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     School of Biological Sciences and   
                                                            Biotechnology 
     Division of Science and Engineering 
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     South St, Murdoch WA 6150 
     Ph: (08) 9360 2524  Fax: (08) 9360 6303 
 
OBJECTIVES 
 
1) To obtain the biological data that are required by managers to develop plans to  

conserve the stocks of Mulloway and Silver Trevally in Western Australia.  
This will require determining the following characteristics of both species. 

2) Size and age compositions, growth rates and sizes and ages at which maturity  
            is first reached. 
3) Locations and periods of spawning, and whether they are multiple spawners. 
4) Batch fecundity. 
5) Estimates of mortality. 
6) To elucidate patterns of distribution of the Silver and Sand Trevally, and   
            thereby determine the ways in which they differ.  
 
NON-TECHNICAL SUMMARY 

OUTCOMES ACHIEVED TO DATE  
The biological data required by fisheries managers to develop plans for conserving 
fish stocks have been obtained for Mulloway and Silver Trevally in Western 
Australian waters. The first species is commercially and recreationally important and 
the second is caught in large numbers by recreational fishers. We have produced, for 
managers in the Department of Fisheries Western Australia, data on crucial aspects of 
the biology of Mulloway and Silver Trevally. These include data on habitats, 
spawning periods, size and age compositions, growth and reproductive biology in the 
northern and southern parts of the distribution of these two species on the west coast 
of Australia. Although all of the results are relevant to developing management plans 
for conserving the stocks of these two important species, the following are of 
particular relevance. The females and males of Mulloway typically reach first 
maturity at lengths of about 930 and 880 mm, respectively. These lengths, which are 
usually attained at 5 - 6 years in age, are far greater than the minimum legal length 
(MLL) of 500 mm for the retention of this species. In the case of Silver Trevally, the 
average length of females at first maturity is 60 mm greater than the current MLL of 
250 mm and thus the females are exposed to one year of fishing mortality before they 
are able to spawn. Thus, managers will need to assess whether the current MLLs for 
the above two species, and particularly for Mulloway, are appropriate for ensuring 
that the stocks of these heavily-fished species are conserved. Management policies 
will also need to take into account the schooling behaviour of Mulloway at spawning 
as this results in this species becoming an easy target for fishers at a crucial stage in 
its life cycle. 
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The progressive increase in fishing activities in Western Australia means that the stocks 
of a number of species, especially those which are iconic and commonly targeted, are 
potentially vulnerable. Fisheries managers thus require sound biological data on 
exploited species for developing management plans aimed at ensuring that the stocks of 
those species remain sustainable. The present study was undertaken to obtain data on 
crucial aspects of the biology of the Mulloway Argyrosomus japonicus and the Silver 
Trevally Pseudocaranx dentex on the west coast of Australia. In these waters, 
Mulloway is an important commercial and recreational species, while Silver Trevally 
ranks third among the species most frequently caught by recreational fishers.  

The juveniles of Mulloway live in nearshore coastal waters, such as marine 
embayments, gutter formations in surf zones and in estuaries, whereas their adults are 
found both in these waters and around reefs in offshore waters in depths up to at least 
110 m. The juveniles of the Silver Trevally are typically found in areas where there are 
structures, e.g. reefs, or patches of seagrass and/or detached macrophytes, whereas its 
adults typically occupy water associated with reefs and generally in deeper water. The 
largest Silver Trevally were found in deeper offshore waters. In contrast to the Silver 
Trevally, the Sand Trevally Pseudocaranx wrighti is found mainly over sandy 
substrates.  

The females and males of Mulloway attain maturity at ~930 mm (7.12 kg) and 
~880 mm (6.06 kg), respectively, which are typically reached at 5 - 6 years in age. The 
females of the Silver Trevally become mature at ~310 mm (~0.34 kg) and ~4 years of 
age, compared with ~280 mm (~0.25 kg) and ~ 3 years of age with males. 

Mulloway spawn mainly during late spring and early summer and at night and 
predominantly around nearshore coastal reefs. However, this species also spawns 
around structure, e.g. boat wrecks, in the lower Swan River Estuary. Silver Trevally 
spawn for a longer period at lower than higher latitudes i.e. late winter to early summer 
vs spring, presumably reflecting the presence of elevated water temperatures for a more 
protracted period.  

Mulloway and Silver Trevally are serial spawners with indeterminate fecundity, 
i.e. they spawn on more than one occasion during the spawning season and the number 
of eggs released by individual females is not determined prior to that season. Although 
Mulloway and Silver Trevally with ovaries containing hydrated oocytes were obtained, 
these fish were either frozen prior to examination or were already undergoing ovulation 
at the time of capture and were thus not suitable for estimating fecundity. 

The maximum total lengths and ages recorded for Mulloway were 1437 mm and 
31 years for their females and 1304 mm and 29 years for their males. At the completion 
of their second, fourth, sixth, tenth and twentieth years of life, females have attained 
lengths of ~533, 804, 971, 1137, and 1230 mm, respectively, compared with ~531, 791, 
949, 1101, and 1182 mm, respectively, by their males.  

The maximum recorded total lengths of females and males of Silver Trevally in 
inshore waters < 60 m depth were ~690 and 660 mm, respectively, and the maximum 
age of both sexes was 13 years. However, the maximum total length and age in offshore 
waters > 60 m depth were far greater, i.e. 885 mm and 18 years of age, reflecting greater 
growth rates after fish have reached ~350 mm and 5 years of age. Females and males of 
Silver Trevally in shallow inshore waters (< 60 m depth) grow at similar rates and have 
attained lengths of ~135, 270, 350 and 440 mm by the completion of their first, third, 
fifth and tenth year of life, respectively. In contrast, females in deeper water have 
already attained a length of 595 mm by the end of their tenth year of life. It is not clear 
at present whether the inshore and offshore assemblages are part of the same stock 

The MLL for Mulloway in Western Australia is 500 mm, which is attained 
during their second year of life and at least three years before they typically reach 
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maturity. The substantial recruitment of Mulloway into the fishery at an early stage in 
life will result in many individuals being caught before they have attained maturity. 
Mulloway is also potentially very vulnerable because, even though undergoing 
substantial migrations, it forms large schools in the same and known locations during 
each spawning season and can thus easily be targeted by commercial and recreational 
fishers during this period. For example, recreational fishers target the spawning 
aggregations of this species in a region of the Swan River Estuary where there are 
numerous hard structures, e.g. boat wrecks, which simulate the reef habitat in marine 
waters where this species typically spawns. The average length of females of Silver 
Trevally at first maturity is 60 mm greater than the MLL of 250 mm and this is not 
achieved until about one year after the MLL has been reached. From the above, it is 
clear that, when managers are developing plans for conserving the stocks of Mulloway 
and Silver Trevally, they need to recognise that the MLL of both species is well below 
the size at first maturity. 

In the case of both Mulloway and Silver Trevally, the estimates derived for 
natural mortality, M, using the frequently-applied Pauly equation exceeded the estimates 
of total mortality, Z, calculated using life history characteristics and relative abundance 
(catch curve) analysis. This emphasises the crucial need to develop a new equation or 
approach for deriving a better estimate for natural mortality and thus to derive a reliable 
estimate of fishing mortality, F. 

The rapid decline of spawning potential ratio for Mulloway with increasing 
fishing mortality to levels that fall below a reference point of 30% implies that more 
robust management strategies are required if the stock is to withstand further increases 
in fishing mortality. 

 
KEYWORDS: Mulloway, Silver Trevally, age composition, growth, reproduction, 
habitat, mortality. 
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1.0 INTRODUCTION 

 

1.1  BACKGROUND 

The Mulloway Argyrosomus japonicus and Silver Trevally Pseudocaranx  

dentex are very important recreational fish species in Western Australia and have been 

identified by the WA Recreational Fishing Advisory Committee (RFAC) as two of six 

major recreational fish species in Western Australia for which there are insufficient 

biological data to develop sound and appropriate management plans. The great 

importance of these species to recreational fishers and the need to conserve this 

important resource were recognised by Mr Frank Prokop (RecFishWest) and Mr 

Andrew Cribb (Recreational Fisheries Program Manager of the Department of Fisheries 

WA), who each strongly encouraged us to produce this proposal. Both species make a 

contribution to the commercial fisheries of Western Australia. 

 Mulloway is fished in estuaries and marine waters along the Western Australian 

coast southwards from Exmouth and eastwards along the south coast to the South 

Australian border (Hutchins and Swainston, 2002). It is an icon recreational fish species 

in the Swan River Estuary, which flows through Perth and Fremantle, and is the largest 

of the recreational fish species found in this and other south-western Australian 

estuaries. The abundance of Mulloway in these estuaries is considered by fishers to 

reflect the “health” of these systems. 

 Although there are no data on the size and age at which Mulloway attain 

maturity in Western Australia, these and other aspects of the reproductive biology of the 

species have been well studied in South Africa. In that region, Mulloway have been 

shown to attain maturity at a relatively large size and late stage in their life history, 

compared with those of sympatric species (Griffiths, 1996). Species with these types of 

characteristics are particularly susceptible to overfishing. It is thus relevant that 
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historical commercial catches demonstrate that the abundance of this species in 

estuaries, such as the Peel-Harvey, has declined markedly during the last century 

(Bradby, 1997) and, although large post-spawning aggregations of Mulloway used to be 

observed, this is now no longer the case (R. Lenanton, Department of Fisheries WA, 

pers. comm.). The three-fold increase, from 20-60 tonnes, that has occurred in the 

commercial catch from 1996/97 to 2003/2004 suggests that commercial fishers are now 

targeting this species much more actively. Such an increase must clearly be exerting 

increasing pressure on a stock, which is already showing signs of heavy fishing pressure 

and raises the question among fishers of what is an appropriate sharing of this resource 

between the recreational and commercial fishing sectors. 

 In Australia, Silver Trevally has a similar distribution to Mulloway.  This 

species is morphologically so similar to the smaller and congeneric Sand Trevally 

Pseudocaranx wrighti that the Department of Fisheries WA does not attempt to separate 

these two species from a management point of view. However, such an approach is a 

cause for concern since those biological characteristics of these two species, that would 

be of value in developing management plans, such as growth rates, size and age at 

maturity and fecundity, are likely to differ. The importance of the Pseudocaranx 

complex of species to anglers is demonstrated by the fact that it was ranked third in the 

total shore-based catch recorded during the 1994/95 recreational shore survey along the 

lower west and south coast of Western Australia (G. Nowara, Department of Fisheries 

WA, pers. comm.) and again during the subsequent 1996/97 recreational boat survey 

conducted between Kalbarri and Augusta (Sumner and Williamson, 1999). 

 A minimum size and bag limit have been applied to Mulloway and Silver 

Trevally. However, these regulations were not based on detailed information on such 

crucial features as growth, length and age at first maturity, fecundity and the location 

and time of spawning. Indeed, there are no such data for either of these important 
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recreational species in Western Australia. Although aspects of the biology of these two 

species have been studied in eastern Australia, the coastal environment in that region 

differs markedly from that in Western Australia, and thus extrapolation of any results to 

Western Australia is fraught with risk. Furthermore, the most detailed of the previous 

studies on Mulloway in NSW was conducted on the juvenile stages, which appear to 

utilise estuaries in that region to a greater extent than in south-western Australia 

(cf Gray and McDonall, 1993). Moreover, it was recognised that the estimates of growth 

for Silver Trevally in the NSW study were biased (Rowling and Raines, 2000). 

Although various aspects of the biology of “Mulloway” have been studied in South 

Africa (e.g. Wallace, 1975; Wallace and Schleyer, 1979; Smale, 1985; Griffiths and 

Hecht, 1995a; Griffiths, 1996), it remains unclear as to the extent to which they are 

similar to those of Australian populations. 

 

1.2  NEED 

The progressive rise in the number of recreational fishers in Western Australia is 

increasing the fishing pressure on the most sought-after recreational fish species in this 

State. The potential thus exists for these species to become exploited at unsustainable 

levels. The absence of biological data for Mulloway, an icon recreational species, and 

Silver Trevally, the third most frequently-caught recreational fish species, has meant 

that regulations aimed at conserving and managing the stocks of these very important 

species, were not based on appropriate biological data. There is thus an urgent need to 

develop a sound database for these species, which encompasses such crucial features as 

size and age compositions, growth, length and age at first maturity, fecundity and the 

location and time of spawning.  

Since the Sand Trevally, which is also fished recreationally, is morphologically 

so similar to Silver Trevally that it is very frequently confused with this species, and 
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indeed is currently considered collectively with this species for management purposes, 

there is a need to understand the significance of those differences that are likely to exist 

between the habitats and biology of these two species.  

The urgent need to acquire biological data on Mulloway and Silver Trevally to 

underpin management plans has been highlighted by both RFAC and RecFishWest. 

 

1.3  OBJECTIVES 

1)  To obtain the biological data that are required by managers to develop plans to  

     conserve the stocks of Mulloway and Silver Trevally in Western Australia. This will     

     require determining the following characteristics of both of these species; 

2)  Size and age compositions, growth rates and sizes and ages at which maturity is first     

     reached. 

3)  Locations and periods of spawning, and whether they are multiple spawners. 

4)  Batch fecundity. 

5)  Estimates of mortality. 

6)  Patterns of distribution of the Silver and Sand Trevally, and thus elucidation of the   

     ways in which they differ. 
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2.0  GENERAL MATERIALS AND METHODS 
 

2.1  STUDY AREAS 

2.1.1  Mulloway, Argyrosomus japonicus 

For the study on Argyrosomus japonicus, the coastline between Carnarvon 

(24°53´S, 113°39´E) and Augusta (34°19´S, 115°10´E) was divided at 28° S into 

northern and southern regions (Figure 2.1). For convenience, the waters in estuaries and 

those along the coast where depths are < 20 m are referred to as nearshore waters, 

whereas those along the coast where depths exceed 20 m are referred to as offshore 

waters. 

 

2.1.2  Silver Trevally, Pseudocaranx dentex 

For the study on Pseuodcaranx dentex, the coastline between Kalbarri 

(27°42´S, 114°10´E) and Augusta was divided at Lancelin (31°01´S, 115°20´E) into 

upper and lower west coast regions (Figure 2.2). The lower west coast region was 

further separated into inshore (i.e. < 60 m depth) and offshore coastal marine waters 

(i.e. 60-200 m deep).  
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Figure 2.1. Map showing the main locations within the northern and southern regions 
on the west coast of Australia at which Argyrosomus japonicus was sampled 
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Figure 2.2. Map showing the main locations within the upper and lower regions on the 
west coast of Australia at which Pseudocaranx dentex was sampled. 
 
 

2.2  SAMPLING REGIME 

2.2.1  Mulloway 

In the northern region, Argyrosomus japonicus was obtained at regular intervals 

between January 2002 and November 2005 from sites at Carnarvon and in Shark Bay 

(25°56´S, 113°34´E) and at Kalbarri (Table 2.1; Figure 2.1). Full details of sites, 

sampling gear, life cycle stages etc… are given in Table 2.1. Note that the size and age 

compositions of A. japonicus, retained by recreational fishers in Kalbarri and by 
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commercial fishers in the northern and southern regions combined, are shown in Figure 

3.4. 

 

Table 2.1. Details of the sampling regime for Argyrosomus japonicus in the northern 
region, providing the source of fish, i.e. whether they were obtained during sampling 
trips or from commercial or recreational fishers, and the sampling gear(s) used (W, 
commercial wetline; L, rod and line; S, spear), and whether the fish were caught in 
nearshore or offshore waters. 

 

 

In the southern region, Mulloway were obtained at regular intervals between 

January 2002 and November 2005 from sites near Geraldton (28°47´S, 114°37´E), Perth 

(31°57´S, 115°51´E) and Bunbury (33°20´S, 115°38´E) (Table 2.2; Figure 2.1). Full 

details of sites, sampling gear, life cycle stages etc… are given in Table 2.2. 
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Agyrosomus japonicus was also collected opportunistically from Dunsborough 

(33°37´S, 115°06´E), Augusta and Albany (35°01´S, 117°53´E). The size and age 

composition of A. japonicus retained by recreational fishers in the Swan River are 

provided in Figure 3.4. 

 

Table 2.2. Locations in the southern region from which Argyrosomus japonicus was 
obtained. Category definitions are as outlined for Table 2.1. 
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2.2.2  Silver Trevally 

Pseudocaranx dentex was collected between Augusta and Lancelin on the west coast of 

Australia by using rod and line fishing in estuaries and in coastal marine waters up to 

200 m in depth (Figure 2.2). Sampling was undertaken bimonthly between January 

2002 and December 2004. Opportunistic samples of juvenile P. dentex were obtained 

from commercial prawn trawlers operating over predominantly sandy substrates in 

inshore waters of Cockburn Sound (32°12´S, 115°43´E) and Comet Bay 

(32°30´S, 115°43´E). Whole and filleted fish were also collected from commercial seine 

and wetline fishers and recreational anglers, who were operating between Augusta and 

Kalbarri. When available, frozen whole fish were also purchased from wholesale fish 

markets. In those months during 2004 when samples of P. dentex from the upper west 

coast region could not be obtained from wholesale fish markets, this species was caught 

by rod and line fishing in coastal waters off Geraldton. Details of the methods and 

regions in which P. dentex was collected are provided in Table 2.3. 

Pseudocaranx wrighti were obtained from the catches of the commercial 

trawlers operating in the inshore waters of Cockburn Sound and Comet Bay (see 

above), and from trawlers operating in inshore waters around Rottnest Island 

(31°50´S, 115°30´E). Commercial trawlers were equipped with two nets, which were 

1 m in height, with wings and a cod-end consisting of 51 and 45 mm mesh, respectively. 

The two nets had a combined effective fishing width of 8 m, and were towed at 

4-5 km h-1 for between 20 and 120 min. Pseudocaranx wrighti was also collected from 

inshore waters of Geographe Bay (33°34´S, 115°04´E) using the same commercial seine 

net as was used to catch P. dentex. Seine nets were deployed in waters < 8 m in depth 

over both bare sand and seagrass beds (consisting mainly of Amphibolis sp., Posidonia 
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australis and P. sinuosa). Nets were between 180 - 380 m in length, with mesh sizes 

between 9 - 46 mm. 

 

Table 2.3. Locations from which samples of Pseudocaranx dentex were obtained. 
Category definitions are as outlined for Table 2.1. (N.B.  T, commercial trawler; 
SN, commercial seine). Inshore waters include estuaries and reefs in waters < 60 m  
deep, while offshore waters include all those marine waters deeper than ca 60 m. 
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2.3  INITIAL MEASUREMENTS 

The total length (TL) and wet weight of each A. japonicus and P. dentex obtained 

during sampling was measured to the nearest 1 mm and 1 g, respectively. Whenever 

possible, each fish collected from the fish market was weighed whole prior to filleting 

and its length and weight recorded to the nearest 1 mm and 10 g, respectively. The 

weights of all other A. japonicus or P. dentex that could not be obtained prior to filleting 

were estimated from the regression equation that, for each species, relates wet weight to 

total length (Chapters 3.3.4 and 4.3.4). The gonads of each fish were removed and 

weighed to the nearest 0.01 g, then examined macroscopically and recorded as either 

ovaries, testes or unsexed (i.e. gonads of small juveniles). 

