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Executive Summary

Management of the SESSF is still heavily driven by CTS trawl CPUE data, despite the acknowledged inter-

pretational problems and consequent risks (of failing to detect either overexploitation or recovery). CPUE

is currently standardized species-by-species, but this raises questions at a species level about appropriate

data subsetting, and whether long-term changes in fishing incentives have distorted the CPUE trend. The

answers assumed do have an impact on TACs, and there is no purely statistical criterion that can be used

at a species-by-species level to resolve them.

This project explores whether it is possible to answer these questions more systematically by taking a

multispecies viewpoint on each shot, to somehow take account of “targeting”, i.e. fisher-controlled specifics

of each trawl shot that affect what it is likely to catch, but which are not recorded in logbook data. While

there are several published approaches to “multispecies CPUE”, none are statistically satisfactory in a setting

as complex as the CTS, so we needed a new approach. It is clear from discussions with industry that some

degree of targeting is possible in the CTS, and also that the economic drivers to catch particular species have

changed significantly since the introduction of ITQs in the early 1990s. We developed a model of economic

drivers to generate prior probabilities that each shot would be targeted in the various different ways, and

we linked this model to a CPUE standardization carried out simultaneously for all the main quota species.

Overall, the model estimates what the targeting types are (in terms of how they affect catch rates of different

species), the shifts in targeting over the years, and various parameters related to the economic drivers, as well

as the usual abundance index series from a “standard standardization” of CPUE. The model is complicated,

but at least it should be statistically coherent and less susceptible to the pitfalls which plague simpler ad

hoc approaches to multispecies CPUE, in particular because the choice-of-type for each shot has an explicit

underlying model rather than relying merely on a criterion of statistical tidiness. How good that underlying

model actually is, is another question in itself.

In practice, the new model does not suggest markedly different trends in CPUE compared with a stan-

dard species-by-species standardization, even though the estimated effects of the various types on catch are

substantial, and even though there are apparent trends in targeting at least in some seasons and depths.

Either the changes in targeting have had little impact on overall CPUE across all shots in the CTS, or there

are strong trends but the model cannot detect them. While our model is not perfect— it is exploratory, and

because of time and computational constraints we could not incorporate every single bell-and-whistle— we

are doubtful that a more complicated model (if feasible at all) would discover a stronger signal. We are also

skeptical that simpler approaches (e.g. without economic drivers) to multispecies CPUE in the CTS can

avoid the pitfalls outlined in the Introduction; any such proposal should be considered beforehand in that

light, in mathematical terms and/or through simple simulation testing (for which we have provided some

software).

Given that (i) our inferred abundance indices are not much different from a standardization (at least

when zero-catch shots are included), and (ii) that our model is complex and consequently fragile to run
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and would require substantial further work to bring to “production quality”, we do not recommend that our

model should replace species-by-species CPUE standardization. That is not at all to say that the latter is

fine— rather that the issues seem irresolvable, and that from a management perspective there is little point

in putting much further work into improving the handling of CTS CPUE. In particular, and regardless of

whether one takes a single-species or multi-species approach, “effort creep”(improvements in fishing efficiency

that are not captured in logbook or other data, and thus cannot be accounted for in standardization) remains

a major concern in CTS CPUE, especially given CPUE’s strong influence on the SESSF’s top-tier Harvest

Control Rules, which in generic simulation tests have been shown vulnerable to effort creep. The need

for more reliable fishery-independent abundance indices in the SESSF, whether from surveys or some new

approach, is as strong as ever.
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Introduction

1.1 Characteristics of the Commonwealth Trawl Sector (CTS)

The CTS is the Commonwealth-managed (i.e. offshore) demersal trawl component of what is now called

the “Southern and Eastern Scalefish and Shark Fishery” (SESSF)1. The CTS is the largest component of

the SESSF, currently catching around 10,000t annually (formerly much higher) with GVP of $51M in 2011

(Woodhams et al., 2012). It stretches south from Sydney, around Tasmania, to Cape Jervis near Adelaide

in South Australia, in a narrow band about 8-15km wide that starts 3nmi offshore (on the continental shelf,

shallower than about 200m) and extends down the continental slope to about 700m. Some form of trawl

fishery has existed in parts of this region for over 100 years, and there have been numerous jurisdictional

and operational changes. For further details, see the annual status reports (e.g. Larcombe and Begg,

2008; Woodhams et al., 2012) from which much of this material is sourced, and Klaer, 2006 for a historical

perspective.

The CTS catches over 100 species, but about 80% of the catch comprised of 20-25 quota-managed“stocks”

(species, populations, and/or species-groups); in 2014, 66% of the quota-related revenue came from just three

species, though historically the spread has been wider. Some of the species are caught to a lesser extent in

other components of the SESFF. Overfishing has historically impacted many of the quota species, leading

to the progressive introduction of total allowable catches (TACs) and individual transferable quotas (ITQs)

from the late 1980s, and buyouts (“structural adjustments”) in 2006. Management is now by ITQ with limited

entry, plus some restrictions on gears, times, and areas. By the mid-2000s, TACs had become sufficiently

constraining to impact fishing behaviour, and the second buyout achieved substantial reductions in active

fleet size and in real effort. Also, TACs on some species have impacts on catches of species with similar

habitat preferences (companion species, see Klaer and Smith, 2012). Nevertheless, in defiance of economic

theory there is still substantial “latent quota” for some species (i.e. quota that is held, but not leased or

used). TACs are set based on single-species stock assessments which are mostly driven by standardized trawl

CPUE for that species, assumed directly proportional to abundance.

Most trawl shots in the CTS catch several species. Species-level CPUE is derived from shot-level logbook

data which include a number of variables relevant to CPUE standardization (e.g. duration of trawl, time of

day, average depth, start and end location), but not all (e.g. tweaks to the way the gear is set, proximity

to seabed features, entire track of the shot). CPUE standardization is currently done separately for each

species using generalised linear models (GLMs), with some filtering to remove shots deemed “irrelevant” for

that species— e.g. the vexed question of whether to remove zeros Haddon, 2012. For most of the CTS quota

species, the standardized CPUE index is one of the primary driver of the stock assessment, from which Total

Allowable Catch (TAC) is set by a Harvest Control Rule (HCR) based on estimated overfished/overfishing

1The official nomenclature has changed over the years
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status; different HCRs (“tiers 1-4”) are in use for different species, depending on the perceived reliability of

“the assessment” (in a broad sense). The details are complicated (see e.g. AFMA, 2014) and irrelevant to

this report; the point to note is that CPUE remains one of the main determinants of TAC, despite numerous

acknowledged shortcomings. Section 1.3 discusses some pitfalls in general (non-CTS) settings of CPUE

dependence, both single- and multi-species.

Experienced fishers in the CTS have considerable, though not limitless, scope to “target” their trawl

shots to increase the probability of catching particular species. Part of this targeting is captured in logbook

data (e.g. average depth, approximate location) and can be “standardized out”, but part cannot (e.g. fine-

scale positioning of trawls). In addition, the incentives to catch, or avoid catching, particular species have

changed substantially as TACs have been reduced. This potentially creates an extra problem for CPUE:

once a species has been overfished to the point where a really low TAC is set to allow recovery, targeting will

deliberately avoid that species in future (since it cannot be profitably caught) so that the apparent CPUE

will never recover. This has sometimes been proffered as an explanation for the apparent non-recovery of

several once-overfished SESSF species where quota restrictions were expected to lead to recovery, including

blue warehou and school sharks.

1.1.1 Questionnaire data

To get some insight into (i) the operational issues of targeting, and (ii) the changing incentives to fish in

different ways, we prepared a questionnaire for CTS fishers. The responses we received come from only a

limited part of the present and past CTS (fishers involved in the RAGs and their immediate colleagues), so

cannot be considered comprehensive. Nevertheless, the replies— and subsequent discussion with fishers and

scientists— were extremely informative and led us to develop a model structure that was quite different from

our preliminary expectations, with a much stronger economic focus.

The questions are shown in Appendix A. For confidentiality reasons, this report does not include the actual

responses. Below is our summary of the salient points from the point-of-view of handling unrecorded targeting

in a CPUE standardization; this omits a lot of detail in the responses that is important operationally, but

not in our view for modelling— e.g. fine-scale positioning of trawls. We have also included some points that

are general background to the CTS. Many of these points have exceptions, which we have not listed in detail.

• Boats typically operate in 3-5 day trips, with several shots a day.

– Logbooks do not provide enough information to reliably separate one trip from the next.

– Catches are aggregated within a trip, and sold on return to port mostly through one of two main

sources, The Sydney Fish Market or one of theMelbourne markets.

– Market price information is available to fishers during a trip, and thus plays a role in deciding

where/how to fish. However, prices can fluctuate suddenly and unpredictably, due e.g. to imports,

between making a shot and landing the catch. There are strong (and more predictable) seasonal

variations in the price of particular species.

• At the time of writing, vessel-level catches are reconciled by AFMA against vessel-level quota currently

4 times a year. It is not necessary to hold quota for a species at the time it is landed; quota can be

leased retrospectively, up until the next reconciliation.

– If quota is unused by the end of the 12 month TAC year (late April), there is limited rollover
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– The cost of leasing quota on the “open market” (often from holding companies) can nowadays

sometimes approach the market price for a species; in the early days of quota management, before

TAC became seriously restrictive, 10% was usual.

– Open-market quota becomes more difficult to lease (thus, more expensive) towards the end of the

annual TAC period (late April).

– Informal agreements are widespread, to lease future quota if necessary at low cost between vessels

and companies.

– Discarding can occur, when a vessel does not expect to be able to retrospectively lease enough

quota affordably.

– Despite TACs sufficient to restrict effort and an ITQ system, there is often still substantial un-

caught TAC for many species, even the handful of “iconic” ones that dominate earnings and drive

fishing decisions (noting that the “iconic” list has changed over time).

– There is now a disincentive to fish a species when it is at its most seasonally available, because

the market will be swamped then and prices low; the best annual return from a given quota is

theoretically obtained by catching when the species is least easily caught. This is a shift away

from the cultural incentive to visibly bring in as much fish as possible.

– “Mixed-bag” shots (and especially trips) have become economically much more desirable, though

they are operationally somewhat inefficient per kilo precisely because they tend to avoid the

easiest-to-catch species at that time.

• Operationally, the likely mix of species caught can be controlled in several ways:

– via the depth profile of the shot (mixed-bag shots in particular travelling more up and down slope,

rather than along contours)

– by staying closer to or further from seabed features, on a fine scale (i.e. distances of a few hundred

metres) so as to match species’ habitat preferences;

– by (limited) gear adjustments, e.g. footline tightness.

– by changing direction, perhaps in response to echosounder observations (e.g. returning to a depth

where fish appeared dense)

• Not all relevant data is recorded in logbooks. For example, the logbook records only average depth

rather than full depth profile, has limited information on gear settings, and has no track information

between start and end locations.

• Some shots also have be spent learning about current distribution, because of within- and between-

season movements

– Big reductions in fleet size have reduced the amount of within-fleet information-sharing.

Overall, it is very apparent that economic drivers, specifically quota tightening and enforcement, have sub-

stantially changed behaviour in the fishery: an avoidance of fish at times/places when they are plentiful.

Quite likely, this has had an some impact on CPUE, or more accurately on how CPUE relates to abundance—

but given that CPUE is effectively averaged across all shots in a season, even the direction of the impact is

hard to guess.
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1.2 Terminology

There is no universal agreement on what the term “targeting” means. When CTS fishers make a trawl

shot, they make many decisions which affect the likely catch and species-mix: where along the coast, depth,

time of day, gear settings, track direction (along or across contours), etc. From the point-of-view of the

fisher, “targeting” may encompass all of these decisions, which could in principle be captured numerically as

covariates and included in standardization.

From the point-of-view of CPUE analysis, the important point is not so much what label to attach to a

specific “type” of targeting, but crucial distinction is this:

(i) recorded factors, whether inside fishers’ control (such as depth of shot) or outside it which are obtain-

able from logbook/vessel/general data and therefore can included in standardizations; and

(ii) unrecorded factors under the control of fishers which do affect the likely catch, but which cannot be

included in a conventional CPUE standardization. (See next chapter for what this might mean in the CTS.)

There is also a third category— unrecorded factors known to a fisher but not under their control, such

as wind strength and direction. While such factors are very important in deciding how to make the next

shot, omitting them is no problem for CPUE analysis as long as they have no strong long-term trend; they

simply contribute to the general “noise” in CPUE data, which is allowed for and would still be substantial

even if every single conceivable variable was measured.

In this report, unless specifically stated otherwise we use “targeting” to refer only to the second class

of unrecorded-but-controlled covariates. This is not what everyone would mean by “targeting”, which can

sometimes be used to describe other phenomena (such as what species the fisher hoped to catch), or to

include controlled covariates which are recorded (at least partly, like average depth of a shot). But despite

the potential for confusion, it is essential to find some short term for unrecorded-but-controlled-covariates,

and we have opted for brevity.

We have also assumed that targeting, even though it combines several covariates some of which can be

varied continuously rather than stepwise, can be summarized into a small number of discrete categories. This

is essential both to make the modelling feasible, and to give some chance of interpretability to the results—

though just because an approximation is unavoidable, it does not follow that it is adequate.

Our model for “targeting” embodies it as a multiplier on average catch rates per species, over and above

the effect of recorded covariates that already included in standardization. Since in practice a fishers’ decision

is not split into “recorded and unrecorded”, some care is needed when trying to interpret the magnitude of

our “targeting” estimates— they pertain only to aspects not captured elsewhere in CPUE standardization.

1.3 Review: CPUE and MS CPUE

There are well-known problems with relying on commercial CPUE as an index of relative abundance, even in

single-species fisheries. The summary is that CPUE (even after statistical standardization to account for fac-

tors other than abundance that are known to affect catch rates) can change systematically but undetectably

over time for reasons unconnected with abundance. This can sometimes mean, for example, that there is no

measured drop in CPUE despite a genuine drop in abundance (“hyperstability”; Hilborn and Walters, 1991),

until it’s too late and the stock, and the fishery, collapse. Importantly— and largely independent of any

multispecies/targeting aspects— insufficient information is available in the CTS (and in most fisheries that
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we are aware of) to retrospectively assess “effort creep”2, i.e. the increases in fishing efficiency arising from

improvements in fishing equipment such as advent of GPS, improved depth sounders, etc. This is liable to

make trends inferred from CPUE over-optimistic, the more so the longer the series. For overviews of CPUE

and its pitfalls of CPUE, see Hilborn and Walters, 1991 and Maunder et al., 2006. For an exampleof a

fishery that has gone to considerable lengths to measure effort-creep, one should look at the Northern Prawn

Fishery (Cartwright, 2005).

