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Project Summary 
 

PRINCIPAL INVESTIGATOR:  Prof. Craig R. Johnson 

 

The pattern of distribution of the long-spined sea urchin Centrostephanus rodgersii over 

ca. 40 y in the Kent group, Bass St., suggests initial establishment in the mid 1960s with 

subsequent expansion of populations to its current status as the dominant invertebrate on 

shallow subtidal rocky reef. On the east coast of Tasmania, C. rodgersii is most abundant 

in the vicinity of its location of initial discovery in 1978, but it occurs throughout the east 

coast between Eddystone Pt in the north and Recherche Bay in the south. Barrens habitat, 

supporting high densities of sea urchins but largely devoid of macroalgae, occurs 

extensively in the Kent group and at several sites on the northern half of the Tasmanian 

east coast, but declines with increasing latitude and does not occur south of the Tasman 

Peninsula. At the southern extent of barrens habitat on the open coast, barrens are 

incipient and occur as small patches in macroalgal beds. Evidence suggests that the 

barrens habitat in the Kent group and on the open rocky coast of Tasmania is formed by 

grazing of C. rodgersii and not by Heliociaris erythrogramma, another sea urchin that 

occurs on these barrens. This is largely because there is a significant positive relationship 

between C. rodgersii density and extent of barrens but not between H. erythrogramma 

density and extent of barrens, and because H. erythrogramma is not know to form barrens 

on exposed coast. These collective patterns suggest that the incursion of C. rodgersii into 

Tasmanian waters was from the north, and that spread on the east coast of Tasmania 

propagated from an ‘epicentre’ in the vicinity of St Helens in the northeast. We suggest 

that the initial incursion was via larvae transported from NSW in the East Australian 

Current, which has increasingly influenced the east coast of Tasmania over at least the 

past 4-5 decades. The lack of any genetic differentiation among C. rodgersii populations 

in NSW, the Kent group and the east coast of Tasmania is consistent with this view. 

 

On the east coast of Tasmania, there is a clear negative relationship between the 

abundance of C. rodgersii and the density of commercially fished abalone (Haliotis 

rubra) and rock lobster (Jasus edwardsii). The density of abalone is significantly lower 
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on barrens habitat than in adjacent macroalgal beds at the same depth and on the same 

substratum type. We conclude that abalone and rock lobster are unlikely to occur in 

commercial quantity on C. rodgersii barrens. Given these findings, the spatially patchy 

distribution of existing extensive barrens, and particularly if existing incipient barrens 

(consisting of small barrens patches scattered through seaweed beds) develop to become 

extensive barrens, then a stronger focus on spatial management of fisheries on the east 

coast of Tasmania may be warranted. 

 

In Tasmanian waters, large continuous tracts of C. rodgersii barrens do not develop in 

shallow water (2-10 m) as occurs in NSW, but largely occur within a depth range of ca. 

10-20 m in the Kent group, and ca. 15-35 m on the east coast of Tasmania. Barrens 

habitat is more prevalent on boulder substratum than other types of consolidated reef, 

extending to cover >75% of the seafloor on this substratum at some sites, and averaging 

ca. 33% cover on boulder substratum across all sites in Tasmania where incipient barrens 

occur. Given these collective observations, and estimates that boulders comprise ca. 55% 

of consolidated reef in depths ≤18 m and 34% of consolidated reef to ca. 40 m depth, 

barrens habitat could potentially expand to account for ca. 50% of rocky reef on the east 

coast of Tasmania, as currently occurs in the Kent group and NSW. This scenario would 

have serious implications for abalone and rock lobster fisheries on this coast. However, 

the capacity to predict future patterns of barrens habitat requires better understanding of 

the mechanisms that initiate barrens formation and that determine the position and 

dynamics of boundaries between barrens and macroalgal-dominated habitat. Given these 

considerations, and evidence worldwide of the connection between fishing of sea urchin 

predators and formation of sea urchin barrens, we suggest that management intervention 

to limit the spread of C. rodgersii barrens in Tasmania is warranted. 



Establishment of the long-spined sea urchin in Tasmania.  Page … 4 

FRDC Final Report 

Acknowledgements 
 

In addition to support received from the FRDC, this work was supported by funding from 

the Tasmanian Abalone Council; and School of Zoology and Tasmanian Aquaculture and 

Fisheries Institute, University of Tasmania. We are grateful to David Stevenson, Robert 

Kilpatrick, Simon Talbot, Richard Holmes and several other volunteer divers who 

assisted with the field surveys; Craig Mundy, Regina Magierowski and Hugh Pederson 

who assisted with collections of C. rodgersii; Matt Francis and Jac Gibson of FRV 

Challenger for field support; Regina Magierowski, Chris Jarvis and Adam Smolenski 

who undertook the electrophoresis work; Hugh Pederson who assisted in processing C. 

rodgersii samples for ageing; Craig Blount who provided data and expertise to enable 

ageing sea urchins by ridges on their teeth; and to Jan Watson for providing her 

observations made on C. rodgersii in the Kent Group during the 1974 expedition. 

 



Establishment of the long-spined sea urchin in Tasmania.  Page … 5 

FRDC Final Report 

Background 
 

Range extensions of species raise important questions about the underlying mechanisms 

and the effect of the new species on the structure and dynamics of the receiving 

community (Davis et al. 1998). Moreover, understanding the mechanisms of range 

expansion and concomitant impacts on ecologies is important in assessing whether 

management responses are possible or desirable. Range extension may arise as a result of 

changes in the environment so that areas previously physically or ecologically unsuitable 

become habitable, or by changes in dispersal patterns, or both. Environmental change 

encompasses shifts in the physical environment, usually associated with climate change 

(Hughes 2000; Walther et al. 2002; Parmesan & Yohe 2003; Beaugrand 2004; 

Chevaldonné and Lejeusne 2004), and alteration of ecological dynamics through changes 

in patterns of competition and trophic interactions (Davis et al. 1998; Walther et al. 2002; 

Alheit and Niquen 2004). Changes in dispersal patterns include the far reaching effects of 

anthropogenically mediated dispersal, which is effecting unprecedented rates of global 

redistribution of marine species (Vitousek et al. 1997; Carlton and Geller 1993; Carlton 

1999; Bax et al. 2001). Whatever the facilitating mechanism, a crucial question is the 

impact of the ‘new’ species on the recipient community. This will depend on the strength 

of interactions with resident species, and on the specificity of habitat requirements of the 

newly establishing species.  

 

Because of their capacity to overgraze and trigger a shift from dense and diverse 

macroalgae beds to sea urchin ‘barrens’ habitat largely devoid of macroalgae, few 

organisms have had as much impact on shallow temperate reef systems worldwide as sea 

urchins (Lawrence 1975; Chapman and Johnson 1990; Jackson et al. 2001; Steneck et al. 

2002). Denuding reefs of macroalgae realises significant loss of physical structure with 

concomitant effects on biota (Tegner and Dayton 2000), and approximately a 100-fold 

reduction in rates of primary production (Chapman 1981) with flow on effects to 

secondary production (Duggins et al. 1989). The transition to urchin barrens is 

particularly problematic because, unlike other herbivores that overgraze, sea urchins are 

able to maintain populations on barrens (Johnson and Mann 1982) where they feed on 
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microalgae, non-geniculate coralline algae and occasional drift plants. It follows that 

range extensions of sea urchin species capable of forming barrens habitat can pose a 

potential threat to the integrity of reef communities within the new range. 

 

In Australia, no other sea urchin has as large a role in the ecology of shallow reef 

communities as the long-spined sea urchin (Centrostephanus rodgersii). In central and 

southern New South Wales this species maintains barrens habitat over ~50% of the area 

of shallow reef, which amounts to several thousand hectares (Andrew and O’Neill 2000). 

The important role of this sea urchin is demonstrated in removing C. rodgersii from 

barrens habitat, which results in rapid regeneration of macroalgae algae, but notably this 

requires removing virtually all animals and not just a portion of them (Andrew 1991; 

Andrew & Underwood 1993; Hill et al. 2003). The indirect effects of the grazing of C 

rodgersii ostensibly affect some commercial species since, over several spatial scales, 

there is a negative relationship between densities of the sea urchin and the commercially 

important abalone, Haliotis rubra (Shepherd 1973; Andrew & Underwood 1992; Andrew 

et al. 1998). 

 

Historically, C. rodgersii in Australia has been largely restricted to the coast of New 

South Wales, but in recent decades the range of this species has extended southwards. It 

was first recorded on the east coast of Tasmania in 1978 (Edgar 1997). The overall aim of 

the work reported here is to assess the potential threat of C. rodgersii to the integrity of 

shallow reef systems in eastern Tasmanian waters, and to the important abalone (Haliotis 

rubra) and rock lobster (Jasus edwardsii) fisheries that these reefs support. The 

Tasmanian abalone fishery, which supplies ca. 25% of the global market, has a landed 

annual value of ca. AUD $100 M, while the value of the rock lobster industry is ca. $50 

M annually (ABARE 2004). To achieve this broad goal we addressed several more 

specific aims: (1) to determine patterns in the establishment of C. rodgersii and formation 

of C. rodgersii barrens in the Kent group of islands in Bass Strait (the strait separating 

Tasmania from mainland Australia) and on the east coast of Tasmania; (2) to consider 

this information and patterns of genetic variation between populations in New South 

Wales, the Kent group and east coast of Tasmania to infer likely mechanisms 
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underpinning the southward extension of the species’ range; and (3) to examine the 

relationships between C. rodgersii density, and extent of C. rodgersii barrens, with 

habitat features (depth, substratum type and algal community composition), and with 

abundances of abalone and rock lobster.  

 

As a result of both accelerated climate change and anthropogenically mediated 

introductions, the range boundaries of marine species are increasingly labile and, as a 

result, the ecology of marine systems face unprecedented potential for change (Carlton 

and Geller 1993; Carlton 1999; Walther et al. 2002; Parmesan & Yohe 2003). This is the 

first work to report on the range extension of a temperate sea urchin and assess the 

ecological consequences of its incursion. 
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Need 
The impact of the long-spined sea urchin in forming extensive barrens habitat on shallow 

rocky reef in NSW, and the absence of abalone fisheries on urchin barrens in NSW is 

unequivocal. The establishment of this species and its commencement to form barrens 

habitat on the east coast of Tasmania is cause for concern for fisheries based on shallow 

reef systems. Thus, the work proposed here is crucial to assess whether the capacity of 

this species to destructively graze seaweeds in Tasmania parallels that observed in NSW. 

It is clearly evident from work on other systems that sea urchins may have dissimilar 

ecological roles and impacts in similar systems but in different regions (e.g. Foster 1990; 

Estes and Duggins 1995). 

 

The Tasmanian abalone and rock lobster industries are worth ca. AUD $100M and $50M 

p.a. respectively before processing (ABARE 2004). If the impact of this sea urchin on the 

east coast of Tasmania increases to the scale of that observed in NSW, then there is likely 

to be significant and negative impact on these industries and others based on shallow 

rocky reef systems. Under these circumstances, current management systems based on 

size and quota restrictions will not secure the sustainability of these fisheries on the east 

coast of Tasmania at their current levels. 

 

If the proposed work indicates that the potential for impact by the urchin is large, given 

that barrens formation in Tasmania may be at an early stage, it may be possible to 

elucidate and implement management actions to remedy the situation. This will require 

further research to identify the mechanism(s) triggering destructive grazing of seaweeds 

by the urchins. 
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Objectives 
1. Determine the distribution of C. rodgersii on the east coast of Tasmania. 

2. Determine the distribution of C. rodgersii barrens on the east coast of Tasmania. 

3. Compare the standing stock of black lip abalone (Haliotis rubra) and southern 

rock lobster (Jasus edwardsii) in barrens habitat with that in adjacent seaweed 

beds. 

 

 

Methods 
 

Genetics 

Allozyme electrophoresis was used to determine whether recent populations of 

Centrostephanus rodgersii in Tasmania displayed lower levels of genetic variation 

relative to mainland populations, as might be expected if Tasmanian populations arose 

from a single founder event and received little gene flow from other populations. Sixty 

animals were collected from each of Bass Pt, New South Wales (lat 34° 35' S, long 150° 

54' E; August 2000); south side of East Cove, Deal Is, Bass St. (lat 39° 28.4' S, long 147° 

18.4' E; June 2000), and Fortescue Bay, Tasmania (lat 43° 8.5' S, long 148° 0.0' E; 

October 2000 and April 2001).  Samples of gonad (free of other tissue) were excised 

from live animals, snap frozen in liquid nitrogen, and stored at –80 deg C. Frozen 

samples from Deal Is were held in liquid nitrogen for transport until transferred to the 

storage facility. Frozen samples from NSW were transferred by air on dry ice prior to 

storage at –80 deg C.  

 

An initial screening was undertaken on animals from Fortescue Bay and Bass Pt to 

identify enzyme systems suitable for further analysis.  Approximately 0.25 g of frozen 

gonad tissue was ground in an equal volume of deionised water, and the homogenate 

centrifuged at 4°C (Eppendorf 5417R) at 10,000 rpm for three minutes.  Aliquots (10 µl) 

of the supernatant from each sample were drawn off for electrophoresis on cellulose 
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acetate gels using two buffer systems (tris-glycine at 200V and 1.5 mA / plate, and tris-

citrate at 150V and 5 mA / plate).  

 

Samples were screened initially for 18 enzyme systems.  Enzymes were stained using 

histochemical staining as outlined in Herbert & Beaton (1999) and Richardson et al. 

(1986).  The enzyme systems tested were: aspartate amino transferase (AAT, EC 2.6.1.1), 

alcohol dehydrogenase (ADH, EC 1.1.1.1), aconitase (ACON, EC 4.2.1.3), adenylate 

kinase (AK, EC 2.7.4.4), arginine phosphokinase (APK, EC 2.7.3.3), fumerate hydratase 

(FUM, EC 4.2.1.2), glycerol-3-phosphate dehydrogenase (GPDH, EC 1.1.1.8), glucose-6-

dehydrogenase (G6DH, EC 1.1.1.49), hexokinase (HEX, EC 2.7.1.1), isocitrate 

dehydrogenase (IDH, EC 1.1.1.42), lactate dehydrogenase (LDH, EC1.1.1.27), malate 

dehydrogenase (MDH, EC 1.1.1.37), Malate dehydrogenase (ME, EC 1.1.1.40), mannose 

phosphate isomerase (MPI, EC 5.3.1.8), phosphoglucomutase (PGM, EC 2.7.5.1), 6-

phosphoglucanate dehydrogenase (6PGDH, EC 1.1.1.44), phosphoglucose isomerase 

(PGI, EC 5.3.1.9) and xanthine dehydrogenase (XDH, EC 1.2.1.37).   