 

2.4  AGE AND GROWTH 

The two sagittal otoliths of A. japonicus were removed ventrally by cutting away a 

portion of bone on the left side of the pro-otic/exoccipital region, which was exposed by 

removing the gill rakers. In contrast, the sagittal otoliths of P. dentex were more easily 

extracted by cutting dorsally into the same region and levering the head forward. Once 

excised, the otoliths of both species were washed, dried and stored in labelled paper 

envelopes.  

As the whole sagittal otoliths of A. japonicus are thick and opaque and do not 

have discernible growth zones, all of these otoliths were sectioned (see Chapter 3.2.1). 

In contrast, the whole sagittal otoliths of P. dentex were much thinner and contained 

discernible growth zones. However, since these zones were sometimes hard to detect, 

the otoliths were sectioned to determine whether this enhanced their readability. 

Otoliths were taken from a subsample of 200 P. dentex that covered a wide size range 

and the numbers of growth zones visible in both the whole otolith and a section of the 

other sagittal otolith taken from the same fish were compared. As the growth zones 
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became far more visible after sectioning (see Chapter 4.3.3), the otoliths of this species 

were sectioned prior to counting the growth zones. 

The otoliths of each P. dentex and A. japonicus were mounted in clear epoxy 

resin and, using an Isomet Buehler low-speed diamond saw, cut through the primordium 

into ca 500 μm and 700 μm sections, respectively. The sections were then ground with 

fine wet-and-dry carborundum paper (grade 1200), washed, dried and mounted on 

microscope slides using DePX mounting medium. These sections were examined under 

reflected light against a black background using a Leica MZ 7.5 dissecting microscope 

(Leica Microsystems Ltd., 2001).  

 The opaque zones on each sectioned otolith of A. japonicus and P. dentex were 

counted on at least two occasions and without any prior knowledge of either the date of 

capture or the size of fish from which the otolith came. When the two counts of opaque 

zones on an otolith differed, the section was examined a third time. The third count, 

which invariably agreed with one or other of the previous two counts, it was used for 

subsequent analyses. 

Marginal increment analysis (MIA) was used to validate that opaque zones on 

the sectioned otoliths of A. japonicus and P. dentex are formed annually. The marginal 

increment of an otolith is the distance between the outer edge of its single or outermost 

opaque zone and the edge of that otolith. For MIA, measurements were made of the 

distance between the primordium and the outer edge of both the otolith and the single 

opaque zone, when only one such zone was present, and of the distances between the 

outer edge of the otolith and the outer edge of each of the two outermost opaque zones, 

when two or more opaque zones were present. The marginal increment on each otolith 

was measured three times, each from a different region of the sectioned otolith, and the 

mean of those three measurements was used for subsequent analyses. The above 

measurements, which were made perpendicular to the opaque zone/s and without 
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knowledge of the date of capture of the fish from which that otolith had been removed, 

were recorded to the nearest 0.01 µm. The marginal increment was expressed as a 

proportion of the distance between the primordium and the outer edge of the opaque 

zone, when only one opaque zone was present, and as a proportion of the distance 

between the outer edges of the two outermost opaque zones, when two or more opaque 

zones were present. In this report, the term marginal increment subsequently refers to 

this ratio rather than to the actual distance between the outer edge of the single or 

outermost opaque zone and the edge of the sectioned otolith. The marginal increment 

data for month were grouped according to the number of opaque zones on the otoliths, 

i.e. 1, 2-4, 5-7, ≥8 for A. japonicus and 1, 2-3, 4-7, ≥8 for P. dentex.  

  The peak times of spawning of A. japonicus and P. dentex were estimated from 

the trends exhibited throughout the year by the gonadosomatic indices, gonadal maturity 

stages and pattern of oocyte development (Chapters 3.3.8 and 4.3.5) and was considered 

to correspond to the birth date. The birth date was then used in conjunction with the 

number of opaque zones on each sectioned otolith and the time of year when newly-

formed opaque zones become delineated at the edge of the otoliths, to determine the age 

of individual fish on their date of capture. von Bertalanffy growth curves were fitted to 

the lengths at age of each female and male fish using non-linear regression in the 

Statistical Package for the Social Sciences (SPSS Inc., 2004). The lengths at age of 

juvenile fish that could not be sexed were randomly allocated to the female and male 

data sets. The von Bertalanffy growth equation is; 

( ))( 0exp1 ttk
t LL −−

∞ −= , 

where tL  is the predicted total length at age t  (years), ∞L  is the mean asymptotic length 

predicted by the equation, k  is the growth coefficient (year-1) and ot  is the hypothetical 
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age (years) at which fish would have zero length, if their growth had followed that 

predicted by the equation. 

  A likelihood-ratio test was used to compare the growth curves derived for 

females and males of A. japonicus and P. dentex from the northern and southern and the 

upper and lower west coast regions, respectively (Figures 2.1; 2.2), and for each sex 

between these regions. The null hypothesis,ω , that the growth of females and males 

could be described by a common growth curve was compared with the alternative 

hypothesis, Ω , that the data would be better described by a separate growth curve for 

each sex. The log-likelihood, i.e. = - ⎟
⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛

n
ssn ln

2
 (ignoring constants), was determined 

for the null hypothesis and for the alternative hypothesis as ωλ  and Ωλ , respectively, 

where n is the total number of females and males, ss is the sum of the squared 

deviations between the observed and predicted lengths at age of the combined set of 

data for both female and male fish and ‘ln’ represents the natural logarithm of the 

associated argument. The test statistic for the likelihood-ratio test was calculated 

as ( )ωλλ −Ω2 . The null hypothesis was rejected at the 05.0=α  level of significance if 

the test statistic exceeded ( )q2
αχ , where q is the difference between the numbers of 

parameters in the two growth curves (e.g. Cerrato, 1990).  

 

2.5  REPRODUCTIVE BIOLOGY 

On the basis of macroscopic characteristics and the scheme outlined by 

Laevastu (1965), the gonads of each fish were allocated to one of the following eight 

numerical stages of gonadal development; I = virgin, II = maturing virgin/resting adult, 

III = developing, IV = maturing, V = mature, VI = spawning, VII = spent, and 

VIII = recovering spent (see Chapters 3.2.3 and 4.2.5). The fish which, during the 
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spawning period, possessed gonads at stages III-VIII were classified as mature because 

they either had the potential to spawn (III-V), were spawning (VI) or had spawned (VII 

and VIII). 

Each month, the gonads of up to 20 individuals covering a wide range of lengths 

and the full suite of gonadal stages observed in that month were retained and prepared 

for histological examination. For this purpose, a portion of the mid-region of each 

ovarian or testicular lobe was placed in Bouin’s fixative for ca 48 hours (a longer period 

of fixation was used for the largest gonads) and dehydrated in a series of increasing 

concentrations of ethanol. The ovarian or testicular portions were then embedded in 

paraffin wax, cut transversely into 6 μm sections and stained with Mallory’s trichrome. 

The stages in oocyte development in each section were then determined by examination 

using a Leica MZ 7.5 dissecting microscope (Leica Microsystems Ltd., 2001) to 

validate that the stage in gonadal development assigned to each ovary on the basis of 

macroscopic appearance was appropriate (see Chapters 3.2.3 and 4.2.5).  

Histological sections of the mid-region of the ovaries of three mature individuals 

of both A. japonicus and P. dentex, i.e. fish with stage V gonads, were analysed further 

to assess the spawning mode of these species. Using the computer-imaging package 

Leica Image Manager 1000 (Leica Microsystems Ltd., 2001), the circumferences of 100 

randomly-selected oocytes, which had been sectioned through their nuclei, were 

recorded to the nearest 0.1 μm. These data were then used to calculate the diameters of 

those oocytes. 

The percentage contributions made, during the spawning period, by the 

immature and mature females and males of A. japonicus and P. dentex in each length 

class to the total number of females and males of those species, were plotted as 

histograms. Logistic regression analysis of the maturity data for individual fish was 
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used to determine, for both sexes of each species, the relationship between the 

proportion of mature fish and their lengths. 

This enabled the length at which 50 and 95% of the females and males of each 

species first reached sexual maturity to be determined. The data were randomly 

resampled and analysed to create 1000 sets of bootstrap estimates for the parameters of 

the logistic regression analysis and estimates of the probability of maturity within the 

range of recorded lengths. The 95% confidence limits of the L50s and L95s were taken as 

the 2.5 and 97.5 percentiles of the corresponding predicted values resulting from this 

resampling analysis. The point estimates of each parameter and of each probability of 

maturity at the specified length were taken as the medians of the bootstrap estimates. 

The form of the logistic equation is;  

)]/())(19ln(exp[1
1

509550 LLLL
P

−−−+
= , 

where P is the proportion mature, L is the total length in mm, L50 and L95 are the lengths 

in mm at which 50% and 95% of fish reach sexual maturity, respectively, and ln is the 

natural logarithm.  

 The likelihood-ratio test outlined in Chapter 2.4 was used to compare the logistic 

equations fitted to the maturity data obtained for females and males of A. japonicus and 

P. dentex, and for the corresponding sexes of the latter species in the upper and lower 

west coast regions (Figures 2.2).  

The gonadosomatic indices (GSI) was calculated separately for each female and 

male fish of both species using the equation; 

GSI = W1/(W2 – W1) × 100, 

where W1 = the wet weight of the gonad and W2 = the total wet weight of the fish,  

i.e. W2 – W1 = somatic weight. The indices were calculated using data for fish ≥ the 

estimated L50 at first maturity for females and males of each species. 



 
 
 32

2.6  MORTALITY 

The instantaneous coefficients for total mortality, Z, and natural mortality, M, for 

A. japonicus and P. dentex were estimated using the approach of Hall et al. (2004), 

which was developed during a previous FRDC project 2000/137. This method 

reconciles the inconsistencies among individual estimates of mortality and, through 

combining the different values, results in improved precision of the resulting estimates 

of natural and total mortality. The following is a summary of the methods for deriving 

each of the individual mortality estimates and of Hall et al.’s (2004) method for 

combining the various methods. 

An estimate of the instantaneous coefficient of total mortality, Z, was determined 

for each species by subjecting the age composition data for those commercial catches of 

A. japonicus and the combined commercial and recreational catch of P dentex, that were 

considered to be unbiased, to relative abundance (catch-curve) analysis (Deriso et al., 

1985). Some of the commercial samples of A. japonicus and P. dentex collected during 

the present study were known to be biased because the catches were often separated into 

different size categories at the wholesale fish processing plants, before being supplied to 

other smaller markets and restaurants. The samples used for relative abundance analysis 

were restricted to those considered unbiased, namely those obtained from large 

wholesale fish processing plants, which were known to come directly from commercial 

fishers, together with those from smaller markets for which it could be verified that fish 

had not been sorted into different sizes. Age-frequency histograms for the commercial 

catch of A. japonicus (Figure 3.4a) and for the combined commercial and recreational 

catch of P. dentex (Figure 4.6b) were used to determine the age at full recruitment of 

each species. Unless otherwise stated, the catch curves were derived from the age 

classes that were located on the descending limb of the age-frequency distribution 

(Ricker, 1975). The catch curves for each species were analysed using the assumptions 
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that Z and the levels of annual recruitment are constant and that the age composition of 

fully-recruited fish represents a random sample from a multinominal distribution with 

uniform selectivity from the age of full recruitment (Hall et al., 2004). The value of Z 

was estimated by maximising the log-likelihood using the SOLVER routine in 

Microsoft™ Excel. The data for each species were randomly re-sampled with 

replacement and the resulting samples were analysed to create 10,000 sets of bootstrap 

estimates. The point estimate of Z was taken as the median of the 10,000 bootstrap 

estimates. The 95% confidence limits were calculated as the 2.5 and 97.5 percentiles of 

the corresponding estimated values.  

A second estimate of Z for each species was obtained using the relationship 

between total mortality and maximum age, as described by Hoenig’s (1983) equation 

for fish. This relationship was refitted to the data given for the 82 fish stocks provided 

in Hoenig (1982). For each species, the maximum recorded age was then inserted into 

SPSS to obtain point estimates and associated 95% confidence limits, thereby taking 

into account the uncertainty of the parameter estimates and the variation of the data 

around the regression line.  

A third estimate of Z for each species was determined using the simulation 

approach described by Hall et al. (2004). To provide more precise estimates for Z when 

using the simulation approach, the routine was modified slightly from that described by 

Hall et al. (2004) to use the number of fish within the sample that were older than a 

specified age, rather than the age associated with the oldest of those fish. The specified 

age for A. japonicus was 17 years, with 3 fish being above this age, while the specified 

ages for P. dentex occurring in the inshore waters off the lower and upper west coasts 

were both 11 years, with 4 and 6 fish being above this age, respectively.  

The three estimates of Z derived for each species were then combined, using the 

Bayesian approach of Hall et al. (2004).  
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Estimates of natural mortality, M, for each species were calculated from the 

relationship between natural mortality, growth and water temperature as described by 

Pauly (1980). This relationship was refitted to Pauly’s data for 175 fish stocks using 

SPSS. The values for k (year-1) and L∞ (cm TL) in the growth curves derived for each 

species, and mean annual surface water temperature, T,  were then inserted into SPSS to 

obtain point estimates and associated 95% confidence limits for M. The mean annual 

surface water temperature used for each species was 22.5 oC (= mean temperature 

between Karratha and Broome, derived from data recorded by the Australian 

Oceanographic Data Centre, http://www.AODC.gov.au).  

The Bayesian approach of Hall et al. (2004) was used to determine, for each 

species, the likelihood for M, calculated using the combined likelihood for Z. The 

calculation assumed that, for each value of Z, there is a uniform probability that M < Z 

(Hall et al., 2004). The resulting likelihood for M was then combined with the estimate 

for M derived from the Pauly (1980) equation. 

A Monte Carlo resampling approach was used to derive estimates of F for each 

species. Estimates of Z and M were randomly resampled, with replacement, from their 

respective probability distributions (i.e. combined Z estimate and Pauly (1980) estimate 

for M), but were rejected when corresponding values for M were greater than for Z. 

These values were used to produce 5000 estimates for F, determined using the equation 

F = Z – M. The point estimate of F and associated 95% confidence limits were taken as 

the median value and the 2.5 and 97.5 percentiles of the 5000 estimates derived from 

the resampling analysis. 

 

2.7  YIELD AND SPAWNING BIOMASS PER RECRUIT 

The yield per recruit (YPR) and spawning stock biomasses per recruit (SSB/R) to the 

stock for each species were calculated assuming knife-edge recruitment to the fishery at 
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the age of full recruitment ct , constant total mortality for fully-recruited fish and a 

maximum age of 50 years. Yield per recruit was calculated as; 

∑
=

−=
50

)exp(
cta

a ZaWYPR , 

where Wa, the total body weight at age a, was derived from the predicted length at age 

determined using the von Bertalanffy growth curve for that species and employing the 

total body weight (g) to length (mm TL) relationship for each species. The values for 

the fishing mortality that maximises YPR, Fmax, and that at which the derivative of YPR 

with respect to F is one tenth of that at the origin, F0.1, were estimated numerically in 

Excel™. These two values were used as the biological reference points for fishing 

mortality for each species against which the estimate of the current level of fishing 

mortality was compared. 

The SSB/R for the females and males of each species was calculated as;  

∑
=

−=
50

,, )exp(/
cta

amatasexa ZaPPWRSSB . 

Wa, the total body weight at age a, was determined from the length at age predicted 

using the von Bertalanffy growth curve and employing the total body weight (g) to 

length (mm TL) relationship. The proportion of recruits of the specified sex at age a 

( asexP , ) was always assumed to equal 0.5. For all species, the calculation for the 

proportion of mature fish at age a, i.e. amatP , , was determined using the logistic function 

relating the proportion of mature fish to length, and the length at age predicted using the 

von Bertalanffy growth function. 

Estimates for the current levels of YPR and SSB/R were determined for each of 

the 5000 values generated for F derived from the Monte Carlo resampling procedure. 

The point estimates and associated 95% confidence limits for the current level of YPR 
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and SSB/R for each species were taken as the median and 0.025 and 0.975 percentiles 

of the resulting YPR and SSB/R values. 

The spawning potential ratio (SPR) was calculated by dividing the value for 

spawning biomass per recruit for each fishing mortality by the corresponding value of 

the spawning biomass per recruit calculated for the unfished stock (Goodyear, 1993). 
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3.0  BIOLOGY OF ARGYROSOMUS JAPONICUS ON THE WEST 

COAST OF AUSTRALIA 
 

3.1  INTRODUCTION 

Morphological similarity amongst species of the Sciaenidae and particularly within the 

genus Argyrosomus, has led to considerable taxonomic confusion in this family 

(Griffiths and Heemstra, 1995). Argyrosomus japonicus, for example, has been 

accorded 13 scientific names throughout its worldwide distribution (Lin, 1940; 

Trewavas, 1977; Griffiths and Heemstra, 1995). The work of Griffiths and Heemstra 

(1995) led to this species being recognised, in both South Africa and Australia, as 

distinct from Argyrosomus hololepidotus, which is now considered to be confined to 

Madagascar. However, the geographical separation of the populations of A. japonicus in 

Australian and African waters, allied with pronounced differences in maximum size 

attained, raises the possibility that the populations on these two continents constitute at 

least separate subspecies.  

Argyrosomus japonicus is an important recreational and commercial fish species 

throughout its extensive Indo-Pacific distribution. It is thus surprising that sound data on 

the age and size compositions, growth and reproductive biology of this sciaenid is 

largely confined to those obtained during studies of populations in southern Africa (e.g. 

Griffiths and Hecht, 1995a; Griffiths, 1996). Those studies demonstrated that, in 

southern Africa, A. japonicus reaches a maximum age and length of 42 years and 1750 

mm and reaches maturity when it is about 6 years and 1070 mm with females and 5 

years and 920 mm with males. 