Before use as an abundance index, CPUE is usually standardized for the reason given above, by fitting a

statistical model such as a generalised linear mixed model (GLMM) or a generalised additive model (GAM)

using recorded covariates (e.g. Maunder and Punt, 2004). This is not necessarily simple, because of the

large number of recorded covariates typically available and the consequent range of possible models that

could be fitted. In principle, though, if the available covariates do capture all the relevant information about

each fishing operation, including drivers of any effort-creep, then CPUE standardization is a well-understood

statistical procedure that is not intrinsically problematic. This report focusses on unrecorded covariates, so

for simplicity we therefore assume that standardization with respect to recorded covariates is“done right”; our

own model is in effect a standardization procedure that allows for unrecorded as well as recorded covariates.

Allowing for targeting, and dealing with MS CPUE generally, is an especially complicated business. There

are a number of published approaches for specific and/or generic applications (He et al., 1997; Pelletier and

Ferraris, 2000; Punzón et al., 2010; Iriondo et al., 2010; Punzón et al., 2011; Winker et al., 2013; Winker

et al., 2014), but no clearly“right answer”and no clear review3. And despite the work we put into this report,

we ourselves have no great confidence that we have arrived at the “right answer”, either. However, we have

at least become aware of many pitfalls. To provide some clarity in a complicated subject with a confusing

literature where ad hoc proposals are common, we have organized this review by listing those pitfalls, with

conceptual examples and literature references as appropriate. We have also written an accompanying R

package that can be used to explore some of the points in simple illustrative examples (but not for analysing

real data): see Chapter 5.1.2.

The examples here are not meant to be realistic— they are deliberately extreme, each to highlight a

specific point which may be just as relevant in more complex realistic settings, but will be harder to see.

Some of the issues around MS CPUE can also be seen in single-species examples, though they may have

extra bite in MS CPUE settings; for clarity, we have used single-species examples where possible.

1.3.1 “Automatic” analyses are risky

Consider analysing a hypothetical single-species fishery where each “shot” either catches 1 or 0 fish from that

species. Over time, there is an increase in the proportion of zeros: what does this mean for abundance?

In the absence of other insight, this is statistically impossible to resolve, because the data can be explained

equally well by two very different models:

1. Abundance has declined, so each shot is less likely to catch a fish;

2. Abundance has stayed the same, but shots are being done differently over time, in a way that reduces

the probability of catching a fish (e.g. because fuel costs have increased).

Actually, these models are just part of a continuum; it’s possible that efficiency has actually increased while

abundance has decreased faster than the observed trend.

2also known as “technological creep”
3At the time of writing this report, we are aware of plans to produce such a review, but it is some way off completion.
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The real issue here is nothing to do with zeros per se— it’s about the importance of understanding enough

about the “motive and opportunity” of fishing to pick the right model, and the fundamental inability of any

statistical method on its own to choose between phenomena that are statistically confounded4.

Clearly, this issue is important when modelling targeting, because the range of plausible models with

different implications may be particularly large. However, it applies in simpler settings too, e.g. to “shot

selection” as currently used in single-species CPUE standardizations for the CTS— for example, should shots

that catch nearly-zero of a species be included in the standardization dataset for that species?

Points to ponder: would this problem suddenly go away just because more species are included in the

analysis? If so, why? and would it matter whether the species truly have similar, or different, abundance

trends? If it is impossible to distinguish between two models statistically, and there is not enough

“insight” to make the call, can Management Strategy Evaluation (MSE) be used instead?

1.3.2 Two-step analyses

Some approaches to targeting split the problem into two steps. First, they use (only) the catch-composition

of each shot to classify the targeting, either by assigning to one of a fixed number of discrete “types” (e.g.

He et al., 1997; Pelletier and Ferraris, 2000; Stephens and MacCall, 2004; Iriondo et al., 2010; Punzón et al.,

2010; Carvalho et al., 2010; Castro et al., 2010; Punzón et al., 2011; Deporte et al., 2012), or by converting

the composition into a low-dimensional continuous variable which is assumed to serve as a proxy for the

controlled-but-unrecorded covariates (Winker et al., 2013). In either case, the result is treated as an “exact

covariate” in the second step, a “standard” species-by-species CPUE standardization5.

If the first step (classification) always worked perfectly, the two-step approach would be statistically fine.

That may indeed be the case in some fisheries where there are limited options for targeting and good a

priori understanding of “motive and opportunity” (see section 1.4). But the two-step approach seems often

to be applied automatically (i.e. relying on statistical devices such as clustering algorithms to do the first

step) and can go wrong in several ways that may invalidate the statistical assumptions of the second step

(standardization).

1.3.2.1 Changing composition due to changing relative abundance

Different species will have different abundance trends over time, but a classifying algorithm will not be able

to account for this. In some cases, the change can be extreme: for example, in the eastern CTS region,

dogsharks and skates made up about 50% of biomass in deepwater trawls in the mid-1970s but under 5% in

the mid-1990s6. There is no way to “tell” a standard classification algorithm about this, and the upshot will

be muddling of abundance trends with targeting changes arising from misclassification.

Points to ponder: how will changing composition affect the classifier algorithm? If the classifier somehow

allows “cluster mix” to change over time, how does it avoid confounding changes-in-abundance with

changes-in-cluster-composition? Does a two-stage model really need to be embedded inside a full stock

assessment (an “Integrated Assessment”) to constrain the real changes in abundance?

4Both authors of this report are statisticians, so we are hardly “anti-statistics”. But our experience is that, while statistical

analysis can be enormously powerful if done right, (i) it can easily be done wrong so that the conclusions aren’t trustworthy,

and (ii) “a statistical model” is not a magical cure for ignorance about the underlying processes.
5That is, the shot-by-shot covariates will be the same for all species, but of course there will be differences in the the catches

and the estimated standardization coefficients, including the coefficient(s) associated with the “targeting classifier”.
6From research shots made with the same vessel and comparable gear: Graham et al., 2001, Table 1.
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1.3.2.2 Circular arguments

The classification step is applied to shot-by-shot catch data from all species jointly, and then the resulting

“targeting classifier” is used as a covariate in standardizing each species in turn. This means that the “Left

Hand Side” (response) variable in the standardization— the catch of that species— also appears in the“Right

Hand Side” explanatory covariates. This violates all standard statistical assumptions, and we are not aware

of any standard statistical approach that allows for such a circular argument. As a simple example of the

possible consequences, suppose you are trying to estimate a time trend, i.e. the effect of a covariate T on a

response Y (e.g. raw CPUE), by regression; if you also include Y or some close transform of it as another

covariate in the regression, then the statistical model will be very happy to let Y -on-the-right do a perfect

job of explaining Y -on-the-left, and there will be nothing left for T to do.

The offense may not be entirely as heinous as it sounds, in that the inputs to the classifier are often

normalized, so that only the relative catch of one species to another appears on the RHS; still, noise that

increases the LHS will also increase the RHS. Also, if the transformation applied by the classifier is sufficiently

brutal (e.g. discretizing to a small number of types), then the noise component of the RHS may be largely

suppressed. But unless that can be demonstrated somehow in a particular application (which would, again,

presumably require really good understanding of a limited range of fishing options), the circularity remains

a statistical minefield.

For an example, suppose there are just two species A & B, which occur patchily but independently of each

other, and that the fishery does not in fact target at all. A classifier working off proportional composition

could decide there are three “types” of targeting: A-wanted, B-wanted, or mixed (both big, or both small).

If A’s abundance declines but B’s does not, then the proportion of shots classified as “mixed” will increase

at the expense of “A-wanted” shots; in the standardization, the estimated catchability of A in mixed shots

will be lower than in A-wanted shots, so the abundance decline in A will be misinterpreted as a change in

targeting. This harks back to the problems of “automatism” and changing composition, but by a somewhat

different route.

Note that there is one potential diagnostic: in a two-step approach where the first step goes wrong in the

way just illustrated, the trends in catch rate of A within “targeting type” will be different. We are unaware

of this having been systematically checked in practice— perhaps because the classifier step is sometimes

used for “shot selection”, with standardization conducted only on shots deemed “targeted” to the species in

question, so the comparison is never done. But even if the different-trends diagnostic was checked and found

wanting, there is no obvious remedy within the two-step format.

There is one obvious cure for circularity, but it may be worse than the disease: if you are about to

standardize species A, then just run the classifier step without including the catch of A. The downside is

that the catch of A may be highly informative about targeting; the temptation of using this extra piece of

information seems generally to get the better of more abstruse-seeming concerns about circularity.

Point to ponder: is adding more species guaranteed to dilute the circularity problem into irrelevance?

(Note the catches of species which co-occur by chance, will not be statistically independent even within

shots of a given targeting type.)

Point to ponder: is it a good/bad idea to use only one targeting-type of shot in standardization? If each

targeting-type genuinely describes a consistent set of operational characteristics of a shot, why would

you not expect to see parallel abundance indiex series from each type? (But see also “Aggregation”

below).
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1.3.2.3 Errors-in-variables

Economic and medical statistical practice is very familiar with the problem of “errors-in-variables” (EinV7),

whereby a covariate used on the RHS of a statistical model is measured with error. The best-known conse-

quence of ignoring EinV is attenuation bias; if you are trying to study the effect of covariate (RHS) X on a

response (LHS) Y , but you are forced to use a noisy measurement X̃ instead of the true X, then a standard

regression (or GLM) will systematically underestimate the effect of X; the estimated coefficient of X will be

shrunk towards zero. While this theory can be extended to categorical variables, the algebra and conclusions

are more messy. Attentuation still occurs, but its effect is dependent on more conditions: such as the type

of misclassification.

In settings with multiple covariates, some of which are measured exactly while others aren’t, the im-

plications of ignoring EinV are just as bad but more complicated. The presence of covariates-with-error

(conventionally called X before error and W as measured, i.e. with error included) leads to bias in the

estimated effects of the covariates-without-error (Z), usually attenuation (towards zero) but sometimes ex-

aggeration depending on the relationship between X and Z. For two-step MS CPUE, one can think of W as

the classifier output (with X being the “true type” of a shot), and the without-error covariate Z as year. Our

goal would be to estimate the time trend in abundance, i.e. the effect of Z on Y , which in general will be

biased if a non-EinV approach is used. [The exception is if X and Z are uncorrelated— i.e. that targeting

has not changed, which would rather undermine the purpose of looking at it in the first place.]8

Even though the EinV literature is sometimes forbidding, it is undeniably vast, so it is disconcerting

not to see it referenced in this area of fisheries. A good technical introduction is a set of lecture notes

(Carroll, 2011), which on p37 has a formula for bias very relevant to the MSCPUE setup above. Note that

the circularity issue is an additional complication not covered in the lecture notes; the simple example in the

previous section illustrates how circularity can lead to an extreme form of attenuation bias.

Even though EinV appears to be a useful framework for considering two-step MSCPUE models, in partic-

ular for highlighting some pitfalls, the solutions most often in econometrics or medical statistics (instrumental

variables etc.; see Carroll et al., 2006) do not seem particularly useful for MSCPUE, in particular because

they do not easily accommodate the “non-automatic insights” that we feel are crucial to any successful treat-

ment of MSCPUE. Our own model does not follow the two-step paradigm (and the reasons should be clear

by now), so we did not follow up further on EinV.

Point to ponder: when considering the likely performance of any proposed two-step approach to MSCPUE,

how would the approach fit within the EinV canon?

7Also known as “measurement error”. Both terms are unfortunate, since of course the LHS (response) of the model is also a

variable and usually measured with error (or noise), but that is already allowed for standard statistical models. “Measurement-

errors-in-covariates” would be better, since covariates by definition only appear on the RHS of the model, but here we have stuck

with the commonest nomenclature, which comes from medical statistics, where the response (e.g. life or death) is unambiguous,

albeit subject to random variability. .
8Winker et al., 2013 include simulation results, which at first sight do not show evidence of attenuation. This is puzzling,

since the two-step setup in that paper should certainly be susceptible to EinV-style attenuation and/or exaggeration. We

conjecture that the reason lies in the way the simulations are organized, and the results reported: each simulation corresponds

to a randomly-chosen scenario where positive and negative trends are equally and independently likely for each species, so

overall bias would be zero however bad the EinV phenomena (because attenuation/exaggeration are always towards/away-from

zero, irrespective of sign). To explore this, the results would need to be categorized by the signs of the trends in the simulation;

we have suggested this to the author.
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1.3.3 Aggregate indices

Behind any attempt to construct a single stand-alone CPUE index for a species— whether as a“single species”

or as part of MSCPUE — is the notion that the index should be proportional to abundance (usually, summed

over some set of age classes). One easy way for this to fail, is if there are shifts in depth preference with

age9. The “depth effect” in a standardization will then partly reflect the species’ age composition, as well as

any genuine variation in individual catchability with depth. Changes-over-time in age composition will then

violate the assumption of proportionality10. The age breakdown in the catch may well be used elsewhere in

the stock assessment, but is still out-of-step with a CPUE-based abundance index.

There is an additional consequence for MSCPUE, because (for example) targeting type may also vary

with depth11. Since no two species have the same intrinsic depth preferences, there may be differential

trends in species’ CPUE even within a targeting type (if we could somehow know the latter exactly). This

could be a particular problem for non-two-step models (like ours) that expect to see similar trends (but at

different levels) for each species across targeting types. Having said that, if targeting types really do represent

different operational characteristics that remain fixed over time, then the assumption seems reasonable, at

least within age-groups as well as within species.

Unlike some of the issues above, this problem at least has an in-principle solution: don’t over-aggregate.

If “the index” is broken into several separate indices, for example by depth and/or fish length, then the

interpretational uncertainty about “depth effects” is retained until later in the assessment, where there

is more hope of a resolution because of the constraints imposed by population dynamics12. Indeed, one

might go further and argue that all the shot-by-shot data should be retained into the assessment, so that the

assessment includes CPUE standardization; and then, given the existence of targeting, maybe all the species-

level assessments should be done simultaneously. That would be the culmination of Integrated Assessment,

as advocated e.g. in Maunder et al., 2006:

“Integrated models use all available information, so they can be used to find inconsistencies

in the data.”

This may or may not be correct philosophically, but in our experience the seemingly-innocuous “so” can

be a substantial overstatement; the daunting complexity of an Integrated Assessment can act as a massive

deterrent to thorough model-and-data-checking, and the task can become inhumanly difficult— an aspect

that is somewhat acknowledged in Maunder and Punt, 2013.

