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Abstract

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can

accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafood-

borne outbreaks are observed worldwide. This pathogen can reach infectious levels in

oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was

to support oyster supply chain management by developing predictive microbiological tools

to improve the safety and quality of oysters in the market.

A predictive model was produced by injecting Pacific oysters (Crassostrea gigas)

harvested in Tasmania with a cocktail of pathogenic and non-pathogenic

V. parahaemolyticus strains, and measuring population changes over time at static storage

temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) was

measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and

Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing

natural populations of V. parahaemolyticus. Oysters were stored at static temperatures

from 15 to 28ºC, and Vibrio parahaemolyticus and TVC viability were measured. In

Pacific oysters, TVC growth was observed at all tested temperatures while

V. parahaemolyticus growth was observed only at 23 and 28ºC. In Sydney Rock oysters,

TVC growth was observed only at 24ºC and V. parahaemolyticus did not grow at any

storage temperature tested. These interesting findings potentially indicate that Sydney
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Rock oysters have enhanced anti-bacterial defences compared to Pacific oysters, and that

commercial temperature controls to manage V. parahaemolyticus growth can be different.

Consistently higher growth rates of V. parahaemolyticus and TVC were observed in

Tasmanian versus New South Wales oysters and may have been caused by different factors.

They include variations in levels of background competitive flora, different growth rates

among V. parahaemolyticus strains, and/or changes in the natural bacterial community

structure influenced by conditions at the harvest site or during shipment to the laboratory.

Nevertheless, the overall performance of the model was “fail-safe” for predicting growth

of V. parahaemolyticus in Pacific oysters and would be a preferred public health tool.

The V. parahaemolyticus and TVC predictive models for Pacific oysters were integrated in

an Excel® software tool. The model allows users to input time-temperature profiles and

analyse the effects of dynamic storage temperatures normally found in oyster supply

chains on bacterial growth. The tool was evaluated in five different simulated oyster

supply chains (refrigerated and non-refrigerated). Observed and predicted

V. parahaemolyticus and TVC growth rates were compared and a model over-estimation

mean of 2.30 for V. parahaemolyticus and 2.40 for TVC were observed as determined by

the bias factor index. Reasons for over-estimations are likely the same as those for model

validation experiments.

Uncertainty and variability are associated with oyster supply chains. Therefore, a

stochastic model which encompassed the operations from oyster farm to the consumer was

built using ModelRisk® risk analysis software. This case study generated probabilistic

distributions and the percentage of oysters containing V. parahaemolyticus and TVC
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during each operation of the supply chain. The results were used for an objective

evaluation of the influence of short and long supply chains during summer and winter

seasons. The stochastic model can help the oyster industry evaluate the performance of

oyster cold chains, and potentially enable real-time decisions if coupled with suitable

traceability systems. It can also provide risk managers with valuable information about

V. parahaemolyticus exposure levels.

Finally, in order to better understand microbial changes in oysters during distribution and

storage, the dynamics of microbial communities in Pacific oysters was determined using

16S rRNA-based terminal restriction length polymorphism and clone library analyses.

Significant differences in bacterial community composition were observed, and the

predominant bacteria were identified for fresh and stored oysters at different temperatures.

High microbial diversity in oysters was observed, with up to 73 different genera-related

identified clones among all samples. The results identified Psychrilyobacter spp. as a

potential spoilage indicator for future shelf-life studies, and Polynucleobacter and a

bacterial group related to Alkaliflexus as possible indicators for storage temperature control

in Pacific oysters. In future studies, quantitative correlations of the identified species and

the freshness of oysters should be explored to determine whether the predominant

microbes identified represent significant “specific spoilage organisms”, and to determine if

they are antagonistic to human bacterial pathogens that are found in oysters.
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“All models are wrong but some are useful” George Box 1979

In the next pages, some useful but not perfect predictive microbiology models

for the oyster industry are presented
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1 – Introduction

This first chapter provides brief background information about the oyster industry in

Australia, safety and quality issues in oysters, supply chain management and predictive

microbiology to the reader. The content includes recent studies in the area and identifies

some data gaps that this thesis is oriented to fill.

1.1 Oyster industry in Australia

Oyster farming is one of the oldest aquaculture industries in Australia. Oyster cultivation

began in New South Wales around 1870 when oyster farmers introduced sticks, stones, and

shells to catch and grow oysters in the intertidal zone until they could be harvested (18).

Nowadays, oyster farming is an important economic seafood sector. Statistic data for the

period 2007-08 show that Australia produced 12,460 tonnes of edible oysters with a value

of $89.1 million Australian dollars at the farm gate (Table 1). The major production state

was South Australia followed by New South Wales and Tasmania. A total of 228 tonnes

were exported and 726 tonnes imported. From the imported oysters, an approximate 99%

came from New Zealand (5).
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Table 1. Oyster production, exports and imports for 2007-08 by state in Australia

New South Wales South Australia Tasmania Other states Total

Value AU$'000 39,000 30,132 19,378 620 89,130

Quantity (tonnes) 4,500 5,448 2,512 0 12,460

Production (%) 36 44 20 0 100

Exports (tonnes) 8 139 66 8 228

Imports (tonnes) - - - - 726

Source data: Anonymous, 2009 (5).

Oyster culture

Oysters belong to the class Bivalvia and the phylum Mollusca. The class Bivalvia consists

of at least 7500 species including other animals with two shell valves such as clams,

mussels and cockles (88). Edible oysters classify in the family Ostreidae and are primarily

of the genera Ostrea, Crassostrea, Saccostrea, and Ostreola.

The two principal oyster species grown in Australia are the native Sydney Rock Oyster

(SRO, Saccostrea glomerata) and the introduced Pacific Oyster (PO, Crassostrea gigas)

(Figure 1). SRO account for around 40% of the total Australian production of oysters, with

PO at 60%. The native flat (Ostrea angasi), the black-lip (Saccostrea echinata) and the

milky (Saccostrea amasa) oysters are only semi-commercially produced and represent less

than 1% of the total industry supply (47).
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Source pictures : various authors (7, 18).

Figure 1. Pictures for Sydney Rock (left) and Pacific (right) oysters.

The main oyster species produced commercially in Tasmania is the PO, which was

introduced from Japan in 1947-52. A decrease in wild oyster production observed in 1970s

gave way to the development of hatcheries. Available spat (the name for larval oysters)

was provided to South Australian farmers allowing the establishment of a viable PO

industry. In New South Wales, PO are only grown in specific areas and they are treated as

a pest due to its interaction with the native SRO, which is the main species cultured in this

location (134).

SRO and PO present differences in salinity and temperatures tolerance during harvest.

SRO is essentially subtropical in character and the salinity tolerance range is reported to be

1.5 - 5.0%, with an optimum between 2.5 - 3.5%. PO can survive higher salinities of 5.5%

and presents a broader temperature tolerance, ranging from –1.8 to 35ºC, allowing its

culture in high salinity and lower temperature estuaries (7, 165).
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Oyster consumption

The low percentage of export and imports (Table 1) shows that most of the oysters

consumed in Australia are produced locally.

Oysters may be purchased fresh (half shell or alive), frozen (removed from the shell),

cooked, bottled or canned. When alive, they present closed shells. A 2003 consumer

survey revealed fresh oysters were preferred by 73.3% of Australians consumers (234). In

addition, it was observed that the greatest proportion of oyster consumers was in the 40 -

59 year old range and that 15 - 19 year age range are the least likely to consume oysters.

From the consumers who declared they eat oysters, the frequency of oyster consumption

for 41.7% was less than four times per year and only 18.4% consumed oysters more than

10 times a year. The same study identified quality as the most important factor considered

by oyster purchasers, and health concerns as one of the barriers to oyster consumption.

The type of oyster purchased, the consumption style and the cooking method are important

factors for the risk of illness and shelf-life of the product. In the case of pathogenic bacteria,

it has been observed that the risk of Vibrio parahaemolyticus illness increases for raw

oyster eating population (17, 23, 119, 130), and susceptible individuals are encouraged to

cook the product in order to eliminate bacteria (17). However, typical cooking will not

eliminate all the biological risks associated with oysters.

Viruses are also a frequent cause of seafood-related infections. Viruses differ to bacteria in

resisting usual cooking temperatures as well as in surviving inside the shellfish

independently to the oyster storage temperature (124). The required time and temperature

to inactivate viruses (e.g. 90ºC for 1.5 min based on data obtained for hepatitis A in
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cockles) can result in an unpalatable product and the processes of steaming and freezing

are not able to completely eliminate their presence (124, 180).Outbreaks due to viruses

have been associated with raw, half shell, frozen oyster meat and cooked oysters (12, 14,

226, 228).

Studies comparing shell-stock (alive) and shucked (half shell) oysters have shown that

V. parahaemolyticus can survive in both forms of the product but reduction during cold

storage is higher in shucked product (205). However, a significantly higher total bacteria

load has been observed in shucked in comparison to shell-stock (104) suggesting a shorter

shelf-life for this type. Moreover, shucked oysters are more exposed to cross-

contamination during handling and storage.

Regulation

Bivalves can reduce or remove contaminants when transferred to clean natural harvest

waters (relaying) or under controlled conditions in tanks (depuration). During depuration,

oysters are placed in chemically (e.g. chlorine, ozone) or physically (e.g. UV irradiation)

disinfected seawater tanks, typically for 24 to 48 h (172).

Oyster depuration was first developed in the 1920s as a result of the increase of shellfish-

associated illnesses (i.e. cholera and typhoid fever) (188). Although depuration has been

shown to be effective for reducing E. coli, it is not an adequate intervention to decrease

other biological hazards present in oysters, such as V. parahaemolyticus or viruses (52,

124).
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Oyster depuration technology was introduced in New South Wales in the 1970s after the

occurrence of gastroenteritis cases linked to oyster consumption in the region. However,

several episodes of gastroenteritis caused by Norovirus ten years later and a major

outbreak of gastroenteritis linked to Hepatitis A in 1997 were associated with oysters (48,

93). As a response, a shellfish quality assurance program was formally implemented that

year. In contrast to New South Wales, the coastlines in Tasmania and South Australia are

not very heavily urbanised and depuration systems are not used (134).

The Australian Shellfish Quality Assurance Program (ASQAP) follows the internationally

accepted United States National Shellfish Sanitation Program (USNSSP) (4, 20). The main

objective is to limit the oyster farming to harvest water shown to be exempt from harmful

contaminants and pathogenic micro-organisms. Each harvest area completes a sanitary

survey to classify it as approved, approved conditional, restricted or prohibited. The

ASQAP provides the requirements for completing and maintaining sanitary surveys, and

the management of growing areas (4).

The ASQAP uses a limit of either a total or faecal coliform standard as a bacteriological

water-quality standard. The median faecal coliform MPN value for approved growing

areas must not exceed 14 per 100 ml of sample, with no more than 10% of the samples

exceeding an MPN value of 43 for a five-tube, or 49 per 100 ml for a three-tube decimal

dilution test (4). Although the presence of sewage may add nutrients to the water and

would enhance survival of some bacterial species, it is well documented that the

environmental presence of V. parahaemolyticus does not distinctly correlate with the

presence of human enteric bacteria (60, 61, 176).
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Regarding the examination of shellfish, the Australia New Zealand Food Standards Code

1.6.1 contains information about the maximum permissible levels for Staphylococcus,

Salmonella, standard plate count and E. coli. At the moment, there is no regulation for

Vibrio spp. in Australia. A recommendation level for V. parahaemolyticus of ≤10,000

cells/g was proposed in the USA (17). The European Union has concluded that controlling

exclusively total levels may not to be appropriate as there is a lack of correlation between

total and pathogenic V. parahaemolyticus levels (13). The Codex Alimentarius elaborated

a risk management document “Guidelines on the application of general principles on food

hygiene for the control of pathogenic Vibrio spp. in seafood” which is being updated to

assist its implementation in different regions and countries (10, 11).

The ASQAP also includes controls during the post-harvest processing (depuration and

relaying), handling, storage, transport and identification of shellfish. A temperature control

is required, and shellfish intended for consumption as raw product must be placed under

ambient refrigeration at ≤10ºC within 24 h of harvest, with the exception of SRO which are

allowed to be stored no warmer than 25ºC for the first 72 h post-harvest and no warmer

than 15ºC thereafter (4).

Temperature control is also a requirement under export regulations. In Australia, the

Export Control (Fish and Fish Products) Orders 2005 has a shipping temperature

requirement of ≤5ºC. This low temperature may be too low for the storage of live product

and could kill and thereby decrease the quality of the product. The effect of cold stress

resulting in mortality has been observed during oyster quality studies (1).
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1.2 Microbiological safety of oysters

Bivalves represent a special case among the microbial hazards associated with food.

Oysters filter large volumes of water (up to 4 litres per hour (190)) across their gills to

obtain oxygen and food. Food particles are trapped on the gills and transported toward the

mouth by specialized cilia, the small food particles are then transported to the digestive

gland (49). Any pathogenic micro-organism present in the harvest site can be concentrated

in the animal. Accumulated harmful micro-organisms can become a hazard when the

whole oyster including the viscera is consumed raw or only lightly cooked.

Epidemiology data show that enteric viruses are the most common pathogen transmitted by

bivalves. Hepatitis A is one of the most serious illnesses associated to shellfish causing a

serious debilitating disease and even, occasionally, death. However, the most frequently

reported illnesses are caused by Norovirus. In Australia, oyster associated outbreaks with

Hepatitis A and Norovirus have been reported (48, 77, 226).

Among the different pathogenic bacteria which are indigenous to estuaries (Table 2) and

naturally present in oysters, marine Vibrio spp. is the leading bacterial pathogen involved

in shellfish-associated outbreaks (180). Other bacteria that have been occasionally

implicated in gastroenteritis and linked to shellfish are usually due to sewage pollution:

Salmonella spp., Shigella spp., Listeria spp and E. coli (166, 180).
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Table 2. Major pathogenic bacteria associated with seafood classified by habitat.

Indigenous Clostridium botulinum type E, B, F; Vibrio cholerae; Vibrio
parahaemolyticus; Vibrio vulnificus; Aeromonas hydrophila;
Plesiomonas shigelloides.

External
(primary habitat)

Clostridium botulinum  type  A and B (soil); Listeria
monocytogenes  (soil, foilage, faeces, seafood, processing
environments); Shigella spp (faecal contamination); Salmonella
spp (faecal contamination); Staphylococcus aureus  (pond water,
human carrier); Escherichia coli  (faecal contamination).

Major pathogenic bacteria associated with seafood

Source data: various authors (89, 166).

1.2.1 The genus Vibrio

The genus Vibrio is classified in the family Vibrionaceae, a member of the class

Gammaproteobacteria. Vibrio spp. are Gram negative, non-spore-forming, facultative

anaerobic rods, which are often curved in shape and usually motile by a single polar

flagellum (64).

Only 12 Vibrio spp. are known to be associated with human infections (114) among the 81

recognized species (http://www.bacterio.cict.fr/uw/vibrio.html, [accessed 30/05/11]).

Vibrio parahaemolyticus, V. cholerae, and V. vulnificus are the principal Vibrio spp. linked

to seafood-borne infections. V. cholerae causes human cholera and was first described in

1854 by Pacini (32). V. parahaemolyticus was first identified in 1950 as the cause of
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gastroenteritis from the consumption of contaminated dried sardines in Japan (81).

V. vulnificus was first isolated from a wound infection and described in 1979 (76).

The growth of Vibrio spp. is stimulated by the presence of sodium ions and some species

have a requirement for salt for growth (Table 3). V. cholerae is able to grow without added

salt although their growth is stimulated by the presence of sodium ions. In contrast,

V. parahaemolyticus and V. vulnificus require the addition of 2.5 - 3% NaCl to culture

media for optimum growth (64).

Table 3. Optimum and growth range conditions for V. cholerae, V. vulnificus and

V. parahaemolyticus

Range Optimum Range Optimum Range Optimum Range Optimum

V. cholerae 10-43 37 0.1-4.0 0.5 5.0-9.6 7.6 0.970-0.988 0.984
V. vulnificus 8-43 37 0.5-5.0 2.5 5.0-10.0 7.8 0.960-0.997 0.980
V. parahaemolyticus 5-43 37 0.5-10 3.0 4.8-11.0 7.8 0.940-0.996 0.981

Temperature
(ºC)

NaCl (%) pH Water activity

Source data: Desmarchelier 2003 (64).

The three major clinical manifestation of Vibrio-associated disease are: wound infection,

primary septicemia and gastroenteritis (71). From the pathogenic Vibrio spp.,

V. parahaemolyticus is the most associated with gastroenteritis. In fact,

V. parahaemolyticus is the leading seafood-borne disease outbreaks in Taiwan, Japan (71)

and the leading cause of Vibrio-associated gastroenteritis in the USA (180).

Vibrio cholerae serotypes 01 and 0139 cause cholera, a disease with epidemic and

pandemic potential. Vibrio cholerae serotypes other than 01 and 0139 can cause moderate
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gastroenteritis and are associated with sporadic cases and small outbreaks (74). Cholera

symptoms include vomiting and characteristic watery diarrhoea. If not treated

appropriately, the electrolyte imbalance due to dehydration can result in tachycardia,

hypotension and vascular collapse. The fluid loss can be so pronounced that an infected

person can die within hours (74, 114).

Vibrio vulnificus infections are rare and generally limited to susceptible populations (e.g.

chronic liver disease, immunosuppressive disorders). However, V. vulnificus presents the

highest case-fatality rate (approximately 50%) of the shellfish-borne infections among

vulnerable population (75, 114).

1.2.2 Vibrio parahaemolyticus

Pathogenesis

Most clinical isolates of V. parahaemolyticus from patients with diarrhoea produce an

enzyme that can lyse blood cells on Wagatsuma blood agar plates (102, 199). Its

production is termed the Kanagawa phenomenon and the strain is often reported as “KP-

positive”. The Kanagawa reaction is caused by a protein named Thermostable Direct

Hemolysin (TDH), indicating it is not inactivated by heat (100ºC for 10 min) and that its

direct haemolytic activity on erythrocytes is not enhanced by the addition of lecithin (71).

TDH has multiple biological activities, including hemolysis, enterotoxicity, cytotoxicity,

and cardiotoxicity (101, 156, 183). A second hemolysin called the Thermostable Related

Hemolysin (TRH) was also identified after an outbreak in 1988 in travellers who visited
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the Republic of Maldives (100, 103, 168). TDH and TRH are immunologically and

biologically similar; the nucleotide sequences of the genes encoding both proteins show

approximately 70% similarity. However, TRH is less thermostable than TDH and

inactivates at 60ºC for 10 min (232).

Although TDH and TRH are major virulence factors, others have been reported (222). The

capacity of adhesion to human intestinal cells, extracellular enzymes and cell wall

components are thought to be involved in pathogenicity (64, 71, 173). A heat-labile protein

(protease A) produced by a clinical V. parahaemolyticus strain tdh- and trh- has been

identified as a potential virulent factor. Protease A presents haemolytic and cytotoxic

activity (123). Furthermore, recent outbreaks have been related to a non-pandemic tdh- and

trh- strain (82).

Gastroenteritis caused by V. parahaemolyticus is almost exclusively associated with

seafood which is consumed raw, inadequately cooked, or cooked but re-contaminated

(173). The incubation period is usually between 8 to 72 h and illness includes acute

diarrhoea and abdominal pain for up to 72 h (114). Other symptoms, reported less

frequently are nausea, vomiting, headache, low-grade fever and chills. The organism

causes damage to the gut mucosa and colonic ulceration. There is a low rate of mortality

and death usually occurring only in the case of elderly or debilitated patients. Severe cases

of gastroenteritis may require hospitalization, although most are treatable with supportive

therapy such as rehydration. Treatment with tetracycline has proven beneficial in cases of

prolonged infection (114). In rare cases, wound infection and septicaemia is also possible

(53, 177). Studies using human volunteers in Japan showed that ingestion of 2 × 105 to

3 × 107 cells of the TDH-positive strains can result in gastrointestinal disease (173).
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Epidemiology

A high incidence of V. parahaemolyticus food poisoning is reported in the USA (58, 227).

Outbreaks and sporadic cases have been reported since the first confirmed 425 cases

associated with consumption of steamed crabs in Maryland in 1971. Two major outbreaks

associated with consumption of raw oysters occurred in the Pacific Northwest in 1997 and

in Texas in 1998 involving 209 and 416 cases, respectively (17). In addition, recent data

from the USA Centre for Disease Control and prevention (CDC) indicate an increase in

Vibrio spp. infections from 2001 to 2008, and that V. parahaemolyticus is responsible for

52% of the cases of Vibrio infections confirmed in 2009 (16).

However, V. parahaemolyticus disease occurs worldwide (209). In Asia,

V. parahaemolyticus is a common cause of seafood-borne illness. Since the first

V. parahaemolyticus outbreak reported in 1951, other incidents have been reported in

Japan, Taiwan and China (208). In Europe, V. parahaemolyticus infections occurred in

France and Spain. Two major outbreaks reported in Spain include 64 cases associated with

raw oysters in 1999 and 80 illnesses after eating boiled crab in 2004 (142). More recently a

high incidence in V. parahaemolyticus illnesses was experienced in Chile, where

approximately 7,000 cases were reported during 2004 to 2007 (98).

In Australia, V. parahaemolyticus illnesses have been reported in New South Wales. An

outbreak associated with seafood was observed between 1977 and 1984 involving 60 cases

(59). Three different outbreaks associated with cooked prawns from Indonesia involved

more than 100 cases and one death in 1990, and more than 50 cases in 1992 (119). In 1992,
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a death was associated with the consumption of raw oysters (119). In 2005, two people

were reported sick after consumption of prawns and oysters (6).

Environmental incidence

Vibrio spp. are naturally occurring environmental bacteria, present worldwide in coastal

waters. The effect of salt composition influences their distribution in aquatic systems (64,

114). Waters with lower salinity ranges (i.e. 0.2 - 0.5%) favour V. cholerae and

V. vulnificus, while these species are recovered less frequently from waters with salinity

above 3% (114).

The geographical distribution and incidence of Vibrio spp. in the natural environment

within a specific area are determined by multiple interacting factors, including:

 Water temperature is positively correlated to total V. parahaemolyticus levels

(61, 63, 176) with exception of tropical coastal regions where temperature is always

optimal for its recovery (60). The presence of V. parahaemolyticus is detected when water

temperature is greater than 14 - 15ºC (111, 176). This is related to a seasonal incidence of

Vibrio spp., with a higher level in the warmer months (61, 176).

 Salinity is significantly associated with environmental V. parahaemolyticus

levels in some situations (63, 111) while not in others (60, 61, 176). Differences among

studies can be a consequence of the range of variation of salinity studied, as it may be

more likely to find significance when a wider salinity range is studied.
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 A correlation has been observed between turbidity, chlorophyll a and

dissolved oxygen and V. parahaemolyticus levels, while a lack of significant association

has been found for pH (111, 176).

 The relationships between environmental factors have been tested more

extensively for V. parahaemolyticus at the species level than for pathogenic strains, partly

due to the lack of available sensitive technologies, until recently. However, differences

between total and pathogenic V. parahaemolyticus levels, and influential environmental

factors for predicting abundances, have been observed. For example, turbidity appears to

be the most influencing factor for pathogenic strains, while temperature is more influential

on total V. parahaemolyticus (111).

Due to the halophilic nature of V. parahaemolyticus, raw seafood can be naturally

contaminated. It has been observed that oysters accumulate V. parahaemolyticus via filter-

feeding of seawater to concentrations 100 times greater than those found in the

surrounding seawater (61). Where environmental conditions are favourable, typical levels

of total V. parahaemolyticus in oysters may be 2 - 3 log10 Colony-Forming Unit (CFU)/g

(61, 111, 176) and in some cases reach levels higher than 104 CFU/g in warmer months (60,

63). Pathogenic levels of V. parahaemolyticus are typically several logs lower than total

V. parahaemolyticus (62, 238). The reported frequency of tdh detection in oysters for

studies of at least one year duration report ranges from 3 - 70% (60, 63, 111, 176) and 17-

60% for trh (111) depending on the sensitivity of the methodology and the region studied

(Table 4).
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Table 4. A summary for long-term studies in the incidence of V. parahaemolyticus in oysters

Oyster specie Period
(years)

Range
(log10)

Mean
(log10)

Samples
(%) Yes No

TDH mean
(log10)

Samples
(%)

TRH mean
(log10)

Samples
(%)

DePaola et al. 1990 Crassostrea virginica 1 - max 2.2 - T S - - - -

DePaola et al. 2003 Crassostrea virginica 1.5 <1-4.1
ci - - T,S - 0.1,0.4 12.8

ci - -

Deepanjali et al. 2005
Crassostrea
madrasensis 1 <1-4

ci
~3.5

ci
93.9

ci - T,S max 2.1
ci

10.2
ci

,6.1
pc - ~60

pc

Parveen et al. 2008 Crassostrea virginica 1 <1-2.77
ci

~ 2
ci

79
ci T,t,D S,P,C

1 3
ci - -

Johnson et al. 2010 Crassostrea virginica 1.4 <1-3.4
ci

~ 2.4
ci

87
ci,

94
rt T,S,t - -0.9 20

ci,
70

rt -1.5 17
ci

,60
rt

Study
description

Pathogenic V. parahaemolyticus
after harvest

Significant association with
V. parahaemolyticus

Total V. parahaemolyticus
after harvest

ci: colony hybridization, pc: MPN and conventional PCR, rt: MPN and real-time PCR, max: maximum level, T: temperature, S: salinity, P: pH, C: chlorophyll a, t:
turbidity, D: dissolved oxygen. Source data: various authors (60, 61, 63, 111, 176).
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In Australia, there has not been a long-term study of the incidence of V. parahaemolyticus

but it has been isolated from oysters in several studies (65, 72, 73, 125, 133). Using colony

hybridization method, total V. parahaemolyticus was detected in 80% of New South Wales,

60% of Tasmanian and 20% of South Australian oysters in autumn months, at average

levels of 2.4 to 3.0 log10 CFU/g. In the same study, pathogenic V. parahaemolyticus tdh+

were found in 20% of New South Wales and Tasmanian, and in 10% of South Australian

oysters at average levels of 2.0 to 2.4 log10 CFU/g (125).

