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OBJECTIVES 

The main objective of this study was to produce the biological data required for 

appropriate management of the Blue and King Threadfins, Estuary Rockcod, Malabar 

Grouper and Mangrove Jack in waters off the Pilbara and Kimberley coasts. Unless 

otherwise stated, this involved determining the following for each species. 

1. Size and age compositions, sex ratios and growth rates. 

2. Sizes and ages at which the first four species change sex.  

3. Sizes and ages at which females and males reach maturity. 

4. Duration and location of spawning and whether multiple spawning occurs within 

a breeding season. 

5. Batch fecundity and its relationship to body size. 

6. Size compositions of fish caught by recreational, commercial, aboriginal and 

charter fishers. 

7. A yield and spawning biomass-per-recruit assessment and evaluation of the 

effectiveness of different legal minimum and maximum sizes. 
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NON-TECHNICAL SUMMARY 

 

OUTCOMES ACHIEVED TO DATE 
 

Data have been collected on those crucial aspects of the biology of Blue and King Threadfins, 
Estuary Rockcod, Malabar Grouper and Mangrove Jack that are required to develop appropriate 
management plans for conserving the stocks of these five commercially and recreationally 
important species. The following biological data have been obtained. (1) The size and age at 
which each species reaches sexual maturity. (2) The size and age at which the two species of 
threadfin change from male to female and the Estuary Rockcod and Malabar Grouper change 
from female to male. Note that, unlike the above four species, the Mangrove Jack is not 
hermaphroditic and thus does not change sex. (3) The habitats, size and age compositions, 
duration and location of spawning, and mortality of each species. As the two threadfin species 
are largely restricted to areas over bare substrate in nearshore waters, they are particularly 
accessible to fishers. Our results indicate that, currently, the Blue Threadfin is fully exploited 
and the King Threadfin is over-exploited, whereas the fisheries for the Estuary Rockcod, 
Malabar Grouper and Mangrove Jack are apparently sustainable at current fishing levels. 
However, our results emphasize that fishing mortality has a very marked adverse impact on the 
abundance of the ultimate sex of the four hermaphroditic species, and this needs to be 
considered when specifying legal lengths for retention. Managers also need to monitor the status 
of the stocks of Mangrove Jack which, because of its high value, is attracting an increasing 
amount of attention from the recreational, commercial and charter boat fishing sectors. Finally, 
the results of this study emphasize the pressing need to develop better methods for determining 
the natural mortality of fish species and thus being able to derive more robust estimates of 

fishing mortality. 

 
 

The Blue and King Threadfins, Estuary Rockcod, Malabar Grouper and Mangrove Jack 
are among the most important recreational and commercial fish species along the Pilbara and 
Kimberley coasts of north-western Australia. These species, and in particular the two species of 
threadfin, also hold particular cultural significance and are an important food source for local 
aboriginal communities. As exploitation of the above five species is continuing to increase, the 
sustainability of their stocks depends on establishing sound and appropriate management plans 
that are based on relevant and high quality biological data. The aim of this study was to provide 
these data.  

The juveniles and adults of the Blue and King Threadfins complete their life cycles in 
sandy and muddy beach habitats in nearshore, shallow waters. The juveniles of Estuary 
Rockcod, Malabar Grouper and Mangrove Jack live in mangrove and nearshore rocky areas and 
move offshore to waters over reefs as they increase in size and age. 

In north-western Australia, the King Threadfin grows far larger and lives for longer than 
the Blue Threadfin, a difference reflected in the maximum total lengths and ages we recorded 
for these two species, i.e. 1393 mm and 10 years vs 793 mm and 6 years, respectively. King 
Threadfin grow faster than Blue Threadfin, attaining lengths of 322, 520 and 945 mm vs 245, 
400 and 635 mm, by the end of years 1, 2 and 5, respectively. Estuary Rockcod and Malabar 
Grouper grow at a similar rate during their first 10 years of life, reaching lengths of 282, 522 
and 841 mm vs 287, 545 and 833 mm at 2, 5 and 10 years of age, respectively. However, the 
maximum length of 1156 mm and age of 21 years attained by Estuary Rockcod are less than the 
values of 1270 mm and 32 years we recorded for the Malabar Grouper. Mangrove Jack are long 
lived, with some individuals exceeding 50 years in age. This species grows to ca 400 and 550 
mm in 5 and 10 years, respectively, after which it does not increase markedly in length. 

Both threadfin species and the Mangrove Jack have protracted spawning periods of ca 6 
months, with spawning peaking in spring and early summer, i.e. September to December. 
Although Estuary Rockcod and Malabar Grouper spawn for most of the year, spawning occurs 
predominantly between late spring and early autumn. All five species spawn on many occasions 
each year. 
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The Blue and King threadfins both mature first as males and all of the males later 
change to females, i.e. they are protandrous hermaphrodites. These species typically reach 
sexual maturity as males at the end of their first year of life when their lengths are ca 200 and 
230 mm, respectively. Blue and King Threadfin typically change from male to female at ca 

400 and 810 mm, respectively, when they are ca 2 and 4 years old, respectively.  
Estuary Rockcod and Malabar Grouper mature first as females and, with increasing size 

and age, typically change to males, i.e. they are protogynous hermaphrodites. The females of 
Estuary Rockcod attain maturity at a smaller length (ca 575 mm) than those of Malabar Grouper 
(ca 800 mm). The change from females to males occurs at a smaller length in Estuary Rockcod 
(ca 925 mm) than in Malabar Grouper (ca 1100 mm). The youngest individuals of these two 
species to have changed sex to males were 8 and 13 years of age, respectively. The fastest 
growing fish are typically destined to change sex and the majority of the slowest growing fish 
remain as females. The females and males of Mangrove Jack typically attain maturity at lengths 
of 450-500 mm and 6-7 years of age. 

Estimates of the current impacts of fishing indicate that the Blue Threadfin is fully 
exploited and that the King Threadfin is over-exploited. Managers also need to recognize that 
Blue and King Threadfin are restricted to readily accessible nearshore waters and that fishers 
take many individuals of these two species before they reach the size at which they typically 
change sex from male to female.  

The fisheries for the Estuary Rockcod and Malabar Grouper are apparently sustainable 
at the current levels of fishing. However, because these species change sex from female to male, 
a precautionary approach should be adopted for managing these species as the abundance of 
their males can be impacted heavily at even relatively low levels of fishing. In principle, the 
reduction from 1200 to 1000 mm of the upper legal length for retention of Estuary Rockcod will 
help protect the males of this species. However, the effectiveness of this regulation will depend 
on the ability of these large males to survive being caught and released. 

The fishery for Mangrove Jack also appears to be sustainable at the current level of 
fishing. However, managers will need to monitor the status of the stock of this species, which, 
because of its high value, will inevitably attract increasing attention from the recreational, 
commercial and charter boat sectors. As the current minimum legal lengths for Mangrove Jack, 
and the Estuary Cod and Malabar Grouper are far lower than the size at which these species 
typically attain maturity and these species have low natural mortality and thus low productivity, 
managers will need to consider increasing the MLLs for these species to ensure that their 
fisheries are sustainable as fishing pressure increases. However, at the same time, managers will 
need to take into account the fact that the introduction of such a policy would prohibit many 
recreational anglers from catching these species, as these anglers fish in nearshore waters where 
only the juveniles of Mangrove Jack, Estuary Cod and Malabar Grouper occur. Alternatively, 
managers might need to consider policies which reduce fishing effort. 

The discussion of the implications of our results emphasizes the overwhelming need to 
obtain more reliable life cycle data for the wide range of other species that are used in the 
models for determining more precisely the natural mortality of individual fish species. Reliable 
estimates of natural mortality are necessary to obtain robust estimates of fishing mortality. 
Consequently, managers need to adopt a precautionary approach until such data become 
available. 

 
 
 
 

Keywords: Polynemidae, Serranidae, Lutjanidae, reproduction, hermaphroditism, protandry, 
protogyny, age composition, growth, mortality, per recruit analysis, stock assessment, 
management implications.  
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1. GENERAL INTRODUCTION 

1.1 BACKGROUND 

The Blue and King Threadfins Eleutheronema tetradactylum and Polydactylus 

macrochir (previously Polynemus sheridani) and the Estuary Rockcod Epinephelus 

coioides, Malabar Grouper Epinephelus malabaricus and Mangrove Jack Lutjanus 

argentimaculatus are among the most important recreational and commercial fish 

species on the ca 3000 km of the Pilbara and Kimberley coasts (Department of Fisheries 

WA, unpublished creel census data and Commercial Catch and Effort Statistics - 

CAES). As a result of increases in tourism and population size, the number of 

recreational anglers fishing for the above five species along the Pilbara and Kimberley 

coasts presumably will continue to rise. These species also constitute the main food 

source of local aboriginal communities and play an important cultural role in the life of 

these communities.  

 

Threadfins 

The Blue and King Threadfins contribute over 60% to the total landings of the 

Kimberley Gill Net and Barramundi Managed Fishery (KGBMF), which is the major 

nearshore commercial fishery in the coastal waters of Western Australia north of Port 

Hedland at 20°10΄S, 118°, 36΄E (State of the Fisheries Report WA, 1999/2000). The 

management zone of the KGBMF covers almost 2000 km of coastline from Eighty Mile 

Beach at 19°S, 121.30°E, northwards to the Western Australia/Northern Territory 

border. There are also other commercial fishers who are licensed to catch these two 

species outside the boundaries of the KGBMF.  

In 1999/2000, the total commercial catch of threadfin salmons in north-western 

Australia was 174 tonnes and valued at $1.65 million, which represents a very 

substantial contribution to the economy of the small and isolated communities of the 

Pilbara and Kimberley regions. The trends in commercial catch of the two threadfin 

species between 1988 and 2004 are presented in Chapter 3. 
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An analysis of catch statistics by R. Lenanton (Supervising Scientist for Finfish 

Research, Department of Fisheries Western Australia, unpublished data) demonstrated 

that more than 90% of the commercial catch of threadfins by the KGBMF and 

exemption holders operating along the Eighty Mile Beach section of the Pilbara is 

obtained from between 20°S, 120°E and 16.30°S, 123°E, with the greatest proportion of 

the catch of the managed fishery being taken in the southern part of that management 

zone. We have therefore focused much of our sampling for threadfins in that southern 

region. 

The owners of local fish markets, such as those in Broome, are increasingly 

focusing on selling threadfin because they are experiencing difficulties in obtaining 

supplies of other species, such as red emperor and gold band snapper, which have 

become very highly sought after by the Perth market. The Perth and interstate markets 

have also become aware of the high quality of threadfin as a table fish and are therefore 

purchasing more of these species. Indeed, the purchase of threadfin salmon by these 

markets is now beginning to impact even on the Broome market, which often cannot 

obtain sufficient supplies to satisfy local demand. The Blue and King Threadfins are 

also the fish species most heavily targeted by shore-based recreational fishers along the 

Pilbara and Kimberley coasts (Williamson et al., in press). From the above, it is evident 

that the combined fishing effort for threadfins from both fishing sectors is increasing 

and must therefore be having at least some effect on the abundance of the stocks of 

these species.  

 

Estuary Rockcod, Malabar Grouper and Mangrove Jack  

Unlike the two threadfin species, the Estuary Rockcod, Malabar Grouper and Mangrove 

Jack are caught offshore as well as inshore. However, as with the first two species, the 

latter three species are well regarded as table fish, attracting excellent prices for 

commercial fishers.  

Estuary Rockcod, Malabar Grouper and Mangrove Jack are caught 

commercially by the Northern Demersal Scalefish Managed Fishery (NDSF) and by the 

Pilbara Demersal Finfish Fisheries, which include the Pilbara Fish Trawl (Interim) 
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Managed Fishery, the Pilbara Trap Managed Fishery and a line fishery. The above 

fisheries are subject to management regulations that restrict fishing effort. 

The commercial catches of the Estuary Rockcod and Malabar Grouper are not 

recorded separately in the CAES records of the Department of Fisheries WA. In 

Western Australia, the majority of the commercial catches of Mangrove Jack are landed 

by fishers operating north of the North West Cape (21°47’S, 114°09’E) (S. Newman, 

unpub. data). The trends in commercial catch of L. argentimaculatus between 1988 and 

2004 are presented in Chapter 5. 

In Western Australia, the highly-valued catches of the above three species are 

transported by road from the regional ports of Onslow, Point Samson, Port Hedland and 

Broome to markets in Perth, where they are marketed whole and usually fresh on ice. 

Lutjanus argentimaculatus is a prized angling and sport fish in Western Australia and, 

during a recent survey, was found to be one of the ten most abundant species landed by 

the recreational fishers of the Pilbara and West Kimberley region (Williamson et al., in 

press). During the latter survey, the recreational catch of this species over a 12 month 

period was estimated to be approximately 5 tonnes.   

In a recreational fishing survey of anglers by the Department of Fisheries WA, 

the fish recorded as Estuary Rockcod (which constitutes Estuary Rockcod and Malabar 

Grouper, collectively) and the Mangrove Jack were both ranked among the ten most 

abundant taxa in the catches of both the inshore and offshore recreational fisheries of 

the Pilbara (P. Williamson, Department of Fisheries WA, pers. comm.). 

Although still small, there is also a rapidly developing charter boat fishery in the 

Pilbara region which, in the future, may take significant numbers of the above three 

species. Some idea of the growth in this fishery is provided by the fact that the catches 

rose from just 3 tonnes in 1991 to 33 tonnes in 1996 and 47 tonnes in 1999 (State of the 

Fisheries Report WA, 1999/2000). 

The aboriginal communities along the Pilbara and Kimberley coasts fish the 

Estuary Rockcod, Malabar Grouper and Mangrove Jack, and also threadfins, as a source 

of food. These communities are also showing an interest in developing a commercial 

enterprise in which visitors will be charged for fishing on their native lands. The 
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recognition of the right for aboriginal people to continue to fish in a traditional but non-

exclusive manner was recognised by the High Court of Australia with respect to the 

Croker Island community. 

The aquaculture potential for Estuary Rockcod has been recognised by the 

Western Australian Government through their provision of funds to Ocean West 

Fisheries Pty Ltd for this purpose. This species, and also the other four species which 

are the subject of the current study, form the basis of successful aquaculture ventures 

elsewhere in the world (see Shiau & Lan, 1996; Emata et al., 1999; Ahmad et al., 2000; 

Lee & Ostrowski, 2001).  

Although the catches of the Estuary Rockcod and Malabar Grouper are not 

recorded separately in the Catch and Effort Statistics (CAES) records of the Department 

of Fisheries WA, the combined data for those two species, together with the 

observations of experienced local commercial fishers, provide strong circumstantial 

evidence that the abundance of these species in traditional fishing areas has declined in 

recent years. There can be little doubt that, through the overall expansion of the fisheries 

for these species in north-western Australia, the fishing effort for the two species of 

threadfin, Estuary Rockcod, Malabar Grouper and Mangrove Jack will continue to 

increase in this region. 

There are very limited biological data on the habitats, size and age compositions, 

growth, reproductive biology and mortality of Blue and King Threadfin, Estuary 

Rockcod, Malabar Grouper and Mangrove Jack in north-western Australia. Such data 

are crucial for developing appropriate plans for ensuring that the stocks of these 

increasingly-exploited populations can be sustained. In the context of their reproductive 

biology, it is important to confirm that, as is implied from the data for the same or 

similar species elsewhere, the two threadfin species are protandrous hermaphrodites and 

the Estuary Rockcod and Malabar Grouper are protogynous hermaphrodites in Western 

Australia. Details of the size and age at sex change and sex ratios of such 

hermaphroditic species are essential for developing appropriate management plans for 

these species. The implications of hermaphroditism for managing the two threadfin 

species and Estuary Rockcod and Malabar Grouper are provided in chapters 3 and 4. 
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Details of the biological data available for each species elsewhere are provided in the 

introductions to the relevant chapters. 

 

1.2 NEED 

Although the Blue and King Threadfins, Estuary Rockcod, Malabar Grouper and 

Mangrove Jack are of high recreational and commercial importance in the Pilbara and 

Kimberley regions, there are essentially no biological data of the type required by the 

Department of Fisheries, Western Australia, for managing and thus conserving the 

stocks of these species in this region of north-western Australia. The continuing 

exploitation by commercial fishers, together with the increases in population size and 

tourism in north-western Australia that will inevitably lead to increases in recreational 

fishing pressure, means that there is an urgent need to acquire reliable biological data 

for developing effective and appropriate management plans for the above five species. 

 

1.3 OBJECTIVES 

The main objective was to produce the biological data required for appropriate 

management of the Blue and King Threadfins, Estuary Rockcod, Malabar Grouper and 

Mangrove Jack in waters off the Pilbara and Kimberley coasts. Unless otherwise stated, 

this involved determining the following for each species: 

1. Size and age compositions, sex ratios and growth rates. 

2. Sizes and ages at which the first four species change sex. 

3. Sizes and ages at which females and males reach maturity. 

4. Duration and location of spawning and whether multiple spawning occurs within 

a breeding season. 

5. Batch fecundity and its relationship to body size. 

6. Size compositions of fish caught by recreational, commercial, aboriginal and 

charter fishers. 

7. A yield and spawning biomass-per-recruit assessment and evaluation of the 

effectiveness of different legal minimum and maximum sizes. 
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2. GENERAL MATERIALS AND METHODS 

2.1 SAMPLING REGIME 

The Blue Threadfin Eleutheronema tetradactylum, the King Threadfin Polydactylus 

macrochir, the Estuary Rockcod Epinephelus coioides, the Malabar Grouper 

Epinephelus malabaricus and the Mangrove Jack Lutjanus argentimaculatus were 

collected from sites along the Pilbara and Kimberley coasts at approximately bimonthly 

intervals between July 2002 and January 2005. The samples of the two threadfin salmon 

species and, to a lesser extent, those of the other three species, were supplemented by 

samples obtained between December 2000 and June 2002 during another FRDC project 

(2000/132) entitled “Characterisation of the inshore fish assemblages of the Pilbara and 

Kimberley coasts.” Details of the sampling regime of the current project are 

summarised in Table 2.1. 

 

Table 2.1. Sampling regimes for juveniles and adults of the five fish species in 
Pilbara and Kimberley waters. Locations of sampling sites are shown in Figure 2.1. 
 

 

Species 
 

 

Life Stage 
 

 

Habitat 
 

 

Region 
 

 

Method 
 

 

Juvenile 
 

Nearshore sand 
Nearshore mud 

 

Derby 
Anna Plains 
Eighty Mile Beach 
 

 

Seine net 
Gill net 

 
 

Blue Salmon 

Eleutheronema 

tetradactylum 
 

King Threadfin 

Salmon 

Polydactylus 

macrochir 

 

Adult 
 

Nearshore sand 
Nearshore mud 
Mangroves 

 

Roebuck Bay 
Anna Plains 
Eighty Mile Beach 
Cape Keraudren 
Karratha 
 

 

Gill net 
Recreational angling 
Recreational haul netting 
Commercial gill netting 

 

Juvenile 
 

Intertidal pools 
Mangroves 

 

Broome 
Port Smith 
Cape Keraudren 
Karratha 
Robe River 
Exmouth 
 

 

Rotenone treatment 
Angling 

 

Adult 
 

Inshore reefs 
Offshore reefs 

 

Kimberley coast 
Pilbara coast 

 

Research trap 
Commercial trap 
Commercial trawl 

 
 

Estuary Rockcod 

Epinephelus coioides 
 

Malabar Grouper 
Epinephelus 
malabaricus 

 

Mangrove Jack 

Lutjanus 

argentimaculatus 
    

 



 

 
 

Figure 2.1:  Map showing the location of the various sampling sites and the sampling methods used to catch 
Blue and King Threadfin, Estuary Rockcod, Malabar Grouper and Mangrove Jack. 
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Samples of E. tetradactylum and P. macrochir were collected by gill netting 

over bare sand habitats at Cape Keraudren, Eighty Mile Beach and Port Smith, and in 

mangroves at the first and last of these locations. The composite gill nets were 60 m 

long, 2 m high and consisted of six 10 m long monofilament panels, each with a 

different stretched mesh width of either 51, 76, 102, 127, 152 or 178 mm. When 

sampling over bare sand, the gill net was set parallel to the shoreline at low to mid tide 

and was fixed in place using fencing pickets. The net was located in a position that 

ensured it would be covered for ca 3h by the incoming tide. When sampling in 

mangrove areas, the gill net was extended parallel to the shoreline and attached to 

mangrove trunks in an area where it would likewise be covered for ca 3h at high tide. 

On each sampling trip, two gill nets were set at each habitat on two consecutive nights. 

A 60.5 m seine net was also used to sample E. tetradactylum and P. macrochir 

over bare sand sites at Port Smith, Eighty Mile Beach and Cape Keraudren and a 21.5 m 

seine net was used to sample the juveniles of these species over mud and bare sand at 

Anna Plains and Eighty Mile Beach (Figure 2.1). The 60.5 m seine net consisted of two 

29 m long wings, each made of 25 mm mesh, and a 2.5 m bunt consisting of 9 mm 

mesh. This net fished to a depth of 2.5 m and swept an area of 583 m2. The 21.5 m seine 

net consisted of two 10 m long wings and a 1.5 m bunt. Each wing consisted of a 6 m 

panel of 9 mm mesh and a 4 m panel of 3 mm mesh, while the bunt was made of 3 mm 

mesh. The net fished to a depth of 1.5 m and covered an area of ca 116 m2. Seine nets 

were either laid in a semi-circle or extended parallel to the shore and then rapidly 

dragged onshore. All sites were sampled on neap tides, when the tidal height was at or 

close to its maximum and water movement was minimal. For safety reasons, seine 

netting was only conducted during the day.  

Samples of the two threadfin species were also obtained from recreational and 

commercial fishers. Recreational fishers catch these species by employing either rod 

and line angling or 30 m long monofilament haul nets comprising of 80 to 100 mm 

mesh. Commercial fishers target threadfin salmon using heavy gauge monofilament gill 

nets with mesh sizes of 140 to 165 mm. Although gill nets are typically only ca 60 m 

long, the use of such nets up to 1000 m long is permitted by the Department of 
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Fisheries, Western Australia. Gill nets are either set from boats in shallow (< 1 m) tidal 

waters (i.e. at Roebuck Bay, Broome) or staked or anchored perpendicular to the 

shoreline below the high water mark, so that they become inundated by the incoming 

spring tide (i.e. at Anna Plains, Eighty Mile Beach). 

The juveniles of E. coioides, E. malabaricus and L. argentimaculatus were 

collected from intertidal pools at Gantheaume Point (Broome), Port Smith and Cape 

Keraudren by using rotenone. Three randomly-selected pools, which ranged from 10 to 

20 m2 in area and from 0.4 to 0.6 m in depth, were sampled at each of these three 

sampling locations on each sampling trip. Prior to its addition to each pool at low tide, 

powdered rotenone was mixed with water to form a paste and applied in a concentration 

of ca 200 g of dry rotenone powder 10 m-2 of pool area. Every effort was made to 

ensure that neighbouring pools did not become contaminated with this ichthyocide. This 

included the construction of barriers to prevent water moving out of the treated pool 

until it had become well diluted by the incoming tide. Ten minutes after their treatment 

with rotenone, the pools were sampled for fish using a long-handled scoop net 

constructed of 5.0 mm mesh. 

The larger juveniles of both cod species and Mangrove Jack were collected by 

angling in nearshore habitats, including inshore reefs and mangrove creeks, whereas the 

adults of these three species were obtained by research trapping and from commercial 

trap and trawl fishers.   

The fish traps used by the Kimberley trap fishers are constructed of 50 mm 

galvanised weldmesh and are subject to the regulation that the diagonal corners of each 

square of the mesh cannot be < 70 mm. The weldmesh is welded onto a supporting 

frame comprising galvanised steel rods or bars. The regulations also require that each 

trap has an internal volume that is ≤ 2.25 m3. The fish traps are typically 1600 mm in 

length, 1500 mm in width and 900 mm in height. Each trap has a single opening of ca 

100 mm by 900 mm, although the exact dimensions vary among vessels.  

The vessels in the Pilbara trawl fishery tow a single net with two otter boards. 

The net consists of mesh that must exceed 100 mm and a headrope length that may not 

exceed 37 m. The regulations also require that the overall trawl gear (including sweeps, 
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bridles, and headropes) do not exceed 274 m. The ground (or foot) rope of the net 

opening has rollers or bobbins attached which have a diameter that is less than 350 mm. 

These are placed about a third of a metre apart along the ground rope. The bottom rope 

is weighted so that the bobbins contact the sea floor to enable the bottom-dwelling 

species to be caught. The weighted ground rope, which is integral to the fishing process, 

has an impact on the bottom habitat. The duration of each trawl is 0.5 to 5 h with a 

modal time of 3 h. The net is retrieved on a net drum, with the catch being spilled on to 

the deck or alternatively below deck through a hopper. 

Water temperature and salinity were measured at the bottom of the water column 

at each site on each sampling occasion using a YSI30 conductivity meter.  

