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Non-technical summary 
 
2008/028 Predicting the impact of hook decrements on the distribution of fishing effort in 

the Eastern Tuna and Billfish Fishery  
 
PRINCIPAL INVESTIGATOR: Dr C. Wilcox 
ADDRESS:  CSIRO Marine and Atmospheric Research 
  Castray Esplanade 
  Hobart, TAS 7000 
   Telephone: 03 6232 5222   Fax: 03 6232 5000 
 
OBJECTIVES: 

1 Develop a statistical (multivariate logit) model to predict the distribution of fishing effort in the 
ETBF 

 2 Develop a process (a state-dependent behavioral) model of effort allocation for an input 
managed fishery with individual effort allocations 

 3 Evaluate the impact of a series of SAF scenarios on the distribution of fishing effort in the 
ETBF using statistical and state-dependent behavioral models 

 
Outcomes Achieved to Date 
 
The primary outcome of the project is an increased understanding of the factors driving the 
spatial distribution of fishing effort in the Eastern Tuna and Billfish Fishery and the effects of 
those factors on the economics of the fishery at the vessel, port, and fleet level.  Prior to this 
project there had been very little analysis of fleet dynamics in the fishery, and thus no formal 
information on how the fleet might react to spatial management.  The primary outcome of this 
project is to provide a resource for AFMA managers and the Resource Assessment Group and 
Management Advisory Committee members that can assist in understanding the outcomes of 
management actions.  Secondarily, while the primary fishery management structure has 
shifted from spatial effort controls to nonspatial catch quotas, there is still a need for spatial 
management for specific issues such as bycatch of TEP species and target species of other 
fisheries.  The analysis developed in this project can readily be adapted to answer questions 
about fleet dynamics under a catch quota system, and forms a basis for addressing questions 
arising from the new management structure.  In terms of response to the project by industry, 
managers and other stakeholders, the rapid change in the management structure of the fishery 
has meant that engagement is difficult due to shifting priorities.  However, the project team 
has engaged with the managers, industry and the Resource Assessment Group several times in 
order to increase the relevance of the models developed and raise awareness about the utility 
of the project for management of the fishery.  
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Background 
 
The Eastern Tuna and Billfish Fishery Management Plan 2005 introduced a system of statutory fishing 
rights in the form of individual transferable effort quotas based on the number of hooks 
employed by each vessel, and a corresponding total allowable effort level (total number of hooks 
that can be deployed in the fishery). In addition, a system was introduced aimed at limiting the 
catch of particular species (both target and bycatch) by setting different hook penalty rates from 
fishing in particular areas. 
 
The effectiveness of such a system will largely be dependent on the degree to which fishers 
respond to changing incentives created by the policy. The spatial hook penalty effectively reduces 
the value per hook associated with fishing in a particular area, making other areas potentially 
more attractive. This will encourage fishers who are able to fish elsewhere, while those who 
choose to continue fishing in the affected area are still able to do so, but the total effort quota 
consumed will be increased (potentially resulting in overall lower levels of fishing effort).  
 
In this study, two models were developed and used to estimate the effects of introducing hook 
penalties on the distribution of fishing effort in the fishery. The impact on economic 
performance was also considered through estimating the proportional changes in total fishery 
revenue and fuel costs. 
 
The models 
 
The first type of model is a statistical model that estimates the probability of a fisher operating in 
a given area based on the characteristics of the area (e.g. average revenue per unit effort, distance 
from port etc) and the characteristics of the fisher. The model, known as a random utility model 
(RUM) assumes historical effort allocation choices are based on the concept of utility 
maximisation, and this is based on expected revenues and costs from fishing in a given area. In 
the model, the allocation of effort of the individual fisher to each area is estimated as the product 
of the total effort expended by the fisher and the probability that effort will be applied to each 
area. The total spatial effort allocation is derived by summing the effort in each area of the 
individual fishers. 
 
The second type of model is a dynamic programming model that determines an optimal effort 
allocation based on revenues, costs and the opportunity cost of using up the effort quota each 
trip (something ignored by the RUM). The model, known as a dynamic state variable model 
(DSVM) is less reliant on historical effort patterns, and is hence more responsive to changes in 
conditions. As with the RUM, total effort is summed over a number of simulated vessels that 
make their decisions based on knowledge of species distributions, expectations of catch, 
expectations of prices and costs of fishing. 
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Model analyses and key results 
 
The models were applied to a number of scenarios involving different areas of the fishery 
subjected to either a full closure or different levels of hook penalty. We consider 20 scenarios i) 3 
levels of hook decrement; ii) 3 locations for application of incentives and iii) 2 alternative years 
representing different conditions in the fishery (3 x 3 x 2 = 18); plus “baseline” scenarios of “no 
management” for each of the two years considered. Identical scenarios were considered for 
different years since fish distribution, availability and targeting practices show strong differences 
between years. 
 
In both models, the introduction of a hook penalty resulted in a reduction in fishing effort in 
locations with increased penalties, and the magnitude of this reduction generally increased with 
the increasing hook penalty.  The DSVM model was more sensitive than the RUM model in 
terms of response to the hook penalty, with greater reductions being observed in all scenarios. 
The DSVM model attaches a higher cost to the use of a hook at any point in time as it has an 
opportunity cost in terms of its foregone future use. The RUM, in comparison, is myopic as it 
treats all trips independently, and only considers the relative benefits of fishing in each area in 
one point in time. 
 
The model estimates of change in fleet profitability varied considerably. In all simulations, 
however, a closure off Brisbane resulted in an increase in total fleet profitability. This was largely 
driven by cost savings from the more southerly vessels not travelling to these areas. In other 
scenarios, the RUM predicted a net reduction in profitability at the fleet level, although the 
DSVM suggested that profits may increase with a 3:2 hook penalty, and also with a closure. 
 
Changes in profits at the individual port level suggest that the use of hook penalties, and indeed 
any spatial management, may have substantial consequences for the distribution of profits 
between ports.. The southern port of Ulladulla appears particularly vulnerable to any 
management measure imposed in the areas off Sydney or south of Sydney. Given 2004 
conditions, the vessels in the port would have been economically unviable under any scenario in 
these areas, while vessels in Sydney would also have been economically unviable if the area off 
Sydney had been closed. Assuming 2007 conditions, vessels in Ulladulla would, again, be 
economically unviable under any of the modelled management options if applied in the area 
south of Sydney, and would be economically unviable if the area off Sydney was closed.  
 
Implications for use of incentive based measures 
 
A key result of this study is that spatial input controls – including closures – have inconsistent 
outcomes in fisheries with a mobile resource. Within each of the modelling approaches, overall 
fishery profitability shows no consistent pattern of increase or decrease with the increasing 
strength of the management measure. There was instead high variability in effects on profit with 
year, with incentive level, by port and by management area. The year, port and management area 
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variability are likely due to the high spatial and temporal heterogeneity of the fishery, both in 
terms of relative fish availability and costs. The response by fishers to incentives is non-linear and 
complex, and, in some instances, counter-intuitive.  
 
A key advantage of the hook decrementation system in this regard, compared with an all-or-
nothing closure system, is its flexibility. Hook penalties can be fine-tuned during the season in 
response to unexpected spatial shifts in both the target and bycatch populations. Where 
exploitation rates appear higher than expected for target or bycatch species, the hook penalty can 
be readily adjusted to reduce the incentive to fish in these areas. Further, information is collected 
across the fishery as a whole enabling a greater understanding of the spatial stock dynamics to be 
developed. In contrast, information on relative stock abundance is not revealed in a closed area. 
 
This project commenced when incentives were being considered in context of a system of effort 
controls, primarily in the form of a total allowable effort system with individual statutory fishing 
rights in terms of gear (hook) units. Since then, a decision has been undertaken to move the 
fishery to an output control management system, primarily operated through individual 
transferable quotas (ITQs). Through ITQs, and their associated total allowable catch (TAC), 
limits on take of particular species – including bycatch species if the system extends this far – are 
directly controlled. In contrast, the hook decrementation system is an indirect control system 
aimed at providing incentives to change behaviour rather than limiting catch directly. 
 
The models developed in this project could be modified to incorporate output controls, in 
particular the DSVM model is suited to analyzing the effects of different quota scenarios (e.g. 
spatially disaggregated vs aggregated fishery quota, the use of bycatch quotas). While the RUM is 
less suited to ITQ fisheries than the DSVM, there are potential benefits in considering how the 
RUM could be included into a broader bioeconomic modelling framework. An advantage of the 
RUM identified in the study was that it did allow for the fact that fishers do not always operate in 
the best areas (although why this is the case is not easy to establish). Combining a RUM model 
with a bioeconomic optimisation model that incorporates a measure of opportunity cost may be 
a useful addition to the modelling toolbox currently being developed for the fishery. 
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1.0 Background 
 
Increased understanding of the spatial structure of marine ecosystems and the factors that 
influence the spatial distribution of fisheries has resulted in increased interest in the use of spatial 
management techniques, particularly – but not exclusively – marine protected areas (MPAs) 
(Wilen 2004). In Australia, conservation-driven spatial management measures arising from marine 
bioregional planning are increasingly affecting fisheries through closure of areas to fishing. MPAs 
are becoming a favoured management strategy for the conservation of marine biodiversity within 
Australia (Manson and Die 2001). In creating MPAs, however, there is often a trade off between 
maximising biodiversity benefits and minimising negative economic impacts on the affected 
fisheries (Manson and Die 2001).  
 
MPAs are not the only spatial management measure, and in many cases alternative approaches 
may provide fishery as well as conservation benefits (Pascoe et al. 2009a). The use of spatial 
approaches as fishery management tools has been a substantial part of the management in some 
Commonwealth fisheries such as the northern prawn fishery (NPF) and the southern and eastern 
shark and scalefish fishery (SESSF) for some time. These have been implemented for a variety of 
reasons ranging from management of environmental impacts to ensuring sustainability of 
harvests.  
 
By comparison, spatial management is relatively new in the Eastern Tuna and Billfish Fishery 
(ETBF). Until recently, the fishery was managed through licence limitation. The Eastern Tuna and 
Billfish Fishery Management Plan 2005 introduced a system of statutory fishing rights (SFRs) in the 
form of individual transferable effort quotas based on the number of hooks employed by each 
vessel, and a corresponding total allowable effort level (total number of hooks that can be 
deployed in the fishery). Although developed in 2005 (and amended in 2007), this management 
plan has only recently been fully implemented. SFRs were granted to eligible persons in August 
2009, with the first season under effort management commenced on 1 November 2009 and 
running over a 16 month period.  
 
Of considerable concern in the fishery is bycatch of highly vulnerable species such as turtles, 
sharks and seabirds, particularly albatross. The spatial pattern of effort in the fishery has a strong 
influence on the catches of these bycatch species. Under the ITE system, a facility has been 
introduced to potentially influence the distribution of effort using “hook decrements” (termed 
sub-area factors in the management plan), which are differential decrement rates of an operator’s 
effort allocation depending on where they fish. As opposed to direct controls, this approach 
relies on an incentive based approach to drive the spatial distribution of effort, as it effectively 
varies the value per hook employed. 
 
The concept of hook decrements is similar to that of the individual habitat quota (Holland and 
Schnier 2006). These are spatial management instruments where different effort penalties are 
applied to different areas based on the level of damage created by fishing in those areas. Damage 
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need not be directly monitored but rather could be a model-based estimate that takes into 
account the type of gear fished and the state of the habitat in the area fished based on a virtual 
habitat model.  Habitat quotas are tradeable, allowing vessels to adjust their fishing activities to 
minimise their own damage. Fishers consume their quota based on where and when they fish, 
with the penalty system providing incentives to either operate in areas where less damage will be 
incurred, or adopt fishing gear that will have a lower impact. In the proposed ETBF management 
system, the rate at which effort quota will be consumed depends on where and when they fish. 
Areas and/or seasons with the potential for high levels of bycatch of species of concern could 
attract a high penalty rate, whereas other areas with little bycatch might attract a much lower rate.  
 
The effectiveness of such a system will largely be dependent on the degree to which fishers 
respond to changing incentives created by the policy. The spatial hook penalty effectively reduces 
the value per hook associated with fishing in a particular area, making other areas potentially 
more attractive. This will encourage fishers who are able to fish elsewhere to do so, while those 
who chose to continue fishing in the affected area are still able, but with their total effort quota 
consumed at an increased rate (potentially resulting in overall lower levels of fishing effort). Of 
key importance to managers will be the level of incentive required to achieve a given objective, 
the likely locations to which that displaced effort will shift, and the expected effect on fishery 
economics at a variety of levels from vessel profits to economic activity in a port to fishery 
revenue as a whole. 
 
In this study, two models are developed and used to estimate the effects of introducing hook 
penalties on the distribution of fishing effort in the fishery. The impact on economic 
performance is also considered through estimating the proportional changes in total fishery 
revenue and fuel costs.  The models explored here can readily be adapted to provide similar 
predictions of distribution and economic impact given future management scenarios. 
 

1.1. The Eastern Tuna and Billfish Fishery  

 
The Eastern Tuna and Billfish Fishery (ETBF) is a tropical tuna and billfish fishery targeting fish 
in the boundary current off the east of Australia from the tip of Cape York to the South 
Australia-Victoria border (Figure 1.1). The principal target species are yellowfin tuna (Thunnus 
albacares), albacore tuna (Thunnus alalunga), broadbill swordfish (Xiphias gladius), bigeye tuna 
(Thunnus obesus) and striped marlin (Tetrapturus audax) with the total catch of these five species 
averaging around 6,500 tonnes over the period 2005-06 to 2007-08, with an average total value of 
around $32m (Evans 2007; ABARE 2009a).  
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Figure 1.1 Distribution of total fishing days, 2003-08 

 
Fishing effort is expended disproportionally over the range of the fishery (Figure 1.1), suggesting 
both heterogeneity in the characteristics of fishing locations, and fishers responding to this 
heterogeneity in their location choice. Most fishing effort is expended inshore in the southern 
and northern extremes of the fishery, although fishing effort extends offshore in the central part 
of the fishery. The fleet is relatively homogeneous across the fishery (Table 1.1) in terms of 
average vessel size and engine power, although within each region there is a mix of smaller and 
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larger vessels. The smaller vessels are more limited in their range, tending to predominantly fish 
inshore. 
 
The largest single port is Mooloolaba (Table 1.1), located on the Sunshine Coast north of 
Brisbane, accounting for nearly half of all trips in the fishery and having the largest vessels on 
average. While a greater number of vessels are based in southern NSW, many of these also 
participate in the southern bluefin tuna fishery, so their activity in the fishery is lower than their 
vessel numbers may imply. 
 
Table 1.1 Characteristics of the vessels by general region (2003-08) 

Region Boats 
Share 

of total Length (m) Power (hp) 
Hooks deployed 

(per set) 

  
trips

Mean St Dev Mean St Dev Mean 
St 

Dev
North Queensland 12 13% 21.3 3.8 418.0 46.8 611.4 187.4
Central Qld 5 1% 19.9 2.6 347.2 131.0 1046.4 57.9
Mooloolaba 59 46% 22.1 3.4 368.0 126.2 1148.7 221.6
Brisbane and Gold Coast 7 4% 20.1 3.9 244.1 130.5 1024.0 184.4
Northern and Central NSW 13 5% 17.5 2.4 347.2 125.5 939.2 174.5
Sydney, Newcastle, Wollongong 15 10% 21.0 2.7 357.3 100.6 1039.9 135.9
Southern NSW 79 21% 21.7 5.4 349.5 145.3 996.0 254.7

 

1.2 Outline of the report 

 
In the next section, the models are described. Two variants of a Dynamic State Variable Model 
(DSVM) were developed – one assuming a single species fisheries (or a single output given that 
revenue was the primary driver), and the other based on multiple outputs with differing price 
structures and spatial dynamics. A second type of model – the random utility model (RUM) was 
also developed as an alternative modelling approach. This was a more statistically based model 
than the DSVM, and used historic location choice behaviour to predict future behaviour under 
changing conditions.  
 