Climate change impacts seawater and surface air temperatures, precipitation and stream

flow patterns. These changes can occur over relatively short periods of times and areas

during different seasons, influencing proliferation and changes in the distribution of micro-

organisms in regions (138, 140). An example of V. parahaemolyticus illnesses due to

climate anomalies is the outbreak in coastal Peru which were subsequently linked to the

1997 El Niño episode (141).

Identification

The most common and conventional method for routine analysis of V. parahaemolyticus

includes a selective enrichment in Alkaline Peptone Water (APW) followed by plating of

the enrichment on Thiosulfate Citrate Bile Salts (TCBS) agar. This method in combination

with biochemical identification is recommended as standard test (USFDA BAM, AS/NZS

1766.2.9:1997, ISO/TS 21872-1:2007)(115). Although highly selective, a limitation to the

use of TCBS is the time and labour for confirmation of colonies, as the media does not
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readily differentiate Vibrio spp., other than sucrose-and non-sucrose-fermentation. A

chromogenic agar able to differentiate V. parahaemolyticus, V. vulnificus and V. cholerae

with respect to other Vibrio spp. is commercially available (CHROMagar™ Vibrio, Dutec

Diagnostics, NSW, Australia). This agar medium is based on the detection of beta-

galactosidase activity to differentiate V. parahaemolyticus using a chromogenic substrate

(97). The use of CHROMagar™ Vibrio has been shown to be more accurate and specific

than TCBS for the isolation of V. parahaemolyticus in shellfish (69).

For enumeration proposes, a Most Probable Number (MPN) method is used during

enrichment. The MPN analysis coupled with plating is laborious and can take seven to ten

days. The combination of MPN with a species-specific Polymerase Chain Reaction (PCR)

method enables the completion of enumeration within two days. This MPN-PCR format

has been used for enumeration of pathogenic V. parahaemolyticus (219). In molecular tests,

the tlh (thermolabile hemolysin) gene is used as a species-specific marker (213) while the

tdh (167) and the trh (168) genes are pathogenicity markers. Other molecular methods

used to enumerate V. parahaemolyticus in shellfish include colony hybridization and real-

time PCR (85, 169).

Control measures

In order to reduce the presence of V. parahaemolyticus in oysters, different post-harvest

operations have been studied. Depuration has limited effects on the elimination of

V. parahaemolyticus in oysters (72) and the level of reduction is influenced by the

temperature of the operation (44). Heat treatment of 50ºC during 10 min has been shown to
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reduce V. parahaemolyticus from 105 MPN/g to non-detectable levels, but the treatment

may cause changes in the texture due to protein denaturation (3). High-Pressure Processing

(HPP) is a non-thermal method used without apparent changes in oyster nutrients, flavour

and appearance. A HPP treatment of 293 MPa for 2 min can achieve greater than 3.52

log10 reduction of V. parahaemolyticus in oysters (131). Similar to heat treatment, HPP

will destroy the adductor muscle and oysters need to be banded to prevent opening shell

during treatment (209). The main disadvantage is the high cost of initial investment in HPP

equipment. Another effective means for eliminating V. parahaemolyticus in oysters

without causing changes in the texture or sensory properties is irradiation (135). However,

the reluctance among consumers to accept irradiated food and the need to safely handle

radioactive material has limited its use.

Freezing has also been demonstrated to reduce levels of V. parahaemolyticus in oysters

and its reduction depends on the time of storage. A 0.22 log10 reduction was observed in

inoculated oysters after an ultra-low flash-freezing process (-95.5ºC for 12 min). A

subsequent storage of frozen oysters at -10ºC for one and six months resulted in a 2.45 and

4.55 log10 V. parahaemolyticus reduction, respectively (126). The use of prolonged

refrigeration has also been shown to reduce levels of Vibrio spp. in oysters. Storage of

V. parahaemolyticus-inoculated oysters at 5ºC for 96 h showed a reduction of 1.42 log10

(205). However, it has been observed that V. parahaemolyticus can survive in oysters

stored at 4ºC for 3 weeks indicating that refrigeration may not eliminate it completely

(112).
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1.3 Microbiological quality of oysters

Changes in oyster quality during storage have been assessed by sensory, chemical and

microbiological analyses (1, 24). Sensory analysis usually includes information about

product odour, appearance, texture and taste. The freshness of oyster is determined by the

absence of odours such as dry sea-weed, ammonia and mud, and the appearance of an

outstretched mantle with no signs of shrinking (1). The measurement of pH is a chemical

analysis that can be used to measure fermentative-type of spoilage in oysters. It has been

observed that the initial pH in fresh oysters is approximately 6.3 and a drop to

approximately 6.0 - 5.8 is close to the limit of acceptability (24, 65). In most cases, sensory

and chemical analyses are the consequence of microbial degradation; thereby the

microbiological evaluation of stored oysters is often performed in order to have a better

understanding of oyster shelf-life (23, 58).

1.3.1 Oyster spoilage

Oyster spoilage is generally caused by the growth of micro-organisms to certain levels

resulting in unpleasant sensory changes. Different sensory manifestations observed in

microbiological spoilage of fish products include production of off-odours and -flavours,

slime formation and discolouration (90).

The dominant group of bacteria found in fish under aerobic chilled storage are

Pseudomonas and Shewanella putrefaciens (53). However, the types of bacteria associated



1 - Introduction

- 44 -

with spoilage of oysters might differ to marine fish, as oysters can survive out of water for

several weeks (203). Moreover, the chemical composition of oysters includes a significant

content on carbohydrates (up to 6.8%) mostly in the form of glycogen and a lower quantity

of nitrogen in comparison to other seafood. Oyster spoilage is basically fermentative and

production of acid is expected due to the breakdown of the glycogen which will enhance

the proliferation of low pH tolerant bacteria (49).

Bacterial composition

The microflora of oysters at harvest represents a combination of the micro-organisms that

have been filtered from the water and the commensals microflora of the oyster. For

example, Cristispira is an as yet unculturable spirochaete which forms part of the digestive

system in oysters (136). The bacterial composition of shellfish related to the oyster habitat

can vary depending on different factors such as salinity, environmental condition, bacterial

load in the water, water temperature, diet, method of catch and chilling conditions.

Therefore, it is expected that bivalves from various locations or from the same location at

different times may show a different bacterial concentration or composition.

The bacterial diversity in seawater and oysters has been compared in different studies.

Although microbial flora of seawater and oysters was thought to be similar in early studies

(221), differences in diversity and dominant species have been found. Specifically,

bacterial diversity in seawater is found to be higher than in the oyster, while the numbers

for a determinate group of bacteria are usually higher in the oyster in comparison to

seawater. This indicates that only certain bacteria can survive and proliferate in the oyster.
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Oysters provide higher organic level, lower level of oxygen and more constant salinity

levels. Differences in diversity and numbers are also found among oyster tissues in which

the oyster gut supports a more distinct bacterial flora than the rest of the animal (31, 120).

Microbial flora of PO is dominated by Gram negative bacteria including Pseudomonas and

Vibrio species. Other reported bacteria isolated from oysters are Achromobacter,

Flavobacterium, Corynebacterium, Alcaligenes, Shewanella, Enterobacteriaceae,

Moraxella, Staphylococcus, Micrococcus, Acinetobacter, Aeromonas, Bacillus and lactic

acid bacteria (42, 46, 120, 221).

After storage, the conditions in the oyster change which may enhance the proliferation of

specific bacteria resulting in a reduction in diversity. Studies in PO have observed that

Lactobacillus appear to be the major component after two days storage at 7ºC (206) while

a significant increase in Pseudomonas has been observed after storage at 5 and 10ºC (42,

43).

Molecular methods to measure microbial communities

Different methods are available for microbial analysis and each one has limitations. Some

bacteria are not easily cultured using standard culture-dependent methods due to the need

for special agar composition or storage conditions, and in other cases there is selection in

which growth of determinate bacteria is best suited to the nutrient, temperature and time

given for a specific incubation. Thereby, one would expect to observe a less diverse
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community where culture-dependent methods are employed in comparison to molecular

methods.

A potential drawback of molecular-based methods using DNA extraction is detection of

non-viable bacteria in the sample. In oysters, the majority of studies have been based on

cuturable bacteria. However, it is observed that some bacteria present in oysters can not be

cultured in conventional agars (191, 192) and recently, limitations of general growth media

have also been observed in seafood quality studies (37). Microscopic observations of total

bacteria present in oyster have shown that there are 105 times more bacterial cells per gram

than observed by plating (191).

The use of molecular techniques has provided a better understanding of the bacterial

diversity in oysters. The bacterial composition of SRO was identified using 16S rRNA

gene-based clone libraries and showed the bacterial community to be composed of 44%

Firmicutes, 36% Proteobacteria (mostly of class Alphaproteobacteria), 7% Cyanobacteria

and 5% Spirochaetes (92). Arcobacter spp. a potentially pathogenic member of class

Epsilonproteobacteria were found to be abundant in depurated Chilean oysters (Tiostrea

chilensis) (192). The use of molecular techniques has also been applied in oyster spoilage

studies, identifying Pseudoalteromonas spp. as an abundant bacterial group in Chilean

oysters stored at 18ºC (193).
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Indicator organisms

Indicator organisms are typically used to reflect the microbiological quality or safety of a

food product. The presence of an indicator organism at a certain level can provide an

estimation of the quality or shelf-life of the food product. In general, the most reliable

indicators tend to be product-specific (110).

An estimation of Total Viable bacteria Count (TVC) is used as an index in many seafood

standards (107). Microbial criteria for satisfactory oysters at the wholesale level have been

set at 5.7 - 6.2 log10 CFU/g in the USA (15, 21). However, a higher level of 107 log10

CFU/g TVC has been found to correlate with the maximum shelf-life for purified PO

stored at cold temperatures (0 - 10ºC) (43).

In some cases, only a fraction of the total flora induces the major changes and thereby

counts of Specific Spoilage Organisms (SSO) are better related to shelf-life than TVC (26,

106). The SSO approach is also used in predictive models for shelf-life (54).

1.4 Supply chain management

Supply chain management is the management of upstream and downstream relationships

with suppliers and costumers to deliver high-value products at low cost for the supply

chain. Ideally, the chain members should act as if the whole chain was only one single

company, to optimize cost and share benefits (78).
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Food safety management is an important aspect of the food supply chain. A lack of this

discipline could result in a loss of public confidence and trust in the safety of food. An

example of food crisis was where bovine spongiform encephalopathy caused by a

fraudulent activity during primary production translated into a decrease of beef

consumption by 11% throughout the European Union in 1996 (121).

Cold supply chain

The growth of pathogenic and also spoilage micro-organisms can occur faster when those

organisms are present in the product and the storage and transportation of foods take place

under improper conditions. In the case of V. parahaemolyticus, it can multiply rapidly in

foods if not refrigerated properly (84). Thus increases in temperature in supply chains can

expose consumers to elevated risk and also adversely affect the product appearance and/or

shelf-life. Proper supply chain management can help to maintain both quality and safety of

oysters. However, maintaining proper temperature throughout a product shelf-life, in both

storage and transit, can be complicated.

One of the issues in the cold supply chain is cost due to the necessary specialised

transportation equipment and storage facilities which are different to that used in ambient

supply chains, especially during summer. Apart from the cost of maintaining low

temperature, there are situations in which temperature control is difficult (e.g. loading and

unloading trucks, storage without a chill reception area, and transport to the home) (207).
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The oyster supply chain

Like other perishable products, oysters require a cold supply chain. However, the

requirements are higher in the case of oysters because they are a live product. There is a

lack of “use-by” date or “best before” date for oysters but they usually have a maximum of

seven to eleven days from harvest to consumer depending on storage temperature (42, 43).

Manufacturers and retailers need to follow temperature guidelines. However, it is possible

that temperature during storage, transport, retail display and at home can deviate from the

recommended range. Market surveys in the USA shows that oyster lots exceeded the

recommended 10ºC reaching a maximum temperature of 16 - 17ºC in some occasions (22,

50, 62). Similarly, oyster lots exceeding the recommended temperatures have also been

observed in Australia during supply chain studies (132).

The quality and safety of the oysters will depend on the proper handling during all the

different segments of the supply chain in which consumer plays a big role. Surveys of

consumer refrigerators in Europe and Australia show that temperatures can sporadically

reach 18 to 20ºC (8, 117, 137). This is an important issue as if the cold chain is interrupted

during transport to or at home, the efforts through all prior stages may be negated. Food

companies spend money to ensure integrity of the product and they do not want to recall

products that have been mishandled during the last part of the supply chain.
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The oyster supply chain in Australia

The oyster supply chain in Australia is complex due to the multiple transactions between

the grower and consumer. It is also characterised by a large number of producers, many

whom are small and act independently. The Australian oyster supply chain can be broken

into four segments: oyster producers, directly related marketing intermediaries (e.g. oyster

feeding, water-quality), mid-chain (e.g. brokers, wholesalers, oyster openers, distributors)

and end-users (e.g. store retailers, fishmongers, independent retailers, restaurants, fish and

chip operators, pubs and clubs) (47).

1.4.1 Traceability

The primary purpose of traceability systems in the food supply is to recall defective or

hazardous products and to identify the source of the problem. On the other hand, the

implementation of proper traceability systems enhances cooperation among different steps

of the supply chain, improving supply chain management and providing a better control of

the product quality.

Traceability is defined by ISO 9000:2000 as the ability to trace the history, application or

location of that which is under consideration. It can be related to the origin of materials

forming the product, the process history and the location of the product. Traceability

downstream is termed “trace” and is used when the history of product origin is investigated

(i.e. to define the operations in which contamination happened). Traceability upstream is

called “track” and is used for determining its history after delivery (i.e. to locate the
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product which is contaminated). An effective traceability system in a food supply chain

provides brand protection and integrity, increases efficiency of the supply chain,

implements recall and meets statutory obligations for key markets (217).

Identification systems for traceability

There are different elements in traceability: identification (e.g. barcodes, radio frequency

identification device), administration (e.g. warehouse management system),

communication (e.g. e-mail) and supporting infrastructure (e.g. wireless network). Some

advantages and disadvantages of identification systems are (19, 217):

 Paper-based system does not need special equipment and can be applied to all

types of products and processes. However, it is labour intensive, transcription errors may

occur, records can be lost and it requires extensive filing space and allocation of personnel

for record keeping.

 Bar codes can be read quickly and automatically throughout the supply chain.

However, the use of bar codes can imply the loss of independence in choice of labelling

format and it needs investment in specialised equipment.

 Radio Frequency Identification Device (RFID) tags consist of two parts: a

microchip with memory and other electronics and an antenna that enables the

electromagnetic coupling between the microchip and a reader device (2). An advantage of

RFID is the capture of additional data (e.g. temperature) which can be retrieved with

product out of line-of-sight, reducing the labour throughout the process. It allows the
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product to be followed in real-time across the supply chain and tags can travel through

different environments. An important consideration for the success of the application of

this technology is standardisation. In this respect, EPC global promotes the standardisation

of RFID-supported processes (152). However, the need for a large investment, the cost of

the tags and the fact that they do not allow item-level identification can be an

inconvenience for some industries (154).

Traceability systems

There are different organizations which can help with traceability implementation. The

global system GS1 is a worldwide accepted system of standards for accurate identification

and communication of information on products, assets, services and locations. GS1

systems use bar codes, RFID and a website page which can be used to enter, validate, store

and maintain all information in a single location (http://www.gs1au.org/, [accessed

20/09/11]). Other organisations which can help to implement traceability, providing

software and other management tools, include WiseFish (http://www.wisefish.com/,

[accessed 20/09/11]), Tracetacker (http://www.tracetracker.com/, [accessed 20/09/11]) and

InformationLeader (http://www.informationleader.com/, [accessed 20/09/11]).

A specific example of a food-based traceability system is Smart-Trace™ which uses

disposable wireless sensors (Smart-trace tags) and wireless network, radio or satellite

communication to send identity, location, and temperature data of the product from the trip

origin to the destination. This traceability system has been positively evaluated for its use

with predictive microbiology for the distribution of meat in Australia (151). However,
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Smart-Trace™ is still being under development (http://www.smart-trace.com/mission.php,

[accessed 31/05/11]). Another example evaluated fish supply chains is Info-Fisk, an

internet-based system that relies on bar codes and data loggers. The system locates the

product and transmit temperature measurements or other information along the whole

chain in real-time (79).

“Freshness” systems

Traceability plays an important role in the food supply chain, and in the case of perishable

products, freshness is also an important requirement. Freshness is in many cases dependent

on storage time and temperature.

Time-Temperature Integrators (TTI) are devices, usually in form of labels adhered to the

product, which can monitor thermal history. They are programmed according to kinetics of

the change in a quality index allowing a chromatic variation proportional to time-

temperature exposure. The advantage of this application is its low cost and the possibility

of positioning locally on the product. There are many available TTI based on molecular

diffusion (3M Monitor Mark™), polymerization reactions (Fresh-Check®), enzymatic

activity (CheckPoint®) and microbial growth (TRACEO®) (215). Some of the

disadvantages are the need to determine the shelf-life of each product to find a suitable

quality index and the fact that they do not show in which part of the supply chain the

colour has changed. The applicability of TTI to monitor temperature for bacterial spoilage

estimation has been previously studied in chilled, fresh and atmosphere modified packaged

fish (170, 214, 218).
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Traceability in the Australian oyster industry

Australia has requirements for traceability systems as part of the primary production and

processing standard for seafood (FSANZ FSC 4.2.1) and for exports under the Export

Control (Fish and Fish products) Orders (2005).

Currently, the traceability system normally used for identification in the oyster supply

chain is paper-based that records information regarding growers name, lease number,

harvest date and description of the product. As it is recognized that oysters from different

leases may be mixed by many wholesalers, identifying a grower linked to inadequate

product quality or safety is nearly impossible (47).

An analysis of the Australian oyster supply chain shows that it will be unlikely that mid-

chain or end users will introduce full traceability back to the grower, and that growers

would be the ones that will need to assess the cost-benefit of its enforcement, and may only

happen if traceability mechanisms are enforced by government legislation (47). The

producers need to be aware that although there is a cost to implement traceability, an

economic benefit is guaranteed by reducing the quality controls, recalling only products

affected, introducing provenance-brand selection and identifying which is the responsible

for a decrease in quality or safety due to improper product handling (78).

1.5 Predictive microbiology

Through the use of mathematical models, the viability of bacteria can be estimated to

minimize risk, enhance product quality and manage supply chains (66). Predictive
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microbiology involves the use of mathematical expressions to describe microbial growth

responses to environmental factors. Predictive microbiology is based on the premise that

the responses of populations of micro-organisms to environmental factors are reproducible

and that, by characterising environments in terms of those factors that most affect

microbial growth and survival, it is possible from past observations to predict the

responses of those micro-organisms in other, similar environments (147).

Since the development of “modern” predictive microbiology in 1960-1970 (148), many

predictive models have been developed in broth and food matrices and many “user-

friendly” applications have been designed which are currently expanding as tools for a

proactive risk management of microbial issues.

Classification

Microbial predictive models can be classified using different approaches: growth or

inactivation depending on microbial behaviour; probabilistic or kinetic depending on the

mathematical approach; or as primary, secondary and tertiary based on the types of

parameters described (39).

 The primary models describe the evolution in the amount of bacteria over

time under a specific set of conditions. The modified Gompertz equation is commonly

used to describe the sigmoid growth curve shape (144). Another growth model for

predicting microbial growth was defined by Baranyi et al. (28). In this model, the growth

rate is determined by the cell concentration, the extracellular environment and the



1 - Introduction

- 56 -

physiological state of the cells. Many researchers have used the Baranyi model in specific

microbial modelling applications and found in comparison to the Gompertz function, and

other models, that it gives better results. Another reason for the wide use of Baranyi as a

primary model is the availability of the program DMFit which can be used to fit the

Baranyi model easily to datasets (144).

 Secondary models describe the effect of intrinsic (e.g. pH, aw) and extrinsic

(e.g. temperature, atmosphere composition) factors on the organism growth or survival

characteristics. In most predictive microbiology models, temperature represents the major

environmental parameter and NaCl the most important food component influencing the

kinetics of micro-organisms (196). There are different secondary models which can be

used to model growth and inactivation of bacteria. The square-root, the polynomial and the

gamma are examples of secondary models used commonly to model growth rate,

generation time and lag time (40, 68, 196). The use of probabilistic models is also

convenient to predict the likelihood of a microbial event occurring. Some applications

include modelling growth/no growth interface and time-to-toxin production (196).

 Tertiary models are typically software interfaces in which the primary and

secondary models are integrated into a ready-to-use application tool. Computer software

programs provide an interface between the mathematic terms and the user, allowing model

inputs to be easily entered and estimates to be observed in simple graphical outputs (210).

An example of specific programs are the Seafood Spoilage and Safety Predictor (SSSP,

http://sssp.dtuaqua.dk/) which was developed to predict and illustrate the effect of constant

and fluctuating temperatures on growth of SSO and on remaining shelf-life of different

seafood products (56).
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V. parahaemolyticus models

A comprehensive understanding of the response of V. parahaemolyticus to environmental

temperature is the basis for developing effective risk management strategies. Some

mathematical models for the prediction of V. parahaemolyticus viability as a function of

temperature are available. However, there are few models for viability of

V. parahaemolyticus in live oysters, and none for V. parahaemolyticus in live PO.

In bacteriological broth systems, the growth of V. parahaemolyticus over a temperature

range of 8 - 45ºC (155) and the growth rate and lag time from 10 - 30ºC have been

modelled (233) (Table 5). In food matrices, predictive models for V. parahaemolyticus in a

Korean oyster slurry over a temperature range of 20 - 30ºC (233) and in salmon meat from

0 - 35ºC (231) have also been reported. The USA Food and Drug Administration (USFDA)

provides a model for the growth of V. parahaemolyticus in American oysters (Crassostrea

virginica) in the USNSSP (22). A software program for the prediction of

V. parahaemolyticus growth in broth systems at different temperature in the range 15 -

30ºC, different pH and salt concentration conditions has been developed recently by

Fujikawa et al. (80).



1 - Introduction

- 58 -

Table 5. A summary of secondary models for V. parahaemolyticus

Reference System T range (ºC)

Miles et al. 1997a Broth 8 - 45
r (log/h) = [0.03563 × ((T + 273.15) - 278.5) × ((1 - exp
(0.3403 × ((T + 273.15) - 319.6)))) × √ ((0.95 - 0.921)
× ((1 - exp (263.64 × (0.95 - 0.998)))))] 2 × 60

Yoon et al. 2008p Broth 10 - 30 r (log/h) = (0.00219 × (T - 6.128))2

Yoon et al. 2008p Korean
oysters 20 - 31 r (log/h) = (0.00723 × (T - 20.31))2

Yang et al. 2009p Salmon 0 - 35 r (log/h) = (0.00421 × (T – 12.057))2 × 2.302

Anonymous 2007 American
oysters 10 - 37.8 r (log/h) = (0.01122 × ((T × (9/5) + 32) – 0.4689)2

Secondary model
Study description

a: water activity value set to 0.95; p: pathogenic strain. Source data: various authors (22, 155, 231, 233).

Evaluation of predictive models

Models built in relatively simple systems (e.g. broth) do not consider the effect of other

micro-organisms, the food physical structure and levels of other chemical agents

potentially present in the food product. For this reason, models can provide a better

performance when developed for a specific intended food product (150).

In all cases, the accuracy of the model needs to be considered and it can not be used in real

situations until it has been properly evaluated. This demonstrates the limitation of the

model and if changes need to be done to increase its applicability. For food safety risk

management, errors in the estimate of growth should tend toward a faster growth rate to

provide a “fail-safe” prediction (229). However, a highly “fail-safe” model can also be too

conservative that it becomes impractical for industry application. In fact, this situation
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could cause unnecessary inspections or even recall of products from the market that may

be perfectly safe. Commonly used measures to evaluate model performance objectively are

the bias and accuracy factors (194).

Applications

In general terms, predictive microbiology provides support for food quality and safety

management strategies. Predictive models are very useful tools which have been proven to

help different sectors: industry (143), regulatory authorities and science (150, 229). A list

of specific applications is described in Table 6.

Table 6. Predictive microbiology applications

Hazard Analysis Critical Control point: used as a tool for safety management
Identification of the hazard that will grow and how fast
Identification of steps in which grow is possible and establishment of critical control points
Assessment of different scenarios
Detection of the appropiate corrective measures

Risk Assessment: used as a tool for safety management
Estimation of changes in microbial numbers in different operations
Assessment of expossure to a particular pathogen

Research and Development: usually sicentific field
Prediction of the time until spoilers, pathogens or toxins reach dangerous level
Study the effect of altering product composition or processing
Evaluation of effect or out-of specification circumstances
Optimal conditions to inhibit pathogen or spoilage organisms
As a refrence to design new experiments or new products

Education: usually for industry
Show the influence of temperature on microbial growth by graphs to non-technical people
Demonstrate the importance of maintaining proper refrigeration temperatures
Observe consequences of changing formula composition in foods
Recommendations in if-then questions
Study different operations

HACCP

RA

R&D

EDU
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Supply Chain
Integration into temperature loggers for pathogen growth control
Integration with remote traceability for real-time monitoring of pathogen growth

SC

Source data: various authors (143, 145, 146, 229).