There have been detailed studies of the size compositions and movement 

patterns of juvenile A. japonicus in the Hawkesbury River in eastern Australia (Gray 

and McDonnal, 1995). Although Hall (1984; 1986) provided data on the age 
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composition, growth and reproduction of A. japonicus in South Australia, the ageing 

was undertaken using the number of circuli on scales, which the present study showed 

did not provide reliable estimates of the age of the fish. The very limited data available 

for A. japonicus in Western Australia are given in the biological synopsis for this 

species by Norriss et al. (1998). 
The first aim of this study was to validate that the opaque zones (annuli) in the 

otoliths of A. japonicus in Western Australian waters are formed annually and that the 

number of such zones can thus be used to age the individuals of this species. The second 

aim was to use the resultant data to determine the size and age compositions, growth 

and mortality rate of this species in the northern and southern regions of their 

distribution on the west coast of Australia. The third aim was to determine the duration 

of the spawning period and the length and age at first maturity. The results are 

considered in the context of their implications for management. Finally, the data for 

these characteristics of A. japonicus in Western Australia were compared with those 

determined for this species in South Africa. 
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3.2  MATERIALS AND METHODS 

Details of the measurements and procedures that were common to both Argyrosomus 

japonicus and Pseudocaranx dentex are given in Chapter 2. The following details refer 

specifically to A. japonicus. 

 

3.2.1  Otoliths 

The otoliths of A. japonicus are thick and opaque (Plate 3.1). After sectioning, distinct 

opaque and translucent zones could be seen in all otolith sections and were particularly 

clear beneath the cauda in and around an area referred to as “the window” (Griffiths and 

Hecht, 1995a) (Plates 3.2; 3.3).  

 

3.2.2  Otolith-scale comparisons 

Since scales were used for ageing A. japonicus in South Australian waters (Hall, 1986), 

these structures were examined for growth zones. Scales were removed from an area 

behind the left pectoral fin of 80 fish. Each scale was cleaned and dried and mounted 

between two glass slides, which were then bound together with cellulose tape. Each 

scale was examined under transmitted light using a Leica MZ 7.5 dissecting microscope 

and the circuli in these structures counted several times using the same protocols as for 

counting opaque zones on sectioned otoliths (see Chapter 2.4). The number of circuli on 

each scale was then compared with the number of opaque zones on sectioned otoliths, 

recognising that these opaque zones were validated as being formed annually (see 

Chapter 3.3.2) 
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Plate 3.1. Sagittal otolith typical of Argyrosomus japonicus (1143 mm total length), 
showing the (a) lateral, (b) medial, (c) dorsal and (d) ventral surfaces. Scale bar = 5 mm. 
  
 

Plate 3.2. Longitudinal section through the primordium of a sagittal otolith of 
Argyrosomus japonicus containing 1 opaque zone and viewed under reflected light. 
o = opaque zone. Scale bar = 2 mm. 

a b

c d

o
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Plate 3.3. Longitudinal section through the primordium of a sagittal otolith of 
Argyrosomus japonicus containing 17 opaque zones and viewed under reflected light. 
Scale bar = 2 mm. 
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3.2.3  Gonad stages 

Although the same staging criteria were used to describe gonadal development in 

A. japonicus and P. dentex (Laevastu, 1963), the gonads of A. japonicus differed 

slightly in their macroscopic appearance (cf Tables 3.1; 4.1).  

 

Table 3.1. Description of characteristics used to distinguish the various stages in 
ovarian and testicular development in Argyrosomus japonicus using macroscopic 
staging criteria and the ovaries of this species using histological staging criteria. 

 
 
 

 
Stage 
 

 
Classification 

 
Macroscopic characteristics 

 
Histological characteristics 

I/II  
 
 

Immature/resting Ovaries small and translucent, pink 
to orange in colour. Oocytes not 
visible through ovarian wall. Testes 
very thin and flat, pink to beige in 
colour. 
 

Chromatin nucleolar oocytes 
predominant (these oocytes occur 
in all subsequent stages). Oogonia 
and perinucleolar oocytes 
sometimes detectable. Ovigerous 
lamellae highly organised. 

III  
 
 

Developing Ovaries slightly larger. Oocytes 
visible through ovarian wall. Testes 
slightly larger, triangular in cross-
section, beige in colour. Sperm 
present in main sperm duct. 

Cortical alveolar oocytes 
abundant. 

IV 
 
 

Maturing Ovaries larger, opaque, yellow to 
orange in colour. Yolk granule 
oocytes visible through ovarian 
wall. Testes larger, mottled beige  
and cream in colour. Softer texture, 
sperm present in tissue. Testes 
rupture when pinched.  

Cortical alveolar and yolk granule 
oocytes abundant. 

V/VI  
 

Mature/spawning 
 

Ovaries larger than stage IV,  
orange in colour. Testes larger, 
cream in colour and rupture under 
slight pressure. 

Yolk granule oocytes predominate 
compliment of large oocytes. 
Stage VI ovaries contain 
migratory nucleus and/or hydrated 
oocytes and/or post-ovulatory 
follicles. 

VII 
 
 

Spent Ovaries and testes far smaller than 
stage V/VI. Ovaries flaccid. Some 
yolk granule oocytes still visible 
through ovarian wall. Testes 
mottled-beige and cream in colour. 
Some sperm present in main duct 
and tissue. 

Some remnant yolk granule 
oocytes, but generally atretic. Scar 
tissue present. 

VIII 
 

Recovering 
 

Ovaries and testes were small. 
Similar to stage II, but ovaries red 
in colour. 
 

No remnant yolk granule oocytes. 
Extensive scar tissue, ovarian 
lamellae highly disorganised. 
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3.3  RESULTS 

3.3.1  Habitats 

The A. japonicus caught in nearshore waters ranged in length from 150 to 1400 mm and 

included a greater number of juveniles, i.e. < L50 at first maturity, than adults 

(Figure 3.1a). In contrast, the A. japonicus caught in offshore waters contained no fish 

< 600 mm and comprised mainly adults (Figure 3.1b). The length ranges of the adults 

caught in nearshore and offshore waters were similar. 

 

3.3.2  Validation of ageing procedure 

The mean monthly marginal increments on sectioned otoliths of A. japonicus with 2 – 4 

opaque zones remained at 0.5 – 0.6 from July to November and then declined 

precipitously to a minimum of ca 0.2 in December, after which it increased 

progressively to ca 0.45 in April and remained at about that level in the immediately 

ensuing months (Figure 3.2). Similar trends were exhibited by the mean monthly 

marginal increments on otoliths with 5 – 7 and ≥ 8 opaque zones (Figure 3.2). Although 

none of the fish caught in October, January and May contained otoliths with 1 opaque 

zone, the mean monthly marginal increments on otoliths with one such zone clearly 

followed a similar trend to that exhibited by otoliths with two or more opaque zones 

(Figure 3.2). The presence, during the year, of a single marked decline and subsequent 

rise in the mean monthly marginal increments demonstrate that, irrespective of the 

number of opaque zones, a single opaque zone is formed annually in the otoliths of 

A. japonicus. Furthermore, the trends exhibited by the mean monthly marginal 

increments demonstrate that each new opaque zone becomes delineated by the 

formation of a new translucent zone in November/December, i.e. late spring/early 

summer. Since the spawning for A. japonicus peaks in December, the first opaque zone 
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is formed on the otoliths of 0+ Argyrosomus japonicus towards the end of their first 

year of life. 

 

 
Figure 3.1. Length-frequency distributions for Argyrosomus japonicus caught in 
(a) nearshore waters, i.e. including rivers, estuaries and the surf zone, to a depth of 
ca 20 m and in (b) offshore waters, i.e. depths of 20-120 m. Black and grey dashed 
lines indicate the L50s at first maturity for males and females, respectively. 
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Figure 3.2. Mean monthly marginal increments ± 1 SE on sectioned sagittal otoliths of 
Argyrosomus japonicus. Sample size for each month is given. On the x-axis in this 
Figure and in Figures 3.6, 3.8 and 3.9, the closed rectangles refer to winter and 
summer months and the open rectangles to spring and autumn months.  
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3.3.3  Otolith-scale comparisons 

The number of circuli on the scales of the 80 A. japonicus examined differed from the 

number opaque zones in the otoliths of the same individuals in ca 70% of these 

comparisons. The discrepancy between the counts for scale circuli and otolith opaque 

zones increased with the number of such zones, with the number of scale circuli being 

less than the number of otolith opaque zones in all but one of the 34 cases when the 

number of the latter zones was ≥ 5. 

 

3.3.4  Growth 

The von Bertalanffy growth equation fitted to the lengths at age of females and males of 

A. japonicus in the northern region did not differ significantly from those derived for the 

corresponding sexes in the southern region (p > 0.05). Thus, the lengths at age for 

individuals of each sex in each region were pooled. The von Bertalanffy growth 

equation for females differed significantly from that of males (p < 0.05).  

The lengths at age of females and males of A. japonicus were described well by 

the traditional von Bertalanffy growth equation, as is demonstrated by the relatively 

high coefficients of determination, i.e. 0.913 and 0.907, respectively, and by ages at 

zero length that were close to zero, i.e. -0.33 and -0.35 years, respectively (Table 3.2; 

Figure 3.3). The estimates for the growth coefficient (k) and asymptotic length (L∞) 

were 0.24 year-1 and 1239 mm, respectively, for females, and 0.25 year-1 and 1189 mm, 

respectively, for males (Table 3.2).  
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Figure 3.3. von Bertalanffy growth curves fitted to the lengths at age of females (solid 
line and open circles) and males (dotted line and closed circles) of Argyrosomus 
japonicus. nfemales= 432, nmales = 435. 
 

 

The lengths derived for females and males of A. japonicus at each successive 

age, using the von Bertalanffy growth equations, demonstrate that the growth of both 

sexes was similar for the first 5 years, after which it slowed markedly and, to a slightly 

greater extent, in males than females (Figure 3.3). Thus, the lengths at ages 2, 4 and 5, 

predicted from the von Bertalanffy growth equation, were 533, 804 and 897 mm for 

females, compared with 531, 791 and 880 mm for males. By 10, 15 and 20 years of age, 

Age (years)

0 5 10 15 20 25 30 35

To
ta

l l
en

gt
h 

(m
m

)

0

200

400

600

800

1000

1200

1400

1600



 
 
 48

the predicted lengths of females were 1137, 1209 and 1230 mm, respectively, compared 

with 1101, 1164 and 1182 mm, respectively, for males (Figure 3.3). The maximum total 

length and age recorded for females of A. japonicus were 1437 mm (35.1 kg) and 31 

years, respectively, while, for males, they were 1304 mm (18.2 kg) and 29 years, 

respectively. The females and males of A. japonicus both attained the minimum legal 

length for capture (MLL) of 500 mm at ca 2 years of age.  

 

Table 3.2. von Bertalanffy growth parameters derived from lengths at age for female 
and male Argyrosomus japonicus, including lower and upper 95% confidence limits, the 
coefficient of determination (R2) and number of fish aged (n). 

 

 

3.3.5  Length/weight relationship 

As the regression equations relating total length in mm (L) and weight in g (W) for 

female and male A. japonicus did not differ significantly (p > 0.05), the length-weight 

data for the two sexes were pooled. The resulting equation for both sexes collectively 

was loge W = 2.933(loge TL) – 11.179 (n = 214, R2 = 0.994). 

 

  
L∞ (mm) K (year-1) t0 (years) R2 n 

 
Female 

 
Estimate 
 

 
1239 

 
0.24 

 
-0.33 

  
Upper 95% 
 

 
1269 

 
0.26 

 
-0.19 

  
Lower 95% 
 

 
1209 

 
0.22 

 
-0.46 

 
0.913 

 

 
432 

 
Male 

 
Estimate 
 

 
1189 

 
0.25 

 
-0.35 

  
Upper 95% 
 

 
1224 

 
0.27 

 
-0.22 

  
Lower 95% 
 

 
1155 

 
0.23 

 
-0.49 

 
0.907 

 
435 
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3.3.6  Length and age compositions in commercial and recreational fisheries 

The data presented in this section is derived from the retained catches of commercial 

wetline fishers operating off the west coast of Australia and from the retained catches of 

recreational fishers in Kalbarri and the lower reaches of the Swan River Estuary, which 

are located in the northern and southern regions, respectively.  

The distribution of the total lengths of the females and males of A. japonicus in 

the commercial wetline fishery were similar, ranging overall from 400 to 1250 mm 

(Figure 3.4a). Although these individuals ranged in age from 2 to 25 years, the majority 

of fish belonged to the 2 to 8+ age classes (Figure 3.4a). Note that, in 2003, the size 

limit for the retention of A. japonicus in Western Australian waters was increased from 

450 to 500 mm, and that those A. japonicus within this size class (including 3 fish 

below the MLL) were obtained before such a change was implemented.  

The total lengths of the females and males of A. japonicus caught and retained in 

the Kalbarri recreational fishery ranged from 550 to 1250 mm (Figure 3.4b). These fish 

ranged in age from 3 to 18 years, with the majority of individuals belonging to the 3 to 

11+ age classes (Figure 3.4b). The total lengths of female and male A. japonicus caught 

and either retained or tagged and released in the Swan River recreational fishery ranged 

from 900 to 1300 mm (Figure 3.4c). These fish ranged in age from 4 to 29 years, with 

the majority of individuals belonging to the 7 to 10+ age classes (Figure 3.4c).   
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Figure 3.4. Length and age-frequency compositions for female (white) and male (grey) 
Argyrosomus japonicus retained in (a) the commercial wetline fishery, (b) the Kalbarri 
recreational fishery and (c) the Swan River recreational fishery. 
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3.3.7  Sex ratio 

The numbers of females and males of Argyrosomus japonicus that were caught during 

the present study were virtually identical, i.e. 432 and 435, respectively.  

 

3.3.8  Reproductive indices in coastal marine waters 

Due to the low numbers of mature A. japonicus obtained from the northern region 

during the spawning period, the data for GSIs and prevalences of the different gonadal 

stages in the corresponding months in those two regions were pooled.  

The females of A. japonicus that were ≥ L50 and possessed resting ovaries, 

i.e. stage II, were most abundant between April and September (Figure 3.5). Females of 

A. japonicus with ovaries at stages III (developing) and IV (maturing) were first 

collected in May and those with ovaries at stages V-VI (mature or spawning) were first 

recorded in October. Although mature or spawning ovaries were present from October 

to May, they only became the most prevalent category in December. By February and 

March, the ovaries of the majority of females were at stages VIII or II (recovering or 

resting) (Figure 3.5). The trends exhibited in sequential months by the frequency of 

different stages in the gonadal development of males of A. japonicus ≥ L50 at first 

maturity were similar to those just described for females (Figure 3.5). The above trends 

demonstrate that, during the spawning season, the vast majority of females and males 

with gonads at stages III-V will become fully mature, while, by definition, those with 

gonads at stage VI were in spawning condition and those with gonads at stages VII and 

VIII have recently spawned.  

 

 

 



 
 
 52

Figure 3.5. Monthly percentage frequencies of occurrence of sequential gonadal stages 
in female and male Argyrosomus japonicus ≥ L50 at maturity in coastal marine waters. n 
= sample size in each month. In this figure and figures 3.6, 3.10 and 3.11, the data for 
northern and southern regions have been pooled. 
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The mean monthly gonadosomatic indices (GSIs) of female A. japonicus caught 

in coastal waters remained at < ca 1.5 from June to October and then rose to a peak of 

ca 4 in December and January, before declining to < ca 1.6 in February and the 

immediately ensuing months (Figure 3.6). The mean monthly GSIs of male A. japonicus 

caught in the same waters follows a very similar trend, with the peak of ca 3.5 being 

attained in December (Figure 3.6). The frequency of occurrence of females and males 

with stage V/VI, i.e. mature/spawning gonads, peaked sharply in December 

(Figure 3.6). As such gonads were found predominantly during November, December 

and January, it is concluded that spawning occurs mainly in these three months. The 

few female fish with stage V ovaries in October and in February to May and the male 

with stage V testes in February and May were caught in the northern region, which 

strongly indicates that spawning commences earlier and lasts longer in those waters. 

The oocyte diameter frequency distributions in the ovaries of three female 

A. japonicus collected during the spawning period produced a prominent modal class at 

40-79 µm (Figure 3.7), which represented oocytes at the chromatin nucleolar and 

perinucleolar stages. There was also a group of oocytes with diameters that lay mainly 

in the range of 360-419 µm and which, in two ovaries, produced a modal class of 380-

399 µm, that represented predominantly yolk granule oocytes. As the oocytes with 

intermediate diameters were always cortical alveolar oocytes, the ovaries of each of the 

three fish contained each oocyte stage between the chromatin nucleolar and yolk 

granule stages. This accounts for the oocyte diameters of each of the three fish forming 

a largely continuous overall distribution (Figure 3.7). The ovaries of three of the female 

fish caught in the Swan River Estuary contained the same range in oocyte stages and 

also hydrated oocytes. 
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Figure 3.6. Mean monthly gonadosomatic indices ± 1 SE and monthly percentage 
frequencies of stage V/VI (mature/spawning) gonads of female and male Argyrosomus 
japonicus ≥ L50 at first maturity. Sample sizes in each month are given. 
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Figure 3.7. Oocyte diameter frequency distributions for stage V ovaries of three female 
Argyrosomus japonicus. 
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3.3.9  Seasonal occurrence and reproductive indices in the Swan River Estuary 

The data presented in this section are derived from the recreational catches of 

A. japonicus obtained by identified and regular fishers in the lower reaches of the Swan 

River Estuary (Mosman Bay) and from sampling trips to this locality. Despite 

recreational fishing effort remaining relatively consistent throughout a typical year in 

the Swan River Estuary (Malseed and Sumner, 2001), no A. japonicus were caught by 

recreational fishers or ourselves between April and September (Figure 3.8). The 

majority of fish, i.e. 80%, were caught during the summer months (Figure 3.8). 

Figure 3.8. Monthly catches of Argyrosomus japonicus obtained by identified 
recreational fishers and during sampling trips in the lower Swan River Estuary. 
n = sample size. 
 

The GSI of the single male A. japonicus caught in the Swan River Estuary in 

October was 1.25 (Figure 3.9). The mean monthly GSIs of males were ca 3.5 in 

November and December, and then declined to < ca 2 in January and February. The 

mean monthly GSIs of female A. japonicus were ca 4.5 in November and December, 
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A. japonicus with stage V/VI, i.e. mature/spawning gonads, were found predominantly 

during November and December (Figure 3.9), it is concluded that spawning in the Swan 

River Estuary occurs mainly during these months. 

 
 
 

Figure 3.9. Mean monthly gonadosomatic indices ± 1 SE and monthly percentage 
frequencies of stage V/VI (mature/spawning) gonads of female and male Argyrosomus 
japonicus ≥ L50 at first maturity. Sample size for each month is given. 
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3.3.10  Length and age at maturity 

The ovaries of all female A. japonicus, with lengths of 200-849 mm in the period 

between November and January when spawning mainly occurs, were immature, i.e. 

stage I/II (Figure 3.10). Fish with ovaries at stages III-VIII were first recorded in the 

850-899 mm length class, in which they accounted for 33% of all fish, and constituted 

50% of all individuals in both the 900-949 and 950-999 mm length classes and all 

individuals in the 1000-1049 mm and subsequent length classes (Figure 3.10).  From the 

logistic regression analysis, the L50 for female A. japonicus at first maturity was 929 

mm, which, on the basis of the von Bertalanffy growth equation, corresponds to an age 

of ca 6 years (Table 3.3; Figure 3.10).  