 

2.2 FISH MEASUREMENTS 

The total length (TL) and fork length (FL) of all E. tetradactylum and P. macrochir and 

the TL and standard length (SL) of all E. coioides, E. malabaricus and 

L. argentimaculatus were measured to the nearest 1 mm. The fork length was measured 

for the first two species to enable comparisons to be made with values recorded for this 

variable in other polynemids. All fish < ca 6 kg were weighed to the nearest 0.1 g, while 

those > ca 6 kg were weighed to the nearest 1 g. The relationship between total weight 

and total length of each species was calculated so that the weight of an individual of any 

of those species could be estimated when only the frame (filleted fish) of that individual 

was available, as was sometimes the case with fish obtained from markets or 

recreational anglers. 

 

2.3 REPRODUCTIVE BIOLOGY 

The gonads of each fish were weighed to the nearest 0.01 g and used to calculate the 

gonadosomatic index (GSI) of each fish from the equation W1/(W2-W1) x 100, where 

W1 = wet weight of the gonad and W2 = wet weight of the whole fish, i.e. W2-W1 = 

somatic weight. Each gonad was examined macroscopically and those that contained 

exclusively either ovarian or testicular tissue were allocated to one of the following 

eight maturity stages, derived from the scheme of Laevastu (1965), i.e. I/II = 
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immature/resting, III = developing, IV = maturing, V = mature, VI = spawning, VII = 

spent, VIII = spent/recovering. Since it is often not possible to distinguish 

macroscopically between stages V and VI, the data for these two stages have been 

pooled. The stages in the development of ovaries and testes of the two threadfin species 

are described in Chapter 3. Since relatively few males were recorded for the two 

protogynous species, i.e. the Estuary Rockcod and Malabar Grouper, estimates of the 

duration of the spawning period has focused on the trends exhibited by the reproductive 

variables for the females of these species. Since the stages in the development of the 

gonads of Mangrove Jack were essentially the same as for the other four species, for this 

species, the reader is referred to the descriptions given in Chapters 3 and 4 for the other 

four species. 

In each month, the mid-region of the gonads of at least 10 individuals of each 

species were placed in Bouin’s fixative for ca 48 h, dehydrated in a series of increasing 

concentrations of ethanol, embedded in paraffin wax, cut into 6 µm thick transverse 

sections and stained with Mallory’s trichrome. These histological sections were used to 

(1) ensure that ovaries were assigned to their appropriate macroscopic stages of 

maturity, (2) determine whether each of these species had determinate or indeterminate 

fecundity to ascertain the most appropriate technique for estimating fecundity, and (3) 

ensure that the fish were sexed correctly and (4) to confirm that the two threadfin 

species are protandrous hermaphrodites and that the Estuary Rockcod and Malabar 

Grouper are protogynous hermaphrodites (sensu Sadovy and Shapiro, 1987; Buxton & 

Garratt, 1990).  

The L50 at maturity, i.e. length at which 50% of individuals attain maturity, was 

determined for male E. tetradactylum and P. macrochir, female E. coioides and 

E. malabaricus and both sexes of L. argentimaculatus. The above choices of sex for 

determining the L50 were based on the fact that our results confirmed that the first two 

species are protandrous hermaphrodites and the second two species are protogynous 

hermaphrodites, while the last species is a gonochorist (see later). The L50s were 

calculated by using logistic regression analysis to determine the relationship with length 

of the probability that a fish, during the spawning season, possessed gonads at stages III 
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to VIII and would thus have had the potential to spawn or have spawned during that 

period. The data were randomly re-sampled and analysed to create 1000 sets of 

bootstrap estimates for the parameters of the logistic regression and estimates of the 

probability of maturity within the range of recorded lengths. The 95% confidence limits 

of the L50s and L95s derived using this re-sampling technique were taken as the 2.5 and 

97.5 percentiles of the corresponding predicted values resulting from this re-sampling 

analysis. The point estimates of each parameter and of each probability of maturity at 

the specified length were taken as the medians of the bootstrap estimates. The form of 

the logistic equation is P = 1/{1+exp[-ln(19)(L-L50)/(L95-L50)]}, where P = probability 

that a fish is mature, L = total length, L50 and L95 = the lengths at which 50 and 95% of 

female fish reach sexual maturity, respectively, and ln = the natural logarithm. For the 

protandrous hermaphroditic P. macrochir, this re-sampling procedure was also used to 

determine the length at which 50% of individuals had completed sex change, but where 

P = the probability that a fish has changed sex to become a female. Since there were 

substantial numbers of transitional fish, i.e. undergoing sex change, for the second 

protandrous threadfin, E. tetradactylum, the same procedure was used to estimate the 

lengths at both the beginning and completion of sex change, where, in the latter 

case, P = the probability of a fish, at it’s time of capture, of being either transitional 

between male and female or a female. In the case of the protogynous hermaphroditic 

Estuary Rockcod and Malabar Grouper, the L50s at sex change were calculated by 

grouping the very few fish which, at their time of capture, were undergoing sex change, 

with the males, as it was considered likely that fish of the former category were capable 

of functioning as males (see Chapter 4 for rationale). In the case of the Estuary 

Rockcod, Malabar Grouper and Mangrove Jack, this re-sampling procedure has also 

been used to estimate the length and age at which 50% of individuals in the samples 

were caught in offshore waters.  

To determine whether each of the five species has determinate or indeterminate 

fecundity, the diameters of 200 oocytes in histological sections of stage VI ovaries of 

two fish caught during the spawning period were measured to the nearest 10 µm and the 

stage of each of those oocytes recorded. Measurements were restricted to oocytes in 
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which a nucleus was visible in their centre to ensure that the oocytes had been sectioned 

through their centre. This approach could not be used to measure the oocyte diameters 

of migratory nucleus or hydrated oocytes in histological sections because the nucleus of 

these oocytes migrates towards the periphery of the cytoplasm and then undergoes 

germinal vesicle breakdown. 

Since all five species were shown to have indeterminate fecundity (see later), the 

number of large eggs present in the mature ovaries of fish caught just prior to the 

commencement of the spawning period does not correspond to the annual fecundity of 

any of these species (see Hunter et al., 1985). The ability to estimate the annual 

fecundity of species with indeterminate fecundity requires data on both spawning 

frequency and batch fecundity. Due to the remoteness of the Pilbara and Kimberley 

coasts, it was not logistically possible to determine the spawning frequency for any of 

the five species and thus derive estimates of annual fecundity. However, batch 

fecundities were able to be calculated for Mangrove Jack as a number of individuals of 

this species were caught with ovaries containing hydrated oocytes. For this purpose, one 

of the ovarian lobes containing hydrated oocytes was preserved in 10% neutrally-

buffered formalin. The formalin-preserved ovarian lobe was dried with blotting paper 

and ca 180-200 mg of tissue was removed from each of its anterior, middle and 

posterior regions and weighed to the nearest 1 mg. These pieces of tissue were placed 

on separate slides, covered with 30% glycerol and examined under a dissecting 

microscope. The oocytes were then teased apart and the number of hydrated oocytes 

recorded. The number of hydrated oocytes in each of the three pieces of ovarian tissue 

of known weight were then used, in conjunction with the weight of both ovarian lobes, 

to estimate the total number of hydrated oocytes (= batch fecundity) that would have 

been present in the pair of ovarian lobes of each fish. 

 

2.4 AGE AND GROWTH 

The two sagittal otoliths of each individual of each species were removed, cleaned, 

dried and stored in paper envelopes. Whole otoliths were placed in methyl salicylate and 

examined under reflected light against a black background using a dissecting 
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microscope. For each species, the number of opaque zones in whole otoliths of 100 fish 

was compared with those recorded for the same otoliths after they had been sectioned. 

For sectioning, one of the otoliths of each fish was mounted in clear epoxy resin and cut 

along the same plane into ca 300 µm thick sections using a low speed diamond saw 

(Buehler). The sections were cleaned and mounted on slides using DePX mounting 

medium and examined under reflected light, employing a dissecting microscope 

attached to a video camera (Leica DC 300). The image was analysed using the Leica 

computer imaging package IM1000. The 100 otoliths were chosen so that overall they 

contained a wide range in the numbers of opaque zones. Since sectioning did not 

improve the resolution of the opaque zones in any of the otoliths of E. tetradactylum 

and P. macrochir, whole otoliths were used for ageing these species (Plate 2.1). 

However, as opaque zones were typically more easily discernible in the sectioned than 

whole otoliths of E. coioides, E. malabaricus and L. argentimaculatus, sectioned 

otoliths were used for ageing these three species. The opaque zones in all otoliths were 

counted without knowledge of the size or time of capture of the fish from which the 

otolith had been removed. 

Marginal increment analysis was used to validate that a single opaque zone is 

formed annually in the otoliths of each of the five species. For this purpose, the 

marginal increment, i.e. the distance between the outer edge of the single or outermost 

opaque zone and the edge of the otolith (L1 in Plate 2.2), was measured and expressed in 

one of the following ways. 1) As a proportion of the distance between the primordium 

and the outer edge of the opaque zone, when only one such zone was present (L2 in 

Plate 2.2) or 2) as a proportion of the distance between the outer edges of the two 

outermost opaque zones, when two or more opaque zones were present (L2 in Plate 2.3). 

All measurements were made perpendicular to the opaque zones and along the long 

posterior axis of whole otoliths and close to the sulcus in the case of sectioned otoliths. 

The marginal increments were measured without knowledge of the date of capture or 

length of the fish from which that otolith had been removed. The data for otoliths with 

corresponding numbers of opaque zones in corresponding months of the year were 

pooled. 
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Plate 2.1. a) A whole otolith of a 1143 mm (TL) Polydactylus macrochir and b) the 
same otolith after sectioning. Seven zones are visible prior to and after sectioning of the 
otolith 

 

 

 

 

      

Plate 2.2. A whole otolith of Eleutheronema tetradactylum (383 mm TL) showing the 
measurements used for marginal increment analysis when only one opaque zone was 
present. L1 = distance between the opaque zone and the otolith edge, i.e. the marginal 
increment; L2 = distance between the primordium and the outer edge of the opaque zone. 
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Plate 2.3. A whole otolith of Polydactylus macrochir (827 mm TL) showing the 
measurements used for marginal increment analysis when more than one opaque zone 
was present. L1 = distance between the outer edge of the outermost opaque zone and the 
otolith edge, i.e. the marginal increment; L2 = distance between the outer edges of the 
penultimate and ultimate opaque zones. 

 

The middle of the spawning period of each species, determined from the trends 

throughout the year in mean monthly GSIs, gonadal maturity stages and pattern of 

oocyte development, was assigned as the birth date of each species. Monthly samples of 

small fish which, from length-frequency distributions, were determined to belong to the 

0+ age class were used to confirm that the first opaque zone was laid down in the first 

winter of life. The age of each individual of each species on their date of capture was 

determined using the assigned birth date of the species, the number of opaque zones in 

their otoliths and the time of year when the opaque zone becomes delineated from the 

edge of the otolith. 

Since E. tetradactylum, P. macrochir, E. coioides and E. malabaricus undergo a 

change of sex with increasing age (see later), a single von Bertalanffy growth curve was 

fitted to the lengths at age of the individuals of these species. In the case of 

L. argentimaculatus, which is gonochoristic (see later), growth curves were fitted to the 

lengths at age of both males and females. The von Bertalanffy growth equation is 

( )( )01 ttk

t eLL
−−

∞ −= , where tL  is the predicted total length at age t years, ∞L  is the 
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asymptotic length predicted by the equation, k is the growth coefficient (year-1) and 0t  is 

the hypothetical age at which fish would have zero length. The von Bertalanffy growth 

curves were fitted by minimizing the sum of squares, using SOLVER in Microsoft 

Excel™. The data were randomly resampled and analysed to create 1000 sets of 

bootstrap estimates for the parameters of the von Bertalanffy growth equation. The 

point estimate for each parameter was taken as the median of the 1000 bootstrap 

estimates. The 95% confidence limits for the von Bertalanffy growth parameters were 

calculated as the 2.5 and 97.5 percentiles of the corresponding estimated values.  

A likelihood-ratio test was used to compare the growth curves for 

E. tetradactylum and P. macrochir, for E. coioides and E. malabaricus, and to compare 

those of the females and males of L. argentimaculatus. The hypothesis of a common 

growth curve for the two sexes (or two species) was rejected at the α = 0.05 level of 

significance if the test statistic, calculated as twice the difference between the log-

likelihoods obtained by fitting a common growth curve for both sexes and by fitting 

separate growth curves for each sex (or species) exceeded ( )q
2

αχ , where q is the 

difference between the numbers of parameters, i.e. 3, in the two approaches (e.g. 

Cerrato, 1990). 

 

2.5 MORTALITY 

The instantaneous coefficients for total mortality, Z, and natural mortality, M, for each 

species were estimated using the approach of Hall et al. (2004), which was developed 

during a previous FRDC project (2000/137). This method combines the various 

estimates of mortality and takes into account the fact that M should not exceed Z. The 

following is a summary of the methods for deriving each of the individual mortality 

estimates and of the method of Hall et al. (2004) for combining the various results. 

An estimate of the instantaneous coefficient of total mortality, Z, was 

determined for each species using relative abundance (catch-curve) analysis (Deriso et 

al., 1985). The age at full recruitment to the exploited stock of each of the five species 

was determined by developing an age-frequency histogram for each of those species. 

The mortality estimates were derived from the age classes that were located on the 
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descending limb of the age-frequency distribution to the fishery (Ricker, 1975). The 

catch curves for each species were analysed using the assumptions that Z and the levels 

of annual recruitment are constant and that the age composition of fully-recruited fish 

represents a random sample from a multinominal distribution with uniform selectivity 

from the age of full recruitment (Hall et al., 2004). The value of Z was estimated by 

maximising the log-likelihood using the SOLVER routine in Microsoft Excel™. The 

data for each species were randomly resampled with replacement and the resulting 

samples were analysed to create 10,000 sets of bootstrap estimates. The point estimate 

of Z was taken as the median of the 10,000 bootstrap estimates. The 95% confidence 

limits were calculated as the 2.5 and 97.5 percentiles of the corresponding estimated 

values.  

A second estimate of Z was obtained for each of the five species using the 

relationship between total mortality and maximum age, as described by the equation of 

Hoenig (1983) for fish. This relationship was refitted to the data given for the 82 fish 

stocks provided in Hoenig (1982). For each species, the maximum recorded age was 

then inserted into the Statistical Package for the Social Sciences (SPSS Inc., Chicago 

III) to obtain point estimates and associated 95% confidence limits, thereby taking into 

account the uncertainty of the parameter estimates and the variation of the data around 

the regression line.  

A third estimate of Z was determined for each of the five species using the 

simulation approach described by Hall et al. (2004). To provide more precise estimates 

for Z when using the simulation approach, the routine was modified slightly from that 

described by Hall et al. (2004) so that it employed, within each of the samples, the 

number of fish that were as old or older than a specified age, rather than the age 

associated with the oldest of those fish. The specified ages for E. tetradactylum, 

P. macrochir, E. coioides, E. malabaricus and for L. argentimaculatus in both the 

Pilbara and Kimberley regions, were 4, 7, 14, 16 and 46 and 40 years, respectively, and 

the number of fish above those ages were 9, 7, 5, 5 and 6 and 4 individuals, 

respectively. The three estimates of Z derived for each species were then combined, 

using the Bayesian approach of Hall et al. (2004).  
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Estimates of natural mortality M for each of the five species were calculated 

from the relationship between natural mortality, growth and water temperature as 

described by Pauly (1980). This relationship was refitted to Pauly’s data for 175 fish 

stocks using SPSS. The values of k (year-1) and L∞ (cm TL) in the growth curves 

derived for each species, and mean annual surface water temperature, T,  were then 

inserted into SPSS to obtain point estimates and associated 95% confidence limits for 

M. The mean annual surface water temperature used for each species was 26.9 oC, 

which is the mean temperature derived from data recorded by the Australian 

Oceanographic Data Centre http://www.AODC.gov.au for the region between Karratha 

and Broome. 

The Bayesian approach of Hall et al. (2004) was used to determine, for each 

species, the likelihood for M, calculated using the combined likelihood for Z. The 

calculation assumed that, for each value of Z, there is a uniform probability that M < Z 

(Hall et al., 2004). The resulting likelihood for M was then combined with the estimate 

for M derived from the Pauly (1980) equation. 

A Monte Carlo resampling approach was used to derive estimates of F for each 

species. Estimates of Z and M were randomly resampled, with replacement, from their 

respective probability distributions (i.e. combined Z estimate and Pauly (1980) estimate 

for M), but were rejected when corresponding values for M were greater than for Z. 

These values were used to produce 5000 estimates for F, determined using the equation 

F = Z – M. The point estimate of F and associated 95% confidence limits were taken as 

the median value and the 2.5 and 97.5 percentiles of the 5000 estimates derived from 

the re-sampling analysis. 

 

2.6 YIELD AND SPAWNING BIOMASS PER RECRUIT 

The yield per recruit (YPR) and spawning stock biomass per recruit (SSB/R) for each 

species were calculated assuming knife-edge recruitment at the age of full recruitment 

ct , constant total mortality for fully-recruited fish and a maximum age of 50 years. 

Yield per recruit was calculated as ∑
=

− −−=
50

)exp()1(
cta

a

Z
ZaWe

Z

F
YPR , where F refers to 
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the estimated current level of fishing mortality and where Wa, the total body weight at 

age a, was determined from the predicted length at age determined using the von 

Bertalanffy growth curve for that species and employing the relationship between total 

body weight (g) and length (mm) for each of the five species. The values for the fishing 

mortality that maximises YPR, Fmax, and that at which the derivative of YPR with 

respect to F is one tenth of that at the origin, F0.1, were estimated numerically in 

Excel™. These two values were used as the biological reference points for fishing 

mortality for each species against which the estimate of the current level of fishing 

mortality was compared (Hilborn and Walters; 1992, Haddon, 2001). 

The SSB/R for the females and males of each species was calculated as 

∑
=

−=
50

,, )exp(/
cta

amatasexa ZaPPWRSSB . Wa, the total body weight at age a, was 

determined from the length at age predicted using the von Bertalanffy growth curve and 

employing the total body weight (g) to length (mm TL) relationship. In the case of the 

hermaphroditic species, asexP , , the proportion of that sex at age a, was determined using 

the logistic function relating the proportion at each length of that sex and the von 

Bertalanffy growth equation for that species. For the protandrous species, asexP ,  for 

males was calculated as 1 minus the proportion of fish that had changed sex from male 

to female. Similarly, for protogynous species, asexP ,  for females was calculated as 1 

minus the proportion of fish that had changed sex from female to male. For the 

gonochoristic L. argentimaculatus, asexP ,  was always assumed to equal 0.5. For all 

species, the calculation for the proportion of mature fish at age a, i.e. amatP , , was 

determined using the logistic function relating the proportion of mature fish to length, 

and the length at age predicted using the von Bertalanffy growth function. 

Estimates for the current levels of YPR and SSB/R were determined for each of 

the 5000 values generated for F derived from the Monte Carlo re-sampling procedure. 

The point estimates and associated 95% confidence limits for the current level of YPR 

and SSB/R for each species were taken as the median and 2. 5 and 97.5 percentiles of 

the resulting YPR and SSB/R values. The spawning potential ratio, SPR, was calculated 
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as the ratio of SSB/R at a specified level of fishing mortality to that estimated for an 

unfished population (Goodyear, 1993).  



 31 

 

3. BIOLOGY OF THE BLUE THREADFIN ELEUTHERONEMA 

TETRADACTYLUM AND THE KING THREADFIN 

POLYDACTYLUS MACROCHIR. 

 

3.1 INTRODUCTION 

The Polynemidae (threadfins) is a percoid family that comprises approximately 40 

species which are found in coastal marine waters, estuaries or rivers in the tropics 

(Feltes, 1991; Motomura, 2004a, b). They typically live in shallow, turbid inshore 

waters, where they often occur in large numbers, and several species attain a relatively 

large size (Mukhopadhyay et al., 1995; Motomura, et al., 2002; Motomura, 2004b). 

Threadfin species are highly regarded for their eating qualities and form the basis of 

important commercial, recreational and subsistence fisheries. Although they typically 

grow rapidly (Gopalakrishnan, 1972; Kagwade, 1973) and reach maturity early in life 

(Dentzau & Chittenden, 1990; Szyper et al., 1991), the yields of some threadfin species 

in certain regions have declined so markedly in recent years that the commercial 

fisheries for those stocks have virtually collapsed (Abohweyere, 1989; Szyper et al., 

1991; Bensam & Menon, 1994). 

The susceptibility of certain threadfin species to fishing pressure has been 

attributed mainly to the consequence of their being protandrous hermaphrodites, i.e. 

maturing first as males and then changing sex to females with increasing size and age 

(Bensam & Menon, 1994; Friedlander & Ziemann, 2003; Poepoe et al., 2003). This 

conclusion is based on the fact that, as fishing pressure is typically biased toward the 

larger individuals in a population, it is the females of protandrous species that will be 

subjected to the greatest fishing mortality (Milton et al., 1998; Blaber et al., 1999). 

Heavy fishing pressure on such species will thus have a particularly severe effect on the 

total production of eggs by the population and thus potentially lead to recruitment 

overfishing (Blaber et al., 1996, 1999; Friedlander & Ziemann, 2003; Ley & Halliday, 

2004). For this reason, it is crucially important that the development of management 

plans for sustaining the stocks of such species is based on a thorough understanding of 
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the sizes and ages over which sex change occurs and thus of the implications of such 

changes (Buxton, 1992; Hesp et al., 2004a; Blaber et al., 2005). 

Blue and King Threadfins live in shallow, turbid nearshore and estuarine waters 

and have a common tropical distribution in northern Australia, occurring from 

approximately the Ashburton River in Western Australia at ca 21°S 115°E to near the 

border of Queensland and New South Wales at ca 28°S 153°E. Although P. macrochir 

is only otherwise found in southern Papua New Guinea, E. tetradactylum occurs 

northwards from Australia to China and Japan and the Persian Gulf in the west (Feltes, 

1999; Motomura et al., 2000; 2002). 

Although the majority of threadfin species are apparently protandrous 

hermaphrodites, a few are gonochoristic (cf; Hida, 1967; Kagwade, 1970; Dorairaj, 

1973; Santerre & May, 1977; Dentzau & Chittenden, 1990). Furthermore, there is 

evidence that E. tetradactylum is hermaphroditic in certain regions and gonochoristic in 

others. For example, it is protandrous in eastern Australia (Stanger, 1974; Russell, 1988; 

McPherson, 1997), but gonochoristic in India (Patnaik, 1967, 1970; Gopalakrishnan, 

1972) and apparently also in Singapore (Chao et al., 1994). Moreover, E. tetradactylum 

attains far greater total lengths in Indian waters, i.e. 1800-2000 mm (Gopalakrishnan, 

1972; Krishhnamurthy & Jeyaseelan, 1981; Feltes, 1999) than in Australian waters, i.e. 

ca 1000 mm (Kailola, 1993). 

Polydactylus macrochir has been shown to be a protandrous hermaphrodite in 

the coastal waters of Queensland and the Northern Territory (Garrett, 1992; R. Griffin 

unpubl. data, cited in Kailola, 1993; McPherson, 1997). However, there is evidence that 

the size and age at which this species attains maturity as a male and changes from male 

to female differs considerably among populations and that the spawning period varies 

with latitude (N.T. Fisheries, unpublished data; Garrett, 1992; McPherson, 1997). 

Moreover, estimates of the fork lengths at which the males of this species reach 

maturity in the eastern part of the Gulf of Carpentaria ranged from as low as ca 280 mm 

(McPherson, 1997) to as high as 600-800 mm (Garrett, 1992). The possibility that at 

least some of the variations among the biological characteristics of P. macrochir, and 

also of E. tetradactylum, may be due to genetic differences among populations, is 
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consistent with the results of allozyme and mitochondrial DNA studies carried out by 

Keenan (1997) and Chenoweth & Hughes (2003), respectively. 

The overall aim of the present study was to obtain, for the first time, sound 

quantitative data on crucial aspects of the biology of E. tetradactylum and P. macrochir 

in Western Australia. The individual aims, which were the same for both species, were 

as follows. 1. Describe the trends exhibited by commercial catch data since the late 

1980s. 2. Confirm that, as elsewhere in Australia, these species are protandrous 

hermaphrodites, in Western Australia. 3. Determine the length and age at which 

maturity is attained and sex change occurs. 4. Determine the timing and duration of the 

spawning period and whether fecundity is determinate or indeterminate and if spawning 

occurs on several occasions during a spawning period. 5. Determine the size and age 

compositions and growth characteristics. 6. Estimate total, natural and fishing mortality. 

7. Estimate the current level of yield per recruit, spawning biomass per recruit and 

spawning potential ratio. 