There are some considerations for the application of predictive microbiology. Models need

to be properly evaluated in the food product which usually involves more challenge studies

to approve its applicability. Another consideration is that the person using the models

needs to interpret correctly the output which includes knowledge of the model limitations

(e.g. knowledge of the boundaries beyond which predictions should not be made) (150).

1.5.1 Risk assessment

Risk managers use risk assessments to manage risk to an acceptable level. Risk assessment

is a scientifically-based process which consists of four different elements (27):

 Hazard identification in which the connection between disease and presence

of a pathogen in food is documented

 Hazard characterisation that aims to estimate the nature, severity and duration

of the adverse effects resulting from ingestion of the hazard

 Exposure assessment that tracks the pathways by which the pathogen enters

the food supply and multiplies, survives or dies until the food is consumed in order to

estimate the likely consumption of the pathogen
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 Risk characterisation that integrates the information from the previous steps

to estimate the risk in terms of the likelihood and severity of illness

Predictive microbiology can be used to relate the levels of a pathogen in a food depending

on its conditions which is an essential part of the exposure assessment in microbial food

safety risk assessments (195).

Deterministic and probabilistic risk assessment

Deterministic assessment is commonly used as a first step in exposure assessments because

they are relatively quick, simple and inexpensive. It assumes that all individuals consume

the specified food at the same level, that the hazard is always present in food, and that is it

always present at a determinate concentration (27, 66). Deterministic models do not predict

probabilities but changes in concentrations and they can not be directly implemented in

Quantitative Microbial Risk Assessment (QMRA) (158).

Probabilistic assessment is used in QMRA to include variability and uncertainty.

Stochastic model distributions are used to generate the range of likelihood of possible

outcomes from the overall processes analysed. In probabilistic modelling, the variables are

described in terms of probability distributions instead of point estimates and the outcome is

a risk distribution. An important advantage of probabilistic risk assessment is that it allows

consideration of the whole distribution of exposure, from minimum to maximum. This

probability is a quantitative measure, a number between zero and one expressing the odds
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of an event. Thereby more meaningful information is provided to risk managers and the

public. Some disadvantages are the need for accurate prediction of the tails in a distribution,

the degree of complication and the time required to select and fit probability distributions

(66).

Monte Carlo simulation, a computational method used to achieve multiple samples of the

input distributions, is the method most commonly used for classical probabilistic risk

assessment. It selects one random sample from each input distribution and the set of

samples is entered into the deterministic model. The model is then solved, as it would be

for any deterministic analysis and the result is stored. This iterative process is repeated

several times until the specified number of iterations is completed. This method is

described as a first order Monte Carlo simulation (27, 66). One of the disadvantages of

using Monte Carlo simulations is the need of precise probability distributions for all inputs

parameters (159). The process of setting up and running stochastic models require

appropriate modelling software and a high level of computer processing power. There are a

variety of risk analysis software products on the market, examples are @RISK, Crystal

Ball, FARE Microbial™ and ModelRisk® (27, 66).

In QMRA, probability distributions are used to represent either variability or uncertainty.

Variability represents inherent heterogeneity or diversity in a population (e.g. differences

among strains, within strains, composition of the food) and uncertainty represents lack of

information (e.g. measurement error, assumptions). Variability and uncertainty are easily

confused because they are both represented by probability distributions and the difference

between the two is not always obvious. Thereby they are not separated in most current

QMRA (27).
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However, lack of separation may lead to an incorrect interpretation of the results (161). It

has been observed that the prediction of the outbreak size may depend on the way that

uncertainty and variability are separated (160). To separate variability and uncertainty, a

two-dimensional Monte Carlo simulation that consists in two Monte Carlo loops, one

nested inside each other, is necessary. The inner loop deals with the variability of the input

variables, while the outer one deals with uncertainty (27, 66).

An advantage of probabilistic risk analysis is the ability to perform sensitivity analysis to

determine which variables in the model have the greatest influence on results. The results

permit risk managers to consider different strategies for reducing exposure levels. Because

the probabilistic analysis provides information on full distribution exposure, the exposure

assessor can determine how different scenarios will affect different operations during

distribution (27, 66).

Vibrio parahaemolyticus risk assessment

In order to have better management for V. parahaemolyticus, a Quantitative Risk

Assessment on public health impact in raw oysters (VQRA) was developed in 2005 (17).

The VQRA identified different factors that can markedly influence the presence and

outgrowth of the bacterium in oysters, including water temperature, region and season

during harvest, ambient air temperature after harvest as well as time between harvest and

cooling. The VQRA is a scientific document that can be used for risk managers to establish

regulations. At the moment, the document is mostly based on USA data and differences

among countries and oyster species could be expected.
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1.6 Objectives of this research

It has been estimated that 11,500 cases of food-borne disease occur every day in Australia,

costing the community over 2.6 billion Australian dollars per year (9). The oyster industry

is an important part of the economic seafood sector in Australia and it needs to supply the

best quality and safest possible products to consumers.

Among the different microbial hazards, V. parahaemolyticus represents the leading

bacterium involved in oyster-related outbreaks mainly due to raw or undercooked products.

An increase in the presence of V. parahaemolyticus can be expected due to the effects of

climate change and it will probably lead to greater enforcement in order to protect public

health. As such, the Australia oyster industry requires information about how to control

V. parahaemolyticus growth in oyster species, as well as growth of TVC that influence

product quality.

V. parahaemolyticus accumulation in oysters is practically unavoidable and pathogenic

strains can reach infective levels with improper handling. There are different post-harvest

treatments which can reduce the presence of this species but they can negatively affect the

sensory properties or viability of oysters.

The aim of this project was to develop predictive microbiology tools to assist in supply

chain management and thus improve the safety and quality of oysters in the marketplace.

Four different objectives were set in order to achieve the aim:
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 Development and evaluation of a predictive model for the viability of

V. parahaemolyticus and TVC in PO to predict their growth depending on storage

temperature (Chapter 2).

 Evaluation of software for predicting V. parahaemolyticus and TVC growth

in oyster supply chains as a function of temperature profile (Chapter 3).

 Production of a stochastic model to estimate the percentage of oysters

containing specific bacterial levels in supply chain operations (Chapter 4).

 Measurement of the changes in bacterial communities in oysters under

different storage temperatures (Chapter 5).
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2 - Predictive models for the effect of storage

temperature on viability of Vibrio parahaemolyticus and

total viable bacteria count viability in the Pacific oyster

(Crassostrea gigas)

2.1 Introduction

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can

accumulate in oysters (61). Some V. parahaemolyticus strains are pathogenic (232).

Consequently, the consumption of raw or improperly cooked oysters can result in

V. parahaemolyticus infection (17, 23, 119, 130).

Disease occurs worldwide (209) with a higher incidence reported in Asia (208), South

America (98) and the USA (58, 227). In Australia, tdh+ V. parahaemolyticus has been

isolated from oysters (125) and two reported outbreaks have been linked to oyster

consumption, one death in 1992 and two cases in 2005 (6, 119). Therefore, the risk of

V. parahaemolyticus infection in Australia is considered to be relatively low.

In response to V. parahaemolyticus risk associated with raw oyster consumption, the

USFDA published a risk assessment in 2005 (17). The VQRA identified ambient air

temperature after harvest as well as time between harvest and cooling as factors that can

markedly influence the presence and outgrowth of the bacterium in oysters. Currently, the

USNSSP and the ASQAP include guidelines for temperature during post harvest and

distribution to control V. parahaemolyticus growth in oysters (4, 20).
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However, a recent market survey of oyster microbiological quality performed in the USA

found that 15% of tested lots exceeded the 10,000 MPN/g V. parahaemolyticus criterion

recommended by the USFDA (22, 62). In addition, recent data from the CDC indicate that

humans infections caused by Vibrio spp. have increased in relation to other food borne

pathogens (16). Another important factor with the potential to affect V. parahaemolyticus

exposure levels and alter geographical distribution is the influence of climate change (138,

140). This emphasises the need to improve risk management practices for this bacterium.

A comprehensive understanding of the response of V. parahaemolyticus to environmental

temperature is the basis for developing effective risk management strategies for regulatory

agencies, oyster producers and consumers. In this regard, predictive microbiology offers a

systematic approach to describe microbial responses to different environments (147).

Through the use of mathematical models, the viability of pathogenic bacteria can be

estimated to minimize risk, enhance product quality and manage supply chains (66).

Mathematical models have been developed for the prediction of V. parahaemolyticus

growth as a function of temperature in bacteriological broth systems (155, 233) and in food

matrices (231, 233). A mathematical equation for estimating the growth of

V. parahaemolyticus in American oysters depending on temperature is also provided by the

USNSSP (22). However, there are few predictive models for viability in live oysters, and

none for V. parahaemolyticus in live PO.

Thus, the objective of this study was to develop mathematical models to describe the effect

of storage temperature on the viability of V. parahaemolyticus. In parallel, a model was

developed for TVC in live PO. The predictive microbiology models were evaluated in PO
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and SRO containing indigenous V. parahaemolyticus harvested from a different

geographical location.

2.2 Materials and Methods

Oyster samples. In experiments to produce the predictive model, ten batches of live PO

were harvested by a commercial grower in Pipeclay Lagoon, Tasmania between September

2008 and December 2008. Following collection, oysters were placed in a cooler with gel

packs and transported within 2 h to the laboratory at the University of Tasmania, Hobart,

Tasmania. Oysters were washed with tap water to remove excess mud on the shells, as

indicated by the American Public Health Association for the bacteriological examination

of shellfish (105), stored at approximately 7ºC and processed within 24 h of harvest.

Seawater pH (Waterproof pHTestr1, Oakton, Vernon Hills, IL, USA), temperature and

salinity (microprocessor conductivity meter model LF-196, WTW, Germany) and

dissolved oxygen (microprocessor oximeter model OXI-196, WTW, Germany) were

measured in the top 5 cm of the water surface in the harvest area at the time of sample

collection. A total of 1600 oysters were used in experiments.

The model for V. parahaemolyticus viability in PO was evaluated in PO and SRO

harvested in Port Stephens, New South Wales. Following harvest, oysters were packed in a

cooler and the temperature monitored during transport using a temperature data logger

(iButton®, Maxim Integrated Products, Inc., Sunnyvale, CA). Three different batches of

SRO were harvested in April 2009, May 2009 and February 2010; one batch of PO was
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harvested in February 2010. All batches were shipped to the laboratory in Hobart,

Tasmania by overnight courier and tested within 26 h of collection. A separate batch of PO

harvested in the same area in May 2009 was shipped by overnight courier to the South

Australian Research and Development Institute (SARDI) Food Safety laboratory in

Glenside, South Australia and tested within 24 h of harvest. A total of 1000 oysters were

tested for all validation studies using New South Wales oysters.

Bacterial strains. Local strains with the desired combinations of tdh and trh genes were

not available. Six V. parahaemolyticus strains (24339, 24340, 24657, 24658, 24659, 24660)

were used to produce the PO model. The strains were isolated from shrimp in Thailand and

kindly provided by Dr Orasa Suthienkul, Faculty of Public Health, Department of

Microbiology, Mahidol University, Bangkok. For the purpose of these studies, the strains

were coded as follows: 39 (24339), 40 (24340), 57 (24657), 58 (24658), 59 (24659) and 60

(24660). Cultures were stored at -80ºC in modified Tryptone Soy Broth (mTSB; TSB

[CM0129, Oxoid, Adelaide, Australia] supplemented with 3%NaCl and adjusted to pH 8.4)

with addition of 15% (v/v) glycerol (Sigma-Aldrich, Steinheim, Germany).

Colony PCR assay for species and virulence genes. A multiplex PCR assay was

performed to detect tdh, trh and tlh genes (167, 168, 213) in the six different bacterial

strains used in the cocktail. Bacterial strains were cultured on TCBS agar (CM0333, Oxoid,

Adelaide, Australia) to confirm that colonial morphology was typical of

V. parahaemolyticus (115). For each assay, one isolated colony was mixed in 200 μl of
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sterile distilled water, stored at -20ºC and the sample suspension was used as template for

the PCR assay without DNA extraction. The presence of the three genes was tested using a

20 μl reaction mixture containing 2 μl DNA template, 10 μl ImmoMix™ Red (Bioline,

NSW, Australia), 0.25 μM of each oligonucleotide reverse and forward primer, and 5 μl of

RNAse-free water (BIO38031, Bioline, NSW, Australia). The oligonucleotide primers

sequence used for tlh (F-tlh:5’ACTCAACACAAGAAGAGATCGACAA-3’ and R-

tlh:5’GATGAGCGGTTGATGTCCAA-3’) were as reported by Nordstrom et al. (169),

and the sequences for tdh (F-tdh:5’GTAAAGGTCTCTGACTTTTGGAC-3’ and R-

tdh:5’TGGAATAGAACCTTCATCTTCACC-3’) and trh (F-

trh:5’TTGGCTTCGATATTTTCAGTATCT-3’ and R-

trh:5’CATAACAAACATATGCCCATTTCCG-3’) were as reported by Bej et al. (30). The

three primers were commercially synthesized (Gene Works, SA, Australia).

The PCR cycle program consisted of a denaturation step at 95ºC for 10 min followed by 35

cycles at 94ºC for 1 min, 55ºC for 1 min, 72ºC for 1 min, and a final elongation at 72ºC for

7 min. Strain 60 (tlh+/tdh+/trh+) was used as a positive control and RNAse-free water was

used as negative control.

Electrophoresis of PCR-amplified DNA (5 μl) was conducted at room temperature on a 2%

(w/v) agarose gel containing GelRed™ Nucleic Acid Gel Stain (Biotium, California, USA)

in 1x Tris-Acetate-EDTA (TAE) buffer at a constant voltage of 74 V for 80 min.

Visualization of DNA was performed with a transilluminator (Bio-Rad, NSW, Australia)

and the image processed using Quantity One® 4.6.6 1-D Analysis software (Bio-Rad, NSW,

Australia). PCR products for tlh, tdh and trh approximate sizes were approximately 200 bp,
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250 bp and 500 bp, respectively when compared to the marker (HLII; BIO33039, Bioline,

NSW, Australia).

Preparation of V. parahaemolyticus injection inoculum. For each experiment, each

V. parahaemolyticus strain was transferred from -80ºC storage to a plate of modified

Tryptone Soy Agar (mTSA; mTSB with addition of 1.5% agar [grade J3, Gelita, QLD,

Australia]) and incubated at 25ºC for 18 - 24 h. For each of the six strains, two to three

colonies from each of  the mTSA plates were selected and enriched in 9 ml Marine Broth

(MB). MB consisted of bacteriological peptone 0.5% (LP0037, Oxoid, SA, Australia),

yeast extract 0.1% (LP0021, Oxoid, Adelaide, Australia), and sea salts 3.5% (w/v)

(RedSeaFish, NSW, Australia) with pH adjusted to 8.4. The six broths were incubated at

25ºC for 18 - 24 h. Each culture was adjusted to 0.15 - 0.25 OD540 nm using 200 µl in a

Benchmark Microplate reader (Bio-Rad, NSW, Australia). Two millilitre aliquots of each

working culture were combined to produce a 12 ml cocktail of approximately 3 × 108 total

CFU/ml. The cocktail for oyster injection was diluted in sterile artificial sea water (3.5%

sea salts w/v) to a final concentration of approximately 1.5 × 106 CFU/ml. For low

temperature storage studies (3.6, 6.2, 9.6 and 12.6ºC), the inoculum was prepared to a

concentration of 1.5 × 108 CFU/ml to facilitate modelling inactivation. Inocula were kept

on ice in tubes during the injection process for approximately 30 min. It is possible that a

slight decrease in cells occurred due to low temperature sensitivity of V. parahaemolyticus

(41), however the final required initial concentration in oysters was achieved.
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Oyster inoculation. For each storage assay, an approximate 5 mm notch was drilled in the

oyster shell approximately 50 mm from the hinge, based on average size of 80 mm oyster

length, using a power drill (Dremel® Multipro 395, WI, USA), avoiding contact with

oyster tissue (116). The adductor muscle of 60 oysters was then directly injected with 0.1

ml of the inoculum cocktail using a 1 ml syringe equipped with a 23-gauge needle

(Terumo, USA), similar to a method previously reported (83). In a preliminary experiment,

injection in the adductor muscle was compared to that in the visceral mass (Appendix A1).

The mean of the ratio between counts for visceral mass and counts for adductor muscle

were nearly identical at 1.0 ± 0.16 for storage at 20ºC and 1.0 ± 0.03 for storage at 25ºC.

However, injection in the adductor muscle produced more consistent V. parahaemolyticus

growth curves at the two different temperatures tested and therefore this tissue was used

for inoculation. The remaining 100 oysters were injected with 0.1 ml of sterile artificial

seawater.

Storage conditions. Injected oysters were stacked in 2-3 layers in open plastic containers

and stored in incubators at 3.6 ± 0.1, 6.2 ± 0.1, 9.3 ± 0.3, 9.6 ± 0.3, 12.6 ± 0.4, 14.9 ± 0.1,

18.4 ± 0.2, 20.0 ± 0.1, 25.7 ± 0.2, and 30.4 ± 0.3ºC. Storage time varied from 437 h at

3.6ºC to 58 h at 30.4ºC based on oyster viability during the course of experiments. When

oyster sample shells gaped, oysters were not considered viable and experiments were not

continued. Incubator temperature was monitored by placing temperature data loggers

between oysters. The resolution of temperature loggers was 0.5ºC. The mean ± Standard

Deviation (SD) for each storage temperature measured from the two different data loggers

for each experiment was recorded.
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In model validation studies, SRO oysters containing natural populations of

V. parahaemolyticus were stored at 15.3 ± 0.2, 18.0 ± 0.1, 21.8 ± 0.4, 24.2 ± 0.3 and 27.9 ±

0.2ºC, and PO at 15.0 ± 1, 18.0 ± 0.1, 23.0 ± 1, 24.2 ± 0.3 and 28.0 ± 1ºC. Experiments at

15, 23 and 28ºC for PO were performed at SARDI laboratories.

Bacterial enumeration. Preliminary studies were conducted to determine the appropriate

sample size of injected oysters for bacterial enumeration. Six separate samples of three

oysters were tested immediately after injection and after storage at 20ºC for 2 d. A SD of

0.12 at initial counts and a SD of 0.71 after oyster storage were observed among the six

replicates, indicating a good repeatability of the method.

In model development studies, two separate samples of three oysters injected with

V. parahaemolyticus, and one sample of ten seawater-injected oysters were analysed at

selected time intervals. The larger number of controls was used to detect potential

variability in background levels of indigenous V. parahaemolyticus (113). At the time of

bacteriological analysis, oysters were opened aseptically with a sterile shucking knife as

described by the American Public Health Association (105), meat and liquor placed in a

sterile 400 ml filter stomacher bag (A.I. Scientific, Hallam, Australia) with an equal weight

of Peptone Salt Solution (PSS; 0.1% bacteriological peptone [LP0037, Oxoid, Adelaide,

Australia], 3% NaCl [Ajax Finechem, NSW, Australia], pH 7.4) and the sample stomached

(Colworth Stomacher 400, A. J. Seward, London) for 2 min. Although buffered saline

solution can be used as a diluent in Vibrio spp. assays (34, 115), the use of PSS is

recommended in the Australian standard methods (AS/NZS 1766.2.9:1997). Due to the
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high number of test samples per time interval, oysters were processed with a stomacher

instead of a blender, as reported for other oyster studies (135). Stomached samples were

diluted in 10-fold serial increments with PSS and 100 μl plated in duplicate on TCBS and

on Marine Agar (MA; MB with addition of 1.5% agar [grade J3, Gelita, QLD, Australia]).

TCBS and MA plates were incubated at 37ºC for 16 - 18 h and 25ºC for 48 h, respectively.

Plated dilutions yielding 30 - 300 CFU/plate were counted manually and CFU/g of

homogenate calculated.

In studies of oysters containing natural V. parahaemolyticus populations,

V. parahaemolyticus was enumerated using a three-tube MPN method (115) with slight

modification. Samples were homogenized and diluted as explained for seawater-injected

oysters and the salt content of APW increased from 1% to 3% NaCl as this has been

reported that improve isolation of V. parahaemolyticus (45). A 20-g sample of oyster

homogenate was mixed with 80 g of modified APW (mAPW; 1% bacteriological peptone

[LP0037, Oxoid, Adelaide, Australia], 3% NaCl [Ajax Finechem, NSW, Australia], pH 8.4)

and then serial 10-fold dilutions prepared (v/v) in PSS. Ten and one millilitre from the

initial dilution and one millilitre of all other dilutions were individually added to three

tubes containing 10 ml mAPW. Inoculated mAPW tubes were incubated at 37ºC for 16 -

18 h. A 100 μl sample of each turbid broth was transferred to a sterile non-skirted PCR 96-

well plate (Bioline, NSW, Australia) and stored at -20ºC for a maximum of one week until

assayed by PCR. According to the presence-absence of positive bands in the agarose gel,

total populations of V. parahaemolyticus were determined using a MPN table (115).
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MPN-PCR detection of tlh. The presence of V. parahaemolyticus was carried out as

described above for colony PCR but with some adjustments. Specifically, the primers

directed to tdh and trh genes were omitted and the volumes in the mixture were changed as

follows: 20 μl reaction mixture containing 2 μl sample, 10 μl ImmoMix™ Red, 0.1μM of

each oligonucleotide reverse and forward primer, and 7.6 μl of RNAse-free water. PCR

cycles were reduced from 35 to 30 and electrophoresis of PCR amplified product applied

for 30 min instead of 80 min. These conditions were adequate to separate bands and

reduced assay time.

Sensitivity of MPN-PCR for tlh detection. The V. parahaemolyticus cocktail was

prepared as for oyster-injection model studies and was 10-fold serially diluted in mAPW.

One ml of each dilution was added to individual tubes containing 9 ml mAPW and 1.0 ml

of a 10-fold dilution of oyster homogenate (0.1 g oyster/tube), giving final

V. parahaemolyticus concentrations of 0 (negative control) to 1.3 × 106 CFU/ml. Initially

and after 16 h at 37ºC, samples from each tube were divided into two groups; one group

was boiled for 10 min at 90ºC while the other was not boiled. Each sample treatment was

tested by PCR detection for the tlh gene.

Predictive models for V. parahaemolyticus and total viable bacteria counts.

Plate count data were transformed to log10 values.  For growth profiles, data were fitted

with DMFit curve-fitting software v2.1 (courtesy of the Institute of Food Research,

Norwich) to estimate growth rate (log10 CFU/h) using the growth model reported by
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Baranyi and Roberts (28). For inactivation profiles, inactivation rates (-log10 CFU/h) were

estimated by linear regression using Microsoft Excel®.

For V. parahaemolyticus growth, the square root model (186) was used to describe

growth rate (r) as a function of temperature. The equation for the square root model is:

√r = b × (T - To) (1)

and shows a linear relationship between the square root of r and temperature (T), where b

is a regression coefficient and To is a hypothetical reference temperature which is an

intrinsic property of the organism.

The Arrhenius equation (25) was used to estimate the kinetic parameters for the

effect of temperature on bacterial inactivation. The equation used was:

ln r = ln A - Ea/RT (2)

where r is the rate constant, T the absolute temperature, Ea the activation energy, R the

universal gas constant and A the collision factor. The values of ln k was plotted against 1/T

to calculate the values of Ea/R and A by linear regression using Microsoft Excel®.

The growth rate of TVC was plotted as a function of temperature and data fitted to

the square root model as described for V. parahaemolyticus. All TVC and V.

parahaemolyticus kinetic data have been submitted to ComBase, a database for predictive

microbiology (29).

Model performance. Measurement of goodness-of-fit for each of the secondary models

was done by evaluating the root mean square error (RMSE) and the coefficient of

determination (R2) (185). Statistic information of the performance of the secondary models

was obtained using regression data analysis in Excel® (Table A3.1). Evaluation of
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secondary growth models for V. parahaemolyticus and TVC was performed with two

different oyster species, PO and SRO, containing natural V. parahaemolyticus populations,

during different seasons and from a different geographical location to that used for model

development. The secondary model for V. parahaemolyticus growth was compared to

other published V. parahaemolyticus models (22, 155, 231, 233).

2.3 Results

Harvest conditions during oyster collection. The average SST of the harvest area in

Tasmania was 15.8 ± 2.2ºC, with an observed range of 12.3 to 19.4ºC. The ranges of

salinity and dissolved oxygen in the same area were 3.4 to 4.8% and 10.7 to 12.2 mg/l,

respectively. The average pH was 8.5 ± 0.1 (Table 7).

