 27-Nov-02 | -28.016666 | 157.45    | 154 |       | male   | 4   | 2          | 0.49 | 2          |
| 1782 | 27-Nov-02 | -28.016666 | 157.45    | 178 |       | female | 8   | 3          | 0.38 | 3          |
| 1783 | 27-Nov-02 | -28.016666 | 157.45    | 82  |       | male   | 0   | 3          |      | 3          |
| 1784 | 27-Nov-02 | -28.016666 | 157.45    | 84  |       | female | 0   | 2          |      | 2          |
| 1785 | 27-Nov-02 | -28.016666 | 157.45    | 82  |       | male   | 1   | 2          | 0.42 | 2          |
| 1786 | 27-Nov-02 | -28.016666 | 157.45    | 109 |       | female | 4   | 3          | 0.21 | 3          |
| 1787 | 27-Nov-02 | -28.016666 | 157.45    | 127 |       | male   | 5   | 2          |      | 2          |
| 1788 | 27-Nov-02 | -28.016666 | 157.45    | 117 |       | female | 3   | 3          |      | 3          |
| 1789 | 27-Nov-02 | -28.016666 | 157.45    | 158 |       | female | 7   | 3          |      | 3          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1790 | 27-Nov-02 | -28.016666 | 157.45    | 160 |       | female | 6   | 3          | 0.6  | 3          |
| 1791 | 28-Nov-02 | -28.083333 | 157.38333 | 172 |       | female | 8   | 3          |      | 3          |
| 1792 | 28-Nov-02 | -28.083333 | 157.38333 | 107 |       | female | 2   | 3          | 0.36 | 3          |
| 1793 | 28-Nov-02 | -28.083333 | 157.38333 | 156 |       | male   | 6   | 2          | 0.16 | 2          |
| 1794 | 28-Nov-02 | -28.083333 | 157.38333 | 110 |       | male   | 2   | 2          | 0.4  | 2          |
| 1795 | 28-Nov-02 | -28.083333 | 157.38333 | 202 |       | female | 9   | 2          | 0.28 | 2          |
| 1796 | 28-Nov-02 | -28.083333 | 157.38333 | 214 |       | female | 12  | 3          | 0.22 | 3          |
| 1797 | 28-Nov-02 | -28.083333 | 157.38333 | 150 |       | male   | 3   | 3          | 0.2  | 3          |
| 1798 | 28-Nov-02 | -28.083333 | 157.38333 | 70  |       | female | 0   | 2          |      | 2          |
| 1799 | 28-Nov-02 | -28.083333 | 157.38333 | 181 |       | female | 10  | 3          | 0.19 | 3          |
| 1800 | 28-Nov-02 | -28.083333 | 157.38333 | 176 |       | male   | 9   | 2          | 0.12 | 2          |
| 1801 | 28-Nov-02 | -28.083333 | 157.38333 | 226 |       | female | 9   | 3          | 0.28 | 3          |
| 1802 | 28-Nov-02 | -28.083333 | 157.38333 | 176 |       | female | 6   | 3          | 0.39 | 3          |
| 1803 | 29-Nov-02 | -28.033333 | 157.48333 | 174 |       | female | 7   | 3          | 0.12 | 3          |
| 1804 | 29-Nov-02 | -28.033333 | 157.48333 | 157 |       | female | 6   | 2          | 0.34 | 2          |
| 1805 | 29-Nov-02 | -28.033333 | 157.48333 | 177 |       | female | 7   | 2          | 0.15 | 2          |
| 1806 | 29-Nov-02 | -28.033333 | 157.48333 | 75  |       | female | 1   | 3          | 0.32 | 3          |
| 1807 | 29-Nov-02 | -28.033333 | 157.48333 | 108 |       | male   | 3   | 2          | 0.04 | 2          |
| 1808 | 29-Nov-02 | -28.033333 | 157.48333 | 92  |       | female | 1   | 2          | 0.41 | 2          |
| 1809 | 29-Nov-02 | -28.033333 | 157.48333 | 152 |       | female | 5   | 2          | 0.1  | 2          |
| 1810 | 29-Nov-02 | -28.033333 | 157.48333 | 207 |       | female | 11  | 3          | 0.06 | 3          |
| 1811 | 29-Nov-02 | -28.033333 | 157.48333 | 162 |       | male   | 7   | 3          | 0.43 | 3          |
| 1812 | 29-Nov-02 | -28.033333 | 157.48333 | 94  |       | female | 1   | 3          | 0.73 | 3          |
| 1813 | 29-Nov-02 | -28.033333 | 157.48333 | 123 |       | female | 3   | 3          | 0.46 | 3          |