 

Of the 18 enzyme systems assessed in the initial survey, five (ADH, AK, GPDH, LDH 

and 6PGDH) were eliminated from further investigations due to failure to produce 

detectable banding.  Of the remaining 13, seven (AAT, APK, IDH, MDH, MPI, PGM, 

PGI) provided clearly interpretable and consistently repeatable patterns.  Of these, three 

(APK, IDH, MDH) were monomorphic.  The remaining four enzyme systems (AAT, 

MPI, PGM, PGI) were selected for use in the primary study. 

 

MPI, PGM and PGI were all run in the tris-glycine buffer (pH 8.5) and provided one 

polymorphic locus each. AAT demonstrated two loci in the tris-citrate buffer system (pH 

7.0), but only one was consistently interpretable and polymorphic.  Electrophoretic runs 

using the tris-glycine buffer were carried out at room temperature over 30 minutes, while 

those using tris-citrate were run at 4 deg C for 65 minutes.  Protocols for cellulose acetate 

electrophoresis were after Richardson et al. (1986).  From each of the three collection 

sites, gonad tissue from 60 individual animals was analysed.  Each gel contained 

individuals from various sites, and several animals were analysed on several different 
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plates, to account for mobility variations among samples and sites. In scoring the gels, the 

most common allele at each locus in the Fortescue Bay samples was nominated as 100 

(100%).  All other alleles were scored according to their mobility relative to the dominant 

allele for each locus.  

 

To examine the genetic relationship between the Tasmanian, Kent Group and mainland 

populations of Centrostephanus rodgersii, allelic diversity and heterozygosity among the 

three sites was compared using BIOSYS (Swofford & Selander 1981). Populations 

recently established via a founder event are likely to exhibit both a reduced number of 

alleles as well as reduced levels of heterozygosity (heterozygote deficits) compared to 

long-established populations from within the main range. Each population was also tested 

for departures from the levels of heterozygosity expected for single-locus Hardy-

Weinberg equilibria using exact tests (Elston & Forthofer 1977), and Wright’s fixation 

index (f) used to determine the nature of any departures from Hardy-Weinberg 

equilibrium whereby positive values of f represent heterozygote deficits and negative 

values of f represent heterozygote excesses. 

 

The genetic relationship among sites was described by Nei’s Unbiased genetic distance 

(D), calculated using BIOSYS (Swofford & Selander 1981). The possibility of 

subdivision between the mainland and Tasmanian populations of C. rodgersii was also 

examined by calculating FST (as θ, Wier & Cockerham 1984). Mean FST  among sites (± 

SE) was calculated by jacknifing over loci, and departures from panmixis (i.e. FST = 0) 

were tested using the 95% confidence intervals of FST, calculated by bootstrapping over 

loci using the software package TFPGA (Miller 2000). 

 

Surveys of sea urchins and barrens habitat, Kent Group 

Surveys in 1974 and 1981 

Counts of echinoids in East Cove (Table 1) were undertaken in May 1974 and in March 

1981 by one of us (Shepherd).  The diver swam along three straight-line transects normal 

to the shore and along curved transects parallel to the shore at fixed depths of 5, 10 and 

15 m. On each transect normal to the shore, the diver swam down the slope to the 
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seaward edge of the reef and returned to shore along a parallel line displaced 5 m from 

the outward-line. The transects at constant depth were ca. 350 m in length. On each 

transect swim, the diver recorded the numbers of sea urchins (C. rodgersii and 

Heliocidaris erythrogramma) within 1 m of the line for each 2-minute interval of 

swimming time. The extent of sea-urchin barrens, sizes of algal patches within the 

barrens, and the boundaries of macroalgal patches of Macrocystis angustifolia, 

Phyllospora comosa and Ecklonia radiata-fucoid communities were measured and 

recorded. Data from timed swims were converted to estimates of density, using the 

calibration of diver swimming speed applied in abalone studies (Shepherd 1985). By this 

calibration, the diver swam 40 m and covered 40 m2  in each two minutes. Data were 

recorded on a map from which contours were constructed. Maps were then digitised and 

mean densities calculated by integrating within contour bands. Measures of variance were 

not calculated from contour maps since variances are entirely dependent on the size of 

nominal sampling units used to ‘sample’ the map. 

 

In both 1974 and 1981, qualitative observations of C. rodgersii were also recorded during 

spot dives at a range of sites at Deal Is, Dover Is and Erith Is (Table 1). On these dives, 

divers searched intensively for C. rodgersii along straight-line transects normal to the 

shore from shallow water (ca. 2 m) to the sand-edge of the reef.  

 

In these surveys, C. rodgersii barrens were recorded as Type I (under- and overstorey 

both removed) or Type II (understorey removed, but overstorey of Ecklonia radiata and 

large fucoids largely intact). 

 

In 1974 dives were in Murray Pass (to 50 m), Winter Cove (to 30 m) and Little Squally 

Cove (to 50 m) at Deal Is, and on the southern end of Erith Is (to 30 m). In 1981, spot 

dives were more extensive and undertaken at the northern side of East Cove, Garden 

Cove, Winter Cove, and Squally Cove at Deal Is, on the northern and southern sides of 

West Cove at Erith Is, and at sites on the NE and NW coasts of Dover Is (Table 1). 
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Surveys in 2000 

Quantitative surveys were undertaken on the southern and northern shores of East Cove, 

and in Winter Cove at Deal Island, and on the NE Coast of Dover Is in June 2000 (Table 

1). At each site, four belt transects were laid 50-150 m apart, normal to the shore and 

extending from ca. 3 m depth to the sand edge or to a maximum depth of 18 m. Divers 

worked to 1 m on each side of each transect, recording the percentage cover of different 

substratum types, percentage cover of algal species or guilds, percentage cover of C. 

rodgersii barrens, and counts of all sea urchins (C. rodgersii, H. erythrogramma), 

abalone (Haliotis rubra, H. laevigata) and rock lobsters (Jasus edwardsii) in consecutive 

5 m sections of transect. Most brown and green algae were identified to species, while 

understorey reds were treated as an assemblage. Algae recorded in the survey are listed in 

Appendix 1. 

 

The extent of C. rodgersii barrens was also recorded during spot dives commencing at ca. 

2 m depth at Little Squally Cove to 30 m, and on the northern side of West Cove to 14 m 

depth. Similar observations were made on a drift dive in Murray Pass between lat. 39° 

27.76’ S, long. 147° 18.74’ E and lat. 39° 28.02’ S, long: 147° 18.56’ E, in which divers 

moved between 2-30 m depth. 

 

The time series from 1974-2000 indicates that the occurrence of C. rodgersii in the Kent 

group had changed from the animal occurring sparsely within a restricted distribution to 

become the dominant invertebrate spread widely throughout the group. An important 

question is whether this pattern might arise from one or a small number of settlement 

events, or from a series of many recruitment events (from either closed or open 

recruitment). Because age distributions might throw some light on this question, a total of 

298 C. rodgersii were collected randomly from barrens habitat between 10-15 m on the 

south side of East Cove for ageing. Effort was made to search crevices to locate smaller 

non-emergent animals, but boulders were not moved in searching. On return to the 

surface, the test diameter of each animal was recorded, their jaws and lantern apparatus 

removed, labeled and frozen for further processing, and the gonads of 60 animals 

representing a large size range were excised and stored in liquid nitrogen for genetic 
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analysis (see above). Jaws were removed from lanterns, bleached for 24 h in a 4% 

solution of bleach, and then any organic tissue removed before drying. The total length of 

jaws were measured, and ridges on jaws counted under a dissecting microscope aided by 

strong side-illumination. Blount (NSW Fisheries, unpub. data) has validated that jaw 

ridges are a strong proxy for age. 

 

Surveys of sea urchins and barrens habitat, Tasmania east coast 

There were three broad components of this work, namely to ascertain the spatial extent of 

Centrostephanus rodgersii on the east coast of Tasmania, to estimate the cover of C. 

rodgersii barrens on the east coast, and to compare the standing stocks of abalone and 

lobsters inside and outside C. rodgersii barrens. 

 

Distribution of C. rodgersii populations 

The spatial distribution of Centrostephanus rodgersii on the east coast of Tasmania was 

estimated using a spatially hierarchical sampling design based on 13 primary sites 

between Eddystone Point and Recherche Bay on the east coast (Fig. 6). Primary sites 

were separated by ca. 25-30 km along the linear coastline (i.e. ignoring embayments and 

estuaries). Within each primary site there were three sub-sites (ca. 0.3-0.5 km apart), and 

within each subsite four belt transects were surveyed by divers. Belt transects were set 

perpendicular to the shore, extending from ca. 3 m depth to a maximum depth of 18 m or 

a maximum total length of 100 m if the maximum seaward depth was less than 18 m.  

Because reef topography varied among sites, sub-sites and individual transects within 

sub-sites, the surveyed length of each transect was variable. On each transect line, a pair 

of divers worked to 1 m each side of the line, and for each 5 m section of the transect 

recorded depth; percentage cover of substratum types; percentage cover C. rodgersii 

barrens habitat; abundance of sea urchins (C. rodgersii and H. erythrogramma), rock 

lobster (J. edwardsii) and abalone (H. rubra); and the percentage cover of algal species or 

guilds.  Algal cover was estimated to the nearest 5 % for each 5 x 1 m section, while 

species occupying less than 5 % cover were recorded as being present. Species of red 

algae were recorded as a single guild, as were filamentous brown and green algae. Our 
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grouping of Zonaria spp. comprised Z. tuneria, Z. spiralis, Z. angustata, and 

Homeostrichus olsenii. Species recorded in the survey are listed in Appendix 1. 

 

Habitat classified as C. rodgersii barrens was characterised as largely lacking foliose 

macroalgae and obviously supporting locally abundant C. rodgersii individuals. Areas of 

grazed substratum could be discerned unambiguously. The substratum was classified 

either as flat rock shelves (>5 m effective diameter; the presence of cracks or crevices 

was noted), very large boulders (>2.5 m and < 5 m diameter), large boulders (>1 m and 

<2.5 m diameter), small boulders (>0.2 m and <1 m diameter), cobble (>0.1 m and < 0.20 

m diameter), pebble (>0.01 m and < 0.10 m diameter), gravel (< 0.01 diameter), or sand.   

 

Further information on the distribution of C. rodgersii in Tasmania was obtained in 

partnership with the community group SeaCare Australia, which conducted a survey of 

‘sightings’ among recreational, commercial and scientific divers. Divers were provided 

with a clear description and diagram of C. rodgersii to enable unambiguous 

identification, and with a data sheet on which to record their observations, which included 

estimates of abundance, habitat type, substratum type, depth and location. Most sightings 

in new areas have been confirmed by experienced scientific divers from the Tasmanian 

Aquaculture and Fisheries Institute. 

 

Distribution of C. rodgersii barrens 

The spatial extent of C. rodgersii ‘barrens’ was estimated by surveying rocky reef with a 

towed underwater video system.  Sampling using video transects was performed at the 

same sites and sub-sites as for the diver-based surveys (see previous section). Two video 

transects normal to the shore and two transects parallel with the shore were conducted at 

each subsite. The perpendicular transects covered depths from 1 to 45 m, while parallel 

transects were within a depth range of 15 to 20 m. In most cases, perpendicular tows 

spanned the width of reef from the shore to the reef fringe/sand edge.  Parallel tows were 

conducted for 20-30 minutes or approximately 1 km in length (straight-line distance from 

tow start point), but tow speed varied depending on weather conditions and reef 
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topography. Thus, at each site, ca. 6-7 km of inshore rocky reef was surveyed for barren 

habitat using this method, with the entire survey covering > 80 km of reef.   

 

The video camera system was a scaled down version of the system developed by Barker 

et al. (1999). The camera was mounted inside a positively buoyant protective cage with 

an attached chain to provide stability and ensure that the camera and frame floated 1-2 m 

above the sea floor. This system enabled towing the camera across rocky reef with rough 

topographic relief so that the camera remained a similar distance off the sea floor 

regardless of depth, providing a field of view ca. 3-4 m wide depending on surge and 

topography.  The camera system was linked to (1) an onboard video recorder to capture 

the image, date, time, position and depth; (2) a real time monitor; and (3) computer which 

logged the depth under the boat (from an electronic depth sounder) and position (from a 

GPS) of the vessel at 4 s intervals, and comments input by the operator.  Note that data on 

depth and position related to the boat, while the camera was on a tow line 40-55 m behind 

the boat.  In the laboratory, the video footage was examined in detail to classify habitat 

types, which was recorded against the logged data. In this way, the total distance of each 

video transect tow, and the proportion of each transect that was classified as C. rodgersii 

barrens and other habitat types was estimated from the logged GPS coordinates. In the 

event of poor GPS signals (e.g. at base of large cliffs), position was back-calculated by 

interpolating between fixes determined from good satellite coverage. 

 

Substratum types were resolved as either ‘unclassified reef ‘ if the substratum type was 

unclear (usually where macroalgal cover prevented a clear view of the substratum) or, 

where the substratum could be discerned, ‘flat rock’ with little apparent relief, ‘boulder 

reef’, ‘cobble’, ‘gravel’, ‘pebble’, or ‘sand’. Habitat types denoted either C. rodgersii 

barrens, or habitat dominated by particular canopy-forming species. 

 

Habitat was classified as sea urchin barrens when the understorey was completely 

denuded, and the overstorey occupied <15% cover. We recognized four categories of sea 

urchin barrens habitat: Type 1 barrens denotes continuous barrens habitat in the camera 

field of view for > 10 m, while the other 3 categories are different types of ‘patchy’ 
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incipient barrens, where a patch was defined as a section of reef that was not 

continuously barren for 10 m. Type 2 barrens was defined as patchy barren where barrens 

covered > 40% of the bottom; Type 3 barrens defined patchy barrens in which barrens 

occupied between 20 - 40% cover; while Type 4 barrens referred to patchy barren where 

barren cover was < 20% cover.  