In the results section, we describe the results from a number of different scenarios. These include 
closing particular areas to fishing entirely as well as different levels of hook penalties in these 
same areas. We examine the economic impact of these measures at both the fishery and port 
level. For the DSVM model, impacts for different sized vessels are also considered. 
 
In the final sections, we compare the strengths and weaknesses of the different models, and draw 
conclusions about the relative costs and benefits of closures or incentive based management 
approaches. We also consider the implications for fisheries management, and also the 
implications of the move to ITQs on the set of analyses undertaken. In the future directions 
section, we identify a number of ways in which the models can be further developed to consider 
ITQs.  
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2. Need 
 
In 2005, AFMA announced the Eastern Tuna and Billfish Fishery Management Plan 2005, which 
introduced a system of statutory fishing rights (SFRs) in the form of individual transferable effort 
quotas based on the number of hooks employed by each vessel, and a corresponding total 
allowable effort level (total number of hooks that can be deployed in the fishery). Although 
developed in 2005 (and amended in 2007), this management plan has only recently been fully 
implemented (2009). The statuatory fishing rights, and the allocation of effort that accompanies 
them, will be managed using Spatial Area Factors (SAFs). SAFs are multipliers that translate the 
actual amount of fishing effort expended, e.g. in thousands of hooks, into the amount of effort 
units that are deducted from an SFR holders allocation.  The intent of these SAFs is to allow 
spatial management of the fishery, by providing incentives for fishers to work in areas with low 
SAFs and to avoid areas with high SAFs.  
 
If used effectively, these SAFs may provide a mechanism for reducing many of the management 
conflicts in the fishery, such as catch of seabirds and turtles, depletion of target stocks in areas 
with high historic effort, and under-exploitation of high seas areas. However, in order to 
effectively apply the SAFs, AFMA will need to be able to determine the motivational effect of the 
SAF on fishers’ location choices.  Moreover, the SAFs will affect the total allowable effort (TAE) 
that is actually realized in the fishery in a given year, so not only will they affect individual fishers, 
they will also affect the performance of the fishery as a whole. It will be critical to be able to 
make some predictions about how the realized TAE will change, based on the structure of the 
SAFs in order to weigh alterative management options prior to implementing them. 
 

3. Objectives 
 
The specific objectives of this study relate directly to the needs identified above, in that it aims to 
assess the impacts of the hook decrementation system on the distribution of fishing effort and 
the economic impact on the fishery. To this end, the project aimed to: 

• develop a statistical (multivariate logit) model to predict the distribution of fishing effort 
in the ETBF; 

• develop a process (a state-dependent behavioural) model of effort allocation for an input 
managed fishery; and 

• evaluate the impact of a series of SAF scenarios on the distribution of fishing effort in the 
ETBF using statistical and state-dependent behavioural models  
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4. Methods 
 

4.1 Modelling fisher responses to spatial management changes 

 
A critically important factor in developing a spatial management plan for any marine zone with 
an active fishing industry is a clear understanding of the dynamics of fishing effort, in particular 
addressing the question of how effort will be redistributed in response to a spatial management 
measure (Wilen 2004).  For instance, if an area around a seabird breeding colony is closed to 
fishing to prevent incidental fishing mortality of the seabirds, it is of critical importance whether 
the fishers merely move to the edge of the closure area (where impacts might remain relatively 
high) or to another part of the fishery (producing a potentially different set of impacts). Different 
spatial management measures create different incentives, resulting in different responses by 
fishers. Assessing the effectiveness of the measure necessitates an ability to estimate the effects of 
the incentives created on fleet behaviour, and the subsequent impacts of this on the full set of 
management objectives (economic, conservation and social).  
 
There is a substantial literature addressing the question of effort allocation in fisheries, and the 
more general question of state dependent foraging decisions in ecological systems (Mangel and 
Clark 1988, Houston and McNamara 1999, Clark and Mangel 2000) which we believe is relevant 
to conservation and management. This literature has taken at least two approaches: a 
retrospective approach based on statistical investigation of empirical data to ask about choice of 
fishing locations (Gillis et al. 1995a; Gillis et al. 1995b; Holland and Sutinen 1999, 2000; Smith 
2002; Pradhan and Leung 2004) and a predictive approach, using mechanistic state dependent 
decision-making models to ask about future behaviour (Gillis et al. 1995a, 1995b). The latter 
include a number of spatial bioeconomic models that have been developed to model fisher 
response to changing conditions, particularly closures in the context of marine protected areas 
(Sanchirico and Wilen 1999; Smith and Wilen 2003; Dalton and Ralston 2004; Smith et al. 2009). 
 

4.1.1 The statistical approach: Random Utility Models (RUMs) 
 
The statistical approach generally derives the probability that a fisher applies effort in a given area 
based on the vessel characteristics (e.g. size, home port) and net returns from each area (using 
catch rates and distance). When applied to the total effort available by a fleet (i.e. summed up 
over the set of boats), one obtains an estimate of the overall allocation of effort. Most previously 
cited studies applied some form of the random utility model to model individual vessel 
behaviour, although more recent analyses suggest modelling behaviour at the fleet level may be 
more reliable in determining responses to novel conditions, including new management 
arrangements (Smith 2002).   
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Models of fisher location choice have largely been driven by the increasing use of marine 
protected areas. Closing areas to fishing forces fishers to either move elsewhere or cease fishing. 
However, assuming that the fishing effort previously expended in an area will evaporate 
following the area closure is, more than likely, a naive assumption. Instead, the effort will move 
to the next best available fishing ground.  
 
A difficulty when examining location choice of fishers is that they are not homogeneous – vessels 
are based at different port locations (as well as fish in different locations), and fisher and vessel 
characteristics affects their cost structure. Hence, complications exist – expected economic 
returns are not only determined by revenue of catch (i.e. highest catch rates), but also by the costs 
associated with the fishing trip. Costs increase as distance travelled and steaming time increases. 
As a result, fishers are (within reason) able to select from which port they fish and where they 
land their catch to maximize the returns for species captured. In the modelling of spatial 
dynamics, several assumptions have been proposed. For example, the distribution of fishing 
effort could be assumed to move towards areas of highest catches (i.e. reflecting differences in 
revenues assuming constant costs) (Maury and Gascuel 1999), highest catch rates modified for 
distance to port (i.e. taking into consideration revenues and costs implicitly (Sampson 1991) or 
greatest profit (Bockstael and Opaluch 1984).  
 
A method that allows for heterogeneity in both fishing activity and fisher characteristics is 
discrete choice modelling, or the random utility model (RUM) (McFadden 1974, 1981).1 The key 
feature of the RUM is that it models discrete decisions with no requisite assumption of 
homogeneity amongst individuals. Rational decisions makers are assumed to make decisions that 
maximise their level of utility subject to any constraints. In the case of effort allocation in 
fisheries, utility is assumed to relate to profitability (subject to any constraints the fisher may 
face), and location choice is based on the expected profitability at each alternative location.  
 
The method is probabilistic in nature in that the model estimates the probability of a fisher 
operating in a given area based on the characteristics of the area (e.g. average revenue per unit 
effort, distance from port etc) and the characteristics of the fisher. This probability is, therefore, 
specific to an individual fisher. The allocation of effort of the individual fisher to each area is 
estimated as the product of the total effort expended by the fisher and the probability that effort 
will be applied to each area. The total spatial effort allocation is derived by summing the effort in 
each area across all of the individual fishers. 
 
Numerous studies have been undertaken in fisheries utilising a RUM approach to estimate fisher 
location choice (Bockstael and Opaluch 1984; Eales and Wilen 1986; Holland and Sutinen 1999; 
Curtis and Hicks 2000; Holland and Sutinen 2000; Smith 2002; Wilen et al. 2002; Hutton et al. 

                                                 
1 Recently, increasing attention has also been paid to development of state dependent dynamic programming 
models to estimate fisher behavior (Gillis et al. 1995a; Gillis et al. 1995b; Costello and Polasky 2008; Poos et al. 
2010). These have an additional advantage in quota based fisheries in that they also allow for the opportunity 
cost of using quota to be taken into account, so that the decision when as well as where to fish can be modelled 
(Costello and Polasky 2008). 
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2004; Pradhan and Leung 2004; Marchal et al. 2009). Most of these studies have employed 
multinomial logit techniques to estimate the model. 
 

4.1.2 Dynamic State Variable Models (DSVM) 
 
In contrast, state dependent decision-making models predict behaviour by optimizing an 
objective function, and determine which area best suits this behaviour given the set of incentives 
that exist (which may also depend on factors such as size, home port, distance to fishing grounds 
and expected catch rates). The approaches should produce similar outcomes if the statistical 
model includes the correct covariates and the process based model approximates the decision 
making process with good fidelity. 
 
While both veins of investigation have merit, the mechanistic approach may be more useful in 
the context of estimating fishery responses to new management regimes, since it does not depend 
on historical patterns for its predictive power (Bue et al. 2008).2 This is particularly relevant when 
the new regime creates an additional opportunity cost of fishing. For example, the introduction 
of a quota on catch or effort means that the decision to fish is a function not only by the relative 
catch rates in that time period, but also of the opportunity cost of using the quota now rather 
than later. That is, decisions need to be made not just on spatial allocation of effort, but also 
when effort is to be applied. This introduces the possibility of not fishing as being an optimal 
decision in some time periods, whereas this option would not be available in a statistical model 
based on pre-quota data. Effectively, the statistical models assume myopic behaviour. That is, 
location choice is based on the set of current or expected conditions, and does not take into 
account potential future conditions, including the potential future use of quota.  
 
Despite commonly being used to examine the effects of marine protected areas in fisheries, the 
statistically derived approaches are unable to adequately address these elements of spatial 
management. For example, if a fishing area is removed (representing a closure), the statistical 
models will only predict one outcome – a proportional increase in effort in the remaining areas 
(by each individual fisher).  However, the distribution of effort may change radically, and not in a 
proportional manner with changes in the available areas for fishing (Costello and Polasky 2008), 
for instance if fishers concentrate along the edges of a reserve in expectation of increased catches 
as is often observed (Goni 2006).  
 
Developing mechanistic models requires more understanding of the factors driving the behaviour 
of the fleet, which we consider to be a good thing. However, this is often difficult to validate for 
situations not previously encountered (e.g. a new management regime). Despite this difficulty, 
mechanistic models can be based on sound economic logic, and, assuming fishers follow some 
form of economically rational behaviour (e.g. models based on individual profit maximization or 

                                                 
2 Dynamic programming models in particular have been identified as being preferable for public policy analyses 
when new management regimes are to be introduced (Wolpin 1996) as they generally produce more plausible 
predictions out-of-sample (Burkhauser et al. 2004). 
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satisficing), can be used to estimate how fishers may respond to a broader range of incentives 
than possible using the statistical approaches. State dependent decision-making models require 
specification of the state(s) of interest for the analysis, for instance the capital reserves currently 
held by a fishing operator. The decision-making problem can then be expressed in terms of 
achieving an objective, e.g. achieving a maximum cash flow, in the context of that state, i.e. given 
the available investment capital.   
 
 

4.2 The Dynamic State Variable Model (DSVM) 

4.2.1 The single species model 
 
We develop models for state dependent behaviour of individual fishing vessel types, translated 
into behaviour of the fleet, and implemented using stochastic dynamic programming (Mangel and 
Clark 1988; Clark and Mangel 2000; Costello and Polasky 2008).  The models have increasing 
complexity, sequentially addressing questions of varying catchability, fleet behaviour driven 
prices, and seasonal availability in a spatially explicit context.   The model is parameterised using 
data from the Eastern Tuna and Billfish Fishery (ETBF).   
 
The ETBF longline fishery is characterized by vessels that tend to fall into discrete categories 
with respect to their capacity. Capacity is defined by the vessel’s maximum speed, travel costs, 
cost per longline set (or shot), and the maximum time the vessel can remain at sea (largely 
influenced by the storage volume and/or freezing capacity of the hold), which in turn confers a 
maximum number of shots per vessel type per trip. Consistent with the operations of longline 
vessels (Campbell 2007), we assume that one shot equates to one day of the season, so that laying 
x shots requires x days.  Since days will be lost due to weather conditions and social demands, 
there is an overall upper limit on the number of shots per fishing season. 
 
A model for state based decision-making in an effort quota fishery 
 
For purposes of model simplicity, we begin by considering a hypothetical single species fishery, 
operating out of one or two ports, and comprising 24 regions (Figure 4.1) with no stochasticity 
(Table 3.1). 
 
The key parameters that characterize the habitat are 

Ni,j(t): the abundance of fish in region with latitude i longitude j at day t of the current 
fishing season (determined exogenously) 

qi,,j(t): the catchability of fish in region with latitude i longitude j at day t of the current 
fishing season (time variant since it may depend on changes in regulations, 
targeting, or environmental conditions (such as moon phase))  

ji ,δ : the amount by which a vessel’s effort allocation will be reduced (i.e. the penalty 

rate) if region with latitude i longitude j is fished (with one unit of fishing effort) 
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Di,j: distance from region latitude i longitude j to port (assuming each region is 5 
degrees square, and that each degree equates to 100 units of distance) 

 
Table 3.1: Fishery parameterization 
Quantity Value Detail 
δ 
 

1 Amount by which effort will be reduced in each spatial cell fished 
(constant for these examples) 

Number of spatial 
cells 

24 longitude 1 to 4, with 0 = port and 4 furthest offshore   
latitude 1 to 6, running south to north 

Season length 120 time 
steps 

Time steps are assumed to equate to days 

Total effort units 100 Maximum effort (number of shots = fishing days) per vessel type 
per port in a season 

Number of ports 2 Proxies for the southern (Mooloolaba) and northern (Cairns) ports 
of the ETBF  
Port location 1 (longitude index, latitude index): (0,2) 
Port location 2 (when used): (0,5) 

Number of vessel 
types 

3 See Table 3.2 

 
 

 
Figure 4.1. Map of Australia showing area of fleet operation and indicating regions, where each colour is used as a 

unique identifier of the regions in subsequent plots. Regions are indexed by (latitude code, longitude code). 
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We consider three different kinds of vessels (Table 3.2) characterized by: 
 
 v: the velocity of the vessel 

xmax: the maximum number of longline shots allocated by a vessel in a fishing trip in 
any location, where a shot comprises one set and haul of longline gear (a fixed 
quantity defined according to vessel capacity) 

ρ : the unit travel cost per vessel 
Emax: the maximum number of shots per season allocated to each vessel. 

 
Table 3.2 Summary of vessel characteristics   
Vessel parameters Vessel 

type 1 
Vessel type 2 Vessel type 3

Maximum number of 
shots per trip, x 
 

13 7 4

Relative velocity, v 6000 3000 2000
Relative cost per unit 
travel, ρ 

3 2 
(providing trip distance is less than 

2/3 the maximum possible *) 

1.4 
(providing trip distance is less than 

2/3 the maximum possible *)
Relative cost per 
shot, c 

500 400 200

 
* This distance was such that it did not exclude the central fish density from potentially being reached by lower 
capacity vessels even when this was further offshore. 
 
We set parameter values in a relative sense to consider three kinds of vessels. Vessel type 1 has a 
greater capacity in terms of shots per trip and velocity, but is more expensive per unit of travel 
and per shot. Vessel type 2 represents a moderate capacity vessel with correspondingly lower 
operating costs, while vessel type 3 is a low capacity, low cost vessel. This approximately reflects 
vessel types in the ETBF, in which faster vessels with greater shot capacity are typically more 
expensive in terms of travel and shot deployment.  
 