Table 7. Harvest conditions during oyster collection (oyster batches used during model

development)

Storage test
T (ºC) mg/l O2 pH Salt (%) High Wide T (ºC)

26th November 2008 19.4 11.6 8.5 3.6 6.8 4.3 3.6 ± 0.1
8th December 2008 15.0 11.5 8.6 - 7.6 4.9 6.2 ± 0.1
29th September 2008 15.9 10.7 8.2 3.5 8.0 5.0 9.3 ± 0.3
1st December 2008 13.8 - 8.5 3.5 7.8 4.5 9.6 ± 0.3
3rd December 2008 13.6 12.2 8.5 3.6 8.2 5.4 12.6 ± 0.4
20th October 2008 18.1 11.4 8.4 3.5 8.0 4.8 14.9 ± 0.1
24th November 2008 16.9 11.0 8.5 3.5 7.4 4.8 18.4 ± 0.2
13th October 2008 16.4 11.0 8.5 3.4 8.6 5.2 20.0 ± 0.1
6th October 2008 12.3 12.0 8.5 4.8 8.6 5.6 25.7 ± 0.2
1st October 2008 16.5 11.3 8.3 3.4 9.0 5.0 30.4 ± 0.3

Collection date
Water measurements Oyster size



2 – V. parahaemolyticus and TVC in C. gigas temperature model

- 78 -

For the New South Wales harvest areas, SST averaged 21.3 ± 3.6ºC, with a range of 17.5

to 25.5ºC and salinity 3.1 ± 0.6% with a range from 2.4 to 3.7%; pH and dissolved oxygen

data were not available (Table 8).

Table 8. Harvest conditions during oyster collection (oyster batches used during model

evaluation)

Transport
Mean T ±
SD (ºC) T (ºC) Salt

(%) High Wide

8th April 2009 18.7 ± 4 21.0 3.0 8.8 5.2 21.8 ± 0.4 SRO

13th May 2009 13.7 ± 2.9 18.2 2.4 7.5 4.4 27.9 ± 0.2,
15.3 ± 0.2 SRO

24th May 2009 - 17.5 2.6 - - 15 ± 1, 23 ± 1,
28 ± 1 PO

15th February 2010 25 ± 2.8 25.5 3.7 10 5 18.0 ± 0.1, 24.2
± 0.3 SRO

22nd February 2010 21 ± 3 24.5 3.7 9 5 18.0 ± 0.1, 24.2
± 0.3 PO

Water
measurements

Oyster size
Oyster
species

Storage test T
(ºC)Collection date

PCR assay for species and virulence genes, and sensitivity of MPN-PCR for detection

of V. parahaemolyticus in injected oysters. Multiplex-PCR tests confirmed that all strains

possessed tlh (Figure 2). Strains 39, 40, 59, 60 contained tdh; strains 59, 60 trh; and strains

57, 58 were tdh- and trh-.

For the MPN-PCR method, results showed that the limit of reliable detection at the time of

sample inoculation (t = 0 h) was 1.3 × 105 CFU/ml, regardless if samples were boiled

(Figure 3a) or not boiled (Figure 3c). After approximate 16 h incubation, all boiled (Figure

3b) and non-boiled (Figure 3d) samples from the MPN tubes inoculated with 1.3 to
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1.3 × 106 CFU/ml the previous day, produced a positive PCR product. No band was

observed for the negative control. The average level of V. parahaemolyticus in the

inoculated overnight MPN tubes of mAPW incubated at 37ºC for 16 - 18 h, as observed on

TCBS plates, was 8.6 log10 CFU/ml.

Lane M: 2 kb molecular size marker; lane 1, strain 39; lane 2, strain 40; lane 3, strain 57; lane 4, strain 58;
lane 5, strain 59 and lane 6, strain 60.

Figure 2. Agarose (2%) gel electrophoresis of V. parahaemolyticus PCR products

corresponding to tlh (~200bp), tdh (~250bp) and trh (~500bp) genes.

The oyster enrichments were tested after 0 h: with (a) and without (c) boiling; and after 16 h: with (b) and
without (d) boiling. Lane M, 2 kb molecular size markers only used in the upper part of the agarose gel.
Lanes 1-8, PCR products of oyster homogenate enrichment with contamination levels of V. parahaemolyticus
cocktail of 1.3 × 106, 1.3 × 105, 1.3 × 104, 1.3 × 103, 130, 13, 1.3 and 0 CFU/ml, respectively.

Figure 3. Agarose (2%) gel electrophoresis of V. parahaemolyticus PCR products

corresponding to tlh gene (~200bp) in oyster enrichment samples inoculated with serial 10-

fold dilutions of the V. parahaemolyticus cocktail.
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Primary models of V. parahaemolyticus. For growth studies, oysters were injected with

an average of 3.4 ± 0.1 log10 CFU/g of the V. parahaemolyticus cocktail.

V. parahaemolyticus levels did not significantly increase or decrease at 14.9ºC through 169

h. Therefore, growth rate was assumed to be 0 log10 CFU/h at this temperature. However,

oysters stored at temperatures ≥18.4ºC supported growth (Figure 4). The average

coefficient of determination (R2) for the Baranyi model fitted to the four kinetic growth

profiles was 0.86. Growth rates increased with increasing temperature, specifically 0.030,

0.075, 0.095, and 0.282 log10 CFU/h at 18.4, 20.0, 25.7, and 30.4ºC, respectively.

Maximum Population Density (MPD) depended on storage temperature, with the highest

levels (i.e. 7.4 log10 CFU/g) observed at 25.7ºC after 73 h. A lag phase was not observed at

any storage temperature.
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Figure 4. Growth of V. parahaemolyticus in live Pacific oysters (18.4 - 30.4ºC).

At temperatures resulting in V. parahaemolyticus inactivation (i.e. 3.6 to 12.6ºC), oysters

were injected with an average 5.4 ± 0.2 log10 CFU/g. A linear regression fitted to the data

showed an average R2 value of 0.82 (Figure 5). Inactivation rate values were -0.006, -
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0.004,-0.005 and -0.003 log10 CFU/h at 3.6, 6.2, 9.6, and 12.6ºC, respectively. The highest,

although relatively low, inactivation rate was observed at 3.6ºC, with an approximate

reduction of 2.5 log10 CFU/g after 437 h. Inactivation below the detection limit (600

CFU/g) was not observed at any storage temperature for the duration of the experiment.
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Figure 5. Inactivation of V. parahaemolyticus in live Pacific oysters (3.6 - 12.6ºC).

Secondary models for V. parahaemolyticus viability in Pacific oysters.

Secondary models were produced for both V. parahaemolyticus growth and inactivation.

For growth, the square root of the growth rate was plotted as a function of temperature.

The square root model was fitted as shown in Figure 6a. The estimated values for

parameters b and To were 0.0303 and 13.37, respectively (Equation 3). Goodness-of-fit

comparing observed and predicted values showed a RMSE of 0.05 and a R2 value of 0.92.

√r = 0.0303 × (T – 13.37) (3)

A linear Arrhenius model was used to describe the change in V. parahaemolyticus

numbers (ln (-log CFU/h)) from 3.6 and 12.6ºC as a function of temperature (1/

(T+273.15)), as shown in Figure 6b. Estimated values for terms Ea/R and A were 4131.2
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and 1.81×10-9 respectively (Equation 4). Analysis of predicted and observed values was

performed. The RMSE of the fitted model was 0.09 and the R2 was 0.78.

ln r = ln 1.81×10-9 + 4131.2 × (1/(T+273.15)) (4)
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Figure 6. Secondary models for V. parahaemolyticus: growth (a) and inactivation (b).

The square root model (Equation 3) was compared to other published V. parahaemolyticus

models (22, 155, 231, 233). Growth of V. parahaemolyticus in live PO was slower than

that reported for bacteriological broth, salmon meat and for American oysters (Crassostrea

virginica) between 15 and 29ºC. In comparison to oyster slurries, the model deviated

between 20 and 24ºC, showing faster growth in live PO (Figure 7).
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Figure 7. Comparison of different secondary models for V. parahaemolyticus growth.

Evaluation of the secondary V. parahaemolyticus growth model in Pacific and Sydney

Rock oysters containing indigenous V. parahaemolyticus populations. The growth rates

of natural populations of V. parahaemolyticus were tested at five different storage

temperatures for PO and SRO. V. parahaemolyticus multiplied in PO at 23 and 28ºC, at

0.034 and 0.198 log10 MPN/h, respectively. These growth rates were slower than model

predictions. Populations increased from 2.4 log10 MPN/g to 4.4 log10 MPN/g over 60 h

storage at 23ºC, and to 4 log10 MPN/g after 40 h storage at 28ºC. In contrast, no significant

increase in V. parahaemolyticus levels was observed in PO stored at 15, 18 and 24.2ºC.

For these temperatures, average V. parahaemolyticus densities were 2.9 ± 0.4, 3.3 ± 0.3

and 3.3 ± 0.4 log10 MPN/g, respectively, over the duration of storage.

Opposed to PO, V. parahaemolyticus did not grow in SRO at any tested storage

temperature. The average V. parahaemolyticus levels during storage were 2.6 ± 0.4 at
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15.3ºC, 2.4 ± 0.5 at 18ºC, 3.8 ± 0.3 at 21.8ºC, 2.6 ± 0.7 at 24.2ºC and 3.0 ± 0.4 log10

MPN/g at 27.9ºC.

Primary models for total viable bacteria count. The kinetics of TVC growth were

determined using the seawater-injected control oysters, performed in parallel to measuring

V. parahaemolyticus in injected oysters. Growth on MA was observed at all storage

temperatures tested (3.6 - 30.4ºC). The average R2 value for the Baranyi model fitted to the

eight kinetic growth profiles was 0.97 (Figure 8). Growth rates were 0.015, 0.023, 0.016,

0.048, 0.055, 0.071, 0.139 and 0.135 log10 CFU/h at 3.6, 6.2, 9.3, 14.9, 18.4, 20.0, 25.7 and

30.4ºC, respectively. As observed for V. parahaemolyticus, there was no lag phase and

MPD depended on storage temperature. The observed MPD levels were between 7.1 log10

CFU/g (30.4ºC after 29 h) and 8.4 log10 CFU/g (3.6ºC after 289 h).
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Figure 8. Growth of total viable bacteria count in live Pacific oysters (3.6 - 30.4ºC).
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Development and evaluation of a secondary model for total viable bacteria

count in Pacific oysters. The square root of growth rate was plotted versus storage

temperature and fitted with the square root model as shown in Figure 9a. The estimated

values for parameters b and To were 0.0102 and -6.71, respectively (Equation 5).

Goodness-of-fit comparing observed and predicted values showed a RMSE of 0.02 and a

R2 of 0.93. The growth model was only applicable for a range of temperature from 3.6 to

30.4ºC.

√r = 0.0102 × (T + 6.71) (5)

The secondary model (Equation 5) was evaluated against TVC growth rates at two

temperatures for PO and five temperatures for SRO harvested in NSW. TVC multiplied in

PO at 18 and 24.2ºC at 0.012 and 0.026 log10 CFU/h, respectively. Populations increased

from 5 to 6 logs MPN/g after 31.5 h storage at 24.2ºC, and after 89.5 h storage at 18ºC.

TVC growth in SRO was only observed at 24.2ºC. At this temperature, populations

increased from 5 log10 CFU/g to 6.7 log10 CFU/g over 103.5 h showing a growth rate of

0.020 log10 CFU/h. Lower growth rates were observed compared to model predictions for

PO and SRO from NSW at all tested storage temperatures.

TVC and V. parahaemolyticus models (Equations 3, 4 and 5) were compared as

shown in Figure 9b. TVC rates were markedly greater than V. parahaemolyticus rates from

approximately 4 to 23ºC. However, V. parahaemolyticus growth rates exceeded that of

TVC at temperatures greater than 23ºC.
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Figure 9. Secondary model for total viable bacteria count (a) and its comparison to

V. parahaemolyticus secondary models (b).

2.4 Discussion

Development of a predictive model for V. parahaemolyticus viability in oysters can

improve risk management practices by identifying temperatures to control growth during

post-harvest processing, storage and transport. Such intervention could decrease the risk of

marketplace oysters with hight levels of V. parahaemolyticus (22, 62) and also cases of

infection from raw or undercooked oyster consumption (16).

Although predictive models have been previously developed for V. parahaemolyticus

viability in broth systems (155, 233) and in food matrices (22, 231, 233), there is no such

model for V. parahaemolyticus in live PO. In addition, little is known about Vibrio spp.

viability in SRO.
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In this study, data for model development were based on artificial inoculation of oysters by

injection into the adductor muscle, a technique previously used to study summer

mortalities for PO (83). Other studies have contaminated oysters by placing them in

seawater aquaria inoculated with V. parahaemolyticus (205). It is possible that different

routes of inoculation might affect the distribution of V. parahaemolyticus in oyster tissues.

For example, in natural oysters V. parahaemolyticus and V. vulnificus appear to

accumulate in higher densities in the digestive glands than in other tissues (211, 225). To

take into account possible V. parahaemolyticus growth rates differences depending on the

accumulated tissue, oysters with natural levels of the bacteria were used during model

evaluation.

PO were injected with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus

strains to produce a model more representative of environmental situations. The use of

fast-growing strains for modelling pathogenic V. parahaemolyticus has also been reported

(155). The same strain may not display the fastest growth under all conditions (184), and a

model based on a strain cocktail will generally result in more fail-safe predictions.

Levels of V. parahaemolyticus injected in PO were stable at 14.9ºC during all experiments,

and increased or decreased at other storage temperatures. Based on various reports, storage

at 15ºC may be close to the lower temperature boundary for V. parahaemolyticus. In a

Korean oyster slurry, growth of V. parahaemolyticus was not observed at 15ºC (233),

whereas levels increased in artificially contaminated Zhe oysters (Crassostrea plicatula) at

this temperature (205). Growth of V. parahaemolyticus at temperatures above 20ºC has

been previously reported for American oysters (51, 84) and in a Korean oyster slurry (233).
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The estimated growth rate in American oysters stored at 26ºC was 0.17 log/h (84): a slower

growth rate was observed in this study for artificially contaminated PO.

Each storage condition tested presented a different MPD for V. parahaemolyticus. The

highest observed was approximately 7.4 log10 CFU/g at 25.7ºC. This value exceeds the 6

log10 CFU/g MPD reported in an artificial inoculated Korean oyster slurry at 20ºC (233)

and the 5.8 log10 CFU/g for naturally occurring V. parahaemolyticus in American oysters

stored at 26ºC (84).

In addition to direct thermal effects, other factors that may influence V. parahaemolyticus

growth include types and levels of competitive endogenous bacteria, host defence systems

that vary by oyster species, and the possible release of antimicrobial factors when oyster

tissue is homogenised (i.e. oyster slurry). Lag phase parameter was not considered for

primary modelling. It is reasonable not to assume a lag phase when there are no adverse

conditions of temperature, pH, water activity or nutrient availability that could stress

bacteria and induce lag time (84), and it is a “fail-safe” approach.

Numerous studies have reported that V. parahaemolyticus is sensitive to and gradually

inactivated by cold storage temperatures. Below 12.6ºC, levels of injected

V. parahaemolyticus in PO decreased. Similarly, V. parahaemolyticus growth was not

observed at 10ºC in a Korean oyster slurry and in American oysters (51, 233). In contrast,

the minimum temperature for V. parahaemolyticus growth in broth has been reported to

vary between 5ºC (41) and 8.3ºC (155). Differences in the minimum temperature for

growth and survival of V. parahaemolyticus can be due to strain variation (41) and/or to

the sample matrix (233). We observed a reduction of 2.5 log10 CFU/g after 18 d storage at
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3.6ºC which is higher than the 0.8 log10 CFU/g reduction for natural populations in

American oysters after 14 - 17 d storage at 3ºC (84).

The square root model (Equation 3) described slower growth than for previous V.

parahaemolyticus models, with the exception of a Korean oyster slurry (Figure 7b).

Differences among these studies can be due to different food matrices, strain variability

and/or the role of oyster host defences.

Oysters containing natural populations of V. parahaemolyticus were used for model

evaluation studies. Levels of V. parahaemolyticus in PO and SRO during summer and

early autumn were in the range of 2.4 to 4.0 log10 MPN/g after non-refrigerated shipment

of approximately 26 h. These levels are in agreement with reported concentrations of

V. parahaemolyticus ranging from 0.4 MPN/g to 4.4 log10 MPN/g, and a median of 3 log10

MPN/g, in purified live New South Wales SRO sampled at wholesale (73). A similar

V. parahaemolyticus mean level of 2.4 log10 CFU/g was found in purified live SRO

shipped from New South Wales to Tasmania in April 2002 (125). These average reported

V. parahaemolyticus levels are also similar to levels of 2 to 3 log10 CFU/g found in

American oysters during summer (63).

Growth of V. parahaemolyticus in PO from New South Wales was only observed at 23 and

28ºC, and at slower rates than those predicted. The observed could be due to variation in

levels and types of competitive flora among different oyster growing regions, and/or

differences in bacterial strains. These two challenge experiments were performed at

SARDI laboratories. Possibly different shipment time and temperature from New South



2 – V. parahaemolyticus and TVC in C. gigas temperature model

- 90 -

Wales to SARDI laboratories compared to those in Tasmania may have caused changes in

profiles of background bacteria.

Interestingly, SRO did not allow V. parahaemolyticus growth at any storage temperature.

This agrees with other reported studies in which V. parahaemolyticus counts did not

increase significantly when SRO were stored at 30ºC for as long as 7 d (73). Such

resistance to V. parahaemolyticus growth may indicate that SRO have enhanced host

defences. .It has been noted that SRO are unique in been able to survive high air

temperature up to 36ºC and a wide salinity range of 1.5 to 5.5% (164).

Reports show that V. parahaemolyticus pathogenic strains have longer lag times and

slower growth rates than non-pathogenic strains (233), and that levels of pathogenic strains

are generally several logs lower than total V. parahaemolyticus in harvested oysters (62, 63,

176). We used a combination of strains that possessed the tdh and trh genes as virulence

markers as well as non-pathogenic strains. Criticisms are that these major virulence factors

may not fully account for representation of all clinical strains (102, 222). Specifically, a

heat-labile protein (protease A) produced by a clinical V. parahaemolyticus tdh-, trh- strain

has been identified as a potential virulent factor (123). Furthermore, recent outbreaks have

been related to a non-pandemic tdh-, trh-negative strain (82).

Levels of V. parahaemolyticus in oysters are commonly measured by the MPN method

described in standard methods for the examination of foods (AS/NZS 1766.2.9:1997,

ISO/TS 21872-1:2007). However, this method is time-consuming, labour-intensive, and

not amenable to studies where numerous time intervals are necessary to build a robust

model. For model development, we used the TCBS direct-plating method because
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V. parahaemolyticus cells were injected into oysters at levels well above the low

background (<600 CFU/g) levels of indigenous Vibrio spp. When background Vibrio spp.

were detected in controls, it was after exponential growth for the injected

V. parahaemolyticus strains. In addition, direct-plating on TCBS and conventional MPN

method as described in Kaysner et al. (115) were compared at six time intervals during the

model production. V. parahaemolyticus enumeration was not significantly different

(Student’s t test, P >0.05) (Appendix A2). However, if differences would have occurred

between both methods, they would be consistent through all measurements and would not

affect the growth rates value.

During evaluation studies, the MPN-PCR format was preferred over plating enrichments

on TCBS because the former method was not influenced by non-V. parahaemolyticus

bacteria that can also grow on TCBS and interfere with detection (70). The MPN-PCR

method has been evaluated successfully for V. parahaemolyticus detection and

enumeration in seafood samples (35). The sensitivity of the MPN-PCR method used in this

study was examined and it was found to detect the tlh gene when enrichment broth was

seeded with as few as 1.3 cells/ml (Figure 3d).

The kinetics of TVC growth were studied. There was an approximate increase of 2.5 and 3

log10 CFU/g in TVC for PO stored at 20.0ºC for 3 d and at 6.2ºC for 10 d, respectively.

TVC levels have also been measured in American oysters, an increase of approximately 3

logs were observed after storage at 7 and 21ºC for 10 d (129) and an increase of

approximately 1 log10 was observed after storage at 22ºC for 3 d (51). Differences among

studies could be due different oyster species, media composition (e.g. NaCl level), as well
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as incubation temperature which can select for the growth of different indigenous bacterial

species.

The secondary model for TVC (Equation 5) predicted higher growth rates than those

observed for PO and SRO from New South Wales. Possible reasons may include that the

growing waters in New South Wales select for a different type of bacterial flora, as

mentioned in previous similar observations (129), showing different growth rates

compared to bacteria found in the relatively cooler waters in Tasmania. Also, seawater

injection may have injured oyster tissues causing a release of nutrients, a change in oyster

physiology and/or lower defence systems that resulted in higher bacterial growth. Another

possibility is that shipment from New South Wales could have enhanced the growth of

different bacteria. Moreover, bivalve feeding rate is temperature-dependent and oysters

harvested from different locations and at different times may have had different bacterial

species composition and concentrations.

Similar to V. parahaemolyticus validation studies, TVC rates differed markedly between

PO and SRO. For example, TVC growth at 24.2ºC was approximately 1.5 times slower in

SRO than PO.

When the TVC model is compared to the V. parahaemolyticus model (Figure 9b),

V. parahaemolyticus shows higher growth rates than TVC at temperatures above 21ºC.

Since sensory analyses were not performed in this study, it cannot be determined if

V. parahaemolyticus would grow to high levels before consumers rejected the product. In

the case of V. vulnificus, elevated levels in American oysters during storage trials were

observed before 100% sensory rejection (129). Those authors suggested that simple
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olfactory analysis of raw shell-stock may not be an adequate means to prevent oyster-

associated V. vulnificus infections.

The V. parahaemolyticus mathematical models reported in this study can be used by

regulatory agencies, oyster producers and consumers to minimize risk of illnesses, enhance

product quality and manage supply chains. The models for V. parahaemolyticus viability

(i.e. growth and inactivation) reduce uncertainty in the exposure model component of the

VQRA, as growth rate was estimated from broth-based studies and extrapolated to oysters

for only one temperature (17). Kinetic data for V. parahaemolyticus viability in PO and

SRO generated during this study have been submitted to the United Nation’s Food and

Agriculture Organisation (FAO)/World Health Organisation (WHO) risk assessment group

in response to a 2010 Call for Data. These data will be used to evaluate the validity of

models used to help nations manage Vibrio spp. risk in foods.

The V. parahaemolyticus mathematical models reported in this study could also be

integrated with remote-sensing technology. This technology uses satellites to measure the

ocean radiation which can be empirically related to SST. The use of remote-sensing

technology for prediction of incidence of V. parahaemolyticus was evaluated in American

oysters (178) and presented a good correlation with direct measurements of

V. parahaemolyticus densities in oysters at harvest.

With further refinement and validation, the model for TVC growth in PO could be used to

manage oyster supply chains and identifying practices that can limit TVC growth (i.e.

reduce spoilage). The levels of TVC that correlate with oyster spoilage and other

organoleptic properties have not yet been determined.
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This study reports the development and evaluation of models for V. parahaemolyticus and

TVC viability in live Pacific oyster (C. gigas) based on the effect of post-harvest

temperature in the range 3.6 to 30.4ºC. This knowledge will be translated into tertiary

models (computer software programs) that can be used by the oyster industry to optimize

process conditions and reduce the risk of V. parahaemolyticus illness. The models are

overly fail-safe for SRO, requiring a separate approach yet indicating that temperatures

controls for this species could be different to manage V. parahaemolyticus risk.
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3 – Evaluation of a software program for predicting

Vibrio parahaemolyticus and total viable bacteria count

levels in Pacific oysters (Crassostrea gigas) in simulated

supply chain studies

3.1 Introduction

The growth of V. parahaemolyticus and also spoilage bacteria can be controlled under

proper temperature storage. However, an optimal cold supply chain for the entire

distribution of oysters is difficult to achieve and inadequate temperature can occur (62,

132). For this reason, it is important to understand how bacteria can survive or multiply in

the oyster from the farm to the consumer under dynamic temperature conditions.

Predictive microbiology can be used as a tool for supply chain management, and is based

on mathematical models to estimate the responses of micro-organisms in previously

studied environments. These mathematical models can be classified as primary, secondary

and tertiary. The primary model describes the kinetics of bacterial viability under a given

set of conditions. Kinetic parameters defined by the primary model are then described as a

function of environmental factors in secondary models. Lastly, tertiary models integrate

primary and secondary models in user-friendly software programs (67, 229).

The development of user-friendly application software provides many different users (e.g.

food industry, risk assessors, food microbiologists) with greater access to the applications

of mathematical models. Users define environmental parameter inputs and then easily
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observe model outputs in graphic formats, allowing people without insight in mathematics

to obtain useful information rapidly (38, 55, 210). Some examples of programs which can

be used to predict the growth and inactivation of foodborne bacteria, primarily pathogens,

under various environmental conditions are the Growth Predictor

(http://www.ifr.ac.uk/safety/growthpredictor/ [accessed 30/05/11]) developed by Food

Standards Agency and the Institute of Food Research in the UK; and the Pathogen

Modelling Program (http://pmp.arserrc.gov/PMPOnline.aspx [accessed 30/05/11]) initiated

by the US Department of Agriculture in the 1990s (38). Some examples of more specific

programs are the SSSP (http://sssp.dtuaqua.dk/ [accessed 30/05/11]) which was developed

to predict and illustrate the effect of constant and fluctuating temperatures on growth of

SSO and on remaining shelf-life of different seafood products (56); and the Refrigeration

Index (http://www.foodsafetycentre.com.au/refrigerationindex.php [accessed 30/05/11])

which predicts the growth of E. coli on meat from cooling profiles measured by electronic

temperature loggers (147). Also, a program for the prediction of V. parahaemolyticus

growth in broth systems at different temperatures in the range 15 - 30ºC, pH and salt

concentrations has been reported by Fujikawa et al. (80).