 

Effect of C. rodgersii barrens on standing stocks of abalone and rock-lobster 

Abalone (H. rubra) and rock-lobster (J. edwardsii) populations were compared on C. 

rodgersii barren and in adjacent algal-dominated habitat at the same depth and on the 

same substratum type at three sites (Elephant Rock, 41° 15.30’ S, 148° 20.37’ E; St 

Helens Is, 41° 20.95’ S, 148° 20.15’ E; Mistaken Cape, 42° 38.86’ S, 148° 9.70’ E). At 

Elephant Rock and St Helens Is, the barrens are extensive and well established Type 1 

barrens, while at Mistaken Cape the barrens in 8-14 m are incipient Type 4 barrens, 

comprising small barren patches in the algal bed. Note that while there are extensive 

barrens in deeper water (>18 m) at Mistaken Cape, at these depths working time is 

limited and it was difficult to locate intact macroalgal beds on equivalent substrata. 

Sampling involved four 50 x 2 m belt transects set within the 15 – 18 m depth strata in 

each habitat type at each site.  The belt transects were surveyed by divers as outlined 

above.  

 

Analyses 

Because rocky reef was the habitat of interest, non-reef substratum (i.e. sand cover) was 

factored out of all analyses. To avoid bias from different lengths of transects or sections 

of transects (e.g. within depth or substratum categories), means are weighted accordingly.  

 

All univariate statistical analyses were undertaken using the SAS® software (v. 6.12) with 

the exception of quantile regressions which were performed using the ‘R’ statistical 

package. For ANOVAs, data were checked for conformity to assumptions of 

homoscedasticity and normality. Where data were heteroscedastic, the transformation to 

stabilise variances was determined by the relationship between group standard deviations 

and means (Draper & Smith 1981). Transformations are expressed in terms of the 
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untransformed variate Y. Multiple range tests were conducting using the Ryan-Einot-

Gabriel-Welsch (REGW) procedure.  

 

Patterns in the distribution of C. rodgersii on the east coast were analysed using a nested 

analysis of variance (ANOVA), with factors of site and subsite-nested-within-site, and 

the dependent variable describing mean density (individuals m-2) on replicate transects. 

The cover of barrens habitat was analysed in the same way, with the dependent variable 

describing the percentage of each transect that was C. rodgersii barrens. 

 

In analysing the significance of differences in any dependent variable among depths, it is 

necessary to recognise that different depths within the same transect are not independent. 

Accordingly, we analysed these data using split plot designs. Thus, in analysing data 

from the Kent group where replicate diver transects were taken at several sites, the 

ANOVA model comprised main effects of Site and Depth, a nested effect of Transect-

within-Site, and interactions of D*S and D*T(S), with corresponding error mean squares 

as MST(S), MSS*D, MSwithin-cells, MSD*T(S), and MSwithin-cells respectively. For the main 

survey on the east coast of Tasmania the design was more complex because there were 3 

subsites (abbreviated SS) within each site. In this case the appropriate model recognised 

main effects of S and D, nested effects of SS(S) and T(SS), and interactions D*S, 

D*SS(S) and D*T(SS), with corresponding error mean squares MSSS(S), MSD*S,  MST(SS), 

MSwithin-cells error, MSD*SS(S), MSD*T(SS) and MSwithin-cells respectively. 

 

Comparisons across different substratum types could adopt a similar approach to the 

analysis of the effects of depth because measures made on different substratum types 

within transects are also strictly not independent. However, because some substrata were 

not represented on particular transects, the analysis was simplified to treat mean values 

(of the dependent variables associated with particular substrata) across all transects within 

a subsite as the base level of replication. Thus, because subsites are treated as the 

replicates, only differences among sites and substratum types were considered in these 

analyses. In examining the effects of substratum type on independent variables we 

included in the analysis only those 5*2 m ‘plots’ on each transect that were dominated by 
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a particular substratum type. A dominant substratum was defined arbitrarily as that 

occupying >60% of the plot. Note that we obtained qualitatively identical results in other 

analyses (not presented here) based on data derived by defining the dominant substratum 

as >70% and >80% of each 5*2 m area. 

 

Multivariate analyses were based on the PRIMER 5 (v. 5.2.9) software (Clarke & 

Warwick 2001), and used the nMDS, ANOSIM, BIOENV, RELATE and SIMPER 

routines (details are provided in the results section). Algal community data were analysed 

by generating a multivariate vector of the mean percentage cover of each species for each 

subsite.  
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Results 

 
Long-term changes in Centrostephanus rodgersii populations in the Kent Group, 

Bass St. 1974-2000 

Space-time patterns in sea urchin abundance 

In 1974 the distribution of C. rodgersii in the Kent Group was limited. It was recorded 

only on the eastern side of Murray Pass but not at two other sites on the western side of 

Murray Pass, or at sites elsewhere on the eastern (Winter Cove), southern (Squally Cove) 

and western (Little Squally Cove) sides of Deal Is (Table 1). There was evidence of the 

initial stages of development of barrens habitat on the south side of East Cove, with 

destructive grazing of small patches of understorey (Table 2). By 1981, the overall 

density of C. rodgersii at this site had not changed (Table 1), although the animals were 

more aggregated and largely restricted to depths > 10 m where most of the reef was 

devoid of macroalgae (Table 2). This pattern in the depth distribution of the sea urchins 

and associated barrens habitat at East Cove was similar in 2000 (Table 2), and reflected 

the distribution of C. rodgersii and barrens at other sites (Figs. 1a,c). 

 

In 1981, there was still no evidence that C. rodgersii occurred at Erith Is on the western 

side of Murray Pass, although it was recorded in Murray Pass at Dover Is, where patchy 

barrens were already evident (Table 1). In 1981 the distribution around Deal Is was 

patchy, since no animals were found on the northern side of East Cove or in Squally 

Cove, while the urchin was recorded at Garden Cove and at Winter Cover, and patchy 

barrens were evident at the latter site between 10-15 m (Tables 1,2). 

 

By 1993, C. rodgersii was recorded at 8 of 9 sites in the Kent Group (Table 1; data from 

Barrett & Edgar 1993). In 2000 this species was clearly the dominant invertebrate at all 7 

sites visited, and C. rodgersii barrens were virtually continuous between ca. 10-18 m 

depth at most sites, while patchy barrens were evident between 5-10 m (Table 1, Fig. 

1a,c). Macroalgae recorded on ‘continuous’ barrens were largely restricted to the top 

surfaces of large boulders whose topographic relief extended above the local seafloor 
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level. Notably, by 2000 a wide variety of ages was represented in the population, 

although the shape of the estimated age-frequency curve indicates that significant 

recruitment may be sporadic (Fig. 2). 
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Figure 1. Mean density (±SE) of C. rodgersii and H. erythrogramma and percentage 
cover of sea urchin barrens at all sites surveyed in the Kent Group in 2000, by 
depth. DI = Dover Is; ECS = East Cove south; ECN = East Cove north; WC = 
Winter Cove. 
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Table 1. Abundance of C. rodgersii 1974-2000 in the Kent Group, Bass St.  

 
Site Location Abundance of C. rodgersii 

  1974 1981 19931 2000 
Erith Is 
  Barrett #9 
 
  Barrett #10 
 
  Barrett #1 
 
  Barrett #12 
 
  West Cove (N) 
 
  West Cove (S) 
 
   SE Corner 
 
 
Dover Is 
  NE 
 
 
  NW 
 
Deal Is 
  East Cove (N) 
 
  East Cove (S) 
 
 
  Murray Pass (NE) 
 
  Garden Cove 
 
  Barrett #3 
 
  Winter Cove 
 
 
  Squally Cove 
 
 
 
  Little Squally 
       Cove 
 

 
Lat 39° 26.70’ S 
Long 147° 16.56’ E 
Lat 39° 26.78’ S 
Long 147° 17.57’ E 
Lat 39° 26.53’ S 
Long 147° 17.74’ E 
Lat 39° 26.97’ S 
Long 147° 17.97’ E 
Lat 39° 27.33’ S 
Long 147° 18.17’ E 
Lat 39° 27.60’ S 
Long 147° 17.96’ E 
Lat 39° 27.72’ S 
Long 147° 17.96’ E 
 
 
Lat 39° 27.91’ S 
Long 147° 17.74’ E 
 
Lat 39° 27.85’ S 
Long 147° 17.17’ E 
 
Lat 39° 28.14’ S 
Long 147° 18.57’ E 
Lat 39° 28.37’ S 
Long 147° 18.55’ E 
 
Lat 39° 27.91’ S 
Long 147° 18.62’ E 
Lat 39° 27.08’ S 
Long 147° 19.75’ E 
Lat 39° 27.69’ S 
Long 147° 20.72’ E  
Lat 39° 28.52’ S 
Long 147° 21.20’ E 
 
Lat 39° 29.36’ S 
Long 147° 20.38’ E 
Lat 39° 29.60’ S 
Long 147° 20.56’ E 
Lat 39° 29.00’ S 
Long 147° 18.44’ E 

 
ns 
 

ns 
 

ns 
 

ns 
 

0 
 

ns 
 

0  
 
 
 

ns 
 
 

ns 
 
 

ns 
 

0.054 m-2 
PB TII (10-12 m) 

 
R, NB (8-20 m) 

 
ns 
 

ns 
 

0  
 
 

0 
 

ns 
 

0  
 
 

 
ns 
 

ns 
 

ns 
 

ns 
 
0 
 
0 
 

ns 
 
 
 

PB TI 
 
 

R, NB (18-25 m) 
 
 
0  
 

0.055 m-2 
EB TI (10-15 m) 

 
ns 
 

P, NB (12-20 m) 
 

ns 
 

PB TII (10-15 m) 
 
 
0 
 

ns 
 

ns 
 

 

 
0  
 

0.14 m-2 
 

0.035 m-2 
 

0.215 m-2 
 

ns 
 

ns 
 

ns 
 
 
 

0.87 m-2 
 
 

ns 
 
 

0.34 m-2 
 

ns 
 
 

0.21 m-2 
 

ns 
 

0.13 m-2 
 
0 
 
 

ns 
 

1.99 m-2 
 

ns 
 

 

 
ns 
 

ns 
 

ns 
 

ns 
 

PB TI (7-10 m) 
EB TI (10-15 m) 

ns 
 

0 
 
 
 

0.646 m-2 
PB TI (6-8 m) 

EB TI (8-14 m) 
ns 
 
 

0.526 m-2 
 

0.257 m-2 
PB TI (6-11 m) 
EB TI (11-14m) 
PB TI (6-10 m) 
EB TI (10-18m) 

ns 
 

ns 
 

0.678 m-2 
PB TI (3-10 m) 

EB TI (10-18 m) 
ns 
 

ns 
 

0 (2-9m) 
PB TI (9-17 m) 

EB TI (17-21 m) 
PB TI (21-28m) 
P NB (28-32 m) 

 
 
Notes: 1These data are from Barrett & Edgar (1993) who conducted surveys at 5 m depth (these data are 
presented to provide a more complete time course, and because of the obscurity of the original report). 
TI=Type I barrens (devoid of under- and overstorey macroalgae); TII = Type II barrens (barren understorey 
but overstorey largely intact). C. rodgersii abundance codes: 0 = no animals observed and no barrens, R = 
rare, P = present, NB = no barrens, PB = patchy barrens, EB = extensive barrens. Numbers without 
parentheses refer to densities (no. m-2); numbers in parentheses, e.g. (10-15 m), refer to depths. ns = not 
surveyed. 
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Table 2. Mean densities of C. rodgersii (C. ro), H. erythrogramma (H. er) and 
percentage cover of sea urchins barrens by depth, at East Cove (south), Deal Is., 
1974-1981. Barrens are distinguished as TI (understorey and overstorey both 
absent) and TII (understorey absent but canopy present) in 1974 and 1981, but 
only TI barrens were recorded in 2000. 1Area surveyed represents the entire area 
of the contour map, but 100% of this area was not searched. 2Area surveyed 
represents total area of belt transects in which 100% of the area was searched. 

 
 1974 1981 2000 
Depth 
(m) 

1Area 
(m2) 

C. ro 
# m-2 

H. er 
# m-2 

TI 
% 

TII 
% 

1Area 
(m2) 

C. ro 
# m-2 

H. er 
# m-2 

TI 
% 

TII 
% 

Depth 
(m) 

2Area 
(m2) 

C. ro 
# m-2 

H. er 
# m-2 

TI 
% 

 
0-10 
 
10-15 
 
>15 

 
48423 
 
25201 
 
4960 

 
0.04 
 
0.09 
 
0.00 

 
0.51 
 
0.90 
 
0.54 

 
0 
 
0 
 
0 

 
0.1 
 
9.5 
 
0 

 
53576 
 
27397 
 
3606 

 
0.01 
 
0.15 
 
0.13 

 
0.57 
 
1.02 
 
0.84 

 
2.5 
 
75.9 
 
88.8 

 
0 
 
17.0 
 
11.5 

 
3-6 
6-9 
9-12 
12-15 
15-18 

 
110 
180 
140 
70 
30 

 
0.10 
0.23 
0.18 
0.66 
0.37 

 
0.79 
3.01 
2.31 
1.76 
1.40 

 
0.90 
14.40 
26.25 
50.36 
40.00 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Age-frequency plot for C. rodgersii at East Cove, Kent group, June 2000. N = 
298. Age is estimated from ridge lines on jaws, a technique validated by C. 
Blount, unpub. data.  

 

The pattern of spatial variation in the distribution of both species of sea urchins and 

barrens habitat was broadly similar in that all showed significant differences among 

transects within sites depending on depth, or alternatively, differences among depths 

depending on the transect (Table 3). At a larger spatial scale, the pattern across depth 

ranges in the distribution of each species and of sea urchin barrens was broadly similar 

across the different sites (Table 3, Fig. 1). However, the pattern of depth distribution of 
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the two sea urchins were distinctly different. At sites where it was most abundant, H. 

erythrogramma was most abundant between 6-12 m, while C. rodgersii and barrens 

habitat were most abundant at deeper depths (9-15 m) (Fig.1). Not surprisingly then, the 

relationship between C. rodgersii and H. erythrogramma was negative at a scale of 10 m2 

among sites of high local abundance (Fig. 3a), and there was a clear positive relationship 

between C. rodgersii density and the extent of barrens habitat (Fig. 3b), but not between 

H. erythrogramma density and the extent of barrens (Fig. 3c). 

 

 

 

 

Table 3. Significance of spatial variation in the density of C. rodgersii and H. 
erythrogramma, and in the percentage cover of barrens habitat, in the Kent 
Group, Bass St., from surveys conducted in 2000. Significant effects at α=0.05 
are in bold. Abbreviations are D=depth; S=site; T= transect; parentheses 
indicate nested effect. P values of 0.0001 indicate probabilities < 0.0001. 