| 1814 | 30-Nov-02 | -27.783333 | 157.51666 | 189 |       | female | 10  | 3          | 0.16 | 3          |
| 1815 | 30-Nov-02 | -27.783333 | 157.51666 | 154 |       | male   | 6   | 2          | 0.36 | 2          |
| 1816 | 30-Nov-02 | -27.783333 | 157.51666 | 213 |       | female | 13  | 3          | 0.28 | 3          |
| 1817 | 30-Nov-02 | -27.783333 | 157.51666 | 88  |       | female | 1   | 2          | 0.17 | 2          |
| 1818 | 30-Nov-02 | -27.783333 | 157.51666 | 188 |       | female | 9   | 3          | 0.27 | 3          |
| 1819 | 30-Nov-02 | -27.783333 | 157.51666 | 182 |       | female | 8   | 3          | 0.15 | 3          |
| 1820 | 21-Oct-99 | -27.75     | 155.85000 | 237 |       | female | 15  | 3          | 0.06 | 3          |
| 1821 | 12-Oct-02 |            |           | 110 |       | male   | 3   | 3          | 0.21 | 3          |
| 1822 | 15-Oct-02 | -31.75     | 157.15    | 92  |       | female | 2   | 2          | 0.26 | 2          |
| 1823 | 18-Oct-02 | -30.1      | 160.9     | 191 |       | female | 7   | 3          | 0.26 | 3          |
| 1824 | 18-Oct-02 | -30.1      | 160.9     | 115 |       | female | 2   | 3          | 0.05 | 3          |
| 1825 | 18-Oct-02 | -30.1      | 160.9     | 142 |       | female | 5   | 3          | 0.24 | 3          |
| 1826 | 18-Oct-02 | -30.1      | 160.9     | 131 |       | male   | 5   | 2          | 0.16 | 2          |
| 1827 | 18-Oct-02 | -30.1      | 160.9     | 183 |       | female | 8   | 3          | 0.25 | 3          |
| 1828 | 18-Oct-02 | -30.1      | 160.9     | 188 |       | male   | 9   | 3          | 0.27 | 3          |
| 1829 | 19-Oct-02 | -30.166666 | 161.06666 | 158 |       | male   | 4   | 2          | 0.22 | 2          |
| 1830 | 19-Oct-02 | -30.166666 | 161.06666 | 166 |       | female | 8   | 3          | 0.34 | 3          |
| 1831 | 19-Oct-02 | -30.166666 | 161.06666 | 212 |       | female | 9   | 2          | 0.39 | 2          |
| 1832 | 19-Oct-02 | -30.166666 | 161.06666 | 102 |       | female | 2   | 2          | 0.05 | 2          |

| BBL# | DATE      | LAT        | LON       | OFL | LJFL  | Sex    | AGE | Age        | MI   | MI         |
|------|-----------|------------|-----------|-----|-------|--------|-----|------------|------|------------|
|      |           |            |           |     | Final |        |     | Confidence |      | Confidence |
| 1833 | 19-Oct-02 | -30.166666 | 161.06666 | 97  |       | male   | 2   | 2          | 0.51 | 2          |
| 1834 | 19-Oct-02 | -30.166666 | 161.06666 | 215 |       | female | 11  | 2          | 0.07 | 2          |
| 1835 | 19-Oct-02 | -30.166666 | 161.06666 | 219 |       | female | 10  | 2          | 0.27 | 2          |
| 1836 | 19-Oct-02 | -30.166666 | 161.06666 | 153 |       | female | 6   | 2          | 0.2  | 2          |
| 1837 | 19-Oct-02 | -30.166666 | 161.06666 | 189 |       | female | 10  | 2          | 0.16 | 2          |
| 1838 | 19-Oct-02 | -30.166666 | 161.06666 | 104 |       | female | 4   | 3          | 0.24 | 3          |
| 1839 | 21-Oct-02 | -30.1      | 160.93333 | 108 |       | female | 2   | 1          | 0.24 | 1          |
| 1840 | 21-Oct-02 | -30.1      | 160.93333 | 181 |       | female | 9   | 3          | 0.2  | 3          |
| 1841 | 21-Oct-02 | -30.1      | 160.93333 | 158 |       | female | 8   | 2          | 0.19 | 2          |
| 1842 | 21-Oct-02 | -30.1      | 160.93333 | 103 |       | female | 2   | 2          | 0.78 | 2          |
| 1843 | 20-Oct-02 | -30.083333 | 161.18333 | 215 |       | female | 11  | 3          | 0.11 | 3          |