 

3.2 MATERIALS AND METHODS 

Unless otherwise recorded below, the methods used in this study of Eleutheronema 

tetradactylum and Polydactylus macrochir are those described in the General Materials 

and Methods (Chapter 2). 

 

3.2.1 Reproductive studies 

The subsequent results and discussion provide overwhelming evidence that, as 

elsewhere in Australia, E. tetradactylum and P. macrochir are protandrous 

hermaphrodites in Western Australian waters. Thus, when both testicular and ovarian 

tissues were observed in the gonad of a fish, that fish was recorded as transitional 

between male and female. The gonads of each transitional fish were removed and 

weighed and their testicular and ovarian components each assigned a maturation stage 

(see Chapter 2). The mid-region of each transitional gonad was cut transversely and the 

cross-sectional areas of its testicular and ovarian components were then estimated 

subjectively. This enabled the approximate percentage contributions of each of those 
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components to be calculated. N.B. Preliminary studies demonstrated that, in transitional 

gonads, the proportions of each component were similar throughout the length of both 

gonadal lobes. The proportions of testicular and ovarian components in each gonad of 

transitional fish were used, in conjunction with the total weight of that gonad and of the 

fish, to obtain approximate GSI values for both components. 

The lengths and ages at the attainment of maturity and lengths at the initiation 

and completion of sex change of E. tetradactylum and of sex change in P. macrochir 

were derived (see Chapter 2) using data obtained for fish collected by our seine netting 

and composite gill netting and by recreational fishers.  

 

3.2.2 Catch rates and densities 

The number of E. tetradactylum and P. macrochir in each replicate gill net and seine net 

sample were converted to a catch rate, i.e. number of individuals caught 3h-1, and a 

density, i.e. number of individuals 100 m-2, respectively. An examination of the 

relationship between the mean and standard deviation for catch rates and densities 

showed that, prior to subjection to analysis of variance (ANOVA), both of these 

variables should be log10 (n+1) transformed (see Clarke & Gorley (2001) for rationale 

for this approach). 

The transformed catch rates in the replicate samples of both E. tetradactylum 

and P. macrochir over bare sand at Port Smith, Eighty Mile Beach and Cape Keraudren 

in each season were subjected to two-way ANOVA to determine whether catch rates in 

this type of habitat differed among these three regions and seasons. Next, the 

transformed catch rates over bare sand and in mangroves at Port Smith and Cape 

Keraudren were subjected to three-way ANOVA to determine whether catch rates 

differed among regions and seasons and between sand and mangrove habitats in these 

two regions. N.B. Mangroves are not found at Eighty Mile Beach and the data for 

summer were not included in these analyses as poor weather conditions prevented the 

collection of gill net samples from Cape Keraudren during this season. When ANOVA 

showed that the values for one or more of the main effects were significantly different 

and there were no significant interactions between those effects, Scheffé’s a posteriori 
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test was used to determine which values were significantly different. When there was a 

significant interaction between the main effects, the back-transformed mean values for 

these effects were plotted to explore the basis for the interaction. 

In the case of E. tetradactylum, estimates of total mortality (Z), natural mortality 

(M) and fishing mortality (F) were derived using data that we collected directly from the 

large catches obtained by recreational anglers fishing between Dampier and Broome. 

These catches were considered to represent best the population of E. tetradactylum in 

this region. However, as recreational catches of P. macrochir sampled during this study 

were not substantial, the length data for the fish in those catches were supplemented by 

those recorded by other workers as part of a recreational tagging program (WESTAG). 

The ages of fish in the latter database were derived from their lengths using the inverse 

of the von Bertalanffy growth equation for this species. The data for the study of 

P. macrochir were collected in the region between Dampier and Port Headland. 

 

3.3 RESULTS  

3.3.1 Trends exhibited by catch statistics 

The total catch of E. tetradactylum in the Pilbara and Kimberley regions typically 

ranged between 22 and 44 tonnes between 1988 and 1997 and then declined markedly 

to ca 10 tonnes between 2000 and 2002, before recovering to ca 20 tonnes in 2004 

(Figure 3.1). In general, the catches in the Pilbara and Kimberley followed similar 

relative trends between 1988 and 2004. In contrast to the situation with 

E. tetradactylum, the total catches of P. macrochir were generally relatively low 

between 1988 and 1995, i.e. < 30 tonnes, but then rose markedly and remained at > 100 

tonnes between 1997 and 2004 (Figure 3.1). The annual catches of P. macrochir in the 

Pilbara and Kimberley were relatively similar. 
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Figure 3.1. Commercial catch (tonnes) of Blue Threadfin Eleutheronema 

tetradactylum and King Threadfin Polydactylus macrochir in north-western Australia 
in each year between 1988 and 2004. 

 

3.3.2 Characteristics of testes, ovaries and transitional gonads 

The vast majority of the paired gonads of the 1348 Eleutheronema tetradactylum 

(85.3%) and the 1662 Polydactylus macrochir (96.0%) that were examined were able to 

be designated macroscopically as comprising of either testicular or ovarian tissue and to 

be assigned a maturity stage. Thus, the individuals of each of these two species with 

such well defined gonads could typically be identified as male or female and assessed as 

to their reproductive status. The macroscopic characteristics of the different stages in 

the development and maturation of the definitive testes and ovaries of E. tetradactylum 
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and P. macrochir together with the cytological characteristics of each of those stages, 

are presented in Tables 3.1 and 3.2 and illustrated in Figures 3.2 and 3.3. Histological 

sections of the gonads of a random subsample of approximately 20 such fish in each 

month were used to confirm that these fish contained exclusively either testicular or 

ovarian tissue. However, some of the other individuals of E. tetradactylum (14.7%) and 

P. macrochir (4.0%) clearly contained both testicular and ovarian tissue, the ratios of 

which varied markedly. In a minority of these cases, the minor component was barely 

detectable, i.e. contributed < 5% of the gonad, or the gonads did not have the typical 

appearance of a testis or an ovary, i.e. was atypically pink and possessed a thin white 

strand on its dorsal surface. The gonads in which the minor component contributed 

< 5% or there was some doubt as to whether there was a second component were 

subjected to histology. The resultant histological sections demonstrated that all samples 

of this type of gonad contained both testicular and ovarian material. 

 

Table 3.1. Characteristics of the macroscopic stages in the development of the testes 
of Eleutheronema tetradactylum and Polydactylus macrochir, together with their 
corresponding histological characteristics. 

 

Stage Macroscopic characteristics Histological characteristics 

I/II 

Virgin and 
Immature / resting 

Testes very small, grey and strand-
like (stage I) to white and ribbon-like 
(stage II). 

Dominated by large amounts of connective tissue. Stage II 
testes have numerous crypts containing spermatocytes, 
spermatids and some spermatozoa which are present in all 
subsequent testicular stages. 

III 

Developing 

Testes white. Occupy approximately 
half the length of the ventral cavity. 

Large amounts of connective tissue still obvious, crypts 
containing spermatozoa proliferating, spermatids and 
spermatozoa congregate near the centre of the testes in 
sperm sinuses close to the now obvious sperm duct. 

IV 

Maturing 

No milt appears when pressure is 
applied to the trunk of males.  
Occupy greater than half of the 
length of the ventral cavity. 

Sperm duct well developed and usually full of spermatids 
and spermatozoa. Sperm sinuses are well developed close to 
sperm duct and typically occupy up to half the area of testis. 

V/VI 

Mature / spawning 

Gonads 1/3 to filling ventral cavity. 
Milt appears from testes with firm 
pressure to trunk. 

Sperm duct and the majority of testis full of spermatids and 
spermatozoa. Often difficult to distinguish between sperm 
duct and sinuses. Crypts of spermatozoa are usually confined 
to the outer perimeter of the testis. 

VII 

Spent 

Gonads smaller than stage V or VI. 
Testes flaccid though not fully 
empty. 

Large numbers of spermatids and spermatozoa are still 
obvious in sperm sinuses and duct. However, large spaces 
empty of sperm are also present within the connective tissue. 

VIII 

Recovering 

Testes red to brown, small and 
flaccid. 

Testes dominated by connective tissue containing large 
spaces and containing no sperm. Fewer crypts containing 
spermatozoa tha in other stages. 
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Table 3.2. Characteristics of the macroscopic stages in the development of the 
ovaries of Eleutheronema tetradactylum and Polydactylus macrochir, together with 
their corresponding histological characteristics. Macroscopic criteria adapted from 
Laevastu (1965). Terminology for oocyte stages follows Wallace & Selman (1989). 

 

Stage Macroscopic characteristics Histological characteristics 

I/II 

Virgin and Immature 
/ resting 

Small and transparent. Yellowish-
orange in colour. Oocytes not visible 
through ovarian wall. 

Ovigerous lamellae highly organised. Chromatin 
nucleolar oocytes dominate the complement of oocytes. 
Oogonia and perinucleolar oocytes sometimes present. 
Small previtellogenic oocytes present in all subsequent 
ovarian stages. 

III 

Developing 

Slightly larger than at stage II. 
Oocytes visible through ovarian wall. 

Chromatin nucleolar, perinucleolar and cortical alveolar 
oocytes present. 

IV 

Maturing 

Larger than stage III, occupying about 
half of the body cavity. Creamy 
orange in colour. Large oocytes 
visible through ovarian wall. 

Cortical alveolar and yolk granule oocytes abundant. 

V/VI 

Mature / spawning 

Large, occupying about half to two 
thirds of body cavity. Extensive 
capillaries visible in ovarian wall. 
Hydrated oocytes sometimes visible 
through ovarian wall in stage VI 
ovaries. Ovaries of P. macrochir 
typically with lateral undulations 
anteriorly. 

Yolk granule oocytes abundant. Migratory nucleus 
oocytes, hydrated oocytes and/or post-ovulatory follicles 
present in stage VI ovaries. 

VII 

Spent 

Smaller than V/VI and flaccid. Some 
large oocytes visible through ovarian 
wall. 

Remnant yolk granule oocytes present, typically 
undergoing atresia. Some connective tissue present 
throughout ovaries.  

VIII 

Recovering 

Small, flaccid and dark red. 
Inconsistencies in wall thickness of  
P. macrochir ovaries gives a 
concertina appearance. 

Extensive connective tissue present. Ovarian lamellae 
disorganised. No remnant yolk granule oocytes. 

 

The results provide overwhelming evidence that, as elsewhere in Australia, 

E. tetradactylum and P. macrochir in Western Australian waters are protandrous 

hermaphrodites. Furthermore, histological sections demonstrated that the development 

and maturation of the testes and ovaries and the reorganisation of the gonad during its 

change from testis to ovary are essentially the same in both E. tetradactylum and 

P. macrochir. 

Fish with gonads with both testicular and ovarian components, and which are 

thus assumed to be changing from male to female, are, for convenience, subsequently 

referred to as transitional individuals. In these transitional individuals, the testicular 

tissue is located along the dorsal and inner lateral regions of the paired gonads, whereas  
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Figure 3.2. Histological sections showing selected stages in the development of the 
testes of the males of (c-d) Eleutheronema tetradactylum and (a-b, e-f) Polydactylus 

macrochir. (a-b) resting (stage II) (Aug; 626 mm TL) with minimal sperm 
development, (c) early developing (stage III) (Sept; 311 mm TL), (d) maturing (stage 
IV) (Sept; 243 mm TL) and (e-f) mature (stage V) (Oct; 383 mm TL). ct, connective 
tissue; sc, spermatocytes; sd, sperm duct; ss, sperm sinuses; st, spermatids; sz, 
spermatozoa. Scale bars (a, c-e) 100 µm; (b, f) 25 µm. 
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Figure 3.3. Histological sections showing selected stages in the development of the 
ovaries of (b-e) Eleutheronema tetradactylum and (a, f) Polydactylus macrochir.(a) 
resting (stage II) (Jun; 941 mm TL), (b) early developing (stage III) (Sept; 410 mm 
TL), (c) mature (stage V) (Sept; 525 mm TL), (d-e) spawning (stage VI) (Oct; 420 
mm TL; Dec; 568 mm TL) and (f) recovering (stage VIII) (Feb; 568 mm TL). a, 
atretic oocyte; ca, cortical alveolar oocyte; cn, chromatin nucleolar oocyte; h, 
hydrated oocyte; mn, migratory nucleus oocyte; pn, perinucleolar oocyte; pof, post-
ovulatory follicle; yg, yolk granule oocyte. Scale bars (a) 50 µm; (b-f) 100 µm. 
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the ovarian tissue occupies the ventral and outer regions (Figure 3.4). The testicular and 

ovarian components are separated by connective tissue. In transitional fish, the structure 

of each gonad and the ratio of testicular to ovarian tissue is essentially the same along 

the full length of each gonad. 

Gonads in the early stages of transition from testis to ovary are white and similar 

in shape to that of a typical male (Figure 3.4a). The testicular region at this early stage 

of transition retains the characteristic of a typical testis and thus contains a range of 

stages in spermatogenesis from primary spermatocytes to spermatozoa (Figure 3.4a, b). 

The development of ovarian tissue commences with a proliferation of blood vessels and 

the formation of a prominent lumen along the inner wall of the gonad. Previtellogenic 

oocytes develop in the connective tissue that lines the luminal spaces which represent 

extensions of the above-mentioned prominent lumen (Figure 3.4b). As the transition 

proceeds, the testicular and ovarian components of the gonad become demarcated 

through the development of intervening connective tissue (Figure 3.4c). Although the 

ovarian tissue is now enlarged, the testicular tissue still contains spermatids and 

spermatozoa (Figure 3.4d). By the end of the transition of the gonad, the testicular 

component has become so reduced that it occupies only a short length of the dorsal 

surface of the gonad (Figure 3.4e). Many of the crypts in the testicular region are now 

empty and the remnant sperm are pycnotic, staining more darkly than those in the 

gonads of mature males, and are not tightly packed (Figure 3.4f). At this late stage in 

transition, the gonad has assumed the appearance of a typical ovary with evaginations of 

the prominent lumen extending throughout this structure (Figure 3.4e). Most of the 

oocytes are at an early previtellogenic stage. 

 

3.3.3 Size and age at maturity of males 

During the spawning period, all of the males of E. tetradactylum < 196 mm were 

immature, whereas all of those > 249 mm were mature (Figure 3.5). The L50 for length 

at maturity was 201.1 mm (Table 3.3). All of the males of P. macrochir < 202 mm were 

immature and all of those > 412 mm were mature and the L50 for maturity was 

229.0 mm (Table 3.3, Figure 3.6). The majority of the males of E. tetradactylum 
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Figure 3.4. Transverse sections through the mid-region of ovotestes from (a-b) T1 - 
early transitional (437 mm TL), (c-d) T2 - mid transitional (313 mm TL) and (e-f) T3 
- late transitional (516 mm TL) P. macrochir illustrating the mode of protandrous sex 
change including the proliferation of previtellogenic oocytes and the degeneration of 
testicular tissue. bv, blood vessel; cn, chromatin nucleolar oocyte; ct, connective 
tissue; g, oogonia; gw, gonad wall; l, ovarian lumen; o, ovary; pn, perinucleolar 
oocyte; sd, sperm duct; st, spermatid; sz, spermatozoa; t, testis; Scale bars (a, c) 500 
µm; (b, d, f) 50 µm; (e) 1 mm. 
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Table 3.3. L50s and L95s (±95% CIs) derived from the logistic regression analysis 
describing the relationship between the total length and probability that an individual 
male of Eleutheronema tetradactylum and Polydactylus macrochir is mature.  

 

 Total length at first maturity (mm) 

Species L50 
Lower 
95% CI 

Upper 
95% CI 

L95 
Lower 
95% CI 

Upper 
95% CI 

       
Eleutheronema tetradactylum 

 

201.1 187.2 223.7 236.7 187.9 272.7 

Polydactylus macrochir 

 

229.0 210.9 247.2 354.4 323.0 384.9 
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Figure 3.5. Percentage frequency of occurrence of immature (white) and mature 
(grey) males of Eleutheronema tetradactylum in each 25 mm length class during the 
spawning period. The logistic curve (solid line) and its 95% confidence limits (dotted 
lines) were derived from a logistic regression analysis that described the relationship 
between total length and probability that an individual was mature. Numbers above 
bars are sample sizes for each length category. 
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Figure 3.6. Percentage frequency of occurrence of immature (white) and mature 
(grey) males of Polydactylus macrochir in each 50 mm length class during the 
spawning period. The logistic curve (solid line) and its 95% confidence limits (dotted 
lines) were derived from a logistic regression analysis that described the relationship 
between total length and probability that an individual was mature. Numbers above 
bars are sample sizes for each length category. 

 
 

(72.2%) and P. macrochir (84.2%) reached maturity at the end of their first year of life 

and all individuals of both species were mature at two years of age and older. 

 

3.3.4 Length distributions and size and age at sex change 

The lengths of E. tetradactylum collected using all sampling methods ranged from 20 to 

793 mm, with the lengths of males, i.e. 20 to 413 mm, x  = 119 mm, showing limited 

overlap with those of females, 330 to 793 mm, x  = 486 mm. The length range of the 

transitional fish, i.e. 279 to 455 mm, x  = 370 mm, lay at the upper end of that for males 

and at the lower end of that for females. 

The logistic curve relating total length to the proportions of transitional 

individuals and females, collectively, at each length, derived from logistic regression 

analysis, yielded a L50 of 325.9 mm (Figure 3.7). This corresponds to the length at 

which 50% of E. tetradactylum have initiated the change from male to female. A 

logistic curve relating total length to the proportions of just females at each length, 

derived from logistic regression analysis, yielded a L50 of 401.9 mm (Table 3.4, 

Figure 3.7). This corresponds to the length at which 50% of E. tetradactylum have 

changed from male to female. All fish in their first year of life were males and virtually  
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Table 3.4. L50s and L95s (±95% CIs) derived from the logistic regression analysis 
describing the relationship between the total length and probability that an individual 
of Eleutheronema tetradactylum and Polydactylus macrochir has completed the 
change of sex to female.  

 

 Total length at sex change (mm) 

Species L50 
Lower 
95% CI 

Upper 
95% CI 

L95 
Lower 
95% CI 

Upper 
95% CI 

       
Eleutheronema tetradactylum     401.9     395.3     408.2     459.8     448.0     472.6 

Polydactylus macrochir     814.3     766.3     876.6   1178.5   1073.0   1296.4 
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Figure 3.7. Frequencies of male (white), transitional (light grey) and female (dark 
grey) Eleutheronema tetradactylum in each 25 mm length class. The logistic curves 
(solid line) and their associated 95% confidence limits (dotted lines) were derived 
from logistic regression analyses that described the relationships between total length 
and the probability that an individual was, in the case of the first curve, either 
transitional or female, and in the case of the second curve, just female. The resultant 
L50s correspond to the L50 for the initiation and completion of sex change, 
respectively. Numbers above bars are sample sizes for each length class. 
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all of those in their fourth and subsequent years of life were females (Figure 3.8). Fish 

in their second and third years of life contained males and females and also transitional 

individuals, with the percentage of males declining from 48.3 to 3.9% and that of 

females increasing from 16.7 to 75.7% between the second and third years of life 

(Figure 3.8). 

The lengths of P. macrochir collected using all methods ranged from 19 to 

1393 mm, with the lengths of males ranging from 19 to 1159 mm, ( x  = 558 mm) and 

those of females ranging from 440 to 1393 mm ( x  = 878 mm). In contrast to the 

situation with E. tetradactylum, where transitional fish were concentrated in a relatively 

narrow length range, the lengths of transitional P. macrochir ranged widely from a 

minimum of 313 mm to a maximum of 1139 mm ( x  = 723 mm) and typically 

contributed < 10% to any 50 mm length class. 

In the samples collected by our seine netting and gill netting and by recreational 

fishers, all but three of the 539 fish < 400 mm were males and all of the fish > 1150 mm 

were females (Figure 3.9). The logistic curve relating the total length to proportions of 

female P. macrochir at each length, derived from logistic regression analysis, yielded a 

L50 of 814.3 mm (Table 3.4, Figure 3.9). This corresponds to the length at which 50% 

of P. macrochir complete their change to females. 

All 0+ fish and virtually all 1+ P. macrochir were males (Figure 3.10). The 

percentage contributions of females rose progressively from 4.4% in the 1+ age class to 

34.3% in the 4+ age class and 60.0% in age class 7+. Small numbers of transitional fish 

were found in each age class between 1+ and 7+ (Figure 3.10). All of the seven 

individuals of the 8+ and 9+ age classes collectively, which were obtained from 

commercial fish samples and not included in Figure 3.10, were females. 

Some of the E. tetradactylum found in each month of the year contained 

transitional gonads. However, the mean monthly gonadosomatic index (GSIs) for the 

testicular component of transitional gonads of E. tetradactylum underwent pronounced 

seasonal changes, rising from < 0.4 in June to August to > 1.5 in September to 

November and then declining to 0.8 in December and < 0.3 in January and subsequent 

months (Figure 3.11). In contrast, the mean monthly GSIs for the ovarian component of  



 47 

 
 
 
 

Age class (years)

P
e
rc

e
n

ta
g
e

0

20

40

60

80

100
12274206294612

6543210

 
 

Figure 3.8. Frequencies of male (white), transitional (light grey) and female (dark 
grey) Eleutheronema tetradactylum in each age class. Numbers above bars are sample 
sizes for each age class. 
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Figure 3.9 Frequencies of male (white), transitional (light grey) and female (dark 
grey) Polydactylus macrochir in each 100 mm length class collected from nearshore 
waters in north-western Australia. The logistic curve (solid line) and its 95% 
confidence limits (dotted lines) were derived from a logistic regression analysis that 
described the relationship between total length and probability that an individual had 
completed sex change to become a female. The resultant L50 corresponds to the 
completion of sex change. Numbers above bars are sample sizes for each length class. 
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Figure 3.10  Frequencies of male (white), transitional (light grey) and female (dark 
grey) Polydactylus macrochir in each age class collected from nearshore waters in 
north-western Australia. Numbers above bars are sample sizes for each age category. 

 
 

 

 

 

 

Month

G
S

I

0.0

0.5

1.0

1.5

2.0

2.5

2 1
1

24

7 7

11
20

11

13

J F MJ J MAA S O N D

4

 
 

Figure 3.11 Mean monthly GSIs (±1SE) for the male (open circles) and female 
(closed circles) portions of the gonads of transitional individuals of Eleutheronema 

tetradactylum. Numbers above bars and points are sample sizes for each month.  
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transitional gonads did not undergo a pronounced seasonal change and always remained 

< 0.5 (Figure 3.11). 

 

 

3.3.5 Timing and duration of spawning. 

The mean monthly GSIs for male E. tetradactylum rose sharply from 0.3 in June to 1.4 

in August and remained high during the following months, reaching a maximum of 2.2 

in November and then declining to 0.2 by January (Figure 3.12a). The mean monthly 

GSIs for transitional E. tetradactylum followed the same seasonal trend as males, 

attaining a maximum of 2.7 in October (Figure 3.12b). Although there was a small 

decline in the mean monthly GSIs for female E. tetradactylum in October, they 

otherwise showed a very consistent seasonal trend, rising progressively through winter 

and reaching a maximum in spring, with values > 3 in September and November, and 

then declining sequentially during summer and early autumn (Figure 3.12c). 

Female E. tetradactylum with resting ovaries (stage II) were caught in all 

months between January and August and this ovarian stage was the only one found in 

females sampled between March and June (Figure 3.13). Fish were first observed with 

developing gonads (stages III and IV) during July and by the following month 

constituted ca 80% of all females. A small percentage of females possessed mature 

ovaries (stages V and VI) in the latter month. Females of E. tetradactylum with mature 

ovaries were caught during the next five months, with their percentage contributions 

peaking at ca 85% in September and December. Fish with spent and recovering ovaries 

(stages VII and VIII) were found between October and February. No mature individuals 

were recorded between February and July (Figure 3.13). 

The ovaries of the two spawning (stage VI) females of E. tetradactylum 

examined both contained oocytes at each developmental stage between the chromatin 

nucleolar and yolk granule stage (Figure 3.14). The distributions of the oocyte 

diameters were essentially continuous in the first ovary, but formed two groups in the 

second ovary. The difference is due to the fact that the yolk granule oocytes in the 

second ovary were larger, producing a modal class at 375-399 mm. The distributions of  
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Figure 3.12.  Mean monthly GSIs  (±1SE) for a) male, b) transitional and c) female 
Eleutheronema tetradactylum. Data for males are derived from fish with lengths 
greater or equal to the length at 50% maturity. 
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Figure 3.13.   Monthly percentage frequencies of occurrence of sequential gonadal 
maturity stages in females of Eleutheronema tetradactylum. 
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Figure 3.14  Frequency distributions for oocyte diameters in the different stages of 
oocyte development in histological sections of the ovaries of two spawning (stage VI) 
Eleutheronema tetradactylum. Ovaries are from a) a 598 mm fish caught in early 
December and b) a 400 mm fish caught in late October. Note migratory nucleus and 
hydrated stage oocytes have not been included. 
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the oocyte diameters for the chromatin nucleolar, perinucleolar and cortical alveolar 

oocytes in the two ovaries were very similar (Figure 3.14a, b). 