 

Variable → 

 

 

Transformation → 

  Centrostephanus 

rodgersii 

 

√Y 

Heliocidaris 

erythrogramma 

 

log(Y + 0.01) 

% cover of 

barrens 

 

no transformation 

Source Error 

Term 

d.f.  

F 

 

P 

 

F 

 

P 

 

F 

 

P 

Site 

Transect(Site) 

Depth 

Depth*Site 

Depth*Transect(Site) 

T(S) 

Error 

D*S 

D*S(T) 

error 

3,12 

12,309 

4,12 

12,31 

31,309 

1.14 

9.53 

3.68 

1.33 

3.89 

0.371 

0.0001 

0.035 

0.250 

0.0001 

1.09 

6.95 

5.67 

0.99 

2.76 

0.390 

0.0001 

0.008 

0.481 

0.0001 

0.23 

7.45 

5.01 

1.12 

5.40 

0.876 

0.0001 

0.013 

0.378 

0.0001 
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Figure 3. Relationships between (a) the abundance of H. erythrogramma and C. 

rodgersii, (b) cover of barrens habitat and C. rodgersii, and (c) cover of barrens 
habitat and H. erythrogramma across all sites and depths surveyed in the Kent 
Group in 2000, at a scale of 10 m2. 

 

 

Relationship between C. rodgersii and algal community composition 

MDS analysis did not reveal strong patterns in the algal community across depths and 

sites (Figs. 4a,b). The broad pattern from the MDS showed overlap in algal community 

composition in 10 m2 areas across all depth classes, but also showed that variability in the 

algal community increased with depth (Fig. 4a). There was no evidence of distinct 

differences in algal community composition among sites (Fig. 4b). 

 

In recognizing that the algal assemblage is potentially influenced by both depth and C. 

rodgersii grazing, we conducted RELATE and BIOENV analyses to examine correlations 

between the algae and these two variables (excluding 10 m2 areas >90% barrens). The 
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correlation between C. rodgersii density and overall algal community structure across 

depths and transects was poor (Fig. 4c) and not significantly different from zero 

(PRIMER RELATE procedure, ρ=0.006, P=0.441, 4999 permutations, algae based on 

Bray Curtis similarity, square-root transformation; C. rodgersii based on Euclidean 

distance, square-root transformation). In terms of single species, patterns among depth-

transect combinations in the combined effects of depth and C. rodgersii density were 

most closely correlated with patterns in Phyllospora comosa and Sargassum 

heteromorphum, although the correlations were low (BIOENV, Spearman correlation = 

0.16 for both species). P. comosa was the only species selected in each of the 10 ‘best’ 

correlations of combinations of 5 algae with C. rodgersii density and depth. P. comosa 

was largely restricted to shallow depths (mean cover = 37.1%±9.5 SE and 14.8%±5.9 SE 

at depths 3-6 and 6-9 m respectively; <1.5% cover at all other depths), as was S. 

heteromorphum, although the latter species was not a prominent member of the flora 

(maximum cover was 1.7%±0.6 SE at 6-9 m). P. comosa was identified in the SIMPER 

analysis as one of the species that typify the macroalgal assemblage at 3-6 m, and was the 

most important species to distinguish algal communities at 3-6 m depth from those in all 

other depth ranges measured (Table 4). While not all shallow sites supported P. comosa, 

the association of this species with shallow water is clearly evident (Fig. 5a). Given low 

densities of C. rodgersii in shallow water (Fig. 1a), it is not surprising that the 

relationship between P. comosa and C. rodgersii density is a marked step function (Fig. 

5a), while upper surfaces of relationships between the other abundant species of large 

brown algae and C. rodgersii density are more continuous (Fig. 5b-d). Other than P. 

comosa, the species Cystophora monilifera, Xiphophora chondrophylla and Sargassum 

verruculosum were most important in distinguishing between algal communities at 

different depths (Table 4). 
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Figure 4. MDS plot based on mean 
macroalgal community 
composition on rocky reef 
habitat in each depth stratum 
at each transect and site, Kent 
Group 2000 (4th root 
transformation, Bray Curtis 
dissimilarity; stress = 0.21). 
(a) MDS indicating sites (+ = 
NE Dover Is.; n = East Cove 
(north); o = East Cove (south); 
p = Winter Cove); (b) MDS 
indicating depths (1 = 3-6 m;  
2 = 6-9 m;  3 = 9-12 m; 4 =12-
15 m; 5 = 15-18 m); (c)  MDS 
indicating depths (as above) 
superimposed with a bubble 
plot representing percentage 
cover of  C. rodgersii barrens. 
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Table 4. Results of SIMPER analysis comparing algal community composition on rocky 
substratum among depths (Kent Group, 2000). The diagonal gives the % 
contribution of species to the average Bray Curtis similarity (4th root 
transformation) within groups, and the mean % cover of identified species (in 
parentheses), for each depth class. The off-diagonal shows the % contribution of 
species to the average dissimilarity between groups. Only algae contributing 
>10% of total similarity or >7% dissimilarity, or where the ratio of 
mean:standard deviation ≥1.4 for similarities or dissimilarities (indicated by *), 
are included. For similarities within groups, ratios of mean:SD ≥1.4 identifies 
species ‘typical’ of particular depth classes. For dissimilarities between groups, 
ratios ≥1.4 identify algae that best discriminate between two depth classes. Data 
are based on mean % cover of algae within transects.  ‘% cont.’ = percentage 
contribution; (% cov.) = percentage cover. E. radiata = Ecklonia radiata; P. 
comosa = Phyllospora comosa; X. chondro. = Xiphophora chondrophylla; S. 
verrucul. = Sargassum verruculosum; C. monilifera = Cystophora monilifera; C. 
moniliformis = Cystophora moniliformis; C. obscura = Caulerpa obscura. 

 
  Depth Class (m) 
Depth 3-6 6-9 9-12 12-15 15-18 

Class   % cont. % cont. % cont.  % cont. % cont.

(m)   (% cov.)   (% cov.)   (% cov.)   (% cov.)   (% cov.)

3-6 E. radiata * 24.6% P. comosa 10.7% P. comosa * 12.6% P. comosa * 13.8% P. comosa * 12.9% 

    (16.2%) S. verrucul. * 8.6% S. verrucul. 7.3% E. radiata 7.1% X. chondro. *  6.8% 

  P. comosa 20.5%             

    (37.1%)             

  C. monilifera 10.9%             

    (5.9%)             

 X. chondro. 10.4%             

    (4.9%)                 

6-9     E. radiata * 23.0% P. comosa 8.4% P. comosa 8.5% C. monilifera * 8.1% 

        (12.9%) S. verrucul. 7.3% C. monilifera * 6.5% S. verrucul. 7.7% 

      C. monilifera * 15.9%    X. chondro * 6.0% P. comosa 7.7% 

        (7.9%)       X. chondro. * 6.7%  

      S. verrucul. 12.8%          

        (14.1%)          

     X. chondro. * 12.7%          

        (3.1%)             

9-12       E. radiata 19.8% E. radiata 7.4% C. monilifera * 7.8% 

          (8.1%) S. verrucul. 7.1% E. radiata 7.6% 

        C. monilifera * 18.3%    C. obscura 7.1% 
          (6.7%)    S. verrucul. 7.0% 

        S. verrucul. 12.5%       

          (7.5%)       

        C. moniliformis 10.6%       

            (3.0%)         

(continued …) 
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Table 4 (continued) 

  Depth Class (m) 
Depth 12-15 15-18 

Class  % cont. % cont. 

(m)   (% cov.)   (% cov.)

12-15 S. verrucul. 22.3% E. radiata 9.5% 

    (3.5%) C. obscura 8.8% 

  E. radiata 21.8% C. moniliformis 7.3% 

    (9.5%) S. verrucul. 7.3% 

  C. monilifera 13.5%    

    (1.7%)     

15-18    E. radiata 29.5% 
       (15.6%)

     C. obscura 19.1% 

       (8.2%) 

     reds 10.5% 

        (4.3%) 
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Figure 5. Relationship between cover of abundant canopy-forming brown algae and 

density of Centrostephanus rodgersii on rocky substrata, Kent Group 2000. 
Algae are (a) Phyllospora comosa, (b) Sargassum heteromorphum, (c) 
Ecklonia radiata, and (d) Sargassum verruculosum. Single species P. comosa 
and S. heteromorphum best correlate with depth and the extent of C. rodgersii 
barrens; abundances of P. comosa, E. radiata and S. verruculosum were most 
important in distinguishing algal community structure among depths. Labels on 
points refer to depth classes: 1 = 3-6 m, 2 = 6-9 m, 3 = 9-12 m, 4 = 12-15 m, 5 
= 15-18 m, 6 = >18 m. 
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Distribution of C. rodgersii on the east coast of Tasmania  

Distribution across sites 

Diver surveys recorded C. rodgersii at all sites between Eddystone Pt (site 1) and SW 

Tasman Peninsula (site 10) (Figs. 6a,b), although only a single specimen was recorded at 

the latter site. While C. rodgersii was not observed on transects at Bruny Is or further 

south, it was recorded by other divers (through the SeaCare survey, confirmed by 

scientific or abalone divers) as far south as Recherche Bay (Fig. 6b). Highest abundances 

were recorded at St Helens, with a trend of declining abundances southward. However, 

densities are highly variable across a range of spatial scales. Considering only those sites 

where >1 sea urchins were recorded in our survey (i.e. sites 1-9 between Eddystone Pt 

and Fortescue Bay respectively), there is significant variability in sea urchin density 

among sites (nested model II ANOVA, transformation = Y0.159, F8,18 = 4.674, P = 0.003), 

but not among subsites within sites (F18,81 = 1.596, P = 0.081). In this analysis, a greater 

amount (29.8%) of the total variance was attributable to variation among sites (~104 m) 

than among subsites (9.1% of total variance; ~103 m), while variation among transects 

within subsites (~102 m) accounted for most (61.1%) of the total variance.  

 

Distribution across depths 

Pooling across sites (and therefore subsites) where C. rodgersii was recorded at >1 m-2 

(i.e. sites 1-9), the urchin was most abundant at depths >9 m over the depth range 

considered in the diving surveys (0-18 m) (Fig. 7a). This trend is significant (1-way 

model I ANOVA, transformation = ln(Y+0.001), F4,111 = 2.63, P = 0.038), despite the 

high standard errors which reflect considerable variations in the density of C. rodgersii 

among sites and subsites (Appendix 2). The analysis by pooling is valid since there is no 

evidence of a depth*site interaction (split plot Model III ANOVA; transformation = 

ln(Y+0.01); depth*site, error = depth*subsite-within-site: F24,46= 1.03, P = 0.45), or 

depth*subsite-within-site interaction (depth*site-within-subsite, error = 

transect*depth*subsite-within-site: F46,109= 1.03, P = 0.45), despite significant differences 

in urchin abundance across sites (site, error = subsites-withn-site: F8,18= 2.69, P = 0.038) 

and subsites (subsite, error = transects-within-subsite: F18,81= 2.07, P = 0.014). 
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Distribution by substratum type 

Pooling across depths and sites, there was a significant (1-way model I ANOVA, 

transformation = ln(Y+0.001), F3,74 = 4.84, P = 0.004) trend of higher densities of C. 

rodgersii on large (>1 m and <2.5 m diameter) and very large (>2.5 m and < 5 m 

diameter) boulders than on other substratum types (Fig. 7b). Despite large differences 

among sites in the overall density of C. rodgersii (Appendix 3), the pattern of utilisation 

of substratum types was consistent across sites (2-way Model II ANOVA; transformation 

= ln(Y+0.001); substratum-type*site interaction, F23,43= 1.17, P = 0.324; substratum-type, 

F3,23= 5.03, P = 0.008; site, F8,73= 3.87, P = 0.002). No C. rodgersii were encountered in 

5*1 m plots in which cobble, pebble, gravel or sand substrata were the dominant 

substratum. 

 

Relationship between C. rodgersii and algal community composition  

Across those sites where C. rodgersii was detected (Sites 1-9), the pattern of similarity 

among all transect-depth combinations in algal community structure correlated 

significantly with the pattern of similarity determined from C. rodgersii density 

(PRIMER RELATE procedure, 999 permutations, Spearman correlation, ρ=0.084, 

P=0.008; algae based on Bray Curtis similarity, square root transformation; C. rodgersii 

based on Euclidean distance, square root transformation). Notably, across sites where C. 

rodgersii was detected, patterns in algal community structure among transect-depth 

combinations were more strongly correlated with depth (PRIMER BIOENV, Spearman 

correlation = 0.26; algae based on Bray Curtis similarity, square root transformation; 

depth based on Euclidean distance, no transformation) than with C. rodgersii density 

(PRIMER BIOENV, Spearman correlation = 0.09; algae based on Bray Curtis similarity, 

square root transformation; C. rodgersii based on Euclidean distance, square root 

transformation). For the principal canopy-forming species, the relationship between C. 

rodgersii density and cover of Ecklonia radiata and Phyllospora comosa was poor, while 

the presence of the sea urchin was mutually exclusive of any significant cover of 

Durvillaea potatorum and Carpoglossum confluens (Fig. 8).  
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Considering all 13 sites, the correlation between the pattern of similarity in algal 

community structure among transect-depth combinations and the pattern of similarity 

based on depth alone was also highly significant (RELATE procedure, 4999 

permutations, Spearman correlation, ρ=0.186, P=0.0002; algae based on Bray Curtis 

similarity, square root transformation; depth based on Euclidean distance, no 

transformation). Despite this, correlations between the pattern of similarity among 

transect-depth combinations described by depth and patterns of similarity based on 

particular algae or combinations of algae were low. BIOENV analyses showed that the 

highest Spearman rank correlation with depth for individual species was only 0.16 for 

Ecklonia radiata and Carpomitra costata, and 0.13 for Caulerpa flexilis (see also Fig. 9). 