We incorporated range limits for lower-capacity vessel types by assuming a step function for the 
cost-per-unit-travel. That is, if vessels travelled beyond their range (set as 2/3 the maximum 
possible distance within the area considered) cost increased sharply to prohibitively high levels 
(Table 3.2). This effectively imposed an absolute trip distance threshold to the lower capacity 
vessels, reflecting the inability of these smaller, lower-capacity vessels to undertake far-ranging 
offshore trips, despite their cost per unit travel being relatively low 
 
Other parameters are 

)(tp : the (species-specific) unit price for landed fish 

 c : the cost per shot 
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The state variable in our model is 
 

E(t): the effort (number of shots) remaining at time t in the season for a vessel 
 
We assume a fishing season of length T days (i.e. t = 1,…..,T). More specifically, T is defined as 
the first day of the last fishing trip of the season. 
 
If a vessel visits region i,j  and x shots are deployed on the visit at time t in the season, and its 
current remaining effort is E(t), then the remaining effort is updated as  
 

(1)  xtEx
v
D

tE ji
ji

,
, )()

2
( δ−=++      

 
Equation (1) incorporates travel time both to and from the fishing region, and the time 
associated with setting x shots. Within the model, time is incremented by trip duration, that is, 
non-uniformly. For example, a 12-day trip may involve 4 days of travel on which no fishing 
occurs, and 8 days of fishing activity. The vessel would not be able to commence a new trip until 
the 13th day. 
 
The profit associated with setting x shots in region with latitude i longitude j, for vessel type b 
operating out of port h , ( )hbxtji ,,,,π  is  

 
(2)  xcDxtNtqtphbxt bjibjijiji ⋅−⋅−⋅⋅⋅= ,,,, )()()(),,,( ρπ  

 
Since equation (2) is a linear function of the number of shots, x, it cannot account for risk 
aversion/taking, which we discuss at the end of the paper. 
 
Vessels may only travel to one 5 degree-square location per trip, which is consistent with general 
observed fleet behaviour (Pascoe et al. 2010). In addition to choosing a fishing location, a vessel 
may remain in port at any given time. As such, there are effectively 25 “locations” (the 24 at-sea 
regions and the possibility of remaining in port), and ((24 x Ntarg) + 1) state spaces, where Ntarg 
is the number of targeting strategies. If a vessel remains in port, it is assumed to do so for one 
day, so that t is incremented by 1, after which the decision of where to go fish (or to stay in port) 
is made again.  Staying in port allows a vessel to get “in phase” with the oscillating catchability 
(explained below) or “out of phase” with other competing vessels and thus avoids the 
expenditure of capital when catchability or price is low. 
 
We model catchability as a spatially ubiquitous sine function, to approximate moon phase, which 
is consistent with the ETBF operators actively targeting swordfish around the full moon 
(Campbell and Hobday 2003) and parameterized so that one full cycle occurs approximately 
every 30 time steps across a 120 day season:  
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  q(t) = 0.1 sin(0.2 t)+1 
 
We let ),|,( hbteF denote the maximum expected profit accumulated between the current time t 
and the end of the season, T, for each vessel type b operating out of port h given that etE =)( . 
 
The maximum profit obtained for the final trip of the season for each vessel type, b, operating 
out of each port, h, is determined by where vessels fish and how many shots they lay.  That is 
 
(3)  { }),,,(max),|,( ,;,

hbxThbTeF jiexji
π

≤
=    

 
If x = 0, vessels will stay in port. 
 
For preceding times, ),|,( hbteF satisfies (Mangel and Clark 1988, Clark and Mangel 2000) 

(4)  
⎭
⎬
⎫

⎩
⎨
⎧

++−+=
≤

),|
2

,(),,,(max),|,( ,
,,;,

hbx
v
D

txeFhbxthbteF
b

ji
jijiexji

δπ  

 

Where ),|
2

,( ,
, hbx

v
D

txeF
b

ji
ji ++−δ

 
is the cumulative future profit, accumulated after the 

current trip. This total profit from the current point in time, to the end of the season, effectively 
represents the opportunity cost of fishing in that period. 
 
Equation (4) is solved by backward iteration to find the optimal fishing region ( ) teji ,,   and the 

optimal number of shots x*(e, t)  that yield the maximum accumulated profit. Since the equation 
is solved by backward iteration, the opportunity cost is effectively known with certainty (rather 
than based on expectations). 
 
Once equation (4) is solved and the optimal set of fishing decisions is determined, forward 
projections can be used to calculate the total remaining effort, the accumulated value and the 
location choice associated with each trip.   The solution depends upon the characteristics of the 
vessels (Table 3.2).  
 
Stock structure and Dynamics 
 
We assume that fish are distributed symmetrically about a core central spatial cell according to a 
bivariate normal distribution, so that the number of fish ),,( tjiN   at spatial location ),( ji is  
  

[ ] [ ])0.2/))((0.2/))(((
max

2222

),,( jPPiPP tjjtiieNtjiN σσ ⋅−⋅−⋅−⋅−⋅=  
 
where  Nmax : total number of fish (= 10000000) 
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)(tiP :  latitude index with the highest density at the start of period t 

)(tjP :  longitude index with the highest density at the start of period t 
 σiP: standard deviation about the central latitude index 
 σjP : standard deviation about the central longitude index 
 
We model the movement in the location of the peak fish density at quarterly intervals during the 
fishing season, for a stock moving in an anticlockwise direction 
 
 t ≤30:   iP = 4, jP =2 
 30 ≤ t < 60: iP = 2, jP =2 
 60 ≤ t < 90: iP = 2, jP =3 
 t ≥ 90:  iP = 4, jP  =3 
 
We assume a constant stock size, N, through time, implying fishing does not affect local 
abundance.  This is consistent with the hypothesis that for large pelagics, which are highly 
migratory (Brill et al. 2005), local replenishment occurs on a short time scale in a specific location.  
 
Endogenously determined prices 
 
Price is determined endogenously by treating price dynamics as a game (Clark and Mangel 2000):  
 
1. We specify the number of ports and the vessel types operating from each port. Price is initially 
assumed to be constant, such that ( ) ptp = , where p is (specified as a constant) set to p = 8.0 
dollars based on a weighted average of yellowfin, albacore and billfish prices from 1996 to 2007.3 
 
2. We solve Equation 4 for each vessel type from each port, using the candidate price trajectory 
p(t). 
 
3. Given the optimal fishing locations and number of shots to lay for each vessel type from each 
port, we simulate forward in time to generate a time series of fish landings. We then generate a 
new price trajectory using these landings, assuming price is a function of the total volume Vt of 
landings by all vessels each time step, according to 
 

(5)   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ −
−=

V
VV

fpVp t
t 1)(  

 
where  

f is the price flexibility4. For calculations, we set f  =0.1, consistent with other tuna 

modelling studies in the region (Hannesson and Kennedy 2009) 

                                                 
3 Obtained from http://www.abare.gov.au/publications_html/afs/afs_09/09_FishStats.pdf 
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V is the mean catch per trip, calculated across all trips during the season for each Monte 
Carlo iteration  

This generates a new price trajectory as a function of time, p(t), as the simulated vessels 
return to port with their catches: p(t) = p(V(t)). 
 
4. We repeat Steps 2 and 3 until the price trajectory that is used to solve the dynamic 
programming equation matches the one that comes out of the forward simulation. When these 
are identical, we conclude that the optimal response to a given trajectory of price has been 
achieved.5 As a metric for comparison of the two trajectories we use  
 

(6)  2

1
))()(( tptpS f

T

t
b −= ∑

=

  

 
where pb(t) is the price trajectory used in the SDP (initially, the constant vector p(t)) and pf(t) is the 
price trajectory generated by in the forward simulation via equation (5) 
 
Stabilizing the Dynamic Game 
 
For cases with more than one vessel type and/or port, we allow the game to deviate slightly from 
the optimal solution to prevent cycling and other undesirable behaviours in the solution method 
(Houston and McNamara 1999; Clark and Mangel 2000) by the method of errors in decision 
making. To do this, we assign a probability of choosing each region (latitude index i and 
longitude index j) proportional to its profit 
 

(7)  
⎭
⎬
⎫

⎩
⎨
⎧

++−+=
≤

),|
2

,(),,,(max),,,,,( ,
,,;,

hbx
v
D

txeFhbtxhbtejiV
b

ji
jijiexji

δπ   

 
associated with each vessel type at each port at that point in the season, given the effort 
remaining. 
 
If V* is the profit at the optimal location for a given e and t we set 
 

( ) ( ) ( )hbtejiVhbteVhbteji ,,,,,,,,,,, *
, −=Δ  

 
and then define the probability of fishing a particular area as  
 

                                                                                                                                                         
4 Price flexibility is related to price elasticity of demand, except price flexibility relates to a price dependent demand 
curve (i.e. price adjusts to clear the quantity supplied) whereas price elasticity relates to a standard demand curve 
(quantity demanded adjusts based on the exogenous price) (Jaffry et al. 1999). 
5 An assumption in the model is that competition between vessels is not a major concern. The area of the fishery 
is relatively extensive and the fleet size is relatively small.  Even within the cells, crowding is unlikely to occur 
in practice so anticipation of other vessel’s locations is not considered a factor in the decision making process.  
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(8)  ( )
( )

( )∑ ∑
= =
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ji
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,
,

,

,,,
σ
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where σ  is a tuning parameter that measures how important it is to be near optimal. If this is 
very large, then the vessels will choose locations at random. If it is very small, then all vessels will 
concentrate in the optimal location. For computations we use σ = 1x103 (noting that ∆ ranges 
from 0 to ~2x106, but is generally of the order of 1x105 in magnitude). 
 
Using the rules for fleet behaviour given by the backward part of the game, the forward part now 
becomes a Monte Carlo simulation where areas visited are sampled randomly from a cumulative 
probability distribution given by equation (8). Price is then determined by taking the average 
catch across the Monte Carlo realizations for each area, for each vessel type, port and time step 
where that area is visited in that time step during any realization. This average catch is then 
summed over all vessel types and ports for each time step, and the resultant fed into equation (5). 
 
We use three models of increasing complexity to illustrate the effect of fleet behaviour on prices, 
and seasonal availability in a spatially explicit context: 
 
Case  1: 1 vessel type (Vessel Type 2), 1 port (Port location 1), oscillatory catchability.  
Case 2: 3 vessel types, 2 ports, oscillatory catchability. 
Case 3: 3 vessel types, 2 ports, oscillatory catchability, seasonally moving fish stock. 
 
We used Case 3 to investigate how fishing locations change in response when opportunity costs 
are incorporated. This was achieved by repeating Case 3 with the following modifications: i) we 
treated each quarter of the season being independent by running the model 4 times assuming a 
30-day season with an effort quota of 25 sets each time, and ii) with an effort quota of 25 across 
the 120 day season. The latter forces increased flexibility and hence introduces opportunity cost 
by reducing the total effort quota relative to the season length. The former is a control, in that 
the same amount of effort (25 sets) is spent across a 30 days, a duration that almost equates to 
the available effort (recalling that one set equates to one day of effort).  
 
We investigated spatial manipulation (an effective MPA) by setting the effort decrement term, 

ji ,δ , prohibitively high at 100.00 for region iP = 2, jP =2, and comparing the resulting modelled 

distribution of effort with that which would have occurred if the effort formerly occurring in the 
closed area was redistributed in proportion to the existing effort in the remainder of the fishery. 
The area (iP = 2, jP =2) selected to be closed was the one with the highest overall level of effort 
across the four quarters. Additionally, this effort was not concentrated at the end of the season, 
and so the results would not be confounded by any end-of-season effects.    
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Model performance: Vessel competition and fish movement 
 
A single vessel type operating out of a single port fishing a stationary stock predictably made 
continual trips of very similar duration and effort, and the effort spent was close to or equal to 
the maximum permitted per trip.  Fishing generally occurred in the area of highest density (the 
most profitable location given the vessel capacity), and occasionally in the adjacent inshore 
area(s). Although catchability was oscillatory, price remained constant over the season as a result 
of the relatively constant level of catch. 
 
In case 2, individual decisions occur in the context of a competitive field of players (i.e. vessels 
with different capacities operating out of multiple ports) but the stock is stationary.  Price now 
became highly variable due to the variation in the volume of landed catch throughout the season 
(Figure 4.2). In comparison to when it was the sole vessel type operating out of one port, vessel 
type 2 now has some short intervals in port during the season as a result of the variable price 
trajectory in combination with the oscillatory catchability  (Figure 4.3). In general, however, 
vessel type 2 again undertook almost continual trips of very similar duration and effort, where 
effort spent was close to or equal to the maximum permitted per trip. In general, fishing occurred 
in the area of highest density (the most profitable location given the vessel capacity), and 
occasionally in the adjacent inshore area(s). The timing of trips, but not necessarily the location, 
was similar irrespective of port. 
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Figure 4.2. Overall price and catchability versus time, for i) case 2, aggregated across the 2 ports and 3 vessel types 

where fish are stationary, and ii) case 3, aggregated across the 2 ports and 3 vessel types, where fish are moving 
quarterly. 

 
 
A similar pattern occurs for the highest capacity vessel (vessel type 1), albeit with less trips of 
longer duration, and a longer single interval in port. The lowest capacity vessel (vessel type 3), 
while making continual trips with effort close to or equal the maximum permitted per trip, was 
restricted to fishing inshore areas adjacent to the area of peak fish density and closer in latitude to 
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port (Figure 4.3). This illustrates the trade off whereby a lower vessel speed and maximum effort 
level per trip, despite lower unit travel and setting costs, limit the ability of the vessel type to 
effectively target high fish densities offshore. 
 
The introduction of quarterly fish movement highlighted the limitations of the lower capacity 
vessel types to fish in the area of highest fish density, particularly when this is further offshore. 
The price trajectory was again highly variable (Figure 4.2) All vessel types did show similar 
patterns, in of terms making continual trips with effort close to or equal the maximum permitted 
per trip, to those seen in case 2 (Figure 4.4). However, while vessel type 1 (the highest capacity 
vessel type) successfully tracked the area with the highest fish density throughout the fishing 
season, decreased vessel capacity leads to trips increasingly closer to the home port. Vessel type 2 
operating from the southern port fished the area of highest fish density more successfully than 
the same vessel type operating out of the northern port, while effort for vessel type 3 was 
generally located inshore and closer to port relative to the peak fish density. As a result, the 
overall cumulative profit for the lower capacity vessels was slightly lower relative to case 2 where 
the central density was stationary at one of the more inshore locations (Figure 4.4). In general, 
total profit decreased with decreasing vessel capacity (Table 3.3). 
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Figure 4.3. The time series of cumulative profit and remaining effort for each combination of 2 ports and 3 vessel 
types, where fish are stationary, for one Monte Carlo realisation. The height of the coloured bar equals the effort 

spent on the trip (with the cumulative profit at the midpoint), while the width equals the duration of the trip. The 
colour equates to the area visited on the trip, as per Figure 1. Top row = vessel type 1 (highest capacity vessel type); 

middle row = vessel type 2, bottom row = vessel type 3. Left panels = southernmost port; right panels = 
northernmost port. 
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Figure 4.4.  The time series of cumulative profit and remaining effort for each combination of 2 ports and 3 vessel 
types, where fish are moving quarterly, for one Monte Carlo realisation. The height of the coloured bar equals the 

effort spent on the trip (with the cumulative profit at the midpoint), while the width equals the duration of the trip. 
The colour equates to the area visited on the trip, as per Figure 1. Top row = vessel type 1 (highest capacity vessel 
type); middle row = vessel type 2, bottom row = vessel type 3. Left panels = southernmost port; right panels = 

northernmost port. 
 
In summary, the key assumptions are utility is approximated by profit and that effort remaining at 
a given time in the season is an appropriate state variable. Assuming these are reasonable 
assumptions, the model forms a basis for investigating i) location choice in the context of 
considering opportunity cost, and ii) fleet responses to proposed spatial management options (i.e. 
that are “outside the data”). 
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Table 3.3: Profit by vessel type and port for one iteration for scenarios illustrating opportunity cost and a spatial 
closure. Absolute profit is given for case 3, and all other profits are reported as percentages relative to case 3. 