| 1844 | 20-Oct-02 | -30.083333 | 161.18333 | 149 |       | female | 4   | 3          |      | 3          |
| 1845 | 15-Oct-02 | -31.75     | 157.15    | 157 |       | female | 5   | 2          | 0.02 | 2          |
| 1846 | 15-Oct-02 | -31.75     | 157.15    | 143 |       | female | 8   | 3          | 0.07 | 3          |
| 1847 | 15-Oct-02 | -31.75     | 157.15    | 94  |       | male   | 2   | 1          | 0.09 | 1          |
| 1848 | 15-Oct-02 | -31.75     | 157.15    | 111 |       | female | 3   | 2          | 0.3  | 2          |
| 1849 | 15-Oct-02 | -31.75     | 157.15    | 103 |       | male   | 4   | 3          | 0.13 | 3          |
| 1850 | 15-Oct-02 | -31.75     | 157.15    | 140 |       | female | 4   | 2          | 0.27 | 2          |
| 1851 | 15-Oct-02 | -31.75     | 157.15    | 110 |       | male   | 2   | 3          | 0.65 | 3          |
| 1852 | 15-Oct-02 | -31.75     | 157.15    | 137 |       | male   | 5   | 2          | 0.1  | 2          |
| 1853 | 15-Oct-02 | -31.75     | 157.15    | 90  |       | male   |     | 4          |      | 4          |
| 1854 | 15-Oct-02 | -31.75     | 157.15    | 119 |       | male   | 4   | 2          | 0.08 | 2          |
| 1855 | 15-Oct-02 | -31.75     | 157.15    | 150 |       | female | 5   | 2          | 0.35 | 2          |
| 1856 | 16-Oct-02 | -31.55     | 157.55    | 113 |       | female | 2   | 3          | 0.39 | 3          |
| 1857 | 16-Oct-02 | -31.55     | 157.55    | 163 |       | female | 8   | 3          | 0.07 | 3          |
| 1858 | 16-Oct-02 | -31.55     | 157.55    | 160 |       | female | 6   | 3          | 0.11 | 3          |
| 1859 | 16-Oct-02 | -31.55     | 157.55    | 132 |       | male   | 2   | 2          |      | 2          |
| 1860 | 16-Oct-02 | -31.55     | 157.55    | 108 |       | male   | 2   | 1          | 0.38 | 1          |
| 1861 | 18-Oct-02 | -30.1      | 160.9     | 149 |       | male   | 9   | 3          | 0.09 | 3          |
| 1862 | 18-Oct-02 | -30.1      | 160.9     | 91  |       | male   | 1   | 1          | 0.37 | 1          |
| 1864 | 18-Oct-02 | -30.1      | 160.9     | 144 |       | female |     | 4          |      | 4          |
| 1865 | 18-Oct-02 | -30.1      | 160.9     | 178 |       | female | 8   | 3          | 0.55 | 3          |
| 1866 | 18-Oct-02 | -30.1      | 160.9     | 204 |       | female | 10  | 3          | 0.57 | 3          |
| 1867 | 18-Oct-02 | -30.1      | 160.9     | 148 |       | female | 8   | 3          | 0.25 | 3          |
| 1868 | 19-Oct-02 | -30.166666 | 161.06666 | 145 |       | male   | 5   | 3          | 0.5  | 3          |
| 1869 | 19-Oct-02 | -30.166666 | 161.06666 | 120 |       | female | 2   | 2          | 0.26 | 2          |
| 1870 | 19-Oct-02 | -30.166666 | 161.06666 | 139 |       | female | 6   | 3          | 0.3  | 3          |
| 1871 | 19-Oct-02 | -30.166666 | 161.06666 | 117 |       | female | 3   | 3          |      | 3          |
| 1872 | 20-Oct-02 | -30.083333 | 161.18333 | 146 |       | female | 4   | 3          | 0.1  | 3          |
| 1873 | 20-Oct-02 | -30.083333 | 161.18333 | 106 |       | female | 2   | 2          | 0.25 | 2          |
| 1874 | 20-Oct-02 | -30.083333 | 161.18333 | 210 |       | male   | 15  | 3          | 0.09 | 3          |
| 1875 | 20-Oct-02 | -30.083333 | 161.18333 | 154 |       | male   | 5   | 3          | 0.2  | 3          |
| 1876 | 20-Oct-02 | -30.083333 | 161.18333 | 150 |       | female | 6   | 3          | 0.11 | 3          |

| MI         | MI   | Age        | AGE | Sex    | LJFL  | OFL  | LON       | LAT        | DATE      | BBL# |
|------------|------|------------|-----|--------|-------|------|-----------|------------|-----------|------|