For combinations of 4 and 5 species of algae, E. radiata, Lessonia corrugata and 

Durvillaea potatorum were the three species that were consistently represented in the 10 

highest correlations with depth (the highest Spearman rank correlation for combinations 

of five species with depth was 0.265; see Fig. 8). Unlike the case for the Kent group, the 

relationship between depth and abundance of Phyllospora comosa was poorly defined 

(Fig. 9). 

 

Given the strong influence of depth on algal community structure, that the distribution of 

C. rodgersii was also depth-dependent, and because not all depth classes were 

represented at each site or transect, we standardised for the effect of depth by analysing 

the relationship between algal community composition and C. rodgersii density within a 

restricted depth range (8-15 m). All transects at all 13 sites covered this range. Within this 

depth range, there were highly significant differences among sites and subsites in algal 

community composition (nested ANOSIM based on Bray Curtis matrix, square root 

transformation, 4999 permutations, P<0.0001 for both).  Notably, differences in the 

composition of algae among sites reflected a gradient of change with latitude (PRIMER 

seriation test, ρ=0.43, P<0.001), which is clearly reflected in the associated MDS plot 

(Fig. 10). This change is, in part, associated with crossing the boundary between the 

Freycinet and Bruny bioregions (Fig. 10). Among those sites (1-9) where C. rodgersii 

was recorded, despite large variations in algal community structure among sites and 

subsites, the correlation between patterns among transects in C. rodgersii density and 
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patterns in algal community structure is poor (Fig. 9) and not significantly different from 

zero (PRIMER RELATE procedure, 999 permutations, Spearman correlation, ρ=0.066, 

P=0.136; this relationship was not improved by including all 13 sites in the analysis). 

The marked difference in this result and the significant correlation indicated between C. 

rodgersii density and algal community structure when all depths are considered reflects 

that both the density of C. rodgersii and algal community structure vary with depth. 

When variability due to depth is removed, there is no evidence of any relationship 

between C. rodgersii density and algal community structure. 

 

 

 

 



Establishment of the long-spined sea urchin in Tasmania.  Page … 35 

FRDC Final Report 

147 147.5 148 148.5 149 149.5

-43.5

-43

-42.5

-42

-41.5

-41

-40.5

Longitude

La
tit

ud
e

1 2 3
0

1

1 2 3
0

1

1 2 3
0

1

1 2 3
0

1

1 2 3
0

1

1 2 3
0

1

1 2 3
0

1

1 2 3
0  

0.1

1 2 3
0

1

1 2 3
0   

0.05

1. 

5. 

3. 

4. 

6. 

2. 

7. 

8. 
10. 9. 

11. 

12. 

13. 

  1 2 3 4 5 6 7 8 9 10 11 12 13   
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Site

D
en

si
ty

 (i
nd

iv
id

ua
ls

 m
-2

)

(a) 

 
 

                                                          (b) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Mean density (per m2) of C. rodgersii at each (a) site (±SE based on subsites as 

replicates) and (b) subsite (±SE based on transects within subsites as replicates) 
on the east coast of Tasmania. In (b), blue marks indicate positions of dive 
transects, and red circles indicate sites where C. rodgersii has been recorded as 
present but which were not part of the formal survey. Site codes are 
1=Eddystone Pt, 2=St Helens, 3=Ironhouse Pt, 4=Bicheno, 5=Cape Tourville, 
6=Schouten Is, 7=Maria Is, 8 =NE Forestier Peninsula, 9=Fortescue Bay, 
10=SW Tasman Peninsula, 11= North Bruny Is, 12=South Bruny Is, 
13=Recherche Bay. 
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Figure 7. Patterns in the distribution of C. rodgersii (pooled across sites 1-9) with (a) 

depth and (b) dominant substratum type, based on diver surveys to 18 m depth. 
No sea urchins were found in quadrats dominated by other substratum types 
(cobble, pebbles, gravel or sand, which accounted for 2.1%, 0.6%, 0.6% and 
6.0% of the total substratum across all 9 sites respectively). Dominant 
substratum type is that covering >60% of a 5*2 m plot. Note that qualitatively 
identical results were obtained using dominance criteria of >70% and >80% of 
the quadrat area, and using 5*1 m quadrats. Letters A/B indicate REGW-
groupings in multiple range tests following ANOVA. Abbreviations: very lge = 
very large boulders; lge=large boulders; sml=small boulders (see Methods for 
definitions). Data are means +SE.  
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Figure 8. Relationship between cover of the main canopy-forming algae and density of C. 
rodgersii in 5 m2 plots, sites 1-9. On the east coast, Durvillaea potatorum (c) usually 
develops in a distinct zone above Phyllospora comosa (b), while Ecklonia radiata (a) 
grows in a broad zone beneath P. comosa. Carpoglossum confluences (d) can form 
locally dense patches, usually within the shallower portion of the E. radiata zone. 
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Figure 9. Relationship 
between algal cover and 
depth across all sites for the 
most abundant species and 
species identified as best 
correlating with depth in the 
BIOENV analysis. Each 
point represents mean cover 
across a 3 m depth stratum 
(3-6 m, 6-9 m, … , 15-18 m) 
on a single transect, and 
depth is calculated as the 
mean of all 10 m2 ‘quadrats’ 
within the depth stratum on 
the transect. 
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Figure 10. (a) Ordination (non-metric MDS) of macroalgal community on rocky 

substrata in depths 8-15 m across sites and subsites (based on Bray-Curtis 
dissimilarity matrix obtained from square root transformed data), and (b) the 
ordination overlaid with a bubbleplot of C. rodgersii density. The dotted line 
separates sites where >1 C. rodgersii were recorded (left hand side) from those 
where only a single animal (site 10) or no specimens (sites 11-13) were found. 
It also separates east coast sites (1-9) from those in the southeast (10-13) to the 
west of 147° 50’ E. Sites 8-13 are in the Bruny Bioregion while sites 1-7 are 
located in the Freycinet Bioregion. Minimum stress for the ordination = 0.15. 
Site codes (1-13) are as in Figure 6. 
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Distribution of C. rodgersii barrens on the east coast of Tasmania  

Patterns in the distribution of barrens habitat determined from >80 km of towed 

underwater video were broadly similar to patterns of variability in C. rodgersii density 

(Fig. 11). All analyses of C. rodgersii barrens are restricted to those sites (1-9) at which 

>1 animals were found. Pooling across all four categories of C. rodgersii barrens, there 

was significant variation among sites and subsites in the distribution of barrens (Fig. 11; 

nested Model II ANOVA, transformation = Y 0.1; sites, F8,18 = 14.7, P <0.001; subsites 

F18,79 = 1.15, P = 0.326). Most (53.8%) of the variation was evident at the largest spatial 

scale (~104–105 m = among sites) and smallest scale (~102 m; 44.5% of total variance 

explained by variation among transects within subsites). Differences among subsites 

within sites (scale ~103 m) accounted for very little (1.7%) of the total variation. This 

reflects that there are large differences in the amount of barrens habitat among sites and 

that, at sites where barrens do occur, barrens occur patchily at scales of 101-102 m and in 

most cases are not yet coalesced to form continuous barrens along large sections of 

coastline as occurs in the Kent Group. However, within sites, the spatial pattern of 

barrens formation is remarkably consistent over scales 0.3-0.5 km. 

 

Considering the different types of sea-urchin barrens we recognised, which reflect a range 

of stages in barrens formation between incipient barrens (Type 4) and extensive well-

established barrens (Type 1), it is clear that the most extensive barrens occur in the 

vicinity of St Helens (site 2), although large tracts of barrens are also evident at Schouten 

Is (site 6) (Fig. 12). Incipient and intermediate stages of barrens formation were also most 

extensive off St Helens and at Schouten Is that at other sites, but were also commonly 

encountered of Cape Tourville (site 5), Maria Is (site 7), and occur at Fortescue Bay (site 

9) (Fig. 12).
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Figure 11. Mean cover of C. rodgersii barrens on rocky reef at each (a) site (±SE based 
on subsites as replicates) and (b) subsite (±SE based on transects within 
subsites as replicates) on the east coast of Tasmania determined from video 
transects. All types of barrens (see Methods) are pooled. In (b), blue marks 
indicate positions of transects. Site codes are as in Fig. 6. 
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Figure 12. Extent of (a) continuous (Type 1) C. rodgersii barrens, and various stages of 

incipient barrens ((b) Type 2, (c) Type 3, and (d) Type 4; see methods for 
definitions) across all sites. Data are means ± SE based on subsites as replicates 
(i.e. pooling across transects). Site codes are as in Fig. 6. 

 

Similar to patterns of density, the broad patterns in the distribution of barrens indicated 

that this habitat is most extensive in deeper (15-30+ m) water with greatest prevalence in 

the depth range 20-25 m (Fig. 13a), and in habitats dominated by boulders rather than by 

other kinds of rocky substratum (Fig. 13b). Analyses showing that differences in the 

extent of barrens on the three abundant substratum types (unclassified reef, boulders and 

flat rock) were not consistent among sites (2-way Model III ANOVA, transformation =   

Y 0.26, site*substratum: F16,80 = 3.38, P = 0.0004; analysis based on weighted means 

across transects within subsites), and that differences in the extent of barrens among 

depths were not consistent among sites (split plot Model III ANOVA, transformation =   

Y 0.23, site*depth: F30,60 = 1.94, P = 0.014), reflect that there was virtually no C. rodgersii 

barrens at some sites. The pattern of increasing cover of barrens habitat with depth is 
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most prominent on boulder substratum (Fig. 13 c). However, it is not possible to assess 

whether the most extensive barrens (which occur at depths >18 m) reflects C. rodgersii 

density, since diver surveys of density were limited to shallower (≤18 m) depths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Distribution of C. rodgersii barrens determined by video transects across sites 
1-9 dependent on (a) depth and (b) substratum type. In (c) the distribution of 
barrens by depth is given for the main substratum types encountered. 
‘Unclass.’ = unclassified reef substratum (this arises when the substratum 
type cannot be clearly interpreted); sand refers to patchy reef where >60% of 
the substratum is sand. Barren Types1-4 are pooled in this analysis. The 
relative cover of hard substratum types encountered in the video survey was 
49.2% unclassified reef; 32.4% flat rock; 18.1% boulder substratum; 0.04% 
cobble reef; 0.06% pebble reef; 0.2% gravel reef. 
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We interpret the sea urchins barrens we encountered as formed and maintained by 

grazing of C. rodgersii and not Heliocidaris erythrogamma on the basis of the 

relationship between C. rodgersii and H. erythrogamma, and between C. rodgersii and H. 

erythrogamma and the extent of barrens habitat. These relationships were qualitatively 

identical to those evident in the Kent Group, namely that the two sea urchins are 

negatively correlated where they occur abundantly (Fig. 14a), and that there exists a clear 

positive relationship between the extent of barrens habitat and C. rodgersii abundance 

(Fig. 14b), but not between the extent of barrens and abundance of H. erythrogramma 

(Fig. 14c). 

 

Relationship between C. rodgersii and commercial species 

The black lip abalone (Haliotis rubra) and southern rock lobster (Jasus edwardsii) are the 

two most valuable commercial species associated with shallow rocky reef in Tasmanian 

waters. Pooling data across sites 1-9, it is clear that both commercial species show a 

significant negative relationship with C. rodgersii (Figs. 15a,b).  The nature of this 

relationship is a triangular ‘factor ceiling’ distribution, suggesting that other factors also 

influence abundances of H. rubra and J. edwardsii, but that C. rodgersii density sets an 

upper limit to abundances of these commercial species. 

 

At ‘paired’ sites (St Helens Is, Elephant Rock and Mistaken Cape at Maria Is) where 

abalone density was compared on C. rodgersii barrens and in adjacent macroalgal beds at 

the same depth and on the same substratum type, abalone abundance was consistently 

higher in the kelp beds than in adjacent Type 1 barrens habitat at St Helens Is and 

Elephant Rock (Fig. 16). On these barrens, abalone do not occur in commercial 

quantities. At Mistaken Cape where the C. rodgersii barrens at 15-18 m depth are largely 

incipient Type 4 barrens, abalone densities were similar inside and outside the grazed 

patches (Fig. 16). Similar analyses were not possible for rock lobster because abundances 

of this species were low in all habitats examined at these three sites.
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Figure 14. Relationships between (a) the abundance of H. erythrogramma and C. 
rodgersii, (b) cover of barrens habitat and C. rodgersii, and (c) cover of barrens 
habitat and H. erythrogramma at sites 1-9 in depths ≤18 m (at a scale of 10 
m2). In (a), lines for the 99th and 95th quantiles are given: 99th quantile, y = 
exp(-0.0264 x +3.394), P<0.0001; 95th quantile, exp(-0.014 x +2.751, P=0.056. 
In (b), y = 3.51 x – 3.87, P<0.0001. 
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Figure 15. Relationship between abundances of C. rodgersii and (a) H. rubra and (b) J. 
edwardsii at a scale of 10 m2 across sites 1-9. Quantile regressions (95th and 
99th quantiles) reveal significant negative relationships in both cases. In (a), 
99th quantile, y = exp(-0.040 x + 2.489), P < 0.0001 ; 95th quantile, y = exp(-
0.038 x + 1.947), P = 0.0016. In (b), 99th quantile, y = exp(-0.102 x + 1.947), P 
= 0.0001 ; 95th quantile, y = exp(-0.136 x + 0.698), P < 0.0001. 
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Figure 16. Comparison of densities of abalone (H. rubra, bar chart, left hand axis) and 

sea urchins (C. rodgersii, line chart, right hand axis) in macroalgal habitat (A) 
and in adjacent C. rodgersii barrens (B) at 15-18 m depth at St Helens Is, 
Elephant Rock, and Mistaken Cape. At St Helens Is and Elephant Rock barrens 
are Type 1, while at Mistaken Cape barrens are largely Type 4. ANOVA 
indicated that abalone are significantly less abundant on Type 1 barrens habitat 
than in adjacent sites supporting dense macroalgal cover (Model III 2-way 
ANOVA: transformation = Y 0.19; habitat (=fixed), F1,1 = 264.4, P = 0.039; site 
(= random) F1,12 = 11.51, P = 0.005; habitat*site, F1,12 = 0.18, P = 0.677). At 
Mistaken Cape, differences in abalone abundances inside and outside of small 
patches of barrens were not significant (Model I 1-way ANOVA: no 
transformation; habitat, F1,6 = 0.01, P = 0.935). 
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Genetic relationships among C. rodgersii populations, NSW to Tasmania 

Overall, the genetic structure of populations of C. rodgersii from the three locations was 

very similar, and showed no evidence that Tasmanian populations may have established 

through a single founder event or that they remain isolated from other populations. All 

three populations had high levels of allelic diversity (mean number of alleles per site was 

5.3-5.8; Table 4), with most alleles, including the rare ones, occurring in all three 

populations. The only exceptions were the two rare alleles Pgm40 and Mpi40 which were 

absent from the Fortesque Bay sample (Table 4). Genetic differences between the three 

populations were minor, with both Nei’s genetic distance and pairwise Fst values 

reflecting the close similarities in all populations (Table 6). In addition there was no 

evidence of genetic subdivision among the three sites (mean Fst = -0.0009, 95% CI =        

–0.0047 – 0.0034). 