Model Vessel 
type 1 
Port 1 

Vessel 
type 2 
Port 1 

Vessel 
type 3 
Port 1 

Vessel 
type 1 
Port 2 

Vessel 
type 2 
Port 2 

Vessel 
type 3 
Port 2 

Case 3 3.750 x106 3.237 x106 2.812 x106 3.741 x106 3.200 x106 2.719 x106

Quarter 1 independent 26% 28% 27% 25% 28% 28% 
Quarter 2 independent 27% 29% 29% 27% 28% 27% 
Quarter 3 independent 26% 29% 27% 27% 28% 25% 
Quarter 4 independent 26% 27% 26% 26% 28% 28% 
Quartered effort across 

whole season 
40% 39% 39% 40% 39% 40% 

Closure of area iP = 2, jP 
=2 

96% 112% 107% 96% 112% 108% 

 
 
Model performance: opportunity cost and predicting fleet responses to spatial management  
 
The previous cases indicated relatively even spreads of effort throughout the season, and indeed 
with an effort quota of 100 sets (≡ 100 days) in a 120 day season, there is little flexibility for 
quarterly preferences if the total quota is to be used. Opportunity cost was investigated via 
comparison of scenarios where a quarter of the prior effort quota (25 sets) was applied to each 30 
day quarter of the season independently (i.e. in 4 separate stochastic dynamic models), with one 
where the same quartered effort quota of 25 sets was able to be freely applied across the 120 day 
season.  
 
In the four independent Emax = 25, T = 30 models, one for each quarter of the fishing season, 
resulted in very similar distributions of effort to those observed in case 3. Profit levels for each 
were similar in magnitude (and when totalled, actually exceeded that from case 3 by about 8%) 
(Table 3.4), and showed little variation between vessel types and ports relative to case 3  (Table 
3.3). However, when forced to incorporate the flexibility afforded by 25 units of effort across a 
120 day season, the ability of the modelled fleet to consider opportunity cost was demonstrated 
by an overall profit level 43% greater than the highest profit obtained when the same level of 
effort was applied solely within any given quarter (Table 3.4), and this occurred irrespective of 
vessel type or port (Table 3.3). Within this scenario, the highest capacity vessel type is predicted 
not to fish in the third quarter of the season, when the peak fish density was located further 
offshore. The lower capacity vessel types fished in each quarter of the season, but the amount of 
effort dedicated to each quarter increased as the season progressed (Figure 4.5).  We note that 
when the duration of the season was longer relative to the effort quota, the lower capacity 
vessels, in particular vessel type 3, and vessel type 2 operating out of the northern port, had a far 
higher incidence of fishing the areas of peak fish density than when Emax was set at 100 in the 120 
day season (Figure 4.5 vs Figure 4.4)) 
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Table 3.4. Total profit levels for one iteration for scenarios illustrating opportunity cost and a spatial closure.  
Model Emax T Total profit Profit relative to Case 3 
Case 3 100 120 1.946x107  

Quarter 1 independent 25 30 5.241x106 27% 
Quarter 2 independent 25 30 5.406x106 28% 
Quarter 3 independent 25 30 5.273 x106 27% 
Quarter 4 independent 25 30 5.184 x106 27% 
Quartered effort across 

whole season 
25 120 7.720 x106 40% 

Closure of area iP = 2, jP 
=2 

100 120 2.033 x107 104% 
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Figure 4.5.  “Ribbon plot” showing time series of cumulative profit and remaining effort for each combination of 2 
ports and 3 vessel types, where fish are moving quarterly and Emax =25, for one Monte Carlo realisation. The 
height of the coloured bar equals the effort spent on the trip (with the cumulative profit at the midpoint), while the 
width equals the duration of the trip. The colour equates to the area visited on the trip, as per Figure 1. Top row 
= vessel type 1 (highest capacity vessel type); middle row = vessel type 2, bottom row = vessel type 3. Left panels 

= southernmost port; right panels = northernmost port 
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As described above, closing the region (iP = 2, jP =2)  is likely to cause maximum perturbation to 
the dynamics of the fleet. Relative to the spatial effort distribution from case 3 (Figure 4.6), the 
effort that had occurred in region iP = 2, jP =2 was redistributed, most typically to immediately 
adjacent cells, but not evenly among these, nor in proportion to the modelled effort patterns that 
were seen in this adjacent cells in the absence of the closure (Figure 4.7). 
 

 
Figure 4.6 Spatial distribution and relative magnitude of total effort for case 3 (2 ports, 3 vessel types, quarterly 

fish movement) by quarter (each panel) 
 
This relocation of effort occurred even when the peak fish density was not located in the closed 
area, but most notably in quarters 2 and 3, when the peak density was in this or the immediately 
adjacent offshore area. In the redistribution of effort to adjacent areas, the fleet gave preference 
to more inshore than offshore areas, presumably as a result of lower costs associated with travel. 
Moreover, effort was redistributed in part to areas that had not been previously shown to be 
exploited in the absence of the closure. This illustrates a key difference from approaches based 
on historical data, such as the statistical models discussed below in Section 2.5.  The DSVM can 
predict fishing behaviours outside of those previously observed.  Statistical approaches typically 
predict effort will be redistributed from a  closed region proportionally among the remaining 
historically exploited regions. The stochastic dynamic model, however, redistributed the effort so 
as not to compromise profit, indeed yielding in an overall profit level that was ~4% higher for 
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the closure scenario (Table 3.4). This increase was driven by relative increases in profit for the 
lower capacity vessel types; the highest capacity vessel type experienced 4% decreases in profit 
irrespective of port (Table 3.3). 
 

 
Figure 4.7: Spatial distribution and relative magnitude of the differences in effort for 2 ports, 3 vessel types, 

quarterly fish movement when region iP = 2, jP =2 is closed,  by quarter (each panel). Black circles indicate a 
relative increase in effort with the closure of region iP = 2, jP =2 while open circles indicate a relative decrease. 

 
 

4.2.2 The multispecies model 
 
The multispecies version of the model extends the single species version to take into account the 
impact of changes in stock structure on profitability and hence targeting behaviour. Targeting 
behaviour is simulated by assuming that a given target strategy is associated with the expectation 
of a unique relative catch composition among the main target species. These relative expected 
proportions were applied to the species-specific catch equations. Although applied identically and 
having the same effect as the catchability term, they were kept as separate quantities. This was to 
reflect that the catchability term in the model was associated with availability (for example, 
oscillating according to moon phase), as opposed to targeting. Random errors could be imposed 
on these ratios, but for purposes of simplicity and initial evaluation, they were deterministic. 
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We defined multi-species targeting strategies as the desired relative proportions of each species 
for any given longline set. These proportions were obtained by undertaking cluster analysis on 
the set-by-set logbook data from 1997, 2003 and 2007. For this, we included all five main target 
species, as sets that may have similar catch compositions for the three species considered, may be 
targeting different non-included species and so should not be considered to be employing the 
same targeting strategy.  We undertook a hierarchical cluster analysis using a Dirichlet distribution 
to represent the clusters. By dividing the resulting Dirichlet parameters by their sum, we obtained 
the expected proportions in the data, from which the likelihood of any data point could be 
calculated (Peel pers. comm.). 
 
Due to limitations on the number of records that could be processed within the cluster analysis, 
we repeated the calculations for 4 random subsets of the data, each of which comprised 600 
random sets from each of the three years. For each data subset, we obtained sets of 1-13 clusters 
and, based on the AIC value for each, we determined that 11 clusters was statistically optimal 
(based on Burnham and Anderson, an AIC value is not distinguishably different if the difference 
between values is less than 10. While our AIC values were never <10, the difference was 
consistently smallest across the 4 subsets of data for 11-12 clusters).  
 
The results from the different data subsets were qualitatively similar so one subset was chosen as 
being representative. The clusters from this subset were then used to statistically assign a cluster 
to each set in the data. This was done using a multinomial with the expectations of the Dirichlet 
parameters to find the most likely cluster for each longline set. 
 
Clusters were interpreted as being separate targeting strategies that may or may not also be 
associated with a given habitat, and that are able to be actively chosen by fishers. Two of the 
eleven clusters comprised predominantly bigeye tuna and striped marlin respectively, and so were 
excluded from this model as we did not consider these species. Five of the remaining 9 clusters 
were aggregated into two groups, since one group of three clusters and one of two clusters were 
qualitatively similar and combining these considerably reduced the state space (Table 3.5). The 
resultant 6 clusters were included in the state space when solving the dynamic programming 
equation, so that the total number of states was 24 areas x 6 targeting strategies + 1 state of 
remaining in port = 145 states. 

 
Table 3.5: Relative proportions of each species, together comprising the 6 clusters corresponding to 6 targeting 
strategies 
Cluster/target strategy YFT ALB SWO
1 0.04 0.94 0.02
2 0.92 0.05 0.03
3 0.34 0.55 0.10
4 0.12 0.11 0.77
5 0.13 0.44 0.43
6 0.37 0.24 0.39
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When solving the dynamic programming equation in the backwards part of the model, it was 
assumed that the effort was allocated exactly according to the targeting strategy, with the resulting 
catch at any time t for vessel type b  operating out of port h being: 
 

 ( ) ∑∑
==

⋅⋅⋅=
n

s
jiji

n

s
stNhbtEstqswrshbtC

1
,,

1
),(),,(),(),(,,,  

        
where  r  is the proportion of species s associated with targeting strategy w  

q  is the catchability of fish in region with latitude i longitude j at day t of the current 
fishing season (time variant as it may depend on changes in regulations, targeting, 
or environmental conditions (such as moon phase) 

E(t,b,h) is the effort (number of shots) remaining at time t in the season for a vessel type b 
operating out of port h 

Ni,j(t,s) is the abundance of fish of species s in region with latitude i longitude j at day t of 
the current fishing season (determined exogenously) 

 
To obtain random variability on the realized catch composition, we used a binomial random 
variable. For each species, we obtained a new relative catch proportion by sampling randomly 
from a cumulative density function of the binomial distribution, assuming a pool of 100 and a 
success probability equal to the relative proportion of that species in the catch composition 
according to the cluster/targeting strategy.  
 
Model parameterization: movement and relative abundance/availability 
 
We modelled changes in relative abundance, together with the movement in the location of the 
peak fish density at quarterly intervals during the fishing season. This was assumed to be constant 
irrespective of year. Generalised linear modelling (GLM) was used to standardize for the effect of 
confounding factors (environmental and targeting practices) and obtain seasonal proxy 
abundance indices for each species in each year and quarter, for each of the 24 5-degree squares 
that together constituted the region of the ETBF considered by the model (Figure 4.1). Set 
specific data was obtained from 1997-2007. Using the results from cluster analysis, we undertook 
CPUE standardization only on those sets whose catch compositions showed a predominance of 
the target species 
 
GLMs were fitted to log transformed catch-per-unit effort data incorporating main effects for 
year, area (in 5-degree squares), quarter of the year (January-March; April-June; July-September; 
October-December), Southern Oscillation Index, moon phase (expressed as a numeric value 
from 1 to 24, where 1=new moon, 24=full moon), the number of hooks per basket (which is a 
proxy for fishing depth), the number of light sticks used on the set, the bait type, the time at 
which setting commenced (24 one-hour periods).  We also included interaction terms for year by 
area and quarter by area. 
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Using the fitted GLM, the effect of the environmental and targeting variables was removed so 
that the standardised CPUEs were a function of year, area, and quarter, and the interactions 
between year and area, and quarter and area. These yielded proxy indices of species availability by 
area and quarter for each year of interest, and this was multiplied by Nmax(s), the hypothetical 
maximum total number of fish of species s (= 1x107) to yield approximations for spatial and 
seasonal abundance in the model. The only exceptions were where anomalously large 
standardised abundances were predicted in data-poor year/area/quarter combinations. In these 
instances the proxy abundance was reduced to zero. 
 
We assume a constant underlying stock size, N, through time, implying fishing does not affect 
local abundance.  This is consistent with the hypothesis that for large pelagics, which are highly 
migratory (Brill et al. 2005), local replenishment occurs.  
 
Key parameters, state space and fleet dynamics 
  
The key parameters, state space and fleet dynamics are identical to those described for the single 
species model, with the only, obvious exception being that, where relevant, these become target-
species-specific, and incorporating targeting strategies. In particular, 

 
Ni,j(t,s) is the abundance of fish of species s in region with latitude i longitude j at day t of 

the current fishing season (determined exogenously) 
qi,,j(t,s) is the catchability of fish of species s in region with latitude i longitude j at day t of 

the current fishing season (time variant as it may depend on changes in 
regulations, targeting, or environmental conditions (such as moon phase))  

( )stp ,  is the (species-specific) unit price for landed fish 
The profit associated with setting x shots in region latitude i longitude j, for vessel type b 
operating out of port h , and using targeting strategy k, ( )hbxtkji ,,,,,π  is obtained by summing 

across the various species, weighting their abundance by their price, catchability and the targeting 
strategy employed: 
 
 xcDxstNstqskrstphbxt bjib

s
jijikji ⋅−⋅−⋅⋅⋅⋅= ∑ ,,,,, )),(),(),(),((),,,( ρπ  

 
where  ),( skr is the relative proportion of fish of species s associated with targeting strategy k 
 
As in the single species model, we model catchability for each species as spatially ubiquitous sine 
functions, derived as simplified descriptions of fitted relationships between the standardized 
CPUE indices and moon phase. For swordfish, targeted on the full moon (Campbell and Hobday 
2003), the sine function was parameterized so that one full cycle occurs approximately every 30 
time steps. Albacore and yellowfin tuna showed lower amplitude and slightly lower periodicity 
within the lunar cycle (Table 3.6).   
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  q(t) = α sin(βt)+1+ γ  
 
where γ controls the relative magnitude of the catchability and can be increased for one species 
relative to another.  We explore two scenarios, one corresponding to the year 2007 when the 
fishery is considered to have been catching relatively high numbers of albacore, and a second 
corresponding to 2004 where the catchability of swordfish was relatively high relative to its level 
in other years  (Table 3.6). 
 
Table 3.6: Parameter values for catchability equation 
 Α β Γ 
YFT 0.173 0.3 0 
ALB 0.318 0.3 2  (2007: model) 
SWO 0.383 0.2 0.5 (2004 model) 
 
 
As with the single species model, we let ),|,( hbteF denote the maximum expected profit 
accumulated between the current time t and the end of the season, T, for each vessel type b 
operating out of port h given that etE =)( . The maximum profit obtained for the final trip of 
the season for each vessel type, b, operating out of each port, h, is determined by where vessels 
fish and how many shots they lay. 
 
(9)  { }),,,(max),|,( ,,;,,

hbxThbTeF kjiexkji
π

≤
=    

 
If x = 0, vessels will stay in port. 
 
 
For preceding times, ),|,( hbteF satisfies (Mangel and Clark 1988, Clark and Mangel 2000) 
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where ),|
2

,( ,
, hbx

v
D

txeF
b

ji
ji ++−δ is the cumulative future profit, accumulated after the 

current trip. This total profit from the current point in time, to the end of the season, effectively 
represents the opportunity cost of fishing. 
 
Equation (10) is solved by backward iteration, which also determines the optimal fishing region 

i*(e,t)  , optimal targeting strategy, and the optimal number of shots x*(e, t)  (i.e. that yield the 
maximum accumulated profit). 
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Once equation (10) is solved, forward projections can be used to calculate the remaining effort, 
the accumulated value and the location/targeting choice.   The solution depends upon the 
characteristics of the vessels (Table 3.2). 
 
Stock structure and Dynamics 
 
We assume that each species of fish, s, is distributed according to the proxy abundance indices 
obtained using GLM, and that these indices are multiplied by Nmax(s) to yield the number of fish 
of each species, ),,( tjiN s ,  at spatial location ),( ji at any time t during the season, where 

),,( tjiN s   is updated each quarter according to the GLM indices. 
 