The mean monthly GSIs for male P. macrochir rose gradually from ca 0.1 in June and 

July to reach a maximum of ca 0.8 in October and then declined in the ensuing four 

months (Figure 3.15a). The mean monthly GSIs for transitional P. macrochir fluctuated 

little during the year, with their highest value of ca 0.5 being recorded in September 

(Figure 3.15b). The mean monthly GSIs for female P. macrochir rose sharply from a 

low of 0.3 in August to high levels in October, December and January and then declined 

(Figure 3.15c). 

Female P. macrochir with resting ovaries (stage II) were present in most 

months, whereas those with developing ovaries (stages III and IV) were almost entirely 

restricted to July to October (Figure 3.16). Mature and spawning female P. macrochir 

(stages V and VI) were caught during September and October and females with spent 

ovaries were found in October to February (Figure 3.16). 

The oocyte diameter distributions for the chromatin nucleolar, perinucleolar and 

cortical alveolar oocytes in the ovaries of two spawning (stage VI) P. macrochir were 

each similar to those of the ovaries of the two spawning females of E. tetradactylum (cf 

Figures 3.14 and 3.17). The oocyte diameters approached more closely a continuous 

distribution in the first of the two ovaries (Figure 3.17a, b). 

 

3.3.6 Habitats of threadfins 

ANOVA showed that the gill net catch rates of E. tetradactylum and P. macrochir over 

bare sand differed significantly among regions, i.e. at Port Smith, Eighty Mile Beach 

and Cape Keraudren, but not among seasons (Table 3.5). Mean catch rates of 

E. tetradactylum were significantly greater at Cape Keraudren (p<0.001) and Eighty 

Mile Beach (p<0.01) than at Port Smith (Figure 3.18a) and those of P. macrochir were 

greater at Eighty Mile Beach than at Cape Keraudren (p<0.001), which, in turn, were 

greater than at Port Smith (p<0.01) (Figure 3.18b). When the catch rates of 

E. tetradactylum in gill nets in mangroves and over bare sand at Port Smith and Cape 

Keraudren were subjected to ANOVA, the effects of region, habitat and season were  
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Figure 3.15 Mean monthly GSIs (±1SE) for a) male, b) transitional and c) female 
Polydactylus macrochir collected from nearshore waters. Data for males are derived 
from fish with lengths greater or equal to the length at 50% maturity. 
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Figure 3.16.  Percentage frequencies of occurrence of sequential gonadal maturity 
stages in females of Polydactylus macrochir. 
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Figure 3.17  Frequency distributions of the oocyte diameters in the different stages in 
oocyte development in histological sections of the ovaries of two spawning (stage VI) 
Polydactylus macrochir. Ovaries are from a) a 1339 mm fish and b) a 1155 mm fish 
caught in late October. Note migratory nucleus and hydrated stage oocytes have not 
been included. 
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Figure 3.18.   Mean catch rate (number of fish 3h-1) for a) Eleutheronema 

tetradactylum and b) Polydactylus macrochir in gill nets set over sand at Port Smith, 
Eighty Mile Beach and Cape Keraudren, c) E. tetradactylum and d) P. macrochir in 
gill nets set over sand and in mangroves at Port Smith and Cape Keraudren and for e) 
E. tetradactylum over both habitat types at Port Smith and Cape Keraudren, 
collectively, in each season. Legend applies to graphs c) & d) only. 
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Table 3.5. Mean squares and significance levels for ANOVAs of the number of 
Eleutheronema tetradactylum and Polydactylus macrochir caught 3h-1 in gill nets set 
over bare sand in nearshore, shallow waters seasonally at Port Smith, Eighty Mile 
Beach and Cape Keraudren.  *** p<0.001 

 

  Main effects   Interaction   

Source  Region (R) Season (S)  R x S  Residual 

Degrees of freedom  2 3 5 68 

E. tetradactylum 3h-1  1.48 *** 0.33  0.37  0.17 

P. macrochir 3h-1     5.67 *** 0.15 0.18  0.10 

 
 
 

significant, with the mean squares being appreciably greater for region and habitat than 

for season (Table 3.6). When the catch rates of P. macrochir were subjected to 

ANOVA, the effects of region and habitat, but not season, were significant, with the 

mean square for region being greatest (Table 3.6). There was a significant interaction 

(p<0.05) between region and habitat for both E. tetradactylum and P. macrochir. This 

was attributable to the fact that, for both species, the catch rates over sand were far 

greater than those in mangroves at Cape Keraudren, whereas they were similarly low for 

both habitat types at Port Smith (Figure 3.18c, d). In the case of E. tetradactylum, for 

which the effect of season was significant, the catch rates of gill nets during autumn and 

winter were higher than those recorded during spring (Figure 3.18e). 

 
 
 

Table 3.6. Mean squares and significance levels for ANOVAs of the number of 
Eleutheronema tetradactylum and Polydactylus macrochir caught 3h-1 in gill nets set 
in mangroves and over bare sand in nearshore, shallow waters in each season at Port 
Smith and Cape Keraudren. *** p<0.001, ** p<0.01, * p<0.05 

 

  Main effects   Interactions     

Source  Region 
(R) 

Season 
(S) 

Habitat 
(H) 

 R x S R x H H x S R x S x H  Residual 

Degrees of freedom  1 3 1 3 1 3 3 15 

E. tetradactylum 3h-1  1.99 *** 0.63  ** 1.26 ** 0.34 0.58 *  0.22  0.08  0.12 

P. macrochir 3h-1  0.80 *** 0.03  0.32 * 0.01  0.26 * 0.01  0.04 0.05 

 

 



 59 

The densities of E. tetradactylum, determined from catches obtained using a 

60 m long seine net, differed significantly among regions (Port Smith, Eighty Mile 

Beach and Cape Keraudren) and seasons and there was a significant interaction between 

region and season (Table 3.7). Although the density in each season was greater at 

Eighty Mile Beach than Port Smith and Cape Keraudren, that difference was 

particularly marked only in spring, when large numbers of the new 0+ age class were 

recruited into that region (Figure 3.19a). The densities of P. macrochir, likewise 

derived from catches taken with the 60 m long net, differed significantly among regions, 

but not seasons, and there was no interaction between these two main effects. The 

densities were significantly greater (p<0.001) at Eighty Mile Beach than at both Port 

Smith and Cape Keraudren (Table 3.7, Figure 3.19b). 

During spring, when the 0+ age classes of both species are recruited into the 

shallows, the densities of P. macrochir but not of E. tetradactylum, derived from 

catches obtained using the 21.5 m long seine net over a fine substrate at Anna Plains 

and over sand at Eighty Mile Beach, were significantly greater at the former than latter 

locations (p<0.05) (Figure 3.19c, d).  

 

 

 

Table 3.7. Mean squares and significance levels for ANOVAs of the density of 
Eleutheronema tetradactylum and Polydactylus macrochir caught 500 m-2 in gill nets 
set over bare sand in nearshore, shallow waters in each season at Port Smith, Eighty 
Mile Beach and Cape Keraudren  *** p<0.001 

 

  Main effects   Interaction   

Source  Region (R) Season (S)  R x S  Residual 

Degrees of freedom  2 3 6 88 

E. tetradactylum 500 m-2  3.45 *** 0.48 *** 0.56 *** 0.04 

P. macrochir 500 m-2     1.08 *** 0.08 0.06  0.04 
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Figure 3.19.  Mean densities of a) Eleutheronema tetradactylum over sand at Port 
Smith, Eighty Mile Beach and Cape Keraudren in each season and b) Polydactylus 

macrochir over sand at Port Smith, Eighty Mile Beach and Cape Keraudren and of c) 
E. tetradactylum and d) P. macrochir over silt at Anna Plains and sand at Eighty Mile 
Beach during spring. Densities in (a) and (b) were derived from catches taken with a 
60 m long seine net, while those in (c) and (d) were derived from catches obtained 
with a 21.5 m seine net. 
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3.3.7 Length - weight relationships 

The relationships between wet weight (W) and total length (TL) of Eleutheronema 

tetradactylum and Polydactylus macrochir were: 

 
E. tetradactylum    W = 1.736x10-6 x TL

3.262 (R2 = 0.989, n = 682) 

P. macrochir         W = 8.848x10-6 x TL
2.963 (R2 = 0.974, n = 872) 

The relationships between total length (TL) and the caudal fork length (FL) of 

Eleutheronema tetradactylum and Polydactylus macrochir were: 

 
E. tetradactylum   TL = (0.8381 x FL) - 1.6604 (R2 = 0.999, n = 895)  

P. macrochir         TL = (0.8413 x FL) - 6.4416 (R2 = 0.999, n = 1089) 

 

 
 

3.3.8 Validation that opaque zones on otoliths are formed annually  

In an initial comparison, there was 100% agreement between the number of opaque 

zones (annuli) observed in 100 otoliths of E. tetradactylum prior to and after the 

sectioning of those otoliths and the same was true for the 100 otoliths of P. macrochir 

that were examined. Although it was unnecessary to section the otoliths of 

E. tetradactylum to obtain counts of their opaque zones, it was decided to section the 

larger otoliths of P. macrochir as this lead to better definition of their opaque zones, 

which were greater in number than those on the otoliths of E. tetradactylum. 

The mean monthly marginal increments on E. tetradactylum otoliths with 1, 2 

and 3 or more opaque zones rose from low values in January to high values in July to 

October and then declined precipitously to their minima in November or December 

(Figure 3.20). The trends exhibited by the mean monthly marginal increments on the 

otoliths of P. macrochir, irrespective of the number of opaque zones, were similar to 

those of E. tetradactylum, with values being least in late spring and early summer and 

greatest during winter and early spring (Figure 3.21). 
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Figure 3.20.  Mean monthly marginal increments (±1SE) for the otoliths of 
Eleutheronema tetradactylum with different numbers of opaque zones. 
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Figure 3.21.  Mean monthly marginal increments (±1SE) for the otoliths of 
Polydactylus macrochir with different numbers of opaque zones. 

 
 



 64 

3.3.9 von Bertalanffy growth curves 

The von Bertalanffy growth curve provided a very good fit to the lengths at age of the 

individuals of E. tetradactylum (Figure 3.22), which is reflected in a high coefficient of 

determination (Table 3.8). The von Bertalanffy growth curve also provided a good fit to 

the lengths at age of individuals of P. macrochir (Table 3.8, Figure 3.23). Polydactylus 

macrochir attained a greater maximum length and age than E. tetradactylum and the L∞ 

was greater for P. macrochir than E. tetradactylum, i.e. 1587 vs 762 mm, whereas the 

reverse was true for the growth coefficient (k), i.e. 0.170 vs 0.351 years-1 (Table 3.8, 

Figure 3.24). 

 
 
 
 

Table 3.8. Maximum length (Lmax ) and the parameters and their 95% confidence 
intervals for the von Bertalanffy growth equation fitted to the lengths at age of 
individuals of Eleutheronema tetradactylum and Polydactylus macrochir. L∞  = 
asymptotic length, k = growth coefficient, t0 = the hypothetical age at which fish 
would have zero length, R2 = coefficient of determination, n = number of fish. 

 

       
Species Lmax (mm) L∞ (mm) k (years

-1
) t0 (years) R 

2
 n 

       
Eleutheronema tetradactylum   793 762 0.351 -0.103 0.967 1466 

Upper 95% CI  786 0.370 -0.088   

Lower 95% CI  739 0.333 -0.118   

Polydactylus macrochir 1393 1587 0.170 -0.338 0.871 1377 

Upper 95% CI  1709 0.192 -0.262   

Lower 95% CI  1466 0.148 -0.415   
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Figure 3.22.  von Bertalanffy growth curve fitted to lengths at age of individuals of 
Eleutheronema tetradactylum collected from nearshore waters at Roebuck Bay, Anna 
Plains, Eighty Mile Beach and Cape Keraudren. 
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Figure 3.23.  von Bertalanffy growth curve fitted to lengths at age of individuals of 
Polydactylus macrochir collected from nearshore waters at Derby, Roebuck Bay, 
Anna Plains and Eighty Mile Beach. 
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Figure 3.24.  von Bertalanffy growth curves fitted to lengths at ages of individuals of 
Polydactylus macrochir and Eleutheronema tetradactylum. 
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3.3.10 Length and age compositions of threadfin caught by various methods.  

The lengths of E. tetradactylum caught in our research seine nets at Eighty Mile Beach 

ranged largely from 26 to 250 mm, whereas those caught by the research gill nets at the 

same location ranged from 210 to 550 mm (Figure 3.25a, b). The latter range is similar 

to that of fish caught by recreational angling at Eighty Mile Beach (Figure 3.25c). The 

vast majority of the fish caught by commercial fishing at Anna Plains and Roebuck Bay 

exceeded 375 mm and included some fish with length in excess of 675 mm 

(Figure 3.25e, f). 

The fish caught by our research seine nets were almost exclusively in their first 

year of life, whereas those of research gill nets contained fish of all age classes between 

0+ and 5+ (Figure 3.26a, b). The fish caught by recreational anglers were 

predominately in their first and second years of life (Figure 3.26c), while those taken by 

commercial gill nets, included all age classes from 1+ to 5+ (Figure 3.26e, f) 

In contrast to the situation with E. tetradactylum, the length distributions of the 

P. macrochir caught using our research seine and gill nets did not differ markedly with 

most fish lying between 200 and 550 mm (Figure 3.27a, b). The fish caught by 

recreational anglers covered a broad range from 450 to 1300 mm (Figure 3.27c), while 

those taken by recreational haul nets lay between 450 and 850 mm (Figure 3.27d). The 

catches obtained by commercial gill netting at Anna Plains (mesh size = 165 mm) and 

Roebuck Bay (mesh size = 140 mm) produced well defined modes at 850 to 899 mm 

and 800 to 849 mm and contained few fish < 550 mm (Figure 3.27e, f). 

The fish caught by our seine netting and gill netting were predominantly fish in 

their first three years of life, whereas those of recreational anglers were mainly in their 

third to fifth years of life and included fish in their ninth and tenth years of life (Figure 

3.28a-c). Recreational hauling tended overall to catch younger fish than recreational 

angling (cf Figure 3.28c, d). The ages of the fish caught by commercial gill netting 

differed markedly between Anna Plains and Roebuck Bay with the modal age class 

being 4+ at the former locality and 2+ at the latter locality, where the mesh size is 

smaller (Figure 3.28e, f). 
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Figure 3.25.  Length-frequency distributions for Eleutheronema tetradactylum caught 
at Eighty Mile Beach (a-d), Anna Plains (e) and Roebuck Bay (f) using different 
methods. 
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Figure 3.26.  Age-frequency distributions for Eleutheronema tetradactylum caught at 
Eighty Mile Beach (a-d), Anna Plains (e) and Roebuck Bay (f) using different 
methods. 
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Figure 3.27.  Length-frequency distributions for Polydactylus macrochir caught at 
Eighty Mile Beach (a-d), Anna Plains (e) and Roebuck Bay (f) using different 
methods. 

 



 72 

 
 
 

f)

Age (years)

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

a)

0

10

20

30

40

50

60

b)

0

10

20

30

40

50

60

e)

0

10

20

30

40

50

60

d)

P
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

c)

0

10

20

30

40

50

60

Aged Estimated

commercial

gill net

n = 203

research

seine net

n = 101

research

gill net

n = 476

commercial

gill net

n = 437

recreational

haul net

n = 64

recreational

anglers

n = 40

 
 
 

Figure 3.28.  Age-frequency distributions for Polydactylus macrochir caught at 
Eighty Mile Beach (a-d), Anna Plains (e) and Roebuck Bay (f) using different 
methods. 
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3.3.11 Estimates of total and natural mortality 

The values derived for total mortality, Z, for E. tetradactylum, using the regression 

equation refitted to Hoenig’s (1983) fish data, relative abundance (catch curve) analysis 

(Figure 3.29a) and simulation (based on the nine oldest (≥ 4) of the 121 fish comprising 

the descending limb of the catch curve for the recreational sample) ranged from 0.73 to 

1.37 year-1 (Table 3.9, Figure 3.30a). These values were thus all greater than the 0.68 

year-1 derived for natural mortality, M, using the refitted equation of Pauly (1980). The 

use of the Bayesian method of Hall et al. (2004), which combines the separate 

likelihood estimates of Z and takes into account the fact that M must be < Z, yielded 

values of 1.31 and 0.61 for Z and M, respectively (Table 3.9, Figure 3.30c, 3.31). The 

value for fishing mortality, F, was 0.70, but had very wide confidence limits (Table 

3.9). 

As with E. tetradactylum, the values derived for Z, for P. macrochir, using the 

equation of Hoenig (1983), relative abundance analysis (Figure 3.29b) and simulation 

(based on the seven oldest (≥ 7) of the 267 fish comprising the descending limb of the 

catch curve for the recreational sample), i.e. 0.44 to 0.80 year-1, exceeded the value of 

0.35 year-1 derived for M using the refitted equation of Pauly (1980) (Table 3.9, Figure 

3.30b). The Bayesian method of Hall et al. (2004) yielded values of 0.76 and 0.31 year-1 

for Z and M, respectively (Table 3.9, Figure 3.30d, 3.31). The value for fishing 

mortality, F, was 0.45, but, as with E. tetradactylum, had very wide confidence limits 

(Table 3.9). 

 

3.3.12 Yield per recruit, spawning potential ratio and spawning biomass per recruit 

The yield per recruit analysis (YPR) for E. tetradactylum, calculated assuming knife 

edge recruitment to the fishery of 2 years, indicated that, as F increased from 0 to 1.5 

year-1, the YPR also continued to increase (Figure 3.32a). The predicted YPR and 

associated 95% confidence intervals for E. tetradactylum at the estimated current level 

of F of 0.7 year-1 and age of recruitment to the fishery of 2 years, is 0.12 kg recruit-1 

(0.00 – 0.42 kg recruit -1) (Table 3.10). As YPR continued to increase, it was not  
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Figure 3.29 Relative abundance (catch curve) analyses were used to fit lines to the 
observed frequency of abundance of fish in each year class of a) Eleutheronema 

tetradactylum and b) Polydactylus macrochir and assuming that recruitment is 
constant. Abundance data for E. tetradactylum is from recreational catches aged from 
random samples collected between Karratha and Broome during the study and for 
P. macrochir relates to ages back transformed from the lengths of fish released during 
a recreational tagging study. 
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Table 3.9. Mortality (year-1) of Eleutheronema tetradactylum and Polydactylus 

macrochir in north-western Australia calculated using different life history models, 
simulation based on the number of fish in the sample with ages in excess of a 
specified age or relative abundance analyses. M = natural mortality, Z = total 
mortality. 

 

     
Method of analysis M or Z or F 

(year
-1

) 

Estimate Lower 95% Upper 95% 

     
Eleutheronema tetradactylum     

Refitted Hoenig (1983) Z 0.73 0.26 2.05 

Relative abundance -  recreational anglers Z 1.37 1.14 1.62 

Simulation based on maximum age Z 1.08 0.75 1.49 

Combined Bayesian estimate of Z Z 1.31 1.11 1.51 

Refitted Pauly (1980) M 0.68 0.22 2.11 

Combined Bayesian estimate of M M 0.61 0.21 1.31 

Monte Carlo estimate of F F 0.70 0.00 1.11 

     
     
Polydactylus macrochir     

Refitted Hoenig (1983) Z 0.44 0.16 1.21 

Relative abundance - tagging release data Z 0.78 0.67 0.85 

Simulation based on maximum age Z 0.80 0.62 1.02 

Combined Bayesian estimate of Z Z 0.76 0.71 0.86 

Refitted Pauly (1980) M 0.35 0.11 1.07 

Combined Bayesian estimate of M M 0.31 0.11 0.71 

Monte Carlo estimate of F F 0.45 0.05 0.65 
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Figure 3.30.  Estimated likelihood functions for total mortality Z of (a) 
Eleutheronema tetradactylum and (b) Polydactylus macrochir derived using Hoenig’s 
(1983) regression equation for fish, relative abundance (catch curve) analysis, and a 
simulation method based on the number of fish in the samples that exceeded specified 
ages and the sizes of the samples. (c,d) Combined posterior probability distributions 
for Z for (c) E. tetradactylum and (d) P. macrochir derived from the separate 
likelihood functions shown in (a) and (b). 
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Figure 3.31.  Likelihood functions for natural mortality M for (a) Eleutheronema 

tetradactylum and (b) Polydactylus macrochir from Pauly’s (1980) equation and the 
likelihood function for M assuming that it is less than the combined estimate for Z 
and the combined posterior probability distributions for Z and M for (c) 
E. tetradactylum and (d) P. macrochir. 
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Figure 3.32.  Effect, for Eleutheronema tetradactylum and Polydactylus macrochir, 
of different levels of fishing mortality (year-1) and at different ages of recruitment to 
the exploited stock on the yield per recruit (a, b), spawning potential ratio, for male 
(blue) and female (pink) spawning stock biomass (c, d) and on the ratio of female to 
male spawning stock biomass (e, f). The dotted, solid and dashed lines correspond to 
ages at full recruitment of 1, 2 & 3 and 2, 3 & 4 for E. tetradactylum and 
P. macrochir, respectively. The arrows indicate the current level of fishing mortality 
estimated for E. tetradactylum and P. macrochir of 0.7 and 0.45 year-1, respectively. 
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Table 3.10. Estimates of the current level of yield per recruit (YPR), Fmax, F0.1  and 
the current levels of total spawning stock biomass per recruit (SSB/R) and spawning 
potential ratio (SPR) for females, males and females and males combined, for 
Eleutheronema tetradactylum and Polydactylus macrochir, calculated using 2 and 3 
years as the ages at full recruitment to the fishery for E. tetradactylum and 
P. macrochir, respectively. N.B. It was not possible to determine Fmax for 
E. tetradactylum. 

 

    
Method of analysis Estimate Lower 95% Upper 95% 

    
Eleutheronema tetradactylum    

Monte Carlo estimate of YPR (kg recruit-1) 0.12 0.00 0.42 

F 0.1 (year-1) 0.57   

Monte Carlo estimate of SSB/R 0.37 0.13 0.79 

SPR (males) 1.00 0.99 1.00 

SPR (females) 0.36 0.06 1.00 

SPR (males & females) 0.46 0.09 1.00 

    
    
Polydactylus macrochir    

Monte Carlo estimate of YPR (kg recruit-1) 0.86 0.02 2.29 

F max (year-1) 0.55   

F 0.1 (year-1) 0.24   

Monte Carlo estimate of SSB/R 3.25 1.04 6.03 

SPR (males) 0.65 0.45 0.97 

SPR (females) 0.15 0.02 0.87 

SPR (males & females) 0.34 0.07 0.95 
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possible to determine a value for Fmax for E. tetradactylum. The F0.1 value of 0.57 year-1 

calculated for E. tetradactylum is lower than the current level of F estimated for this 

species (Table 3.10). Although YPR also increases with F if the age of recruitment to 

the fishery was 3 years, if it was 1 year, the YPR begins to decline at levels of F 

exceeding ca 0.4 year-1 (Figure 3.32a). 

At the current age of recruitment to the exploited stock of 3 years, the YPR for 

P. macrochir began to decline at levels of F greater than ca 0.55 year-1 (Table 3.10, 

Figure 3.32b). The estimated YPR and associated 95% confidence intervals for 

P. macrochir at the estimated current level of F of 0.45 year-1 and recruitment age of 3 

years, is 0.86 kg recruit-1 (0.02 – 2.29 kg recruit-1) (Table 3.10). The value of Fmax 

(0.55 year-1) calculated for P. macrochir, with an age of recruitment to the fishery of 3 

years, exceeded the estimated current level of F of 0.45 year-1, and that for F0.1 

(0.24 year-1) was even less (Tables 3.9, 3.10). Although YPR continued to increase with 

F if the age of recruitment to the fishery was 4 years, it began to decline at levels of F 

exceeding ca 0.3 year-1 if the age of recruitment was 2 years (Figure 3.32b). 

The spawning potential ratio (SPR) of male E. tetradactylum decreased with 

increasing levels of F only when the age at full recruitment to the exploited stock was 1 

year. At the recruitment ages of 2 and 3 years, there was no reduction in the SPR 

(Figure 3.32c). In contrast, irrespective of recruitment age, the YPR of female 

E. tetradactylum decreased with increasing levels of F and was less than that of males 

(Figure 3.32c). The rate at which female SPR declined varied with recruitment age and 

was greatest for age 1 and least for age 3. The current estimated SPRs for male and 

female E. tetradactylum are 1.00 and 0.36, respectively (Table 3.10, Figure 3.32c). 