 

The levels of single-locus heterozygosity closely matched expectations for Hardy-

Weinberg Equilibrium in all populations. Of 12 single-locus tests across the 4 loci, we 

found 7 cases of heterozygote deficits and 5 heterozygote excesses (Table 5). Only two of 

these differed significantly from expectations under assumptions of random mating 

(heterozygote deficits at Aat and Mpi in the Deal Island population; Table 4).  However, 

if the nominal level (α=0.05) is corrected to control for compounding of Type I errors 

due to multiple tests, then none of the loci in any population deviates significantly from 

Hardy-Weinberg expectations. In sum, the genetic analyses indicate clearly that, despite 

evidence of heterozygote deficit in some alleles in the Bass Strait population, the three 

populations are remarkably genetically similar, and there is no evidence of founder 

effects or any other mechanism that has realised limited gene flow between these 

populations. 
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Table 4. Allele frequencies and summary statistics of polymorphic loci estimated for 
populations at Bass Pt (NSW), Deal Is (Kent Group, Bass Strait), and 
Fortescue Bay (SE Tasmania). Loci are glucosephosphate isomerase (Gpi), 
aspartate amino transferase (Aat), phosphogluco mutase (Pgm), and mannose 
phosphate isomerase (Mpi). N indicates sample size. 

 
Locus Allele Frequency 
   Allele (relative 
   mobility) 

Bass Pt 
NSW 

Deal Is 
Bass St 

Fortescue 
Bay 

Gpi 
  (N) 
  60 
  80 
  100 
  120 
  140 
 
Aat 
  (N) 
  90 
  100 
  110 
 
Pgm 
  (N) 
  40 
  60 
  80 
  100 
  120 
  140 
 
Mpi 
  (N) 
  40 
  60 
  70 
  80 
  90 
  100 
  110 
  120 
  140 

 
60 

0.033 
0.308 
0.625 
0.025 
0.008 

 
 

60 
0.058 
0.908 
0.033 

 
 

51 
0.039 
0.157 
0.206 
0.343 
0.176 
0.078 

 
 

46 
0.011 
0.076 
0.022 
0.283 
0.087 
0.283 
0.054 
0.141 
0.043 

 
60 

0.008 
0.300 
0.667 
0.017 
0.008 

 
 

57 
0.079 
0.904 
0.018 

 
 

53 
0.028 
0.170 
0.245 
0.406 
0.132 
0.019 

 
 

46 
0.022 
0.109 
0.022 
0.261 
0.054 
0.326 
0.000 
0.141 
0.065 

 
58 

0.009 
0.241 
0.716 
0.026 
0.009 

 
 

54 
0.028 
0.954 
0.019 

 
 

58 
0.000 
0.112 
0.198 
0.500 
0.155 
0.034 

 
 

54 
0.000 
0.093 
0.009 
0.231 
0.028 
0.352 
0.019 
0.222 
0.046 

Mean alleles per locus (SE) 
Mean heterozygosity per locus: 
   Direct count (SE) 
   1Expected HdyWbg (SE) 
 

5.8 (1.3) 
 

0.519 (.151) 
0.571 (.149) 

5.5 (1.0) 
 

0.441 (.140) 
0.544 (.141) 

5.3 (1.0) 
 

0.430 (.134) 
0.492 (.152) 

1Expected mean heterozygosity assuming Hardy-Weinburg equilibrium.  
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Table 5. Estimated deviations from Hardy-Weinberg equilibrium for each locus in each 
population expressed as Wright’s Fixation Index (f). For this index, positive 
values indicate heterozygote deficits, while negative values indicate 
heterozygote excesses. The significance of deviations from expected frequencies 
of alleles assuming Hardy-Weinberg equilibrium, based on Fisher exact tests 
after pooling of rare alleles, is given in parentheses (data are P values). 
Significant deviations (shown in bold) are based on α=0.05. Note that after 
adjusting the nominal significance level by the Dunn-Sidak method 
(αnew=0.0043) to control for compounding of Type I error in conducting 12 
simultaneous tests, none of the test results indicate significant deviation from 
Hardy-Weinberg equilibrium. Locus abbreviations as for Table 4. 

 
 Locus 

Population Gpi Aat Pgm Mpi 
 
Bass Pt (NSW) 
Deal Is (Bass St) 
Fortescue Bay (SE Tasmania) 
 

 
0.057 (0.785) 
-0.003 (1.0) 
0.196 (0.0192) 

 
0.315 (0.063) 
0.505 (0.005) 
-0.036 (1.0) 

 
-0.061 (0.350) 
-0.063 (1.0) 
-0.025 (0.796) 

 
0.186 (0.731) 
0.447 (0.044) 
0.222 (0.070) 

 
  
 
 
 
Table 6. Summary of genetic distance between populations based on Nei’s (1978) 

unbiased genetic distance (above the diagonal), and Fst (Weir and Cockerham 
1984) (below the diagonal). 

 
Population Bass Pt 

NSW 
Deal Is 
Bass St 

Fortescue Bay 
SE Tasmania 

 
Bass Pt (NSW) 
Deal Is (Bass St) 
Fortescue Bay (SE Tasmania) 
 

 
*** 

-0.0062 
0.0052 

 
0.000 
*** 

-0.0018 

 
0.004 
0.000 
*** 
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Discussion 
 

Patterns of range extension of C. rodgersii in Tasmanian waters 

Broadscale patterns of incursion in time and space 

Over nearly 40 years of observation (1974-2000) in the Kent group, the pattern of 

distribution of C. rodgersii is consistent with that of an invading population. In 1974 the 

sea urchin was observed at only 2 sites in close proximity in Murray Pass of a total of 7 

sites visited on Erith Is and Deal Is, while ca. 3 decades later in 1993 this species was 

recorded at all but one of 9 sites surveyed, and in 2000 all 7 sites visited were 

characterised by extensive cover of C. rodgersii barrens. On this basis, it seems likely 

that the species might have established in the Kent group in the mid-late 1960s, and over 

4 decades expanded to become the ecologically dominant invertebrate on shallow reefs at 

most sites on these islands.  

 

The pattern of temporal change in C. rodgersii populations observed in the Kent group 

may assist interpretation of spatial patterns in the distribution of the species on the east 

coast of Tasmania. On this coast, the population has also expanded greatly in the 3 

decades since the first animals were observed in the north east in the vicinity of St Helens 

in 1978. The current broad distributional trend shows highest densities near St Helens 

with populations declining to the south. South and west of Tasman Peninsula (sites 11-

13), we did not detect any animals in our surveys, although other divers have confirmed 

sightings along the coast to Recherche Bay in the far south. This pattern is consistent with 

the population spreading from an ‘epicentre’ in the north east, although there are 

alternative possibilities to account for the latitudinal pattern in abundance. 

 

Two important queries that arise from these observations concern the nature of the 

mechanism(s) that facilitated establishment of populations south of their previous range 

in the first place, and whether there has been ongoing recruitment to the Tasmanian 

populations. Given that C. rodgersii larvae are planktotrophic with an estimated 

planktonic phase of ca. 8 weeks (Andrew and Byrne 2001), the most plausible scenario is 

that larvae were transported from Australian mainland populations by the south flowing 
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southwest Pacific boundary current, the East Australian Current (EAC). In Tasmanian 

latitudes EAC influence is largely a summer phenomenon, with eddies propogating from 

the main stream off the shelf break and moving westwards to collide with the coast 

(Ridgway and Dunn 2003 provide a summary of EAC behaviour). Although the onset of 

spawning of C. rodgersii is in winter (June), the duration of spawning is extended in 

southern New South Wales (NSW) populations, continuing for 5-6 mo (Byrne et al. 

1998). Thus, it is possible that the timing of the summer southwards extensions of the 

EAC and larval production in NSW are coincident. Given that the EAC has been a long 

term feature of the eastern seaboard of the continent, why has the southwards range 

extension of this species occurred only recently? It is very likely that the frequency, 

magnitude and duration of southwards incursions of the EAC has increased over the past 

60 years as evidenced by trends of increasing salinity and temperature off the east coast 

of Tasmania (Harris et al. 1987; K. Ridgway, CSIRO, pers. comm.) and, in particular, 

greater rates of increase in salinity in summer than in winter (Fig. 17). These elevated 

salinities are a characteristic signature of EAC water mass (K. Ridgway, CSIRO, pers. 

comm.). Indeed, the chemistry of deepwater octocorals, which provides a relatively direct 

proxy of water temperatures, indicates that poleward extension of the EAC commenced 

ca. 200 years ago (Thresher et al. 2004). 

 

 

 

 

 

 

 

 

 

Figure 17. Trends in 5 y running average of sea surface (a) salinity and (b) temperature 
in summer (February and March) and winter (August and September) off 
Maria Is., central east coast of Tasmania,1944-2002. Data from CSIRO. 
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Assuming that larval transport initiated the establishment of C. rodgersii in Tasmanian 

waters, our genetic results do not support the possibility that Tasmanian populations of C. 

rodgersii originated from a single founder event, or remain isolated from mainland 

populations. There was no evidence of reduced levels of genetic diversity in Tasmanian 

populations compared with mainland populations, and heterozygosity matched 

expectations of random mating in all populations. However, genetic structure in the 

Fortescue Bay population is more different to that of the NSW sample than to the Kent 

group population. This suggests that there may be some degree of isolation by distance, 

but to properly examine this will require more work at a finer scale of genetic resolution. 

The occurrence of a wide distribution of age classes (1-18 y) in the Kent group (Fig. 2), 

and observations of a wide range in size classes off the Tasmanian coast (C. Johnson, 

pers. comm.), indicate that recruitment to the Tasmanian populations has been ongoing. 

However, the age distribution from Deal Is suggests that recruitment is not consistent 

among years, with episodic events of successful recruitment. Similar patterns in 

recruitment are known for this species in NSW (Andrew and Underwood 1989: Andrew 

and O’Neill 2000), and for other sea urchins with planktotrophic larvae in the northern 

hemisphere (Ebert and Russell 1988; Tegner et al. 1992). While it is not possible from 

our data to distinguish between self recruitment in Tasmanian populations and 

recruitment as a result of larval transport from NSW populations, we note that Tasmanian 

animals demonstrate a normal gonadal cycle and produce viable gametes (S. Ling, unpub. 

data), so that an element of self recruitment seems highly likely. 

 

Consistent patterns in the distribution of C. rodgersii in Tasmania were that, over the 

depth range of diver-based surveys (to 18 m depth), densities tended to be greater in 

deeper water (9-15 m in the Kent group, 9-18 m east coast of Tasmania) than at shallower 

depths. The distribution of barrens habitat below 18 m (Fig. 13a) suggests that peak 

densities may extend through to 25 m depth. In both Bass Strait and the east coast of 

Tasmania, peak mean densities at the scale of subsites (transects as replicates) were ca. 

≤1 m2. These patterns differ from those in NSW where mean densities at the same spatial 

scale are typically 2-4 times greater (Andrew 1991; Andrew and Underwood 1992; Hill et 

al. 2003), and where high densities and extensive barrens occur commonly in shallow 
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water 2-10 m depth (Andrew & Constable 1999; Hill et al. 2003). The tendency for peak 

densities of C. rodgersii to occur at greater depths in Tasmanian waters than in NSW is 

unlikely to be a function of wave exposure alone, since the pattern is also evident at 

relatively sheltered sites such as East Cove and Winter Cove at Deal Is in the Kent group, 

and on the inside of St Helens Is off the east coast of Tasmania. One possibility is that the 

sweeping action of particular algal species whose fronds lie on the substratum limits sea 

urchin abundance in shallow water, and that these species are more common in Tasmania 

than NSW. The capacity of dense patches of particular macroalgae to limit invasion by 

sea urchins from adjacent barrens habitat is well documented (Konar and Estes 2003). 

Candidate species include Durvillaea potatorum, Carpoglossum confluens and 

Phyllospora comosa, all of which dominate in dense patches or zones in shallow water in 

Tasmanian waters but are not widespread in NSW (note that although dense patches of C. 

confluens occur in Tasmania, they are not widespread). We rarely recorded any C. 

rodgersii in 5*1 m plots dominated by D. potatorum or C. confluens (Fig. 8), but the 

relationship is not so clear for P. comosa. While in the Kent group there was some 

evidence of a ‘step’ in the relationship between P. comosa and urchin density above ca. 

30% cover of this alga (Fig. 5), there was no evidence of abrupt boundaries of urchin 

density associated with cover of P. comosa on the Tasmanian coast. The possibility that 

particular algae may influence the small scale distribution of C. rodgersii warrants critical 

testing using manipulative experiments. After controlling for the effect of depth, there 

was no evidence that C. rodgersii was associated (positively or negatively) with 

particular community assemblages of algae. 