Point to ponder: does this mean that Integrated Assessment is required? In reality, how practically fea-

sible would it be to diagnose the reliability of the MSCPUE (or single species) submodel within an

Integrated Assessment?

9The argument applies not just to depth and age, but to any covariate (recorded or not) and individual characteristic where

catchability may vary systematically with that characteristic within the population (i.e. the entity whose abundance we are

hoping to measure), and where the composition of the population with that covariate may vary systematically over time. It’s

simpler to say “depth and age”.
10Essentially the same point is made by Maunder et al., 2006, but in the context of community composition in a mixed-species

CPUE, rather than age composition.
11This gets unavoidably confusing. For a fisher, “depth” is of course a key part of “targeting”; but in this report, where

targeting covariates are by definition unrecorded, depth is not part of targeting.
12For the CTS, age-class standardisations are unlikely to be possible due to the small amount of age-stratified catch data

(only available through observed data)
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1.4 Rationale for our modelling approach

Because of the pitfalls just noted, we elected not to follow any existing approach to MSCPUE, but rather

to develop a new one from scratch, the aims being statistical coherence, minimization of confounding, and

allowance for economic drivers.

Our thinking was as follows:

• “Automatic” approaches to inferring targeting, i.e. those that rely on purely statistical/numerical

criteria without a clear underlying set of assumptions about the fishery operations, are to be avoided

because, as “Thought experiment #1” indicates, the same data may be equally well fitted by quite

different scenarios about abundance change. Relying on implicit unexamined assumptions to somehow

choose between these scenarios is too risky.

• A two-step approach (classify each shot, then use classifier output as a factor in standardization, and/or

as a basis for shot selection) may work if the fishery operation is very well understood, with a small

number of targeting options and very clear-cut outcomes 13. But if not, then there are fundamental

statistical problems (“Thought experiment #3”) which are not addressed in existing approaches. In

our view, the CTS does not fall into the “well-understood and clear-cut” class.

• While EinV approaches might alleviate some problems of the two-step approach, and are well-known

in applied statistics, they do not seem naturally applicable to targeting, in particular being geared to

an “automatic” worldview.

• A Bayesian approach could in principle alleviate both the “naivety” and “two-step” problems. It would

need to include:

– a prior distribution which describes the probabilities that a shot would be targeted in each possible

way, given some characteristics of the shot (vessel, location, date, etc.) but not on what actually

got caught;

– a likelihood which describes the probability distribution of the species-by-species catches of that

shot, under each of the ways the shot could have been targeted;

– rather than ascribing a definite targeting type to a particular shot, the model can compute the

posterior probabilities of the shot being “targeting type 1”, “targeting type 2”, etc., , given the

characteristics of the shot and what was caught

There is nothing magic in the word “Bayesian” to guarantee success. In this case particularly, it is essential

to structure the “prior” part appropriately. For example, one “inappropriate prior” would be a model that

said: every year, the average prior probability (across vessels) of each “type” of shot can change, and those

averages can vary freely from year-to-year. This model would fall straight into the “automatic” trap; a

trend in abundance would be confounded with a trend in average prior probability. Changes in economic

considerations are claimed to be the reason for systematic changes in targeting in the CTS, so it makes sense

to build the prior accordingly.

An overview of the Bayesian model, which we propose for conducting a MS-CPUE standardisation in

the CTS, is given in Chapter 1.4, and the equations are supplied in Appendix B. The models and results

13For example: the Indonesian longline fishery in the North Australian Basin catches either yellowfin tuna (with shallow sets)

or bigeye / albacore tuna (with deep sets). Type of set can be inferred quite reliably from catch composition, even if hook

depth is not recorded.
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presented in this report should be seen as exploratory; the problem we addressed is difficult, and in order to

produce any solution it was necessary to make more simplifying assumptions than one would want to use in a

finished product. For further comment on what could and what should not be attempted, see Chapter 4.5.
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Objectives

The primary objective of this project was exploratory development of a statistically rigorous framework (in-

cluding software) for conducting CPUE analyses in the heavily multi-species setting of the CTS, specifically:

1. Develop mixture models for log-book data that deal appropriately with “zeros” and that incorporates

auxiliary data (e.g. catch composition, market price, fine scale habitat and environmental data) to

help account for targeting.

2. Use models from (1) to develop predictors of fishing effort type using only the log-book and auxiliary

data.

3. Make our software available to fishery scientists involved in CPUE standardization.
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Methodology

Here we describe the broad features of our model; equations are in Appendix B. Most focus is on the “choice

submodel”, i.e. the shot-level prior for targeting type, since that is the least-familiar and most-difficult part.

Some aspects of our implementation may seem unintuitive, especially concerning expected profit, but

they are driven by the need to have a statistical model where parameters can actually be estimated— in

particular, to keep the number of parameters as low as possible, and to avoid parameter redundancy/aliassing.

Nevertheless, we think that the model should reflect qualitatively the phenomena described earlier.

• We split the CTS into four parts: summer/winter1, and shallow/deep. The species mix differs greatly

across the four combinations, and separate analyses were done for each. (There are some subtleties

around splitting by depth in this way, discussed in Section 3.3.1.)

• We assumed there were a small number of discrete targeting types in each part, and that the available

“pool” of possible types was fixed over time. It’s not obvious from the questionnaires and discussions

how many types there “should” be, nor indeed how sharp the distinctions between types really are2.

However, from a statistical perspective, fixed discrete types are quite hard enough.

We explored models with from 1-5 types, 1-type corresponding to a “standard standardization” (no

targeting possible) and 5-types being the computational limit. Each fishery will have its own number

of targetting types. However, for comparison, we note that 3-9 metiers have been suggested in other

fisheries around the world with the higher numbers corresponding to more complex fisheries (numbers

taken from He et al., 1997; Pelletier and Ferraris, 2000; Iriondo et al., 2010; Punzón et al., 2010;

Punzón et al., 2011). In the analysis here, the types are in no way pre-specified, but are allowed to

emerge from the statistical estimation step; this is not because of statistical puritanism, but simply

because the CTS seems too complicated to make reliable a priori quantitative assumptions on what

the “types” should be like.

The main unrecorded operational factors that we have in mind as separating the types are:

– depth profile of the shot (mostly, whether it is along or across contours). Only average depth is

recorded in CTS logbooks, and the start and end locations of the shot are usually inadequate to

infer much about the path between. See below for further remarks on depth;

– fine-scale tracks relative to bottom features;

1Each a 3-month period, coinciding with the choices made in designing the Fishery-Independent Survey (Knuckey et al.,

2013) mainly so that we could borrow that standardization model; catch rates are reputedly more stable from year-to-year

during these months, being less susceptible to timing variations in the arrival of warm/cold conditions.
2This is partly a function of needing to separate the statistical problem (accounting for unrecorded covariates) from the

on-the-ground targeting decision faced by fishers (not just the unrecorded covariates, but most importantly where and how

deep).
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– gear adjustments3.

• Each vessel has its own “preference”, drawn from a pre-specified hyperprior distribution that describes

how that vessel would differ from an average vessel in the shots it tends to make, if economic conditions

made all types of shot equally lucrative across the fishery4. The hidden mechanism which we assume

drives that preference, is the effective quota available to each boat (see next point). Preferences are

allowed to change at 5-year intervals5. To keep an already-complex model from getting out of hand,

the preference applies to type rather than to individual species.

• The “effective quota” for each vessel is not just the quota it has leased at the time a shot is made, but

also the quota that it knows it could obtain inexpensively before the next reconciliation, via a complex

network of informal arrangements. While data on currently-held quota is potentially available (AFMA

holds the transaction records, but there are confidentiality requirements), the thing that matters is

effective quota, which cannot be directly measured.

• For each shot, the prior probability that is of each of the possible types, given the vessel and the

recorded covariates but not the actual catch data, is assumed to be affected by the fisher’s expectation

of profit for that shot under the different types. That depends on the expected catch of all species by

type, weighted by both (i) current market prices (known to both the fisher and the model), and (ii)

either the price that would have to be paid to lease matching quota if quota is not currently held, or if

it is held then the price at which that quota might subsequently be leased out to others if not unused.

Item (ii) is something like a “shadow price” which is known or guesstimated by the fisher, but is not

directly available to the model. Instead, it is proxied by combining the vessel preference (which reflects

quota holdings) with a measure of “TAC tightness”, as explained next.

– Several other factors strongly influence a fisher’s expectation of likely profit when deciding how

to fish: for example, water current strength, market knowledge of incoming catches, and short-

term information on fish distribution. They are omitted from our model in the hope that they

will average out over time but at the expense of potential covariance amongst shots. Including

these data might— if the right data even exist— reduce noise, but should not substantially affect

conclusions.

– One extra factor that we have tried to include, is the price-depression (elasticity) effect of ac-

cumulated catch of each species in the rest of the trip6. The inability to separate trips in the

logbook data adds another unwelcome layer of difficulty here, but in any case we suspect this has

minor impact on the overall model because it will either tend to average out across a season, or

be captured in the vessel preference.

• When the TAC for a species becomes “tighter” relative to the species’ abundance, then it will become

less attractive for the fleet as a whole to aim to catch that species, on average and over the course of an

3The logbooks record some information on gear, but do not capture all adjustments— and probably never could do so

systematically.
4The fixed hyperprior is to prevent average preferences from drifting over time (to avoid the risk of confounding with

abundance trends). However, that applies only to “ideal preferences”. In practice, quota constraints and species price changes

may drive the entire fleet away/towards certain types— but there is assumed to be no other reason why that would happen.
5The fixed-for-5-years approach is not ideal statistically; a more flexible hidden-Markov-type model would be neater, but

was much too complicated for this project.
6This is a small fishery (by world standards) where an individual vessel’s landings is a substantial part of the day’s landings,

perhaps even the days total for some species. In larger fisheries the price depression from a single boat is likely to be irrelevant

compared to fleetwide landings. The model should be changed accordingly, if applied to those fisheries.
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entire year7. The mechanism is that lease price will be higher, so the marginal revenue will be lower (on

average across vessels). The model tries to accommodate this by assuming that the “fleetwise marginal

price” for a species8 is a multiple of the actual market price, where the multiplier will vary from 1 (if

the TAC does not constrain the fishery at all) down to 0 if the TAC is zero (when no-one can make

any money from catching that species). The multiplier is a nonlinear function of the ratio between the

species’ relative abundance that year— already the key term in the standardization— and its TAC, so

no new variables or mechanisms are required, though extra parameters do need to be estimated.

• To compute the prior probabilities that a specific vessel will adopt each of the different possible targeting

types for a specific shot, the model combines the “fleetwise marginal revenue”9 with the vessel-specific

preferences. Of course, not every shot will then correspond to the model’s somewhat naive notion of

the economically-best choice, so there is also a “rationality” or “perfection-of-knowledge” parameter to

be estimated; larger values correspond to better ability to predict catches and forecast future quota

prices, and/or to smaller effects of unrecorded and uncontrollable shot-specific factors such as weather

conditions, known to the fishers but not to the model, which would diminish the model’s accuracy.

That last point is important: from the questionnaire and interview data, it is unsurprisingly clear that

these unmeasured/uncontrollable short-term factors are often dominant in fishing decisions. But on

the assumption that they will largely cancel out over the course of a fishing season (there is a strong

incentive to use, or re-lease, held quota at some point within its 12-month lifespan; the decisions are

only about when to do so), we feel reasonably justified in omitting them from the model.

• Having finally computed the prior probabilities of each targeting-type for each shot for each vessel

for whatever set of parameters is currently being considered, “standardization” is conceptually carried

out in the statistical setting of a “finite mixture model” (McLachlan and Peel, 2004), where the joint

probability of the observed catches of all species (given recorded covariates such as trawl duration (“ef-

fort”) and depth) is summed across the different possible targeting types, using their prior probabilities

as weights. This comparatively straightforward step is easier to follow in an equation than in words

(Section B.1).

• All parameters are estimated simultaneously from the joint likelihood, driven mostly by the catches per

shot, but also using some characteristics of each shot which are indicative of that vessel’s preferences.

Estimation is completely separate for the summer/winter deep/shallow data sets.

• There are many operationally-important factors which are not included in the model, and which aren’t

statistically feasible to include: e.g., weather, current strength, water temperature, recent knowledge

and feedback from other vessels. However, these omissions do not of themselves make the model

“wrong” or useless10, provided the factors left out are sources of noise (random variability over time)

rather than systematic trend.

3.1 Depth and location

Shot depth is perhaps the single most important factor in determining what gets caught. As such, it should

play a pivotal rôle in determining the targetting type of a shot. Also, it affects the catch rate of the shot. In

7Of course, some vessels may still retain enough quota that they do not need to shift effort elsewhere; the model attempts

to capture that via vessel preferences, as explained next.
8IE the profit per kilo that would be made by an average boat catching that species at that time
9FMR = anticipated catch for the species and type, times fleetwise marginal price for the species, summed over species

10“All models are wrong, but some are useful”: George Box, Empirical model-building and response surfaces, 1987
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terms of our model, there are four key points about shot depth in the CTS:

1. The logbooks record only average depth, and there is no reliable way of determining whether a shot

was along- or across-contours. A shot that runs down-slope from 50m to 400m with a mean depth of

250m will tend to catch a wider range of species— but less of any individual species— than a shot

along the 250m contour.

2. The model has to learn about each vessel’s preferences. Besides the actual catch composition of a shot,

the depth chosen for it is an important piece of information; a hypothetical vessel that held mostly

silver trevally quota would not waste time fishing deeper than 100m, so seeing a high number of shallow

shots for a vessel is indicative of a type-preference that favour silver trevally (or other shallower-water

species).

3. There is a dramatic change in species compositions between the shallowest (50m) and deepest (700m)

average depths in our dataset. In principle, our model formulation ought to take this in its stride.

In practice, though, we ran into numerical and interpretational problems trying to fit all species and

all depths together11. The pragmatic resolution was to split the analysis completely by depth (at the

200m average depth line), using a different range of species in each. This discards some information

that is potentially useful for inferring preferences, but was computationally unavoidable. The 200m

isobath was chosen as it seemed to naturally occur as a break point for many of the species under

consideration.

4. Decisions about the unrecorded covariates that drive “targeting type” in our constrained definition,

are in practice entirely linked to decisions about recorded covariates, especially (average) shot depth;

it would be senseless to rig the gear for an off-the-bottom species but then trawl at a depth where it

does not occur. When computing expected revenue across different options for the shot, we therefore

considered not just targeting type, but rather the combination of targeting type and average depth

(split into a small number of sub-bands), given that the decision was already made to make a “basically

shallow” or “basically deep” shot as just described. We treated the latitude of the shot12 as a “given”

(i.e. not another option like type or depth), and assumed that the choice would then be made about

depth and type; this seems reasonable since the continental slope in Eastern Australia is very long

North-South but just a few kilometers wide, especially within each of the two depth bands we used.