As with many other programs available for food safety management, predictions are

specific to certain bacterial strains and environments that were used to generate the models.

A drawback to the application of some predictive programs to food systems is a lack of

validation studies measuring the performance of the model in a defined food matrix. This

is an essential step to be performed before predictive models can be applied practically

with confidence (149).
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A program to predict the viability of V. parahaemolyticus in live PO over a wide range of

storage dynamic temperatures would be beneficial to the oyster industry. For this reason,

the V. parahaemolyticus and TVC predictive models for PO reported in Chapter 2 were

used to develop a tertiary model. In this study, the performance of the program was

evaluated with simulated oyster supply chain scenarios. In the evaluation, natural

populations of V. parahaemolyticus in oysters exposed to fluctuating temperatures were

measured at the beginning and at the end of supply chains. The program provides an

important cold supply chain management tool to ensure the bacteriological quality and

safety of oysters.

3.2 Materials and Methods

Oyster samples. Two batches of PO were harvested by two different commercial growers

located in Soldiers Point (site A) and Carrington (Site B), both in New South Wales the

18th May 2010 (Figure 10). Following collection, oysters were placed in coolers and

transported within 2 h to the Port Stephens Department of Primary Industries (DPI)

laboratories, New South Wales. Oysters were washed with tap water to remove excess mud

on shells and processed within 2 h. Salinity and SST data from the harvest area were

obtained from oyster growers. A total of 175 oysters were used for experiments.
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Figure 10. Oyster harvest sites.

Simulated supply chain conditions. Two commercial supply chain scenarios were

designed to represent short and long refrigerated transport (<10ºC for 72 ± 2 h or 212 ± 2

h). A third scenario depicted overt thermal abuse (~20ºC for 70 ± 2 h).

Oysters from site A and B were separated in three and two different batches, respectively.

One batch from each site was used for long refrigerated transport simulation and another

for thermal abuse simulation. For the short refrigerated transport simulation, only a batch

from site A was used.

To simulate supply chains, oysters were stacked in 2-3 layers in open plastic containers

and stored in two different incubators set at temperature <10ºC for the refrigerated and

~20ºC for the non-refrigerated simulated supply chains. At selected times, oysters were

removed from incubators, packed in coolers containing ice (ice packs were placed at the

bottom of the cooler and oysters were wrapped in newspaper to avoid direct contact with

ice) in the case of cold transport and without ice for the thermal abuse scenario. A total of

five boxes were sent by overnight courier to the University of Tasmania food microbiology
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laboratory in Hobart, Tasmania. After arrival, boxes were stored in a cold room set at 4ºC

(for the refrigerated scenario) or at room temperature ~20ºC (for the non-refrigerated

scenario) overnight and tested the following morning. The temperature profile was

monitored by placing temperature data loggers (iButton®, Maxim Integrated Products, Inc.,

Sunnyvale, CA) among the oysters. The resolution of the temperature logger was 0.5ºC.

Bacterial enumeration. Endogenous V. parahaemolyticus and TVC were enumerated

using the MPN-PCR protocol and MA direct-plating, respectively, as described in Chapter

2 (section 2.2). A slight modification of the protocol was done for measuring

V. parahaemolyticus and TVC levels prior to the simulated commercial shipment to the

University of Tasmania. Specifically, a blender (Woolworths hand blender XB986, NSW,

Australia) instead a stomacher machine was used to prepare oyster homogenate at the Port

Stephens DPI laboratory.

V. parahaemolyticus and TVC were enumerated before (at the Port Stephens DPI

laboratory) and after supply chain simulation (at the University of Tasmania laboratory).

Two separate samples of 10 oysters were analysed at each sampling interval for each batch.

The mean ± SD for V. parahaemolyticus and TVC were measured. Mean values were

transformed to log10 values and the change in bacterial level calculated.

Evaluation of the tertiary model. The tertiary model used was based on the validated

secondary models for V. parahaemolyticus and TVC in live Australian PO (Equations 3, 4
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and 5) reported in Chapter 2 and summarised in Table 9. The maximum levels for

V. parahaemolyticus and TVC were set to 7.4 MPN/g and 8.4 log10 or CFU/g, based on the

highest MPD observed during kinetic studies in Chapter 2 (section 2.3).

Table 9. Secondary models for V. parahaemolyticus and total viable bacteria count in

Pacific oysters

Micro-organism/s Type Equation

V. parahaemolyticus Growth r (log/h) = [0.0303 × (T - 13.37)]2

V. parahaemolyticus Inactivation r (-log/h) = -exp [ln 1.81×10-9 + 4131.2 × (1/ (T+273.15))]

Total viable bacteria count Growth r (log/h) = [0.0102 × (T + 6.71)]2

Source data: (Chapter 2: equations 3, 4 and 5).
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The initial level of V. parahaemolyticus and TVC before shipment, and the time-

temperature profile from the data loggers were set in the “Logger input” spreadsheet

(Figure 11).

Initial bacterial data and a sample of the time-temperature profile from loggers for the short refrigerated
supply chain simulation for oysters harvested at Site A.

Figure 11. Example of data input for the tertiary model.
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Predicted V. parahaemolyticus and TVC final levels as a function of the supply chain

temperature profile were derived from output section of the spreadsheet (Figure 12).

Outputs for the short-refrigerated supply chain simulation for oysters harvested at Site A.

Figure 12. Example of outputs from the tertiary model.

The observed and predicted growth rate for V. parahaemolyticus and TVC in each

shipment were used to calculate the bias and accuracy factors (194). Growth rate was

calculated as follows:

r = (log10 Nfinal – log10 Ninitial) / tsc (6)
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where Nfinal and Ninitial are the final and initial bacterial level and tsc the time (h) for a

determinate supply chain simulation.

The bias and accuracy factors are indices that provide an objective summary of model

performance. The bias factor is the average ratio of the predicted and observed values. A

bias factor above one is obtained when there is over-estimation, while a value below one

shows that the model is not safe and under-predicts. The accuracy factor is used for the

same purpose but is an absolute value that avoids the effect of opposing estimations.

3.3. Results

Environmental conditions and bacterial enumeration at harvest. The salinity at the

harvest site was 3.1 and 3.3% for sites A and B, respectively. Corresponding SST values

were 15.6 and 17ºC, respectively.

V. parahaemolyticus was detected in three of the four batches. The V. parahaemolyticus

level in one sample from Site B was below the limit of detection (<0.3 MPN/g); the value

was set to 0.3 to represent a worst-case scenario.

Initial mean levels of V. parahaemolyticus and TVC in oysters were 4.83 MPN/g and 4.54

log10 CFU/g for site A and 7.50 MPN/g (including the 0.3 MPN/g sample) and 4.26 log10

CFU/g for site B.
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Temperature profiles for supply chain simulations. The recorded time and temperature

for the different supply chains (long refrigerated, short refrigerated and short non-

refrigerated) were pooled from the data loggers and are summarized in Figure 13. Total

times were 213.5 and 212.5 h for site A and B long-refrigerated chain; 74 h for the site A

short-refrigerated chain; and 72 and 70 h for the site A and B short non-refrigerated chain.

Temperature during the refrigerated supply chain was <10ºC. The lowest temperature

recorded was 3ºC for site B and 3.5ºC for site A for the long supply chain, and 5.5ºC for

the short supply chain from the site A. The range of temperature for the non-refrigerated

supply chain was from 21 to 16.5ºC for site A and 19.5 to 17ºC for site B.
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Figure 13. Temperature profiles for simulated supply chains.
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Bacterial levels in the long refrigerated supply chain simulations. Vibrio

parahaemolyticus levels in oysters decreased in both independent shipments for sites A

and B. At the end of shipment, the mean level was 1.51 MPN/g after 213.5 h for site A and

0.64 MPN/g after 212.5 h for site B. This corresponded to a reduction of 0.50 log10 MPN/g

for site A and 1.08 log10 MPN/g for site B (Table 10). The tertiary model predicted

relatively similar reductions of 0.99 log10 MPN/g for both sites.

Table 10. Change in V. parahaemolyticus levels for the long refrigerated supply chain

Observed
change

Predicted
final level

Predicted
change

MPN/g log10 (MPN/g) MPN/g log10 (MPN/g) log10 (MPN/g) log10 (MPN/g) log10 (MPN/g)

S1 0.36 2.10
S2 9.30 0.92

Mean 4.83 0.68 1.51 0.18 -0.50 -0.31 -0.99
SD 6.32 0.83
S1 15.00 0.92
S2 0.30 0.36

Mean 7.65 0.88 0.64 -0.19 -1.08 -0.11 -0.99
SD 10.39 0.40

Site B

Observed initial
level

Observed final
level

Site A

Observed and predicted changes in bold; S: sample; level below limit of detection indicated in red.

In contrast to V. parahaemolyticus, TVC levels increased in both oyster batches. After

shipment, the mean level was 6.71 log10 for site A and 5.81 log10 CFU/g for site B,

corresponding to an increase of 2.17 log10 and 1.55 log10 CFU/g for sites A and B,

respectively (Table 11). The predicted change was 3.86 log10 and 3.84 log10 CFU/g for sites

A and B, respectively.
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Table 11. Change in total viable bacteria count for the long refrigerated supply chain

Observed
change

Predicted
final level

Predicted
change

CFU/g log10 (CFU/g) CFU/g log10 (CFU/g) log10 (CFU/g) log10 (CFU/g) log10 (CFU/g)

S1 22,900 5,620,000
S2 46,600 4,600,000

Mean 34,750 4.54 5,110,000 6.71 2.17 8.40 3.86
SD 16,758 721,249
S1 15,900 880,000
S2 20,300 418,000

Mean 18,100 4.26 649,000 5.81 1.55 8.10 3.84
SD 3,111 326,683

Observed initial
level

Observed final
level

Site A

Site B

Observed and predicted changes in bold; S: sample.

Bacterial levels in the short refrigerated supply chain simulation. This scenario was

only tested for oysters harvested in site A. The mean V. parahaemolyticus level in oysters

after shipment was 2.3 MPN/g, corresponding to a decrease of 0.32 log10 MPN/g (Table

12). The same reduction was predicted using by the tertiary model.

Table 12. Change in V. parahaemolyticus levels for the short refrigerated supply chain

Observed
change

Predicted
final level

Predicted
change

MPN/g log10 (MPN/g) MPN/g log10 (MPN/g) log10 (MPN/g) log10 (MPN/g) log10 (MPN/g)

S1 0.36 2.30
S2 9.30 2.30

Mean 4.83 0.68 2.30 0.36 -0.32 0.36 -0.32
SD 6.32 0.00

Observed initial
level

Observed final
level

Site A

Observed and predicted changes in bold; S: sample.

The mean TVC level in oysters at the end (74 h) of the supply chain simulation was 5.33

log10 CFU/g, corresponding to an increase of 0.79 log10 CFU/g (Table 13). The tertiary

model predicted an increase of 1.54 log10 CFU/g.
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Table 13. Change in total viable bacteria levels for the short refrigerated supply chain

Observed
change

Predicted
final level

Predicted
change

CFU/g log10 (CFU/g) CFU/g log10 (CFU/g) log10 (CFU/g) log10 (CFU/g) log10 (CFU/g)

S1 22,900 216,000
S2 46,600 215,000

Mean 34,750 4.54 215,500 5.33 0.79 6.08 1.54
SD 16,758 707

Observed initial
level

Observed final
level

Site A

Observed and predicted changes in bold; S: sample.

Bacterial levels in the short non-refrigerated supply chain simulations.

Vibrio parahaemolyticus grew in oysters that were stored and transported without

refrigeration. The mean level in oysters was 6.55 and 22.65 MPN/g after 72 h and 70 h for

sites A and B, respectively. This corresponded to a 0.13 and 0.47 log10 MPN/g increase in

V. parahaemolyticus levels for sites A and B, respectively (Table 14). The tertiary model

predicted higher increases of 1.90 and 1.25 log10 MPN/g for sites A and B, respectively.

Table 14. Change in V. parahaemolyticus levels for the short non-refrigerated supply

chain

Observed
change

Predicted
final level

Predicted
change

MPN/g log10 (MPN/g) MPN/g log10 (MPN/g) log10 (MPN/g) log10 (MPN/g) log10 (MPN/g)

S1 0.36 3.80
S2 9.30 9.30

Mean 4.83 0.68 6.55 0.82 0.13 2.58 1.90
SD 6.32 3.89
S1 15.00 2.30
S2 0.30 43.00

Mean 7.65 0.88 22.65 1.36 0.47 2.13 1.25
SD 10.39 28.78

Site A

Site B

Observed initial
level

Observed final
level

Observed and predicted changes in bold; S: sample; level below limit of detection indicated in red.
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The mean TVC level in oysters after shipment was 6.10 and 5.37 log10 CFU/g for sites A

and B, respectively, corresponding to an increase of 1.55 and 1.11 log10 CFU/g for sites A

and B, respectively (Table 15). The tertiary model predicted higher increases of 3.86 and

4.14 log10 CFU/g for sites A and B, respectively.

Table 15. Change in total viable bacteria count for the short non-refrigerated supply chain

Observed
change

Predicted
final level

Predicted
change

CFU/g log10 (CFU/g) CFU/g log10 (CFU/g) log10 (CFU/g) log10 (CFU/g) log10 (CFU/g)

S1 22,900 500,000
S2 46,600 1,990,000

Mean 34,750 4.54 1,245,000 6.10 1.55 8.40 3.86
SD 16,758 1,053,589
S1 15,900 264,000
S2 20,300 206,000

Mean 18,100 4.26 235,000 5.37 1.11 8.40 4.14
SD 3,111 41,012

Site B

Observed initial
level

Observed final
level

Site A

Observed and predicted changes in bold; S: sample.

Evaluation of the software. When all supply chain scenarios were compared for predicted

versus observed V. parahaemolyticus growth rate (Figure 14); two measurements showed

similar estimations, two an over-estimation and one an under-estimation. For TVC, under-

estimations were not observed and the five observed r were lower than the predicted.

Taking into account all values, the tertiary model showed a bias factor of 2.30 for

V. parahaemolyticus and 2.40 for TVC. The accuracy factors were 2.38 (which included

the under-estimation value) and 2.40 for V. parahaemolyticus and TVC, respectively.
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Figure 14. Comparison of observed versus predicted growth rates for V. parahaemolyticus

(up) and total viable bacteria count (down).

The ratio between predicted and observed growth rate for V. parahaemolyticus and TVC

were plotted based on supply chain scenario and oyster harvest site (Figure 15). For

V. parahaemolyticus, the highest over-prediction (ratio of 13.6) was for the short non-

refrigerated supply chains in site A. In the case of TVC, the highest over-estimation (ratio

of 3.7) was for the short non-refrigerated supply chain in site B.
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Figure 15. Plots of the ratio between predicted and observed growth rates for

V. parahaemolyticus (left) and total viable bacteria count (right) based on supply chain

scenario and site.

3.4 Discussion

Vibrio parahaemolyticus naturally occurs in seawater, therefore pre-harvest management

of levels that enter the supply chain is difficult to control. However, levels of

V. parahaemolyticus post-harvest in oysters can be controlled with temperature. The

purpose of this tertiary model was to provide a management tool to demonstrate how

V. parahaemolyticus levels can be managed in oyster supply chains.

The advantages of tertiary models have been described for predictions of microbial

viability in broth (38, 80), as well as in food products for controlling pathogenic bacterial

growth in meat (147) and spoilage organisms in seafood (54). This software differs from

other tools due to its specificity of usage.
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The tertiary model was validated in two different commercial supply chain scenarios:

refrigerated and non-refrigerated. The refrigerated shipment studies simulated the legal

recommendations for PO in Australia (4) where PO must be kept at ambient temperatures

<10ºC after 24 h of harvest. However, deviations in temperature above 10ºC during oyster

distribution has been observed in the USA (50, 62) and Australia (132). Therefore, the

tertiary model was also tested in a non-refrigerated shipment with temperatures in the

range of 15 - 20ºC. This non-refrigerated simulation also assisted in validating the growth

models.

Initial mean V. parahaemolyticus levels in oysters were <1 log10 MPN/g for the two

different harvest sites. In the USA, detection of V. parahaemolyticus in oysters is

associated with SST >14 - 15ºC, however this is for a different oyster species, the

American oyster (111, 176). In the present study, SST values were above that temperature

range yet low V. parahaemolyticus levels were detected. This could indicate that the

overall combination of environmental conditions in Australian waters, as well as a

different oyster species, may present less favourable conditions for V. parahaemolyticus.

The overall performance of the model was found to be “fail-safe” with an over-estimation

mean of 2.30 for V. parahaemolyticus and 2.40 for TVC growth, calculated by the bias

factor index (194). However, a highly “fail-safe” model which may highly over-estimate

the observed growth in a food product presents some downsides. It could cause

unnecessary inspections or even recall of products from the market that may be perfectly

safe.
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The performance of tertiary models using the accuracy and bias factors was studied for

L. monocytogenes growth in naturally contaminated cold-smoked salmon (57). In the

previous study, over-estimation with bias factor from 1 to 5.2 was observed and the tertiary

models could not be successfully validated. The same authors recommended that to

improve the applicability of the models, studies need to include naturally contaminated

products. We used a tertiary model developed with artificially inoculated oysters and

validated with natural contaminated oysters, and also observed over-estimation. However,

the degree of over-estimation is lower than if V. parahaemolyticus models developed in

broth systems would have been used as discussed in Chapter 2.

Over-prediction of V. parahaemolyticus and TVC levels in oysters harvested in New South

Wales was also observed during model evaluation and described in Chapter 2. Predictions

may differ from observations due to variability among strains, interactions between micro-

organisms and oyster host defence systems. Nevertheless, the overall performance of the

model was “fail-safe” for predicting growth of V. parahaemolyticus in PO and would be a

preferred public health tool.

Another possible cause for over-estimation could be that V. parahaemolyticus presented a

lag phase in the oysters tested during supply chain studies. However, a

V. parahaemolyticus lag phase in PO was not observed during kinetic studies in Chapter 2.

Similarly, lag phase was not observed in naturally occurring V. parahaemolyticus in

American oysters (84).

Currently, the predictive software only includes the effect of temperature in the growth of

V. parahaemolyticus and TVC. The introduction of other factors may help to explain the
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variability in bacterial changes observed among oysters shipped under similar conditions.

Microbial interactions can influence the growth of pathogenic micro-organisms, a

phenomenon called the Jameson effect by Ross et al. (197). There are several predictive

models which take into account microbial interactions. For example, the effect of lactic

acid bacteria on the growth of L. monocytogenes has been modelled (153) and included in

the SSSP predictive software.

Overall, predictions showed better agreement for the refrigerated compared to the non-

refrigerated scenario. However, only five different real simulations were tested and a more

extensive analysis of the performance of the model could change this observation.

The TVC model was added to the program as a potential tool for shelf-life prediction.

However, accurate knowledge of TVC levels that correlate with organoleptic properties of

PO is lacking and requires further investigation.

In conclusion, the tertiary model enables scientific knowledge about the viability of

V. parahaemolyticus and TVC in PO to be transferred to risk managers via an Excel®

interface. Future improvement in the software should include integrating a stochastic

approach to incorporate uncertainties, as well as further studies about microbial indicators

of oyster spoilage. A further evaluation of the program could include examining more

simulated supply chains and measuring other factors which can affect V. parahaemolyticus

growth.
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4 – A cold chain management tool for the safety and

quality of live oysters: a case study

4.1 Introduction

Vibrio parahaemolyticus can accumulate and multiply rapidly in oysters to levels that

present a human health risk if supply chain temperature is not properly controlled (84). In

addition, an increase in temperature could enhance the growth of spoilage bacteria

affecting product shelf-life. Cold chain management is therefore necessary to ensure

microbiological quality and safety.

In Australia, the temperature in which oysters need to be stored from production to

consumption are regulated by the ASQAP (4). However, it is possible for temperature

during storage, transport, retail display and at home to deviate from the recommended

10ºC for PO. In fact, oysters exposed to temperatures exceeding this limit have been

observed in distribution (62, 132) as well as in consumer refrigeration (8, 117, 137, 179).

For this reason, tools to help food safety risk managers estimate the probability of

occurrence of a hazard when temperature fluctuates are necessary.

Risk managers use QMRA as a tool to estimate risk quantitatively and protect public

health (27). Predictive microbiology models can be used within QMRA to estimate

changes in levels of microbial hazards in response to different environmental conditions

(e.g. temperature) (146, 239). However, in QMRA, estimates of bacterial growth also need

to be expressed in terms of probability (158). In this regard, simulation modelling software
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packages (e.g. ModelRisk®) facilitate running Monte Carlo simulation, create suitable

distributions, perform sensitivity analysis, and are often used for quantitative, stochastic,

risk assessment (27, 66, 161).

Exposure assessment is the part of the QMRA in which the pathway by which the

pathogen enters the food supply and subsequent changes in levels are analysed. The

Modular Process Risk Model (MPRM) is a structured approach used to perform exposure

assessment of bacteria in foods (162). It represents the food pathway as a chain of modules

which are identified using microbial processes: growth, inactivation; and food handling

processes: mixing, partitioning, cross-contamination and removal (159).

Supply chain management can also be improved with the use of traceability systems. The

use of a combination of electronic traceability systems like RFID, Global Positioning

System (GPS), internet and General Packet Radio Services (GPRS) networks can monitor

distribution of the product as well as provide real-time safety and quality monitoring when

used in combination with microbial modelling (79, 152, 235). The application of these

systems would improve communication during supply chain, promote brand protection and

avoid the arrival of low quality and/or unsafe oysters to the consumer.

In this case study, ModelRisk® software was used to estimate the prevalence and

concentration of total V. parahaemolyticus and TVC occurring (and accumulating) along

two different oyster supply chains in summer and winter. The approach was to integrate

the relevant supply chain operations (e.g. transport, storage, transfer) into a stochastic

model that had input and output data described by distributions of parameters most likely

observed in real supply chain scenarios, rather than using a single ‘best’ estimate. The
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detailed case study demonstrated the use of predictive microbiology in a probabilistic

modelling format which could be used as part of an exposure assessment for QMRA. It

allowed sensitivity analyses to identify the critical operations. It also showed the advantage

of the integration of predictive microbiology and stochastic modelling in traceability

systems.

4.2 Materials and Methods

Oyster supply chain structure. The case study was reduced to an analysis of the oyster

supply chain starting in Tasmania. The majority of Tasmanian oysters are distributed to

domestic markets with the bulk of interstate sales going to Victoria and New South Wales.

Long supply chain case scenario. This scenario represented an oyster supply chain from

grower to consumer in which three wholesalers and one retailer were included (Figure 16).

In this supply chain example, oyster growers from locations closer to Hobart sent product

to a depot in Hobart. Subsequently, the product was transferred to refrigerated vehicles and

transported to Melbourne via a vehicular ferry using the Bass Strait. Once in Melbourne,

oysters were delivered to a depot and then transferred to a refrigerated vehicle for delivery

to three wholesalers, until arrival at retail in Sydney from where the consumer purchased

their oysters. The model included consumer transport and storage.
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Source figures: (http://office.microsoft.com/en-us/images/ [accessed 10/02/11]).

Figure 16. Structure for the long oyster supply chain from harvest to consumer storage.

Short supply chain case scenario. This second scenario represented an oyster supply chain

from grower to consumer in which only one retailer was included (Figure 17). In this

shipment, oyster growers from locations in Tasmania sent the product directly by

refrigerated vehicles to Melbourne via a vehicular ferry using the Bass Strait. Once in

Melbourne, oysters were delivered to retail outlets. Consumer transport and storage after

retail was also modelled.
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Source figures: (http://office.microsoft.com/en-us/images/ [accessed 10/02/11]).

Figure 17. Structure for the short oyster supply chain from harvest to consumer storage.

Oyster supply chain data. Data from the operations of 12 commercial oyster supply

chains from oyster farms in Tasmania and their time and temperature profile were

evaluated by Madigan (132) for different seasons: four in spring, one in summer, five in

autumn and two in winter as shown in Table 16.
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Table 16. Summary of the oyster supply chain profiles for Tasmania

From To Date Season # Operations
Little Swanport, Tas Melbourne 05/09/2008 Spring 7
Little Swanport, Tas Melbourne 14/11/2008 Spring 6
Little Swanport, Tas Melbourne 18/11/2008 Spring 6

Pittwater, Tas Melbourne 02/09/2008 Spring 10
Blackmans Bay, Tas Melbourne 03/12/2008 Summer 15
Blackmans Bay, Tas Brisbane 17/04/2008 Autumn 18
Blackmans Bay, Tas Sydney 15/04/2008 Autumn 19
Blackmans Bay, Tas Sydney 17/04/2008 Autumn 19

St Helens, Tas Melbourne 01/05/2008 Autumn 16
St Helens, Tas Melbourne 01/05/2008 Autumn 10

Little Swanport, Tas Melbourne 22/08/2008 Winter 7
Little Swanport, Tas Melbourne 29/08/2008 Winter 7

Source data: Madigan (132).