 

Table 3.3. Estimates of lengths at maturity, L50 and L95, of Argyrosomus japonicus and 
their lower and upper 95% confidence limits.   
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Lower 
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Males 
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Figure 3.10. Percentage contributions made in each 50 mm length class during the 
spawning season by individual females and males of Argyrosomus japonicus with 
gonads at stages III-VIII. The predicted percentages (± 95% CIs) of mature fish at each 
length derived using logistic regression analysis are shown (solid and dotted lines). 
Grey bars denote percentage mature in each 50 mm length class and the sample size for 
each length class is shown. 
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During the spawning period, the percentage of male A. japonicus with testes at 

stages III-VIII increased progressively with body size from 0% in the 800-849 mm 

length class to 50% in the 850-899 mm length class and 100% in the 950-999 mm and 

all subsequent length classes (Figure 3.10). The L50 of 878 mm (ca 5.5 years) for male 

A. japonicus at first maturity differed significantly (p < 0.05) from the 929 mm (ca 6 

years) estimated for females (Table 3.3; Figure 3.10).  

All females of A. japonicus that were caught during the spawning period and 

were < five years of age, were immature (Figure 3.11). Over half of the females caught 

at the end of their fifth, sixth and eighth years of life and all older females were mature 

(Figure 3.11). Among males, one individual became mature during its third year of life, 

while maturity was attained by over 50% of individuals at the end of their fifth and sixth 

years of life and by all older fish (Figure 3.11). 
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Figure 3.11. Percentage frequency of occurrence of gonads at stages III-VIII in 
sequential ages of female and male Argyrosomus japonicus during the spawning season, 
i.e. November-February. Sample sizes for each age category are given. 
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3.3.11  Mortality 

The point estimates for the instantaneous coefficient of total mortality, Z, for 

A. japonicus, calculated using a refitted version of Hoenig’s (1983) equation for fish, 

and, using an age of 3 years at full recruitment to the exploited stock, relative 

abundance (catch curve) analysis and simulation, based on the number of fish greater 

than a specified age, i.e. 17 years, were 0.17, 0.35 and 0.30 year-1, respectively (Table 

3.4). The point estimate for the instantaneous coefficient of natural mortality, M, for 

A. japonicus, derived by refitting Pauly’s (1980) equation (0.43 year-1) was greater than 

each of the above estimates for Z (Table 3.4). The posterior probability distribution 

determined for Z using the Bayesian method of Hall et al. (2004), which combines the 

separate likelihood distributions for the various estimates of Z (Figure 3.12), yielded a 

point estimate for that variable of 0.34 year-1 (Table 3.4). The resultant posterior 

probability distribution for the point estimate for M, determined from the Pauly 

estimate, the combined likelihood distribution for Z and the requirement that M ≤  Z, 

yielded a point estimate for M of 0.24 year-1 (Table 3.4; Figure 3.13). The 95% 

confidence interval for this combined estimate of M for A japonicus was far narrower 

than for the point estimate of M derived by refitting Pauly’s (1980) equation. The point 

estimates of the current level of fishing mortality, F, derived from the Monte Carlo 

analysis for A. japonicus (0.11 year-1) is relatively low, i.e. < half the level of natural 

mortality, M (Table 3.4).  
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Table 3.4. Estimates (year-1) of total, Z, natural, M, and fishing mortality, F, for 
Argyrosomus japonicus in Western Australia, calculated using life history models 
(Pauly, 1980; Hoenig, 1983), relative abundance analysis or simulation based on the 
three fish ≥ 17 years. Estimates for Z and M were also provided using a Bayesian 
method, which combines the data obtained using the other methods (Hall et al., 2004). 
 
 
Method of analysis 
 

 
Z,  M or F 

 
Estimate 

 
Lower 95% 

 
Upper 95% 

 
Refitted Hoenig (1983) fish equation  
 

 
Z 

 
0.17 

 
0.06 

 
0.48 

 
Relative abundance analysis 
 

 
Z 

 
0.35 

 
0.31 

 
0.40 

 
Simulation (3 fish ≥ 17 years ) 
 

 
Z 

 
0.30 

 
0.23 

 
0.38 

 
Combined Z (Bayesian method) 

 

 
Z 

 
0.34 

 
0.31 

 
0.39 

 
Refitted Pauly (1980) 
 

 
M 

 
0.43 

 
0.14 

 

 
1.32 

 
Combined M (Bayesian method) 
 

 
M 

 
0.24 

 
0.12 

 
0.36 

 
Monte Carlo 
 

 
F 

 
0.11 

 
0.00 

 
0.36 
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Figure 3.12. (a) Estimated likelihood functions for total mortality, Z, of Argyrosomus 
japonicus derived using Hoenig’s (1983) regression equation for fish, relative 
abundance (catch curve) analysis, and a simulation method based on the number of 
individuals above a certain age and sample size. (b) Combined posterior probability 
distributions for Z for A. japonicus derived from the separate likelihood functions 
shown in (a). 
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Figure 3.13. (a) Likelihood functions for natural mortality, M, for Argyrosomus 
japonicus from Pauly’s (1980) equation and (b) the likelihood function for assuming 
that it is less than the combined estimate for Z and the combined posterior probability 
distributions for Z and M. Prob M|Z = probability of M given Z. 
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3.3.12  Yield per recruit and spawning potential ratio 

Yield per recruit analysis (YPR) for A. japonicus, calculated using knife-edge selection, 

i.e. recruitment to the fishery at 3 years, as determined for this species in the 

commercial wetline fishery of Western Australia, indicated that, as fishing mortality, F, 

increases from 0 to 0.8 year-1, the YPR will continue to increase (Figure 3.14a). The 

same situation would occur if the age at recruitment to the exploited stock was 4 years. 

However, if it was 2 years, the YPR begins to decline when F exceeds 0.38 year-1 

(Figure 3.14a). The YPR and associated 95% confidence intervals for A. japonicus at 

the estimated current level of F of 0.11 year-1 and assuming knife-edge recruitment to 

the exploited stock at 3 years, is 0.95 kg year -1 (0.00 – 6.38 kg year -1). The estimated 

value of F0.1 for A. japonicus is 0.32 year-1. 

Regardless of the age at recruitment, the spawning potential ratio (SPR) for both 

female and male A. japonicus decrease rapidly as fishing pressure increases 

(Figure 3.14b). In the case of both female and male A. japonicus, the rate at which SPR 

is predicted to decline decreases conspicuously as the age at recruitment increases. The 

current estimated SPRs for female and male A. japonicus are 0.49 (0.02 – 1.00) and 

0.52 (0.02 – 1.00), respectively (Figure 3.14b). 
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Table 3.5. Estimates of the current level of yield per recruit (YPR), F0.1, and the current 
levels of total spawning stock biomass per recruit (SSB/R) and spawning potential ratio 
SPR) for females and males, and for females and males combined, calculated using 3 
years as the age of Argyrosomus japonicus at full recruitment to the exploited stock. 
 

  
Estimate 

 

 
Lower 95% 

 
Upper 95% 

 
YPR (kg year-1) 
 

 
0.95 

 
0 

 
6.4 

 
F0.1 (year-1) 
 

 
0.26 

 
- 

 
- 

 
SSB/R (kg year-1) 
 

 
8.8 

 
5.7 

 
18.7 

 
SPR (females) 
 

 
0.49 

 
0.02 

 
1.00 

 
SPR (males) 
 

 
0.52 

 
0.02 

 
1.00 

 
SPR (combined) 
 

 
0.50 

 

 
0.02 

 
1.00 
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Figure 3.14. Effect on Argyrosomus japonicus of different levels of fishing mortality 
and at different ages at recruitment on the (a) yield per recruit and spawning potential 
ratio for (b) female and (c) male spawning stock biomass. Numbers indicate alternative 
ages of recruitment to the fishery. Arrows indicate the current level of fishing mortality. 
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3.4  DISCUSSION 

3.4.1  Habitats 

The juveniles of A. japonicus, i.e. individuals with lengths < L50 at first maturity, were 

caught predominantly in water depths < 20 m. The paucity of juveniles and particularly 

of those < 600 mm in catches obtained from deeper waters is not a consequence of gear 

selectivity because the same sampling methods were used in deep water as in shallow 

water, where they yielded substantial numbers of juvenile fish. Although juveniles were 

occasionally caught in estuaries, they were more frequently caught in coastal marine 

waters and particularly in marine embayments and gutter formations (i.e. areas of 

deeper water) along surf beaches. In contrast, in New South Wales and south-eastern 

Africa, the juveniles of A. japonicus are most commonly found in estuaries, which are 

thus regarded as containing their main nursery habitats (Gray and McDonall, 1993; 

Griffiths, 1996).  

The greater use of nearshore waters as nursery areas by A. japonicus in Western 

Australia than in either eastern Australia or South Africa is almost certainly related to 

differences in wave exposure along those coastlines. The presence, along much of the 

west coast of Australia, of a ridge of submerged barrier reefs and islands at distances of 

3 to 10 km offshore, provides the nearshore waters of that coast with considerable 

shelter from offshore wave conditions (Masselink and Pattiaratchi, 2001; Valesini et al., 

2003). In contrast, the coastlines of New South Wales and south-eastern Africa are 

dominated by higher-energy waves regimes (Chapman et al., 1982; Fennessey, 2000). It 

is thus proposed that, in Western Australia, the greater shelter offered to nearshore 

marine habitats, together with a paucity of permanently-open estuaries in a long stretch 

of coastline to the north of the Swan River Estuary, accounts for A. japonicus typically 

utilising habitats in nearshore marine waters as nursery areas. 
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 In contrast to their juveniles, the adults of A. japonicus, i.e. individuals with 

lengths > L50 at first maturity, were caught in the full range of water depths sampled, i.e. 

2 – 110 m. Furthermore, aggregations of A. japonicus, consisting of mature-sized fish, 

were observed on several occasions in underwater video footage taken using a baited 

video camera in depths of 110 m and 50 m in offshore waters to the south-west of 

Rottnest (32°00´S, 115°30´E) and off Dongara (29°17´S, 114°56´E), respectively 

(A. Rowland, Murdoch University, pers. comm., 2005).  

 

3.4.2  Validation of ageing procedure and  growth 

The trends exhibited by the mean monthly marginal increments on sectioned otoliths of 

A. japonicus demonstrate that a single opaque zone is laid down annually in the otoliths 

of this species and that each new opaque zone becomes delineated at the edge of otoliths 

in November/December, i.e. in late spring/early summer. This parallels the situation 

recorded for the otoliths of several other recreationally and commercially important 

teleost species in south-western Australia. These species include the Australian Herring 

Arripis georgianus (Fairclough et al., 2000), Black Bream Acanthopagrus butcheri 

(Sarre and Potter, 2000), West Australian Dhufish Glaucosoma herbraicum (Hesp et al., 

2002) and Tarwhine Rhabdosargus sarba (Hesp et al., 2004a). The trends exhibited by 

the mean monthly marginal increments of A. japonicus in Western Australia also 

parallel those recorded for this species in South Africa, where this sciaenid occupies a 

similar latitudinal range, i.e. ca 25 to 40˚S (Wallace and Schleyer, 1979; Griffiths and 

Hecht, 1995a). The correspondence between the time when the new translucent zone 

becomes formed and then undergoes rapid growth in the otoliths of A. japonicus along 

the coasts of two widely-separated continents reflects the similarity in the times when 

water temperatures start rising from their winter minima. The transition in the spring 

from an opaque zone to a translucent zone at the periphery of the otolith reflects a 



 
 
 71

change in the chemical composition in that region of the otolith as temperature rises and 

the growth of the otolith increases (Campana and Thorrold, 2001).  

The total lengths of individuals within each age class of A. japonicus in Western 

Australia varied considerably, as is also the case with this species in South Africa 

(Griffiths and Hecht, 1995a). This is a common trait of sciaenids, amongst which it has 

been recorded for Micropogonias undulatus (Barger, 1985; Barbieri et al., 1994), 

Sciaenops ocellatus (Beckman et al., 1989; Ross et al., 1995), Pogonias cromis 

(Beckman et al., 1990; Jones and Wells, 1998), Cynoscion nebulosus (Murphy and 

Taylor, 1994), Atractoscion aequidens (Griffiths and Hecht, 1995b), Argyrosomus 

inodorus (Kirchner and Voges, 1999), Leistomus xanthurus (Piner and Jones, 2004), 

Paralonchurus brasiliensis (dos et al., 2005) and Micropogonias furnieri (Norbis and 

Verocai, 2005). This variability probably reflects, in part, the fact that, as the juveniles 

grow very rapidly, those that are spawned first during the spawning period will be 

considerably larger than those produced last during that period (See Conover, 1992). 

This difference is illustrated by the wide range of 214 to 302 mm in the total lengths of 

A. japonicus, which, on average, would have been about six months old (Figure 3.3). It 

is also possible that variations in size reflect differences in the productivity of the 

habitats occupied during early life. 

The growth of A. japonicus in Western Australian waters is particularly rapid 

during the first six years of life, but then slows down markedly as fish become sexually 

mature. The change in the pattern of growth at sexual maturity implies that energy 

resources become directed towards gonadal development rather than mainly towards 

somatic growth. This pattern of change in energy allocation, which maximises 

reproductive potential (Jennings et al., 2001), has been recorded for many other fish 

species, including some in Western Australian waters (e.g. Coulson et al., 2005) and for 

other sciaenids (Beckman et al., 1989; Griffiths and Hecht, 1995b). However, after 
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attaining the approximate size at maturity, the lengths of the females of A. japonicus at a 

given age are slightly greater than those of males, presumably reflecting a greater 

selection pressure for optimising egg than sperm production (see Roff, 1983). The 

females of A. japonicus also grow at a slightly faster rate and attain a larger size than 

their males in South Africa (Griffiths and Hecht, 1995a), a situation also recorded for 

the sciaenids Otolithes ruber and Atrobucca nibe (Fennessy, 2000). 

 

3.4.3  Spawning mode and fecundity 

As the ovaries of the mature females of A. japonicus caught during the spawning period 

contained previtellogenic, cortical alveolar and yolk granule oocytes, and occasionally 

hydrated oocytes and/or post-ovulatory follicles, this sciaenid is an indeterminate 

spawner sensu Hunter et al. (1985). The potential annual fecundity of A. japonicus is 

therefore not fixed prior to the commencement of the spawning period and thus any 

estimate of this variable must take into account both spawning frequency and batch 

fecundity. 

 Although fecundity has not been determined for any natural populations of 

A. japonicus, such data are available for cultured individuals (Battaglene and Talbot, 

1994). The latter workers estimated that females with a total weight of ca 10 kg produce 

ca 1 000 000 eggs. However, it is not known to what extent estimates of fecundity 

derived from hormone-induced egg production by hatchery-reared fish would be similar 

to those derived from wild A. japonicus. Battaglene (1996) reported that, in captivity, 

A. japonicus is a group synchronous spawner. 

Although sciaenids have a relatively high fecundity, which would be of value 

when their stocks are heavily exploited (Musick, 1999; Powles et al., 2000), there are 

examples of some members of this family being particularly vulnerable to fishing. For 

example, Totoaba macdonaldi has been fished to extinction in southern China (Sadovy 
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and Cheung, 2003) and Argyrosomus regius is now no longer caught in the Wadden Sea 

(Wolff, 2000a; 2000b).  

 

3.4.4  Seasonality and diel periodicity of spawning 

The marked rise in the mean monthly GSIs for female A. japonicus from low levels in 

October to their maxima in December and January and their precipitous decline in 

February, together with the similarity in the monthly trends exhibited by the prevalences 

of stage V/VI ovaries, provide strong evidence that, in Western Australian waters, this 

species spawns mainly between November and January. Such a conclusion is also 

consistent with the trends in the mean monthly GSIs of males and the fact that the 

catches of fish with stage V testes were largely confined to these months. Although the 

mean monthly GSIs peaked in the same month in the northern and southern regions, fish 

with stage V ovaries were caught over a more protracted period in the northern region. 

The presence in northern waters of a few female fish with stage V ovaries in October 

and in February to May and of a male with stage V testes in February and April 

indicates that the spawning period extends from October to April/May in this region.  

Hall (1986) reported that A. japonicus spawns between November and January 

in South Australian waters, which is comparable to the spawning period determined for 

this species at a similar latitude in the southern region of Western Australia. A similar 

trend between spawning period duration and latitude has been reported for A. japonicus 

on the coast of New South Wales. In central New South Wales (ca 35˚S), the collection 

of larvae between February and April (Gray and Miskiewicz, 2000) and of small 

juveniles 2-8 cm in total length between April and June (Anon., 1981) suggests that 

spawning takes place in this region between January and April. However, West and 

Walford (2000) reported that juvenile A. japonicus < 10 cm total length were present 

throughout the year in two estuaries located between ca 28˚50’S and 29˚30’S in 
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northern New South Wales. Further evidence that spawning is not always group 

synchronous within a region has been provided by the studies of Broadhurst (1993) and 

Gray and McDonall (1993), who found two distinct length cohorts in an estuarine 

assemblage within the same year. 

Protracted spawning periods are common among sciaenids (e.g. Fennessy, 2000; 

da Costa and Araújo, 2003; Piner and Jones, 2004) and the extended spawning season 

of A. japonicus in the northern region appears to be typical of sciaenids in subtropical 

waters (Druzhinin, 1974). In South Africa, where A. japonicus occurs over a similar 

latitudinal range, i.e. ca 25-40˚S, spawning also commences earlier and lasts longer at 

lower latitudes (Griffiths, 1996). This trend is also paralleled by Atractoscion 

aequidens, which, in South African waters, occurs throughout a latitudinal range similar 

to A. japonicus (Griffiths and Hecht, 1995b). An earlier and more protracted spawning 

period at lower latitudes has also been recorded for several other sciaenids, including 

Micropogonias furnieri (Vazzoler, 1991; da Costa and Araújo, 2003), Argyrosomus 

regius (Chao, 1986), Pogonias cromis (Peters and McMichael, 1990), Sciaenops 

ocellatus (Ross et al., 1995) and Cynoscion regalis (Shepherd and Grimes, 1984). The 

commencement of spawning has been linked to a rise in water temperature in many fish 

species (Conover, 1992), including sciaenids (Brown-Peterson and Thomas, 1988; 

Peters and McMichael, 1990; Saucier and Baltz, 1993; Wilson and Nieland, 1994; 

Connaughton and Taylor, 1995). It is thus relevant that, in comparison with the southern 

region, temperatures in the coastal waters of the northern region increase more rapidly 

after declining to their winter minima and remain elevated for a longer period (Pearce 

et al., 1999). 