Regardless of the age at recruitment, an increase in F for P. macrochir resulted 

in the spawning potential ratio (SPR) decreasing far more rapidly for its females than its 

males (Figure 3.32c). In the case of both female and males, the rate at which SPR is 

predicted to decline decreases substantially as the age at recruitment increases from 2 to 

4 years (Figures 3.32d). The current estimated SPRs for male and female P. macrochir 

are 0.65 and 0.15, respectively (Table 3.10). 
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For both E. tetradactylum and P. macrochir, as F increases from 0 year-1 , the 

ratio of female to male spawning stock biomass per recruit (SSB/R) declines 

exponentially from initial values of ca 5.46 and 1.69, respectively (Figure 3.32e, f). The 

current estimated ratios of female to male SSB/R for E. tetradactylum and P. macrochir 

are 1.5 and 0.46, respectively (Figure 3.32). 

 

 

3.4 DISCUSSION 

3.4.1 Habitats 

Analysis of the numerous samples collected by ourselves and commercial and 

recreational fishers using seine, gill and haul nets and rod and line fishing provide 

information on the types of habitat occupied by E. tetradactylum and P. macrochir 

during their life cycles. Thus, these data, together with the absence of these species in 

catches obtained in offshore waters (Newman et al., 2003), demonstrate that the Blue 

and King Threadfins live predominantly over unvegetated substrates in nearshore, 

shallow waters. However, in comparison with E. tetradactylum, P. macrochir tends to 

live, to a greater extent, in areas where the substrate contains larger amounts of organic 

material and fine particles. The fact that newly-recruited juveniles of P. macrochir were 

found almost exclusively in such habitats, i.e. at Roebuck Bay and Anna Plains, 

demonstrates that this type of habitat constitutes an important nursery area for this 

species. This importance presumably reflects, in part, the presence of substantial 

amounts of food, which is consistent with the fact that both Roebuck Bay and Anna 

Plains are known to have an extremely high intertidal invertebrate fauna (Piersma et al., 

1999, 2002). 

 

3.4.2 Evidence that threadfin species are protandrous hermaphrodites in Western 

Australia 

This study provides comprehensive details of the macroscopic and histological 

characteristics of the gonads of both the Blue Threadfin Eleutheronema tetradactylum 

and the King Threadfin Polydactylus macrochir in north-western Australia, with the 
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results being derived from material obtained from fish covering a wide range of lengths 

and ages and different locations. 

The following evidence, which applies to both E. tetradactylum and 

P. macrochir, overwhelmingly supports the hypothesis that both of these threadfin 

species are protandrous hermaphrodites in north-western Australia. 1. All small and 

young fish were males and the prevalence of females increased progressively with 

increasing length and age. 2. The length range of those fish with gonads containing both 

testicular and ovarian tissue spanned the length range between the upper end of that for 

males and the lower end of that for females and this was particularly the case with 

E. tetradactylum. 3. Some of the transitional gonads clearly contained proliferating 

ovarian tissue and degenerating testicular tissue. 

The above findings satisfy the criteria of Sadovy & Shapiro, (1987) for 

demonstrating that a species is a sequential protandrous hermaphrodite. The conclusion 

that E. tetradactylum and P. macrochir are protandrous hermaphrodites is consistent 

with the conclusions drawn for these two polynemids in the Northern Territory and 

Queensland (Stanger, 1974; R. Griffin unpubl. data, cited in Kailola, 1993; McPherson, 

1997) and a number of other polynemid species, (Longhurst, 1965; Hida, 1967; 

Kagwade, 1970; Dorairaj, 1973; Santerre & May, 1977; Szyper et al., 1991). However, 

the finding that E. tetradactylum is a protandrous hermaphrodite in Australian waters 

contrasts with the situation found in Indian waters, in which this species is typically 

gonochoristic (Patnaik, 1967, 1970; Gopalakrishnan, 1972). 

The structures of the transitional gonads of E. tetradactylum and P. macrochir 

were very similar, with the testicular tissue being located along the dorsal and inner 

lateral regions of the paired gonads and separated by connective tissue from the ovarian 

tissue on the ventral and outer regions of those lobes. These locations of the testicular 

and ovarian components and their separation by connective tissue parallel the situation 

described for other protandrous polynemids (Nyak, 1959; Kagwade, 1970; Dorairaj, 

1973). The transition from testis to ovary in E. tetradactylum and P. macrochir involves 

a complete restructuring of the whole gonad, with the result that no evidence of its 

testicular ancestry can be detected even histologically. 
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The trends exhibited by the mean monthly GSIs for the testicular and ovarian 

components of the gonads of transitional fish demonstrate that, during the spawning 

period, the GSIs for the male component rise to levels far in excess of the female 

component and indeed were comparable with those of definitive males. The 

implications that, during the spawning period, transitional fish function as males are 

substantiated by the fact that substantial amounts of spermatozoa are present in the 

testicular component of the gonads of such fish. 

 

3.4.3 Timing of maturation and sex change 

Although E. tetradactylum and P. macrochir differ markedly in their maximum sizes, 

the vast majority of the individuals of both species reach maturity at the end of their first 

year of life when their lengths typically range from 200 to 300 mm. However, very few 

males of E. tetradactylum were older than two years, whereas males were found in all 

year classes of P. macrochir between one and seven. This implies that the males of 

E. tetradactylum spawn in only one or two years, whereas some males of P. macrochir 

spawn in several years. 

The extent of the ranges in lengths and ages over which the males change to 

females differs markedly between E. tetradactylum and P. macrochir. In the case of 

E. tetradactylum, most transitional fish ranged from 275 to 425 in length and belonged 

to the 1+ or 2+ age classes and females and males were both present only in the length 

classes between 325 and 425 mm. However, males of P. macrochir changed to females 

over the length range of 400 to 1200 mm and in all but the 0+ age class. These 

interspecific differences can be attributed in part to the fact that the males of 

E. tetradactylum spawn in only one or two years, whereas some of those of 

P. macrochir spawn during several years.  

Eleutheronema tetradactylum typically changes sex at a far smaller size and 

younger age than P. macrochir, as is demonstrated by the values of 401 and 814 mm for 

the L50 at the completion of sex change and the corresponding ages of 2 and 5 years, 

respectively. Since all females were mature during the spawning period, the L50 of 

401 mm for the completion of sex change in E. tetradactylum will correspond closely to 
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the L50 of females at maturity. The above L50 of 401 mm was less than the 543 mm 

recorded by McPherson (1997) for the females of E. tetradactylum at maturity in the 

Gulf of Carpentaria. The L50 of 840 mm for sex change in P. macrochir in north-

western Australia waters is also less than the value of ca 1150 mm for this species in the 

Gulf of Carpentaria (McPherson, 1997). 

 

3.4.4 Spawning period and mode 

The presence of females of E. tetradactylum with mature ovaries (stage V/VI) in each 

month between August and January implies that this species spawns between late winter 

and mid summer. This conclusion is broadly consistent with the fact that the mean 

monthly GSIs of females were greatest between September and December. 

The above spawning period of E. tetradactylum in north-western Australia is similar to 

that recorded for this species on the east coast of Queensland, where spawning peaks in 

October to December (Stanger, 1974; Russell, 1988). In contrast, the spawning of 

E. tetradactylum in the Gulf of Carpentaria in northern Australia peaks slightly earlier, 

i.e. during late winter and early spring (McPherson, 1997). 

Although we were only able to attain one large female in each of November and 

December, due to a combination of poor weather in the first of these months and the 

cessation of fishing by commercial fishers who were responsible for providing the 

largest fish during this study, the trends exhibited by the mean monthly GSIs for 

females strongly indicated that spawning occurred between September and January. 

This conclusion is broadly consistent with the progressive rise that took place in the 

mean monthly GSIs of males between September and October and the continuation of 

high values in the subsequent two months. The above estimate for the spawning period, 

i.e. early spring to mid summer, is slightly earlier than that of this species in the Gulf of 

Carpentaria, where spawning is estimated as peaking in late winter to early spring 

(McPherson, 1997). Although very few mature females of P. macrochir were caught in 

the study of Russell (1988), this author concluded from data for males that this threadfin 

species spawns in October to March in eastern Queensland. 
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The frequency distributions for the diameters of each of the sequential stages in 

the development of oocytes in stage VI ovaries provided no evidence that there was a 

marked discontinuity between the sizes of those successive stages in either 

E. tetradactylum or P. macrochir. It is thus concluded that these two threadfin species 

have indeterminate fecundity, i.e. there is continuous development and maturation of 

oocytes throughout the spawning period. Although this conclusion differs from that 

reached for E. tetradactylum by Stanger (1974), it does agree with those of other 

workers for other threadfin species (Karekar & Bal, 1960). 

The presence of both post-ovulatory follicles and migratory nucleus stage 

oocytes in individual mature ovaries of both threadfin species strongly suggests that 

these species spawn on several occasions and within relatively short time intervals. This 

type of repetitive spawning has been observed directly in E. tetradactylum and in other 

threadfin species under aquaculture conditions (May et al., 1979; Chao et al., 1994). 

 

3.4.5 Age and growth 

Although E. tetradactylum and P. macrochir both grow relatively rapidly early in life, 

attaining lengths of ca 400 mm by the end of their second years of life, the latter species 

subsequently grows more rapidly than the former species, with asymptotic lengths of 

1590 vs 760 mm and attaining maximum lengths of ca 1400 vs 800 mm. The King 

Threadfin also lives far longer than the Blue Threadfin, with several of its individuals in 

our samples being six to ten years in age, whereas none of the latter species exceeded 

six years in age. 

The size and age compositions and patterns of growth of E. tetradactylum and 

P. macrochir in north-western Australia are similar to those recorded for these species 

elsewhere in Australia (Stanger, 1974; Russell, 1988; Garrett, 1992; Bibby & 

McPherson, 1997). However, E. tetradactylum attains a far greater length in Indian 

waters than along the coast of north-western Australia, i.e. 1800-2000 vs ca 800 mm 

(Gopalakrishnan, 1972; Krishhnamurthy & Jeyaseelan, 1981; Feltes, 1999).  
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3.4.6 Mortality and yield and spawning biomass per recruit 

The far greater growth coefficient, k, and smaller asymptotic length recorded for 

E. tetradactylum than P. macrochir would be expected to be accompanied by a higher 

rate of natural mortality, M (e.g. Beverton and Holt, 1957; Pauly, 1980). This prediction 

is borne out by the greater values derived for M for E. tetradactylum using both the 

refitted equation of Pauly (1980) and the Bayesian approach of Hall et al. (2004), i.e. 

0.68 and 0.61 year-1, respectively, than those derived for P. macrochir using the same 

methods, i.e. 0.35 and 0.31 year-1, respectively. These comparisons imply that the stock 

of Blue Threadfin is more productive and more likely to sustain exploitation than that of 

the King Threadfin. Although the estimate of fishing mortality, F, was similar to that for 

M for E. tetradactylum, the estimate of F for P. macrochir greatly exceeded that of M. 

This suggests that E. tetradactylum is fully exploited and that P. macrochir is subject to 

overfishing. In the context of P. macrochir, it may thus be relevant that commercial 

fishing for threadfin species in north-western Australia is now focused mainly on this 

larger species. The extremely high values for F for another species of threadfin in India 

provide strong indications that such species are highly vulnerable to fishing. From a 

management point of view, it is important to recognise that the two threadfin species in 

north-western Australia are restricted to nearshore waters and are therefore easily 

targeted by fishers. 

The view that the King Threadfin is subject to overfishing and that Blue 

Threadfin is also relatively heavily fished is supported by the fact that the current 

estimates for F for both species exceed those for the F0.1 reference points for those 

species. The yield per recruit analysis also indicates that the age at recruitment of both 

threadfin species to the fishery has an important influence on the potential yield. Thus, 

if the ages at recruitment to the fisheries for E. tetradactylum or P. macrochir were to be 

reduced by only one year, the yield of particularly the former species would be 

substantially reduced. 

A marked reduction in spawning stock biomass could lead to recruitment 

overfishing. In this context, the more dramatic declines in the spawning potential ratios 

of the females than males of E. tetradactylum and P. macrochir as fishing mortality 
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increases from 0 to 1.5 year-1 demonstrate that, for these hermaphroditic species, it is 

critically important to take into account the lengths over which individuals change sex. 

At the current estimated level of fishing mortality of 0.45 year-1
 for P. macrochir, the 

SPR of the females of this species is predicted to have declined to 0.15, which is well 

below the limit reference point of 0.3, i.e. 30% of mature female virgin stock biomass. 

This strongly indicates that this species is overfished and is therefore at high risk of 

recruitment failure. In the case of the females of E. tetradactylum, the point estimate of 

0.36 for the current level of SPR is approaching the 0.3 reference point. Thus, the SPR 

of this latter species requires monitoring to ensure that it does not decline beyond the 

limit reference point of 0.3. 

The age at recruitment of E. tetradactylum to the exploited stock has important 

consequences for its management. For example, if this age was to be reduced by one 

year to age 1, the SPR of the stock at the current estimated level of F would lie well 

below the 0.3 reference point. In this respect, it is important to recognise that a 

considerable number of E. tetradactylum are currently caught at 1 year of age. Thus, 

further increases in the capture and retention of this age class should be avoided. 

 

3.4.7 Implications for management of the sizes at maturity and sex change 

As our data demonstrate that recreational fishers currently retain appreciable numbers of 

the Blue Threadfin that have lengths below that at which this species changes from male 

to female (L50 at sex change = 401 mm), managers and stakeholders need to consider 

introducing a legal length for retention that takes into account this length at sex change. 

Such a management measure would be appropriate as E. tetradactylum is caught mainly 

by recreational fishers and would be likely to survive release following their capture by 

rod and line. 

The current minimum legal length (MLL) for retention of 450 mm for King 

Threadfin is well below the length at which this species typically changes sex (L50 at sex 

change = 814 mm). However, as most of the catch of P. macrochir are taken by 

commercial gill net fishers, and few of these threadfin survive capture by gill nets, an 

increase in the MLL on its own would not be an effective way to facilitate the 
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conservation of the stocks of this species. Thus, managers and stakeholders will need to 

consider introducing other regulations that will result in the capture of this species at a 

far larger size than at present to ensure that sufficient females survive to maintain 

spawning potential, e.g. through a balance of controls on fishing effort and appropriate 

regulations on fishing gear to adjust the length range of fish that are selected by that 

gear. 
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4. BIOLOGY OF EPINEPHELUS COIOIDES AND EPINEPHELUS 

MALABARICUS 

 

4.1 INTRODUCTION 

The cods and groupers, which belong to the sub-family Epinephelinae of the Serranidae, 

are found throughout the Indo-West Pacific, where they are fished commercially and 

recreationally (Randall & Heemstra, 1991; Randall et al., 1997; Carpenter & Niem, 

1999; Mackie, 2000; Yeh et al., 2003). They are typically slow-growing, long-lived and 

monandric protogynous hermaphrodites, i.e. all males are derived from females 

(Shapiro, 1987; Shpigel & Fishelson, 1991; Sadovy et al., 1992, 1994; Chan & Sadovy, 

2002; Rhodes & Sadovy, 2002). They can be caught using a wide variety of fishing 

methods and, in the case of the larger species, often form spawning aggregations that 

are temporally and spatially predictable. The combination of the above characteristics 

make epinepheline serranids highly susceptible to fishing pressure (Bannerot et al., 

1987; Sadovy et al., 1992; Huntsman et al., 1999. Mackie, 2000; Rhodes & Sadovy, 

2002). 

Their economic value has led to the biology of several serranid species being 

studied in the Caribbean and Western Atlantic (e.g. Sadovy et al., 1994; Sadovy & 

Colin, 1995; Mackie, 2000). However, although a number of serranids are commercially 

and/or recreationally important in Western Australia, sound biological data are available 

in this state only for the Halfmoon Grouper Epinephelus rivulatus (Mackie, 2000). Two 

of the most important commercial and recreational species of serranid in north-western 

Australia are the Estuary Rockcod Epinephelus coioides and the Malabar Grouper 

Epinephelus malabaricus. 

In north-eastern Queensland, E. coioides and E. malabaricus are abundant in the 

mangroves of estuaries within which they undergo little movement and are represented 

entirely by juvenile females (Sheaves, 1992, 1993, 1995). Sheaves (1995) thus 

concluded that these two species are monandric protogynous hermaphrodites, as is the 

case with other species of Epinephelus (Yeh et al., 2003). Tank experiments involving 
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hormonal and social induction of sex change also indicated that E. coioides is a 

protogynous hermaphrodite (Quinitio et al., 2001; Yeh et al., 2003).  

In the Arabian Gulf, E. coioides exceeds 1000 mm in total length, attains a 

maximum age of 22 years (Mathews & Samuel, 1991) and is reported to spawn during a 

very restricted period, i.e. May (Grandcourt et al., 2005). On the basis of the ages they 

determined for three large individuals of E. malabaricus, Mathews & Samuel (1991) 

concluded that this species grows “exceptionally quickly”.   

When managing a fish stock, it is desirable to estimate the potential yield of the 

stock at different levels of exploitation (Buxton, 1992). Due to the fact that the 

empirical data for most reef fisheries are limited, per-recruit analyses have frequently 

been used for this purpose (Bannerot et al., 1987; Buxton, 1992; Punt et al., 1993). 

However, development of per-recruit models is more complex when dealing with 

hermaphroditic species than gonochorists as it requires a thorough understanding of the 

details of the relationship between sex change and the size and age of the fish (e.g. 

Buxton, 1992; Punt et al., 1993; Hesp et al., 2004a). 

The first aim of this study of E. coioides and E. malabaricus was to confirm 

that, in northern Western Australian waters, these species are monandric protogynous 

hermaphrodites and, if so, then to determine the sizes and ages at which they change 

sex. The second aim was to determine the sizes and ages at which both species reach 

maturity, the duration of their spawning periods, and whether they spawn on several 

occasions during the spawning period and have determinate or indeterminate fecundity. 

The third aim was to determine their size and age compositions and growth 

characteristics and to estimate their total, natural and fishing mortality. The final aim 

was to undertake per-recruit analyses for both species that would incorporate 

information on the lengths and ages at which sex change occurs.   

 

4.2 MATERIALS AND METHODS 

Details of the materials and methods are given in Chapter 2. Note that two individuals 

of E. coioides possessed gonads comprising both ovarian and testicular tissue. Since the 

oocytes in the ovarian component of the gonads of these two E. coioides were all at an 
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early previtellogenic stage, whereas the testicular component contained spermatids, 

these two fish were considered more likely to be functioning as males rather than 

females. For this reason, the data for these two individuals were grouped together with 

male E. coioides and regarded as males when determining the size and age at which this 

species changes sex. 

 

4.3 RESULTS 

4.3.1 Gonad histology 

Histological sections showed that the gonads of E. coioides < 600 mm and 

E. malabaricus < 900 mm consist exclusively of ovarian tissue. The gonads of two 

individuals of E. coioides, with lengths of 855 and 872 mm, contained both ovarian and 

testicular tissue. None of the oocytes in either of those two gonads had developed 

beyond the previtellogenic stage, while the testicular tissue consisted predominantly of 

spermatogonia, spermatocytes and spermatids (Figure 4.1a). The gonads of both of 

these individuals belonged to what was described by Sadovy and Shapiro (1987) as the 

undelimited type 2 category, i.e. male and female tissues are intermixed and not 

separated by connective tissue. None of the gonads of E. malabaricus contained both 

ovarian and testicular tissue. 

The testes of mature E. coioides and E. malabaricus possessed a conspicuous 

membrane-lined lumen (Figure 4.1b) and numerous sperm sinuses in their outer wall 

(Figure 4.1c), which contained spermatids and spermatozoa (Figure 4.1d). The 

spermatogenic tissue within the main body of mature testes consisted predominantly of 

spermatids. 

  

4.3.2 Length- and age-related sex ratios 

All E. coioides < 600 mm and all E. malabaricus < 900 mm TL were females. For 

E. coioides, the contributions made to each 100 mm length class by the males increased 

from 1% in the 600-699 mm length class to 55% in the 900-999 mm length class and  
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Figure 4.1. Histological sections of gonads of Epinephelus coioides. (a) Gonad 

containing both ovarian and testicular tissue, (b) an immature testis and (c,d) mature 
testes. The testes of E. coioides contain a lumen and, in the case of mature testes, 
sperm sinuses in their outer membrane. l, lumen; pv, previtellogenic oocyte; s, 
spermatocytes; ss, sperm sinus; st, spermatids; sz, spermatozoa.   
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100% in all individuals ≥ 1100 mm (Figure 4.2). For E. malabaricus, the contributions 

made to each length class by males increased from 5% in the 900-999 mm length class 

to 24% in the 1000-1100 mm length class and 100% in all fish ≥ 1200 mm (Figure 4.2). 

The L50 at sex change from female to male of 925 mm for E. coioides was significantly 

less than that of 1103 mm for E. malabaricus (p < 0.001)  (Table 4.1).    

 

Table 4.1. Estimates of the L50 and L95 and the associated lower and upper 95% 
confidence limits for Epinephelus coioides and Epinephelus malabaricus at sex change. 

 

Parameter L50 (mm) L95 (mm) 

Epinephelus coioides 

Estimate 925 1060 

Lower 901 1018 

Upper 953 1112 

Epinephelus malabaricus 

Estimate 1103 1224 

Lower 1055 1147 

Upper 1147 1300 

 

All E. coioides < 7 years and all E. malabaricus < 12 years were females 

(Figure 4.3). The percentage of E. coioides that were males increased progressively 

with increasing age, i.e. from 14 and 30% at 7 and 9 years of age, respectively, to 48% 

in all fish > 11 years of age collectively. In the case of E. malabaricus, the percentage 

of male fish increased from 13% between 12 and 14 years, to 29% between 15 and 21 

years and 91% in fish > 21 years of age (Figure 4.3).   

 

4.3.3 Reproductive biology 

The mean monthly GSIs of female E. coioides ≥ L50 at maturity remained low, 

i.e. < 1.1, between July and September, before increasing to > 2.5 between November 

and January, and then declining precipitously to ca 1 in February and < 0.5 between 

April and June (Figure 4.4). The mean monthly GSIs of female E. malabaricus ≥ L50 at 

maturity followed a similar trend to that of E. coioides (Figure 4.4). The macroscopic  
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Figure 4.2. Percentage frequencies of occurrence of male fish (grey bars) in sequential 
100 mm length classes of Epinephelus coioides and Epinephelus malabaricus. The 
logistic curve (solid line) and its 95% confidence limits (dotted lines) were derived from 
a logistic regression analysis that described the relationship between total length and the 
probability that an individual had changed sex to become a male. Sample sizes of fish for 
each 100 mm length class are shown. 
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Figure 4.3. Percentage frequencies of occurrence of male Epinephelus coioides and 
Epinephelus malabaricus at sequential ages. Sample sizes for each age class are shown. 
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characteristics of the different stages in the development of the ovaries of E. coioides 

and E. malabaricus, together with the cytological characteristics of each of those stages, 

are presented in Table 4.2 and Figure 4.5. The ovaries of all E. coioides ≥ L50 at 

maturity in April were at stage II (immature/resting) and this was the dominant stage in 

the next two months. Fish with ovaries at stage III (developing) were first found in May 

and those at stage IV (maturing) in July (Figure 4.6). Ovaries at stages V/VI (mature or 

spawning) were recorded in nine months, i.e. July to March, and collectively were the 

predominant ovarian stage between November and January. Epinephelus coioides with 

stage VII (spent) ovaries were recorded between January and March, and in one 

individual that was caught in July. One individual in October and another in January 

possessed ovaries at stage VIII (spent/recovering) (Figure 4.6). The trends exhibited by 

the prevalences of the different stages in the gonadal development of the females of 

E. malabaricus were similar to those just described for the females of E. coioides. Thus, 

females possessing stage V/VI ovaries were caught in ten months and constituted the 

dominant category between November and February.  

During the main part of the spawning period of E. coioides, i.e. November to 

January, the ovaries of all females < 500 mm were at stages I-II (Figure 4.7). Ovaries of 

E. coioides at stages III-VIII were first recorded in the 500-599 mm length class, to 

which they contributed 73% of all ovaries, and they constituted ≥ 75% of ovaries in 

each subsequent length class. The L50 for female E. coioides at first maturity, derived 

from the logistic curve fitted to the percentage contributions made at each length by 

females with gonads at stages III-VIII during the spawning period, was 575 mm 

(Table 4.3). 

No females of E. malabaricus that were caught during the spawning period 

(October to February) possessed ovaries at stages III-VIII until the 700-799 mm length 

classes, to which they contributed 22% of all ovaries (Figure 4.7). The percentage of 

female E. malabaricus with such ovaries increased to 71% in the 800-899 mm length 

class and 100% in all subsequent length classes. The L50 for E. malabaricus at first 

maturity, i.e. 803 mm, was significantly greater than that of E. coioides, i.e. 575 mm 

(p < 0.001) (Table 4.3). The upper and lower 95% confidence limits for the logistic  
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Table 4.2. Macroscopic and histological characteristics of stages in the development of 
the ovaries of Epinephelus coioides and Epinephelus malabaricus. Adapted from 
Laevastu (1965). Terminology for oocyte stages follows Wallace & Selman (1989). 
 