 

Formation of C. rodgersii barrens habitat 

Because both C. rodgersii and the smaller Heliocidaris erythrogramma are capable of 

forming barrens habitat, and that both sea urchins co-occurred at all sites in this study, it 

needs to be ascertained whether the grazing activity of either or both species is largely 

responsible for the barrens habitat we describe. There are several compelling reasons to 

indicate that the barrens habitat that now occurs on the exposed rocky coast of Tasmania, 

and which characterizes the rocky subtidal seascape of the Kent group, is due primarily to 

grazing by C. rodgersii. Across both regions of this study, we found a positive 
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relationship between the extent of barrens and densities of C. rodgersii  (Figs. 3,14) but 

no similar relationship with H. erythrogramma, and a significant negative relationship 

between the two sea urchin species. In Tasmania H. erythrogramma is known to form 

barrens only in relatively sheltered bays, usually on a smaller spatial scale than those 

reported here, and usually characterised by significant accumulation of sediment 

(Valentine and Johnson 2005; C. Johnson, pers. obs.). These features are distinctly 

different to those of the barrens habitat we describe in the present work. Given our 

observations and those of others who have examined grazing by C. rodgersii in New 

South Wales (e.g. Andrew 1991; Andrew & Underwood 1993; Andrew and O’Neill 

2000; Hill et al. 2003), we conclude that the widespread barrens habitat in the Kent group 

and on the open Tasmanian coast is a direct result of the grazing activity of C. rodgersii. 

 

There is a clear difference in the depth distribution of C. rodgersii barrens in NSW and 

Tasmania. In Tasmania extensive barrens occur below 10-15 m depth, while in shallower 

water small patches of barrens habitat may occur but rarely do these patches coalesce to 

form larger areas of virtually continuous barren habitat such as occurs in NSW, where 

extensive barrens habitat occurs commonly at depths as shallow as 2-5 m (Andrew and 

Underwood 1993; Hill et al. 2003; C. Blount, pers. comm.). In Tasmania, the greatest 

extent of barrens was at depths 20-30 m, while in NSW  C. rodgersii densities decline 

notably at depths >20 m (Andrew and Constable 1999). Another notable difference is 

that, in Tasmania, C. rodgersii densities on extensive barrens are typically 25-50% of 

those on barrens habitat in NSW (cf. Andrew and Underwood 1989, 1992, 1993). 

 

The broad spatial pattern of declining cover of barrens habitat moving southwards along 

the Tasmanian east coast is consistent with a gradual southward propogration of C. 

rodgersii populations, and a lag of several decades between initial establishment and 

formation of extensive barrens habitat. What is less clear are the mechanisms that realise 

the large variation in extent of barrens cover at scales of 101 m (within transects), 102 m 

(between transects) and 103 m (between subsites within sites). It is unclear why barrens 

cover is so patchy at these scales, both in Tasmania and NSW. This highlights that the 

mechanisms for the transition from macroalgal bed to barrens habitat, and the dynamics 
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of the boundary between macroalgal bed and barrens, are poorly understood (Andrew 

1993; Konar and Estes 2003; Hill et al. 2003). It is clear that there is a threshold density 

to initiate destructive grazing of macroalgae (Hill et al. 2003), and that the density 

necessary to create barrens is greater than that necessary to maintain barrens (Andrew 

1989; Hill et al. 2003). Given much lower densities on barrens habitat in Tasmania, the 

threshold density to initiate barrens may be lower in Tasmania than in NSW.  

 

Andrew (1993) examined the relationship between the availability of crevices providing 

cover for C. rodgersii, sea urchin densities and grazing, and concluded that the 

availability of shelter for the urchins was a sufficient condition to initiate barrens 

formation. However, this does not explain why areas of barrens habitat and dense 

macroalgal bed, with a sharp boundary between them, are found at the same depth and 

across the same substratum type (e.g. Fig. 16). Although C. rodgersii barrens in 

Tasmania are mostly on boulder substratum that provides ample shelter in crevices, at 

some locations there are expansive areas of barrens on flat rock without obvious places 

for sea urchins to shelter so that they remain exposed during the day.  In NSW, the 

boundary between C. rodgersii barrens and dense macroalgae appears to be relatively 

stable (Andrew 1994; Hill et al. 2003), and it seems likely that discontinuities in 

substratum type (Andrew 1993), and perhaps the sweeping motion of macroalage at these 

boundaries (Konar and Estes 2003), may contribute to maintaining this stability. 

 

In Tasmania, the extent of C. rodgersii barrens has clearly been increasing since this sea 

urchin was first recorded in the 1970s. The extent to which the barrens habitat may 

expand, and the dynamics of barrens boundaries will remain uncertain until more is 

known about the mechanisms triggering the onset of barrens formation and determining 

the stability of boundaries between barrens and macroalgae. Notably, in line with 

observations of C. rodgersii in NSW (Andrew 1993; Hill et al. 2003), we see no evidence 

in Tasmania of the complex behaviours demonstrated by strongylocentrotid species in the 

northern hemisphere which are important in effecting transitions, in both directions, 

between dense macroalgal cover and barrens habitat (Bernstein et al. 1981, 1983; Harrold 

and Reed 1985; Vadas et al. 1986). Barrens habitat seems to be particularly likely to 
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develop on boulder substratum, perhaps because of the complexity of crevices available 

for shelter (Andrew 1993). In the area of St Helens we found that ca. 75% of boulder 

substratum was characterised by C. rodgersii barrens. Over the entire coast, diver based 

surveys to 18 m depth estimated that 55.3% of reef was boulder substratum, while the 

video surveys identified 34.3% of discernable consolidated reef as boulders. On this 

basis, and given that barrens also form on other types of consolidated reef, it is possible 

that barrens habitat could expand to account for ca. 50% of inshore reefs, as occurs in the 

Kent group and NSW. This would have a dramatic impact on abalone and rock lobster 

fisheries in this region. 

 

Why do C. rodgersii barrens form? 

It is important to emphasise that the mechanisms underpinning the incursion of C. 

rodgersii into Tasmania may not be related to those underpinning the formation of 

barrens habitat by C. rodgersii in Tasmania, i.e. that the advent and establishment of C. 

rodgersii in Tasmania as a result of transport of larvae by the EAC and warming of east 

coast waters need not inevitably lead to barrens formation. A key question is to identify 

the mechanism(s) that lead to barrens formation. One potential candidate is that fishing 

has reduced populations of predators to the point where sea urchins densities can increase 

to the point where destructive grazing of seaweeds commences. Considerable attention 

has been given to the effects of fishing down predators on marine ecosystems in general 

(Jackson et al. 2001) and on kelp ecosystems in particular (Steneck 1997, 1998; Sala et 

al. 1998; Tegner & Dayton 2000). While mechanisms and dynamics are complex and 

often peculiar to particular systems, the general conclusion of this work is that 

overfishing of predators of sea urchins often results in increases in urchin populations 

with subsequent formation of urchin barrens.  

 

Potential significant predators of C. rodgersii in Tasmania that are subject to fishing 

include rock lobsters (Jasus edwardsii) and reef associated fishes. Experimental and 

correlative evidence suggests a potentially important role of lobsters in limiting urchin 

populations in South Africa (Tarr et al. 1996; Mayfield et al. 2001), New Zealand 

(Andrew & MacDiarmid 1991; Babcock et al. 1999) and California (Tegner & Levin 
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1983). Moreover, recent experiments in Tasmania has shown that predation by legal-

sized rock lobsters in the field is sufficient to prevent the urchin Heliocidaris 

erythrogramma from attaining densities sufficient to create barrens (Pederson 2003; 

Johnson et al. 2004). In all of these examples, the effect of lobsters on urchins is size-

specific, with all lobsters preferring small urchins, while only large lobsters are able to 

consume large urchins. In Tasmania, only legal-sized lobsters have significant predatory 

impact on H. erythrogramma (Pederson 2003; Johnson et al. 2004). Since the biomass of 

legal-sized lobsters on the east coast of Tasmania in the recent past has been as low as 2-

8% (depending on the area) of pre-fished biomass (Frusher 1997), this trophic link is 

essentially functionally eliminated in this system.  

 

In other areas, benthic fishes appear to be important predators of sea urchins. In the Gulf 

of Maine, there is a strong case that overfishing of demersal scalefish has enabled urchin 

populations to increase and create extensive barrens (Witman & Sebens 1992; Vadas & 

Steneck 1995). Similarly, fish predation is sufficient to regulate urchin populations in 

California (Cowen 1983), and may have a role in New Zealand (Babcock et al. 1999). 

However, while wrasse are a key predator of invertebrates in the kelp-bed systems of 

southern Australia, urchins are a poorly preferred prey and only large fish prey on H. 

erythrogramma (Shepherd & Clarkson 2001), which is a notably smaller species than C. 

rodgersii. In Tasmania, experiments and large-scale surveys alike suggest that legal-sized 

lobsters are far more important as predators of H. erythrogramma on rocky reefs than are 

fishes (Pederson 2003; Johnson et al. 2004). Given the large size of C. rodgersii, and that 

both lobsters and C. rodgersii are nocturnal while wrasse forage only during the day, it is 

very likely that the same conclusion will be found in the case of C. rodgersii. 

 

These ideas require critical testing. If the hypothesis is supported that fishing of rock 

lobsters has enabled C. rodgersii populations in seaweed beds to increase to the point of 

barrens formation, then the phenomenon of C. rodgersii barrens in Tasmania arises from 

an interaction between climate change (facilitating the establishment of C. rodgersii in 

Tasmania in the first instance) and fishing (enabling populations to expand). The genesis 

of both of these forcings is arguably anthropogenic.  
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Implication of barrens formation for commercial fisheries species 

It is clear that extensive C. rodgersii barrens habitat in Tasmania is unable to support 

abalone (Haliotis rubra) and rock lobster (Jasus edwardsii) at levels suitable for 

commercial harvesting. Abalone densities were significantly lower on established barrens 

than in adjacent macroalgal habitat on the same substratum type and at the same depth, 

and there is a clear negative relationship between densities of C. rodgersii and that of 

abalone and rock lobster on the Tasmanian coast. Reduced secondary production on sea 

urchin barrens reflects that levels of primary production are ca. 100-fold lower than in 

macroalgal beds (Chapman 1981) and, in the case of abalone, the likelihood of direct 

competition with sea urchins for food and space. Evidence of potential competition 

between sea urchins and abalone (Haliotis spp.) includes significant negative associations 

between the two, which has been reported for C. rodgersii in Australia (Shepherd 1973; 

Andrew & Underwood 1992) , Evechinus chloroticus in New Zealand (Naylor & Gerring 

2001), and Strongylocentrotus franciscanus in California (Karpov et al. 2001). Karpov et 

al. (2001) concluded that, although negative associations between abalone and S. 

franciscanus were also evident within macroalgal beds, competition between these 

species was most pronounced in habitats where macroalgae was scarce. Notably, 

experimental removals of C. rodgersii in NSW realised a 10-fold increase in abalone 

(Andrew et al. 1998), and similar results have been obtained with other species in 

California (Tegner & Dayton 2000). In New Zealand, addition of urchins (E. chloroticus) 

to kelp-beds realised dramatic reductions in abalone (Haliotis iris), while urchin removal 

resulted in small but significant increases in abalone (Naylor & Gerring 2001).  

 

The ultimate impact of the incursion of C. rodgersii into Tasmania on the abalone and 

rock lobster fisheries will depend on the extent to which associated barrens habitat 

develop, and on the spatial overlap of barrens habitat with preferred areas of fishing. At 

this stage it is not possible to predict the expansion of barrens habitat, although the extent 

of incipient barrens we observed, particularly on boulder substratum, suggests that further 

expansion of extensive barrens is likely. The most extensive barrens occur between 15-30 

m depth, and the majority are in depths ≥15 m. To the extent that much of the abalone 
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fishing occurs in depths <15 m, the direct impact on this fishery may be less than is 

indicated by the spatial extent of barrens habitat. However, as abalone become 

significantly depleted at some sites on the east coast (Tarbath et al. 2004), effort is likely 

to shift to deeper water. Rock lobster is fished throughout the depth range of barrens 

formation, but also in deeper water. It needs to be emphasised that the impact of barrens 

formation on both fisheries is two-fold in that the advent of barrens habitat not only 

represents area lost to the fishing, but since both fisheries are managed by a total 

allowable catch, increases in barrens habitat inevitably leads to greater fishing pressure in 

remaining habitat suitable for fishing. Given these effects and that development of 

extensive barrens is patchy in space, there is a case to consider more detailed spatial 

management of fisheries. Certainly if existing areas of incipient barrens develop into 

extensive barrens, then spatially explicit management of rock lobster and abalone 

fisheries may become an imperative on the east coast of Tasmania. 

 

While the negative effect on abalone and rock lobster of the transition to barrens is clear, 

we have not examined whether increases of C. rodgersii in macroalgal habitat has any 

impact on these species. We found no difference in the density of abalone inside and 

outside of small patches of incipient barrens in macroalgal beds off Mistaken Cape, and 

no evidence that juvenile abalone obtain shelter from predators beneath the spine canopy 

of sea urchins as occurs in California and South Africa (Tegner & Dayton 1981; Tarr et 

al. 1996; Mayfield & Branch 2000). 

 

Is incursion of C. rodgersii a management issue? 

Any management response to the incursion of C. rodgersii into Tasmanian waters would 

sensibly focus on preventing further spread of barrens habitat and, possibly, rehabilitation 

of existing barrens. The two elements of preventing further expansion of C. rodgersii 

barrens and rehabilitating barrens pose distinctly different management issues. The 

question of whether a management response is warranted has both economic and 

philosophical elements. The economic issue is whether the cost of a management 

response is justified against the value of saved fisheries and the broader value of 

macrolagal beds to ecosystem functioning and to society. The philosophical issue is 
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whether barrens formation is a ‘natural’ phenomenon that should be allowed to run its 

course in the ebb and flow of ecological dynamics, or whether it is linked to 

anthropogenic activity which may justify management intervention. 

 

The transition from productive macroalgal beds to poorly productive sea urchins barrens 

habitat has occurred in temperate waters worldwide. The common denominator 

underpinning this transition is fishing pressure on predators of sea urchins (Steneck 1997, 

1998; Sala et al. 1998; Pinnegar et al. 2000; Jackson et al. 2001; Steneck et al. 2002; 

Tegner and Dayton 2000; Shears and Babcock 2003), although at specific sites there may 

also be other influencing factors (Pinnegar et al. 2000; Shears and Babcock 2003). If a 

similar role of fishing of C. rodgersii predators is demonstrated in Tasmania (see 

previous section on “Why do C. rodgersii barrens form?”), then there is a compelling 

case for management intervention. Our initial experiments show that legal sized rock 

lobsters are an important predator of C. rodgersii (S. Ling, unpub. data). While 

management decisions have already been implemented to increase the biomass of legal 

sized lobsters, it is unclear to what level this biomass is likely to build and whether it will 

have any effect on the population dynamics of sea urchins. 