We assume a constant stock size, N, for each species in any given quarter (based on inferred 
relative species availability by quarter), implying fishing does not affect local abundance.  This is 
consistent with the hypothesis that for large pelagics, which are highly migratory (Brill et al. 
2005), local replenishment occurs on a short enough time scale in a specific location.  
 
Endogenously determined prices 
 
As with the single-species model, for each species, species-specific price was determined 
endogenously by treating price dynamics as a game (Clark and Mangel 2000). A forward-and-
backward (FAB) approach was used as described for the single species model, except that price is 
now species-specific; ),( stp , and so price is a function of the species-specific volume Vt(s) of 
landings by all vessels each time step. As such, the new price trajectory is generated according to 
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where  

)(sp is the mean price for species s, specified as a constant, and taken from average 
historical prices in the year of interest, as obtained from ABARE (ABARE 2009a). 

f is the price flexibility, as for the single species model. For calculations, we set f  =0.1, 

consistent with other tuna modelling studies in the region (Hannesson and Kennedy 2009) 

)(sV is the mean catch per trip, calculated across all trips during the season for each 
Monte Carlo iteration  

This generates a new species-specific price trajectory as a function of time, p(t,s), as the 
simulated vessels return to port with their catches: p(t,s) = p(V(t,s)). 
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Stabilizing the Dynamic Game 
 
This is done in the same manner as for the single species model, that is, by the method of errors 
in decision making (Houston and McNamara 1999, Clark and Mangel 2000). The probability of 
each region (latitude index i and longitude index j) being visited and each targeting strategy, k, 
being used, is assigned to be proportional to the profit: 
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associated with each vessel type at each port at that point in the season, given the effort 
remaining. 
 
If V* is the profit at the optimal location for a given e and t we set 
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and then define 
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where σ  is a tuning parameter that measures how important it is to be near optimal. If this is 
very large, then vessels will choose locations at random. If it is very small, then all vessels will 
concentrate in the optimal location. For computations we use σ = 5x106 (noting that ∆ ranges 
from 0 to ~2x106, but is generally of the order of 1x105 in magnitude). We now proceed to 
stabilise the dynamic game as for the single species model.  
 

4.3 The random utility model 

 
As in most economic-based choice models, utility is assumed to derive from an individual’s 
choice, while the choice itself is assumed to be made on the basis of the characteristics of the 
option chosen. Different decisions of individuals are treated as independent over time (Smith 
2002). The individual choice (and the derived utility) is assumed to have both a deterministic 
component and a stochastic error component (thereby giving the term “random utility model”). 
Utility is typically defined as a (linear) combination of a set of explanatory variables that together 
are surmised to form (for the most part) the non-random components of the utility, and a 
stochastic error component: 
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 ijjijij zU εβ += ,  (1) 

 
where for a given person time-event, i, (such as a fishing trip) choice j (i.e. fishing location) is 
made. The explanatory variables zij can be comprised of attributes of the choice, xij, and 
characteristics of the individual, wi, while βj is the parameter vector to be estimated.  
 
The basic multinomial logit model assumes that all choices are independent of irrelevant 
alternatives (IIA). However, alternatives in close proximity to each other most likely share the 
same, or similar, characteristics, and the IIA assumption is likely to be invalid. The nested 
multinomial logit (NL) model overcomes this by partially relaxing the IIA assumption through 
allowing for some correlation between sub-sets of alternatives (Hensher et al. 2005). The NL is a 
structural model of the interdependent decisions of where to fish (Smith 2002). Several levels of 
choice may be specified, such as general fishing zone and then area within that fishing zone., and 
the NL allows for different variances at these different nodes (Smith 2002). 
 
The choice probability of the nested multinomial logit model is defined as the conditional 
probability of area j in zone k (i.e. kj ) j is given by 
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where Kk is the inclusive value for zone k, representing the composite utility of the choices within 
the branch (Holland and Sutinen 1999). 
 
The probability of choosing a particular zone k is given by  
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where kτ  is the inclusive value variable relating to zone k. The unconditional probability of 

fishing in any particular area j is given by )Pr()Pr( kjk ⋅  

 

4.3.1 Data 
 
Individual shot level logbook data were available covering the period 2003 to 2008. From this, 
information was available on catch by species, fishing area (latitude and longitude), trip length, as 
well as vessel characteristics (vessel length, power, hooks deployed per shot). Only vessels 
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registered to ports in New South Wales (NSW) or Queensland were included in the analysis. 
Vessels either fished for one, two or three days per trip (steaming time was not included in the 
data set, only active fishing time), with most trips being of 2 fishing days duration (Table 2). Only 
one shot per day was taken. Distance (great circle nautical miles) to port was estimated for each 
fishing trip location (defined by the lat and long of each shot). Once in an area, distance travelled 
in multi-shot trips was relatively small (Table 3.7). 
 
Table 3.7 Distance to home port by trip length 
  Distance travelled (nautical miles) 
trip length (days) Number of trips Home to first shot First to second Second to third

1 6,710 193.41  
2 18,554 263.81 31.77 
3 1,631 135.89 27.02 25.01
Total 26,895  

 
Data were aggregated to a trip level, with the number of days fished each trip retained as a 
variable. The total distance travelled (return trip) was used as a measure of distance to allow for 
multi-day trips.  
 
Price information for the key species was derived from ABARE fisheries and commodity 
statistics (ABARE 2008, 2009a, b). Weekly diesel price information was available from the WA 
Fuelwatch website.6 While these data related to Western Australia, a consistent series of east coast 
data at a weekly level were not available. The diesel fuel prices were adjusted by the off-road 
rebate ($0.381 per litre) in place over the period of the data, and the weekly price series converted 
to an index. All prices were converted to real (2007-08) values using the consumer price index.7 
 
For the purposes of the model, each trip was allocated to a 1o square location (an area of 60x60 
nautical miles (NM)) based on their latitude and longitude. For trips that straddled two or more 
areas, the middle area was used to represent the trip (this happened very rarely as most trips 
between shots were less around 30 NM, see Table 3.7). Areas with low observed effort levels (see 
Figure 4.8) were amalgamated with adjacent low effort areas, resulting in a total of 72 fishing 
areas.  
 

                                                 
6 www.fuelwatch.wa.gov.au/ 
7 www.ausstats.abs.gov.au/ausstats/meisubs.nsf/0/0C4B698A7E84A0D6CA25765C0019F682/$File/640101.xls 
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Figure 4.8. Distribution of total fishing days, 2003-08 (a) all vessels; (b) Mooloolaba vessels 

 
As adjacent areas are likely to be similar in characteristics (e.g. distance from port and possibly 
catch distribution), it is likely that all alternatives are not independent, and the choice of where to 
fish will be hierarchical (i.e. general area first then a specific location within that area). For the 
purposes of the econometric analysis, the fishery was also split into six zones (Figure 4.8), 
although given the low number of observations in the north inshore and offshore these were 
eventually combined into a Northern zone. 
 
The key area variables used in the analysis were average value per hook, and the average distance 
to the home port multiplied by the fuel price index as a proxy indicator of fishing costs (on the 
assumption that both distance and fuel prices influenced the decision). The average distance of 
vessels fishing rather than the distance to the mid point of the area was used as this better 
reflected where the activity was taking place within the area. A second variable was estimated by 
dividing the average distance (multiplied by fuel prices) by the average number of days fished per 
trip by vessels operating in those areas, reflecting that distances further away may be 
compensated partially by a longer fishing trip (Holland and Sutinen 1999). The level of fishing 
effort (in number of trips) in each cell in the previous week and the previous year were also 
derived on the basis that fishers may use the activities of others in shaping their expectations. 
 
The average value per hook (VPH) deployed from each trip was estimated using the price and 
catch data, and the average of these for each area for each week was used to represent the 
expected revenue from fishing in a particular location. As the model estimation is based on 
expected, rather than realised, revenues, the values for the preceding week, and also same week in 
the preceding year, were used in the analysis. Where no fishing activity took place in a given 

a) All vessels b) Mooloolaba 
vessels only 
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week, the minimum value observed over the whole period of the data was used. The coefficient 
of variation in VPH was also included as a variable to capture any risk seeking or aversion 
behaviour. A negative parameter value on this variable would reflect risk aversion, while a 
positive parameter would reflect risk seeking behaviour (Holland and Sutinen 1999). 
 
The key individual vessel characteristics included in the model involved the size of the vessel and 
its previous fishing activity. Smaller vessels are believed less likely to undertake trips offshore 
than their larger counterparts, mainly as they have a lower capacity for storage and lower fuel 
reserves. To allow for this, the distance variable (multiplied by price) was divided by the length of 
the vessel, with an a priori expectation that the sign of the coefficient for this variable would be 
negative (i.e. the probability of fishing further from port decreases as the vessel length decreases, 
and vice versa). Many other studies have found that past behaviour is also a key factor in 
determining future effort allocation (Holland and Sutinen 1999, 2000; Hutton et al. 2004). The 
location fished in the previous week and also in the same week the previous year was included for 
each vessel as dummy variables. This resulted in the loss of data for weeks in which the vessel did 
not fish the previous week,8 or in that week the previous year. Also, the first year (2003) of the 
data was excluded as a lag of one year was required. The final data set used for the analysis 
involved 3472 trips. 
 

4.3.2. Estimated model parameters 
 
The Mooloolaba-only model 
 
The analysis was initially undertaken for the Mooloolaba fleet only in order to test the modelling 
system and test the relevance of the key parameters.  
 
The model was estimated as a nested multinomial logit model. Fishing areas were aggregated into 
5 zones based on the aggregate effort allocation of all boats across the fishery: northern, central 
inshore, central offshore, southern inshore and southern offshore.9 The inclusive value relating to 
the central inshore zone was normalised to 1 to avoid identification problems (Hensher et al. 
2005). A normal multinomial specification of the model was also tested, with the nested model 
having a lower AIC score. Further, the inclusive variable values were significantly greater than 
zero and significantly less than or equal to 1 (Table 3.8), suggesting a nested specification is more 
appropriate (Hensher et al. 2005). 
 

                                                 
8 Other studies have used a dummy variable to identify data for vessels that did not fish the previous week 
(Holland and Sutinen 1999, 2000).  
9 The last branch is degenerate as it contains only one alternative. As the alternative is specified at level two, the 
scale parameter is free to vary (Hensher et al. 2005). 
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Table 3.8. Estimated NL model parameters 
 All variables Excluding “habit” variables 

Variable Coeff St. error
Coeff/ 

St.Er.
P[Z>z

] Coeff St. error 
Coeff/ 

St.Er. 
P[Z>z

]

Utility model         

VPH Week-1 0.188 0.007 27.26 *** 0.188 0.007 27.27 *** 
VPH Year-1 0.041 0.005 8.57 *** 0.041 0.005 8.56 *** 
Density Week-1 0.171 0.007 24.82 *** 0.171 0.007 24.84 *** 
Density Year-1 0.017 0.009 1.83 * 0.017 0.009 1.85 * 
Coeff. Variation 0.770 0.071 10.85 *** 0.772 0.071 10.88 *** 
P*distance 0.020 0.001 16.03 *** 0.020 0.001 16.03 *** 
P*distance/days -0.002 0.001 -1.91 * -0.002 0.001 -1.90 * 
P*distance/length -0.418 0.024 -17.26 *** -0.418 0.024 -17.26 *** 
Fished last week -0.217 0.166 -1.31      
Fished last year -0.005 0.153 -0.03      

Inclusive values         

North 1.026 0.024 42.95 *** 1.027 0.024 43.02 *** 
Central inshore 1.000    1.000    
Central offshore 0.900 0.015 60.66 *** 0.901 0.015 60.75 *** 
South inshore 0.613 0.023 26.84 *** 0.613 0.023 26.87 *** 
South offshore 0.343 0.096 3.56 *** 0.345 0.096 3.60 *** 

Model diagnostics         

Chi squared  6763.9    6762.1   
Log likelihood   -12461.5    -12462.4   
McFadden Pseudo R-squared  0.213    0.213   
AIC  7.1864    7.1857   

*** significant at 1% level; ** significant at 5% level, * significant at 10% level 
 
The model was initially run with location-specific constants. However, these were individually 
(and jointly) not significantly different from zero so were excluded from the subsequent models. 
Most of the parameters were significant, at least at the 10% level with many at the 1% level, with 
the exception of the variables representing location choice in the previous week and year (Table 
3.8). In many previous studies, location choice is heavily influenced by previous fishing locations. 
These studies have largely been based on trawl fisheries exploiting demersal finfish. While the 
main swordfish species targeted in the fishery have a residential association with seamounts, the 
main tuna species in the ETBF are migratory, largely following thermal eddies in the ocean.10 
These eddies follow a similar, but not identical pattern from year to year in terms of both timing 
and location. Further, fishers are able to obtain reliable information on where these eddies are at 
any point in time, so past fishing activities (generally referred to as “habits”, (Holland and Sutinen 
2000)) are less important in this fishery than in others. The fishery is also dynamic in other ways: 
relative prices between species have changed over the period of the data, while the availability of 
individual species varies considerably inter-annually, changing the value per hook. Given these 
changes, best locations in the past may not be as valuable in the future, and fishers may place 

                                                 
10 Sea surface temperature is likely to influence the fishers’ expectations of catches and revenues, and would be a 
useful additional variable to include in the model. Such data were not available at the time of the analysis. 
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little value on their past behaviour.11 Excluding these variables slightly improved the model (in 
terms of the AIC). 
 
All the coefficients had the a priori expected signs. The utility (and hence the probability) of 
fishing in an area increased the higher the VPH in the previous week and year, and distant 
locations had a lower probability of being fished by smaller vessels than larger vessels. The 
parameter on the coefficient of variation was positive suggesting risk seeking behaviour, similar 
to that observed in other studies (Holland and Sutinen 2000). 
 
The model estimated effort allocation was compared with the actual effort allocation observed in 
2008 (Figure 4.9). Correlation between actual and estimated effort allocation was reasonably high 
(r=0.73), although the model tended to overestimate effort in the northern zone, and 
underestimate effort in the central zone. 
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Figure 4.9. Actual and estimated distribution of fishing days, 2008 

 
Overall, the NL model provides a reasonable estimate of the allocation of fishing effort over the 
period of the data examined. While the McFadden Pseudo R2 (McFadden 1974) was low, this was 
generally consistent with reported statistics in other studies of fisher location choice (Holland and 
Sutinen 1999; Smith 2002; Marchal et al. 2009). Similarly, the correlation between actual and 
estimated effort allocation was equivalent, if not higher, than observed in other studies (Hutton et 
al. 2004). 
 
The north and south ports model 
 
The analysis was extended to include the Cairns fleet in the north, and also the Sydney and 
Ulladulla fleets in the south. Given the substantial difference between the fishing pattern of the 

                                                 
11 This is also borne out in the relatively small impact of VPH the previous year on the expected utility of fishing 
in a given location compared with the VPH the previous week (Table 3). 
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different fleets, two separate location choice models were estimated – one for Cairns and 
Mooloolaba and the other for Sydney and Ulladulla. The variables used were the same as those 
used for the preliminary analysis. 
 
The estimated coefficients for the two models are given in Table 3.9. As can be seen, the 
parameter estimates for the combined Cairns/Mooloolaba model are generally similar to the 
Mooloolaba model only, but the model parameters for the southern ports are substantially 
different. 
 