 
Stage 

 
Macroscopic characteristics 

 
Histological characteristics 
 

I or II – Virgin or 
Immature resting  

Small and transparent. Yellowish-
orange in colour. Oocytes not visible 
through ovarian wall.  

Ovigerous lamellae highly organised. 
Chromatin nucleolar and 
perinucleolar oocytes dominate the 
complement of oocytes. Oogonia 
sometimes present. Chromatin 
nucleolar oocytes present in all 
subsequent ovarian stages. 

III – Developing Slightly larger than stage II. Reddish 
colour. Oocytes visible through 
ovarian wall. 

Chromatin nucleolar, perinucleolar 
and cortical alveolar oocytes present. 

IV – Maturing Larger than stage III. Reddish-orange 
in colour. Yolk granule oocytes 
visible through ovarian wall. 

Cortical alveolar and yolk granule 
oocytes abundant. 

V – Mature Larger than stage IV, occupying half 
to two thirds of body cavity. 
Extensive capillaries visible in 
ovarian wall.  

Yolk granule oocytes predominant.  

VI – Spawning Hydrated oocytes visible through 
ovarian wall. Note that fish with 
ovaries in “spawning condition” can 
only be detected macroscopically 
when caught during the oocyte 
hydration period. 

Migratory nucleus oocytes, hydrated 
oocytes or post-ovulatory follicles 
present. 

VII – Spent Smaller than V/VI and flaccid. Some 
yolk granule oocytes visible through 
ovarian wall. 

Some remnant yolk granule oocytes 
present, all or almost all of which are 
undergoing atresia. 

VIII- 
Spent/Recovering 

Small and dark red. Extensive connective tissue present. 
Ovarian lamellae becoming 
reorganised. No yolk granule oocytes 
present. 
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Figure 4.5. Histological sections of ovarian stages of Epinephelus coioides. (a) I-II, (b) 
III, (c) IV, (d) V, (e) VI  and (f) VIII. ca, cortical alveolar oocyte; ct, connective tissue; 
h, hydrated oocyte; pv, previtellogenic oocyte; yg, yolk granule oocyte. 
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Figure 4.7. Percentage frequencies of occurrence of Epinephelus coioides and Epinephelus 

malabaricus with ovaries at stages III-VIII (grey bars) in sequential 100 mm length classes 
during the spawning period. The logistic curve (solid line) and its 95% confidence limits (dotted 
lines) were derived from a logistic regression analysis that described the relationship between 
total length and the probability that an individual was mature. Sample sizes of fish in each 
100 mm length class are shown. 
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Table 4.3. Estimates of the L50 and L95 and their lower and upper 95% confidence limits 
for female Epinephelus coioides and Epinephelus malabaricus at first maturity. 
 
 

Parameter L50 (mm) L95 (mm) 

Epinephelus coioides 

Estimate 575 817 

Lower 537 714 

Upper 616 955 

Epinephelus malabaricus 

Estimate 803 931 

Upper 762 842 

Lower 839 1008 

 

parameters, i.e. L50 and L95, for E. coioides and E. malabaricus, are presented in 

Table 4.3.  

With E. coioides, maturity was attained by 25% of females at the end of their 

fourth year of life and by 80% of females by the end of their fifth year of life (Figure 

4.8). All females of nine years of age or older were mature during the spawning season. 

In the case of E. malabaricus, no females reached maturity until the end of their seventh 

year of life. The proportion of mature E. malabaricus increased from 7% at the end of 

their seventh year of life to 100% by the end of their ninth and subsequent years of life 

(Figure 4.8).   

 

4.3.4 Oocyte diameters of mature ovaries 

The stage VI ovaries of two spawning females of each of E. coioides and 

E. malabaricus, that were representative of other such ovaries of these species during 

the spawning season, contained oocytes at each developmental stage from the chromatin 

nucleolar to yolk granule stage (Figure 4.9). Note that oocytes beyond the yolk granule 

stage, i.e. migratory nucleus and hydrated stage oocytes, were not measured (see 

materials and methods for reason). The distribution of oocyte diameters was continuous 

in the first of the ovaries of E. coioides, and almost continuos in the second of the 

ovaries of this species. The chromatin nucleolar, perinucleolar and cortical alveolar  
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Figure 4.8. Percentage frequency of occurrence of female Epinephelus coioides and 
Epinephelus malabaricus with ovaries at stages III-VIII in sequential age classes during 
the spawning period. Sample sizes for each age class are shown. 
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oocytes ranged between the 0-19 and 240-259 µm diameter classes, with an overall 

modal diameter class of 60-99 µm, while the yolk granule oocytes ranged between the 

260-279 and 540-559 µm diameter classes and exhibited a modal diameter class of 440-

479 µm (Figure 4.9b). The distributions of the oocyte diameters in the ovaries of the 

two mature E. malabaricus were similar to those of E. coioides (cf Figs 4.9c-d). 

 

 

4.3.5 Length composition of the samples 

The length compositions of both species varied markedly according to the method of 

capture (Figure 4.10). The use of rotenone in nearshore waters yielded the smallest 

individuals of both E. coioides and E. malabaricus, with lengths ranging from 10 to 340 

and 23 to 393 mm, respectively, and producing means of 114 and 108 mm, respectively. 

Line fishing caught larger E. coioides and E. malabaricus than those obtained by 

rotenone, with the lengths ranging from 104 to 872 and 212 to 1270 mm, respectively, 

and producing a modal length class at 300-399 mm for both species. Research traps 

caught a relatively wide length range of E. coioides (160 to 936 mm) and 

E. malabaricus (356 to 1056 mm), whereas virtually all of those individuals of both 

species caught by commercial trapping and trawling exceeded 500 mm. The average 

lengths of E. coioides and E. malabaricus taken by commercial trawling (811 and 906 

mm, respectively) were greater than those obtained by all other methods. Furthermore, 

the largest individuals of both species, i.e. 1156 and 1216 mm, respectively, were 

caught by commercial trawling. The trends exhibited by differences in the length 

distributions of E. malabaricus were essentially the same as those of E. coioides 

(Figure 4.10).  

All of the individuals of E. coioides and E. malabaricus < 200 and 300 mm, 

respectively, were obtained from nearshore, shallow waters (i.e. < 5 m deep) 

(Figure 4.11). With increasing length, the percentage E. coioides and E. malabaricus in  
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the samples that had been caught in offshore, deeper waters (i.e. > 20 m deep) 

increased. Thus, for E. coioides, the percentage of fish in deeper offshore waters 

increased from 5% in the 200-299 mm length class to 20 and 64% in the 300-399 and 

400-499 mm length classes, respectively, and to 100% for fish > 600 mm in length. In 

the case of E. malabaricus, the percentage increased from 3% in the 300-399 mm length 

class to 31 and 77% in the 500-599 and 600-699 mm length classes, respectively, and to 

100% for all fish > 700 mm in length (Figure 4.11). The L50 at which E. coioides in 

samples were caught in offshore waters was 420 mm (95% CIs = 404-435 mm) whereas 

that for E. malabaricus was 562 mm (95% CIs = 533-587 mm). 

The relationships between total length, TL, and body weight, W, for E. coioides 

and E. malabaricus are as follows: 

Epinephelus coioides  ln W = 3.023 x ln TL – 11.246 (R2 = 0.997, n = 745) 

Epinephelus malabaricus ln W = 3.132 x ln TL – 11.904 (R2 = 0.996, n = 346). 

The relationships between standard length, SL, and total length, TL, for the two 

species are as follows: 

Epinephelus coioides  SL = (0.852 x TL) – 9.033 (R2= 0.999, n = 813) 

Epinephelus malabaricus SL = (0.855 x TL) – 15.251 (R2 = 0.998, n = 365). 

 

4.3.6 Validation that the opaque zones are formed annually 

The mean monthly marginal increments on otoliths of E. coioides with one opaque zone 

declined precipitously from 0.4 to 0.5 in July to September to a minimum of 0.1 in 

January and then rose progressively to reach 0.4 in June (Figure 4.12). Similar trends 

were exhibited by the mean monthly marginal increments for E. coioides with otoliths 

containing greater numbers of opaque zones, and for those of otoliths of Epinephelus 

malabaricus, regardless of the number of opaque zones (Figure 4.12). Since, 

irrespective of the number of opaque zones in the otoliths of E. coioides and  
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E. malabaricus, the mean monthly marginal increment declined and rose only once 

during the year, a single opaque zone is laid down annually in the otoliths of these 

species. As the mean monthly marginal increments for E. coioides and E. malabaricus 

declined between early spring and late summer and spawning of both species peaked in 

early to mid summer, the first opaque zone is laid down in the otoliths of these species 

when their individuals are about one year of age. 

 

4.3.7 Age composition and growth 

The maximum age of E. malabaricus, i.e. 31 years, was far greater than that of 

E. coioides, i.e. 22 years, and, whereas 26 E. malabaricus were > 16 years old, only 

three E. coioides exceeded this age. von Bertalanffy growth curves provided good fits to 

the lengths at age of individuals of E. malabaricus and E. coioides, as is demonstrated 

by the relatively high values for the coefficients of determination of 0.886 and 0.908, 

respectively. Furthermore, the estimated values of -0.56 and -0.01 years, respectively, 

for the ages at zero length were both close to zero (Table 4.4, Figure 4.13). The 

estimate of the asymptotic length was far greater for E. malabaricus (1278 mm) than for 

E. coioides (1082 mm), whereas the reverse was true for the growth coefficient, i.e. 0.10 

vs 0.15 year-1. A likelihood ratio test demonstrated that the growth curves for the two 

species were significantly different (P < 0.05). 

The estimated lengths at ages 2, 5, 10, 15 and 20 years were 282, 572, 841, 968 

and 1028 mm, respectively, for E. coioides, compared with 287, 545, 833, 1008 and 

1114 mm, respectively for E. malabaricus (Figure 4.14). Thus, both species grow at a 

similar rate until they reach ca 10 years of age, after which E. malabaricus grows faster 

(Figure 4.14). The distributions of the lengths at age of the females and males of 

E. coioides demonstrate that, amongst the older age classes, i.e. > 8 years, the males 

were typically longer than the females of the same age (Figure 4.13). In comparison, 

the older age classes of E. malabaricus, i.e. > 24 years, comprised only male fish and, in 

age classes represented by both sexes, the lengths of females and males were not 

conspicuously different (Figure 4.13). 
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Table 4.4. von Bertalanffy growth parameters derived from lengths at age for 
Epinephelus coioides and Epinephelus malabaricus, including lower and upper 95% 
confidence limits, the coefficient of determination (R2) and number of fish aged (n). 

 
 

 L∞ (mm) k (year
-1

) t0 (years) R
2
 n 

Epinephelus coioides 

Estimate 1082 0.15 -0.01 0.908 745 

Lower 1030 0.14 -0.10   

Upper 1136 0.17 0.08   

 

Epinephelus malabaricus 

Estimate 1278 0.10 -0.56 0.886 334 

Lower 1234 0.09 -0.86   

Upper 1337 0.11 -0.27   

      

 

 

4.3.8 Mortality estimates 

The point estimates for the instantaneous coefficient of total mortality, Z, for 

E. coioides, derived by refitting Hoenig’s (1983) equation for fish, relative abundance 

(catch curve) analysis and simulation based on the number of fish (= 5 fish) ≥ 14 years 

of age, ranged between 0.20 and 0.32 year-1 (Table 4.5). The posterior probability 

distribution for Z, determined by combining the separate likelihood distributions for the 

various estimates of Z (Figure 4.15 a,b), yielded a combined point estimate for Z of 

0.29 year-1 (Table 4.5). Although the point estimate for the instantaneous coefficient of 

natural mortality, M, for E. coioides, derived by refitting Pauly’s (1980) equation (0.36 

year-1), was higher than the combined point estimate for Z, the 95% confidence intervals 

for these estimates of M and Z overlapped (Table 4.5). The resultant posterior 

probability distribution for the point estimate for M, determined from the combined 

likelihood distribution for Z and the requirement that M ≤ Z, yielded a point estimate for 

M of  0.21 year-1 (Table 4.5, Figure 4.16 a,b). 
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Figure 4.13. von Bertalanffy growth curves fitted to the lengths at age of 805 
Epinephelus coioides and 355 Epinephelus malabaricus. Closed circles refer to 
females and open circles to males. 
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Table 4.5. Mortality estimates for Epinephelus coioides and Epinephelus 

malabaricus calculated using life history models, estimation of longevity based on 
simulation and relative abundance (catch curve) analysis. Methods used for main 
interpretations of mortality are in bold. 

 

Method of analysis Z, M or F 

(year
-1

) 

Estimate Lower  

95% 

Upper  

95% 

Epinephelus coioides 

Refitted Hoenig (1983) fish equation Z 0.20 0.07 0.55 

Relative abundance analysis Z 0.29 0.24 0.34 

Simulation (number of fish ≥ 14 years) Z 0.32 0.22 0.45 

Combined Z (Bayesian method) Z 0.29 0.25 0.34 

Refitted Pauly (1980) M 0.36 0.12 1.11 

Combined M (Bayesian method) M 0.21 0.10 0.31 

Monte Carlo F 0.07 0.00 0.20 

Epinephelus malabaricus 

Refitted Hoenig (1983) fish equation Z 0.14 0.05 0.39 

Relative abundance analysis Z 0.17 0.11 0.24 

Simulation (number of fish ≥ 16 years) Z 0.15 0.07 0.24 

Combined Z (Bayesian method) Z 0.15 0.12 0.21 

Refitted Pauly (1980) M 0.26 0.08 0.81 

Combined M (Bayesian method) M 0.12 0.06 0.19 

Monte Carlo F 0.03 0.00 0.10 
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The three point estimates for Z for E. malabaricus, derived by refitting Hoenig’s 

(1983) equation for fish, relative abundance analysis and simulation based on the 

number of fish (= 5 fish) ≥ 16 years of age, were similar, i.e. ranged from 0.14-0.17 

year-1, and were each lower than the corresponding Z estimates for E. coioides (Table 

4.5, Figure 4.15 c,d). The posterior probability distribution for Z for E. malabaricus, 

yielded a combined point estimate for Z of 0.15 year-1. As was the case with E. coioides, 

the point estimate for M for E. malabaricus, derived by refitting Pauly’s (1980) 

equation of 0.26 year-1 was higher than the estimates for Z and the 95% confidence 

intervals were very broad (Table 4.5). The combined estimate for M, as determined 

from the Bayesian analysis, was 0.12 year-1. In the case of both E. coioides and 

E. malabaricus, the 95% confidence intervals for the combined estimate for M were far 

narrower than for the estimate of M derived by refitting Pauly’s (1980) equation. The 

point estimates of the current level of fishing mortality, F, derived from the Monte 

Carlo analysis for E. coioides (0.07 year-1) and E. malabaricus (0.03 year-1) were 

relatively low, i.e. < half the level of M (Table 4.5).  

 

4.3.9 Yield per recruit, spawning potential ratio and spawning biomass per recruit 

The yield per recruit analysis (YPR) for recruits to the stock of E. coioides, calculated 

using knife-edge recruitment to the exploited stock at 6 years, as determined for this 

species in the trawl fishery, indicated that with increasing fishing mortality (F) from 0 

to 0.4 year-1, the YPR will continue to increase (Figure 4.17a). Although the same 

situation would pertain if the age at recruitment to the fishery was 9 years, if it was 3  

years, the YPR begins to decline when F exceeds 0.25 year-1 (Figure 4.17a). The 

estimated YPR and associated 95% confidence intervals for E. coioides at the estimated 

current level of F of 0.07 year-1 and assuming knife edge recruitment to the fishery at 6 

years, is 0.53 kg year-1 (0.00 – 2.94 kg recruit-1) (Table 4.6). For E. malabaricus, 

assuming knife edge recruitment to the exploited stock at 6 years, the estimated YPR 

increases rapidly at relatively low levels of F (i.e. <0.05 year-1), and declines when F 

exceeds 0.16 year-1 (Figure 4.17b). If the age at recruitment of E. malabaricus to the 

fishery was 3 years, YPR is estimated to begin declining at a lower level of F (0.10  
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Table 4.6. Estimates of the current level of yield per recruit (YPR), F0.1, and the 
current levels of total spawning stock biomass per recruit (SSB/R) and spawning 
potential ratio SPR) for females, males and females and males combined, for 
Epinephelus coioides and Epinephelus malabaricus, calculated using 6 years, as the 
age at full recruitment to the exploited stock for both species. 

 

Analysis Estimate Lower  

95% 

Upper  

95% 

Epinephelus coioides 

YPR (kg recruit
-1

) 0.53 0 2.94 

F0.1 (year
-1

) 0.14 -- -- 

SSB/R (kg recruit
-1

) 7.82 3.93 16.36 

SPR (females) 0.78 0.45 1.00 

SPR (males) 0.44 0.08 1.00 

SPR (females & males) 0.67 0.22 1.00 

Epinephelus malabaricus 

YPR (kg recruit
-1

) 1.18 0 5.07 

F0.1
 
(year

-1
) 0.09 -- -- 

SSB/R (kg recruit
-1

) 26.49 11.56 49.91 

SPR (females) 0.74 0.31 1.00 

SPR (males) 0.59 0.14 1.00 

SPR (females & males) 0.70 0.24 1.00 

 

 

year-1). However, if it were 9 years, YPR is estimated to continue to increase with 

increasing levels of F. The estimated YPR and associated 95% confidence intervals for 

E. malabaricus at the estimated current level of F of 0.03 year-1 and assuming knife- 

edge recruitment to the fishery at 6 years is 1.18 kg year-1 (0.00 – 5.07 kg recruit-1) 

(Table 4.6). The estimated values for F0.1 for E. coioides and E. malabaricus are 0.14 

and 0.09 year-1, respectively. 

Regardless of the age at recruitment, with increasing F, the spawning potential 

ratio (SPR) for male E. coioides decreased far more rapidly than for females (Figure 

4.17c). In the case of both female and male E. coioides, the rate at which SPR is 

predicted to decline decreases substantially as the age at recruitment increases. In 
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comparison to E. coioides, the rate at which the SPR for E. malabaricus declines with 

increasing levels of F is greater, and altering the age at recruitment has less of an effect 

on the rate at which SPR declines (Figure 4.17d). The current estimated SPRs for 

female and male E. coioides and E. malabaricus are 0.78 and 0.44, and 0.74 and 0.59, 

respectively (Figures 4.17c,d; Table 4.6). In the case of both species, the confidence 

intervals associated with the SPR estimates are broad. 

As F increases, the ratio of male to female spawning stock biomass per recruit 

(SSB/R) for E. coioides and E. malabaricus is predicted to decline exponentially 

(Figures 4.17 e,f). The male to female ratio of SSB/R for E. coioides and E. 

malabaricus is estimated to have declined from 0.55 and 0.33 respectively (i.e. at F = 0 

year-1) to 0.34 and 0.27, respectively (i.e. at the current levels of F for these two 

species) (Figures 4.17 e,f).  

 

 

4.4 DISCUSSION 

4.4.1 Protogynous hermaphroditism 

This study represents the first detailed histological examination of the gonads of wild 

E. coioides and E. malabaricus and which covered essentially the full size and age 

range of these species from individuals caught throughout the year. The results were 

thus able to be used to determine the type of hermaphroditism exhibited by each species 

and the lengths and ages at which the individuals of these species change sex. The 

results provide the following evidence that Epinephelus coioides and Epinephelus 

malabaricus are protogynous hermaphrodites. In the case of both species, all small and 

young fish were females, the prevalence of males increased with increasing size and age 

and the gonads possessed characteristics which, as outlined by Sadovy and Shapiro 

(1987) in their extensive review of hermaphroditism in fishes, are strongly indicative of 

protogynous hermaphroditism. The latter characteristics are as follows. (i) The gonads 

of all small individuals contained solely ovarian tissue. (ii) The testes of all mature 

males contained a distinct membrane-lined cavity similar in form to the ovarian lumen 

of females, and there was no evidence that this cavity is used for sperm transport by 
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males. (iii) All mature testes were of an ovarian lamellar form and contained sperm 

sinuses in their outer wall. The latter two characteristics of the testes of E. coioides and 

E. malabaricus are typical of monandric protogynous hermaphrodites (Sadovy and 

Shaprio, 1987), i.e. all males are derived exclusively by sex change from adult females. 

Most other species of grouper have been shown to be monandric protogynous 

hermaphrodites (e.g. Shapiro, 1987; Shpigel & Fishelson, 1991; Shapiro et al., 1993; 

Sadovy et al., 1994; Chan & Sadovy, 2002; Rhodes & Sadovy, 2002).  

In addition to the above histological findings, the gonads of two E. coioides 

possessed ovarian tissue containing previtellogenic oocytes and testicular tissue, 

comprising predominantly spermatocytes and spermatids. Because a variety of 

conditions other than hermaphroditism can lead to the development of previtellogenic 

occytes in testes, Sadovy and Shapiro (1987) have emphasized that such a condition 

does not, on its own, provide strong evidence for protogynous hermaphroditism. 

However, in view of the other strong evidence that these two cod species are 

protogynous hermaphrodites, it is likely that, at their time of capture, these two 

individuals were changing sex. This view is consistent with their lengths (872 and 855 

mm) and ages (~ 7.5 years) being similar to those at which the males of this species first 

became prevalent in the samples. That only two such “transitional” individuals of 

E. coioides were found is consistent with the work of Quinitio et al. (1997), which 

showed that, under culture conditions, sex change in this species is rapid, i.e. can occur 

within two months.    

The finding that E. coioides and E. malabaricus in north-western Australian 

waters are monandric protogynous hermaphrodites is consistent with conclusions drawn 

by several workers in other parts of the world (Sheaves, 1995; Quinitio et al., 2001; Yeh 

et al., 2003; Grandcourt et al., 2005). Previous evidence that either E. coioides or 

E. malabaricus is a protogynous hermaphrodite includes the following. (1) All of the 

small individuals of E. coioides and E. malabaricus Sheaves (1995) collected in 

mangroves areas in tropical north-east Queensland were females. (2) Sex inversion can 

be induced in E. coioides by social control (Quinitio et al., 1997). (3) Tank experiments 
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with E. coioides showed that sex change was able to be induced by oral administration 

of mibolerone or an androgen mixture (Quinitio et al., 2001; Yeh et al., 2003). 

The results of our study demonstrate that sex change typically occurs at a 

smaller size and younger age in E. coioides than E. malabaricus, i.e. L50 = 925 mm 

(= 13.2 years) vs 1103 mm (= 19.9 years). The length and age at sex change recorded 

for E. coioides during this study differs markedly from that recorded by Grandcourt et 

al. (2005) for this species in the Arabian Gulf, i.e. fish recorded as males in that study 

ranged between 274 and 784 mm and 1.1 and 6.1 years. However, Grandcourt et al. 

(2005) did not derive their data from an histological study.  

 

4.4.2 Spawning period, location and mode 

The elevated GSIs and high prevalence of ovaries at stages V-VI (mature and spawning) 

exhibited by E. coioides in October to January and by E. malabaricus in October to 

February, demonstrate that these two species spawn predominantly during these 

respective monthly periods. For the purpose of constructing growth curves, both species 

were thus accorded a birth date of 1 January. The occurrence of ovaries of E. coioides 

and E. malabaricus at stages V-VI in nine and ten months of the year, respectively, also 

demonstrate that both species spawn over a highly protracted period. This finding 

differs markedly from that of Grandcourt et al. (2005) for E. coioides in the Arabian 

Gulf, who reported that spawning occurs only during May. The latter far more restricted 

spawning period may be due, at least in part, to data for juvenile fish being included in 

the calculations of the mean monthly GSIs and to the small number of large fish that 

were caught during their study. 

The capture of mainly small E. coioides (< 400 mm) and E. malabaricus 

(< 500 mm) in shallow (<5 m), nearshore mangrove creeks, and of larger, older fish in 

deeper, offshore waters, strongly indicates that these species use the former 

environment as a nursery area and then migrate offshore as they increase in size and 

age. The view that shallow, nearshore mangrove areas act as nursery areas is consistent 

with the fact that all of the E. coioides and E. malabaricus collected from this type of 

environment possessed immature gonads. It is also consistent with the finding of 
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Sheaves (1995) that all of the E. coioides and E. malabaricus he collected in mangroves 

in tropical north-east Queensland were juveniles. As mature (stage V gonads) 

E. coioides and E. malabaricus were taken from over reefs in offshore waters, these two 

species presumably spawn in those waters. 

As each of the various stages in oocyte development, i.e. chromatin nucleolar, 

perinucleolar, cortical alveolar and yolk granule oocytes, were typically represented in 

ovaries of individual mature and spawning (stages V-VI) females (and migratory 

nucleus and hydrated oocytes in some stage VI females) of E. coioides and 

E. malabaricus, these species have indeterminate fecundity. In such species, the number 

of oocytes released during the spawning season is not determined prior to the 

commencement of that season (Hunter et al., 1985). As estimates of annual fecundity 

for such species require data on both batch fecundity and spawning frequency, it is far 

more difficult to derive estimates for species with indeterminate than determinate 

fecundity. Unfortunately, the very remote locations in which this study was conducted 

made it essentially impossible to be able to sample as intensively as would be necessary 

to obtain such data. 