Other different sources of information used in this study are described in the following

paragraphs. When seasonal classification was needed, the data were grouped as follows:

December to February (summer) and June to August (winter).

a) Seawater surface temperature. Values for SST in selected oyster harvesting

areas in Tasmania for the last ten years were obtained from the Tasmanian Shellfish

Quality Assurance Program by Turnbull (2010, pers. comm.).

b) Levels of total viable bacterial count after harvest. Values for TVC were

extracted from kinetic studies for the different PO batches harvested in Tasmania and New

South Wales in 2008-2010 (Chapter 2, section 2.3).

c) Transport times. In the operations where information was required regarding

transport times, the Google Maps webpage and the “get directions” application
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(http://maps.google.com.au/maps?hl=en&tab=wl, [accessed 09/09/10]) was used. The time

for the ferry trip was obtained from the time schedule of the Spirit of Tasmania

(http://www.spiritoftasmania.com.au/, [accessed 10/09/10]).

d) Air temperatures. When data regarding air temperature were necessary, the

average of maximum and minimum temperatures for the last ten years available in selected

areas and months were obtained from the Bureau of Meteorology (BOM,

http://www.bom.gov.au/climate/data/, [accessed 24/05/11]).

e) Temperature at retail storage. Information regarding the percentage of oyster

lots stored at different temperatures was extracted from a market survey study performed

in the USA (62). In the study, temperatures under which oysters were stored at retail were

determined by measuring the ambient air temperature in the cooler.

f) Time for consumer and retail transport. Times were taken from a study (139)

that reviewed time and distances from over 900 collection districts in Melbourne to major

supermarkets.

g) Temperatures for consumer storage. Temperature data were extracted from a

recent domestic refrigerator survey performed in New South Wales (8). Data used were

extrapolated from maximum and minimum temperatures recorded in refrigerators less than

five years old.

Predictive models used for bacterial growth and inactivation. Total

V. parahaemolyticus levels in oysters at the time of harvest were estimated depending on
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SST value using the predictive model included in the VQRA (24). The model formula was

simplified to:

Log10 V. parahaemolyticus/g = -1.03 + (0.12 × SST) (7)

Total V. parahaemolyticus and TVC levels in oysters in operations in which ambient air

temperature and time were controlled were estimated using the secondary models for

V. parahaemolyticus and TVC in live PO shown in Chapter 3 (Table 9).

Data analysis. The supply chain model combined the operations described for each case

study and the microbial processes of growth and inactivation following the MPRM

methodology (159). It was built as a spreadsheet model in Microsoft Excel® with the

addition of the ModelRisk® version 3 (Vose, Belgium). The number of iterations per

simulation was selected to 10,000. The RMSE value was used as a criterion for selection

for the probability distribution, as a measure to evaluate the goodness-of-fit for each

distribution model. The MPD values found during kinetic studies (Chapter 2, section 2.3)

were used as a reference for the maximum bacteria levels. Specifically, the maximum

limits were set to 7.4 log10 CFU/g for V. parahaemolyticus and 8.4 log10 CFU/g for TVC.

Sensitivity analyses to compare the influence of the inputs on the output were graphically

represented by tornado charts and spider plots. In the tornado charts, inputs are statistically

ranked and plotted in descending order. The longer the bar, the greater the effect that input

variable has on the model’s output. The rank correlation can take values from -1 (when the

input is large, the output is small), through 0 (no influence) to +1 (when the input is large,

the output is also large). Spider plots show the variation of inputs on the x-axis against the



4 – Cold chain management tool for oysters: a case study

- 122 -

output in the y-axis looking at the cumulative percentiles. Those inputs presented as a

horizontal line have little influence on the output. Spider plots have the advantage of

giving a sensitivity scale in terms of the output value (instead of a correlation statistic

number in tornado plots) and can describe better some significant relationships which

would be missed in tornado plots (i.e. “U-shaped” relationships) (223, 224).

Input data. The data used as input for the supply chain case studies are described below

according to the operation step. There were a total of 27 and nine operations for the long

and the short supply chain, respectively. A summary for the input data and the distributions

used to describe them are presented in Table 17 and 18.

Table 17. Input data and distributions used in the case study for the short supply chain

Units Min Max Mean (SD)
Grower 1 Harvest SST winter ºC 5.8 14.5 9.8 (1.4) NormalFit(9.8,1.4)

SST summer ºC 13.2 24.5 19.0 (2.3) NormalFit(19.0,2.3)

TVC Log
CFU/g 4.5 5.5 5.1 (0.3) NormalFit(5.1,0.3,,Vose

XBounds(4.4,5.6))
2 time h 0.3 1.0 0.4 (0.2) WeibullFit(2.7,0.5)

Temperature winter ºC 3.5 16.0 9.5 (4.2) Discrete
Temperature summer ºC 6.0 27.1 16.3 (5.8) Discrete

3 Preparation time h 0.7 5.0 3.6 (1.4) PERT(0.7,4.3,5)
at farm Temperature winter ºC 3.5 14.8 9.5 (3.9) Discrete

Temperature summer ºC 9.0 23.0 16.1 (4.6) Discrete
4 Transfer
5 time h 10.8 16.1 14.3 (1.3) NormalFit(14.3,1.3)

Temperature winter ºC 5.0 9.5 6.2 (0.8) PERT(5,6,9.5)
Temperature summer ºC 6.5 14 7.4 (1.8) PERT(6.5,6.5,14)

6 Transfer
Retailer 7 time h Normal(24.0,4.0)*

Temperature ºC 5.0 17.0 11.3 (5.1) Discrete
Consumer 8 time h 0.001 4.8 0.3 (0.4) WeibullFit(0.8,0.2)

Temperature winter ºC 7.5 16.0 11.6 (4.0) NormalFit(11.6,4.0)
Temperature summer ºC 14.4 27.1 21.1 (6.0) NormalFit(21.1,6.0)

9 time h Normal(24.0,4.0)*
Temperature ºC -5.0 9.0 2.9 (3.5) NormalFit(2.9,3.5)

Transfer

Distribution typeInput data

same for operation 2

Data description
Operation

Transport to
retailer

same for operation 2

Storage at
retail

Storage at
consumer

Transport  at
consumer

#Operator

* Assumed distributions, SD: standard deviation
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Table 18. Input data and distributions used in the case study for the long supply chain

Units Min Max Mean (SD)
Grower 1 Harvest SST winter ºC 5.8 14.5 9.8 (1.4) NormalFit(9.8,1.4)

SST summer ºC 13.2 24.5 19.0 (2.3) NormalFit(19.0,2.3)
TVC Log

CFU/g
4.5 5.5 5.1 (0.3) NormalFit(5.1,0.3,,Vose

XBounds(4.4,5.6))
2 time h 0.3 1.0 0.4 (0.2) WeibullFit(2.7,0.5)

Temperature winter ºC 3.5 18.2 10.2 (4.4) Discrete
Temperature summer ºC 9.0 28.2 18.3 (5.7) Discrete

3 Preparation time h 0.7 5.0 3.6 (1.4) PERT(0.7,4.3,5)
at farm Temperature winter ºC 3.5 14.8 9.5 (3.9) Discrete

Temperature summer ºC 9.0 23.0 16.1 (4.6) Discrete
4 Transfer
5 time h 1.7 24.0 18.9 (8.5) PERT(1.7,21.3,24.0)

Temperature ºC Normal(10,2,,VoseXBou
nds(,14.5))*

6 Transfer
7 time h 0.4 2.3 1.2 (0.6) WeibullFit(2.3,1.4)

Temperature winter ºC 5.0 9.5 6.2 (0.8) PERT(5,6,9.5)
Temperature summer ºC 6.5 14.0 7.4 (1.8) PERT(6.5,6.5,14)

8 Transfer
9 time h 0.7 37 12.1 (14.6) WeibullFit(0.8,10.2)

Temperature winter ºC Normal(10,2,,VoseXBou
nds(,14.5))*

Temperature summer ºC 6.5 13.5 11.3 (1.6) NormalFit(11.3,1.6)
Wholesaler
A

10 Transfer
A 11 time h Normal(3.2,0.3)*

Temperature winter ºC 5.0 9.5 6.2 (0.8) PERT(5,6,9.5)
Temperature summer ºC 6.5 14.0 7.4 (1.8) PERT(6.5,6.5,14)

12 Transfer
13 Storage at

depot
Wholesaler 14 Transfer

B 15 time h Normal(10.5,0.3)*
Temperature winter ºC 5.0 9.5 6.2 (0.8) PERT(5,6,9.5)
Temperature summer ºC 6.5 14.0 7.4 (1.8) PERT(6.5,6.5,14)

16 Transfer
17 Storage at

depot
Wholesaler 18 Transfer

C 19 time h Normal(9.9,0.5)*
Temperature winter ºC 5.0 9.5 6.2 (0.8) PERT(5,6,9.5)
Temperature summer ºC 6.5 14.0 7.4 (1.8) PERT(6.5,6.5,14)

20 Transfer
21 Storage at

depot
Retailer 22 Transfer

23 time h 0.001 4.8 0.3 (0.4) WeibullFit(0.8,0.2)
Temperature winter ºC 8.5 18.2 13.5 (4.7) NormalFit(13.5,4.7)
Temperature summer ºC 18.6 28.2 23.5 (4.4) NormalFit(23.5,4.4)

24 Transfer
25 time h Normal(24.0,4.0)*

Temperature ºC 5.0 17.0 11.3 (5.1) Discrete
Consumer 26 Transport at

consumer
27 time h Normal(24.0,4.0)*

Temperature ºC -5.0 9.0 2.9 (3.5) Normal(2.9,3.5)

same for operation 2

same for operation 2

same for operation 2

same for operation 9

same for operation 2

same for operation 2

Transfer

Distribution type

same for operation 2

same for operation 2

same for operation 2

same for operation 9

same for operation 9

Transport  at
retail

Storage at
retail

Storage at
consumer

same for operation 2

same for operation 23

Input data
Data description

same for operation 2

Storage at
farm

Storage at
depot

same for operation 2

Transport to
wholesaler C

Transport to
retailer

Transport to
depot

Transport to
wholesaler B

Operator # Operation

* Assumed distributions, SD: standard deviation
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Oyster harvest. The values for SST in areas dedicated to oyster farming in Tasmania (Port

Sorell, Little Swanport, Hastings Bay and PipeClay Lagoon) were classified for summer

and winter periods. A total of 282 data points for seawater temperature at harvest were

included for the summer distribution: the range was 13.2 to 24.5ºC and the mean was 19.0

± 2.3ºC. In winter, 462 data points were included showing a range of 5.8 to 14.5ºC and a

mean of 9.8 ± 1.4ºC. A normal distribution was chosen to fit the data because most values

were near the average and the distribution was close to symmetrical (Figure 18).
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Data source: Turnbull (2010, pers. comm.). X-axis: temperature (ºC)

Figure 18. Normal probability density distribution for seawater temperature at selected

harvest areas in Tasmania for summer (right) and winter (left).
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The levels of TVC at harvest were also included. There were ten data for TVC levels

presenting a mean of 5.1 ± 0.3 log10 CFU/g. The maximum level for TVC was 5.5 log10

CFU/g and the minimum 4.5 log10 CFU/g. A normal distribution was selected to fit the

data but due to the small amount of samples the distribution was truncated to values

between 4.4 and 5.6 as this was the range observed among the ten batches sampled (Figure

19).

Data source: Chapter 2, section 2.3. Shading indicates truncated values.

X-axis: total viable bacteria count in log10 CFU/g.

Figure 19. Normal probability density distribution for total viable bacteria count in Pacific

oysters after harvest in Tasmania and after shipment from New South Wales.

Transfer. There were 58 values available regarding times of loading and unloading oysters

for transport. The time range during transfers varied from 0.3 to 1 h with a mean of 0.4 ±
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0.2 h. A Weibull distribution was fitted to the data with a shape parameter (α) of 2.7

indicating that was close to a normal distribution (α ≥3.25) but values lower than 0.4 were

more likely to occur.

Assuming that the transfer temperature would be similar to the ambient temperature, data

for temperatures in areas where transfer operations were required (Hobart, Dover, Friendly

Beaches, Devenport, Melbourne and Sydney) were included. Transfer temperatures were

subclassified as TS for the short and TL for the long supply chain. TS differed to TL in not

including temperature data in Sydney as the short supply chain finished in Melbourne.

For TS, a total of 32 observations ranging from 3.5 to 16.0ºC and presenting a mean of 9.5

± 4.2ºC were used for winter. A discrete distribution was used to give 50% weight to the

only two experimental values (i.e. 5.5 and 7.5ºC) from Madigan (132), while the 30 values

from the BOM were weighted the other 50%. This may reflect that oysters are below the

mean value (9.5ºC) more often because they are still cold from the previous refrigeration

step. For TS in summer, a total of 36 values in the range of 6.0 to 27.1ºC and a mean of

16.3 ± 5.8ºC were included in a discrete distribution. As for winter, a 50% weight was

given to the six experimental data values observed in summer by Madigan (132) and a

50% weight to the 30 values from the BOM.

The same assumption was used for the distributions in TL for data from Madigan (132)

and BOM. TL also included six temperatures for Sydney. The mean value for the 38 data

was 10.2 ± 4.4ºC (ranging 3.5 to 18.2ºC) in winter and 18.3 ± 5.7ºC for the 42 data

(ranging 9.0 to 28.2ºC) in summer.
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Preparation. The 12 times recorded during grading, counting and packing the oysters in the

farm varied from 0.7 to 5 h with a mean of 3.6 ± 1.4 h. A Pert distribution was selected

with a mode of 4.3 as more of the half of the data was this value.

A total of seven temperatures for each season recorded during preparation were available

from Madigan (132). Assuming that this operation is usually performed at ambient

temperature, data for temperatures in areas dedicated to oyster farming in Tasmania

(Hobart, Dover, Friendly Beaches and Devenport) were added. The data were organized

using a discrete distribution, giving 50% weight to the seven experimental values observed

by Madigan (132), while the remaining 24 values were weighted the other 50%. In total

there were 31 data available for each season. In summer, the temperature range was from

9.0 to 23.0ºC with a mean of 16.1 ± 4.6ºC. In winter, temperature varied from 3.5 to 14.8

and had a mean value of 9.5 ± 3.9ºC. This criterion was especially important for summer

as recorded temperatures at farm were lower than the mean extracted from the BOM data.

This assumption supported that during summer, oysters may be prepared in mornings or

evenings when temperatures were lower.

Storage at farm. There were six values for times of oyster storage at the farm which varied

from 1.7 to 24 h and showed an average of 18.9 ± 8.5 h. As for preparation times, a Pert

distribution was selected with a mode of 21.3 h as half of the data was this value and only

one value was below 20 h.

No data were available for storage temperature at the farm during winter. An assumption

of temperatures in the range of 10ºC was made. A normal distribution for a mean of 10 ±
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2ºC, truncated in order to have only values below 14.5ºC was used. The same assumption

was used for storage temperature at farm during summer because the available five

experimental values (in the range of 14 to 14.5ºC) from Madigan (132) were not

considered representative.

Storage at depot. A total of six values for times during storage at depot were used which

were from 0.7 to 37 h with a mean of 12.1 ± 14.6 h. A Weibull distribution was applied to

the data with α <1 to have more probabilities of sampling to lower values. This distribution

reflects that long times (i.e. 37 and 22 h) were represented by only two values while the

other four recorded storage times were below 7.7 h.

No data were available for temperature during storage at depot for winter and the same

assumption as for farm storage was made. For summer, 69 values were available showing

a range of 6.5 to 13.5ºC and an average of 11.3 ± 1.6ºC. Two different distributions were

fitted to the data and compared (Figure 20). A Pert distribution with a mode value of 10ºC

had a RMSE of 1.8 × 10-4 while the RMSE for the normal distribution was 3.9 × 10-6.

Therefore, the normal distribution was preferred.
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Data source: Madigan (132).

Figure 20. Comparison of Pert and normal probability density distribution for storage

temperature at depot in summer.

Storage at retail. There were no experimental data regarding the time for this operation. It

was assumed that storage times at retail were usually between 12 and 36 h, and a normal

distribution was created with a mean value of 24 and standard deviation of 4 h.

Temperatures for this operation were not separated seasonally. A total of four different

values: 5, 10, 13 and 17ºC with different probability weights of 71, 14, 12 and 3% were

used in a discrete distribution. The weights were selected to represent the proportion of

oysters found at the different temperatures as reported in DePaola et al. (62).

Storage at consumer. The time for this operation was not available and the same

assumption as for storage at retail was used here.
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Regarding temperatures, there were 29 data which varied from -5 to 9ºC and presented a

mean value of 2.9 ± 3.5ºC. Model fitting was compared for a Pert distribution with a mode

value of 5.5ºC and a normal distribution (Figure 21). A RMSE value of 7.8 × 10-6 and 2.6 ×

10-6 were observed for Pert and normal distributions, respectively. The normal distribution

was chosen because it included the possibility of oysters being refrigerated at 9ºC and

presented slightly lower RMSE.
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Data source: Anonymous (8).

Figure 21. Comparison of Pert and normal probability density distribution for storage

temperature at consumer.

Transport from farm to retail. The time during transport for the long supply chain scenario

was divided into four parts while the transport time for short supply chain case study was

described by a single distribution. Temperature data used were the same for all the

transport stages. For winter, 120 experimental included values from 5 to 9.5ºC and had a

mean of 6.2 ± 0.8ºC. For summer, the 60 experimental data varied from 6.5 to 14ºC with a
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mean of 7.4 ± 1.8ºC. Pert and normal distribution were compared for summer and winter

data. In winter, the RMSE for Pert distribution and normal distribution were similar: 5.2 ×

10-5 and 4.8 × 10-5, respectively. In summer, the RMSE for Pert distribution was lower (5.1

× 10-5) in comparison to the normal distribution (8.9 × 10-4). The Pert distribution was

selected for both seasons and mode values were 6 and 6.5 for winter and summer,

respectively.

For the long supply chain, transport times between oyster growers close to Hobart

(Dunalley, Dart Island, Port Arthur, Clifton Beach, Great Bay, Cloudy Bay, Deep Bay,

Southport, Cockle creek, Midway Point and Dover) and Hobart depot were estimated. The

eleven values ranged from 0.4 to 2.3 h with a mean of 1.2 ± 0.6 h. Data were fitted using a

Weibull distribution with a shape parameter  of 2.3 to reflect that times lower than 1.2

were more likely to occur. The transport time from Hobart to Devonport, Devonport to

Melbourne and Melbourne to Sydeny were fitted in a normal distribution of 3.2 ± 0.3 h,

10.5 ± 0.3 h and 9.9 ± 0.5 h, respectively.

Transport times for the short supply chain included all time combinations possible from

different oyster farming areas in Tasmania (Montagu, Port Sorell, St Helens, Great

Swanport, Little Swanport, Spring Bay, Dunalley, Dart Island, Port Arthur, Clifton Beach,

Great Bay, Cloudy Bay, Deep Bay, Southport, Recherche Bay, Midway Point and Dover)

to Melbourne. There were a total of 17 values ranging from 10.8 to 16.1 h and a mean of

14.3 ± 1.3 h, data was fitted in a normal distribution.
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Transport for retail or consumer. The times for consumer or retail transport were in the

range of 0.001 to 4.8 h with an average of 0.3 ± 0.4 h for the 985 data points examined.

The data were observed to be concentrated in the lower values of time (Figure 22). A

Weibull distribution was fitted to the data with α <1 indicating that lower times of

consumer or retail transport were more likely to occur.
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Figure 22. Weibull probability distribution for times for consumer or retail transport.

Temperature during transport for retail or consumer was subclassified for the long and the

short supply chains. A total of six temperature data for Sydney (long supply chain) and six

temperature data for Melbourne (short supply chain) were described using a normal

distribution.
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For the long supply chain, winter temperatures were in the range of 8.5 to 18.2ºC with a

mean of 13.5 ± 4.7ºC, and summer temperatures showed a mean of 23.5 ± 4.4ºC and varied

from 18.6 to 28.2ºC. For the short supply chain, the mean values were 11.6 ± 4.0ºC

(ranging 7.5 to 16.0ºC) and 21.1 ± 6.0ºC (ranging 14.4 to 27.1ºC) for winter and summer,

respectively.

4.3 Results

Output data: The output of the ModelRisk® simulation was the level of total

V. parahaemolyticus and TVC in oysters after consumer storage. For each season (winter

or summer) and supply chain structure (short or long), the distribution of total

V. parahaemolyticus and TVC at consumer storage was obtained by using input data as

described in Table 17 and 18. The lengths of the two different oyster supply chains

predicted by the simulation were 2.5 and 6.0 d, for the short and long supply chains

respectively.

V. parahaemolyticus after consumer storage. For the long supply chain scenario, estimated

V. parahaemolyticus levels at consumption were generally higher in summer (with a mean

of 0.9 log10 CFU/g) than winter (with a mean of -0.5 log10 CFU/g). Levels of

V. parahaemolyticus in oysters were predicted below 3.4 log10 CFU/g in summer and

below 0.5 log10 CFU/g in winter (Figure 23). Only 3.0% of the oysters were predicted to
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contain less than 1CFU/g (<0 log10 CFU/g) V. parahaemolyticus during summer, compared

to 97.43% in winter.

Figure 23. Predicted levels of total V. parahaemolyticus in oysters after consumer storage

in the long supply chain in summer (left) and winter (right).

As observed for the long supply chain, levels of V. parahaemolyticus in the short supply

chain were lower in winter (with a mean of -0.2 log10 CFU/g) than summer (with a mean

of 1.0 log10 CFU/g). The maximum levels predicted in oysters were lower for summer and

slightly higher for winter in comparison to the long supply chain. All oysters were

predicted to have levels of V. parahaemolyticus below 2.4 log10 CFU/g in summer and

below 0.7 log10 CFU/g in winter (Figure 24). In summer, only 0.03% of oysters in the short
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supply chain were predicted to have levels of V. parahaemolyticus below 1 CFU/g, while a

much higher proportion (84.44%) of oysters were observed in winter.

Figure 24. Predicted levels of total V. parahaemolyticus in oysters after consumer storage

in the short supply chain in summer (left) and winter (right).

Total viable bacteria count after consumer storage. The mean TVC levels predicted in

oysters at the end of the long supply chain were slightly higher for the summer (8.4 log10

CFU/g) than for the winter (7.9 log10 CFU/g) scenario. In general, levels of TVC were

above 6.1 log10 CFU/g in summer and 5.9 log10 CFU/g in winter (Figure 25). When a

reference concentration of 8.2 log10 CFU/g was set, a total of 43.25% and 58.84% of the

oysters were below that level in summer and winter, respectively.
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Figure 25. Predicted total viable bacteria counts levels in oysters after consumer storage in

the long supply chain in summer (left) and winter (right).

The mean TVC levels predicted in the short supply chain at the time of consumption were

similar for the winter (6.2 log10 CFU/g) and for the summer (6.4 log10 CFU/g) scenario. All

oysters were predicted to have levels above 5.2 and 5.1 log10 CFU/g for summer and

winter seasons, respectively (Figure 26). The percentage of oysters below the reference

TVC concentration of 8.2 log10 CFU/g was similar for both seasons; a total of 99.91% in

summer and 99.97% in winter were observed.
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Figure 26. Predicted total viable bacteria counts levels in oysters after consumer storage in

the short supply chain in summer (left) and winter (right).

Sensitivity analysis. The influence of input factors on selected model outputs was

analysed graphically using tornado (Appendix B1) and spider plots.

V. parahaemolyticus after consumer storage. The most influential input factor for

V. parahaemolyticus after consumer storage for the two different supply chain scenarios

and the two seasons studied was SST (Table 19). The spider plots for the summer

scenarios showed that sampling the highest SST values from its distribution would

increase the predicted mean V. parahaemolyticus levels to 1.4 and 1.5 log10 CFU/g (Figure

27) for the long and short supply chains, respectively. The opposite effect was observed
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when sampling the lowest SST values; the predicted mean V. parahaemolyticus levels

would decrease to 0.4 and 0.6 log10 CFU/g for the long and short supply chains,

respectively.

Table 19. Summary rank (higher:1 to lower:5) for tornado plots analyses of model inputs

for V. parahaemolyticus levels at consumer storage.

Summer Winter Summer Winter

1 SST (harvest) SST (harvest) SST (harvest) SST (harvest)
2 T (transfer) t  (storage at depot) T (preparation) T (storage at retail)
3 t  (storage at depot) T (storage at retail) T (storage at retail) T (storage at consumer)
4 T (preparation) T (storage at consumer) T (transfer) t  (storage at consumer)
5 T (consumer transport) t (storage at consumer) T (storage at consumer) t  (storage at retail)

Long supply chain Short supply chain
Rank

* SST: seawater surface temperature, T: temperature, t:time.

Grey line showing predicted mean value in log10 CFU/g. X-axis: cumulative percentiles.

Figure 27. Spider plot showing the influence of seawater temperature in the predicted

mean levels of V. parahaemolyticus after consumer storage for the long (left) and the short

(right) supply chain in summer.
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Total viable bacteria count after consumer storage: The importance of the inputs was

similar for summer and winter but differed between supply chain scenarios (Table 20).

Time of storage at depot followed by temperature of storage at retail were the most

influential input factors for the long supply chain independently of the season. However,

TVC levels at consumption for the short supply chain scenario were more influenced by

temperature of storage at retail followed by temperature of storage at consumer.

Table 20. Summary rank (higher:1 to lower:5) for tornado plots analyses of model inputs

for total viable bacteria count levels at consumer storage

Summer Winter Summer Winter

1 t  (storage at depot) t  (storage at depot) T (storage at retail) T (storage at retail)
2 T (storage at retail) T (storage at retail) T (storage at consumer) T (storage at consumer)
3 T (transfer) T (storage at farm) t  (storage at retail) t  (storage at retail)
4 T  (storage at consumer) T (storage at consumer) T (preparation) T (preparation)
5 T (storage at depot) T (storage at depot) T  (transport at retail) t  (storage at consumer)

Rank
Long supply chain Short supply chain

* SST: seawater surface temperature, T: temperature, t:time.