Table 3.9. Estimated NL model parameters for the extended analysis 
 Northern Vessels Southern Vessels 

Variable Coeff St. error
Coeff/ 

St.Er.
P[Z>z

] Coeff St. error 
Coeff/ 

St.Er. 
P[Z>z

]

Utility model         

VPH Week-1 0.138 0.004 31.076 *** 0.087 0.007 12.531 *** 
VPH Year-1 0.025 0.003 7.521 *** 0.011 0.009 1.270  
Density Week-1 0.169 0.005 34.17 *** 0.280 0.014 19.438 *** 
Density Year-1 0.029 0.006 4.993 *** 0.091 0.017 5.526 *** 
Coeff. Variation 0.991 0.047 21.141 *** 0.433 0.102 4.247 *** 
P*distance 0.019 0.001 21.801 *** 0.006 0.001 6.049 *** 
P*distance/days -0.004 0.001 -6.735 *** -0.002 0.000 -3.737 *** 
P*distance/length -0.359 0.016 -21.79 *** -0.128 0.020 -6.324 *** 
Inclusive values         

North 1.000       
Central inshore 0.955 0.010 91.27 *** 1.000    
Central offshore 0.903 0.012 73.602 *** 0.899 0.055 16.206 *** 
South inshore 0.587 0.022 27.165 *** 0.989 0.026 37.648 *** 
South offshore 0.554 0.081 6.876 *** 0.899 0.055 16.206 *** 

Underlying standard errors        

North 1.283       
Central inshore 1.343 0.015 91.27 *** 1.283    
Central offshore 1.420 0.019 73.602 *** 1.427 0.088 16.206 *** 
South inshore 2.186 0.080 27.165 *** 1.296 0.034 37.648 *** 
South offshore 2.314 0.337 6.876 *** 1.427 0.088 16.206 *** 

Model diagnostics         

Chi squared  19723.6   4700.8   
Log likelihood   -24271.5   -6410.9   
McFadden Pseudo R-squared  0.289   0.268   
AIC  6.458   5.956   

*** significant at 1% level; ** significant at 5% level, * significant at 10% level 
 
None of the vessels in the data set from the southern ports fished in the northern zone, so this 
was excluded from the analysis. Further, the central and southern offshore zones were also 
merged together (i.e. forced to be the same) for the final analysis as there was no significant 
difference between them in earlier estimations and the combined model performed better than 
the model with the zones separate. 
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From Table 3.9, the southern boats appeared less responsive to VPUE than the northern boats, 
more responsive to the density of vessels and less risk-seeking (i.e. lower coefficient on the 
coefficient of variation suggesting that they follow the pack more than being risk seekers).12  
 

4.3.3 Simulation model 
Using parameters estimated in the RUM a simulation model was developed which could predict 
fishing locations and profits, given spatial incentives or closures. The simulation model used the 
set of observed trip level data for 2004 and 2007 for each of the ports examined. The probability 
that a given trip would be applied to a particular area was estimated using equations 1-4 above, 
based on the trip specific information and the coefficients of the RUM given in Table 3.9. The 
total effort by port in each area was determined by summing the probabilities across all trips 
from that port. 
 
To simulate the effects of the hook decrementation system, the VPUE was reduced accordingly. 
This had the effect of reducing the utility of fishing in the area and hence the probability that 
effort would be deployed there. For closures, the utility associated with a cell was forced to zero, 
so that the probability distribution was effectively estimated based on the set of available cells 
only.  
 
The average vessel costs and revenues were also included into the simulation model in order to 
derive an estimate of the total profitability change for the fishery and by port. There were 
obtained from the recent ABARE report on the effects of the buyback program on the fishery 
(Vieira et al. 2010). An assumption was made that vessels on average had a similar cost structure 
in each of the ports.  
 
The revenue at the trip level was estimated by multiplying the expected VPH for the week (the 
observed VPH in each cell multiplied by the probability that the vessel would fish in that cell) by 
the number of hooks and the number of shots that trip. This was summed over ports and also 
the fishery as a whole, and estimated for the benchmark scenario (no change) as well as the 
simulated scenario. Change in average vessel revenues at the fleet and port level were estimated 
by multiplying the average observed revenue from the ABARE report by the estimated 
percentage change in revenue from the model. 
 
Similarly, changes in fuel costs were based on the percentage change in the total distance travelled 
multiplied by the average fuel costs from the ABARE report. Change in crew costs were 
estimated as percentage of the change in revenue (as crew are paid a proportion of the revenue). 
Change in average profits was then estimated as change in revenue less change in fuel costs and 
crew costs. All other costs were assumed to remain the same. 

                                                 
12 The estimated parameter values are guides only to the responsiveness as the marginal effect of a change in 
these parameters needs to be determined to estimate the actual responsiveness. 



 

 39

5. Results 
 
The models were applied to a number of scenarios involving different areas of the fishery 
subjected to either a full closure or different levels of hook penalty. The two models operate in 
fundamentally different ways, each with advantages and disadvantages. Similarities and/or 
differences in outcomes under each scenario for the two models provide an indicator of the 
degree to which the results can be considered representative of the likely outcomes under each 
scenario. 
 
In this section, the models are briefly described again in the context of their use in the scenario 
analysis. The scenarios themselves are also described. These are hypothetical scenarios in order to 
examine the efficacy of the hook decrementation system as well as test the effects of model 
assumptions on the results, but have some link to a potential management response. The results 
of each model are presented, followed by a discussion on the similarities and differences between 
model results, and the implications for closures versus hook decrementation systems. 
 

5.1 General recap of the key model features 

 
The models used in the study have been described in detail in the previous section of the report. 
A brief overview of the models is again presented in order to set the scene for the scenario 
analysis. 
 

5.1.1. The random utility model 
 
The RUM is a statistical model that effectively determines the probability that effort will be 
applied to a particular area given its characteristics. In essence, effort is spread across the fishery 
based on its probability, with effort concentrating in areas that have a higher probability. The 
approach assumes that fishers aim to maximise their utility, and the level of effort applied to a 
particular area reflects the utility derived from that area. Hence, the analysis is based on revealed 
(observed) preferences. Given that we can observe the characteristics of the area, the 
contribution of these characteristics to the expected utility can be derived. 
 
The key driver in the model that is affected by a hook decrementation program is the expected 
effective value per hook deployed. As the model is based on expectations (as presumably the 
actual outcome cannot be known until effort is deployed in an area, following the decision to fish 
there), this is represented in the model by the value per hook in the previous week. Given fishers 
are faced with a choice of areas and a limit on the total number of hooks that can be deployed 
over the year, then fishing in an area with a hook penalty reduces the expected value per hook 
consumed in that area.  
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For the purposes of estimating the outcomes under a particular scenario, a simulation model was 
constructed around the RUM. The simulation model was used to estimate the distribution of 
fishing effort as a result of either reducing the expected value per hook (i.e. the value in the 
previous week) in the scenario areas, or preventing fishing entirely in these areas (i.e. a closure). 
The actual average observed value per hook in each area was applied to the resultant effort 
distribution and the change in revenue as a result of this effort re-distribution was estimated. 
Similarly, changes in fuel costs were estimated by the overall change in distance travelled. From 
these, the impacts on average fleet profitability (by port and total fleet) could be estimated. 
 
The RUM model includes vessels from four ports: Cairns, Mooloolabah, Sydney and Ulladulla. 
These ports capture the bulk of the fishing activity across the fishery. As each vessel (and indeed 
each trip) is identified separately in the analysis, estimates of change in profitability by vessel is 
also possible in the model analysis. 
 

5.1.2 The dynamic State Variable Model 
 
Dynamic state variable modelling (DSVM), a form of dynamic programming, has its basis in the 
ecological and economic literature (Clark and Mangel, 2000; Mangel and Clark, 1988). It is a 
discrete-time dynamic optimisation method used to model a state-dependent decision over time, 
where each decision is made by maximising expected future rewards (Babcock and Pikitch 2000). 
This allows decisions influenced by qualitatively different, and possibly unrelated factors to be 
based on the value of a single currency. Factors such as the availability and value of different fish 
species, quotas, costs of travel and risk to fishing vessels influence decisions as they affect the 
final value of the landed catch (Gillis et al 2005). The decision-maker’s “state” includes any 
information about its condition that can influence the expected reward from each option. For 
fishers choosing strategies to maximise utility (usually defined as profit), the state could include 
the catch of various species in the hold (Babcock and Pikitch, 2000, Gillis et al. 2005) or the 
amount of trips or quota remaining (Gillis et al. 2005, Poos et al 2010, Dowling et al in prep). 
DSVM also allows short term choices to be reconciled against long time constraints, as in the 
case where fishers face an annual quota but make daily decisions about fishing location, targeting 
and/or discarding (Poos et al. 2010). A dynamic state variable model calculates state-dependent 
decisions over time, by treating the state space as a discrete number of cells, across which the 
dynamics programming equation calculates the maximum expected profit and the optimal choice 
at each time across all states. The model is backward-iterative, since the optimal choice in each 
time period depends on the expected returns in the future. 
 
The dynamic state variable model used here is that described in Chapter 4, a model for state 
dependent behaviour of various fishing vessel types, translated into behaviour of the fleet and 
implemented using stochastic dynamic modelling (Mangel and Clark 1988; Clark and Mangel 
2000). The model describes a multi-species fishery with moving stocks of varying seasonal 
availability, and alternative targeting strategies which yield differing catch compositions.  
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We assume 3 vessel types of increasing capacity defined by the vessel’s maximum speed, travel 
costs, cost per shot, and the maximum time the vessel can remain at sea (largely influenced by the 
storage volume and/or freezing capacity of the hold), which in turn confers a maximum number 
of longline sets, or “shots”, per vessel during a trip.  The modelled vessels operate out of two 
ports (nominally Mooloolaba and Sydney). Consistent with the operations of longline vessels 
(Campbell 2007), we assume that one shot equates to one day of the season, so that laying x 
shots requires x days.  Since days will be lost due to weather conditions and social demands, there 
is an overall upper limit on the number of shots per fishing season. 
 
We parameterized the model using set-by-set longline data obtained from the databases held by 
the Australian Fisheries Management Authority (AFMA). In particular, we inferred patterns of 
quarterly fish movement and relative availability by standardization of catch-per-unit-effort 
(CPUE) data, and we inferred targeting strategies by performing cluster analyses on the catch 
composition of the sets reported in the logbooks. In order to make the model tractable, we used 
a simplified representation of the ETBF, with fishers operating out of two ports, and fishing in 
one of 24 5-degree regions. We include only the main three target species of yellowfin tuna, 
albacore tuna and broadbill swordfish, although the fishery has also targeted bigeye tuna and 
striped marlin. The specific details of the fishery and vessel parameterisation may be found in 
Chapter 2. 
 
The state variable in our model is the effort (number of shots) remaining at time t in the season 
for a vessel. We assume a fishing season of length 120 days. We assume a constant underlying 
stock size, N, through time, implying fishing does not affect local abundance.  This is consistent 
with the hypothesis that for large pelagics, which are highly migratory (Brill et al. 2005), local 
replenishment occurs.  
 
Vessels may only travel to one 5 degree-square location per trip, which is consistent with general 
observed fleet behaviour (Pascoe et al 2010). In addition to choosing a fishing location, a vessel 
may remain in port at any given time. As such, there are effectively 25 “location” states (the 24 
at-sea regions and the state of remaining in port), and ((24 x Ntarg) + 1) state spaces, where Ntarg 
is the number of targeting strategies. If a vessel remains in port, it is assumed to do so for one 
day, so that t is incremented by 1, after which the decision of where to go fish is made again.  
Staying in port allows a vessel to get “in phase” with the oscillating catchability or “out of phase” 
with supply in the market, and thus avoids the expenditure of capital when catchability and/or 
price is low. 
 
For each species, species-specific price was determined endogenously by treating price dynamics 
as a game (Clark and Mangel 2000). A forward-and-backward (FAB) approach was used, 
assuming that price is a function of the species-specific volume Vt(s) of landings by all vessels 
each time step. This generates a new species-specific price trajectory as a function of time, p(t,s), 
as the simulated vessels return to port with their catches: p(t,s) = p(V(t,s)). We stabilized the 
dynamic game (Houston and McNamara 1999, Clark and Mangel 2000) by the method of errors 
in decision making.  



 

 42

 
For consistency with the Random Utility Model to the extent possible, the total effort quota was 
scaled according to the total number of trips that had originated out of each port in the year of 
interest. Given that the state space increases significantly with the additional of ports, the 
modelled Sydney port was assumed to be a proxy for all vessels operating from this port and all 
ports to the south of Sydney. The effort quota was set to 100 sets for the Mooloolaba-based 
vessel types, and the effort quota allocated to vessel types operating from “Sydney” port was the 
fraction of 100 sets corresponding to the relative proportion of trips originating from Sydney, 
Ulladulla and all other southern ports. For the 2004 scenarios this was 70 (2409 trips originating 
from Mooloolaba; 1677 from and south of Sydney), and for the 2007 scenarios this was 53 (1709 
trips originating from Mooloolaba; 907 from and south of Sydney). 

5.2 Scenarios examined 

 
Fishery interactions with threatened and protected (TEP) species, such as the incidental catch of 
albatross, flesh-footed shearwaters and turtles, are of concern in the Eastern Tuna and Billfish 
Fishery. Although there is a threat abatement plan for seabirds under the EPBC act that has 
involved catch rate limits, area closures and mitigation measures for seabird species, these are 
mandated independently of measures or turtles and other TEP species.  The variety of measures 
for addressing various environmental issues, such as trip limits for sharks, operational 
modifications for reducing turtle catch, and voluntary avoidance of some billfish species has 
meant that the fishery is not taking an integrated approach to the management of target and TEP 
species. An alternative approach, under a catch or effort quota system such as that detailed in the 
2005 management plan, could use spatial incentives as a management tool to avoid TEP by-catch 
with minimal direct constraints on how fishers choose to operate. By using SAFs (spatial area 
factors, as per the 2005 management plan) to create disincentives to fish in particular areas when 
there is a high probability of encountering TEP species, these existing incentive measures could 
be used as a cost efficient alternative to the current spatial management policy of marine reserves 
and fishery closures. 
 
In the scenarios presented in this chapter, we assume that the fishery is managed via a total 
allowable effort (TAE) quota, as was to have been in the process of implementation at the 
commencement of the project. We acknowledge that the fishery is now moving to a catch quota 
system, and discuss the efficacy of adapting the respective modelling approaches to evaluate 
incentives in this context in the next chapter Under the assumed TAE system, the hook 
decrement incentive system is implemented by assigning SAFs to each fishing location.  These 
SAFs can vary over the course of the fishing season. Here we examine a set of scenarios in which 
the goal is to design an incentive map that minimizes capture of threatened species with minimal 
loss of access to target species. 
 
We consider 20 scenarios involving i) varying levels of hook decrement (3); ii) varying locations 
for application of the incentive (3); and iii) alternative years in which the measure is applied (2) (3 
x 3 x 2 = 18); plus “baseline” scenarios of no “management change” for each of the two years 
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considered (Table 4.1). Identical scenarios are considered for different years since fish 
distribution, availability and targeting practices show strong differences between years, such that 
different years may almost be considered alternative “fishery regimes”. 
 
Table 4.1 Summary of spatial incentive scenarios 
Scenario Year Location Hook decrement
Baseline 2004 2004 N/A N/A
 2004 Mooloolaba 3:2 (1.66)
 2004 Sydney 3:2 (1.66)
 2004 South of Sydney 3:2 (1.66)
 2004 Mooloolaba 3:1 (3.00)
 2004 Sydney 3:1 (3.00)
 2004 South of Sydney 3:1 (3.00)
 2004 Mooloolaba closure
 2004 Sydney closure
 2004 South of Sydney closure
Baseline 2007 2007 N/A N/A
 2007 Mooloolaba 3:2 (1.66
 2007 Sydney 3:2 (1.66
 2007 South of Sydney 3:2 (1.66
 2007 Mooloolaba 3:1 (3.00)
 2007 Sydney 3:1 (3.00)
 2007 South of Sydney 3:1 (3.00)
 2007 Mooloolaba closure
 2007 Sydney closure
 2007 South of Sydney closure
 
The spatial management unit, that is, the spatial scale at which incentives could be applied, was 
limited to the 5-degree spatial resolution of the dynamic state variable model (Figure 5.1) The 
random utility model had a 1-degree spatial resolution, but for sake of direct comparison, 
management was applied at the coarser scale of the two models.  
 