5. In reality, the species mix also varies (much more gradually) with latitude, so choice of location is

also somewhat informative about vessel preferences. However, location is really a trip-level decision

influenced by many factors (travel time, fuel costs) as well as anticipated catches, and within a trip the

position along the coast of one shot is quite constrained by the latitude of the previous shot (not the

case with depth), so it would not be easy to extract the information. Thus we did not try to include

location in the targeting prior13, though it is included in the standardization part of the model because

most species do exhibit systematic spatial variation in catch rates (Knuckey et al., 2013).

11We do have various theories post hoc to explain why problems might occur, but they are hard to summarize and have little

bearing on the outcome, since we chose to bypass the problems using a depth split.
12Actually, its position when projected onto an axis that roughly tracks a shallow contour running close to the coastline,

running mostly North-South; see Knuckey et al., 2013.
13Individual-vessel-based fleet simulation models that do try to model choice of fishing grounds have been developed for some

fisheries worldwide, and may exist for the CTS. However, while such models may yield interesting qualitative insights, we see

no prospect that they could (or should) be ever be used for quantitative inference such as CPUE standardization, basically

because the range of implicit or explicit modelling options is too high-dimensional for well-founded statistical approaches to

work, whether Bayesian or otherwise.
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Figure 3.1.1: Components of our model for CPUE standardization with targeting

“Effort” comprises the covariates of any normal standardization. “Catch” is multi-species across all quota

species included in either the deep or shallow depth-band where the shot was made.

3.2 Catch and Effort Sub-Model

The catch and effort sub-model closely resembles a GLMM, such as would be used in a modern single-species

CPUE standardisation; the only difference is targetting type is a latent variable rather than a measured

covariate. We used the same basic formulation as in the FIS (Peel et al., 2013)— a log link with a Tweedie

error distribution, and keeping the FIS estimates of smoothing and Tweedie-power parameters— since this

gave satisfactory model performance. The covariates we used were: trawl duration (as an offset), average

depth (continuous), time-of-day (factor), year (factor), and position along coast (continuous). Penalised

regression splines (see Wood, 2006) were used for depth and position along coast. Both had 9 basis functions

and penalty taken from Peel et al., 2013. Time of day was entered as a factor, levels taken from the logbooks

themselves, with 3 levels (XXXXXXXXXFIND OUT LEVELSXXXXXX). All terms were added as main-

effects only (no interactions). Trawl duration was considered to be an offset only. In particular, we assume

that the length of trawl has a multiplicative effect on catch— a double-lengthed trawl is expected to catch

twice the amount as a single-lengthed trawl. This is a common assumption in this fishery (e.g. Peel et al.,

2011). See Appendix B for details and see Jørgensen, 1997; Smyth, 1996; Foster and Bravington, 2013 for

background on Tweedie GLMs and see Appendix Dfor more model details of how the catch and effort model

was applied to the CTS.
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3.3 Data

3.3.1 Logbook Data

Our analysis covered 1994-2008, a time of major changes in the fishery (and major reductions in CPUE for

many species): from the early days of ITQs, through widespread adoption of GPS and the tightening of

TACs, to a substantial reduction in fleet-size at the 2006 buyout (“structural adjustment”).

The logbook data contain numerous errors and outliers that can be removed prior to analyses. To filter

the data, we followed Darbyshire et al. (2008) and Klaer and Smith (2008), specifically excluding shots

that: (1) lack key variables, such as catch, effort, depth; or (2) have a reported position on land; or (3) are

unusually short or long; or (4) are out of the usual depth range. We also excluded all shots below 700m since

these are almost exclusively directed at one particular species, orange roughy— one case where targeting is

easily determined. See Table C.1.1 for a complete description of the filtering rules.

Since this is an exploratory analysis, we simplified the problem slightly by subsetting in space and time. In

particular, we considered only the south-east coast between Sydney and Hobart excluding Bass Strait (CTS

zones 10/20/30) and only two seasons: winter (July–September; 48,864 shots) and summer (January–March;

45,612 shots). The seasons match those used for the Fishery Independent Survey (Knuckey et al., 2013); the

idea is that sea conditions (especially temperature) are more stable from year-to-year in those seasons than

in the spring and autumn “shoulders” when the East Australia current arrives/departs. The periods we used

are also well within the TAC-year, which starts in May. This approach makes the assumption that there has

been no shift in relative effort into, or out of, these seasons.

Of the many species recorded, we restricted attention to the nine that make up the bulk of the landings

and revenue: tiger flathead, spotted warehou, pink ling, blue grenadier, jackass morwong, redfish, john dory,

silver trevally and mirror dory.

The number of shots made by different vessels is highly skewed. The bulk of shots come from a small

number of vessels; since each vessel included in the model entails the estimation of extra parameters, to keep

computational burden down we considered only the 39 vessels with more than 1000 reported shots, which

account for 74% of shots overall. Full details of the data, and how it was obtained by subsetting, is given in

Appendix C.

3.3.2 Environmental Data

The region of interest is a narrow strip 8-15km wide but over 1500km long. The coast and the shelf-break, run

roughly but not exactly North-South. It is more biologically meaningful to model species’ spatial distribution

not via (latitude, longitude) but rather by (depth,position-along-coast) where the latter is a projection of

location onto a smooth curved axis that roughly follows the 50m contour line; it is also more statistically

parsimonious, since the depth-effect on a species is roughly orthogonal to the coast-effect. We used the same

axis as in the Fishery Independent Survey Peel et al. (2013) and Knuckey et al. (2013), which also meant

we could borrow the estimates of within- and between-year spatial variability estimated in designing that

survey, for use in our own “standardization”. This variable is illustrated in Figure 3.3.1.

3.3.3 Market Data

The price data for 1994-2008 was purchased from Sydney fish market, the sole wholesaler market in Sydney.

Data from the other main markets, in Melbourne, proved harder to obtain, so for this exploratory exercise

we did not pursue it— it remains unclear whether those data still exist.
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Figure 3.3.1: Illustration of the position-along-coast variable. It is the curve that (roughly) tracks a

bathymetry contour around the southern part of the continent. Only the south-east coast data were consid-

ered in this analysis (so the curve west of Tasmania is irrelevant).

The data record the species and amount of fish sold in each transaction, and the price paid. Even the

commonest species are not sold every day, so there are gaps in the species-level price data. From these

data, we were also able to reconstruct the “running cumulative catch” over a few days (typically 3-5 days are

required for incoming landings to clear the market), for use in the elasticity model.

3.3.4 TACs and ITQs

Annual TACs and total catches are available on the AFMA website. Vessel catches are constrained to a

proportion of the TAC, via the vessel’s quota-holding. Although AFMA keeps a record of quota transactions

and in principle could reconstruct the quota holding of any vessel at any time, we did not try to obtain those

data, partly because of confidentiality issues but mostly because we did not think it would be much use for

modelling, as explained earlier in this chapter.
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Results

4.1 Elasticity from Market Data

The first step in the analysis was to determine the effect of landing an amount of fish into the market, to help

later on with predicting a vessel’s likely shot decision based on its catches so far that trip. See Section 3.3.3

for a description of the market data and Appendix C.2 for a full description of the model and its parameters.

Briefly, the expected price of a species is modelled as a function of the amount of that species currently in

the market via a single estimated “elasticity” parameter, with additional trend terms to absorb long-term

effects.

For illustration, we show results for tiger flathead and redfish (Figure 4.1.1), which represent the extremes

among the 8 species we eventually focussed on. Tiger flathead has little seasonal variation, and only a gradual

increase in price. In contrast, redfish have a strong seasonal pattern, and a more dramatic long-term increase

in price. Most species, but not all, showed some long-term increase in price. This is due, in part, to inflation

but it is also confounded with other time-varying drivers (such as consumer trends). For the purposes of this

analysis, the cause is immaterial and it is the effect that is important.

The estimated parameters are given in Table 4.1.1. For this part of the modelling, we included all species

with market data, not just the species we later focussed on.

The signs on all estimated coefficients are negative (except for roughskin dogfish), showing that there is

some degree of saturation is possible for all species. The price response seems least for orange roughy and

gemfish. In the choice sub-model, the expected price is used. After all, fishers can only make decisions about

what they expect to catch. This involves using the predicted market price and also the elasticity parameters

in the prior for shot type (the choice sub-model).

In principle, the elasticity analysis could be extended to use multispecies landings as covariates (not just

the species in question), since there is presumably some degree of substitution between some species. There

is no fundamental statistical obstacle to doing so, just extra work e.g. in model selection, so we did not

pursue it for this project.

4.2 Targeting Analysis

For brevity, we present here the results from just the two “winter” subsets (deep and shallow); the same

details for “summer” are in Appendix E.

For each subset, we experimented with varying the number of targeting types between one (i.e. our

version of a classical CPUE standardization, without targeting) and five (the computational limit). Even

after fitting the five models, it is not obvious which number of types is best; in the statistical field of “finite

mixture models”, of which our model is an elaborate extension, there is still no agreed and reliable criterion
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Figure 4.1.1: Observed (black dots) and expected (red line) price for tiger flathead and redfish. The Statistical

model is defined in Appendix C.2.

for choosing how many categories on purely statistical grounds, and our model poses a number of extra

challanges than the simpler regression-like settings (Hui et al., in press). Here we have presented results

for the number-of-types that yielded the highest “rationality parameter” estimates, i.e. where the model’s

assessment of prior economic incentives across types for each shot is best aligned with the apparent type

of the shot (see Appendix B for equation and definition). However, we make no claim that this particular

choice is “the truth”, and later we present the overall implications for CPUE for all 5 variants.

The estimated rationality parameters for the different subsets and numbers-of-types are given in Table

4.2.1. There is no obvious scale for interpreting these numbers, but they are comparable across numbers-

of-types. Negative values would be nonsensical (implying that fishers tend to avoid the shot-type that the

model thinks would earn the most revenue), but all the estimates are comfortably positive.

The final piece of evidence reported is how the targeting types might have changed over time. This is

inferred from calculating the yearly sum of the (posterior) probabilities for each targeting type, where the

sum is over each of the observed shots. The posterior probabilities are denoted by Pr (gi|di, {Csi}) where gi
is the targeting type for shot i, di is the shot’s measured depth and {Csi} is the set of species catches. The

posterior probabilities are defined as

Pr (gi|di, {Csi}) =
Pr ({Csi}, di, gi)∑G
g′i=1 Pr ({Csi}, di, g′i)

(4.2.1)

=
Pr ({Csi}|di, gi) Pr (di, gi)∑G
g′i=1 Pr ({Csi}|di, g′i) Pr (di, g′i)

where all probabilities are calculated during the fitting process and are a result of the model. Note that

Pr (di, gi) is the joint probability of the depth and targetting type (see Section 3.1).
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Elasticity Which Data Set

Bigeye Ocean Perch -0.14 -

Blueeye Trevalla -0.05 -

Blue Grenadier -0.10 Deep

Blue Warehou -0.06 -

Gemfish -0.01 -

Jackass Morwong -0.14 Shallow & Deep

John Dory -0.07 Shallow

Ling -0.08 Deep

Mirror Dory -0.12 Shallow & Deep

Orange Roughy -0.01 -

Redfish -0.17 Shallow & Deep

Roughskin Dogfish 0.00 -

Royal Red Prawn -0.04 -

School Whiting -0.08 -

Silver Trevally -0.12 Shallow

Spikey Oreo -0.05 -

Spotted Warehou -0.13 Shallow & Deep

Tiger Flathead -0.15 Shallow & Deep

Table 4.1.1: Estimated elasticity coefficients βs for each species s. The more negative the value, the more

“saturatable” the market for that species. A sudden doubling of the amount on the market would reduce the

price of that species by a factor 2βs , a tripling by 3βs , etc.

4.3 Winter Deep

The four-group model has the highest rationality parameter. Estimates of typewise catchability effects are in

Table 4.3.1, and time-trends in Figure 4.3.1. The variation between types in implied catch rates is very large

for some species, particularly tiger flathead and blue grenadier— which are the two highest-value species.

The numbers in the table should not be over-interpreted, though, because decisions about “type” are in

practice made jointly with decisions about depth, so in practice one type might never be made at the depth

typical for another type, so that the implied catch ratios would never actually be seen.

A qualitative interpretation of the types and their trends might be as follows:

Type 1: Redfish, morwong, flathead, ling favoured; spotted warehou unlikely— mixed bag? Proportion

stable over time.

Type 2: Blue grenadier mainly; unlikely to catch morwong or redfish, and definitely not flathead. Decreasing

proportion over time.

Type 3: Flathead; poor for ling, no chance of catching grenadier: increasing proportion over time.

Type 4: Spotted warehou and some blue grenadier; stable proportion.

The inferred relative abundance series for the targeting models1 is presented in Figure 4.3.2, along with two

1Including the 1-type model, which is the “any color you like as long as it’s black” version of targeting (attrib. Henry Ford).
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Figure 4.3.1: Proportion of Winter Deep shots performed under each of the targeting types over time.

Calculated as the mean of the posterior probabilites of the observed shots.
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G=1 G=2 G=3 G=4 G=5

Winter Deep - 0.93 1.16 1.45 1.38

Winter Shallow - 13.98 15.36 3.06 2.69

Summer Deep - 6.80 4.04 5.85 4.30

Summer Shallow - 9.51 17.58 5.72 5.18

Table 4.2.1: Estimated “rationality/perfection-of-knowledge” parameters κ for different data subsets and

assumed numbers of types. The larger the value, the more likely a shot is to correspond to the model’s

notion of best likely revenue.

Blue Jackass Ling Mirror Redfish Spotted Tiger

Grenadier Morwong Dory Warehou Flathead

Type 1 2.12 1.12 0.58 -0.24 1.60 -1.50 2.18

Type 2 3.22 -1.61 0.46 0.36 -1.51 -0.34 -5.86

Type 3 -7.80 0.26 -1.07 -0.10 -0.31 -0.53 2.70

Type 4 2.46 0.23 0.02 -0.02 0.21 2.36 0.98

Table 4.3.1: Winter deep catchability parameters (γsg in the model). Positive values mean higher expected

catches for a species than an “average shot”, all else being equal— which, as the text points out, it may not

be. Estimates are on a natural-log scale so, for any species, a difference of 3 units between two types

corresponds to a ratio of e3 ≈ 20 in expected catches. Columns sum to one to enforce estimability (sum-to-

zero constraints).

simple reference unstandardized series2. We specifically do not include the actual standardisation results as

these are based on a different subset of the log-book data. Therefore, we a priori do not expect it to agree

with our results. For the most part, there is little difference between the series, although our tentatively-

preferred 4-types model (solid black) is perhaps less spiky than the others, especially the unstandardized

cases and especially at the start of some series. The 4-types model is generally very similar to the equivalent

standardized-with-no-targeting model (dotted turquoise).