4.4 Discussion

Cold chain management in the oyster industry is necessary to ensure quality and safety

throughout the supply chain. However, temperature control can be complicated and oysters

experiencing temperatures above the recommended 10ºC during supply chain have been

observed in Australia (8, 132). A stochastic model to evaluate V. parahaemolyticus and

TVC levels in oysters during distribution (from farm to consumer) can help to analyse the
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effects of temperature on microbial growth during supply chain taking into account the

uncertainty and variability present.

In this case study, the changes in V. parahaemolyticus and TVC concentrations in oysters

were predicted for two different oyster supply chain lengths (the simulation predicted an

average duration of 2.5 versus 6.0 d) in winter and summer. The output data were

expressed in probabilities which could be used to quantify the percentage of oysters with

different bacterial levels.

In general, the predicted levels of V. parahaemolyticus in oysters after consumer storage

were higher in summer than winter. This was expected as initial levels of the bacteria in

oysters are higher in summer than in winter, as observed in previous studies (63, 176).

Moreover, bacterial growth is expected to be higher at higher ambient temperatures. The

predicted mean levels of V. parahaemolyticus after consumer storage were similar for the

long and the short supply chains in summer. However, the percentage of oysters predicted

to contain V. parahaemolyticus >1 CFU/g was higher for the short than the long supply

chain. In winter, the maximum levels of V. parahaemolyticus after consumer storage were

lower for the long than the short supply chains These observations showed that in this

particular simulation the conditions in the supply chain were not only preventing

V. parahaemolyticus growth but cause reduction in their numbers so that the percentage of

oysters containing the bacteria is reduced during transport and storage which helps to

reduce consumers exposure to oysters containing high levels of V. parahaemolyticus.

The model was also used to predict changes in TVC as an indicator of oyster shelf-life. In

contrast to the predicted changes in V. parahaemolyticus, supply chain length had more
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influence on TVC levels at consumption than harvest season. For example, the percentage

of oysters above the reference level of 8.2 log10 TVC in the long supply chain was 56.75%

while in the short supply chain it was only 0.09% in summer. The same was observed for

winter, with 41.16% of the oysters exceeding the reference level in the long supply chain

while only 0.03% of the oysters were predicted to exceed that level in the short supply

chain.

The fact that TVC levels were able to increase to unacceptable levels during oyster supply

shows that shelf-life management is also necessary for a good cold chain management.

This highlights the importance of comparing TVC (quality) as well as V. parahaemolyticus

(safety) during supply chain, as they are not necessarily positively correlated. It can happen

either that unsafe oysters have good quality, or that safe oysters are of poor overall

microbiological quality.

The sensitivity analysis identified variables in the supply chain model that had the greatest

influence on V. parahaemolyticus and TVC levels at consumption. SST at harvest had the

greatest effect on increased V. parahaemolyticus levels in oysters. It was observed that

selection of some of the highest values in the SST distribution could increase the predicted

mean levels of V. parahaemolyticus by approximately 0.5 log10 CFU/g in summer for the

long and short supply chain. While selection of some of the lowest values in the SST

distribution would decrease the predicted mean levels of V. parahaemolyticus by

approximately 0.5 log10 CFU/g in summer for both supply chain scenarios.

As shown it this case study, the use of tornado plots for sensitivity analysis is very useful

as a quick overview to identify the most influential model input parameters (223, 224).
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More detailed information was extracted from the spider plots which could identify

strategies to reduce the model’s output and thereby could be applied to the oyster supply

chain to aid management decision of cases where levels are unacceptability high.

The model included real temperature and time data from previous commercial shipments

by Tasmanian growers from Madigan (132). However, information for temperatures in the

different operations was available only for one supply chain in summer and two in winter.

In general, missing data for transport times were obtained from Google Maps and

temperature data from the BOM. Some assumptions included in the model are:

 V. parahaemolyticus levels at harvest were estimated from SST information

using a model which was developed in the USA. The extent in which V. parahaemolyticus

grow at different SST in Australia may show a different relationship.

 Storage temperatures on farm and at depot for winter were approximately the

ASQAP recommendation (10ºC).

 Storage times at retail and during consumer storage were both assumed to be

approximately 12-36 h.

 Storage temperature at retail was based on recent information available for

the USA oyster studies. It could be a different situation in Australia.

 Storage temperature at the consumer level was based on a recent survey in

refrigerator temperature in New South Wales. Refrigerator conditions in other states may

be different.
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 Consumer transport times were based on a survey in Melbourne. Different

times may be observed for other states.

The case presented was limited to shipments from Tasmania for simplification of the study.

However, differences in supply chain practices have been observed for other states in

Australia. In New South Wales, the proportion of producers with access to chillers and

refrigerated transport is much lower, but transport chains are much shorter compared with

other states (132).

Another important factor that needs to be considered when interpreting the results in this

case study is measurement of ambient air temperature. The time for oysters to reach the

ambient temperature will not be immediate. In fact, a detailed assessment of a PO supply

chain in Australia indicated that it could take up to 60 h for product temperature to cool to

10ºC. Another important consideration is that temperature will vary depending on the

configuration of the pallet: hollow-style pallets appeared to be more efficient in cooling in

comparison to solid-style. The location of the temperature loggers will also have an effect.

For example, differences in temperatures inside a truck because of the lack of capacity to

remove heat from the load is expected to happen in Australia (132).

An estimation of TVC is used as an index in many seafood standards (107). Microbial

criteria for satisfactory oysters at the wholesale level have been set at 5.7 - 6.2 log10 CFU/g

by the USFDA (15, 21). However, a higher level of 107 log10 CFU/g was found to correlate

with the maximum shelf-life for purified PO stored at cold temperatures (0 - 10ºC) (43).

This level was also used as criteria for acceptable quality in shelf-life extension studies (42,
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118). In this case study, a higher TVC level of 8.2 log10 CFU/g was selected based on the

average gapping times observed during kinetic studies in Chapter 2. Differences in TVC

levels correlation with shelf-life could be due to the fact that oysters used here were not

purified and starting TVC levels were higher.

The average temperatures for transport and storage up to retail for this case study were

below 14.5ºC. On rare occasions, oysters can reach temperatures as high as 25ºC during

transport in Australia (132) which could produce a public health treat, as well as loss of

product.

To assess the importance of a temperature abuse event, a what-if scenario was executed

with the stochastic model in which all transport steps up to retail and storage at retail were

set to a constant value of 20ºC. The simulation predicted 2.6 d for the short and 5.7 d for

the long supply chain. The predictions showed that the increase in temperature would

translate to an increase of V. parahaemolyticus after consumer storage to higher levels to

the 10,000 MPN/g criterion recommended by the USFDA (22). The percentage of oysters

accumulating higher levels than the recommended would be 0.03 and 4% for the short and

the long supply chain, respectively, in summer (Figure 28). Apart from the increase in risk

for human disease, the probabilities of a quality decrease and thereby a loss in product

could be expected. In fact, the percentage of oysters predicted to contain TVC levels above

the 8.2 log10 CFU/g reference were 100% for the long supply chain and 71.7% for the short

supply chain in summer.
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Figure 28. Temperature abuse what-if scenario: predicted levels of total

V. parahaemolyticus in oysters prior to consumption in summer for the long (left) and the

short (right) supply chains.

Knowledge of the supply chain temperature profile can also be important in cases where

temperature is too low. It has been noted that cold stress can result in oyster mortality (1).

Industry has reported that cold abuse often occurs when the insides of trailers are baffled to

transport different types of products at different temperatures and oysters are placed in the

bay next to frozen products. Cold abuse has resulted in significant losses of product being

transported in Australia, particularly in the long complex chains such as South Australia to

far north Queensland (132).



4 – Cold chain management tool for oysters: a case study

- 146 -

The application of predictive microbiology in stochastic approaches for evaluation of the

supply chain has several benefits. It allows calculating the percentage of product that will

be accepted at the end of the supply chain regarding safety as well as quality. The model

can be used to control performance objectives in order to meet food safety objectives

which can be used to meet public health goals such as an appropriate level of protection

(ALOP) (201). Another advantage is the flexibility in data analysis which can be used as

an educational tool to demonstrate the influence of temperature. For example, it can show

the effect in bacterial growth for temperature profiles which do not follow the relevant

standard. It can also be used to observe the possibility of applying short distance supply

chains during winter without refrigeration which could help to design supply chain length.

This example of the use of such tools can help industry and regulators to optimize time

temperature regimes that assure safety and quality while providing operational flexibility.

Risk managers use QMRA as a science-based tool for making decisions regarding health

risk. This case study is an example of a stochastic approach for oyster supply chains which

can be considered for exposure assessment. However, this case study ends at the moment

the consumer takes the product from the refrigerator and it does not show the impact of the

hazard on the final consumer risk (illness) which will require information about dose-

response and servings.

Traceability systems which can monitor the supply chain in real-time will take food safety

management to a new level of precision and flexibility (152). Wireless traceability

technology has been shown to be a useful tool for real-time microbiological monitoring for

the distribution of meat in Australia and fresh fish in Denmark (79, 151). It is suggested

that the integration of the presented model in a traceability system would provide
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additional valuable information. The oyster industry in Australia would benefit from a

traceability system that measures time and temperature in real-time, allowing for example

software with an output similar to the one in this case study. As a consequence, monitoring

and interventions could be made proactively at any point along the supply chain.

The option of using a TTI device, which has the advantage of being less expensive, to

measure the time-temperature history in oysters as it has been done in other fish products

(170, 214, 218), could be possible if a quality index for oyster shelf-life is identified.

However, the use of TTI presents a variety of disadvantages. First of all, the approach

would be deterministic instead of stochastic and some products will be shown to be spoiled

while they are still in good quality. Another important aspect is not having real-time

knowledge which may delay the recall of inadequate products. Also, TTI can not provide

the history of the product and thereby the operation in which the quality is decreased can

not be identified.

In the future, similar probabilistic models could be combined with real-time traceability

systems to analyse microbial levels in oyster supply chains. As a result, more precise

recommendations and increased flexibility in decision making would improve quality and

safety management for the oyster industry. Moreover, this study shows possible

advantages of using predictive and stochastic modelling for reduction of uncertainty and

variability during the oyster supply chain for exposure assessment in risk assessment.
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5 - Influence of storage temperature on bacterial

communities in live Pacific oysters (Crassostrea gigas)

5.1 Introduction

The oyster industry is required to satisfy consumer demands for high quality and safe

products that at the same time have the longest shelf-life possible.

The quality of oysters differs to that of other seafood products due to its chemical

composition as well as its ability to survive out of water for several weeks (1, 203). After

harvest, oysters shells close, trapping water and associated microflora, along with a

consequent decrease in oxygen and increase in waste accumulation (49). Changes in the

microbial composition of oysters during the post harvest period and the rate of

decomposition will be influenced by the initial types and number of micro-organisms

present as well as the storage and handling conditions. Consequently, knowledge of the

bacterial changes in stored oysters will help identify the organisms involved in spoilage

and the best storage conditions to optimize oyster shelf-life.

As culturing techniques are currently limited for most bacteria, microbial ecologists use

molecular taxonomic techniques based on the universal marker gene encoding for the 16S

rRNA (36, 181, 198). Among different culture-independent techniques, Terminal

Restriction Fragment Polymorphism (TRFLP) analysis has been proven to be a robust,

high-resolution, high-throughput, rapid and cost-effective method for studying the overall

view of microbial communities structures (127, 187). However, TRFLP is basically a
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fingerprint method and generates only limited information. In contrast, sequencing of 16S

rRNA from clone libraries provides phylotype identification and the community

composition in the sample can be assessed (33, 204).

In order to prevent a decrease in microbiological safety and quality, post-harvest handling

of oysters is controlled by legislation. The ASQAP requires PO to be stored ≤10ºC after 24

h of harvest (4). However, refrigeration is usually difficult to achieve along the entire

oyster supply chain and oysters can be exposed to higher temperatures for short periods of

time. In fact, temperatures >10ºC have been observed in surveys during oyster distribution

in the USA and in Australia (62, 132). Thereby, it is important to understand how variation

in refrigerated and non-refrigerated storage of oysters influences microbial communities

that can influence quality and safety. In this regard, there are few reports that describe the

bacterial diversity in oysters using molecular methods (92, 99), however changes in

bacterial diversity in oysters stored at different temperatures have not been studied

extensively.

The aim of this study was to describe changes in bacterial communities of PO over a range

of storage temperatures using both TRFLP and clone library analyses. This investigation

will help identify bacteria that may be used as potential spoilage indicators, as well as

indicators of oyster storage temperature. In addition, knowledge of bacterial diversity may

assist in understanding species of bacteria that may be potential competitive flora to

control the growth of pathogenic bacteria in oysters.
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5.2 Materials and Methods

Oyster samples preparation. Five of the ten batches of live PO described in Chapter 2

(Table 7) were used for this study. The batches corresponded to oyster stored at 3.6 ± 0.1,

6.2 ± 0.1, 14.9 ± 0.1, 20.0 ± 0.1 and 30.4 ± 0.3ºC. Samples of oyster homogenates prepared

during kinetics studies (Chapter 2, section 2.2) were stored at -20ºC until molecular

analyses were investigated.

Total viable bacteria count enumeration. Information about TVC changes for each of

the five different oyster storage conditions were obtained from the kinetics studies in

Chapter 2.

Sampling design. Oyster samples were coded by letters indicating that they were

processed after arrival to the laboratory (fresh, F) or after TVC levels were close to the

MPD but before gapping was observed (stored, S), and a number for temperature of

storage: 4 (3.6); 6 (6.2); 15 (14.9); 20 (20.0) and 30 (30.4ºC).

All oyster samples were analysed by TRFLP. Samples tested by clone library included

fresh and oysters stored at 3.6, 14.9 and 30.4ºC (F4, F15, F30, S4, S15 and S30), as these

samples were found to have different profiles based on TRFLP analysis.

Certain clones representing the major proportion of species in the clone libraries were

grown on agar plates and tested by TRFLP to determine fragment sizes. The TRFLP
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profiles from clones were then used to identify fragments appearing in TRFLP tests of

oyster homogenates.

DNA extraction. Oyster homogenates (200 μl) were thawed at room temperature and

DNA extracted using the FastDNA® Spin Kit for Soil (116560200, MP Biomedicals,

Australia) according to the manufacturer’s instructions.

Terminal restriction fragment length polymorphism analysis. TRFLP analysis was

performed as indicated by Powell et al. (181) with some modification. Oyster homogenate

DNA was extracted from triplicate subsamples and the 16S rRNA gene from a 2 μl

isolated DNA amplified using a 30 μl reaction containing 15 μl ImmoMix™ (Bioline, NSW,

Australia) and 0.07 μM of primers 10F (D3-GAGTTTGATCCTGGCTCAG-3’) and 907R

(D4-CCGTCAATTCCTTTGAGTTT-3’). 10F and 907R primers were 5’ end-labelled with

WellRED dye D3 and D4 (SigmaProligo, New South Wales, Australia), respectively. The

thermal cycling program consisted of 10 min initial denaturation step at 95ºC, followed by

30 cycles of 1 min at 94ºC, 1 min at 55ºC and 1 min at 72ºC, with a final elongation step of

7 min at 72ºC. PCR reactions were conducted in duplicate and then mixed to avoid bias; 52

μl of the total PCR product was purified using the UltraClean® PCR Clean-Up Kit

(MB12500, Geneworks, SA, Australia) with DNA eluted using a volume of 60 μl. PCR

amplification products were visualized and assayed using agarose gel electrophoresis.
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The purified fluorescently labelled PCR products were then digested with 5U of the

restriction enzymes HaeIII, Rsa I or Alu I (New England Biolabs, Queensland, Australia).

For each enzyme, a 15 μl sample from the purified PCR product was digested for 3 h at

37ºC using a thermocycler. The digests were diluted to a 5-fold and 10 μl of each digest

was purified by ethanol precipitation within a 96-well plate. The purified digests were

resuspended in 30 μl of CEQ sample loading solution (PN608082, Beckman Coulter, Inc.,

CA, USA) with 0.25 μl of GenomeLab size standard kit 600 (PN608095, Beckman Coulter,

Inc., CA, USA). All samples were prepared in the same 96-well plate and examined at the

same time. The fragments were separated on a Beckman Coulter CEQ Genetic Analysis

system (Beckman Coulter, Inc., CA, USA). The CEQ™ 8000 software (Beckman Coulter,

Inc., CA, USA) was used to obtain a fragment list with information regarding fragment

size measured in base pairs and fragment peak area measured in Relative Fluorescent Units

(RFU) for each digest sample.

Normalization procedures were applied prior to statistical analysis. Profiles for each set of

sample triplicates were edited by eliminating non-reproducible fragment peaks and

averaging shared fragment peaks. Some fragments with a fragment peak area <300 RFU

were binned when not present in all triplicate sample profiles to improve reproducibility.

The percentage area was calculated for each fragment, and fragments that made up less

than 1% of the total area for a sample were not considered. The data for each dye and

enzyme were aligned using the T-Align software (http://inismor.ucd.ie/~talign/ [accessed

2/05/11]) and the data for the three enzymes and the two dyes were combined into one

matrix of percentage fragment area for fragment length for all samples.
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The Primer6 package (Primer-E Ltd) was used to analyse the data in order to observe

differences in the microbial communities. Data were converted to a matrix of Bray-Curtis

coefficients. Non-metric Multidimensional Scaling (MDS) plots were used to explore

relationships between groups of samples based on the strength of the similarities and

dissimilarities. The result of the MDS ordination is a map where the position of each

sample is determined by its distance from all other points in the analysis. In a MDS plot

the term “stress” is a measure of goodness-of-fit of the final plot. A stress value greater

than 0.2 indicates that the plot is close to random and a value lower than 0.2 indicates a

useful two-dimensional picture.

Analysis of Similarity (ANOSIM) procedure was used to examine statistical significance

between samples. ANOSIM produces a test statistic (R) which ranges from -1 to 1. Objects

that were more dissimilar between groups than within groups were indicated by an R

statistic approaching 1. An R value of 0 indicated the null hypothesis was true. A level of

significance (p-value) was produced from the analysis by permutation analysis (n=999).

For this study, a p-value <0.05 was considered significant.

Clone library construction and analysis. Clone libraries were constructed for the six

oyster homogenates. Oyster homogenate DNA was extracted from triplicate subsamples

and 2 μl used for 16S rRNA gene amplification. PCR reactions of 20 μl included 10 μl

ImmoMix™ (BIO-25020, Bioline, NSW, Australia) and 0.15 μM of primers 10F

(GAGTTTGATCCTGGCTCAG-3’) and 907R (CCGTCAATTCCTTTGAGTTT-3’),

commercially synthesized (GeneWorks, SA, Australia). The thermal cycling program
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consisted of 10 min initial denaturation step at 95ºC, followed by 35 cycles of 1 min at

94ºC, 1 min at 58ºC and 1 min at 72ºC, with a final elongation step of 7 min at 72ºC.

A sample of 5 μl of each amplified PCR product was mixed and the combined 15 μl of

combined PCR product for sample was purified using the UltraClean® PCR Clean-Up Kit

(MB12500, Geneworks, SA, Australia) with amplicons eluted into 20 μl water. PCR

products were assessed using agarose electrophoresis and then cloned using the TOPO®

TA Cloning® Kit for Sequencing (K4575-01, Invitrogen, VIC, Australia) according to the

manufacturer’s protocol. Clones were subcultured and placed directly into a PCR reaction

with vector M13 primers (F: GTAAAACGACGGCCAG and R:

CAGGAAACAGCTATGAC). Successful amplifications were precipitated using ethanol

to remove unincorporated primers. The 96 purified, dry PCR products for each sample

were shipped to Macrogen Inc (Seoul, Korea) for sequencing.

The sequences for all six libraries clones were analysed using BioEdit software (95) with

manually edited sequences to remove vector regions, and aligned using the CLUSTAL W

(216). Sequences were compared to the GenBank database. Pylogenetic trees were

constructed using the Kimura 2-parameter model and the neighbour-joining distance

method with 1,000 bootstrap replicates using MEGA v. 5 (212). The 16S rRNA gene

sequences from Thermotoga maritima and Coprothermobacter platensis were used as out-

group references for the phylogenetic tree.

Fast UniFrac was used to compare similarity among clone libraries (96). The cluster

analysis was used to perform a hierarchical clustering analysis, which is based on distance

matrix data applied to Unweighted Pair Group Method with Arithmetic Mean (UPGMA).



5 – Storage temperature effects on bacterial communities in C. gigas

- 155 -

The significance difference between communities was done by the paired P-test

(parsimony based phylogenetic test). UniFrac tests were performed using 1,000

permutations and calculated with the Fast UniFrac web application

(http://bmf2.colorado.edu/fastunifrac/ [accessed 2/05/11]).Coverage of microbial

communities represented by clone libraries was calculated according to Good (86).

To test when clones were chimeric, they were analysed performing BLAST searches on

different parts of the gene sequence. Potential chimerical sequences were removed. The

16S rRNA gene sequences generated in this study were deposited in the GenBank database

under accession numbers JF827355 to JF827597.

5.3 Results

Conditions at oyster harvest. Five batches of oysters were collected during the period of

October 2008 to December 2008. The mean SST recorded during oyster harvest was

17.1ºC, with a minimum of 15.0 and a maximum of 19.4ºC. Salinity, dissolved oxygen and

pH range were 3.4 to 3.6%, 11.0 to 11.6 mg/l, and 8.3 to 8.6, respectively.

Bacterial total viable bacteria count. Initial TVC counts for the five different fresh

oyster batches (F) ranged from 4.49 to 5.30 log10 CFU/g (Table 21). The levels for TVC

for oysters after storage (S) were in the range of 7.18 to 8.02 log10 CFU/g, and the mean

was 7.7 log10 CFU/g.
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Table 21. Total viable bacteria count in different Pacific oyster batches depending on

storage temperature

Sample code F4 S4

Time (h) 0
t,c

25.0 76.5 121.3 191.5
t,c

289.0 362.0 432.8
g

 log10 (CFU/g) 5.22 5.44 6.68 7.23 7.81 8.53 8.28 8.66

Sample code F6 S6

Time (h) 0
t

22.0 75.0 122.0 195.5
t

238.3 286.3
g

 log10 (CFU/g) 5.16 5.16 6.45 7.76 7.98 8.00 8.42

Sample code F15 S15

Time (h) 0
t,c

22.8 48.0 71.8 102.2
t,c

123.8
g

143.8 167.0
 log10 (CFU/g) 5.30 6.58 7.48 7.62 8.02 8.49 8.30 8.37

Sample code F20 S20

Time (h) 0
t

8.3 18.8 31.3 47.5 72
t

99.5
g

123.0
 log10 (CFU/g) 4.98 5.71 6.57 6.90 7.29 7.37 7.96 8.42

Sample code F30 S30

Time (h) 0
t,c

5.0 10.0 16.0 23.0 29.3
t,c

36.0 45.5
g

 log10 (CFU/g) 4.49 5.26 5.71 6.72 6.85 7.18 7.11 7.29

3.6ºC

6.2ºC

14.9ºC

20.0ºC

30.4ºC

t: TRFLP sample, c: clone library sample, g: samples gapping (shelf-life).

Shelf-life was dependent on storage temperature; oysters gapped at 432.8 h at the lowest

temperature tested (i.e. 3.6ºC) and at 45.5 h at the highest temperature tested (i.e. 30.4ºC).

The average TVC level for the six batches at shelf-life was 8.2 ± 0.6 log10 CFU/g. Samples

chosen for molecular analysis included storage samples before end of shelf-life to identify

growing bacteria before spoilage, versus bacteria that proliferate in a dead or dying oyster.

Terminal restriction fragment length polymorphism analysis. The bacterial community

structure in oyster samples F and S were examined using TRFLP. The differences in
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bacterial communities among all samples are shown depending on storage temperature and

time in a MDS plot (Figure 29).

Sample
F4
S4
F6
S6
F15
S15
F20
S20
F30
S30

2D Stress: 0.12

Fresh (F, black) and stored (S, grey) Pacific oysters at 4, 6, 15, 20 and 30ºC. Stress of the plot = 0.12.

Figure 29. Multidimensional scaling plot based on Bray-Curtis similarities of TRFLP data.

ANOSIM analysis showed that the global difference between all samples was large and

statistically significant (R = 0.94, p = 0.001). An overall comparison among oyster samples

F and S showed a significant difference (R = 0.496, p = 0.001). Further analysis in the

effect of storage showed that there was no significant difference when oyster sample S4

was compared to all oyster samples F (R = 0.043, p = 0.384), while oyster samples S6, S15,

S20 and S30 were significantly different.

Clone library analysis. Six 16S rRNA libraries were generated, three from fresh oysters

(samples F4, F15 and F30) and three from the same batches after storage (samples S4, S15

and S30). A total of 518 sequences were analysed successfully from all six samples, from
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which 28 were identified as chloroplast-derived, 43 could only be identified to phylum

level, and one could not be identified with any cultured species.

In a global analysis, all clone libraries were found to be significantly different when

compared using Fast UniFrac P-test statistical analysis (P-value = 0.001). However, pair-

wise comparison results presented in Table 22 indicate no differences between all oyster

samples F and oysters sample S4, whereas oyster samples S15 and S30 presented

significant and highly significant differences, respectively.