As three female A. japonicus with ovaries containing hydrated oocytes were 

caught at night during the spawning period, this species presumably spawns at night in 

Western Australia. This species has also been reported to spawn at night in South Africa 
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(Griffiths, 1996) and is common amongst sciaenids in general (e.g. Holt et al., 1985; 

Saucier and Baltz, 1993; Connaughton and Taylor, 1995; Macchi et al., 2003; Bialetzki 

et al., 2004). Since many sciaenids use sound to locate mates during the spawning 

season (Holt et al., 1985), they are not dependant on light for their courtship behaviour. 

Nocturnal spawning has a number of advantages. As zooplanktivores are mainly visual 

feeders, a nocturnal spawning regime may reduce the effects of predation and increase 

survivorship of eggs and larvae (Holt et al., 1985). Since sunlight can have a deleterious 

effect on particularly pelagic eggs, spawning during darkness may enhance the chances 

of eggs surviving (Saucier and Baltz, 1993).  

 

3.4.5  Typical spawning locations 

Between 2001 and 2005, large numbers of preflexion larval A. japonicus were 

consistently collected in plankton trawls conducted in late spring/early summer in 

nearshore marine waters of depths ca 5-22 m at a latitude of ca 32°S (C. Wakefield, 

Murdoch University, pers. comm.). Furthermore, A. japonicus eggs and larvae have not 

been recorded during extensive plankton trawling conducted farther offshore 

(B. Muhling, Murdoch University, unpubl. data). Early preflexion larvae have also been 

collected near the substratum in a water depth of ca 30 m in the coastal waters of New 

South Wales (Gray, 1995). Further plankton trawling conducted in the coastal 

embayment of Botany Bay in New South Wales, has also resulted in the capture of 

numerous early larvae of A. japonicus (Steffe, 1991). In Western Australia, substantial 

commercial catches of A. japonicus are taken from aggregations of the species 

occurring during the spawning period around reefs in ca 20-30 m of water offshore at 

27˚42’S and at 34˚19’S, located in the northern and southern regions, respectively. 

Thus, from the distribution of early larvae and aggregations of mature adults, spawning 

probably occurs around reefs in the nearshore coastal waters of both the northern and 
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southern regions of Western Australia, which would parallel the situation reported for 

A. japonicus in South Africa (Griffiths, 1996). 

 

3.4.6  Spawning aggregations in the Swan River Estuary 

The capture at night, of several female A. japonicus with ovaries containing hydrated 

oocytes in the same region of the lower reaches of the Swan River Estuary, implies that 

this species forms nocturnal spawning aggregations in this region of the estuary. It is 

thus proposed that the bathymetrical, hydrological and physiochemical characteristics of 

the lower reaches of this system in late spring/early summer provide conditions 

analogous to those in the coastal waters in which this species typically spawns. As the 

female fish with ovaries containing hydrated oocytes were also caught immediately 

prior to the peak of high tide, it is likely that any eggs fertilised in the lower reaches of 

the Swan River Estuary (Mosman Bay) would have been transported downstream and 

out of the system with the ebb tide. The conclusion that spawning in the estuary 

coincides with the ebb tide and that the resulting seaward current carries the eggs out of 

the estuary, is consistent with the absence of eggs and larvae of A. japonicus during 

extensive sampling of the ichthyoplankton of the lower Swan River Estuary (Gaughan 

et al., 1990). Rhabdosargus sarba spawns at night during ebb tides and throughout the 

summer months in the lower reaches of the Swan River Estuary (Hesp et al., 2004). As 

with A. japonicus, the eggs of R. sarba were also not present in samples obtained by 

Gaughan et al. (1990). Thus, the eggs of this species must also presumably pass rapidly 

out of the estuary and not be present in the water column at the time when plankton 

sampling was undertaken. Because planktivorous fishes are abundant in estuaries 

(Johnson et al., 1990; Morgan, 1990), including the Swan River estuary where the 

planktivorous Spratelloides robustus was particularly numerous in seine net catches 
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(Hesp et al., 2004), a rapid movement of the eggs of both of these species out of the 

estuary would enhance their chances of avoiding predation by that species. 

Although few species typically spawn within estuaries in most other regions of 

the world (Haedrich, 1983; Dando, 1984), several species complete their life cycle in 

the estuaries of south-western Australia (Potter and Hyndes, 1999). Although this is the 

first reported case of estuarine spawning by A. japonicus, it has been reported for 

several other members of the Sciaenidae and is particularly common amongst sciaenids 

found in the vicinity of the Río de la Plata Estuary, which is located between Argentina 

and Uruguay. Micropogonias furnieri (Macchi et al., 1996; Acha et al., 1999), 

Pogonias cromis (Macchi et al., 2002), Macrodon ancylodon (Millitelli and Macchi, 

2000), Paralonchurus brasiliensis (Berasategui et al., 2004) and Cynoscion guatucupa 

(Berasategui et al., 2004) all spawn in this system at various times. However, several of 

the estuarine spawning species in the Río de la Plata Estuary, including Micropogonias 

furnieri, Macrodon ancylodon and Paralonchurus brasiliensis, spawn in marine waters 

in the Patos Lagoon region of Brazil (Sinque and Muelbert, 1997).  

 

3.4.7  Length and age at maturity 

The high L50s at which female and male A. japonicus were estimated to attain maturity, 

i.e. 929 and 878 mm, respectively, are consistent with the similarly large size at 

maturity of the females and males of this species in South Africa, i.e. 1070 and 920 mm, 

respectively (Griffiths, 1996). The females of A. japonicus mature at a slightly greater 

length and age than their males, paralleling the situation with several other sciaenids 

(e.g. Cisneros-Mata et al., 1995), including A. japonicus in South Africa (Griffiths, 

1996). The L50 for females of A. japonicus in Western Australia corresponds to 75% of 

the Lmax, which is similar to that reported for the females of this species in South Africa 

(Griffiths, 1996). However, Griffiths (1996) also reported that the L50s of females of the 
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congeneric species A. thorpei and A. inodorus were 30 and 23% of their respective 

maximum lengths. Thus, A. japonicus apparently attains maturity at a relatively larger 

size and age for members of its genus.  

 

3.4.8  Mortality and management implications 

The first three methods used to estimate the total mortality, Z, for each species in this 

study employ different data and are based on slightly different assumptions. The first 

approach, employing Hoenig’s (1983) equation for fish, estimates Z for a species using 

the oldest age recorded for any individual in the samples obtained of that species. 

Implicitly, this estimate of Z reflects the average total mortality experienced throughout 

the life of individual fish from the age at which they were first recruited to the fishery 

for fish of this or older ages. The simulation approach employed the number of fish in a 

sample that were older than a specified age. Thus, such estimates of Z reflect the 

average total mortality experienced after recruitment to the fishery by those age classes 

that were older than the specified age. The estimates of Z, derived from relative 

abundance (catch curve) analysis, represents the average total mortality of the fish 

within all fully-recruited age classes, weighted towards those mortalities experienced in 

more recent years.   

Each of the above three approaches for determining Z is based on the 

assumption that the total mortality experienced by the fish stock remained constant 

throughout the years in which each of the age classes considered in the analysis was 

subjected to full exploitation. The method of Hall et al. (2004) for determining total 

mortality uses a combination of the estimates derived by those three methods and is 

likewise based on the assumption that, after full exploitation, total mortality remains 

constant. However, such an assumption is unlikely to be valid for many fish stocks in 

Western Australia. This view is based on the fact that exploitation by both recreational 
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and commercial fishers has increased through a combination of increased fishing 

activity and the introduction of improved fishing technology. Thus, the mortality values 

estimated using Hoenig’s (1983) approach, employing maximum age, will be likely to 

reflect those occurring during a period of lower exploitation than present. In contrast, 

the estimate from relative abundance analysis reflects the mortality experienced in more 

recent years, which is likely to be greater than in earlier years and thus yield higher 

values for total mortality. As the simulation approach uses data for several older age 

classes, it is likely to yield values greater than those obtained using the Hoenig 

approach, but probably less than those derived using relative abundance analysis. This 

is precisely the trend exhibited by the estimates obtained for Z for A. japonicus, using 

the three methods, and the same is also true for P. dentex (see Chapter 4.3.7).  

The estimate of natural mortality, M, for a species, that is derived by employing 

Pauly’s (1980) approach, which uses the parameters of the von Bertalanffy growth 

equation and the average annual temperature of the water occupied by the stock, is often 

greater than the estimates of Z derived from Hoenig’s (1983) approach and relative 

abundance analysis. This is clearly an erroneous situation. The use of the method 

described by Hall et al. (2004) ensures that Z > M. However, an erroneously high 

estimate of M derived using Pauly’s method will still influence the estimate of M 

resulting from the use of this Bayesian method and thus produce a value for this 

variable that is large and lies close to the estimate of Z. The above scenario is the case 

found with Mulloway in the current study. Thus, the value of 0.43 year -1 derived for M 

using Pauly’s (1980) equation, exceeded those derived from each of Hoenig’s fish 

equation, relative abundance analysis and simulation, and the value for Z only slightly 

exceeded that of M when using the combined data and the Bayesian approach of Hall 

et al. (2004). 
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An erroneously high estimate of M will inevitably lead to an underestimate of 

fishing mortality, F. Thus, excessively large estimates of M derived using Pauly’s 

(1980) method are likely to lead to the erroneous conclusion that the level of 

exploitation is low and that there is therefore no need to be concerned that the stock is 

being overexploited.  

From the above discussion, there is clearly an urgent need to refine Pauly’s 

(1980) method, which is the most widely-used empirical method for determining M, in 

order to obtain more reliable estimates of fishing mortality. In this context, it is 

important to recognise that Pauly’s and other empirical methods are based on data sets 

produced several years ago and that, since that time, the methods, for example, for 

validating the ageing procedure and thus obtaining more reliable estimates of growth 

and for determining the length at maturity, have improved markedly. Thus, estimates of 

M based on life history-based traits will require, for example, growth parameters that 

are derived from reliable studies. Other methods for estimating M, e.g. tagging, need to 

be considered as they provide direct estimates of mortality and overcome a reliance on 

empirical relationships derived from growth and temperature data. However, the large 

individuals of Mulloway often die on capture, particularly when caught in deeper water, 

i.e. > 20 m, and thus this species is not a good candidate for using mark-recapture 

methods for providing reliable data on mortality. 

To avoid any risk that, because of the unreliability of estimates of M derived 

using Pauly’s (1980) method, the stocks of Mulloway may be experiencing undetected 

but excessive exploitation, it is important for managers to consider robust methods that 

will guard against the deleterious impact of excessive exploitation. Since, in contrast to 

their adults in deeper waters, the juveniles of Mulloway typically survive capture and 

release (Broadhurst and Barker, 2000), the use of a minimum legal length (MLL) based 

on the length at maturity would be an effective management tool. As Mulloway form 
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spawning aggregations, of which the locations are becoming increasingly well known, 

as in the Swan River Estuary, the possibility of closing spawning areas during the 

spawning period needs to be seriously considered.  

 

3.4.9  Yield per recruit and spawning potential ratio 

The yield per recruit analysis for A. japonicus, assuming ‘knife edge’ selection at two 

years, indicates that the yield per recruit (YPR) will increase as F increases from zero to 

0.38 year-1 (= Fmax) and then decline. Although A. japonicus appears fully-recruited to 

the commercial fishery at 3 years, a large proportion of the stock recruits to the 

exploited stock at an age of 2 years. Thus, for such individuals of A. japonicus that are 

recruited into the fishery at this latter age, i.e. at a relatively small weight in terms of its 

maximum weight, the analyses demonstrate that, if fishing mortality was > 0.38 year-1, 

this would lead to a reduction in yield due to growth overfishing. Because YPR analyses 

do not take into account the possibility of recruitment overfishing, the reference point 

F0.1 (=0.26 year-1 for A. japonicus) rather than Fmax is sometimes used as a more 

conservative measure of the level of F associated with the optimum yield for a 

particular stock (Haddon, 2001). Unfortunately, the inability to obtain a reliable 

estimate for the current level of F for A. japonicus means that it is also not possible to 

determine whether the true fishing mortality exceeds this reference point.      

The spawning biomass per recruit (SSB/R) analysis is used to determine whether 

fishing mortality is likely to lead to recruitment overfishing. Thus, it has been 

considered that if the SSB/R of a species falls below 30% of its original level, i.e. its 

spawning potential ratio (SPR) is < 0.3, there may be insufficient reproductive capacity 

(egg production) for the population to remain sustainable (Mace and Sissenwine, 1993; 

Goodyear, 1993). The fact that the SPRs for female and male A. japonicus are predicted 

to decline dramatically at relatively low levels of fishing mortality, e.g. for females, to 
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< 0.5 at F = 0.1 year-1, is largely because this species becomes fully recruited into the 

fishery at a size which is well below that at which they attain maturity. However, the 

analyses also demonstrate that, if the age at full recruitment of A. japonicus was 

increased, for example, by raising the MLL for this species, the SPR will decline far 

less dramatically with respect to increasing fishing mortality. Thus, as was proposed in 

the mortality section, it is strongly recommended that consideration should be given to 

increasing the MLL for this species to a length that is at least equivalent to that at 

maturity. The susceptibility of A. japonicus to fishing pressure in Western Australian 

waters parallels that found for this species on the south-eastern coast of Africa 

(Griffiths, 1997).   
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4.0  BIOLOGY OF PSEUDOCARANX DENTEX ON THE LOWER 

WEST COAST OF AUSTRALIA 
 

4.1  INTRODUCTION 

Pseudocaranx dentex is an important commercial species in eastern Australia (Tilzey, 

2004), New Zealand (Sullivan et al., 2005) and Japan (Masuda and Tsukamoto, 2000). 

It is also an important recreational fish species in many regions, including Western 

Australia, where the Pseudocaranx complex, comprising mainly P. dentex, ranks third 

in terms of its abundance in the catches of recreational anglers (Sumner and 

Williamson, 1999). 

The landings of Silver Trevally by the South Eastern Trawl fishery (SEF) have 

declined since the mid 1990s, which has led to the fishery for this species being 

classified as overfished (Tilzey, 2004). The fact that the modal length of P. dentex in 

these commercial catches has declined in recent years is consistent with the conclusion 

that this species is being growth-overfished in south-eastern Australia.  

Previous studies of the biology of P. dentex in New South Wales were either 

biased towards faster-growing individuals of younger age classes (Rowling and Raines, 

2000) or contained little data for individuals > 5 years of age (Kalish and Johnston, 

1997). There is evidence that some of the biological characteristics of P. dentex vary 

markedly among populations. For example, the age of a number of individuals in the 

populations of P. dentex studied in New Zealand exceeded 30 years (James, 1984; 

Walsh et al., 1999), whereas most of the fish aged in New South Wales were less than 

20 years old (Rowling and Raines, 2000). Studies on the reproductive biology of 

P. dentex demonstrate that, in southern and eastern Australia and New Zealand, this 

species typically spawns at some stage between early spring and early summer, with the 

precise period possibly varying with latitude (Shuntov, 1969; James, 1978; Kalish and 
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Johnston, 1997; Rowling and Raines, 2000). As with the maximum age, the length at 

maturity of P. dentex varies markedly among populations, being attained at a far smaller 

length in eastern Australia than in New Zealand (James, 1978; Kalish and Johnston, 

1997; Rowling and Raines, 2000). 

 The aim of this study was to obtain comprehensive quantitative data on those 

aspects of the biology of P. dentex in Western Australia that are required for developing 

management plans for conserving the stocks of this important recreational species in 

this state. The first individual aim was to confirm that it was necessary to section the 

otoliths of P. dentex to reveal clearly all of their growth (opaque) zones, and to validate 

that the main growth zones in this hard structure are formed annually. The next aim was 

to determine the size and age compositions, growth, length and age at first maturity, 

spawning period and location and mortality of the females and males of P. dentex in the 

northern and southern parts of its distribution in Western Australia. The resultant data 

are compared with those recorded elsewhere in the distribution of P. dentex and their 

implications for management considered carefully. We also aimed to determine the 

distributions of P. dentex and the congeneric P. wrighti, which will provide important 

information as these two morphologically very similar species are currently grouped 

together for management purposes. 
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4.2  MATERIALS AND METHODS 

Details of the measurements and procedures that were common to both 

Pseudocaranx dentex and Argyrosomus japonicus are given in Chapter 2. The 

following details refer specifically to P. dentex. 

 

4.2.1  Environmental measurements 

The mean monthly ocean temperatures provided for Perth and Geraldton (the dominant 

sampling sites on the two west coast regions) were recorded by Pearce et al. (1999) and 

represent average water temperatures at these sites between 1990 and 1994. These data 

were recorded by WESDATA temperature data loggers which were deployed 

approximately 5 m below the surface in (1) waters ca 150 m offshore from Marmion 

Lagoon (31°51΄S, 115°45΄E) and (2) offshore at Seven Mile Beach (29°10’S, 

114°54’E).  

 
4.2.2  Length measurements 

Comparisons between the maximum sizes, L∞ and length at maturity of Pseudocaranx 

dentex determined during this study with those of other studies (Williams and Lowe, 

1997; Walsh et al., 1999; Rowling and Raines, 2000) were facilitated by converting the 

length to caudal fork (LCF ) measurements used in those other studies to total length 

(TL). The likelihood-ratio test demonstrated that the regressions for LCF vs TL for 

female and male P. dentex caught on the west coast of Australia were not significantly 

different (p > 0.05) and thus the data for the two sexes were pooled and this yielded the 

following relationship. 

TL = 1.203(LCF) – 0.6185 (R2 = 0.998, n = 621), 

where TL and LCF  are recorded in mm, R2 = the coefficient of determination and n = 

sample size. 
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4.2.3  Density estimates 

The area covered in each trawl was calculated from the width of the net’s mouth (see 

Chapter 2.2.2) and the distance trawled, the latter being determined from the latitudes 

and longitudes at the start and finish of the trawl. The number of P. dentex and 

P. wrighti caught were then expressed as the number of fish 100-2. 

 

4.2.4  Lengths at age 

As a further means of testing whether the lengths at age of P. dentex in the upper west 

and lower west coast regions differed, the mean lengths of all P. dentex from the upper 

and lower west coast regions at 4+, 5+, 6+ and 7+ years, i.e. where there were sufficient 

samples, were compared employing multiple t-tests and using a Bonferroni correction. 

 

4.2.5  Gonad stages 

The macroscopic and histological characteristics used to assign the gonads of each fish 

to one of the eight numerical stages of gonadal development (see Chapter 2.5) are 

presented in Table 4.1. 
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Table 4.1 Description of the characteristics used to distinguish the various macroscopic 
stages in ovarian and testicular development and the corresponding histological stages of 
ovarian development in Pseudocaranx dentex. N.B. Macroscopic stages have been adapted 
from Laevastu (1965), whilst the histological stages have been modified from Wallace and 
Selman (1981) and Mayer et al. (1988). 
 