 

4.4.3 Age and growth 

Since, regardless of the number of zones in their otoliths, the trends exhibited 

throughout the year by the mean monthly marginal increments for otoliths of E. coioides 

and E. malabaricus exhibited a single conspicuous decline and then single progressive 

rise, one opaque zone is formed in those otoliths each year. Thus, as with the two 

threadfin salmon species and mangrove jack, the number of zones in their otoliths can 

be used to age these two cod species. 

As demonstrated by the von Bertalanffy growth curves, E. coioides and 

E. malabaricus grow at essentially the same rate for the first 10 years of life, but the 

latter species subsequently grows faster and attains a greater maximum size (i.e. 1156 vs 

1216 mm) and lives longer (i.e. 31 vs 22 years). The maximum age of 22 years recorded 

for E. coioides in this study is the same as that recorded by Mathews and Samuel (1991) 

for this species (referred to as Epinephelus suilus in that paper) in waters of the Arabian 
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Gulf. This maximum age is slightly greater than the 16 years recorded by Sheaves 

(1995) for one of five relatively large E. coioides collected in offshore waters in north-

east Queensland waters. The maximum age of 31 years determined for E. malabaricus 

in our study is the greatest yet recorded for this species, and far greater than the 18 years 

derived by Mathews & Samuel (1991), from a sample size of only three individuals. 

The far greater longevity of E. malabaricus than E. coioides is consistent with the 

former species taking far longer to attain first maturity (9.4 vs 5.0 years, respectively) 

and to undergo protogynous sex change (19.9 vs 13.2 years, respectively).  

The greater length of the males than females of E. coioides at corresponding 

ages parallels the situation for a number of other protogynous fishes, e.g. the Sandperch 

Parapercis cylindrical (Walker & McCormick, 2004) and Chlorurus gibbus, Chlorurus 

sordidus, Scarus niger and Scarus frenatus and (Choat et al., 1996; Munday et al., 

2004). As outlined by Walker and McCormick (2004), three alternative hypotheses have 

been proposed to explain sex-related size at age differences in protogynous species. 

These are (1) somatic growth accelerates after sex change (= “transitional growth-spurt 

hypothesis”), (2) different growth trajectories are established early in life (= “juvenile 

growth hypothesis”) and (3) enhanced larval growth may bias post-settlement growth, 

thereby influencing the timing of maturation and, in turn, determine which individuals 

change sex (= “larval growth hypothesis” (Walker and McCormick, 2004). Future work 

employing back-calculation methods will by used to investigate these alternative 

hypotheses.   

The finding that, in contrast to the situation with E. coioides, the males of 

E. malabaricus were not conspicuously greater in length than their females at 

corresponding ages suggests that these two Epinephelus species exhibit different 

reproductive strategies, i.e. possibly different haremic social structures. The fact that 

males and females are both present in almost all older age classes (i.e. > 8 years) of 

E. coioides but that, at corresponding ages, the males are larger, indicates that sex 

change in this species is size-related rather than age-related. This view is supported by 

the work of Quinitio et al. (1997), who showed that, when female E. coioides of 

different sizes were stocked in net cages or tanks, many larger individuals (initial body 
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weight 5.0-6.1 kg) changed sex to become males, while all smaller individuals (initial 

weight (4.5-5.2 kg) remained female. In the case of E. malabaricus, and in contrast to E. 

coioides, the absence of females in the older age classes (i.e. > 24 years) and absence of 

a conspicuous difference between the lengths of males and females at corresponding 

ages, implies that sex change in this species is age, and not size-related. 

  

4.4.4 Mortality and yield and spawning biomass per recruit 

As has been demonstrated for several other species (see Hall et al., 2004), the point 

estimate of M derived for E. coioides using Pauly’s (1980) equation was higher than the 

point estimates derived for Z using Hoenig’s (1983) equation for fish, relative 

abundance (catch curve) analysis and the simulation method of (Hall et al., 2004). 

Furthermore, as is typically the case with the Pauly equation, the confidence intervals 

for M for both E. coioides and E. malabaricus were very broad. The use of Hall et al.’s 

method (developed in our FRDC project 2000/137) reconciled the inconsistencies 

between M and Z for E. coioides and, particularly for M, provided far more precise 

estimates for both species. However, those estimates of M, derived using the Bayesian 

method of Hall et al. (2004) are still likely to represent an underestimate of this 

parameter and consequently also of F, because the estimate of M derived using the 

empirical approach of Pauly (1980) was so erroneously high. Thus, although the 

resultant low estimates of F for E. coioides and E. malabaricus suggest that these 

species are not being subjected to heavy fishing pressure in north-western Australia, this 

result should be treated with caution.  

Since the size composition data for E. coioides and E. malabaricus indicated that 

the gear used by the commercial trap fishery does not catch the largest E. coioides and 

E. malabaricus, the samples collected from this fishery were considered biased and 

therefore not used in the catch curve analysis. As a consequence of the restriction of the 

data to those derived from the commercial trawl fishery, which only operates in the 

Pilbara region, the mortality estimates are representative only of the fish in that region. 

It should also be noted that the estimates are based on the assumption that the trawl and 

trap fisheries in the Pilbara region operate in the same areas. Although the catch and 
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effort statistics data (Catch and Effort Statistics, Department of Fisheries, Western 

Australia) indicate that this is the case, there is presumably some degree of spatial 

segregation, since trawling would be restricted to areas of either bare substrate or low-

lying reefs. 

The per recruit analyses undertaken during this study demonstrate that, for 

hermaphroditic species, it is critical to take into account the relationship describing the 

lengths over which individuals sex change. The finding that the spawning potential ratio 

of males declines dramatically at relatively low levels of fishing mortality implies that 

the stocks of E. coioides and E. malabaricus could be susceptible to recruitment 

overfishing at even low levels of mortality. As pointed out by Buxton (1992), the 

fundamental assumption of the yield per recruit model that recruitment is constant is 

more likely to fail when dealing with hermaphroditic species. This point is highlighted 

by the fact that, at fishing mortalities equivalent to F0.1 for E. coioides (0.14 year-1) and 

E. malabaricus (0.10 year-1), the corresponding spawning stock biomass per recruit for 

males of these two species is predicted to fall to 26 and 20% of their original levels, 

respectively. Since the point estimates of current spawning potential ratios of 0.44 and 

0.78 for the males and females of E. coioides, respectively, and of 0.59 and 0.74 for 

E. malabaricus, respectively, are above 30% of their original level, this suggests that the 

current level of fishing pressure on these two species in the Pilbara region is sustainable 

(see Mace and Sissenwine, 1993; Goodyear, 1993). However, because of the very large 

uncertainty in the estimates obtained for F for both E. coioides and E. malabaricus, 

there is also very large uncertainty in the above estimates of the current SPRs. It is thus 

recommended that fisheries managers adopt a cautious approach to managing these 

species. 

The finding that the relationship between fishing mortality and spawning 

potential ratio of males and females of these two cod species, and particularly for 

E. coioides, changes markedly depending on the age at full recruitment to the exploited 

stock, is likely to be important for managing these species in the future. Although most 

of the current fishing pressure on these two species is likely to come from the 

commercial trap and trawl fisheries, at least some individuals are taken by recreational 
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anglers and from nearshore waters, i.e. when they are still juveniles. Thus, as 

recreational fishing pressure on these two species inevitably increases, the impact of the 

recreational fishery will also need to be taken into account when managing these 

species. 
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5. BIOLOGY OF THE MANGROVE JACK LUTJANUS 

ARGENTIMACULATUS 

5.1 INTRODUCTION 

The mangrove jack Lutjanus argentimaculatus (Forsskål, 1775), also known as the 

mangrove red snapper, is widely distributed throughout the tropical Indo-West Pacific 

(Allen, 1985). In Western Australia, L. argentimaculatus is found from Mindarie 

(31°41’S) northwards to the Northern Territory border. Although this species is 

classified as oceanodromous (migrates within oceans), its juveniles and subadults 

inhabit structurally-complex habitats in freshwater, brackish and estuarine waters and 

only later move offshore to deeper waters where there are reefs and small to large 

epibenthic organisms (Brouard & Grandperrin, 1984; Allen, 1985; Sheaves, 1995; 

Newman & Williams, 1996; Russell et al., 2003; Riede, 2004). 

Although the Mangrove Jack is commercially and recreationally important in 

Western Australia, there are no detailed biological data of the type that can be used by 

fisheries managers for developing plans for conserving the stocks of this species in this 

state. However, there is sound information on certain aspects of the biology of this 

species in eastern Australia. Thus, for example, in that region, it has been shown that it 

spawns over summer, with a peak in December and that, on the basis of the number of 

annually-formed growth zones in their otoliths, it can live for up to 37 years (Russell et 

al., 2003). 

The aims of this study were to determine the following for Mangrove Jack in the 

Pilbara and Kimberley regions of north-western Australia. 1. The lengths and ages of 

females and males at maturity. 2. The duration of the spawning season, batch fecundity 

and whether spawning occurs on several occasions during the spawning period and 

whether fecundity is determinate or indeterminate. 3. Length and age compositions and 

growth characteristics. 4. Total, natural and fishing mortality. 5. Yield, spawning stock 

biomass per-recruit and spawning potential ratio. 
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5.2 MATERIALS AND METHODS 

Materials and methods are given in the General Materials and Methods section (Chapter 

2). Note that, in this study, lengths are given as fork lengths unless otherwise stated. 

 

 

5.3 RESULTS 

5.3.1 Commerical catch statistics 

The total annual commercial catch of L. argentimaculatus in Western Australia 

increased progressively from 0.04 to 19 tonnes between 1988 and 1993, and has 

subsequently fluctuated between 8.6 and 25.4 tonnes (Figure 5.1). The values and 

trends exhibited by the commercial catch in the Pilbara region are very similar to that 

just described for the overall catch in Western Australia, reflecting the fact that most of 

the catches come from the Pilbara. The total annual catch of Mangrove Jack in the 

Kimberley region increased from < 1 tonne between 1988 and 1994 to a peak of 2.0 

tonnes in 1996 before declining to 0.4 tonnes in 2000 and then increasing again to their 

maxima of 2.6 tonnes in 2004 (CAES, Department of Fisheries WA). Most of the catch 

in the Pilbara was taken by trawling, whereas most of that taken in the Kimberley was 

obtained by trapping (Figure 5.1). 

 

5.3.2 Lengths and ages at maturity 

All of the females and males of L. argentimaculatus caught in both the Pilbara and 

Kimberley regions with fork lengths < 400 mm were immature, i.e. possessed gonads at 

stages I-II (Figure 5.2). Mature females and males of L. argentimaculatus first appeared 

in the 400-449 mm or 450-499 mm length classes in both regions and all or the majority 

of individuals were mature, i.e. possessed gonads at stages III-VIII, by the time they had 

reached 550 mm FL. The L50s at first maturity in the Pilbara region for females (461 

mm) and males (452 mm) were not significantly different (p > 0.05), whereas that for 

females in the Kimberley region (498 mm) was significantly greater (p < 0.001) than 

that of the males (472 mm) (Table 5.1). In addition, the L50s for females and males in 
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Figure 5.1. Commercial catch (tonnes) of Lutjanus argentimaculatus in north-western 
Australia in each year between 1988 and 2004. 
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Fork length (mm)

Figure 5.2. Percentage frequencies of occurrence of fish with ovaries or testes at stages III-VIII 
in sequential 50 mm length classes of Lutjanus argenticmaculatus in the Pilbara and Kimberley 
regions. In each case, the logistic curves (solid line) and their 95% confidence limits (dotted 
lines) were derived from a logistic regression analysis that described the relationship between 
total length and the probability that an individual possessed gonads at stages III-VIII. Sample 
sizes of fish in each 50 mm length class are shown. 
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the Kimberley region were significantly greater than those of the corresponding sexes in 

the Pilbara (p < 0.001 and p < 0.01, respectively, for the two sexes) (Table 5.1). 

 

 

 

Table 5.1.  Estimates of the L50 and L95 at first maturity and their lower and upper 
95% confidence limits for female and male Lutjanus argentimaculatus from the 
Pilbara and Kimberley coasts. 

 

Parameter L50 (mm) L95 (mm) 

Pilbara 

Females 

Estimate 461 540 

Lower 95% 453 527 

Upper 95% 468 554 

Males   

Estimate 452 525 

Lower 95% 446 512 

Upper 95% 458 537 

Kimberley 

Females 

Estimate 498 551 

Upper 95% 489 537 

Lower 95% 506 566 

Males   

Estimate 472 533 

Upper 95% 464 519 

Lower 95% 480 547 

 

 

All L. argentimaculatus < 4 years of age were immature (Figure 5.3). Maturity 

had been attained by a few females and males in the Pilbara region and males in the 

Kimberley region by 4 years of age, and by a small number of females from that latter 

region by 5 years of age. Lutjanus argentimaculatus typically attained maturity slightly 

earlier in the Pilbara than Kimberley region, with > 50% of fish being mature by 6 years 

in the former region, but not until 7 years in the latter region. Furthermore, although  
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Figure 5.3. Percentage frequencies of occurrence of fish caught during the spawning period 
with ovaries at stages III-VIII in sequential age classes of Lutjanus argenticmaculatus from the 
Pilbara and Kimberley regions. Sample sizes of fish in each age class are shown. 
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almost all L. argentimaculatus (i.e. > 90%) in the Pilbara region were mature by 8 

years, this was not the case in the Kimberley until fish were 9 years old (Figure 5.3).  

 

5.3.3 Gonadal development and spawning season 

On the basis of pooled data for corresponding months during the whole sampling 

period, the monthly mean GSIs of female L. argentimaculatus in the Pilbara region rose 

from their minima of about 1 in July and August to their maxima of > 4 in November to 

February and then declined sequentially in the ensuing months (Figure 5.4). The trends 

exhibited by the mean monthly GSIs of male L. argentimaculatus followed the same 

seasonal trend, but with the minimum and maximum values being lower, i.e. ca 0.25 vs 

1 and ca 1.8 vs 6, respectively (Figure 5.4). Although, in pooled data, the mean 

monthly GSIs started to rise as temperatures increased, this relationship is shown more 

clearly when the data for the different years were plotted separately (Figure 5.5). The 

trends exhibited by the mean monthly GSIs for L. argentimaculatus from the Kimberley 

region were similar to those just described for the Pilbara region (Figure 5.6). However, 

the greatest mean monthly values were found between October and December rather 

than from November to January (Figure 5.6). 

In the samples from the Pilbara, females with ovaries at stages I-II (immature) 

were abundant in each month between April and September and absent or rare in all  

other months (Figure 5.7). Females with stage V (mature) ovaries were caught in all 

months between August and March and those with stage VI (spawning) ovaries were 

found in some of those months. Spent or recovering spent females (stages VII-VIII) 

were found in all but three months. The trends exhibited by the prevalence of the 

sequential stages in ovarian development by females from the Kimberley region were 

similar to those just described for the Pilbara region. Although females with stage V 

ovaries were first recorded in the Kimberley region in June and July rather than in 

August, as in the Pilbara region, this may have partly reflected the acquisition of larger 

samples from that former region during the winter months (Figure 5.7). 
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Figure 5.4. Mean monthly gonadosomatic indices ±1SE of those female and male 
Lutjanus argentimaculatus from the Pilbara region that had lengths greater than their L50s 
at first maturity. The mean monthly water temperatures have also been plotted. Data for 
the corresponding months between October 2002 and February 2005 have been pooled. 
Closed rectangles on horizontal axis refer to winter and summer months and the open 
rectangles to spring and autumn months. Number of fish used to derive each mean is 
shown. 
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5.3.4 Aspects related to fecundity 

The stage VI ovaries of two female L. argentimaculatus, that were representative of 

stage VI ovaries during the spawning season, contained oocytes at each developmental 

stage from the chromatin nucleolar to yolk granule stage (Figure 5.8). Note that oocytes 

beyond the yolk granule stage were not measured (see Chapter 2 for reason). In both 

ovaries, the oocyte diameters formed an essentially continuous distribution. The 

diameters of the smallest oocytes, i.e. chromatin nucleolar oocytes, produced a sharp 

modal class at 40-59 µm, while those of the largest oocytes, i.e. yolk granule oocytes, 

ranged between 220-559 µm (Figure 5.8). 

The fecundities of 13 female L. argentimaculatus from the Pilbara region, 

derived from estimates of the number of hydrated oocytes in stage VI ovaries of fish 

with lengths of 460 to 679 mm and weights of 1.6 to 5.6 kg, ranged from ca 0.4 to 2.4 

million. The relationship between batch fecundity, F, and both fork length in mm, FL, 

and total body weight in g, W, are shown in Figure 5.9 and described by the following 

equations: 

 

F = 9.425x10-6 x FL
4.021  R

2 = 0.826, n = 13. 

F = 449.350 W - 261584 
R

2 = 0.886, n = 13. 

 

5.3.5 Sex ratio 

Although the ratio of females to males of L. argentimaculatus caught by the commercial 

trawl fishery in offshore waters in the Pilbara region was close to parity, i.e. 47.4 : 52.6, 

far fewer females than males were caught by the commercial trap fishery in offshore 

waters of the Kimberley region, i.e. 38.3 : 61.7.  

 

5.3.6 Spawning location 

All of the fish sampled in rivers and the mangrove regions of estuaries were immature. 

In contrast, in offshore waters, 78 and 77% of the females and males in the Pilbara  
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region and 61 and 74% of the corresponding sexes in the Kimberley region were 

mature. 

 

5.3.7 Validation that opaque zones in otoliths are formed annually 

The mean monthly marginal increments on otoliths of L. argentimaculatus with 4-6 

opaque zones rose progressively from 0.45 to reach ca 0.65 in July to September and 

then declined precipitously to about 0.4 in October (Figure 5.10). Similar trends were 

exhibited by the mean monthly marginal increments with 7-9 opaque zones. 

 

5.3.8 Age composition and growth 

The maximum observed age of females and males of L. argentimaculatus were 52 and 

49 years, respectively, in the Pilbara region and 41 and 43 years, respectively, in the 

Kimberley region. The von Bertalanffy growth curve provided a good fit to the lengths 

at age of females and males of L. argentimaculatus in both the Pilbara and Kimberley 

regions, as is demonstrated by the high values for the coefficient of determination 

(Figure 5.11, Table 5.2). The growth curves of females and males were significantly 

different (p < 0.001) in both the Pilbara and Kimberley regions. The asymptotic lengths 

of females and males were greater in the Kimberley than in the Pilbara. In both regions, 

the females and males grew rapidly during the first 10 years of life, attaining, during 

that period, lengths that were between 83 and 93% of their asymptotic lengths. The 

estimated lengths at ages 2, 5, 10, 20 and 30 years were 220, 397, 526, 585, and 592 

mm, respectively, for females, and 218, 407, 549, 619 and 628 mm for males, 

respectively in the Pilbara. The estimated lengths for fish of the same age in the 

Kimberley were 265, 414, 553, 649 and 671 mm for females, respectively, and 248, 

429, 565, 632 and 641 mm, respectively, for males (Figure 5.11). 

 ANCOVA demonstrated that the relationships between fork length, FL, and 

body weight, W, for L. argentimaculatus from the Pilbara and Kimberley regions were 

significantly different (p < 0.001). The above relationships for the two regions are: 

Pilbara  ln W = 2.957 x ln FL – 10.801 (R2 = 0.986, n = 1088) 
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Table 5.2.  von Bertalanffy growth parameters derived from lengths at age for 
Lutjanus argentimaculatus from the Pilbara and Kimberley regions, including lower 
and upper 95% confidence limits, the coefficient of determination (R2) and number of 
fish aged (n). 
 
 

 

 L∞ (mm) k (year
-1

) t0 (years) R
2
 n 

Pilbara 

Females      

Estimate 630 0.205 -0.076 0.751 607 

Lower 95% 617 0.192 -0.263   

Upper 95% 642 0.220 0.096   

Males      

Estimate 593 0.215 -0.152 0.745 705 

Lower 95% 583 0.201 -0.351   

Upper 95% 604 0.228 0.032   

Kimberley 

Females      

Estimate 642 0.204 -0.393 0.841 296 

Lower 95% 622 0.172 -0.997   

Upper 95% 666 0.230 -0.171   

Males      

Estimate 677 0.150 -1.313 0.851 502 

Lower 95% 657 0.128 -1.922   

Upper 95% 702 0.169 -0.874   
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Kimberley ln W = 3.045 x ln FL – 11.328 (R2 = 0.979, n = 635). 

 The relationships between fork length, FL, and both total length, TL, and 

standard length, SL, for L. argentimaculatus are as follows:  

  TL = (1.052 x FL) - 5.126 (R2 = 0.995, n = 1976) 

  SL = (0.851 x FL) – 10.952 (R2 = 0.996, n = 1974).  

 

5.3.9 Length and age compositions 

The length and age compositions of L. argentimaculatus varied markedly according to 

the method of capture (Figure 5.12). The use of rotenone in nearshore waters yielded 

the smallest individuals, with lengths ranging from 54 to 107 mm and producing a 

modal length class of 50 to 99 mm. All of these fish were in their first year of life. 

The lengths of fish caught by line fishing by recreational fishers in nearshore waters 

ranged from 125 to 494 mm, with the majority lying between 300-399 mm, whereas line 

fishing by commercial fishers in offshore waters caught fish with lengths ranging from 

495 to 916 mm. The fish caught by recreational anglers were all < 8 years of age, 

whereas those obtained by commercial line fishers were all > 9 years of age and the 

three oldest of these fish ranged from 46 to 52 years in age (Figure 5.12). 

The length and age distributions of L. argentimaculatus caught by commercial 

trapping in the Kimberley region and by commercial trawling in the Pilbara region were 

similar, with lengths ranging from 372 to 865 mm and from 338 to 759 mm, 

respectively, and with ages ranging from 3 to 43 years and 4 to 43 years, respectively. 

The majority of fish were between 400 and 650 mm in length and < 15 years in age 

(Figure 5.12). 

All L. argentimaculatus that were caught at lengths < 300 mm were obtained 

from mangroves in nearshore waters (Figure 5.13). The percentage of sampled fish in 

the Pilbara region caught in offshore waters, with respect to length, increased from 4% 

in the 300-449 mm length class to 24 and 91% in the 350-399 and 400-449 mm length 

classes, respectively and to 100% for fish > 450 mm. With respect to age, the 

percentage of L. argentimaculatus caught in offshore waters increased from 0% in fish 

< 4 years, to 51% in fish at 4 years and to all or virtually all fish ≥ 6 years. The trends  
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Fork length (mm)

Figure 5.13. Percentage frequencies of occurrence of fish in offshore waters in the Pilbara and 
Kimberley regions in sequential 100 mm length classes and age classes of Lutjanus 

argenticmaculatus (data shown in grey). The logistic curve (solid line) and its 95% confidence 
limits (dotted lines) were derived from a logistic regression analysis that described the 
relationship between total length and the probability that an individual had been caught in 
offshore waters. Sample sizes of fish in each 100 mm length class are shown. 
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exhibited by sampled fish in the Kimberley region were similar to those just described 

for L. argentimaculatus in the Pilbara reigon. The lengths and ages at which 50% of 

L. argentimaculatus in the Pilbara and Kimberley regions move to offshore waters (i.e. 

L50s and A50s) were 387 and 394 mm and 4.6 and 3.9 years, respectively (Table 5.3). A 

likelihood-ratio test demonstrated that A50s were significantly different (p < 0.001) but 

that this was not the case with the L50s (Figure 5.13). 

 

 
Table 5.3.  Estimates for Lutjanus argentimaculatus from the Pilbara and Kimberley 
coasts of the lengths and ages at which 50 and 95% of fish in the samples had been  
caught in offshore waters (i.e. L50, L95, A50 and A95, respectively) and associated lower 
and upper 95% confidence limits. 

 
 
 

Parameter L50 L95 A50 A95 

Pilbara     

Estimate 387 435 4.57 6.71 

Lower 95% 382 424 4.43 6.43 

Upper 95% 393 445 4.77 7.05 

Kimberley     

Estimate 394 436 3.91 5.02 

Lower 95% 388 424 3.78 4.77 

Upper 95% 399 448 4.07 5.26 

 

 

5.3.10 Mortality estimates 

The point estimates for the instantaneous coefficient of total mortality, Z, for 

L. argentimaculatus, from both the Pilbara and Kimberley regions, derived by refitting 

Hoenig’s (1983) equation for fish, relative abundance (catch curve) analysis (sensu 

Deriso et al., 1985) and simulation based on the number of fish greater than or equal to 

a specified age, i.e. 5 fish ≥ 46 years for the Pilbara region and 5 fish ≥ 40 years for the 

Kimberley region, ranged between 0.08 and 0.15 year-1 (Table 5.4, Figure 5.14). The 

posterior probability distribution for Z, determined by combining the separate likelihood 

distributions for the various estimates of Z, yielded a combined point estimate for Z of  
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Table 5.4. Mortality estimates for Lutjanus argentimaculatus from the Pilbara and 
Kimberley regions calculated using life history models, estimation of longevity based on 
simulation and relative abundance analysis. 