Statistical models of albatross distribution (Wilcox, unpublished data) based on historical 
encounter rates, predicted that the highest encounter rates occurred in the 5-degree spatial zone 
immediately to the south of that encompassing Sydney and closest to the coast, while the second-
highest encounter rates were within the 5-degree coastal square encompassing Sydney (Figure 
5.1). This area has been the focus of management activity to reduce seabird bycatch in recent 
years.  The Australian Fisheries Management Authority (AFMA) has imposed closures to daytime 
fishing within the 5 degree square encompassing Sydney in attempts to minimise seabird 
encounters. As such, we explored spatial incentives in each of these two regions. We also 
explored incentives in a third region, the 5-degree area immediately offshore from 
Brisbane/Mooloolaba (Figure 5.1). This region was selected as interactions with marine turtles 
are an emerging issue in the fishery, and the area off of southeastern Queensland is a potential 
target for management due to the high concentration of turtle nesting sites in the region.  
 



 

 44

 
Figure 5.1 Map showing the 5-degree spatial delineations used in the dynamic state variable model, and indicating 
the three areas to which modelled hook decrement incentives and closures are applied. 
 
Two levels of SAFs were considered in addition to spatial closure scenarios (SAFs in the context 
of the DSVM are implemented at the shot level, instead of as individual hooks as fisher’s quota is 
expressed in shots in the model). The first was 3:2; that is, for every 2 units of effort (shots) 
applied in the area of spatial management, 3 units (shots) were decremented from the quota. The 
second was 3:1; for every unit of effort applied in the area of spatial management, 3 units of 
effort were decremented from the quota. It was intended that these would approximate moderate 
and strong spatial incentives, respectively. 
 
Annual spatial maps of catch composition (Campbell 2008) suggested that the years 1997, 2003 
and 2007 embraced the main targeting practices (set types and catch compositions) historically 
known to have occurred in the fishery. In 1997, the fleet was mostly inshore, with swordfish and 
yellowfin tuna comprising the majority of the catch. Offshore expansion peaked in 2003 as a 
result of inshore depletion of swordfish, with the majority of the catch being yellowfin, swordfish 
and albacore. The introduction of swordfish total allowable catches in 2006, together with 

“seabird management 
area” (historical 

closures, 2nd highest 
encounter prediction) 

“seabird management 
area” (highest encounter 

prediction) 

“turtle management 
area” 



 

 45

increasing fuel prices, resulted in Mooloolaba-based vessels shifting onto lower-value, but highly 
abundant, albacore in more northern latitudes. The targeting of albacore in these regions also 
resulted in coincidental catches of higher-value yellowfin that exceeded inshore catch volumes of 
this species at this time. Export markets were successfully sought for albacore, resulting in the 
ongoing active targeting of this species. The data informing the Random Utility Model 
commenced in 2003, but due to the need to have a year lag in the model, the earliest year that 
could be considered was 2004. As such, two years of the fishery were considered here: 2004 and 
2007. 
 

5.3 Results 

5.3.1 Effort reductions in the management areas 
The change in effort in the area to which the management instrument was applied was estimated 
under both 2004 and 2007 conditions. A baseline run of both models was undertaken with no 
management intervention, and this was compared to the results from runs with management 
restrictions. Two levels of hook penalties were applied to each management area – a 3:2 penalty 
(where 3 units of hook quota were consumed for every 2 hooks deployed) and a 3:1 penalty 
(where 3 units of hook quota were consumed for every hook deployed). A total closure of the 
area was also imposed for comparison. 
 
As would be expected, the closure of the area resulted in a 100% reduction in effort in the 
closure area for all model runs as perfect compliance was assumed (Figure 5.2), the exception 
being in the DSVM model which had a baseline effort level of zero in the area off Brisbane in 
2007 (hence effort could not decrease further). 
 
In both models, the introduction of a hook penalty resulted in a reduction in fishing effort in the 
management area, and the magnitude of this reduction generally increased with the increasing 
hook penalty (Figure 5.2).  The DSVM model was more sensitive than the RUM model in terms 
of response to the hook penalty, with greater reductions being observed in all scenarios. The 
DSVM model attaches a higher cost to the use of a hook at any point in time as it has an 
opportunity cost in terms of its foregone future use. The RUM, in comparison, is myopic as it 
treats all trips independently, and only considers the relative benefits of fishing in each area in 
one point in time.   
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Figure 5.2 Estimated changes in fishing effort in the management areas examined 

 
An unusual outcome of the DSVM was that, in some cases, the higher hook penalty resulted in a 
marginally (i.e. 4-5 percentage points) lower effort decrease in the management area. Given that 
the DSVM optimises fishing activity over time and space, and given the highly non-linear nature 
of many of the model parameters, this discrepancy may just be an artefact of the model, and 
reflect difficulties in solving models involving time and relative dimensions in space. 
 

5.3.2 Changes in catch composition 
 
The DSVM includes information on catch composition arising from the spatial and temporal 
effort allocation. This information is not included in the RUM model directly, although 
differences in catch composition (as well as abundance) are reflected in the relative expected 
value per hook in each area which includes all species caught in a location, their abundance, and 
their average price. 
 
The estimated baseline spatial catch composition of the three key species (yellow fin tuna, 
albacore and broadbill swordfish) is shown in Figure 5.3 for each of the two years of the analysis. 
The model results suggest that an optimal strategy for the fishery would have been to have fished 
more offshore in 2004, targeting mainly swordfish, and moving more inshore and to the north in 
2007 targeting albacore in the north and yellow fin tuna in the south.  
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Figure 5.3 Baseline catch composition for a) 2004 and b) 2007 from the DSVM (yellow=yellow fin; 

green=albacore; blue=swordfish, marker diameter indicates total catch volume) 
 
The impacts of the different management actions on the optimal spatial catch distributions are 
shown in Figures 3.4 and 3.5. In most cases, the general catch composition does not change 
substantially as a result of the different management actions, but the location of their catch does. 
These effects vary also by year, reflecting differences in the average value per hook in different 
areas which is driven by relative stock abundance and distribution in that year. For example, 
increasing the hook penalty in the area off Brisbane given the 2004 stock conditions results in the 
same catch being taken further north, while under 2007 conditions, there is no change. 
 
A change in catch composition as well as catch location was estimated to be optimal under 2007 
stock conditions when management actions were applied to the areas off Sydney and south of 
Sydney. In both cases, catches of albacore was estimated to increase, with inshore catches of 
yellow fin decreasing (Figure 5.5). 
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Figure 5.4 Spatial catch distribution under the different management options and 2004 stock conditions from the 

DSVM (yellow=yellow fin; green=albacore; blue=swordfish, marker diameter indicates total catch volume). 
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Figure 5.5 Spatial catch distribution under the different management options and 2007 stock conditions from the 

DSVM (yellow=yellow fin; green=albacore; blue=swordfish, marker diameter indicates total catch volume). 
 

5.3.3 Changes in profitability 
The model estimates of change in fleet profitability varied considerably (Figure 5.6). In all 
simulations, however, a closure off Brisbane resulted in an increase in total fleet 
profitability.13 This was largely driven by cost savings from the more southerly vessels not 
travelling to these areas. In other scenarios, the RUM predicted a net reduction in profitability 
at the fleet level, although the DSVM suggested that profits may increase with a 3:2 hook 
penalty, and also with a closure. 
 
 
                                                 
13 In contrast, the initial RUM analysis for the Mooloolaba fleet on its own suggested that a closure off Brisbane 
would result in a greater loss in fleet profits than a hook decrementation system (Pascoe et al. 2010). The earlier 
analysis used 2008 data as the benchmark, suggesting that the outcomes may vary considerably by year  
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Figure 5.6. Relative change in fleet profitability from the different models and scenarios 
 
For the random utility model, changes at the individual port level suggest that distributional 
consequences of the different options are considerable (Figure 5.7). The southern port of 
Ulladulla appears particularly vulnerable to any management measure imposed in the areas off 
Sydney or south of Sydney. Under 2004 conditions, the vessels in the port would have been 
economically unviable14 under any scenario in these areas, while vessels in Sydney would also 
have been economically unviable if the area off Sydney had been closed. Under 2007 conditions, 
vessels in Ulladulla would, again, be economically unviable under any of the modelled 
management options if applied in the area south of Sydney, and would be economically unviable 
if the area off Sydney was closed. 
 
At the other end of the extreme, vessels from Cairns were largely unaffected by any of the 
management scenarios examined. Where a change was observed, this was usually small (less than 
2% in most cases) and positive. Larger positive changes in profit were observed for the Cairns 
boats with a closure off Brisbane, with fishing effort expended in this area being diverted to 
nearer fishing locations.  
 

                                                 
14 That is, the reduction in average profits of vessels in the port decreased by greater than 100%. 
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Using the DSVM, port-specific results (Figure 5.8) also suggested, at least for 2004, that the 
“Sydney” port (being a proxy for Sydney and Ulladulla) was more vulnerable to management 
measures than the Mooloolaba port, but relative changes in profit were of a much lower 
magnitude than for the RUM (Figure 5.7) and indeed may simply reflect the different price 
trajectory that resulted from the game played under altered conditions. Both ports experienced a 
(maximum 14%) increase in profit with closures in either year, in contrast to the RUM when this 
closure was off or south of Sydney. Generally, the 3:1 penalty affected the Sydney port more 
adversely than the Mooloolaba port, while the 3:2 penalty south of Sydney resulted in small losses 
for the Mooloolaba port and gains for the Sydney port in both years. 
 
There was no consistent pattern in profitability by vessel type with management strategy or 
between years, as evaluated using the DSVM (Figure 5.9). The few consistencies included i) the 
increase in profit for the highest and lowest capacity vessels, and loss for the moderate capacity 
vessels, for any management measure applied off Brisbane in 2007, and ii) the increase in relative 
profit experienced by the moderate capacity vessel type under the 3:2 penalty or under a closure 
in 2004, irrespective of where the measure was applied. However, it should be noted that overall 
small changes in profit when considering the fleet as a whole, or by port, are here revealed to 
often be the result of larger losses experienced by some vessel types being offset by gains 
experienced by other vessel types. For example, for the 2004 scenarios, management measures 
imposed off Brisbane or south of Sydney resulted in profit increases for the highest capacity 
vessel types but losses for the moderate and sometimes low-capacity vessel types.  
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Figure 5.7. Relative change in average vessel profitability in each port using the RUM for different scenarios 
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Figure 5.8 Relative change in average vessel profitability in each port using the DSVM for different scenarios 
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Figure 5.9 Relative change in average vessel profitability by vessel type using the DSVM for different scenarios 
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6 Discussion 
 

6.1 Pros and Cons of each model 

6.1.1 Dynamic state variable model 
As it is currently formulated, the dynamic state variable model assumes that fishers have perfect 
information and are able to instantaneously adapt to new circumstances. This results in a highly 
responsive model where the spatial effort patterns reflect the optimal profit in terms of the 
assumed price model and cost structures. There is little noise associated with incorrect decision 
making, so that for each scenario, the relative changes in profit and costs are very near the true 
differences under optimal decision making. While it is clearly unrealistic to assume instantaneous 
and perfect adaptation to new circumstances, the advantage of this assumption is that the model 
can be considered to yield the equilibrium results for a given set of circumstances: presumably, 
fishers will learn about current conditions and will thus ultimately distribute effort in such a way 
as to maximise profit. 
 
The greatest strength of the dynamic state variable modelling approach over a statistical 
modelling approach is its ability to acknowledge opportunity cost. The examples presented earlier 
illustrated that if operators are limited in how much they can fish, effort is utilized more 
effectively in terms of both when and where to fish, thereby maximising their overall profit level.  
This is evident in the overall smaller effects on profit predicted by the dynamic state variable 
model, in comparison with the random utility model. By considering future as well as immediate 
profit for a given level of remaining quota at a given time in the season, the dynamic state 
variable approach also more closely approximates the decision process of fishers: whether it is 
preferable to invest more immediately, or to delay until a more profitable opportunity arises. That 
is, decisions are made not just on spatial allocation of effort, but also when that effort is to be 
applied. This introduces the possibility of not fishing as being an optimal decision in some time 
periods, whereas this option would not be available in a statistical model based on pre-quota data. 
Unlike statistical models, where remaining in port is never optimal unless all other options 
involve negative profits, the possibility of not fishing being the optimal decision/location choice 
is a key means by which overall profit is optimized.  This possibility of not fishing is further 
magnified by the consideration of market demand in determining price.  By remaining in port, 
fishers can not only wait until fishing conditions and prices are higher, but can also influence the 
prices themselves to their advantage. 
 
An additional advantage of the dynamic state variable modelling in the context of estimating 
fishery responses to new management regimes is that it does not depend on historical patterns 
for its predictive power (e.g. Bue et al 2008). This is in contrast to statistical models which 
assume myopic behaviour, where location choice is based on the set of current or expected 
conditions, and does not take into account potential future conditions, including the potential 
future use of quota. For example, if a fishing area is removed (representing a closure), the 
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statistical models will only predict one outcome - a proportional increase in effort in the 
remaining areas (by each individual fisher).  However, the distribution of effort may change 
radically, and not in a proportional manner with changes in the available areas for fishing 
(Costello and Polasky 2002). 
 
In spite of these advantages, there are also significant drawbacks to the dynamic state variable 
approach as it is currently implemented. The first of these relates to the technical constraints of a 
large state space. As it is currently formulated, the model solves the dynamic programming 
equation via backward iteration for each of 120 time steps and each of 100 possible amounts of 
effort remaining at that time step, for each of 6 vessel type/port combinations, a total of 72000 
solutions. For each combination of vessel type, port, time and effort remaining, there are 25 
locations x 6 targeting strategies = 150 possible solutions. Increasing any one of the state variable 
or state space elements substantially increases the run time of the model and the difficult in 
stabilizing  the dynamic price game. 
 
As a result of these technical constraints, the model is overly simplified both in terms of its 
spatial resolution and its representation of vessel types and ports. A 5-degree spatial resolution is 
too coarse in an operational sense: the scale of fisher decisions, and indeed the oceanographic, 
biological and environmental effects that factor into decisions is on a finer scale. Moreover, 
spatial management becomes an increasingly blunt instrument at decreased resolution: the 
effectiveness of spatial incentives in protecting of TEP species without compromising access to 
target species will be difficult when implemented on such a large spatial scale. In addition, the 
simplification of the fleet to three vessel types and two ports is likely to be unrealistic, although 
this could be addressed by a better understanding via the data of the relative volumes of vessels 
of each capacity category operating out of each port. If this could be achieved, effort quota could 
be allocated among these in a more representative proportion, as opposed to equally. An 
associated issue is utility of developing better estimates of vessel capacity attributes and costs 
appropriate for each vessel type/port combination, but these are not currently accessible given 
the available data. 
 
A more fundamental issue with the DSVM approach is that it is an optimisation, solving the 
dynamic programming equation to give the location and targeting strategy that yields the 
maximum profit for any state for all vessel and port types simultaneously. Put another way, all 
available effort is put to best use. As a result, the outcome set (the predicted spatial distribution 
of effort) is extreme and sparse. Although a small amount of error on location choice is 
introduced in order to stabilise the dynamic game, this is not of a magnitude to distort the 
optimal solution from being achieved on average. Thus the results do not show effort spread 
across more than, in these scenarios, one third of the possible areas (i.e. the maximum spatial 
extent of effort distribution was 8 of 24 spatial regions in the 2004 3:2 hook incentive applied off 
Mooloolaba. This is clearly not representative of the true spatial distribution of the fleet, although 
it may capture the main features. Thus it is somewhat problematic when it comes to evaluating 
the effect of spatial management, particularly when only a small amount of modelled effort 
occurs in the region of interest in the baseline scenario. 
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The issue of an extreme and sparse outcome set may be able to be partially resolved if the effect 
of vessel competition were included in the DSVM. Currently there is no consideration of the 
potential decrease in relative profitability with increasing vessel density within an area.  This 
would make the most profitable areas less attractive above a given level of exploitation, and force 
vessels to consider sub-profitable areas. It is generally understood that fishers prefer to operate in 
areas not being exploited by a high volume of competitors, although some co-operation may 
occur leading to intermediate vessel densities. A future extension of the DSVM could consider 
the inclusion of density dependence as an additional state variable. However, this would most 
likely have to come at the expense of the dynamic price game, since the additional complexity of 
an additional state variable would compromise the convergence ability of this aspect of the 
model. 
 