 
Stage 
 

 
Classification 

 
Macroscopic characteristics         
 

 
Histological characteristics 

I 
 
 

Virgin 
 

Ovaries and testes very small and 
threadlike, positioned just under swim 
bladder. Transparent and colourless to 
pale pink.  

Oogonia and chromatin nucleolar oocytes 
abundant. Oocytes organized neatly in 
rows along the ovarian lamellae. 

II 
 
 

Maturing virgin/ 
resting adult 

Ovaries small, translucent, pink to dark 
pink, cone-shaped, and approximately 
one quarter the length of the ventral 
cavity. Oocytes not visible through 
ovarian wall. Testes small, pink to 
white, strand-like, flat and half the 
length of the ventral cavity. 

Similar to stage I. All oocytes 
previtellogenic (previtellogenic oocytes 
present in all subsequent categories). 

III 
 

Developing 
 
 

Ovaries slightly larger, pink and less 
transparent. Small oocytes visible 
through ovarian wall. Testes slightly 
larger and white to grey. Gonads half 
the length of the ventral cavity. 

Cortical alveolar oocytes abundant. 

IV 
 
 
 

Maturing Ovaries larger than stage III, pinkish to 
orange, red capillaries present on 
ovarian wall. Larger oocytes (than in 
stage III) visible through ovarian wall. 
Testes white and swollen with some 
capillaries present. Gonads occupy 
approximately half the volume of the 
ventral cavity  

Cortical alveolar and yolk granule 
oocytes abundant.  

V/VI 
 
 
 

Mature/Spawning Ovaries large, orange, and highly 
vascularized. Oocytes clearly visible 
through ovarian wall and tightly 
packed. Testes large, white, multi-lobed 
and vascularized. Gonads occupy the 
majority of the ventral cavity.  

Yolk granule oocytes are tightly packed 
and dominate space within ovary. In stage 
VI ovaries migratory nucleus stage 
oocytes and/or hydrated oocytes and/or 
post-ovulatory follicles are present. 

VII 
 
 
 

Spent Ovaries smaller than stage V and VI 
and more flaccid, but not completely 
empty. Ovaries red to brown, capillaries 
still present. Testes white to brown, a 
thick capillary runs the length of the 
entire lobe. Some large oocytes and 
sperm still present in ovaries and testes, 
respectively. 

Yolk granule and cortical alveolus 
oocytes still present but often undergoing 
atresia. Spaces appear in ovary and some 
scar tissue visible. 

VIII 
 
 
 

Recovering Ovaries deep red to brown. Testes 
similar in colour, also flaccid. Gonads 
still have some capillaries present and 
occupy one quarter to one third the 
length of ventral cavity. 

Scar tissue abundant. Oocytes highly 
disorganized. All oocytes previtellogenic. 
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4.3  RESULTS  

4.3.1  Water temperatures  

The mean monthly water temperatures at a depth of 5 m off Perth at ~ 31°S, near the 

mid-point of the lower west coast region, declined from their maxima of 22.2 - 22.6°C 

in January to March to their minimum of 15.9°C in August and then rose sharply during 

the spring and early summer months (Figure 4.1). The mean water temperature in any 

given month at Geraldton at ~ 29°S, near the mid-point of the upper west coast region, 

was always between 1 and 2°C greater than that at the same depth off Perth, with 

maximum and minimum values of 24.1 and17.5°C being recorded in January and July, 

respectively (Figure 4.1).  
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Figure 4.1. Mean monthly water temperatures recorded between 1990-1994 at water 
depths of 5 m off Seven-mile beach near Geraldton (29°10' S, 114°54' E) and off Perth 
(31°51'S, 115°45' E). In this Figure and Figures 4.3 and 4.7, the closed bars on the x-
axis refer to summer and winter months, and the open bars to autumn and spring 
months. 
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4.3.2  Habitats of Silver and Sand Trevally 

A total of 1935 Pseudocaranx dentex was caught collectively by trawling and seine 

netting, and angling over bare sand in areas where there were also patches of seagrass 

and by angling over reefs. The vast majority (94%) of the nearly 300 Silver Trevally 

caught over bare sand by the different sampling methods were < 250 mm in length, 

whereas over 90% of the more than 1600 individuals of this species caught over reefs 

were > 250 mm (Figure 4.2). At the completion of this study, seine netting around 

jetties and bridges in estuaries yielded 13 P. dentex ranging from 34 to 55 mm in length. 

A total of 1291 P. wrighti was caught in the same trawl samples from over sand 

and in samples collected by angling over reefs where P. dentex was caught. No 

P.wrighti were caught by seining or angling over bare sand. In contrast to the situation 

with P. dentex, the percentage taken by trawling over sand was far higher (99 vs 6 %) 

while that obtained by angling over reefs was far lower (1 vs 85 %). The mean density 

of P. wrighti over sand was more than an order of magnitude greater in the more 

offshore and deeper waters (ca 30 m depth) around Rottnest (0.40 100 m-2 ) than in the 

waters of Comet Bay (0.035 100 m-2) where water depths were ca 10 m on average. The 

mean density of  P. dentex in the same waters around Rottnest and in Comet Bay (both 

0.003 100 m-2) were very low and thus, even in the latter embayment, were an order of 

magnitude less than that of P. wrighti.  

The lengths of P. wrighti caught by trawling ranged from 43 mm to 220 mm, but 

most were > 100 mm (Figure 4.2). The addition of a small mesh net (12 mm) inside the 

cod-end of the trawl did not result in a conspicuous change in the length composition of 

the catch of P. wrighti from that obtained without that small mesh net. The lengths of P. 

dentex in the trawl samples ranged from 74 to 190 mm. 
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Figure 4.2. Length-frequency distributions for (a) Pseudocaranx dentex and 
(b) P. wrighti caught by commercial trawling, commercial seining and angling in 
marine and estuarine waters on the lower west coast of Australia. White and black 
bars represent sand and reef substrate, respectively. n = sample size. 
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4.3.3  Validation of ageing procedure 

Opaque zones were hard to detect in whole otoliths as the individual zones often either 

appeared to merge or could not be distinguished readily from false zones. The clarity of 

these zones was markedly improved by sectioning the otoliths (cf Plates 4.1a,b). In 54% 

of otoliths examined, the number of opaque zones visible on whole otoliths differed 

from that detectable on the same otoliths after they had been sectioned. Furthermore, the 

frequency and extent of such discrepancies increased as the number of detectable 

opaque zones in sectioned otoliths increased. For example, the number of opaque zones 

visible in whole and sectioned otoliths differed by one for sectioned otoliths with one 

opaque zone in 33 % of those otoliths and was > one, and frequently ≥ four, for 

sectioned otoliths with ≥ five opaque zones on 51% of those otoliths. Thus, it was 

considered necessary to section all of the otoliths to age this species.  

The mean monthly marginal increments on sectioned otoliths of P. dentex with 

two to three opaque zones rose gradually from 0.45 in January to 0.79 in August and 

then declined precipitously to 0.24 in November (Figure 4.3). The trends exhibited 

during the year by the mean monthly marginal increments on the otoliths with four to 

seven and ≥ eight opaque zones were essentially the same, with the values rising from 

their minima in late spring to their maxima in winter and then undergoing a pronounced 

decline during spring (Figure 4.3). Although no fish possessing otoliths with one 

opaque zone were caught in June and August, the trends exhibited by the mean marginal 

increments during the other months is consistent with those just described for fish with 

otoliths containing more than one opaque zone. 
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Plate 4.1. (a) Whole otolith of Pseudocaranx dentex with several opaque zones (scale 
bar = 100 μm) and (b) a 500 μm thick section of the same otolith showing nine zones, 
the location of which is denoted by yellow dots (Scale bar = 50 μm). 
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Figure 4.3. Mean monthly marginal increments ± 1 SE on sectioned sagittal otoliths of 
Pseudocaranx dentex with different numbers of opaque zones. Numbers refer to sample 
sizes. 
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4.3.4  Growth 

The trends exhibited by the reproductive variables demonstrated that P. dentex spawned 

mainly between September and November on the lower west coast and mainly between 

August and December on the upper west coast (see Chapter 4.3.5). Thus, the 

approximate mid-point of these periods, which was the same in each region, i.e. 

October 1, was assigned as the birth date of this species in both of those regions. 

von Bertalanffy growth curves provided a good fit to the lengths at ages of female and 

male P. dentex from inshore waters on the lower west coast (Figure 4.4), as is reflected 

in the high values of 0.819 and 0.843 for the coefficient of determinations for females 

and males, respectively (Table 4.2). The lengths at age of fish caught in inshore waters 

varied more on the upper west coast than lower west coast region, which accounts, in 

part, for the lower R2 values of 0.662 and 0.664, respectively, for the von Bertalanffy 

growth curves for female and male P. dentex (Figure 4.4). The von Bertalanffy growth 

curves for female and male P. dentex in inshore waters did not differ significantly on the 

lower west coast (p > 0.05), but were significantly different on the upper west coast (p < 

0.05). The maximum ages recorded for female and male P. dentex in inshore waters 

were 13 and 11 years, respectively, and 13 years on the upper west coast (Figure 4.4). 

However, the maximum lengths of females and males in these waters were both greater 

in the upper than lower west coast, i.e. 690 and 658 mm vs 650 and 568 mm, 

respectively (Table 4.2).  The growth curves of both female and male P. dentex from the 

two regions were significantly different (p < 0.05). The mean lengths of 4+, 5+, 6+ and 

7+ P. dentex from the lower and upper west coast regions were also significantly 

different (p < 0.05), i.e. 336, 358, 397 and 387 mm vs  385, 411, 439 and 477 mm for 

females and 334, 377, 382 and 387 mm vs 377, 410, 424 and 435 mm for males, 

respectively. 
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Figure 4.4. von Bertalanffy growth curves fitted to the lengths at age of female and 
male Pseudocaranx dentex from inshore waters (i.e. < 60 m depth) in the lower and 
upper west coast regions. n = sample size. 
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Table 4.2 von Bertalanffy growth parameters, including upper and lower 95% 
confidence limits, derived from lengths at ages of female and male Pseudocaranx 
dentex, and maximum lengths and ages of individuals from inshore waters (< 60 m 
depth) in the lower and upper west coast regions and from offshore waters (> 60 m 
depth) in the lower west coast region. 
 
  

L∞ (mm) 
 

k 
(year-1) 

 
t0 

(years) 

 
R2 

 
n 

 
Max length 

(mm) 

 
Max age 
(years) 

Lower west coast (inshore) 
Female 
   Estimate 
   Upper 
   Lower 
Male 
   Estimate 
   Upper 
   Lower 
 

 
 
477.1 
505.0 
449.2 
 
459.2 
488.1 
430.2 

 
 

0.24 
0.28 
0.20 

 
0.27 
0.32 
0.23 

 
 

-0.37 
-0.15 
-0.60 

 
-0.22 
0.01 
-0.42 

 
 

0.819 
 
 
 

0.843 

 
 

434 
 
 
 

337 

 
 

650 
 
 
 

568 

 
 

13 
 
 
 

11 

Upper west coast (inshore) 
Female 
   Estimate 
   Upper 
   Lower 
Male 
   Estimate 
   Upper 
   Lower 
 

 
 
 495.9 
 528.1 
 463.8 
 
 467.7 
 489.9 
 445.5 

 
 

0.34 
0.44 
0.24 

 
0.38 
0.48 
0.29 

 
 

0.20 
0.78 
-0.38 

 
0.34 
0.80 
-0.12 

 
 

0.662 
 
 
 

0.664 

 
 

147 
 
 
 

162 

 
 

690 
 
 
 

658 

 
 

13 
 
 
 

13 

Lower west coast 
(offshore) 
Female 
   Estimate 
   Upper 
   Lower 
Male 
   Estimate 
   Upper 
   Lower 

 
 
  
3467.9 
 20139.1 
-13227.1 
 
 1383.8 
 2818.8 
 -51.8 

 
 
 

0.01 
0.09 
-0.07 

 
0.05 
0.14 
-0.04 

 
 
 

-3.17 
3.48 
-9.81 

 
-1.16 
3.34 
-5.65 

 
 
 

0.755 
 
 
 

0.739 

 
 
 

53 
 
 
 

55 

 
 
 

825 
 
 
 

885 

 
 
 

18 
 
 
 

18 

 

As the von Bertalanffy growth curves for female and male P. dentex from 

offshore waters on the lower west coast were not significantly different (p > 0.05), the 

lengths at age for the individuals of both sexes in these waters were combined (Figure 

4.5). The lack of data for the smaller P. dentex from these offshore waters helps account 

for the negative estimate of t0 of -2.29 years. However, the likelihood-ratio test showed 

that a traditional three parameter von Bertalanffy growth model provided a statistically 

better fit (p < 0.001) than a less complex two parameter growth model in which t0 was 

constrained to zero. Thus, the former model was used for all subsequent analyses.  The 
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growth curves for P. dentex in inshore and offshore waters of the lower west coast were 

significantly different (p < 0.001). The length derived for P. dentex at any given age 

was far greater for fish in offshore waters than for those in inshore waters at the same 

age. For example, at 5, 8, 10 and 15 years of age, P. dentex were estimated to reach 

lengths of 369, 512, 595 and 771 mm, respectively, in offshore waters compared with 

349, 414, 436 and 461 mm, respectively, in inshore waters. Furthermore, the P. dentex 

caught in offshore waters were generally larger and older than those in shallower, 

inshore waters (Figure 4.6). This difference is reflected in the greater maximum lengths 

and ages recorded for P. dentex in deep than shallow waters, i.e. 885 vs 650 mm and 18 

vs 13 years, respectively. 

The likelihood-ratio test demonstrated that the regressions for the logarithms of 

total length vs total weight for the two sexes were not significantly different (p > 0.05). 

The relationship for the combined data for females and males is; 

loge W = 2.992(loge TL) – 11.331 (R2 = 0.996, n = 1424), where ln represents the natural 

logarithm, W = total body weight in g, TL = total length in mm, R2 = the coefficient of 

determination and n = sample size. 
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Figure 4.5. von Bertalanffy growth curves fitted to lengths at age for Pseudocaranx 
dentex caught from (a) offshore waters (> 60 m depth) on the lower west coast (both 
sexes pooled) and (b) for females (grey dashed line) and males (grey solid line) of 
P. dentex on the lower west coast (< 60 m depth), females (black dashed line) and males 
(black solid line) on the upper west coast (< 60 m depth), and both females and males 
(black dotted line) on the lower west coast (> 60 m depth). n = sample size. 
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Figure 4.6. (a) Length-frequency and (b) age-frequency distributions for Pseudocaranx 
dentex caught in inshore (< 60 m depth) and offshore (> 60 m depth) waters in the lower 
west coast region. n = sample size. 
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4.3.5  Reproductive indices 

The mean monthly GSIs of female P. dentex ≥ the L50 at which individuals first attain 

maturity on the lower west coast region, i.e. 310 mm (see Chapter 4.3.6), rose sharply 

from 0.7 in July to a maximum of 3.8 in October, before declining precipitously to < 1.0 

between December and June (Figure 4.7). The trends exhibited by the mean monthly 

GSIs for male P. dentex ≥ the L50 at first maturity from the same region, i.e. 279 mm 

(see Chapter 4.3.6) were similar, with values rising to a maximum of 5.3 in October and 

then declining markedly (Figure 4.7). The mean monthly GSIs of female and male 

P. dentex (≥ the L50 at first maturity) on the upper west coast region, i.e. 328 and 256 

mm, respectively, remained elevated for a more protracted period, i.e. between July and 

January (Figure 4.7). However, the maximum mean monthly GSIs attained by female 

and male P. dentex in this region, i.e. 2.6 and 4.5, respectively, were less than those 

attained by females and males on the lower west coast region (Figure 4.7). 

The ovaries of all female P. dentex ≥ the L50 at first maturity on the lower west 

coast region between March and June were at stage I/II (Figure 4.8). The percentage 

frequency of fish with this ovarian stage gradually decreased in the following months to 

zero in October and November. Fish possessing stage III and stage IV ovaries were first 

caught in July and August, respectively. Fish possessing stage V/VI ovaries were first 

caught in August and the percentage frequency of such individuals was highest between 

September and November. Fish possessing stage VII and VIII ovaries were initially 

caught in November and were not found in March and the ensuing months (Figure 4.8). 

The trends displayed by the monthly frequencies of the stages of gonadal development 

for male P. dentex on the lower west coast were very similar to those of females 

(Figure 4.8). 
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Figure 4.7. Mean monthly gonadosomatic indices ± 1 SE and mean percentage 
frequencies of stage V/VI gonads of female and male Pseudocaranx dentex ≥ L50 caught 
in inshore waters on the lower and upper west coast regions. Numbers refer to sample 
sizes in each month. 
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Figure 4.8. Monthly percentage frequencies of occurrence of sequential gonadal stages 
in female and male Pseudocaranx dentex ≥ L50 caught in inshore waters (< 60 m depth) 
on the lower west coast of Australia. n = sample size in each month. 
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In comparison with the trends just described for females on the lower west coast 

region, stage III and V/VII ovaries were first detected one month earlier in the upper 

west coast region, i.e. during June and July, and the prevalence of female and male fish 

with stage V/VI gonads was greater during December (Figure 4.9). 

The trends exhibited by the reproductive variables indicate that P. dentex spawns 

mainly between September and November on the lower west coast and for a more 

protracted period on the upper west coast region, i.e. August to December. The 

progressive changes in the frequencies of the different gonadal stages of females and 

males in sequential months throughout the year demonstrate that those individuals of 

both sexes that possess stage III and IV gonads at the onset of the spawning season 

progress through to maturity by the end of spawning season. The above trends 

demonstrate that the vast majority of females and males with gonads at stages III-VIII 

during the spawning season will become fully mature and spawn or have spawned 

already during that spawning season 

The distributions of the oocyte diameters in the spawning ovaries (i.e. stage VI) 

of two female P. dentex each produced a prominent modal class at 40-59 μm, which 

predominantly represented chromatin nucleolar or perinucleolar oocytes (Figure 4.10). 

Oocytes at several different stages of development, i.e. cortical alveolar and yolk 

granule oocytes, as well as either migratory nucleus oocytes or post-ovulatory follicles, 

were also present in these ovaries. In the case of both ovaries, there was no distinct gap 

in oocyte distribution between the small previtellogenic oocytes and the large 

vitellogenic (i.e. yolk granule) oocytes (Figure 4.10). 
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Figure 4.9. Monthly percentage frequencies of occurrence of sequential gonadal stages 
in female and male Pseudocaranx dentex ≥ L50 in inshore waters (< 60 m depth) in the 
upper west coast region. n = sample size in each month. 
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Figure 4.10. Oocyte diameter frequency distributions for stage VI ovaries of two female 
Pseudocaranx dentex. 
 