Of course, if a statistical model is told to find 4 types, or 40, then that is exactly what it will come

up with, regardless of whether all the types are clearly discriminated in the data. One post hoc check on

overfitting is to look at the shot-by-shot posterior probabilities; if the model is “inventing” types, then these

will tend to be scattered between 0 and 1 for each type, but if the types are meaningful then one would

expect the posterior probabilities to be clustered near the ends. Figure 4.3.3 shows histograms by type (to

avoid a 3D or 4D display). There is no objective measure of goodness here— fisheries shot-by-shot data are

notoriously variable, and a shot which catches very little of anything is going to be difficult to classify even

for an “accurate” model— but the results are certainly not uniform. The spikes near zero and the scatter

elsewhere imply that, while the model is confident at deciding that a shot does not belong to some type(s),

it is less clear about precisely which type it does belong to. This may suggest overfitting (too many types);

similar plots for the other three data subsets (where in all cases the preferred model has fewer than 4 types)

show much sharper clustering. Other measures of prior-posterior concordance could be developed, but given

the intrinsic noisiness of catch-per-shot data, we are not sure that much insight would be gained.

2The “nozeros” reference case (dashed red) is a log-normal GLM with the same covariates as the targetting model; the

“geometric” case (dashed blue) is a geometric mean CPUE per year (obtained by fitting a log-normal GLM with only year as a

covariate).
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Figure 4.3.2: Winter Deep Relative abundance series estimated by the different targeting models. Dotted-

green is our version of a standardized CPUE without targeting (a Tweedie GLM with covariates); solid-black

is the 4-type model, which had the highest “rationality estimate”. Different numbers of targetting type have

been intnetionally given the same line type. This reduces graph clutter whilst retaining the sense of variation.

Dashed lines are CPUE series that remove zeros, without covariates (blue dash) and with covariates (red

dash). Both series without zeros were obtained using a log-normal GLM.
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Figure 4.3.3: Distribution of posterior probabilities of each shot in the winter deep data set. The distribu-

tion is taken over all the observed shots.
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With 4 types in this model, vessel preferences are hard to summarize, so consideration is deferred to the

winter-shallow results next, where the chosen model has fewer types.

4.4 Winter Shallow

Here the 3-types model has “highest rationality”. Typewise catchabilities and trends are shown in Table 4.4.1

and Figure 4.4.1.

Type 1: Spotted warehou, redfish, and mirror dory favoured; the worst way to catch flathead. Declining

trend, and now uncommon.

Type 2: Silver trevally especially, intermediate for most other species. Declining trend.

Type 3: Flathead good, but the worst type for all other species. Strong increasing trend.

The estimated effect of type on catch rates varies considerably between species: there is almost no difference

for john dory, but around 100-fold differences for spotted warehou, redfish, and mirror dory. As for winter-

deep subset, the “all else being equal” caveat applies. The inferred effect for tiger flathead is modest—

about 50% better in Type 3 than Type 1— but important because flathead drives a high proportion of

revenue. Flathead catches also vary less from shot-to-shot than many other species’, so will generally show

less noise in estimated parameters, including type-specific catchability effects; when comparing best-to-worst

catchabilities in these tables, estimation noise will tend to systematically inflate the range.

Jackass John Mirror Redfish Silver Spotted Tiger

Morwong Dory Dory Trevally Warehou Flathead

Type 1 0.40 -0.01 2.32 2.18 -0.69 2.73 -0.19

Type 2 0.75 0.07 -0.41 -0.36 1.64 -0.11 0.03

Type 3 -1.15 -0.06 -1.91 -1.82 -0.95 -2.62 0.16

Table 4.4.1: Winter shallow catchability parameters for the four targeting type model, on a log scale; see

Table 4.3.1 for explanation.

Figure 4.4.2 shows the estimated winter-shallow abundance trends under the various targeting models

(i.e. different numbers of types). Flathead CPUE is remarkably insensitive to the model used. For the

other species, standardization clearly does have an effect (the reference dashed lines look different to the

rest), but beyond that the number of targeting types assumed seems to make little overall difference for most

species except silver trevally. Model choice does seem to have an effect at the start of the series, where there

is a sharp peak in abundance for morwong, mirror dory, redfish, and spotted warehou according to models

without targeting (dotted turquoise), but not for the 3-types model. The start of the series is, unsurprisingly,

exactly when the 3-types model estimates that the fastest changes in targeting occurred (Figure 4.4.1).

Shotwise posterior probability histograms for winter-shallow are shown in Figure 4.4.3. Clustering is

clear, and much sharper than for winter-deep; this is not surprising since in effect only two types are seen

over most of the time period. With only 3 types in the winter-shallow model, it is feasible to examine vessel

preferences.We tried to set the model up so that there should, so to speak, be no “average intrinsic preference

for any specific preference”, unless economic drivers dictate otherwise— the whole point being, of course,

that economic drivers do dictate otherwise. If vessel preferences turned out nevertheless to be clustered

towards particular types, that might suggest the model was missing something of significance. Figure 4.4.4A

shows that they are not, at least for winter-shallow subset (also true for summer-shallow: Appendix E).
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Figure 4.4.1: Proportion of Winter Shallow shots performed under each of the targeting types over time.

Calculated as the mean of the posterior probabilites of the observed shots.
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Figure 4.4.2: Winter Shallow CPUE series under the different targeting models. See caption of Figure

4.3.2.
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Figure 4.4.3: Distribution of posterior probabilities for the winter shallow data. The distribution is taken

over all the observed shots.
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Vessel preferences can change over time, and the 5-year fixed blocks we were forced to use, for computa-

tional reasons, might in principle be too long to adequately reflect this. To check, we plotted the preference-

traces for each boat from one block to the next (Figure 4.4.4B-F, split arbitrarily into sets of boats for

clarity). The impression is that within-vessel changes over 5 years (arrow-chains) are typically smaller than

between-vessel differences (different colours). This suggests that the 5-year-block approximation is not seri-

ously distorting our results. (If this model ever was to be taken further, though, a more sophisticated model

for changing preferences would be necessary; but the statistical and computational challenges should not be

underestimated.)

4.5 Concluding notes on results

The summer shallow and deep results are shown in Appendix E; in both cases, the preferred model had in

effect only 2 types3. Of course there are differences in detail between the four winter/summer shallow/deep

subsets, but our overall impressions are quite similar: the inferred types do imply quite large differences

in expected catch rates of some species due to targeting, but there is rather little effect overall on inferred

abundance trends when targeting is incorporated into standardization.

We did not see any particularly concerning diagnostics, although the loose clustering in the winter-deep

results may suggest that 4 types is too many. In particular, the results we have presented do not contain

any “rubbish” types— where one type has lower catchability for every species than another. However, we

did find some instances in other models, at least among the 4-types and 5-types models, and in some of the

preliminary results that we presented at RAG meetings 4. Rubbish types are a conundrum, because it seems

hard to imagine why a fisher might choose to make a shot one way when they would be likely to catch more

of everything by doing it another way. (Admittedly, there might be some explanation in terms of exploratory

shots and not “burning” quota when prices are low.) For diagnostic purposes, we view rubbish types as a

warning sign: they are statistically tempting because of the improvement in statistical fit for shots which

didn’t catch much, but since rubbish shots do not (presumably) make sense in terms of the model’s narrow

view of economics, they may signify internal tension in the estimation. Since the inferred abundance series

seem fairly insensitive to the number of targeting types assumed even though some of the models imply

rubbish types, the latter is probably not a major concern for our conclusions.

If our exploratory model was ever adapted for serious use on CPUE standardization, a number of issues

would require substantial further thought and work. A by-no-means exhaustive list would be:

• model selection (number of types);

• model selection (covariates included into the model, functional form and interactions);

• what to do if the selected model is applied one year and suddenly decides that a rubbish type is

needed— or more generally if the inferred types change dramatically from one run to the next;

• quantify uncertainty, especially how to estimate covariances of the time-series (easy if just one model

is selected, but hard if results need to take model uncertainty/selection into account)

• getting price data from the Melbourne markets as well as the Sydney market.

3The summer-shallow preferred model technically has 3 types, but the 3rd is uncommon and— unlike winter-shallow— its

proportion is stable over time.
4Resource Assessment Group: the industry and science forum where stock assessments and research outcomes are discussed.
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Figure 4.4.4: Winter Shallow vessel preferences. Vessels are allowed to “choose” a new preference every

5 year block (block boundaries are staggered between vessels). Each vessel in a 5 year period (a dot) has

a preference for each of the three types (the vertices of the triangle). Panel A shows all vessels-and-blocks,

coloured by vessel.. Panels B–F each show a subset of vessels (colours) and how their preferences changed

between blocks (arrows).
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Conclusions and Discussion

Targeting1 is certainly possible in the CTS, and there is good reason to expect that it has changed over the

last 20 years in response to economic drivers and to changing stock abundances. The likely effect on CPUE

for individual species is not necessarily clear a priori, though, given that CPUE (after current standardization

is applied) is averaged over shots. Since there is no direct measure of targeting in the CTS logbook data,

the usual approaches to CPUE standardization are not able to account for targeting.

We derived a new statistical approach, with the two aims of avoiding the statistical pitfalls, and reflecting

the economic drivers. The model includes a “typical CPUE standardization”, plus a prior distribution on

likely targeting “type” for each shot. That prior is driven mainly by quota tightness and individual vessel

preferences, which are estimated within the model and assumed to reflect the amount of quota readily

available to that vessel. There is no need to treat zero catches specially, since the usual implicit reason for

excluding them (targeting) is explictly allowed for in our model. Some compromises were required to make

statistical estimation possible, but in the end we were able to fit the model with several different assumed

numbers of “targeting types” (2-5). There are no glaring inconsistencies in the results, taken at face value:

the main inferred types (i.e. the mix of species) do not seem ridiculous, the inferred choice of shot-type does

appear to be broadly consistent with inferred economic drivers2, and there is no obvious “arbitrary trend”

in preferences (i.e. aside from trends driven by economics) that could be confounded with real trends in

abundance.

Model results did show evidence of changed targeting over time, though only in winter. However, there

was little effect on inferred abundance trends; the with-targeting results seem a little less spiky, but for

most species the overall picture was largely unchanged. In other words, the standardized CPUE trend

with targeting was pretty similar to without, which is how CPUE is currently handled. The good news is

that the results are not sensitive to choosing one particular model (e.g. number of targeting types); the

either-good-or-bad-news is that targeting changes do not appear to have affected overall CPUE much.

5.1 How reliable are these results?

To incorporate economic drivers, it seems to us that a complicated statistical model is unavoidable, even

though we kept it as simple as we could, so there is a lot that could go wrong. Below we consider the two

main potential problem areas: model details and assumptions; and data limitations.

1taken in this report to mean unrecorded factors, under control of fishers, that influence catches ( see Section 1.2).
2Insofar as the estimated “rationality parameters” are positive, as one would expect.
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5.1.1 Model details

Any statistical model involves some approximations and assumptions; however, these are not important as

long as the resultant “model error” is small relative either to data noise, or to the consequences arising from

the way the model is used. This project is exploratory (there was no existing statistical approach to allowing

for economic incentives in targeting) and the aim is to investigate whether a useful targeting model could be

developed, not to develop a perfect model straightaway— a much bigger task.

Here we have concentrated on the least-familiar aspects of our model; of course, the usual statistical

considerations also apply, just as in single-species standardization (e.g. choosing reasonable functional forms,

appropriate mean-variance relationships, avoidance of over-parametrization).

5.1.1.1 Targeting can be adequately represented by a few discrete types

Finite-mixture models, including our model in this project, can be quite challenging to make fit, and there is

a distinct upper limit on the number of types that can be included: in this project, certainly no more than

5 in each of the two “deepish” and “shallowish” bands. It is not obvious in advance how many “types” there

should be. As noted in the Introduction, there are good reasons why fishers do not think about “targeting”

in exactly the same way that we have been forced to (by data constraints), and the questionnaire responses

did not consistently describe any one clear set of “types”. However, the comment was made that “the iconic

species drive the decision”, and only 3-6 iconic species were proposed, fewer in a single depth band. Since we

have split our analysis by broad depth band anyway, our suspicion is that 5 types per band should be more

than adequate.

A harder question is to what extent “discrete types” actually exist; individual shots last for several hours,

vessels get some feedback on fish densities during a shot and can somewhat change direction if they wish,

and increasing incentives for “mixed bag” shots may blur some of the types. Our impression, though, is that

the posterior distributions of shot-type (e.g. Figure 4.4.3) do show some evidence of concentration (clearly

not driven just by vessel preferences, since the latter are quite diffuse: Figure 4.4.4), rather than the more

uniform scatter that might be expected if the model was just “making things up because it was told to”.

Failure to represent the variety of real types properly within the model would presumably weaken the

inferred effects of economic drivers. However, even if that really is a problem, we do not see any realistic

prospect of building an even-more-complex statistical model that could accommodate it.

5.1.1.2 Handle for “shadow price”

We have used a convenient but rather indirect approach to reflect anticipated lease costs for unheld quote

and/or “opportunity costs” for leasing held quota to others. Some approximation is inevitable; it does

not seem remotely possible to develop a statistically-estimable model that really matches a fisher’s process

of revenue-forecasting, and we can never expect to have all the relevant data. Also, we have necessarily

concentrated on modelling “average” behaviour across a fishing year; this is (according to the questionnaire

responses) quite different from how fishers decide about shots, where shorter-term factors (immediate issues

of fishing conditions and market state, and certainly no further than the next quota reconciliation point) are

necessarily dominant.

Nevertheless, we expect our approach to show qualitatively correct behaviour: the economic incentive to

pursue particular species varies from vessel to vessel, and tighter TACs on a species will tend to deter the

fleet as a whole from making shots likely to catch that species. For simplicity, though, we did make two

possibly-avoidable assumptions that may somewhat distort our results, both in the “TAC tightness” part of
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the model:

• that the proportion of “unavailable” TAC is constant over time;

• that TAC tightness is independent of “available effort” in the fleet.

The point about quota tightness is that, if there was just one boat left in the fishery, then it wouldn’t matter

what the TAC was. No one boat could catch the whole TAC whatever type of shots it made, so there would

be no deterrent effect of “tightness” on individual shots. There was a major reduction in CTS fishing capacity

in the 2006 buyout, which may have reduced the deterrent effect of tightness; it is not obvious what the

implications for CPUE would be.