6.1.2 The RUM 
 
The key advantage of the RUM is that it can be applied at a much finer scale than the DSVM. In 
this case, the model was applied to a 1 degree grid (c.f. a 5 degree grid with the DSVM), although 
areas of low activity were aggregated into larger areas. The RUM is also based directly on 
observed behaviour, with the focus on trying to infer the unknown drivers of this behaviour (as 
opposed to assuming the drivers and searching for the likely behaviour as in the DSVM). The 
model can be used to estimate where effort will be deployed at any point in time given the set of 
conditions prevailing at that time. 
 
The RUM uses individual trip data for the estimation of the model parameters, while the 
simulation model built around the RUM also uses this same individual trip information for 
estimating effort allocation. This means that the full heterogeneity is captured in the analysis. As 
each trip is estimated separately, the results can be aggregated to a port level or higher with 
relative ease. 
 
The RUM determines the probability that a fisher will choose a given location based on its 
characteristics. This probability, when combined with the total number of fishing days, provides a 
spread of effort across the fishery, concentrating in the areas most likely to be fished. While not 
explicit in the model, as it is based on observed behaviour, and as fishers do not know in advance 
the actual conditions they are facing, then there exists the likelihood that the derived effort 
allocation will be sub-optimal. That is, error in decision making is implicit in the model. This 
explains the result that profits can increase as a result of a closure or management intervention if 
fishers are operating in a less than optimal way initially, and the management intervention 
provides – inadvertently – incentives to change location that results in higher profits. This, of 
course, is case specific and will be determined by the efficiency of fishers’ location choice.  
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In contrast, the DSVM determines an optimal allocation of effort across the fishery assuming 
perfect knowledge. The DSVM also takes into account the opportunity cost of using the effort 
quota – something that is ignored by the RUM which treats each trip totally independently.  
 
While an advantage of the RUM is that it uses trip level data for both the estimation of the model 
parameters and simulations, developing the models with many location choices also creates 
difficulties in the RUM framework. For each observed choice, an estimate is required of what 
might have happened in each alternative choice. Average catch information from other vessels 
which fished in these alternative locations at the same time can be used, but the resultant data 
matrix is considerable. Compiling such a data set is a non-trivial task. Further, location choices 
are restricted to only those observed at the time, so there is no potential to consider policies that 
are outside the historic data, even if they might have greater benefits. 
 
A final difficulty is that fishing effort has to go somewhere in this modelling framework (as 
fishers cannot opt not to fish), even if in doing so causes economic losses to the fisher and 
industry. The substantial losses estimated in the scenarios examined are likely overestimated, as 
fishers would most likely choose not to fish rather than incur these losses. In the DSVM, not 
fishing was an option, resulting in lower reductions in profit than the RUM.  
 

6.2 Incentives vs closures 

 
The relative issues with each modelling approach notwithstanding, each model provided a basis 
for comparison of the spatial redistribution of effort and its effect on relative profitability in 
response to spatial incentives. The response to incentives was compared with to that under an 
area closure, and to the baseline scenarios. 
 
Within each of the random utility and dynamic state variable modelling approaches, overall 
fishery profitability shows no consistent pattern with the increasing strength of the management 
measure. There was instead high variability with year, with incentive level, by port and by 
management area. The year, port and management area variability are likely due to the high 
spatial and temporal heterogeneity of the fishery, both in terms of relative fish availability and 
costs. The profitability response to incentives, however, is non-linear and complex, and, in some 
instances, counter-intuitive. In the case of the DSVM approach, the nature of the price game is 
such that vessels are effectively confronted with a new regime in response to a management 
scenario, and adapt accordingly. Together with the highly responsive nature of this model, this 
implies that overall profitability is typically not greatly compromised under spatial incentives or 
closures as all vessels in the fishery find the behaviour that generates the highest overall profit in 
the new management regieme.  
 
The reduction of effort in the area of interest generally did correlate with the increasing strength 
of the management measure, although for the DSVM where baseline effort was already low in 
the area of interest, any measure resulted in the relocation of all, or almost all of this effort. The 
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inference is that, although the measures perform as anticipated to reduce the relative effort in the 
area in which they are applied, the response of the fishery as a whole in terms of its profitability is 
not straightforward, as this is dependent not only on the strength of the management measure, 
but also on when and where it is applied (and, as such, the baseline effort distribution, and 
relative availability of fish), and the flow-on effects of the effort relocation on market prices. 
 
It follows that, irrespective of the modelling approach used, there is no clear “winner” in terms 
of an optimal spatial management strategy for the fishery, and no general advice emerges as to 
the relative benefits of spatial incentives (hook decrements) compared with area closures. 
Moreover, in some circumstances, closures or stronger incentives could actually result in higher 
fishery profitability than that experienced under baseline or low incentive scenarios. The main 
message is that the overall change in fishery profitability in response to a spatial management 
measure will depend on a combination of factors that interact in a non-linear manner. 
 
Given this, it is more informative to consider sub-fishery responses, such as profitability changes 
by home port. Examining only the overall change in fishery profit can be misleading in that this 
may mask potential distribution impacts that occur within the fleet. The random utility model 
approach allows for results to be readily broken down by home port, while the simplified, coarser 
port structure assumed in the DSVM approach allows less disaggregation into sub-fleets. 
However, both approaches do show clear winner and losers under a given scenario, such that 
some general patterns emerge at a sub-fleet level. The implications are twofold: first, an overall 
gain to the fishery may come at the expense of one of its sub-sectors, and vice-versa; second, 
general patterns in response to management measures may be more readily apparent if these are 
broken down by home port and/or vessel type. 
 
The high sensitivity of the fleet response to not only the magnitude but the location and timing 
of the management measure, as well as to the subset of the fleet (vessel type, home port) is 
apparent within each modelling approaches. However, an important additional observation is the 
lack of consistency in results between the modelling approaches under any given suite of scenarios, 
in spite of attempts to make the approaches as comparable as possible. One may, therefore, be 
tempted to draw the conclusion that neither model is valid, or to make a case that one approach 
is superior to the other. While acknowledging the fundamental differences in the approaches, and 
the respective advantages and shortcomings of each, interpretations in this direction neglect to 
appreciate that each model makes fundamentally different assumptions regarding fisher 
behaviour.  
 
The DSVM approach assumes that fishers have perfect knowledge and adapt and “re-equilibrate” 
instantaneously, optimizing over all vessels and ports simultaneously, while also including the 
option of choosing to remain in port at any given time. Conversely, the random utility model 
assumes all boats must fish at all times, thus failing to consider opportunity cost. Additionally, 
modelled fishing patterns may only follow those observed historically (i.e. are constrained by the 
data). This confers a higher behavioural “viscosity” whereby fishers are effectively unable to 
adapt rapidly to new circumstances.  
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The two modelling approaches thus embrace two behavioural extremes: at one, a highly efficient 
adaptation to new conditions, with no constraints of past behaviour, and at the other, a 
reluctance to relinquish past patterns or habits, and an inability to consider opportunity cost. 
Given the lack of consistency in the fishing patterns that emerge in response to each approach, 
the challenge is less one of determining which is the superior, than to establish where, between 
these extremes, true decision making ability and behaviour lies. Further, fishermen almost 
certainly show disparity in their decision-making process, with some more efficient that others. 
Assuming that behavioural profiles can be established (for example, via questionnaires and the 
use of simulation games), the question of predicting responses to spatial management could be 
addressed by partitioning the fleet and evaluating the subsets using one or other of the 
approaches according to the behavioural category to which they correspond. Results from both 
approaches could then be combined to generate a fleet-wide response. Where behaviour lies in 
between the extremes, the DSVM model approach has the potential to be adapted to 
accommodate inefficiency, errors in decision making, and alternative definitions of utility. The 
random utility model approach is comparatively inflexible in this context.  
 

6.3. Implications for spatial management in the ETBF 

 
A key result of this study is that spatial input controls – including closures – have inconsistent 
outcomes in fisheries with a mobile resource. Given this uncertainty as to where the fish may be, 
a closure may result in economic benefits in years where it shifts fishers from areas with relatively 
low abundance to areas with higher abundance. However, as a fisheries management tool in an 
effort managed fishery, diverting fishers to areas of higher abundance may also come at a cost of 
higher exploitation rates. 
 
A key advantage in this regard is the increased flexibility of a hook decrementation system 
compared with the all-or-nothing closure system. Hook penalties can be fine tuned during the 
season in response to unexpected spatial shifts in both the target and bycatch populations. Where 
exploitation rates appear higher than expected for target or bycatch species, the hook penalty can 
be readily adjusted to reduce the incentive to fish in these areas. Further, information is collected 
across the fishery as a whole enabling a greater understanding of the spatial stock dynamics to be 
developed. In contrast, information on relative stock abundance is not revealed in a closed area. 
 
The impact of a closure varied considerably for different ports, largely depending on the costs of 
fishing elsewhere (both in terms of catch rates and steaming costs). In particular, the southern 
ports are likely to be severely affected by closures if these are on their main fishing areas due to a 
lack of nearby opportunities. These effects may have been exaggerated by the closure of the area 
for the whole year, but nevertheless a closure – even for part of the year – is likely to severely 
disadvantage these southern ports. While distributional considerations are not an important 
concern under the Commonwealth Harvest Strategy Policy per se, compliance is likely to be 
adversely affected, and implementation made more difficult if there are substantial distributional 
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inequities. These areas are also likely to be affected by a hook decrementation system, but to a 
substantially lesser extent in comparison with the effect of closures. 
 
A review of spatial management measures in the ETBF also identified a hook decrementation 
system as preferable to a system of area closures for economic, environmental and social reasons 
(Pascoe et al. 2009b).  
 

6.4 The impact of a change to individual transferable quotas  

 
This project commenced when incentives were being considered in context of a system of effort 
controls, primarily in the form of a total allowable effort system with individual statutory fishing 
rights in terms of gear (hook) units. Since then, a decision has been undertaken to move the 
fishery to an output control management system, primarily operated through individual 
transferable quotas (ITQs). Through ITQs, and their associated total allowable catch (TAC), 
limits on take of particular species – including bycatch species if the system extends this far – are 
directly controlled. In contrast, the hook decrementation system is an indirect control system 
aimed at providing incentives to change behaviour rather than limiting catch directly. 
 
Being a direct control system, an ITQ system does have a number of advantages over the hook 
penalty system in terms of total catch, but unless TACs are set on a spatial as well as total level, 
or include bycatch species explicitly in the quota system, they may have some weaknesses also. 
Primarily, if the distribution of bycatch species is not uniform (as it is not in the case of the 
ETBF), where the quota is taken has consequences for the total level of bycatch of some species, 
particularly turtles and seabirds. A spatial TAC can help reduce this problem as catches in 
particular areas can be limited directly. However, spatial TACs also require a good estimate of 
where and when the target stocks will be in particular areas if they are to be economically 
effective. Changing TACs during the season is possible in response to shifts in relative abundance 
of the target (and bycatch) species, but is generally disliked by industry and managers. 
 
These issues notwithstanding, the DSVM can be adapted to examine the possible consequences 
of spatial ITQs by changing the effort quota to a catch quota system. Further, the DSVM 
explicitly considers the opportunity cost of consuming quota (effort or catch) making it a more 
reliable modelling system. In contrast, the RUM doesn’t easily allow for limits to be introduced, 
and even if the simulation model built around the RUM could be modified to allow for catch 
limits, the individual trip decision is still considered independent, so would not consider the 
opportunity cost of using quota in any one trip. 
 
The RUM also does not allow for the possibility of quota trading and quota consolidation. From 
the results of this study, it might be expected that quota would move from some of the southern 
ports to the more northerly ports if TACs in southern parts of the fishery were reduced 
proportionally more. While the DSVM also does not allow for this at present, it is more easily 
modified to incorporate the potential for quota trading. 
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7. Benefits,  
 
The key beneficiary of the project will primarily be AFMA and the management bodies (RAG 
and MAC) charged with managing the fishery, as the project has developed a number of 
modelling tools that can be used for further analyses. The ultimate beneficiaries will be the ETBF 
fishers who will benefits from improved management decision making as a result of the analyses. 
The direct benefit of this is less apparent given the change in policy towards ITQs. However, the 
modelling tools can be adapted to provide support for the management of the fishery under and 
ITQ system. 

8.  Further developments  
 
Further developments of the models could include modification of the DSVM model to analyse 
the effects of different quota scenarios (e.g. spatial vs fishery whole quota, the use of bycatch 
quotas). While the RUM is less suited to ITQ fisheries than the DSVM, there are potential 
benefits in considering how the RUM could be included into a broader bioeconomic modelling 
framework. An advantage of the RUM identified in the study was that it did allow for the fact 
that fishers do not always operate in the best areas (although why this is the case is not easy to 
establish). Combining a RUM model with a bioeconomic optimisation model that incorporates a 
measure of opportunity cost may be a useful addition to the modelling toolbox being developed 
for the fishery. 

9.  Planned outcomes 
 
The project has achieved all the planned outcomes in the original proposal. The project provided 
two mechanisms for predicting the impacts of SAFs on the fishery, and specifically on the choice 
of location by individuals and its economic impacts. The first, a statistical approach, used past 
fishing patterns to explain behaviour and extrapolated this to the effects of changes in the 
incentives facing fishers. The second, a mechanistic approach, derived individual behavioural 
rules basd on operating costs and expected revenues which were used to predict fishing 
behaviour.   
 
The models were used to explore the impacts of different SAF structures, including their 
economic effects at the level of vessels, ports and the fishery as a whole.  The ability to evaluate 
the likely redistribution of effort when SAFs are altered allows managers to anticipate ecological, 
economic, and social ramifications that may emerge due to these shifts. Had the decision to 
change the management system to ITQs not been taken, then the outcome would be of 
substantial use in managing the ETBF, both as a pilot analysis of the implications of the SAF 
approach, and as a tool for evaluating future modifications to the SAFs. 
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10. Conclusions 
 
The purpose in the study was to assess the impacts of the hook decrementation system on the 
distribution of fishing effort and the economic impact on the fishery. The specific objectives 
relate directly to this purpose, in that it aimed to: 

• develop a statistical (multivariate logit) model to predict the distribution of fishing effort 
in the ETBF; 

• develop a process (a state-dependent behavioural) model of effort allocation for an input 
managed fishery; and 

• evaluate the impact of a series of SAF scenarios on the distribution of fishing effort in the 
ETBF using statistical and state-dependent behavioural models.  

All of these objectives were achieved. 
 
The results of the analysis highlighted the strengths and weaknesses of the two modelling 
approaches. Both approaches have advantages and disadvantages in relation to the analysis of an 
effort control system such as the hook decrementation program examined, although in many 
regards the DSVM is likely to have greater potential for the analysis of an ITQ system.  
 
Despite their differences, the key results of the two models were similar, that being that the 
impact of closures and hook decrementation systems vary considerably depending on where they 
are applied, when they are applied and how they are applied. Generally, a closure resulted in 
greater economic losses to the industry than a decrementation system, but this was not uniformly 
the case. Both models suggested that a hook decrementation system would result in effort 
moving out of areas where high penalties were applied, although the DSVM model results 
suggested a greater sensitivity to these incentive changes than the RUM model.  In many cases 
spatial management also had distributional effects in the fishery, potentially even resulting in 
increases in profit for some vessels and ports concurrent with losses for other vessels and ports.  
The final results suggest that specific analyses of any proposed scenario would be prudent, as 
although outcomes are predictable they are highly variable depending on the exact design of the 
management scenario. 
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