4.3.6  Length and age at maturity 

During the spawning season of P. dentex in inshore waters on the lower west coast, 

females and males with gonads at one of stages III to VIII were found in fish of 200-249 

mm (Figure 4.11). The prevalence of such fish increased with size, reaching ca 50% in 

females of 300-349 mm and 50 % in males of 250-299 mm and virtually all fish in the 

succeeding length classes (Figure 4.11). The L50s at which female and male P. dentex on 
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the lower west coast first attained maturity, i.e. 310 and 279 mm, respectively, differed 

significantly (p < 0.05). The trends exhibited by the prevalence of fish with gonads at 

stages III to VIII on the upper west coast were similar to those just described for the 

lower west coast except that no females < 300 mm possessed gonads at one of these 

stages (Figure 4.11). The L50s at which female and male P. dentex from this region first 

attained maturity, i.e. 328 and 256 mm, respectively (Table 4.3), were not significantly 

different (p > 0.05). The L50s at first maturity of the females and males from the upper 

west coast region did not differ significantly from those of the corresponding sex on the 

lower west coast region (p > 0.05). 

 
Table 4.3 Length at maturity (L50/L95) and 95% confidence limits derived for 
Pseudocaranx dentex caught in inshore waters (< 60 m depth) in the lower and upper 
west coast regions. 

 
 
 

  
Lower west coast 

 
Upper west coast 

 
 

  
L50 (mm) 

 

 
L95 (mm) 

 
L50 (mm) 

 

 
L95 (mm) 

Female 
 

 
Estimate 

 
310 

 
378 

 
328 

 
398 

 
 
 

 
Lower 

 
299 

 
348 

 
307 

 
342 

 
 
 

 
Upper 

 
322 

 
402 

 
356 

 
438 

Male 
 

 
Estimate 

 
279 

 
323 

 
256 

 
367 

 
 
 

 
Lower 

 
266 

 
301 

 
202 

 
306 

 
 
 

 
Upper 

 
293 

 
337 

 
282 

 
413 
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Figure 4.11. Percentage contributions made to each length class during the spawning 
season by female and male Pseudocaranx dentex with stage III-VIII gonads. Data are 
provided for both the lower and upper west coast regions. The predicted percentage 
(± 95% CIs) of mature fish at each length derived using logistic regression analysis is 
shown (solid and dotted lines). Sample size for each 50 mm length class is shown. Grey 
bars denote percentage mature in each 50 mm length class. 
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No female or male P. dentex on the lower west coast region had reached 

maturity by the end of their second year of life. In this region, maturity had been 

attained by 4 % of the females and 5 % of the males by the end of their third year of life 

and by ca 54% of females and 50% of males by the end of their fourth year of life 

(Figure 4.12). All individuals of both sexes had attained maturity by the end of their 

seventh year of life. Similar trends were observed for the corresponding year classes of 

female and male P. dentex on the upper west coast region. 
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Figure 4.12. Percentage frequency of occurrence of female and male Pseudocaranx 
dentex with gonads at stages III-VIII in sequential age groups caught during the 
spawning season in inshore waters (< 60 m depth) on the lower and upper west coast. 
Grey bars refer to gonads at stages III-VIII. Sample sizes in each age category are 
given. 
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4.3.7  Mortality 

Estimates for the instantaneous coefficient of total mortality, Z, for P. dentex in inshore 

waters (< 60 m depth) of the lower west coast, derived by refitting Hoenig’s (1983) 

equation for fish, relative abundance (catch curve) analysis and simulation based on the 

number of fish ≥ 11 years, were 0.33, 0.57 and 0.49 year-1, respectively  (Table 4.4). 

However, the confidence intervals for the Hoenig equation were very broad (Table 4.4). 

The instantaneous coefficient of natural mortality, M, which resulted from refitting 

Pauly’s (1980) equation (see Chapter 2.6), provided a point estimate (0.59 year-1) that 

was greater than each of the above three point estimates for Z (Table 4.4).  

A posterior probability distribution for Z, derived using the Bayesian method of 

Hall et al. (2004), which combines the separate likelihood distributions for the various 

estimates of Z, yielded a point estimate for this coefficient of 0.54 year-1 (Table 4.4, 

Figure 4.13a). The resultant posterior probability distribution for the point estimate for 

M, determined from the combined likelihood distribution for Z and the requirement that 

M ≤ Z, yielded a point estimate for M of 0.38 year-1 (Table 4.4, Figure 4.14a,b). 

 The point estimates derived for Z for P. dentex in inshore waters of the upper 

west coast using Hoenig’s equation, relative abundance analysis and simulation using 

the number of fish ≥ 11 years, were similar to the above values obtained using the 

corresponding methods for fish in inshore waters on the lower west coast (Table 4.4, 

Figure 4.14a, c). Furthermore, as in inshore waters on the lower west coast, the point 

estimate of 0.75 year-1 derived for M using Pauly’s equation for fish in inshore waters 

on the upper west coast exceeded each of the above three estimates for Z. The estimate 

derived for M on the upper west coast, 0.54 year-1, using Bayesian analysis and a 

combination of different variables, was the same as that estimated using this approach 

for fish in inshore waters on the lower west coast (Table 4.4). Moreover, following the 

use of the Bayesian method, the value for M was slightly less than that for Z. 
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The estimates of the current level of fishing mortality, F, derived from Monte 

Carlo analysis of data for fish in inshore waters of the lower (0.15 year-1) and upper 

west coasts (0.10 year-1) are relatively low, i.e. < half the level of M (Table 4.4).  

 

Table 4.4 Estimates (year-1) of total, Z, natural, M, and fishing mortality, F, for 
Pseudocaranx dentex in inshore waters on the lower and upper west coasts of Western 
Australia. The values were calculated using life history models (Pauly, 1980; Hoenig, 
1983), relative abundance analysis and simulation based on the number of fish above 
the specified ages. Estimates for Z and M were also provided using a Bayesian method, 
which combines the data obtained using the other methods. Data are not provided for 
P. dentex in offshore waters on the lower west coast because it was not possible to 
obtain reliable estimates of the parameters in the von Bertalanffy growth equation, 
which are required for estimating M. 
 
 
Method of analysis 

 
Z, M or F 

 

 
Estimate 
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Upper 95% 

Lower west coast (inshore) 

Refitted Hoenig (1983) fish equation 

Relative abundance analysis 
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Refitted Pauly (1980) 
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Figure 4.13. Estimated likelihood functions for total mortality, Z, of Pseudocaranx 
dentex caught in inshore waters (< 60 m depth) in the (a) lower and (c) upper west coast 
regions derived using Hoenig’s (1983) regression equation for fish, relative abundance 
(catch curve) analysis and a simulation method based on the numbers of individuals 
above a certain age and sample size. Combined posterior probability distributions for 
the afore mentioned regions (b, d), respectively, derived from the separate likelihood 
functions shown in a and c. 
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Figure 4.14. Likelihood functions for natural mortality, M, for Pseudocaranx dentex 
caught in inshore waters (< 60 m depth) in the (a, b) lower and (c, d) upper west coast 
regions using Pauly’s (1980) equation and the likelihood function for M assuming that it 
is less than the combined estimate for Z and the combined posterior probability 
distributions for Z and M for the afore mentioned regions (b, d), respectively. Prob M|Z 
= Probability of M given Z. 
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4.3.8  Yield per recruit and spawning potential ratio  

Yield per recruit (YPR) analyses for P. dentex in inshore waters, which assumed that 

this species is fully recruited to the fishery at 5 and 6 years on the lower and upper west 

coasts, respectively, indicate that, as fishing mortality increases from 0 to 1.5 year-1, the 

YPR will continue to increase (Figure 4.15a, c). The same situation occurs if the age at 

recruitment to the exploited stock is reduced to 3 years or increased to 7 years on the 

lower west coast or reduced to 4 years or increased to 8 years on the upper west coast 

(Table 4.5; Figure 4.15a, c). However, when the age at recruitment to the fishery is 

reduced to 2 years, the YPR declines when the fishing mortality reaches ~ 0.7 year-1 on 

the lower west coast and 0.50 year-1 on the upper west coast (Figure 4.15a, c). At the 

estimated current level of F of 0.15 year-1 (0.00 – 0.40 year-1) for the lower west coast 

and 0.10 year-1 (0.00 – 0.35 year-1) for the upper west coast and with estimated ages at 

recruitment to the exploited stock of 5 and 6 years, respectively, the YPRs are 

ca 0.02 kg year-1 (0 – 0.20 kg year-1) and 0.02 kg year-1 (0 – 0.18 kg year-1), respectively 

(Figure 4.14a,c). The corresponding spawning stock biomass per recruit (SSB/R) for 

female and male P. dentex from the lower and upper west coast regions are 0.35 kg 

year-1 (0.16 – 0.99 kg year-1) and 0.46 kg year-1 (0.18 – 1.34 kg year-1), respectively 

(Table 4.5).  

The spawning potential ratio (SPR) for female and male P. dentex caught in 

inshore waters on the lower and upper west coast regions is predicted to decrease with 

increasing fishing mortality (Figure 4.15b,d). The rate at which the SPR of female and 

male P. dentex declines is greater if the age at recruitment to the fishery is reduced by 2 

years from that currently assumed to be the case for their respective regions, while the 

reverse occurs if the age at recruitment to the exploited stock is increased by 2 years 

(Figure 4.15b,d). The estimated SPRs for female and male P. dentex from the lower and 
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upper west coast regions, at the current estimated levels of F for these two regions, are 

0.81 (0.32 – 1.00) and 0.91 (0.54 – 1.00), respectively (Table 4.5; Figures 4.15b,d). 

 
 
 

 
Figure 4.15. Effect, for Pseudocaranx dentex caught in inshore waters (< 60 m depth) 
on the lower (LWC) and upper (UWC) west coasts, of different levels of fishing 
mortality and at different ages at recruitment on the yield per recruit (a, c) and spawning 
potential ratio (b, d). Blue and black (b, d) represent females and males, respectively, 
and the curves corresponding to ages 2, 3, 5 and 7 years (b), and 2, 4, 6 and 8 years (d) 
at full recruitment are represented by dashed/dotted, dotted, solid and dashed lines, 
respectively. The arrows indicate the current level of fishing mortality. 
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Table 4.5. Estimates of the current level of yield per recruit (YPR), F0.1, and the current 
levels of total spawning stock biomass per recruit (SSB/R) and spawning potential ratio 
(SPR) for females and males, and for females and males combined, for Pseudocaranx 
dentex on the lower and upper west coasts, calculated using 5 and 6 years, respectively, 
as the age at full recruitment to the exploited stock for the samples from each region. 

 

 
 
 

 

  

 

 

Analysis Estimate Lower 95% Upper 95% 

Lower west coast 

YPR (kg year-1) 0.02 0 0.20 

F0.1 (year-1) 0.69 -- -- 

SSB/R (kg year-1) 0.35 0.16 0.99 

SPR (females) 0.75 0.28 1.00 

SPR (males) 0.84 0.36 1.00 

SPR (combined) 0.81 0.32 1.00 

Upper west coast 

YPR (kg year-1) 0.02 0 0.18 

F0.1
 (year-1) 0.63 -- -- 

SSB/R (kg year-1) 0.46 0.18 1.34 

SPR (females) 0.89 0.51 1.00 

SPR (males) 0.92 0.57 1.00 

SPR (combined) 0.91 0.54 1.00 
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4.4  DISCUSSION 

4.4.1  Habitats 

Samples collected by seine netting, trawling and angling, demonstrated that, in waters 

on the lower west coast of Australia, the juveniles of P. dentex live mainly in areas 

where the water depth is < 20 m and there is some structural complexity brought about 

by the presence of either seagrass, detatched macrophytes or structures, such as reefs, 

rocks, pillars or jetties. A comparison of the catches obtained by the different methods 

also provided strong evidence that this species moves to deeper waters over reefs as it 

increases in size, and that the largest and oldest fish typically live in water depths 

> 60 m. The above pattern of size-related movements is essentially the same as recorded 

for Silver Trevally in Japanese waters (Masuda and Tsukamoto, 1999).  

The data obtained from the above samples demonstrate that, unlike the situation 

with P. dentex, the adults of P. wrighti live predominantly over sand rather than over 

reefs. Seine netting, trawling and angling in marine waters yielded only a few juveniles 

of P. wrighti < 12 months old. Since small juveniles were also not caught when a small 

mesh (12 mm) was added to the cod end of the trawl net, they do not apparently occupy 

the same habitat as their adults. However, small juveniles of P. wrighti, i.e. 12-40 mm, 

have recently been caught under the umbrellas of jellyfish in inshore waters.  

 

4.4.2  Ageing procedure and validation 

Whole otoliths of P. dentex have been regarded as unsuitable for ageing this species as 

their annual growth zones are often unclear or can easily be confused with false checks 

or zones (Kalish and Johnston, 1997; Walsh et al., 1999; Rowling and Raines, 2000). 

The ability to detect these annual growth zones in P. dentex can be enhanced by 

breaking and burning the otoliths (James, 1984) or by baking and producing thick 

sections of the otoliths (Walsh et al., 1999). However, most authors agree that, for this 
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species, the production of thin sections of otoliths is the most effective method for 

improving the clarity of annual growth zones (Kalish and Johnston, 1997; Walsh et al., 

1999; Rowling and Raines, 2000).  

In Western Australia, the number of growth zones observed after sectioning the 

otoliths of P. dentex often differed markedly from those detectable in those otoliths 

prior to sectioning and this was even the case in otoliths with few growth zones. By 

sectioning, the growth zones towards the periphery and in the innermost region of 

otoliths became more easily detectable. Furthermore, the false checks and zones, which 

are characteristic of many whole otoliths of P. dentex, and of some other species, such 

as Promethichthys prometheus (Lorenzo and Pajuelo, 1998) and Sebastes alutus 

(MacLellan, 1997), could be more easily recognized in sectioned otoliths. Walsh et al. 

(1999) used baked, thicker sections of otoliths for ageing studies as it resulted in a 

reduced preparation time and only a slight decline in the clarity of zones.  

 Despite a marked improvement in the clarity of the growth zones in the otoliths 

of P. dentex after they had been sectioned, these zones were seldom continuous 

throughout the otolith and were still sometimes difficult to detect using conventional 

light microscopy. However, the use of the Leica IM 1000 computer imaging package 

(Leica Microsystems Ltd., 2001) enabled the lighting and level of magnification to be 

modified and thus optimize the clarity of the growth zones in sections of these otoliths. 

 The mean monthly marginal increments in the otoliths of P. dentex, irrespective 

of their number of annuli, underwent a single marked decline and subsequent 

progressive rise, demonstrating that a single opaque zone is deposited annually in the 

otoliths of this species. Thus, as with Silver Trevally in New South Wales (Kalish and 

Johnston, 1997; Rowling and Raines, 2000) and New Zealand (James, 1984; Walsh et 

al., 1999), it is appropriate to use the number of annuli in sectioned otoliths of P. dentex 

to age this species in Western Australia. The seasonal pattern of formation of opaque 
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zones on the otoliths of P. dentex parallels that of most other species which have been 

studied in the temperate waters of Western Australia, such as the Australian herring 

Arripis georgianus (Fairclough et al., 2000) and the West Australian dhufish 

Glaucosoma hebraicum (Hesp et al., 2002). 

 

4.4.3  Size and age compositions  

Our data shows the size and age compositions of the females and males of 

Pseudocaranx dentex were relatively similar on both the lower and upper west coast 

regions of the study area in Western Australia. Furthermore, in both regions, the vast 

majority of the individuals of this species obtained from inshore waters (< 60 m depth) 

were less than 500 mm in length and less than 12 years old (Figure 3.3). However, the 

numbers of fish with lengths and ages greater than 400 mm and 8 years, respectively, 

were slightly greater in the upper west coast. This difference almost certainly reflects, in 

part, the fact that a large proportion of the fish from the upper west coast were obtained 

from fish markets and thus commercial fishers. These fishers tended to target larger 

species and to fish in slightly deeper waters, which would have increased their 

likelihood of catching larger P. dentex. In comparison, the samples from inshore waters 

on the lower west coast were obtained, very largely, from our own sampling and those 

of recreational fishers in waters that, on average, would have been slightly shallower 

than those from which fish were obtained on the upper west coast.  

 In contrast to the situation in inshore waters of both the lower and upper west 

coasts, a substantial number of the P. dentex caught in offshore waters (> 60 m depth) 

off the lower west coast were greater than 500 mm in length and more than 9 years old. 

Furthermore, the maximum length of 885 mm and maximum age of 18 years in offshore 

waters far exceeds the corresponding values of 690 mm and 13 years for inshore waters 

of the lower west coast. Genetic studies were unable to elucidate whether the inshore 
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and offshore assemblages of this species on the lower west coast were part of the same 

stock (Bearham, 2004), and thus whether the presence of larger and older fish in deeper 

waters reflected a size-related offshore movement. 

The maximum total lengths of 650 and 690 mm recorded for P. dentex in 

inshore waters on the lower and upper west coasts, respectively, were similar to the 

685 mm recorded by Rowling and Raines (2000) for populations in New South Wales, 

but greater than the ca 600 mm recorded by Kalish and Johnston (1997) for populations 

in that state. However, the maximum ages of 24 and 21 years recorded for P. dentex in 

those two NSW studies were far greater than the maximum of 13 years we recorded for 

fish from inshore waters on both the lower and upper west coast regions in Western 

Australia. Furthermore, they were even greater than the maximum age we recorded in 

offshore waters in Western Australia, i.e. 18 years, despite the fact that P. dentex grows 

to a far larger size in those latter waters.  

In New Zealand, P. dentex is recorded by Walsh et al. (1999) as attaining a 

maximum total length of ca 810 mm. The maximum age recorded for Silver Trevally by 

the same authors was 43 years, and a number of individuals in their study were greater 

than 30 years old. Williams and Lowe (1997) demonstrated that Pseudocaranx dentex 

can attain a length of 1580 mm TL in Hawaiian waters, which is far greater than the 

maximum length recorded for any waters in Australia or New Zealand. However, there 

are no precise data on the age composition of P. dentex in those Hawaiian waters.  

As was recognised by Rowling and Raines (2000), the trawling which provided 

their samples of P. dentex selected the fast-growing fish, which in turn accounts for the 

very high negative values for t0 in their von Bertalanffy growth equation. As this will 

have markedly influenced the values for k and L∞ in their growth equations, it is 

difficult to make valid quantitative comparisons between the growth of this species on 

the west and east coasts of Australia.  
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The values for t0 in the von Betalanffy equations for P. dentex from two 

locations in New Zealand were both close to zero (Walsh et al., 1999), as they also were 

in our study of this species in inshore waters on the west coast of Australia. 