With both of those assumptions, there might be enough aggregate data available to produce a better

model, although at the cost of doing considerably more development work.

5.1.1.3 Vessel fishing-power effects are omitted

CPUE standardizations often include a “vessel effect” on overall fishing power. Our model formulation is

more parsimonious than a set of single species standardisations, in the sense that our vessel effects are

concentrated into a small number of types rather than one for each of a large number of species. Much of

the vessel effects in single-species analysis may reflect targeting, rather than fishing power. We could have

included one more vessel-specific parameter to describe “fishing power”, but we doubt that conclusions would

change much.

5.1.1.4 Vessel preferences: fixed for 5yr blocks, and controlled by prior

Vessels can change their preferred species over time. Constraining each vessel to have the same preference for

the whole 12-year period would risk blurring the economic drivers. However, allowing each vessel to change

its preference every year would leave an enormous number of parameters to be estimated, and might hamper

the ability of the model to discern each set of preferences. As so often in statistical modelling, there is a

bias-variance trade-off.

Our choice of 5yr blocks reflects computational limitations— we had originally planned to model vessel

preference as a modified random walk, whereby the fleetwise rate-of-change in preferences would also be

estimated, but that proved too complicated. The 5yr “fixed effect” blocks were the most that could be

handled. However, it seems from Figure 4.4.4B–F that the within-vessel changes from one 5yr block to the

next are generally smaller than the between-vessel differences, suggesting that some consistency is likely over

5yr timescales. We do not see this as a major problem in an exploratory model, although a more flexible

approach would be needed if this model were ever fully developed.

To avoid confounding between real changes in abundance and any “accidental” (unmotivated by eco-

nomics) trend in preferences, we used a fixed prior over time to shrink3 the vessel preferences. Again, our

original intention was to estimate this prior’s variance (an Empirical Bayes approach) but this proved too

complicated, so a somewhat arbitrary choice was made. This still leaves some potential for confounding,

although it is not obvious in Figure 4.4.4This is one area where the model could be improved, perhaps by

adding fleetwise constraints so that not the prior does not treat vessels as independent (on the basis that

non-latent quota has to go somewhere).

3In the technical statistical sense, i.e. that in the absence of information to the contrary, most boats will look somewhat like

a composite-average-boat.
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5.1.1.5 Age-aggregation and size-depth effects

Some CTS species show a strong size-depth relationship, e.g. spotted warehou (Bax and Williams, 2000).

The Introduction notes the problems this can cause for CPUE interpretation, in a single-species as well

as multi-species setting (where the consequences might be slightly worse. Further, market price per kilo

in the SESSF often depends on size as well as species; we just used an average price to avoid excessive

complication. In principle, targeting decisions might take size-depth relationship into account. Somehow

this seems unlikely to be the “straw that broke the model’s back”, but it is worth remembering that this

problem exists for any CPUE analysis that aggregates across size/age where it should not. The question

raised in the Introduction remains open: whether/how far CPUE standardization should be embedded within

an Integrated Assessment, rather than run as a preliminary step and then used as a stand-alone input into

an assessment. But the complexity of any multi-species approach to that is quite daunting.

5.1.1.6 Omitted covariates

The problem with statistical modelling in fisheries is often not lack of data per se, but lack of informative

data. In CPUE standardization, there can be an inexhaustible supply of covariates that “might help a bit”.

Omitting them is not usually a problem, except insofar as the inferred trends in abundance become more

precise when more of the variance is explained by covariates (and subject to the usual statistical proviso,

that overfitted models can have worse predictive power). While there could no doubt be some improvements

in the model if extra covariates were used, we would be surprised4 to see much change in the qualitative

conclusions.

One covariate worthy of specific mention, is seafloor habitat data. We originally intended to explore using

the mapping data in Williams et al., 2010, because choice of habitat for trawling is sometimes an operational

decision that is informative about targeting. In the end we did not pursue this, for four reasons:

1. Time constraints on model development, and the complexity of the mapping data (many different clas-

sifications at different hierarchical levels), which would create major complications in model-selection.

2. There is no fine-scale track data for shots to reflect e.g. proximity to outcrops— a known factor in

species distribution and an operational consideration in targeting.

3. The mapping data is still too coarse for such features anyway (finest level recorded is 1km2).

4. Large-scale spatial effects on species distribution are absorbed anyway in the spatial distribution part

of the standardization.

5.1.1.7 Drivers really are economic

The economic considerations that we have attempted to model are not necessarily the only reason why

fishers choose to do one thing rather than another. Anecdotally at least, social considerations also used

to be important in the CTS, for example demonstrating fishing prowess by landing a lot of fish even if it

means reduced revenue from a quota, or in terms of information-sharing about recent and future shots. It is

unlikely that such factors have vanished altogether under the icy glare of economics. Also, the quota/revenue

considerations that were explained to us are very intricate; it must take time to learn how to “play the game”,

and for the game itself to evolve, especially given the major structural changes in the fishery in still-recent

4That is: among covariates that we know to be available now. If different data were collected in future, this might not

remain true; see next section.
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years. We see no prospect of building a data-driven statistical model for CPUE standardization in the CTS

that can magically account for such things.

5.1.1.8 Effort creep

We did not try to model changes in fishing power, e.g. due to GPS or other technology, or conceivably to

increasing average skipper expertise in the face of fleet reductions and the march of time. It is possible that

such effort creep may not affect all species’ catchability in the same way; for example, when really accurate

location data are available, species that stay close to outcrops may be easier to target, whereas there may be

less effect for more widely-distributed species. However, we suspect that any multi-species aspects of effort

creep are dwarfed by the general problem it raises for primarily-CPUE-driven management; it is a serious

matter for the CTS that is not accounted for in the assessment or in the Harvest Control Rules, and we are

unaware of any effective remedy while CPUE remains so prominent.

5.1.2 Would more work or better data change the story?

Many statistical models could be improved with more work, but diminishing-returns quickly set in because of

intrinsic limits in the information content of a dataset about a quantity of interest. Ours could certainly be

improved, and we have noted a couple of specific examples above. In fact, to bring the model to “production

quality” (i.e. for routine use as a standardization tool), substantially more work would be required, including

at a minimum: preference prior variance estimation, a better model for changing preferences, allowance for

vessel effects on catch rates not just preferences, and much more on model selection.

This begs the question: if not the model, then what about the data? Allowing for targeting in stan-

dardization means allowing for unrecorded but fisher-controlled covariates, so in principle targeting might be

handled easily if the right covariates could be recorded. In practice, though, there are two problems. First,

extra covariates in future would not help with retrospective interpretation of CPUE. Historical trends in

CPUE during a period of fast depletion in the 1990s-early-2000s (noting that effort has now been cut back

substantially) will continue to be a major driving force in the kind of Harvest Control Rules currently used

to manage the SESSF; given the Rules, considerable importance attaches to the question of whether biomass

is assessed right now (2015) to be above or below 20% of pre-exploitation levels, and no future CPUE data is

going to change that assessment by much. Second, it is not obvious that the right data could be collected—

though this is speculative, and somewhat beyond the scope of this report. In principle, we suspect that

modelling might be somewhat improved (perhaps to the point of not having to worry about unrecorded co-

variates) by knowing more about the entire track of a shot than just average depth and start/end locations,

since the across/along-contour distinction is important for expected catch. However, it is not obvious how

any standardization could blend two halves of a dataset with and without that information. Beyond that

aspect of the data, it is not clear whether the ideal information could be recorded in any consistent way,

e.g. points of detail about gear settings. And one proposed extension, of asking fishers to record “intended

targeting” in advance of a shot— presumably in terms of what species they hoped to catch— is not neces-

sarily going to translate consistently to operational details about what they actually did ; the latter is what

is really needed for better standardization. We note that asking fishers for targetting information has, in

theorey, already been tried. The resulting data has been universally disregarded as unreliable (M Haddon

pers. comm.).
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Recommendations, Implications, and

Further Development

Targeting is a real phenomenon in the CTS that has changed over time, which may have led to changes

in CPUE independent of abundance, but that cannot be measured directly. We have shown that it is

(just about) possible to construct a statistically-defensible CPUE standardization that (in principle) makes

allowance for changes in targeting driven by (some) economic factors. However, we do not recommend

that our model be adopted for CPUE standardization in the CTS, even after adaptation. It is much more

complicated than existing approaches, likely less robust than an off-the-shelf statistical model for “standard

standardization” such as a GLMM, and would require substantial further work to get the details right; and

the answers we got are not different enough to make the extra work worthwhile. Any minor improvements

would be dwarfed by the elephant-in-the-CPUE-room— effort creep— which is unaccounted both in our

model and in “standard standardization”.

There are two possible conclusions from our results: either long-term changes in targeting have not much

affected overall CPUE (after standardization) in which case there is not much point in taking the work

further; or the model we developed was inadequate to handle targeting properly. We certainly acknowledge

that the latter is possible; we tried our best but the data, our time, and our abilities are all limited. Even

though the economic representation in the model is crude, from a statistical and computational point of view

the model is already so complicated that it is approaching the limits of feasibility. Would it be worth the

effort to try developing a better model? While one can never rule out the possibility that a better model

might somehow change the answer, our feeling is that, if any model could ever pick up a strong effect of

targeting on CPUE trend, then our exploratory attempt should have shown a much larger effect than it did.

This is not to say that there really is no strong effect— but if there is, then we see little chance of ever

capturing it in a model. One reviewer of this report suggested that it might be worthwhile unravelling why

our model didn’t substantially alter trends. This has academic merit, but it must be based on: 1) pretending

that we have data that is not available for the CTS, or 2) simplifying the model by removing sources of

information. There is little practical utility in pretending to have data that is not available— it will be

applicable to any real standardisation. Also, removing information can only have the effect of blurring the

targetting effect even more. Hence, we cannot recommend this line of research for the CTS.

There is always a temptation to try squeezing more blood out of the CPUE stone, especially when

pickings are so slim in the rest of the stock-assessment data. However, we are skeptical of claims for simpler

approaches to standardization-with-targeting in a complex fishery like the CTS (e.g. omitting economic

drivers) because of the statistical pitfalls listed near the end of the Introduction: in particular, the danger

of reliance on purely statistical classification criteria without an underlying mechanism, and the various

problems with a two-step classify-then-standardize approach. Therefore, we recommend that any further
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proposal to improve CPUE standardization in the CTS by addressing targeting should first demonstrate—

by argument and/or simulation— why it will avoid those pitfalls, and (to avoid duplication of substantial

effort) why it might be expected to yield different results from ours. With respect to the pitfalls, we have

found simple simulations to be more informative than complicated ones, and we have provided a small R

package that might be useful for exploration in simple and generic (non-CTS) settings. The code for fitting

our own targeting model to CTS data is also available as an R (and C) package.

As to the implications for assessment and management of the SESSF: we do not see much prospect of

ever getting much more out of CPUE in the CTS than is currently achieved by standardization1. If nothing

else, perhaps this project will dispel any illusions on that score. Worldwide, in fisheries which have the

opportunity, CPUE has been abandoned as the index-of-choice because of all the interpretational issues for

which there is no guarantee that any statistical fix will work, and because of the serious implications of

making the wrong interpretation or failing to span the range of possible interpretations. There are certainly

problems with CTS CPUE, especially effort creep which to the best of our knowledge there is no realistic

hope of quantifying in the CTS; and the problems are not mitigated by the current SESSF HCRs, which

are considerably affected by the estimated depletion (i.e. current biomass relative to unexploited) which for

many species is largely determined by CPUE trends2 ( see Punt et al., 2002 for a CTS specific study of this

issue). When the top-tier HCRs have been simulation-tested in generic settings for the impact of unmodelled

effort creep, they have unsurprisingly not done well (Andre Punt, pers.comm.)..

One of the motivations behind this study was the lengthy and unresolved debate about whether zero-

catch shots of a species should be included when doing single-species CPUE standardization in the CTS

(and indeed, when was zero really zero?). This “much ado about nothing” is a shot selection question that

is really just the tip of the iceberg of the wider issue of targeting. One of our remits in this project was to

find a coherent way to resolve the question and, in a technical sense, we have succeeded; our multispecies

standardization uses all the shot data and zeros should definitely be included. However, given that we are not

recommending routine use of our model, the question of what to do about zeros remains. This is somewhat

tied up with the minutiae of single-species standardization3, which are beyond the scope of this project, but

the following general points apply:

• There is no purely statistical criterion (such as a goodness-of-fit criterion) that can be relied on to

make the decision;

• The operational details of the CTS are too complex, and the logbook data too incomplete, to reliably

decide shot-by-shot on ”operational” grounds, except in special case

• The only safe method is to check what might happen in management terms when zeros are/are not

included (but should not/should have been), i.e. by MSE. Intuitively, omitting zeros when they are

meaningful could lead to inadvertent overexploitation, whereas including them when they are not

meaningful (e.g. because of changed targeting) could lead to overly conservative management. The

SESSF Harvest Strategy is presumably set up to give more emphasis to one or other of these situations,

so simulations may not actually be needed, or very simple ones may suffice.

1The question of “what to do about zeros” is still important and worth reconsidering in single-species CPUE standardization,

though it is really linked to targeting.
2Albeit via a stock assessment at least for the “top tier” HCRs, but the assessments are currently still at the mercy of CPUE.
3For example, in a well-chosen GLMM, it should not matter if shots outside of a species’ depth range are included, since

they will be “standardized out” anyway. The more difficult question concerns shots that fail to catch a species inside its usual

depth range, season, etc., where failure-to-catch may or may not be indicative of an operational decision about targeting.
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The desirability of an alternative, more reliable, abundance index for the SESSF is obvious. The Fishery

Independent Survey (Knuckey et al., 2013) should at least be immune to effort creep, although it has higher

short-term variability than CPUE because of the limited number of shots; we note that there has been no

investigation of how often or how thoroughly the FIS would need to be done in order to provide adequate

inputs for the Harvest Control Rules. We also note that there has been a recent success with a completely

new fishery-independent abundance estimation method— Close-Kin Mark-Recapture— for Southern Bluefin

Tuna (Bravington et al., 2014), and that the CKMR approach is being developed into a long-term monitoring

index for that species. CKMR is not totally free, but it is far cheaper than surveys4, and does not suffer

from the problems of CPUE; although it has not yet been scoped specifically for any SESSF species (except

school shark, where a new project began in 2015) and the specifics would be quite different to SBT, there is

no obvious reason why it would not work for many of the key SESSF species.