 

Method of analysis Z, M or F 

(year
-1

) 

Estimate Lower 

95% 

Upper 

95% 

Pilbara 

Refitted Hoenig (1983) fish equation Z 0.08 0.03 0.23 

Relative abundance analysis Z 0.15 0.14 0.16 

Simulation (number of fish ≥ 46 years) Z 0.13 0.10 0.15 

Combined Z (Bayesian method) Z 0.15 0.14 0.17 

Refitted Pauly (1980) M 0.53 0.17 1.62 

Combined M (Bayesian method) M 0.13 0.08 0.16 

Monte Carlo F 0.02 0.00 0.08 

Kimberley 

Refitted Hoenig (1983) fish equation Z 0.08 0.03 0.23 

Relative abundance analysis Z 0.13 0.12 0.14 

Simulation (number of fish ≥ 40 years) Z 0.15 0.11 0.18 

Combined Z (Bayesian method) Z 0.14 0.13 0.16 

Refitted Pauly (1980) M 0.42 0.14 1.30 

Combined M (Bayesian method) M 0.12 0.07 0.15 

Monte Carlo F 0.02 0.00 0.08 
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Figure 5.14. Estimated likelihood functions for total mortality, Z, of Lutjanus 

argentimaculatus from the Pilbara and Kimberley regions derived using Hoenig’s (1983) 
regression equation for fish, relative abundance (catch curve) analysis, and a simulation 
method based on the number of individuals above a certain age and sample size. (a,b) 
Combined posterior probability distributions for Z for L. argentimaculatus derived from the 
separate likelihood functions are shown in a and b.     
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0.15 year-1 for the Pilbara region and 0.14 year-1 for the Kimberley region (Table 5.4, 

Figure 5.14). 

The point estimates for the instantaneous coefficient of natural mortality, M, for 

L. argentimaculatus, derived by refitting the equation of Pauly (1980) of 0.53 year-1 for 

the Pilbara region and 0.42 year-1 for the Kimberley region, were substantially higher 

than the combined point estimates of Z for the two regions (Table 5.4). The resultant 

posterior probability distribution for the point estimate for M, determined from the 

Bayesian analysis of the combined likelihood distribution for Z and the requirement that 

M ≤ Z, yielded a point estimate for M of 0.13 year-1 in the Pilbara and 0.12 year-1 in the 

Kimberley (Table 5.4, Figure 5.15). The 95% confidence intervals for the combined 

estimate for M were far narrower than for the estimate of M derived by refitting Pauly’s 

(1980) equation. The point estimates of the current level of fishing mortality, F, derived 

from the Monte Carlo analysis for L. argentimaculatus from the Pilbara and Kimberley 

regions were both low, i.e. 0.02 year-1 for both regions (Table 5.4). 

 

5.3.11 Yield per recruit, spawning potential ratio and spawning biomass per recruit 

The yield per recruit analysis (YPR) for L. argentimaculatus, calculated using knife-

edge recruitment to the vulnerable stock at 6 years, as determined for this species from 

the data for the samples caught by both the trawl fishery in the Pilbara region and the 

trap fishery in the Kimberley region, indicated that with increasing fishing mortality, F, 

from 0 to 0.50 year-1, the YPR will continue to increase, after which it begins to decline 

(Figure 5.16). If the age at recruitment to the fishery was 9 years, with an increase in F 

from 0 to 0.8 year-1, the YPR in both regions will continue to increase. In contrast, if the 

age at recruitment to the exploited stock was 3 years, the YPR of L. argentimaculatus in 

the Pilbara and Kimberley regions is expected to begin to decline when F exceeds 0.19 

and 0.21 year-1, respectively, in those two regions (Figure 5.16). The estimated YPR 

and associated 95% confidence intervals for L. argentimaculatus at the estimated 

current level of F of 0.02 year-1 and assuming knife edge recruitment to the fishery at 6 

years, is 0.17 kg recruit-1 (0.00 - 0.88 kg recruit-1) in the Pilbara region and 0.21 kg  
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Figure 5.15. Likelihood functions for natural mortality M for Lutjanus argentimaculatus 
from the Pilbara and Kimberley regions (a,b) from Pauly’s (1980) equation and the 
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Figure 5.16. Effect, for Lutjanus argentimaculatus from the Pilbara and Kimberley regions, 
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recruit-1 (0.00 - 1.14 kg recruit-1) in the Kimberley region. The estimated value of F0.1 

for L. argentimaculatus is 0.15 year-1 for both regions (Table 5.5).   

 

 
Table 5.5. Estimates of the current level of yield per recruit (YPR), F0.1, and the 
current levels of total spawning stock biomass per recruit (SSB/R) and spawning 
potential ratio (SPR) for females, males and females and males combined, for 
Lutjanus argentimaculatus from the Kimberley and Pilbara regions, calculated using 
6 years as the age at full recruitment to the fishery for both regions. 

 

Analysis Estimate Lower  

95% 

Upper  

95% 

Pilbara 

YPR (kg recruit
-1

) 0.17 0 0.88 

F0.1 (year
-1

) 0.15 -- -- 

SSB/R (kg recruit
-1

) 8.59 5.53 24.88 

SPR (females) 0.82 0.38 1.00 

SPR (males) 0.83 0.39 1.00 

SPR (females & males) 0.83 0.39 1.00 

Kimberley 

YPR (kg recruit
-1

) 0.21 0 1.14 

F0.1
 
(year

-1
) 0.15 -- -- 

SSB/R (kg recruit
-1

) 12.11 8.73 39.08 

SPR (females) 0.81 0.38 1.00 

SPR (males) 0.82 0.39 1.00 

SPR (females & males) 0.81 0.38 1.00 

 

Regardless of the age at recruitment to the exploited stock, with increasing F, 

the spawning potential ratio (SPR) for females and males of L. argentimaculatus 

declines at a similar rate in the two regions (Figure 5.16). In the case of both sexes, the 

rate at which SPR is predicted to decline decreases substantially as the age at 

recruitment to the fishery increases. The current estimated SPRs for females and males 

combined, for L. argentimaculatus from the Pilbara and Kimberley regions, are 0.83 

and 0.81, respectively (Table 5.5). 
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5.4 DISCUSSION 

5.4.1 Reproductive biology 

As with other species of the Lutjanidae in the tropics (Grimes, 1987), 

L. argentimaculatus in Western Australia is gonochoristic, i.e. the sexes are separate. 

The lengths at which the females and males of this species typically attain maturity (L50) 

in the Pilbara (461 and 452 mm, respectively) and Kimberley regions (498 and 472 mm, 

respectively) far exceed the minimum legal length for retention (MLL) of 300 mm TL 

(= ca 290 mm FL) for L. argentimaculatus in Western Australia. From a management 

point of view, it is also relevant that, because this species migrates from nearshore to 

offshore waters as they increase in size and age and approach maturity, the recreational 

fisheries for L. argentimaculatus in the nearshore waters of north-western Australia is 

based on immature fish. Furthermore, the lengths of an appreciable number of the 

individuals retained by the commercial trap fishery in the Kimberley region and 

commercial trawl fishery in the Pilbara region are below the size at which this species 

attains maturity.  

The greater size of the females than males of L. argentimaculatus at maturity  

parallels the situation found for this species in eastern Australia (Russell et al., 2003). 

The females and males of L. argentimaculatus reach maturity at a relatively smaller 

size, with respect to their asymptotic length, i.e. 67 and 72%, respectively, in the Pilbara 

region than in the Kimberley region, i.e. 79 and 80%, respectively. It may thus be 

relevant that the commercial catches in the Pilbara region are an order of magnitude 

greater than those in the Kimberley region. 

The far greater ratio of males to females recorded for the Kimberley region 

(61.7 : 38.3) than in the Pilbara region (52.6: 47.4), which are close to parity, possibly 

reflects the different fishing methods employed by commercial fishers in the two 

regions, i.e. trawling vs fish trapping. For example, the males may be more aggressive 

and thus exhibit a greater tendency than females to be caught by traps.  

The spring/summer spawning period of L. argentimaculatus in Western 

Australia is similar to that recorded for this species in eastern Australia (Russell et al., 

2003) and in the waters off Thailand (Doi & Singhagraiwan, 1993). The period of 
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spawning of Mangrove Jack in the spring/summer also parallels that of other lutjanid 

species which occupy areas of the continental shelf (Grimes, 1987). The mean monthly 

GSIs of L. argentimaculatus in the Pilbara region during the separate years of this study 

strongly indicated that gonadal recrudescence commences as water temperatures begin 

to rise and that spawning peaks when water temperatures are at their maxima. This 

finding is consistent with the fact that, in fish, water temperature plays a crucial role in 

providing a cue for the onset of gonadal development after a quiescent phase and in 

stimulating spawning activity (Lam 1983). Surprisingly, in contrast with the situation in 

Western Australia, the spawning of Mangrove Jack in the waters off Thailand is 

associated with falling water temperatures and high rainfall (Doi & Singhagraiwan, 

1993).  

Since virtually all of the mature Mangrove Jack caught during the spawning 

period in the Pilbara and Kimberley regions were obtained from over reefs in offshore 

waters, this species presumably spawns in this type of habitat. Furthermore, as hydrated 

oocytes were found only in the ovaries of females of L. argentimaculatus caught during 

the day, and the period between the onset of oocyte hydration and ovulation in marine 

fish species is typically ca 7-10 h (Lisovenko & Andrianov, 1991, McBride et al., 2003, 

Hesp et al., 2004b), L. argentimaculatus apparently spawns during the afternoon or at 

dusk. Such a conclusion is consistent with the finding that the congeneric species 

Lutjanus vitta in north-western Australia spawns during the afternoon (Davis & West, 

1993). The latter workers hypothesized that the timing of the large tidal cycles and 

strong currents in north-western Australia would thus facilitate the dispersal of the eggs 

and larvae of this lutjanid (Davis & West, 1993).  

The presence, within individual stage VI (spawning) ovaries, of oocytes at all 

stages of development, i.e. chromatin nucleolar, perinucleolar, cortical alveolar and yolk 

granule oocytes, together with either migratory nucleus oocytes, hydrated oocytes 

and/or post ovulatory follicles, demonstrates that this species has indeterminate 

fecundity. Thus, the number of oocytes released by individual females during a 

spawning season is not determined prior to the commencement of that season (Hunter et 

al., 1985). The 13 females of L. argentimaculatus for which we could obtain estimates 
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of batch fecundity had a maximum weight of 5.6 kg, which is substantially less than the 

maximum weight attained by this species. The fact that the largest of our batch 

fecundity estimates, i.e. ca 2.4 million oocytes, is far less than the ca 4 million eggs 

recorded for this species in eastern Australia is thus almost certainly attributable to the 

far smaller size of our fish (Russell et al., 2003).  

 

5.4.2 Age and growth 

Since the mean monthly marginal increments for sectioned otoliths of 

L. argentimaculatus exhibited a single progressive rise and then decline during the year, 

a single opaque zone is formed annually in the otoliths of this species in north-western 

Australia. Thus, as with the two threadfin species, the Estuary Rockcod and Malabar 

Grouper, the number of opaque zones in the otoliths can be used to age this species.  

The Mangrove Jack lives for a far longer period than the two threadfin species, 

the Estuary Rockcod and the Malabar grouper, that were the other species studied 

during this FRDC project. The maximum age of 52 years we recorded for 

L. argentimaculatus is substantially greater than the 37 and 32 years recorded for this 

species in eastern Australia by Russell et al. (2003) and Sheaves (1995), respectively, 

and the 18 years recorded for L. argentimaculatus in New Caledonia by Loubens 

(1980). However, all of the above estimates of maximum age are markedly greater than 

the 7 years recorded for this species on the east coast of Malaysia. This difference is 

almost certainly due to the fact that this latter study was based on analysis of length-

frequency data, which would have made it impossible to distinguish between the length 

distributions of the older fish (Ambak et al., 1985). The far greater maximum age 

recorded for Mangrove Jack in north-western Australia than in all other regions suggests 

that fishing pressure on this species in this region is still relatively light, which is 

consistent with the results of our mortality analyses (see later). 

 

5.4.3 Mortality and yield and spawning biomass per recruit analyses 

The point estimates derived for M for L. argentimaculatus in the Pilbara and Kimberley 

regions using the equation of Pauly (1980) were greater than the point estimates derived 
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for Z using Hoenig’s (1983) equation for fish, relative abundance (catch curve) analysis 

and the simulation method of Hall et al. (2004). This clearly erroneous situation 

parallels that found for the Estuary Rockcod and Malabar Grouper (Chapter 4). 

Furthermore, as is typically the case with the Pauly equation, the estimates for M for 

Mangrove Jack are very imprecise, i.e. have very broad confidence intervals.  

The Bayesian approach of Hall et al. (2004), developed during FRDC project 

2000/137, combines the various mortality estimates and takes into account the fact that 

M cannot exceed Z. The resulting low estimates of M of ca 0.12-0.13 year-1 and large 

maximum age (> 50 years) recorded for L. argentimaculatus suggests that this species is 

likely to be prone to over-exploitation. However, even with this Bayesian approach, 

which incorporates the distribution of the values for M derived from the Pauly (1980) 

equation, an erroneously high estimate for this variable will bias the ultimate estimate 

for M derived from the Bayesian approach. Thus, in turn, the estimate for F will be 

biased and, consequently, should be treated with caution. Nevertheless, the point 

estimates for F for L. argentimaculatus from both regions were particularly low, which 

suggests that this species is not currently subjected to heavy fishing pressure in north-

western Australia.  

The above indication that fishing mortality of Mangrove Jack in north-western 

Australia is light is consistent with the presence in our samples of one very old fish of 

52 years and several in excess of 35 years. This conclusion is further enhanced by the 

fact that these older individuals were far greater in age than those caught in eastern 

Australia (Russell et al., 2003).  

The estimates of 0.83 and 0.81 for the SPRs of L. argentimaculatus in the 

Pilbara and Kimberley regions, respectively, far exceed 0.3, i.e. greatly exceed 30% of 

the spawning stock biomass of the virgin stock. This suggests that the current level of 

fishing pressure on this species in these regions is likely to be sustainable (Mace & 

Sissenwine, 1993; Goodyear, 1993). Nevertheless, because the estimates of mortality 

are imprecise, caution must be exercised in placing too much weight solely on the 

results of these SPR analyses. At the same time, it must be recognised that, as Mangrove 

Jack become fully recruited to the fishery at a length below that at which this species 
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typically attains maturity, the SPR will decline markedly as fishing mortality increases. 

Furthermore, these per recruit analyses do not take into account the fact that the 

recreational fishery for L. argentimaculatus, which is largely concentrated in nearshore 

waters, is based on fish that have not reached the size at maturity. Thus, should the 

recreational fishery continue to increase, managers and stakeholders will need to 

consider increasing the MLL for L. argentimaculatus to a length equivalent or greater 

than that at which this species typically attains maturity. However, at the same time, 

managers will need to take into account the fact that the introduction of such a policy 

would prohibit many recreational anglers from catching Mangrove Jack, as these 

anglers fish in nearshore waters where only the juveniles of this species occur. 

Alternatively, managers might need to consider policies which reduce fishing effort. 
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BENEFITS 

This study has achieved the following.  

1. Provides the first sound quantitative data for two protandrous species (Blue 

and King Threadfin), two protogynous species (Estuary Rockcod and 

Malabar Grouper) and one gonochoristic species (Mangrove Jack) in the 

Kimberley and Pilbara regions of north-western Australia. These species are 

important components of the commercial and recreational fisheries in the 

remote coastline of north-western Australia.  

2. Enables fisheries managers, in conjunction with stakeholders, to develop 

strategies for conserving the stocks of the above important commercial and 

recreational species.  

3. The provision of baseline data on the current biological characteristics and 

levels of total mortality of these five species will enable fisheries managers 

to detect and therefore, if necessary, respond to any changes in these crucial 

parameters for the overall stocks of these finfish in the future.  

4. Facilitate the sustainability of the stocks of the above five species and thus 

ensure that recreational and commercial fishers will be able to take 

appropriate numbers of each of those species.  

5. The training of research students in contemporary techniques for analyzing 

quantitatively key aspects of the biology and stock status of finfish species 

and refining aspects of certain of those techniques.   

  

FURTHER DEVELOPMENT 

Once accepted by the FRDC, the final report will be provided to managers at the 

Department of Fisheries, Western Australia. This will enable managers and stakeholders 

to take into account the highly relevant biological data on Blue and King Threadfin, 



 171 

Estuary Rockcod, Malabar Grouper and Mangrove Jack, when developing management 

plans for these species in the Pilbara and Kimberley regions. 

 The accepted final report will also be provided to the Western Australia Fishing 

Industry Council (WAFIC), RecFishwest, Recreational Fishing Advisory Committee 

(RFAC), CALM, the Regional Manager and Northern Policy Officer of the Department 

of Fisheries, Western Australia. This will ensure that stakeholders are made aware of 

the biology of these five species and the implications of the results for sustainable 

management. 

 Poster(s) and/or reports summarising the main biological results of this study 

will be sent to appropriate bodies and individuals. The results of this study will be 

submitted for publication in international journals so that their implications are subject 

to critical peer group review. The responses of the referees will facilitate the refinement 

of our approaches to studying crucial aspects of the biology of hermaphroditic and 

gonochoristic species. 

  

PLANNED OUTCOMES 

The following planned outcomes, as outlined in B6 of the original project application, 

have been achieved. 

1. The results of this study provide managers with the types of data that they 

require to maintain effectively and appropriately the stocks of the Blue and 

King Threadfins, Estuary Rockcod, Malabar Grouper and Mangrove Jack in 

north-western Australia. 

2. The results of the study will facilitate the development of more informed and 

thus more robust management strategies to ensure the sustainability of the 

above species for the benefit of commercial, recreational, charter boat and 

aboriginal fishers.  
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3. As a result of a thorough understanding of the biology of the above five 

species and their implications, stakeholders will understand the basis for 

management plans, which will thus reduce the likelihood of conflict between 

different user groups that fish these species. 

4. A resource that is crucial to the economy and lifestyle of the isolated 

communities of north-western Australia will be conserved.  

5. Training of research students and staff in important methods for analyzing 

data that are a crucial component of fisheries science and essential for the 

development of appropriate fisheries management plans. 

 

 

GENERAL CONCLUSIONS 

Despite the difficulties in sampling species over very large distances in different 

habitats in a very remote environment, we managed to achieve the vast majority of the 

objectives of this FRDC study on the Blue Threadfin Eleutheronema tetradactylum, the 

King Threadfin Polydactylus macrochir, the Estuary Rockcod Epinephelus coioides, the 

Malabar Grouper Epinephelus malabaricus and the Mangrove Jack Lutjanus 

argentimaculatus. Thus, we have obtained sound and reliable quantitative data for key 

aspects of the biology and the status of the stocks of these five commercially and 

recreationally important fish species in the Pilbara and Kimberley regions of north-

western Australia.  

The major findings are as follows: 

• Blue and King Threadfins complete their life cycles in unvegetated, nearshore 

waters. In contrast, Estuary Rockcod, Malabar Grouper and Mangrove Jack live 

in mangrove and nearshore rocky areas as juveniles and move offshore into 

deeper waters over reefs as they increase in size and age. 
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• All five species have protracted spawning periods, i.e. between 6 and 10 months, 

with the spawning of each species peaking at some stage between early spring 

and early autumn. All five species have indeterminate fecundity. 

• In north-western Australia, the Blue and King Threadfins are protandrous 

hermaphrodites, i.e. individuals change sex from male to female, and both 

typically reach sexual maturity as males at the end of their first year of life when 

they are ca 200 and 230 mm in length, respectively. They typically become 

females at ca 400 mm (= ca 2 years) and ca 810 mm (= ca 4 years), respectively. 

• Estuary Rockcod and Malabar Grouper are monandric protogynous 

hermaphrodites, i.e. all individuals mature first as females. All of the former 

species, but only a proportion of the latter, subsequently change to males as they 

increase in size. Female Estuary Rockcod and Malabar Grouper typically mature 

at ca 570 and 800 mm, respectively, and change sex at ca 920 and 1100 mm, 

respectively. The youngest Estuary Rockcod and Malabar Grouper to have 

become males were 7 and 13 years of age, respectively. 

• Mangrove Jack is a gonochoristic species (does not change sex). Females 

typically attain maturity at lengths of ca 460 mm in the Pilbara region and 

ca 500 mm in the Kimberley region and at 6-7 years of age in both regions.  

• In comparison with the Blue Threadfin, the King Threadfin lives longer (10 vs 6 

years), grows more rapidly and attains a greater length (1393 vs 793 mm).  

• Estuary Rockcod and Malabar Grouper grow initially at a similar rate, but the 

latter subsequently attains a greater maximum length (1216 vs 1156 mm) and 

lives longer (31 vs 22 years).  

• Mangrove Jack are very long lived (> 50 years), and grow to ca 400 and 

550 mm in 5 and 10 years, respectively, after which they do not increase 

markedly in length. 
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• Estimates for current fishing mortality and spawning potential ratios strongly 

indicate that Blue Threadfin is fully-exploited and King Threadfin is over-

exploited. Although Estuary Rockcod, Malabar Grouper and Mangrove Jack 

appear to be only lightly to moderately exploited, the estimates for fishing 

mortality are likely to be conservative because of unrealistic estimates of natural 

mortality.     

• As the Blue Threadfin is exploited at lengths below that at which this species 

changes from male to female, managers and stakeholders need to consider 

introducing a minimum legal length for retention (MLL) that takes into account 

the length at sex change. 

• The current MLL of 450 mm for King Threadfin is well below the length at 

which this species typically changes sex (L50 at sex change = ca 810 mm). Thus, 

managers need to consider introducing regulations that will ensure that sufficient 

numbers of both sexes are conserved, e.g. through gear regulations or size limits. 

• In principle, the recent reduction from 1200 to 1000 mm of the upper legal 

length for retention of cods (Serranidae) will help protect the males of large 

serranid species. However, the effectiveness of this upper limit will depend on 

the ability of these large fish to survive being caught and released. Furthermore, 

if exploitation increases markedly, the concomitant introduction of 400 mm as a 

minimum legal length for retention for the Estuary Rockcod may not allow a 

sufficient number of individuals to survive capture to mature as females and thus 

contribute to egg production, let alone ensure that sufficient females survive to 

become males and contribute to sperm production. 

• The stock of Mangrove Jack, because of the high value of this species, will 

inevitably attract increasing attention from the recreational, commercial and 

charter boat sectors. Consequently, as the current minimum legal length for 
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Mangrove Jack is far lower than the size at which this species typically attains 

maturity and the species has low natural mortality and thus low productivity, 

managers should consider increasing the MLL to ensure that the fishery can be 

sustained as fishing pressure increases. However, at the same time, managers 

will need to take into account the fact that the introduction of such a policy 

would prohibit many recreational anglers from catching Mangrove Jack, as these 

anglers fish in nearshore waters where only the juveniles of this species occur. 

Alternatively, managers might need to consider policies which reduce fishing 

effort. 

• Finally, our study has raised the following very important points regarding the 

use of the empirical approaches that are currently available for estimating 

natural mortality for a fish stock. Estimates of natural mortality, M, for fish, 

which are typically derived from life history information for stocks of other 

species, are almost invariably imprecise, i.e. have very broad confidence limits 

(Vetter, 1988). This applies to the two threadfin species, the Estuary Rockcod 

and Malabar Grouper and the Mangrove Jack (see Chapters 4 and 5). 

Furthermore, the values for natural mortality derived for Estuary Rockcod, 

Malabar Grouper and Mangrove Jack using traditional models based on the life 

history characteristics of fish species, exceeded those for total mortality. This is 

clearly an erroneous result. A major reason for the above imprecision and 

anomalous results is due to the empirical models, such as that of Pauly (1980), 

being derived using life history data collected for species at a time when life 

cycle studies were less rigorous than today. For example, it used to be common 

to employ the number of growth zones in the hard structures of fish to age those 

fish without having first validated that these zones were formed annually 

(Beamish and McFarlane, 1987). Another problem with the data used by Pauly 



 176 

(1980), for example, is that the species used to provide data often had very 

divergent life cycle characteristics and came from very different regions, i.e. 

temperate vs tropical waters. Yet, in the context of the model of Pauly (1980), 

the only environmental variable, used as an explanatory factor, was water 

temperature. It is also relevant that the Pauly (1980) model, for example, 

assumes a direct relationship between natural mortality and growth and is thus 

empirical rather than mechanistic. 

• From the issues raised above, there is clearly an urgent need to use more 

contemporary and higher quality data for use as a basis for producing empirical 

models that will facilitate more precise and reliable estimates of natural 

mortality for individual fish stocks. 
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