Furthermore, although the values for L∞ (525 – 572 mm) in New Zealand waters were 

greater than those we recorded for inshore waters in Western Australia, the values for k 

(0.28 – 0.36) were comparable to those of the present study. However, as the points for 

the lengths at age for virtually all of the numerous fish > 15 years old lay above the von 

Bertalanffy growth curve for the New Zealand samples (Walsh et al., 1999), that growth 

curve does not provide a good description of the growth of P. dentex in New Zealand 

waters.   

The fact that, in offshore waters on the lower west coast of Australia, the t0 for 

males (-1.16 years) and more particularly females (-3.17 years) diverged conspicuously 

from zero is attributable to the absence of fish < 4 years of age and thus of fish that 

would influence the early part of the growth curve.  

 

4.4.4  Aspects of spawning 

As pointed out earlier, the adults of P. dentex were caught predominantly over reefs. 

However, our data also strongly suggest that the spawning of Pseudocaranx dentex is 

not restricted to any specific region along the coast or water depth. This view is based 

on the fact that females with large yolk granule oocytes and others with post-ovulatory 

follicles were collected from waters located at distances of 0.5 to 35 km from the shore 

and in depths ranging from 5-120 m. 

The fact that the mean monthly GSIs of female and male P. dentex in the lower 

west coast rose sharply between July and October and then declined precipitously 

through to January suggests that, in this region, the Silver Trevally spawns 

predominantly between August and December. This conclusion is substantiated by the 
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fact that individuals of both sexes with stage V gonads were caught only between late 

winter and early summer. Furthermore, as the GSIs and prevalence of fish with stage V 

gonads were the greatest by far in September to November, spawning presumably 

peaked during these spring months.  

 In comparison to the situation on the lower west coast, the mean monthly GSIs 

started to rise one month earlier, i.e. in July, and did not subsequently show such a 

strongly defined peak. Furthermore, fish with stage V gonads were also found in July, 

and thus one month earlier than on the lower west coast. This strongly indicates that, on 

the upper west coast, spawning commences one month earlier and that the spawning 

period is more protracted. This earlier commencement and longer duration of the 

spawning period in the lower latitude parallels the situation recorded for Sillago 

schomburgkii in Western Australia (Coulson et al. 2005). It also parallels that found 

with other species of teleosts that are distributed over a wide latitudinal range, e.g. the 

Atlantic Silverside Menidia menidia (Conover, 1992) and the Killifish Fundulus 

heterclitus (Kneib, 1986). Pseudocaranx dentex is reported as spawning in spring and 

summer elsewhere in Australia and this can extend into autumn in South Australia, i.e. 

at higher latitudes than in Western Australia and New South Wales (Shuntov, 1969; 

James, 1984; Kalish and Johnston, 1997; Rowling and Raines, 2000).  

 The shorter duration of the spawning period on the lower west than upper west 

coast is accompanied by lower mean monthly GSIs in the middle months of that 

spawning period. This parallels the situation recorded for the Atlantic Silverside 

Menidia menidia in North America, in which the maximum GSIs of the populations in 

the north are approximately twice those in more southern and warmer locations 

(Conover, 1992). It has been proposed that in, conspecific populations, the greater GSIs 

in the higher than lower latitudes reflects a greater investment of energy into 
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reproductive output at the time of peak spawning, which thus compensates for the 

possession of a shorter spawning period (Conover, 1992).  

It is also relevant that, during the main part of the spawning season in both 

regions, the GSIs of males exceeded those of females. From the results of studies on 

other species, this suggests that P. dentex is a broadcast spawner, in which it would be 

advantageous for the males to produce particularly large numbers of sperm to optimize 

the chances of fertilization occurring when the males and females do not form a close 

pairing at the time of sperm and egg release (Wootton, 1990; Taborsky, 1998). Such a 

situation is often found in species that form schools at spawning time, as probably 

occurs with P. dentex (D. Lear, commercial fisher, pers. comm.).  

 It is relevant that previtellogenic, cortical alveolar and yolk-granule oocytes 

stages were all found in the ovaries of mature (stage V) ovaries of P. dentex and that 

each of these oocyte stages were often present, together with migratory nuclear stage 

oocytes or post-ovulatory follicles (late stage V and stage VI), in the ovaries of some 

fish that were either in spawning condition or had just released eggs, but were not fully 

spent. This implies that this species has indeterminate fecundity, i.e. the annual 

fecundity is not fixed prior to the commencement of the spawning season, and that it is 

a multiple spawner, i.e. releases more than one batch of eggs during a spawning season 

(de Vlaming, 1983; Hunter et al., 1985). As no female fish contained ovaries with 

hydrated oocytes, it was not possible to determine the batch fecundity for P. dentex. 

 

4.4.5  Length at maturity 

The L50s at which female and male P. dentex were estimated as reaching sexual maturity 

in inshore waters on the lower west coast, i.e. 310 and 279 mm, respectively, were 

greater than the L50s of 203 and 209 mm SL recorded for females and males, 

respectively (Kalish and Johnston, 1997) and of 228 mm TL for both sexes combined in 
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New South Wales (Rowling and Raines, 2000). However, the earlier attainment of 

maturity by P. dentex in eastern Australia may reflect a response to the severe growth 

over-fishing to which, on the basis of a recent marked decline in its mean lengths in 

commercial catches, it has been concluded that this species is being subjected (Tilzey, 

2004). The length at first maturity has been found to have declined in heavily-exploited 

fish populations of several species (Beacham, 1983a,b; Bowering et al., 1996) and is 

assumed to reflect an increase in selection pressures for earlier maturation (Beacham, 

1983a,b).  

 

4.4.6  Mortality and management implications 

The reader is referred to Chapter 3.4.8 for a detailed discussion of the problems that 

frequently arise in estimating mortality through using traditional empirical approaches 

based on life history traits. Particularly relevant in this regard is the fact that the 

estimate for natural mortality, M, often exceeds that of total mortality, Z, which is, of 

course, an erroneous result. Furthermore, even with the Bayesian approach of Hall et al. 

(2004), which ensures that M is less than Z, an excessively high value for M derived 

from Pauly’s (1980) equation, which is used in this Bayesian approach, will result in a 

value for M that is unrealistically close to Z. This, in turn, will tend to underestimate the 

extent of fishing mortality, F.  

The above problems, which were found with Mulloway, are likewise found with 

Silver Trevally. Thus, the values of 0.59 and 0.75 year-1, derived for M from the refitted 

Pauly equation for the assemblages of P. dentex on the lower and upper west coasts, 

respectively, were both greater than the values for Z derived using the refitted Hoenig 

equation, relative abundance analysis and simulation (Table 4.4). Moreover, when using 

the Bayesian approach of Hall et al. (2004), the value for M was not markedly less than 

that for Z. Although fishing mortality on P. dentex was consequently estimated to be 
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low, which may be the case, it has to be recognised that this latter value for M would 

have been influenced by incorporating in its analysis the particularly high value for M 

derived from Pauly’s (1980) equation.  

The considerable uncertainty regarding the precision of the estimates for F for 

P. dentex means that managers need to adopt a cautionary approach when developing 

management plans for this species. This is justified on the grounds that, at least in 

south-eastern Australia, there is evidence that the stocks of this carangid have suffered 

from overfishing by commercial fishers (Tilzey, 2004). Although P. dentex is not fished 

heavily by commercial fishers in Western Australia, the Pseudocaranx complex, 

comprising mainly P. dentex, is the third most important recreational fish species in 

south-western Australia in terms of numbers of individuals caught (Sumner and 

Williamson, 1999) and the amount of recreational fishing is constantly increasing. Thus, 

as the minimum legal length (MLL) is about 60 mm less than the length of females at 

maturity, it would be highly appropriate for managers to consider increasing the MLL 

for Silver Trevally. In this context, it is relevant that P. dentex is a relatively hardy 

species and that, if handled carefully, the smaller individuals apparently survive both 

capture and release (D. French, pers. obs). The recent reductions of the maximum daily 

bag limit for P. dentex from 20 to 8 per individual (or 16 per boat) will help counteract 

the increasing pressure on this species from the rapidly expanding recreational fishing 

sector.  

 

4.4.7  Yield per recruit and spawning potential ratio 

Our analyses indicate that, when assuming the age at full vulnerability to the fishery for 

P. dentex is 5 – 6 years, the yield per recruit (YPR) for P. dentex in inshore waters on 

both the lower and upper west coasts will continue to increase as fishing mortality, F, 

increases from zero to a relatively high level, i.e. 1.5 year-1. In other words, the YPR 
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analyses indicate that growth overfishing of P. dentex in these two regions is unlikely to 

occur, even at a relatively high level of F. The apparent likelihood that growth 

overfishing will not occur reflects a combination of the rapid growth of P. dentex in the 

first few years of life and the assumption of this model of knife-edge recruitment to the 

exploited stock at 5 – 6 years of age. Consequently, in terms of weight, P. dentex is 

predicted to attain well over half its maximum weight before they become fully 

recruited into the fishery. Because the growth of P. dentex early in life is so rapid, this 

analysis predicts that the YPR would only decline if the age at full recruitment for this 

species is as low as 2 years or less. However, as the commercial catches and catch per 

unit effort of P. dentex in eastern Australia have declined (Tilzey, 2004), this species 

can presumably suffer from the effects of heavy fishing, i.e. may experience recruitment 

overfishing. Thus, caution must be exercised in drawing conclusions from the YPR 

analysis for P. dentex in this study. 

In contrast to the YPR analysis, the spawning biomass per recruit (SSB/R) 

analysis determines whether fishing mortality is likely to lead to recruitment 

overfishing. Thus, it has been considered that if the SSB/R of a species falls below 30% 

of its original level, i.e. its spawning potential ratio (SPR) is < 0.3, the reproductive 

capacity (egg production) may be insufficient to sustain the population (Mace and 

Sissenwine, 1993; Goodyear, 1993). The SPR demonstrates that, as the assumed age at 

full recruitment to the fishery declines, the level of SPR declines more dramatically 

with respect to increasing fishing mortality. Thus, for example, if the ages at 

recruitment to the exploited stock are assumed to be 5 and 6 years, respectively, for the 

lower and upper west coasts, the SPR is not predicted to decline at even relatively high 

levels of F (1.5 year-1). However, if the ages at recruitment in the two regions are 

assumed to be 2 and 3 years, respectively, the SPR is predicted to decline below the 

reference point of 0.3 if F is > 0.50 year-1 in the region. Yet, it must be recognised that, 
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because of the large uncertainty in the estimates of F for P. dentex (see Chapter 4.4.6), it 

was not possible to obtain precise estimates for the current levels of YPR and SSB/R. 

Consequently, it also was not possible to compare with confidence the levels of YPR 

and SSB/R against the appropriate reference points for these variables. Thus, in view of 

the progressive increase in recreational fishing pressure, it would be prudent for 

managers to consider increasing the MLL so that it at least approximates the length at 

first maturity, as was proposed in the previous section.  
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6.0  BENEFITS 

This study has the following major benefits. 

1. Provision for the first time of sound quantitative data on crucial aspects of the 

biology of the Mulloway Argyrosomus japonicus and the Silver Trevally 

Pseudocaranx dentex in Western Australian waters. 

2. This will enable fisheries managers, in consultation with stakeholders, to 

develop effective and appropriate strategies for managing and thus conserving 

the stocks of these two important recreational and commercial fish species in 

Western Australia. 

3. The provision of baseline data on the current biological characteristics and levels 

of total mortality will enable fisheries managers to detect any changes that occur 

in these crucial fisheries parameters in the future. 

4. The provision of sustainable stocks through robust management will ensure that 

recreational and commercial fishers will be able to continue to enjoy fishing for 

Mulloway and Silver Trevally.  

 

 

7.0  FURTHER DEVELOPMENT 

The full realization of the benefits that flow from the biological data produced on 

Mulloway and Silver Trevally during this study will depend on the acceptance of the 

results and their implications by fisheries managers, stakeholders and ultimately the 

Minister for Fisheries. Thus, once accepted by the FRDC, the final report will be 

provided to fisheries managers and scientists in the Department of Fisheries Western 

Australia so that they can fully assess those results and their implications. Such 

assessment will need to take into account a number of other issues, such as the need for 

ecologically sustainable development (ESD), integrated fisheries management (IFM) 

and recognition of the multi-species nature of the fisheries. 

 The report and a number of copies of the non-technical summary will be 

provided to authorities within the Western Australian Fishing Industry Council, 

Recfishwest and the Recreational Fishing Advisory Committee. Once those authorities 

have had a chance to read the report, they, and the recreational and commercial fishers 

who have shown an interest in the project will be invited to Murdoch University to 

clarify any points they wish to raise and to discuss the implications of the results. 
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The results of the various studies on Mulloway and Silver Trevally will be 

submitted for publication in high quality journals so that they will be subjected to 

international and peer group review. The feedback from the referees will facilitate the 

refinement of the approaches we are using to studying crucial aspects of the biology of 

important recreational and commercial fish species. 

This study has highlighted the need to develop more reliable methods for 

determining natural mortality and thus be able to derive better estimates of fishing 

mortality and stock status from life history characteristics. 

 

 

8.0  PLANNED OUTCOMES 

The following planned outcomes outlined in B6 of the original project application have 

been achieved. 

1. Produced data on the size and age compositions, growth rates, reproductive 

biology and mortality of the Mulloway and Silver Trevally for use by fisheries 

managers for conserving these species and underpinning future management 

decisions. 

2. The ability for recreational and commercial fishers to understand the biological 

basis for the plans developed by managers to conserve the above species.  

3. Clearly delineate between the habitats occupied by the Silver Trevally (sensu 

stricto) and the far smaller and less recreationally important Sand Trevally. 

4. Human resource development in the form of students who have relieved training 

and experience in certain important aspects of fisheries science. 

 

 

9.0  GENERAL CONCLUSIONS 

We have met all of the numerous objectives listed in the original application for FRDC 

2002/004, except for determining the batch fecundity for Mulloway and Silver Trevally. 

The inability to derive estimates for this variable were due to a paucity of freshly caught 

mature females with ovaries containing hydrated oocytes. However, it was possible to 

calculate indices of spawning biomass for both females and males from catch rates, age 

composition data and the maturity ogives developed for these species. Such an index 
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may be used as a proxy of egg production when evaluating the effectiveness of 

alternative management strategies. 

 During this study, we investigated aspects of the biology of Argyrosomus 

japonicus and Pseudocaranx dentex in Western Australia. The major findings are as 

follows; 

• The juveniles of A. japonicus typically occur in nearshore coastal waters (< 20 

m deep), whereas its adults are found both in these waters and around reefs in 

offshore waters in depths up to at least 110 m. 

• The juveniles of P. dentex are typically found in areas where there are structures, 

e.g. reefs, pillars etc., or patches of seagrass and/or detached macrophytes, 

whereas its adults typically occupy waters associated with reefs and generally in 

deeper water. The largest P. dentex were found in deep offshore waters. 

• In contrast to P. dentex, P. wrighti is found mainly over sandy substrates. 

• The females and males of A. japonicus attain maturity at a total length of 

ca 930 mm and 880 mm, respectively, which are typically reached at 5-6 years 

of age. 

• The females of P. dentex become mature at ca 310 mm and 4 years of age, 

compared with  ca 280 mm and 3 years of age with males. 

• Argyrosomus japonicus spawns at night during late spring and summer and 

predominantly around nearshore coastal reefs. Some individuals of this species 

also spawn around structures in the lower Swan River Estuary. 

• Pseudocaranx dentex spawns from late spring to early summer in coastal waters 

of the upper west coast and during spring in waters of the lower west coast. 

• Argyrosomus japonicus and P. dentex are both serial spawners with 

indeterminate fecundity. 

• The maximum total lengths and ages recorded for A. japonicus were 1437 mm 

and 31 years for their females and 1304 mm and 29 years for their males. At the 

completion of their second, fourth, sixth, tenth and twentieth years of life, 

females have attained, on average, lengths of ca 530, 805, 970, 1140 and 

1230 mm, respectively, compared with ca 530, 790, 950, 1100 and 1180 mm, 

respectively, by their males. 

• The maximum recorded total lengths of females and males of P. dentex in 

inshore waters < 60 m depth were ca 690 and 660 mm, respectively, and the 

maximum age of both sexes was 13 years.  However, the maximum total length 
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and age in offshore waters  > 60 m depth were far greater, i.e. 885 mm and 18 

years of age. 

• Females and males of P. dentex grow at similar rates and have attained lengths 

of ca 135, 270, 350 and 440 mm by the completion of their first, third, fifth and 

tenth years of life, respectively. In contrast, females in deeper water have 

already attained a length of 595 mm by the end of their tenth year of life. It is 

not clear at present whether the inshore and offshore assemblages are part of the 

same genetic stock. 

• The current minimum legal length (MLL) for A. japonicus in Western Australia 

is 500 mm, which is attained during their second year of life and at least three 

years before typically reaching maturity. The substantial recruitment of this 

species into the fishery at an early stage in life will result in many individuals 

being caught before they have attained maturity. 

•  Argyrosomus japonicus is also very vulnerable because, even though 

undergoing substantial migrations, it forms large schools in the same and known 

locations during each spawning period and can thus be easily targeted by 

recreational and commercial fishers at this time. For example, recreational 

fishers target the spawning aggregations of this species in a region of the Swan 

River Estuary where there are numerous hard structures, e.g. boat wrecks, which 

simulate the reef habitat in marine waters where this species typically spawns. 

• The L50 at first maturity of female P. dentex is attained at a length of 60 mm 

greater than the current MLL of 250 mm and thus the females are exposed to 

one year of fishing mortality before they are able to spawn. 

• In the case of both Mulloway and Silver Trevally, the estimates derived for 

natural mortality using the frequently-applied Pauly equation exceeded the 

estimates of total mortality calculated using life history characteristics and 

relative abundance (catch curve) analysis. This emphasises the crucial need to 

develop a new equation or approach for deriving a better estimate for natural 

mortality and thus to derive a reliable estimate of fishing mortality. 

• The rapid decline of spawning potential ratio for Mulloway with increasing 

fishing mortality to levels that fall below a reference point of 30% implies that 

more robust management strategies to constrain further increases in fishing 

mortality for this species. 
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10.0  APPENDICES 

APPENDIX 1 

INTELLECTUAL PROPERTY 

The value of the intellectual property will be 50.04% based on PART C of the FRDC 

project proposal. 

 

STAFF OF THE RESEARCH CENTRE 

Prof. Ian Potter 

Prof. Norm Hall 

Dr Alex Hesp 

 

RESEARCH STUDENTS 

Mr Bryn Farmer 

Mr Daniel French 

Mr Tim Carter 
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