| Confidence |      | Confidence |     |        | Final |      |           |            |           |      |
| 3          | 0.05 | 3          | 12  | male   |       | 200  | 161.18333 | -30.083333 | 20-Oct-02 | 1877 |
| 3          | 0.1  | 3          | 4   | male   |       | 105  | 161.18333 | -30.083333 | 20-Oct-02 | 1878 |
| 3          | 0.28 | 3          | 7   | female |       | 123  | 161.18333 | -30.083333 | 20-Oct-02 | 1879 |
| 3          | 0.15 | 3          | 7   | male   |       | 128  | 161.18333 | -30.083333 | 20-Oct-02 | 1880 |
| 3          | 0.13 | 3          | 12  | female |       | 184  | 161.18333 | -30.083333 | 20-Oct-02 | 1881 |
| 3          | 0.17 | 3          | 11  | female |       | 209  | 161.18333 | -30.083333 | 20-Oct-02 | 1882 |
| 2          | 0.3  | 2          | 3   | female |       | 111  | 161.18333 | -30.083333 | 20-Oct-02 | 1883 |
| 3          | 0.14 | 3          | 5   | female |       | 127  | 161.18333 | -30.083333 | 20-Oct-02 | 1884 |
| 2          | 0.34 | 2          | 6   | female |       | 142  | 161.18333 | -30.083333 | 20-Oct-02 | 1885 |
| 3          | 0.83 | 3          | 2   | female |       | 129  | 161.18333 | -30.083333 | 20-Oct-02 | 1886 |
| 3          | 0.17 | 3          | 7   | female |       | 154  | 161.18333 | -30.083333 | 20-Oct-02 | 1887 |
| 3          |      | 3          | 2   | male   |       | 118  | 161.18333 | -30.083333 | 20-Oct-02 | 1888 |
| 3          |      | 3          | 4   | female |       | 121  | 161.18333 | -30.083333 | 20-Oct-02 | 1889 |
| 3          | 0.46 | 3          | 6   | female |       | 180  | 161.18333 | -30.083333 | 20-Oct-02 | 1890 |
| 3          |      | 3          | 3   | male   |       | 111  | 160.93333 | -30.1      | 21-Oct-02 | 1891 |
| 3          | 0.43 | 3          | 11  | female |       | 213  | 160.93333 | -30.1      | 21-Oct-02 | 1892 |
| 3          | 0.43 | 3          | 4   | female |       | 138  |           |            | 21-Sep-02 | 1893 |
| 3          | 0.12 | 3          | 8   | female |       | 175  |           |            | 22-Sep-02 | 1894 |
| 4          | 0.28 | 4          |     | female |       | 225  |           |            | 22-Sep-02 | 1895 |
| 2          | 0.13 | 2          | 1   | male   |       | 77.5 | 153.5     | -31.15     | 15-Nov-02 | 1896 |
| 3          | 0.13 | 3          | 7   | female |       | 175  | 154.35    | -31.15     | 19-Nov-02 | 1897 |
| 3          | 0.09 | 3          | 8   | female |       | 173  | 161.13333 | -30.583333 | 12-Feb-03 | 1901 |
| 3          | 0.14 | 3          | 7   | female |       | 185  | 167.63333 | -31.4      | 15-Feb-03 | 1904 |
| 3          | 0.11 | 3          | 6   | male   |       | 148  | 167.63333 | -31.4      | 15-Feb-03 | 1907 |
| 3          | 0.3  | 3          | 6   | female |       | 171  | 167.63333 | -31.4      | 15-Feb-03 | 1908 |
| 3          | 0.1  | 3          | 9   | male   |       | 174  | 167.7     | -30.716666 | 16-Feb-03 | 1909 |
| 2          | 0.33 | 2          | 6   | male   |       | 148  | 167.7     | -30.716666 | 16-Feb-03 | 1911 |
| 2          | 0.38 | 2          | 6   | male   |       | 177  | 167.51666 | -30.866666 | 17-Feb-03 | 1912 |
| 3          | 0.21 | 3          | 7   | male   |       | 185  | 167.51666 | -30.866666 | 17-Feb-03 | 1913 |
| 2          | 0.23 | 2          | 6   | female |       | 184  | 164.06666 | -29.733333 | 21-Feb-03 | 1915 |
| 3          | 0.15 | 3          | 6   | male   |       | 169  | 159.65    | -28.75     | 23-Feb-03 | 1917 |
| 3          | 0.14 | 3          | 8   | male   |       | 162  | 156.11666 | -28.866666 | 25-Feb-03 | 1918 |