 

Management intervention to limit further expansion of C. rodgersii barrens in Tasmania 

is likely to be more tractable than any attempt to rehabilitate existing barrens. There are 

two reasons for this. First, large scale removal of sea urchins, particularly in deeper 

water, is difficult. Second, the density of C. rodgersii necessary to create barrens habitat 

is significantly greater than that needed to maintain barrens (Andrew and Underwood 

1993; Hill et al. 2003). Thus, the transition to C. rodgersii barrens represents a classical 

ecological hysteresis and regime shift (Scheffer et al. 2001; Collie et al. 2004) to an 

alternative community configuration with high resilience stability.  

 

For all of the reasons outlined, we suggest that a timely management response to the 

incursion of C. rodgersii in Tasmania is warranted. This will require identifying the 

mechanisms that trigger the onset of barrens formation and that determine the boundaries 

between barrens and macroalgal-dominated habitat. 
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Benefits and Adoption 
Stakeholders to benefit from this work include those fisheries dependent on productive 

reef ecosystems in eastern Tasmania, viz. abalone (Haliotis rubra), rock lobster (Jasus 

edwardsii) and wrasse (Notolabrus tetricus, N. fucicola) fisheries; managers of 

Tasmanian rocky reef systems; and the general public with interests in ensuring the 

sustainability of healthy and properly functioning rocky reef systems. 

 

The key benefits of the work have been to highlight to industry, managers and the general 

public (1) that Centrostephanus rodgersii represents a significant threat, both actual and 

potential, to the integrity of rocky reefs and the important fisheries they support on the 

east coast of Tasmania, and (2) the scale of the problem posed by C. rodgersii in 

Tasmanian waters. 

 

Industry and relevant individuals in government have been made aware of this work 

through a series of presentations (e.g. in several research reviews; annual general 

meetings), and the general public through considerable exposure in mainstream media 

(radio, television and newspapers). Dissemination of the results in this way has generated 

significant discussion among scientists, industry representatives and managers. The work 

has been a catalyst for a major workshop to address (1) the status of C. rodgersii in 

Tasmania, (2) the need and potential for management intervention, and (3) priorities for 

future research. The workshop will occur in December 2005, and involve researchers, 

industry representative, and managers. 

 

Further Development 
The workshop to be conducted in December 2005 will examine the need and options for 

management responses to C. rodgersii in Tasmania. Irrespective of the outcomes of these 

discussions, results of the work presented here suggest that it would be sensible to 

continue to monitor expansion of the range of C. rodgersii in Tasmania (the range has 

extended considerably over the past decade, and continues to expand), and particularly to 

monitor changes in the extent of C. rodgersii barrens, since it is establishment of barrens 
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habitat that is of greatest concern to the integrity of rocky reef systems and the 

productivity of the fisheries they support. 

 

If the extent of C. rodgersii barrens in Tasmania does not increase further, it may be that 

no management response is a cost effective option. However, given the extent of incipient 

barrens and apparent increases in both the range and local densities of C. rodgersii (data 

from the research presented here and subsequent observations), then it needs to be 

acknowledged there is a high likelihood of further increases in the extent of C. rodgersii 

barrens over the next decade. Given that barrens formation has a major effect on 

ecosystem integrity, that it effectively removes habitat from key fisheries, and that 

resultant transfer of fishing effort increases pressure on fisheries resources in remaining 

suitable habitat, then further increases in barrens are undesirable and present a case for 

management intervention. However, if responses to minimize further expansion of 

barrens are to be implemented, then a better understanding of the mechanism(s) 

underpinning barrens formation is required. Thus, an immediate priority for future 

research is to determine whether barrens formation arises largely as a result of the activity 

of sea urchins on existing barrens grazing at the border between barrens and seaweed 

habitat, or whether they form largely as a result of the activity of sea urchins residing in 

seaweed beds. Resolving this issue is important since it will identify the sub-population 

of animals that needs to be targetted in attempting to limit further expansion of barrens.  

 

Another priority is to ascertain the nature of a feasible management response. Mounting 

evidence implicating the role of rock lobsters (Jasus edwardsii) as key predators of C. 

rodgersii requires critical testing. If rock lobsters prove to be important predators of C. 

rodgersii, then the instigation of trials involving translocation of large numbers of 

lobsters from deep water onto shallow reefs presents an important opportunity to examine 

the possibility of predator control of sea urchins by rock lobsters as a means to both 

prevent further development of barrens habitat and rehabilitate existing C. rodgersii 

barrens. 
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Planned Outcomes 
The intended primary outcome of the work was to indicate whether a significant 

management response to the establishment of C. rodgersii in Tasmania is warranted. The 

research outlined here will inform a workshop attended by relevant stakeholders 

(researchers, representative of fisheries interests and managers) to address this issue in 

December 2005. 

 

Conclusions 
Available evidence suggests that the sea urchin Centrostephanus rodgersii first 

established in the Kent Group of islands in eastern Bass Strait in the late 1960s or early 

1970s, and about a decade later on the north east coast of Tasmania. This significant 

range extension was likely effected by transport of larvae from more northern regions by 

the East Australian Current. Subsequent expansion of populations of the sea urchin in the 

Kent Group has resulted in formation of extensive sea urchins barrens, which now occur 

across ca. 50% of shallow rocky reefs in the area. The extent of barrens habitat on the 

east coast of Tasmania is much less, and barrens in this region are distributed very 

patchily. There is mounting evidence to suggest that population densities of C. rodgersii, 

and therefore barrens formation, might be controlled through predation by the southern 

rock lobster (Jasus edwardsii). If so, then the advent of C. rodgersii barrens in Tasmania 

results from the combined effects of climate change (affecting the EAC) and fishing 

(affecting population levels of the rock lobster). The notion of predator control of C. 

rodgersii populations requires critical testing.  

 

In eastern Tasmania, rocky reef on the open coast dominated by boulders is particularly 

susceptible to become C. rodgersii barrens, ostensibly because of the amount of shelter 

provided to the sea urchins compared with other habitat types. However, barrens can 

form on any kind of rocky reef in depths to at least 40 m. Considering the range of C. 

rodgersii on the east coast, the current distribution of incipient barrens, and the 

distribution of bottom dominated by boulders, then there is the potential for C. rodgersii 

barrens to expand to occupy ca. 50% of shallow rocky reefs, as currently occurs in NSW 
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and the Kent Group. Commercial quantities of important fisheries resources such as 

abalone (Haliotis rubra), rock lobster and possibly wrasse (Notolabrus spp.) do not occur 

on C. rodgersii barrens in Tasmania. These circumstances warrant consideration of 

management responses to minimize risk of further development of C. rodgersii barrens, 

and perhaps rehabilitation of existing barrens. These responses may include more 

spatially explicit management of fisheries resources. 
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Appendix 1. List of macroalgae recorded in the Kent group during surveys in 2000, and 
on the east coast of Tasmania in surveys in 2001-02.  

 
A. Kent group 

Halopteris paniculata Sargassum heteromorphum 
Zonaria spp. Sargassum verruculosum 
Perithallia caudata Sargassum fallax 
Ecklonia radiata Sargassum vestitum 
Xiphophora condrophylla Sargassum lacerifolium 
Phyllospora comosa Sargassum spp. 
Sierococcus axillaris Codium harveyi 
Cystophora moniliformis Codium spp. 
Cystophora monilifera Caulerpa longifolia 
Cystophora retroflexa Caulerpa brownii 
Cystophora subfarcinata Caulerpa obscura 
Cystophora  spp. Caulerpa flexilis 
Caulocystis uvifera Caulerpa vesiculifera 
Acrocarpia paniculata Caulerpa spp. 
 foliose red algae 
B. East coast of Tasmania 

Halopteris paniculata Sargassum verruculosum 
Dictyopteris sp. Sargassum fallax 
Zonaria spp. Sargassum vestitum 
Carpomitra costata Sargassum paradoxum 
Sporochnus sp. Sargassum spp. 
Perithallia caudata Chlanidophora microphylla 
Lessonia corrugata Ulva spp. 
Macrocystis pyrifera Chaetomorpha spp. 
Macrocystis angustifolia Cladophora sp. 
Ecklonia radiata Codium spp. 
Undaria pinnatifida Codium pomoides 
Durvillaea potatorum Caulerpa scapelliformis 
Xiphophora gladiata Caulerpa longifolia 
Phyllospora comosa Caulerpa trifaria 
Sierococcus axillaris Caulerpa brownii 
Carpoglossum confluens Caulerpa flexilis 
Cystophora platylobium Caulerpa geminata 
Cystophora moniliformis Caulerpa hodgkinsoniae 
Cystophora retorta Caulerpa cactoides 
Cystophora retroflexa Caulerpa spp. 
Cystophora  spp. filamentous green algae 
Acrocarpia paniculata filamentous brown algae 
Sargassum varians foliose red algae 
Sargassum decipens seagrass 
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Appendix 2. Mean density (no. m-2) of Centrostephanus rodgersii at different depths 
across sites 1-9. Standard errors in curved parentheses (); number of 
replicate transects in square parentheses []; nd = no data (it was not always 
possible to work transects into shallow depths). 2-way Model II ANOVA 
(transformation = ln(Y+0.001)) showed no evidence of a depth*site 
interaction (F30,73= 0.66, P = 0.898), but significant differences in density 
among depths (F4,30= 5.13, P = 0.003) and sites (F8,73= 3.85, P = 0.0008). 

 

Depth Range (m)  

Site 0-6 6-9 9-12 12-15 15-18 

1. Eddystone Pt 
 
 
2.  St Helens 
 
 
3.  Ironhouse 
 
 
4.  Bicheno 
 
 
5. Cape Tourville 
 
 
6. Schouten Is 
 
 
7. Maria Is 
 
 
8. NE Forestier 
Peninsula 
 
9. Fortescue Bay 
 

nd 
 
 

0 (0) 
[2] 

 
nd 

 
 

0 
[1] 

 
0.050 (0.050) 

[2] 
 

0.020 (0.020) 
[3] 

 
0.007 (0.007) 

[3] 
 

0.005 (0.005) 
[2] 

 
0.003 (0.003) 

[3] 

0.045 (0.045) 
[2] 

 
1.035 (0.135) 

[2] 
 

0.100 (0.100) 
[2] 

 
0 

[1] 
 

0.100 (0.100) 
[2] 

 
0.077 (0.062) 

[3] 
 

0.017 (0.017) 
[3] 

 
0.003 (0.003) 

[3] 
 

0.013 (0.007) 
[3] 

0.085 (0.085) 
[2] 

 
0.493 (0.250) 

[3] 
 

0.007 (0.007) 
[3] 

 
0.020 (0.020) 

[2] 
 

0.263 (0.181) 
[3] 

 
0.470 (0.087) 

[3] 
 

0.243 (0.209) 
[3] 

 
0.010 (0.006) 

[3] 
 

0.103 (0.103) 
[3] 

0.030 (0.013) 
[3] 

 
0.727 (0.255) 

[3] 
 

0.050 (0.045) 
[3] 

 
0.010 (0.010) 

[3] 
 

0.107 (0.078) 
[3] 

 
0.367 (0.134) 

[3] 
 

0.270 (0.142) 
[3] 

 
0.003 (0.003) 

[3] 
 

0.037 (0.022) 
[3] 

0.013 (0.013) 
[3] 

 
0.53 (0.275) 

[3] 
 

0.027 (0.027) 
[3] 

 
0.050 (0.050) 

[3] 
 

0.073 (0.073) 
[3] 

 
0.353 (0.184) 

[3] 
 

0.247 (0.075) 
[3] 

 
0 (0) 
[3] 

 
0.093 (0.070) 

[3] 
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Appendix 3. Mean density (per m2) of Centrostephanus rodgersii on different substratum 
types across sites 1-9, determined from dive transects. Standard errors in 
curved parentheses (); number of replicate transects in square parentheses []; 
nd = no data (not all substratum types were represented on all transects). 2-
way Model II ANOVA (transformation = ln(Y+0.001)) indicated the 
absence of a substratum-type*site interaction (F23,43= 1.17, P = 0.324) but 
significant variation in densities with substratum-type (F3,23= 5.03, P = 
0.008) and site (F8,73= 3.87, P = 0.002). 

 

Substratum Type  

Site flat rock very large 
boulders 

large 
boulders 

small 
boulders 

1. Eddystone Pt 
 
 
2.  St Helens 
 
 
3.  Ironhouse 
 
 
4.  Bicheno 
 
 
5. Cape Tourville 
 
 
6. Schouten Is 
 
 
7. Maria Is 
 
 
8. NE Forestier Peninsula 
 
 
9. Fortescue Bay 
 
 
Percentage of total substratum 
across all 9 sites 

0 (0) 
[2] 

 
0.640 (0.280) 

[2] 
 

0.010 (0.006) 
[3] 

 
0 (0) 
[3] 

 
0.023 (0.023) 

[3] 
 

0.020 (0.020) 
[2] 

 
0 (0) 
[3] 

 
0 (0) 
[3] 

 
0 (0) 
[2] 

 
 

34% 

0.130 
[1] 

 
0.765 (0.765) 

[2] 
 

0.200 (0.200) 
[2] 

 
0.365 (0.365) 

[2] 
 

0.040 (0.040) 
[2] 

 
0.300 

[1] 
 

0.180 (0.080) 
[2] 

 
0.025 (0.025) 

[2] 
 

0.015 (0.015) 
[2] 

 
 

14% 

0.083 (0.060) 
[3] 

 
0.827 (0.567) 

[3] 
 

0.05 (0.05) 
[3] 

 
nd 

 
 
0.183 (0.159) 

[3] 
 

0.383 (0.097) 
[2] 

 
0.237 (0.162) 

[3] 
 

0 (0) 
[2] 

 
0.05 (0.036) 

[3] 
 
 

25% 

0 (0) 
[2] 

 
0.512 (0.209) 

[3] 
 

0.155 (0.155) 
[2] 

 
0 (0) 
[2] 

 
0 

[1] 
 

0 
[1] 

 
0.100 

[1] 
 

0.007 (0.007) 
[3] 

 
0.010 

[1] 
 
 

17% 
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