4And is most cost-effective for the highest-value most-abundant species.
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Extension and Adoption

Several presentations of our results were made to SESSF RAGs and other meetings. Most presented only

intermediate results, but a complete overview is available (CSIRO MSCPUE workshop, Hobart, 2014).

These presentations to RAG meetings is intenionally the primary source of extension as it is the scientists

and managers who have the prime interest in this work.

In addition, some of the early results have been presented to scientific audiences through a journal article

(Foster and Bravington, 2013) and through invitations to conferences/workshops (Foster and Bravington,

2010a; Foster and Bravington, 2010b).
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Project Materials Developed

fishMod 0.25.tar.gz An R package to estimate and summarise a number of different types of single-species

zero-inclusive models. The statistical and numerical methods employed in this package are necessary

pre-cursors to the full multi-species standardization. This package is available from CRAN.

fishModFULL 0.2.tar.gz An R package to estimate the full targetting-inclusive multi-species CPUE

model.

mscpue 1.0.7.tar.gz An R package to illustrate some of the pitfalls, highlighted in Section , of various

approaches to multi-species CPUE standardisation

Single Species Paper (Foster and Bravington, 2013) A formal description of the methods in the single

species (with zeros) package fishMod 0.25.tar.gz.
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Appendix A

Questionnaire on Targeting Practices

1. Say you’re already out on a trip and are thinking about where/how to shoot next.

(a) Which species are important in your decisions?

(b) What would you actually do, to go after the species you decide on? E.G. depth, depth profile

thru shot; duration; net height; proximity to reefs...

2. Before shooting, how good an idea do you have about likely prices for different species?

(a) How fast do prices fluctuate?

3. What influences your decision about where/how to shoot? E.G. current quota holdings, lease-ability

4. Is the total catch from your own trip enough to affect market price in its own right?

(a) If so, do you have to go for mixed bags, in order not to swamp the market with one species?

(b) How much does supply of one species affect the price of that and other species?

5. If you don’t already hold quota for a species, how hard is it to lease retrospectively?

(a) Does this change through the quota year (e.g. late, when there’s not much TAC left for a species)?

(b) How good an idea would you have beforehand about the likely cost?

6. If you hold unused quota for a species late in the year, do you deliberately lease it out, rather than try

to use it yourself?
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Appendix B

Model Details

Details of the model are now given. The different parts of the model, and the intuition of how they fit

together, are given in Chapter 1.4.

B.1 Sub-model for catch-and-effort data

The basic model used to describe catch and effort data is a simple multiplicative model – close to a generalised

linear model (GLM) with a log-link. For the ith trawl and the sth species, the model is (ignoring random

components, for now)

Csi = qsiEiBsi,

where Csi is a catch record, qis is the catchability, Ei is the effort and Bsi is the biomass for the species.

The catchability, qis is the probability of catching the species if it is actually at the location of trawling. The

biomass Bsi is the biomass available to the shot, not the population biomass. This model can be linearised

using a log transformation

logCsi = log qsi + logEi + logBsi (B.1.1)

= logEi + log (qsiBsi)

= logEi + log (B∗si) say, (B.1.2)

where we still have not taken any consideration of any random variation. While illustrative, the first form of

the linearised model (B.1.1) is not practical as the biomass and catchability are not separable, not without

replicate trawls anyway. This leaves us with the final form for practical uses, (B.1.2).

Random variation can be incorporated using a log link function, and an explicit model for the mean

response is defined at the same time. That is,

logE (Csi) = logEi + log (B∗si)

= hs(xi) + logEi, say, (B.1.3)

where hs(·) is a function of shot-specific covariates xi. The variables in xi are things that are thought to be

related to catch, either through altering biomass Bsi, catchability qsi, or both. We choose the function hs(·)
to be a penalised smoothing spline, a generalised additive model (e.g. Wood, 2006). As such, the flexible
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function can be expressed as a linear combination, that is hs(·) = x∗i
>τs where τs = (τs1, τs0) is a vector

of parameters for spline terms (τs1), and other terms (τs0). The vector x∗i is a transformed version (basis

expanded) of the original observations xi.

We prefer to model Csi directly, rather than catch-per-unit-effort (CPUE; Csi/Ei), as CPUE varies with

both catch and effort – not just catch. Hence, its relationship with catch can be obscured. Typical examples

of variable to include in xi are: year, depth, spatial location, and time of day. The model is completed with

the specification of the distribution of departures from the expectation, as defined in (B.1.3). This is not a

simple choice as the chance of not catching a species is quite high, and these zeros can cause complications

for standard exponential family distributions. We favour the use of Tweedie departures as these allow for

zeros in a principled manner (see Smyth, 1996; Candy, 2004; Shono, 2008; Tascheria et al., 2010; Foster and

Bravington, 2013).

To account for targeting in the catch and effort analyses we assume a small number, G, of different

targeting practices and allow an extra targeting-specific term in the model, depending on the targeting type.

For targeting type g ∈ [1, . . . , G] the model is

logE (Csi|targetting type g) = hs(xi) + γsg + logEi, (B.1.4)

where γsg can be interpreted as an adjustment to the catchability of the species (the intercept), although

another interpretation is an adjustment to the effort. This is just a GLM when the targeting type is known.

Since targeting type is not recorded however, we introduce a latent (random) variable zi. This latent G× 1

vector has zeros everywhere except for a single one at the gth location. The conditional model then becomes

logE (Csi|zi) = hs(xi) + z>i γs + logEi,

where γs is the vector of all G adjustment terms for species s. The distribution of the zi is required, we

assume a multinomial with a single draw and the vector of probabilities πi. That is zi ∼ mult(1,πi). This

type of model is commonly known as a finite mixture model (McLachlan and Peel, 2004). Our model has

marginal expectation

E (Csi) =

G∑
g=1

πigE (Csi|targetting type g) .

We refer to the model for catch Csi, that takes into account the different targeting types, as the targeted

catch-and-effort model. Its simple structure is intuitive, simple and appealing. However, the full model is

not complete yet. It is completed with specification of the πi vector, which we refer to as the choice model.

B.2 The choice sub-model

This part of the model assumes that the probability of making a shot of some particular type depends on

the Anticipated Net Revenue. The shot-type with the highest ANR (according to the model) is the most

likely to get chosen, but any type is possible, for two reasons:

• the model does not have access to all the information that the fisher does;

• fishers do not always make perfect decisions.

In practice, the decision about shot-type (as we classify them) is intimately linked to the decision about

average depth of the shot, so we compute ANRs across all combinations of shot-type and average depth1.

1We assumed for simplicity that operational costs are about the same for all fishing options, so that profits are determined

by shot outcome not by shot expenditure.
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If there was enough data to calculate expected revenue specifically for the vessel b that is about to make

the shot, then the prior probability of deciding to make the shot of type g at average depth2 d would be

calculated as:

P [d, g|b, x, t] =
ANRκ

dgbxt∑
d∗g∗ ANRκ

d∗g∗bxt

where t is date and x stands for the other “conditioning data” for the shot: location-along-coast (which affect

species density), whether the shot is to be basically deep or basically shallow, plus current economic factors

explained below. The parameter κ is a “rationality” or “perfection-of-knowledge” parameter; values near zero

correspond to shots being chosen randomly without any economic motive, and as the value of κ increases,

the more likely a fisher is to choose the type-and-depth that the model reckons would be best.

Since we cannot hope to properly model vessel-specific net revenues, we approximate the effect by instead

applying a vessel-specific preference weighting to the different types:

P [d, g|b, x, t] =
PbgFANRκ

dgbxt∑
d∗g∗ PbgFANRκ

d∗g∗bxt

where the FANR is now calculated as a “Fleetwise average”— though there is still a small vessel-specific

adjustment to allow for trip-level effects, explained below.

The term FANRdgbxt is calculated as the expected difference of the trip revenue with and without the

shot, where the “trip” comprises all shots in the three days prior (note that trips cannot be identified from

logbook data). This takes into account that landings in the next shot can affect revenue from the previous

shot in a trip, because of elasticity, as well as vice versa. The formula is

FANRdgbxt =

S∑
s=1

[
E (Csi|dgxt) + c+stb

]
pst −

S∑
s=1

c+stbp
+
st,

where:

• s is species

• pst is the anticipated “net price” (see below) of s at landing, including the anticipated catch from the

imminent shot

– p+st is the anticipated “net price” without the imminent catch

• Cs is the random variable for the catch of species s in the imminent shot

– c+stb is the known sum of the catches for this vessel over the three preceding days (typical trip

duration; unfortunately, actual trips cannot be distinguished from the logbook data).

The anticipated net prices should reflect

2Here“average depth” is treated as discrete rather than continuous, being split into 25 narrow sub-bands within the“basically

deep” or “basically shallow” range.
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1. across the fleet on average: the difference between market price pmkt
st (known to the model and to the

fisher) and the fleetwise-average cost of having to lease enough unheld quota (unknown, but depends

on TAC-tightness), and

2. for the vessel making the shot: the elasticity adjustment from catches earlier in the trip.

We dealt with the TAC issue via:

pnet
st = pmkt

st ×
(

1− exp

(
−θs

Ts
B∗s

))
(B.2.1)

where Ts is the quota for that species s that year (year subscript omitted for brevity), B∗s is the abundance

index for the species (i.e. the goal of the standardization, and represented by parameters already in the

model), and θs > 0 is a scaling parameter that allows for overall catchability of the species and the proportion

of the TAC that is unavailable for lease.

The trip-specific elasticity adjustment is given by

pst = pnet
st exp

(
βslog

(
c+stb + E (Cs|dgxt) + 1

))
p+st = pnet

st exp
(
βslog

(
c+stb + 1

))
Estimates of βs come from the preliminary analysis described in Section C.2.

Vessel-specific type preferences, notated by Pb and discussed in Chapter 1.4, are assumed to be Dirichlet-

distributed random effects with equal means 1/G (i.e. no average fleetwise preference for any type, except

as economics dictates). The concentration parameter of the Dirichlet was chosen to make the distribution

concave (to avoid numerical difficulties), but only mildly (to avoid biasing the results). In principle, this

parameter could be estimated (e.g. by Laplace approximation), but the computational task was too great.

B.3 Log-likelihood

For estimation purposes we use, as a log-likelihood, the log of the joint probability density for the observations

(Csi, i = 1 . . . n and s = 1 . . . S), the (random) smoothing spline effects (τsj , s = 1 . . . S, j = 1 . . . J where J

is the number of smooth terms in the model), the boat preferences (Pb, b = 1 . . . B where B is the number

of boats), and the trawl depth (di). The log-likelihood is marginal to the targeting groups, obtained by

summation – the usual approach for mixture models.

The conditional log-likelihood contribution for the catch of the ith trawl at depth di is given by

`
(1)
i = log

(
G∑
g=1

πig(κ,θ, {τ}Ss=1)

S∏
s=1

f(Csi|targetting type g depth di)

)
(B.3.1)

where f(Csi|targetting type g depth di) is the density from a Tweedie distribution (with mean given by

(B.1.4) and some known power parameter), and πig(·) is the joint probability of targeting type g and depth

di. Note that this is not marginal to depth, rather it is a true joint distribution according to the model in

Chapter 1.4 and this appendix. The (joint) log-likelihood is simply the sum of these values, penalised for

the other random effects. That is

`(2) =

n∑
i=1

`
(1)
i −

S∑
s=1

J∑
j=1

1

2σ2
sj

τ>sjSjτsj −
B∑
b=1

D(Pb), (B.3.2)
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where σ2
sj , τsj , Sj are the variance components, the random effects, the smoothing (inverse variance) matrix

for the jth penalised smoothing spline in the model respectively, and D(·) is the log-density for a Dirchlet

distribution. We parameterise the Dirichlet distribution using a concentration parameter, α∗ and a set of G

scaled parameters that sum to one, α. To ensure concavity, we assume that each element of α is at least

1. This is performed by assuming that at least one observation is in each group. This is identical to using

a posterior density where one observation from each group is observed, and the observation comes from a

multinomial. Under these considerations, the function D(·) is

D(x) = log Γ(α∗ +G)−
G∑
g=1

Γ(αg + 1) +

G∑
g−1

(αg) log xg.

B.3.1 Estimate-taming penalties

The smoothing spline terms {τj} have been introduced as random effects. This has been done to penalise

the flexibility of the model and the size of the penalty is inversely proportional to the variance of the random

effects. This has well-known benefits, chief amongst them is that it smooths the likelihood surface and makes

estimation easier. There are costs too, such as biased estimates with the amount of bias depending on the

severity of the penalty. We have introduced the Dirichlet boat effects with a similar motivation and we

introduce some further penalties in this section. The prime motivation is to smooth the log-likelihood to

make estimation easier.

The location parameters in the catch and effort sub-model ({τso}Ss=1 in Section B.1) are assumed to have

a mild (quadratic) penalty. This implies that they are assumed to be normal random effects with mean zero.

The group and species adjustments in the targeted catch and effort model ({γsg} in Section B.1) are also

assumed to be random normal effects, with mean zero. Likewise the log of the TAC scaling parameters (θs
in B.2.1) and the log of the confusion parameter (κ in Section B.2) all are assumed to be normal with mean

zero. The penalised log-likelihood is the one used for estimation, it is

`(3) = `(2) −
S∑
s=1

1

2σ2
o

τ>soτso −
S∑
s=1

G∑
g=1

1

2σ2
γ

γ2sg −
S∑
s=1

1

2σ2
θ

(log θs)
2 − 1

2σ2
κ

(log κ)2 (B.3.3)

The variances of these random effects, introduced for computational reasons, are all extra tuning param-

eters. As such, their choice is important. However, the SETF data are plentiful and the effect of these tuning

parameters is likely to be small – except for parameter values very far from that expected. For this reason,

we try to choose mild tuning parameters.

B.4 Estimation

Estimation is performed by maximising the penalised log-likelihood in (B.3.3). Maximisation is carried out

using a quasi-Newton optimisation routine Nash and Sofer, 1996, which provides super-linear convergence.

The quasi-Newton method requires the first derivatives of the penalised log-likelihood. We obtain these using

automatic differentiation Griewank, 2001 as implemented in the CppAD C++ library Bell, 2011.

The calculation of the penalised log-likelihood requires evaluation of the Tweedie density, for fixed power

parameter. We use the method of Dunn and Smyth, 2005, also see Appendix A of Foster and Bravington,

2013. We pre-specify the power parameter based on the results from Peel et al., 2013, who used a univariate

Tweedie GLM and estimated the power parameter by choosing it to make the residuals homogeneous.
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Limited testing of these estimates, based on the methods in Foster and Bravington, 2013, suggest that

they should be adequate. For computational thriftiness, it is important to pre-specify the power parameters

as this enables pre-calculation of many of the terms required by the series evaluation method of Dunn and

Smyth, 2005.

The calculation of the penalised log-likelihood is an involved process that involves many calculations.

For this reason, the optimisation procedure is slow – for the summer data (three targeting groups and eight

species), the model will take up to 18 hours to converge. Unfortunately, this limits the breadth of the

scenarios that can be investigated.

We originally planned a fully Bayesian implementation, in which hyperparameters such as the variance

of vessel-effects would also be estimable parameters. Such models need special-purpose software to fit, e.g.

able to handle automatic Laplace Approximation (Skaug and Fournier, 2006), and in 2008 there were only

two options: ADMB (which was at that time causing great problems to one of us in a different project), and

CppAD (able to handle Laplace Approximation in principle, but not previously tested). In the end, though,

we had to opt for a simpler approach of fixing the hyperparameters manually, adequate for an exploratory

model; but we were by then committed to CppAD.

60



Appendix C

Details of Data Used

C.1 Log book data

The details of the subsetting procedure are given in Table C.1.1. These filters, when applied to the entire

log-book data deliver the data used in this study. They are based on the approaches described in Darbyshire

et al., 2008 and Klaer and Smith, 2008.

Table C.1.1: Filtering rules to remove erroneous data and to homogenise the remaining data. All named

variables must not have missing values.

Condition Number of Trawls

No Filtering 660,184

Longitude & Latitude – 660,184

Vessel (Boat) – 660,184

Catch & Effort – 633,628

SETF Zone – 633,628

Depth Average depth < 700m 547,972

Period of Day Not ‘unkown’ 538,215

Start and End in Ocean – 529,739

Trawl Distance 0 < Trawl distance < 30 nautical miles 501,261

Trawl Time 0.5 < Trawl time < 8 hours 495,222

Depth Average depth > 10m 494,983

Roughy Trawls Trawl time == 0 & Depth > 500 494,976

Years 1994–2008 349,854

SETF Zones 10, 20, and 30 247,874

Season Winter and Summer 123,937

Active Boats >1000 trawls in entire period 94,689

Boats active in boat.time >100 trawls for each boat.times 94,476

Number of trawls to analyse: 94,726 (winter 48,864; summer 45,612)
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C.2 Fish market data

We do not require the observed price for the model. Rather, it is the expected price that is important and

the elasticity (substitution) effects for lagged catches. We start development by considering that expected

price is obtained from prediction from a generalised additive model (Wood, 2006, for example) that contains

a smooth term for time only. It is simply

log (ps(ti)) = logE (yst) = f(t),

where yst is the observed price for the sth species on the tth day and f(t) is the penalised spline function

value for day t. This is a multiplicative model, which is preferred here as it provided a better fit to an

additive model. The additive model failed to account for the varying size of the deviations due to inflation,

especially so when elasticity effects are included.

The time-only model ignores any effects arising from elasticity, substitution and other market-based

drivers of price. In essence, this models describes the expected price marginal to these market-based drivers.

That is, it predicts the expected price irrespective of what the market based effects are. It is needed in the

full mixture model.

The mixture model also needs the elasticity effects – the amount of price reduction for having a large

amount of a species already on the market. These effects are obtained from an extension of the time-only

GAM. This approach models some of the fine scale temporal effects that are not identified by the spline.

The model is more economically sensible as it accounts for the two major sources of price variation: time

trend and elasticity, where time is both inter- and intra-annual. In addition to the smooth term, another is

added for the amount (kg) sold in the last three days. That is

logE (yst) = f2(t) + βslog
(
C+
st + 1

)
,

where C+
st is the cumulative amount of species s sold in the last 3 days and βs is the elasticity parameter.

The lagged catch is included as log
(
C+
st + 1

)
as this scale both (approximately) linearised the relationship

effectively, and it down weighted the effect of particularly large catches. Note that this equation could, in

principle, be extended to account for substitution effects (amount of other species on the market affect price).

This has not been done – it would require a more detailed analysis of the fish market data, which the data

themselves are unlikely to support.

This analysis was performed for all species that had more than 500kg market turnover throughout the

entire 1994-2008 time period. Figure 4.1.1 illustrates the fit of this model for two species.
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Appendix D

Model Specifics for the Logbook Data

Analysis

We fitted separate targeting models to the summer/winter and shallow/deep data, see Section C.1. This

was done as it made computation tractable and also as many species behave like different stocks over the

different seasons/depths. The sub-model for the catch and effort data (see Section B.1) was specified as

logE (Csi|targetting type g) = τs,year(i) + hs(alongi) + hs(depthi) + τs,period(i) + γsg + logEi,

where Csi is the catch of the sth species in the ith shot, τs,year(·) and τs,period(·) are indicator functions

that produce discrete values for each year and day period (night, day and a combination of night and

day (mixed)) respectively, γsg is the targeting type factor, Ei is the effort for shot i, and hs(alongi) and

hs(depthi) are smoothing splines functions for the along-coast and depth variables respectively. All effects

in this catch-and-effort model are species dependent, except for the offset (of course).

The smoothing spline functions for depth and along-coast were defined as cubic regression smoothing

splines, each with 9 bases functions. The variance components for the random effect formulation of the

smoothing splines were taken from non-targeted fits to each species. Ideally, these components would have

been estimated in the full model. However, computational limitations prevented it. Previous work (Peel

et al., 2013) used a similar approach to single-species analyses ans showd that these two spline effects are,

perhaps surprisingly, effectively independent for a large number of species.

There are a large number of possible models that we could have fitted. Some may have even been more

sensible than the one used. However, we considered this to be a plausible model that was computationally

feasible. Based on previous work (Peel et al., 2013) we suspect that any refinements would produce only

modest improvements to the model’s fit.

The (joint) sub-model for targeting type and for depth requires the specification of the number of depth

classes to use in the approximation of the integral. Here we use D = 25 depth ranges. This was chosen as a

compromise between accuracy and computational feasibility. In a similar spirit the number and locations of

reference points for estimating the total abundance for the TAC-adjusted revenue need to be specified, see

B.2.1. We use a set of 125 locations that are spread evenly through the along-coast variable. These points

all follow the contour defined by the average trawl depth.

Vessel effects are included in the model using the methods described in Section B.2. We allow for time-

varying boat effects by categorising time for each boat into 5 year (maximum) blocks. The minimum time

block is 5 years as smaller time periods were thought to be too variable. The change-points for the vessels are

63



Table D.0.1: Penalties used for the SETF analyses.

Terms Type Penalty

{δsg}Gg=1 Variance 1

{τo}Ss=1 Variance 3

{log θs}Ss=1 Variance 1

log κ Variance 2

{pb}Bb=1 Concentration 10

staggered so that changes in the fleet behaviour does not affect the catch trend. Each vessel is assigned into

one of 5 groups, each of which has change points at different years. Any boat and time block combination

that has less than 100 observations was removed. This leaves a total of 108 boat by time block combinations.

The penalties used in an effort to smooth the log-likelihood surface are listed in Table D.0.1. In practice,

the choice of penalties do not make much difference as the information in the data is strong enough to

over-power the penalties. However, the penalties do ‘smooth out’ some of the more irregular features of

improbable combinations of parameter values. Sensitivity to these choices is shown to be low in Appendix

F.

There are a large number of parameters in this model. We give the complete list in Table XXX, along

with their type and their number.
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Appendix E

Summer Results

The winter results, deep and shallow, are presented in the body of the document. Here, we present the

results of the summer analyses. We do not provide the same level of interpretation, as most of it would be

repetition of the ideas presented previously.

E.1 Summer Deep

A 2-type model has the highest “rationality parameter”; the catchability parameters are given in Table E.1.1.

The types are clearly separated into favouring flathead/redfish/morwong (Type 1), or blue grenadier (Type

2), which is more common. There is not much change in proportions of each type over time (Figure E.1.1).

Posterior probabilities of shot-type show good clustering (Figure E.1.2). Clustering is more distinct here

than for the other subsets where more types are involved.

Blue Jackass Ling Mirror Redfish Spotted Tiger

Grenadier Morwong Dory Warehou Flathead

Type 1 -1.21 1.02 -0.33 -0.39 2.62 -0.31 6.15

Type 2 1.21 -1.02 0.33 0.39 -2.62 0.31 -6.15

Table E.1.1: Summer deep catchability parameters for the chosen model; see main report for explana-

tion. With only two types, it is mathematically inevitable that these log-catchability effects will have equal

magnitude but opposite signs in the two types.

In terms of abundance, the inferred series under different models are given in Figure E.1.3. On the

whole there is again no major difference when targeting is included (though basic standardization does

matter), though the chosen 2-type model (solid black) does give a less spiky series than the 1-type model

(standardization but no targeting; dotted turquoise) especially for redfish and grenadier. While this is also

true for spotted warehou, one of the (non-chosen) targeting models with more than two types suggests a

different story to the 2-type model; there is some sensitivity to model-choice here.

E.2 Summer Shallow

Here a 3-type model gave considerably the highest rationality parameter, although one type is rare (˜4%

of all shots). The two main types could be described as pro- or anti-flathead (“Type 3” and “Type 2” in
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Figure E.1.1: Proportion of Summer deep shot-types over time
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Figure E.1.2: Posterior probabilities of shot-type for the summer deep data. The mirror-image is inevitable

since there are only two types in this model.
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Figure E.1.3: Summer Deep abundance indices under different targeting models. See main report for

explanation of the different lines, in particular Figure 4.3.2.
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Figure E.2.1: Proportion of Summer shallow shots of each type over time.

Table E.2.1 respectively), although flathead is widespread and the estimated “pro-flathead” effect is only

about 20%. However, the pro-flathead type has effectively no chance of catching morwong, mirror dory, or

spotted warehou. The rare third type (“Type 1”) apparently favours mirror dory, redfish and silver trevally

against flathead. There is not much trend in the proportions over time (E.2.1). Posterior probabilities are

fairly well separated.

Jackass John Mirror Redfish Silver Spotted Tiger

Morwong Dory Dory Trevally Warehou Flathead

Type 1 4.74 -0.18 5.42 2.89 2.70 2.23 -0.14

Type 2 4.89 0.06 1.88 -0.32 -0.67 2.58 -0.02

Type 3 -9.63 0.12 -7.30 -2.57 -2.03 -4.82 0.16

Table E.2.1: Summer shallow log-catchability effects. Note that Type 1 is rare (˜4% of shots).

The prevalence of each targeting type does not appear to change over time, see Figure E.2.1. The

prevalence of targeting type 2 has a higher prevalence than type 3 and a much higher prevalence of type 3

throughout the study period.

The various abundance indices for summer-shallow are given in Figure E.2.3. Again, some species are

insensitive to model choice, for most others standardization has an effect but targeting does not, and for

a few (morwong, john dory, mirror dory, spotted warehou) the with-targeting results are a little less spiky,

though not much different in overall trend.

Vessel preferences are again well-scattered (Figure E.2.4A) and within-vessel changes over time are gen-
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Figure E.2.2: Distribution of posterior probabilities for the summer shallow data.
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Figure E.2.3: Summer Shallow abundance indices under different targeting and standardization models.

Solid black vs dotted-turquoise correspond to 3-type vs 1-type targeting. See main report for explanation of

the different lines, in particular Figure 4.3.2.
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erally smaller than between-vessel differences (Figure E.2.4B–F), suggesting no major problem with the

5-year-fixed-block approximation. Some of the vessel preferences are quite close to the rare “Type 1” vertex,

so those shots may come from a particular subset of the fishery.
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Figure E.2.4: Summer Shallow boat preferences on ternary diagrams. Each boat (a dot) has a preference

for each of the three different targeting types (vertices of triangle). A boats proximity to a vertice measures

its preference to that targeting type. Panel A) presents all boat effects (vessels and periods), coloured by

vessel. Panels B) through to F) give a subset of vessels, whose preferences have been tracked over time

(between periods). Sequential periods have been joined by arrows. Subsetting was performed to reduce the

amount of information per panel to an interpretable amount.
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Appendix F

Sensitivity Analysis

F.1 Penalisation

The penalties on the parameters are arbitrary and their effect on the resulting conclusions should be checked.

The sensitivity of the inference from the model on the amount of penalisation can be checked by fitting models

with more, and less, penalisation. To this end, we use the winter data (combined shallow and deep) and the

three component model to inspect how sensitive the resulting CPUE series is to the amount of penalisation

in the log-likelihood. Note that this is a different data set than previous analysis. The difference is an

unfortunate accident of history, but not an overly large one. The choice of data should not affect the

sensitivity of the model because the amount of information in the data will be comparable and so the effect

of penalisation will also be comparable. We fitted two additional models, one with more penalisations and

one with less penalisation than the model with penalties defined in Table D.0.1. See Table F.1.1 for altered

penalties in the sensitivity analysis.

The resulting CPUE series do differ, but not by much (see Figure F.1.1). This amount of variation

is small, especially when compared to the amount of variation exhibited between the models of different

numbers of targetting types. We do not feel that the choice of penalties invalidates the inferences drawn

from the model.

F.2 Time of Day and Length of Trawls

There has been some discussion as to whether the period of day that the trawl was undertaken (day, night,

or mixed) is adequately accounted for in the model. Likewise, it is possible that filtering out shots that are

Table F.1.1: Penalties used for the sensitivity to penalties analyses. Compare with Table D.0.1.

Terms Type Less Penalty More Penalty

{δsg}Gg=1 Variance 10 0.5

{τo}Ss=1 Variance 10 1

{log θs}Ss=1 Variance 10 0.5

log κ Variance 2 2

{pb}Bb=1 Concentration 0.3 30
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Figure F.1.1: Sensitivity to penalisation. Winter catch rates for different targetting models (all depths).

76



Figure F.2.1: Comparison of model fitted to data with and without night shots (winter data, all depths).

too long or too short will make a substantial difference – it will obtain a more homogeneous set of shots. To

investigate these two issues we fitted an extra two models; one to those shots that were undertaken during

the daytime and one to those whose trawl time was limited to be between 2.5 and 4.5 hours. The number of

trawls analysed in either case was 36,648 for the daytime shots and 33,685 for the effort-limited shots. The

resulting CPUE series are presented in Figures F.2.1 and F.2.2. The effect on the CPUE series of using only

the daytime shots is largely insignificant as is the effect of using a limited effort range. This implies that the

inferences from the model are robust to subsetting data for time of day and for shot length.
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Figure F.2.2: Comparison of model fitted with restricted trawl duration (2.5 to 4.5 hours) to that will winter

trawls (all dpeths).
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