Table 22. Statistic significance (P-value) of differences between bacterial clone

communities calculated based on partial sequences of 16S rRNA

Samples F15 F30 F4 S15 S30 S4
F15 - 1 0.69 0.015 <0.001 1
F30 1 - 1 0.03 <0.001 1
F4 0.69 1 - <0.001 <0.001 1
S15 0.015 0.03 <0.001 - 1 1
S30 <0.001 <0.001 <0.001 1 - 0.9
S4 1 1 1 1 0.9 -

Significant difference P-value*

* P-value (parsimony based phylogenetic test, implemented in UniFrac) corrected for multiple
comparisons using the Bonferroni correction calculated based on 1000 permutations. <0.001 highly
significant, (0.001-0.01) significant, (0.01-0.05) marginally significant, (0.05-0.1) suggestive, >0.1 not
significant. Fresh (F) and stored (S) Pacific oysters at 4, 15 and 30ºC.

A cluster analysis showed that the libraries for oyster samples F clustered with the library

for oyster sample S4 (Figure 30). Clone libraries for oyster samples S15 and S30 formed a

cluster distinct from other samples.
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Fresh (F) and stored (S) Pacific oysters at 4, 15 and 30ºC

Figure 30. Cluster analysis of the six different clone library compositions obtained by Fast

UniFrac.

The identified taxa for each clone library grouped into nine different phyla (Figure 31).

Fresh oyster samples were dominated by Proteobacteria making up 43.0 to 57.0% of

clones in fresh samples. Bacterial diversity changed after storage and varied depending on

holding temperature. Bacterial profiles after storage were more similar for oysters tested at

14.9 and 30.4ºC than oyster tested at 3.6ºC. Overall, there was a decrease in Spirochaetes,

Proteobacteria, Planctomycetes and Verrucomicorbia, and Cyanobacteria; and an increase

in Fusobacteria. For oysters stored at 3.6ºC, the phylum Fusobacteria became dominant

(43.8% of clones). In contrast, Bacteroidetes made up the majority of clones for oysters

stored at 14.9 and 30.4ºC, representing 63.0 and 60.2% of the total community,

respectively.
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Figure 31. Clone library composition of bacteria in homogenates of six batches of Pacific

oysters.

A total of 447 clones could be readily associated with known bacterial groups. Among all

samples, 73 different genera-related were observed (Appendix C1). Clones associated with

known bacterial genera typically had 93-99% similarity to described species. Oyster clones

which had maximum identity values <93% were referred as related clusters to the closest

known validly described species.

For a condensed interpretation of data, only the major clone clusters representing more

than 5% of the total composition in each library were discussed here. A total of 17
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sequence clusters (Table 23) were compared between clone libraries and represented an

average 72 ± 8% of the total composition in each library.

Table 23. Good’s coverage values and representative genera in each clone library for six

different oyster samples

F4 F15 F30 S4 S15 S30

Spirochaetes
Spirochaeta 79-87 9 5 7 1 2 3
Cristispira 94-95 5 0 3 4 1 0

Proteobacteria
Alpha- Sphingomonas 89-92 8 0 3 3 7 0
Alpha- Thalassospira 85-87 9 21 14 9 1 1
Alpha- Mesorhizobium 91-97 0 0 21 0 2 0
Beta- Polynucleobacter 98 5 4 2 7 0 0

Epsilon- Arcobacter 93-99 0 0 0 2 0 6
Fusobacteria

Fusobacteriales Psycrhilyobacter 96-99 11 4 2 44 12 20
Cyanobacteria

Chroococcales Synechococcus 95-99 8 18 10 2 0 5
Bacteroidetes

Bacteroidia Alkaliflexus 86-88 0 0 0 0 38 13
Flavobacteria Dokdonia 95-97 0 0 0 1 0 6
Flavobacteria Psychroserpens 94 0 0 0 0 1 6
Flavobacteria Polaribacter 97-99 0 4 0 3 2 8
Flavobacteria Bizionia 96-97 0 0 0 2 4 5

Tenericutes
Mollicutes Mycoplasma 84-88 1 5 1 3 2 0
Mollicutes Spiroplasma 81-86 4 5 3 1 4 1

Planctomycetes
Planctomycetacia Rhodopirellula 93-95 0 5 0 0 0 0

Others 40 29 31 16 23 27

Good's coverage (%) 70 90 81 87 92 87

Phylum   Class Closest related
genus

Maximum
identity

(%)

Fresh Stored

Composition (%) Composition (%)

Fresh (F) and stored (S) Pacific oysters at 4, 15 and 30ºC.

A decrease in a Spirochaeta-related and Spiroplasma-related clusters and in

Synechococcus, and an increase in Psychrilyobacter and Bizionia spp. were observed in all
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stored oysters independent of temperature. Clones belonging to the Thalassospira–related

cluster were present in all fresh oyster batches (9 to 21%) but decreased to only 1% after

storage at 14.9 or 30.4ºC. Only one batch of fresh oysters contained high levels (21%) of a

clone cluster most closely related to the genus Mesorhizobium; however this cluster was

not detected after storage. A cluster of clones most closely related to the genus Alkaliflexus

(Figure 32) was only detected in oysters stored at 14.9 and 30.4ºC, representing 38 and

13% of clones, respectively. A cluster of clones grouping within the genus

Polynucleobacter (Figure 33) was observed in all fresh samples while after storage it was

only detected in oysters stored at 3.6ºC, constituting 7% of the total composition. A cluster

of clones most closely related to the genera Arcobacter and Dokdonia were not present in

fresh oysters but in oysters stored at 3.6 and 30.4ºC.

Good’s coverage increased in all samples after storage when compared to fresh samples.

The lowest coverage of diversity (70%) was found for oyster sample F4 while the highest

(92%) was observed for oyster sample S15.

Some of the clones isolated from the digestive gland in SRO in a previous study (92) were

included for phylogenetic tree analysis (Figure 33 and 34). The clones did not show any

close phylogenetic relationship to clones in PO homogenates.
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Figure 32. 16S rRNA phylogenetic tree of representative genera for the phylum

Bacteroidetes from sample clone libraries (bold letters) and type strains, based on the

Kimura 2-parameter model and the neighbor-joining method.



5 – Storage temperature effects on bacterial communities in C. gigas

- 164 -

Epsilon-
proteobacteria

F4 6 clones [40A1] [JF827386]

S4 3 clones [44F3] [JF827433]

S15 4 clones [154C1] [JF827509]

F30 3 clones [300G1] [JF827542]

SRO 2 clones [SRODG082][FM995170]

Sphingomonas changbaiensis [EU682685]

Sphingomonas paucimobilis TS [AM237364]

Mesorhizobium loti TS [D14514]

Prosthecomicrobium pneumaticum TS [AB017203]

S15 2 clones [154H3] [JF827511]

F30 17 clones [300B2] [JF827544]

Wolbachia pipientis TS [DQ235288]

SRO 26 clones [SRODG002][FM995169]

Thalassospira lucentensis TS [AF358664]

Rhodospirillum rubrum [X87278]

Terasakiella pusilla TS [AB006768]

S30 1 clone [305C10] [JF827596]

S4 5 clones [44C1] [JF827428]

F4 7 clones [40H1] [JF827388]

S15 1 clone [154B11] [JF827515]

F15 9 clones [150H1] [JF827462]

F30 9 clones [300H1] [JF827543]

Polynucleobacter necessarius TS

F15 1 clone [150A5] [JF827464]

F4 4 clones [40A2] [JF827389]

S4 6 clones [44H1] [JF827430]

F30 2 clones [300D10] [JF827558]

S30 2 clones [305C1] [JF827592]

Arcobacter nitrofigilis TS [AOBRRDD]

S4 2 clones [44D1] [JF827429]

Arcobacter sp. [DQ514311]
94

64

100

29
55
99

100

46
53
32

88
100

100

100

96

64

27
93

94

66
61

100

99

95

92

87

63

35

68

44

0.05

Beta-
proteobacteria

Alpha-
proteobacteria

[AM397067]

Epsilon-
proteobacteria

F4 6 clones [40A1] [JF827386]

S4 3 clones [44F3] [JF827433]

S15 4 clones [154C1] [JF827509]

F30 3 clones [300G1] [JF827542]

SRO 2 clones [SRODG082][FM995170]

Sphingomonas changbaiensis [EU682685]

Sphingomonas paucimobilis TS [AM237364]

Mesorhizobium loti TS [D14514]

Prosthecomicrobium pneumaticum TS [AB017203]

S15 2 clones [154H3] [JF827511]

F30 17 clones [300B2] [JF827544]

Wolbachia pipientis TS [DQ235288]

SRO 26 clones [SRODG002][FM995169]

Thalassospira lucentensis TS [AF358664]

Rhodospirillum rubrum [X87278]

Terasakiella pusilla TS [AB006768]

S30 1 clone [305C10] [JF827596]

S4 5 clones [44C1] [JF827428]

F4 7 clones [40H1] [JF827388]

S15 1 clone [154B11] [JF827515]

F15 9 clones [150H1] [JF827462]

F30 9 clones [300H1] [JF827543]

Polynucleobacter necessarius TS

F15 1 clone [150A5] [JF827464]

F4 4 clones [40A2] [JF827389]

S4 6 clones [44H1] [JF827430]

F30 2 clones [300D10] [JF827558]

S30 2 clones [305C1] [JF827592]

Arcobacter nitrofigilis TS [AOBRRDD]

S4 2 clones [44D1] [JF827429]

Arcobacter sp. [DQ514311]
94

64

100

29
55
99

100

46
53
32

88
100

100

100

96

64

27
93

94

66
61

100

99

95

92

87

63

35

68

44

0.05

Beta-
proteobacteria

Alpha-
proteobacteria

[AM397067]

Samples F4, F15, F30 (grey) and S4, S15, S30 (black). Clones identified in published study of Sydney Rock

oyster (SRO) digestive gland (92). Codes in brackets are clone reference and GenBank accession number.

The numbers at the nodes of the tree indicate bootstrap values for each node. Scale bar represents 5%

estimated distance.

Figure 33. 16S rRNA phylogenetic tree of representative genera for the phylum

Proteobacteria from sample clone libraries (bold letters) and type strains, based on the

Kimura 2-parameter model and the neighbor-joining method.
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Figure 34. 16S rRNA phylogenetic tree of representative genera for phyla Spirochaetes,

Fusobacteria, Cyanobacteria, Tenericutes and Planctomycetes from sample clone libraries
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(bold letters) and type strains, based on the Kimura 2-parameter model and the neighbor-

joining method.

Terminal restriction fragment length polymorphism analysis in bacterial clones

isolated from oyster homogenate during cloning libraries. After clone library analyses

from the oyster homogenate, the TRFLP profiles for clones Alkaliflexus-related (JF827488

and JF427564) and Psychrilyobacter (JF827404 and JF827561) were performed

(Appendix C2).

The TRFLP profiles derived from AluI digestion of the four selected clones and different

oyster samples were compared. Psychrilyobacter spp. had a fragment of 160 bp and

appeared only in profiles for all stored oysters A Alkaliflexus-related clone had a fragment

of 188 bp and appeared only in oyster samples S15 and S30 (Figure 35).
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Figure 35. Terminal restriction fragment length profiles for six different oyster samples. Identification of fragments as

Psychrilyobacter (PSY) and Alkaliflexus-related (ALK-R).
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5.4 Discussion

The microbiological quality and safety of oysters changes within supply chains. During

storage and transport processes, different conditions are created in the oyster that will lead

to a change in oyster microflora (49). Although requirements exist (4, 20), temperature

increases can occur during transport or storage.

Bacterial communities in oysters have been studied using both traditional culture-

dependent (46, 120) and culture-independent (92, 99) methods. However, there is a lack of

knowledge about the effect of storage temperature on these communities. Using a

combination of two 16S rRNA-based methods, bacterial communities present in fresh and

stored oysters were studied.

TRFLP analysis showed that bacterial community composition was significantly different

for the five different fresh oyster samples harvested on different days versus the same

oyster batches stored at different temperature conditions, based on analysis of similarities

(ANOSIM; Global R = 0.496, p = 0.001). This result indicated that differences among

storage were significant in respect to the variability of community structure observed in

fresh oysters studied here.

The most dominant bacterial groups in the three batches of fresh oysters were similar and

dominated by members of class Alphaproteobacteria. A very large group which consist of

many species isolated from marine environments including hydrocarbon-degrading

bacteria (e.g. Thalassospira and Sphingomonas spp.) (122). A dominant cluster was

represented by one related to Terasakiella and Thalassospira, aerobic bacteria found in
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marine environments (128, 200), and thus could represent a novel genus. Twenty-one

percent of clones from one batch of fresh oysters formed a cluster adjacent to a soil-

associated genus Mesorhizobium (109) and aquatic Prosthecomicrobium (171) and also

appears to represent a novel group at the genus level. Polynucleobacter spp., a genus

which belongs to the class Betaproteobacteria, was present in all fresh samples. These

bacteria are usually isolated from freshwater habitats but can also be present in brackish-

aquatic environments (94, 220).

The presence of Proteobacteria in PO has been previously shown by fluorescent in situ

hybridization (99). Alphaproteobacteria also formed a major part of the microbiota found

in Mediterranean oysters (Ostrea edulis) and in SRO (92, 182). One alphaproteobacterial

sequence (SRODG002) representing 26 clones from a study of SRO was included in the

phylogenetic tree (Figure 33) showing that it belongs to another group of species distinct

from the clones of PO identified in this study.

Arcobacter spp., which belong to the class Epsilonproteobacteria are an abundant and

common component in depurated Chilean oysters (Tiostrea chilensis) (192). In this study,

clones related to Arcobacter spp. were also detected in PO after storage at 3.6 and 30.4ºC

(2 and 5% of the clone composition, respectively) which indicates that this genus is present

but not necessarily dominant.

Studies using culture-based methods have usually identified Gammaproteobacteria as

dominant. In the case of PO, cultured isolates are most commonly Pseudomonas and

Vibrio spp. (46, 120), while in the Tropical oyster (Crassostrea iredalei), Shewanella and

Vibrio spp. (157) are more frequently isolated.
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Our results indicated that PO actually had high bacterial species diversity with up to 73

different genera-related identified clones among all samples. However, little similarity to

culture-dependent studies was observed. Oysters may be a reservoir for novel micro-

organisms since a similar high and unrealized diversity was found in SRO (92).

Oysters can accumulate high concentrations of pathogenic organisms because of their

filter-feeding activity. The different micro-organism that can cause illness in humans

associated with oyster consumption are bacteria which originate from human and animal

waste (Salmonella spp., Shigella spp., Escherichia coli), from general environment

(Clostridium botulinum type A and B, Listeria monocytogenes) or those that might be

present in natural environment (Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio

cholerae, Clostridium botulinum, Aeromonas hydrophilia, Plesiomona shigelloides) (89,

166). In this study, all oyster batches were harvested when seawater temperature was

≥15ºC and the occurrence of Vibrio spp. under this condition has been previously observed

(111, 176). However, we did not observe any Vibrio spp. in any of the six clone libraries.

This is in agreement with the low numbers of Vibrionaceae identified in SRO using clone

library analysis (92) and may be a result of the fact that most abundant bacteria in oysters

are not culturable on standard agar media under aerobic conditions (191).

Shewanella and Photobacterium spp. identified previously in oysters could also pose a

health threat through the ingestion of contaminated seafood (157, 189). Shewanella and

Photobacterium spp have been associated with septicemia and necrotizing fasciitis from

wound infection respectively (175, 230). Members of these genera were also not observed,

which suggests that PO from the harvested area do not support these genera or their levels

are below the resolution limits of the clone library analysis.
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After storage, the bacterial taxonomic diversity in oysters decreased as shown by Good’s

coverage analysis and the identified bacterial groups changed. These could represent

bacteria that strongly respond to the new conditions created in the oyster during storage

including less oxygen, accumulation of waste, and interrupted feeding activity.

As observed by clone library statistical analysis, bacterial communities identified in

oysters stored at 3.6ºC differed to those at 14.9 and 30.4ºC. This result indicates that

organisms responsible for spoilage may be different depending on the storage temperature.

This is in agreement with observations made for various fish species, in which storage

temperature can change the microflora responsible for spoilage (90). For example, spoilage

in iced Nile perch (Lates niloticus) consists typically of Pseudomonas spp. while at

ambient temperature the microflora can be dominated by Aeromonas spp.(91).

In general, stored oysters exhibited a decrease in Proteobacteria independent of the

temperature tested and an increase in the genus Psychrilyobacter, a member of phylum

Fusobacteria. This genus is an obligately anaerobic halophile which is able to grow well at

low temperatures and it has been recently isolated and described from marine sediments

and marine animals (163, 202, 236). Bacteria species related to the genus Alkaliflexus also

seem to become more abundant after storage at 14.9 and 30.4ºC but not at 3.6ºC, showing

a similar behaviour to some Alkaliflexus strains which are not able to grow at cold

temperatures (237). Lactobacillus and Pseudomonas spp. were found to be the major

component in PO after storage at cold temperatures (5 - 10ºC) (43, 206) while a higher

temperature of 18ºC, Pseudoalteromonas spp were the most abundant bacteria in spoiled

Chilean oysters (Tiostrea chillensis) (193).
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The spoilage of oysters has been assumed to be driven by fermentative organisms because

of the glycogen content in oysters (49). We have observed an increase in predominantly

halophilic, anaerobic or facultatively anaerobic, fermentative bacteria including

Psychrilyobacter, Alkaliflexus, Polynucleobacter and Polaribacter after storage (87, 94,

236, 237).

An estimation of TVC is used as an index in many seafood regulatory standards (107).

However, in some cases only a fraction of the total flora contribute to the production of

off-odours and off-flavours instead of all total numbers (90). In these cases, it is the growth

of SSO which induce the major changes and thereby counts of these organisms are better

related to shelf-life.

Shewanella and Pseudomonas spp. are examples of SSO in chilled fish and

Photobacterium spp. in modified atmosphere stored marine fish (90). We have identified a

notable increase in Psychrilyobacter spp. after storage independently of the temperature

that may be used a possible indicator organism in spoilage for future shelf-life studies in

oysters. Moreover, it was observed that Polynucleobacter spp. also only increased in

oysters stored at low temperature (3.6ºC) and sequences related to the genus Alkaliflexus

only increased at higher storage temperatures (14.9 and 30.4ºC). These species may be

useful as indicator organisms for temperature control.

In general, there was good complementation between the two molecular methodologies

used. TRFLP analysis of some selected clones from the oyster samples allowed

identification of fragment peaks generated in TRFLP studies from oyster homogenate

DNA for Psychrilyobacter and those related to Alkaliflexus. However, we could not
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differentiate major fragments and they may be a result of a mixture of different bacteria.

Although fragment identification in TRFLP profiles could be further investigated to

classify fresh from stored samples, other molecular methods (e.g. PCR) may be more

suitable for this purpose.

Previous comparisons show that the richness estimated by TRFLP is lower than that

estimated from clone libraries. Some explanations are that TRFLP can miss rare species

due to detection limits as some may not generate enough fluorescently labelled PCR

amplicon or due to the occurrence of binning in TRFLP, where two different species are

counted as one TRFLP fragment because they generate the same size fragment (174). In

order to overcome this limitation, we have used three different restriction enzymes, as

sequences that bin together with one restriction enzyme might produce different-sized

fragments when targeted by a different restriction enzyme.

In this study, oysters were alive during storage and the host-defence system of the

organism may have protected it against spoilage. Storage of shucked oysters may lead to

rather different patterns in microbial diversity. We took into account storage in open trays

that can also differ for oysters stored in sacks since oysters kept tightly sealed are forced to

metabolize anaerobically (203).

The different fresh oyster samples analysed in this study were sampled from the same

harvest area different days and showed similar bacterial profiles. Bacterial communities in

the Eastern oyster (Crassostrea virginica) have been observed to differ depending on the

local environment conditions (108). It was suggested that differences in productivity or

salinity in estuaries could have an influence in the bacterial diversity. Different bacterial
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communities in fresh oysters may have an influence in the predominant spoilage organisms

detected.

In conclusion, bacterial communities in PO were found to be diverse but microbial

diversity shifts considerably between fresh and stored oysters and between oysters stored

depending on temperature. In future studies quantitative correlation of the identified

species and the freshness of oysters are required in order to confirm that the predominant

microbes detected here represent significant spoilage indicators. Further studies could

determine if they are antagonistic to human oyster bacteria pathogens.
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6 – Conclusions and future work

6.1 Introduction

The oyster industry is an important economic sector in Australia which strives to provide a

high quality and safe product to consumers. Consumption of raw or undercooked oysters

containing infectious levels of pathogenic V. parahaemolyticus can result in gastroenteritis

in healthy individuals and septicaemia in susceptible population. In Australia, pathogenic

V. parahaemolyticus has been isolated from oysters. However, epidemiological data show

that the risk of illness is relatively low.

Vibrio parahaemolyticus is naturally occurring in seawater environments and can

accumulate in oysters to concentrations greater than those found in the surrounding

seawater. Oyster harvest sites are tested microbiologically for total or faecal coliform

which do not necessarily correlate with the presence of V. parahaemolyticus. Currently,

there is no existing control which can ensure that oysters do not contain

V. parahaemolyticus after harvest apart from microbial testing of the product.

Levels of V. parahaemolyticus can increase in oysters at growth-permissive temperatures.

In order to control this risk, shellfish quality assurance programs (ASQAP, USNSSP)

include time-temperature requirements for handling, storage and transport after harvest.

However, there are two different issues that need to be addressed: the improvement of

temperature control during supply chain and the application of specific temperature

requirements depending on oyster species or geographical location.
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A combination of the emergence of V. parahaemolyticus infections worldwide, potentially

enforceable maximum regulatory limits and the effects of climate change increase the need

for V. parahaemolyticus management tools. Among the different post-harvest operations

(e.g. high pressure processing, irradiation) which can reduce levels of V. parahaemolyticus

in oysters, at present, refrigeration is the most practical control for producing a more

natural product. The application of predictive microbiology in oyster supply chain

management can help to reduce and maintain acceptable V. parahaemolyticus levels in

oysters through education and by objectively evaluating the effect of temperature during

different supply chain operations on the exposure level for consumers.

6.2 Findings

Vibrio parahaemolyticus in C. gigas temperature model. The V. parahaemolyticus and

TVC models in PO can predict the viability of these bacteria based on the effect of post-

harvest ambient air temperature in the range of 3.6 - 30.4ºC.

 Levels of V. parahaemolyticus in artificially contaminated PO were stable at

14.9ºC, increased at ≥18.4ºC and decreased at ≤12.6ºC. This indicates that

V. parahaemolyticus should not grow in PO after harvest when stored at temperatures

recommended by the ASQAP (≤10ºC).

 The V. parahaemolyticus growth model differs to others reported in literature,

demonstrating that differences among geographical locations and oyster species need to be

considered during V. parahaemolyticus risk management.
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 The V. parahaemolyticus and TVC models were overly fail-safe for SRO,

indicating that temperatures controls for this oyster species should be different to manage

V. parahaemolyticus risk.

 The kinetic data generated in this study were submitted to the FAO/WHO risk

assessment group in response to a 2010 Call for Data. These data will be used to evaluate

the validity of models used to help nations manage Vibrio spp. risk in foods.

Evaluation of V. parahaemolyticus tertiary model. The scientific knowledge from the

models for V. parahaemolyticus and TVC in PO were then translated into an Excel®

tertiary model for use in the oyster industry as a cold supply chain management tool.

 The overall performance of the software program during simulated oyster

supply chain scenarios was found to be “fail-safe”. A mean model overestimation of 2.30

for V. parahaemolyticus and 2.40 for TVC growth were measured by the bias factor index.

 The software tool allows experts to easily input time-temperature profiles and

thereby predict and interpret V. parahaemolyticus and TVC levels.

 The tool was designed to suit the oyster industry but can be easily accessed

by other users (e.g. food industry, risk assessors, food microbiologists).

Cold chain management tool for oysters: a case study. The evaluated predictive models

for V. parahaemolyticus and TVC in PO were also integrated in a stochastic approach to
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incorporate uncertainty and variability present in the oyster supply chains to provide more

accurate estimations of commercial operations.

 The probabilistic models are used to understand prevalence and

concentrations of total V. parahaemolyticus and TVC occurring (and accumulating) at

different nodes in oyster supply chains.

 The output data are expressed in probabilities which can be used to quantify

the percentage of oysters with different bacterial levels in exposure assessment for oyster

risk management.

 TVC and V. parahaemolyticus growth showed a different pattern in the case

study, highlighting the importance of comparing both models to assess quality as well as

safety in supply chains.

 Different operations within supply chains can be examined to identify

potential strategies to achieve food safety and/or quality objectives.

 The stochastic model could be used to simulate what-if scenarios for

temperature abuse.

Storage temperature effects on bacterial communities in C. gigas. The effect of storage

temperature on bacterial communities in PO was examined using two different molecular

techniques, TRFLP and clone library.
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 The most dominant bacterial group in freshly harvested PO was

Alphaproteobacteria, while studies using culture-based methods have usually identified

Gammaproteobacteria.

 PO presented high microbial diversity with up to 73 different genera-related

identified clones among all samples (fresh and stored). Phylogenetic studies showed new

clusters for oyster bacteria that were not closely related to known bacteria, suggesting that

oysters may be a reservoir for novel micro-organisms.

 A notable increase in Psychrilyobacter spp. after storage was identified

independent of the temperature and should be investigated as a possible indicator of

spoilage.

 Some bacterial shifts were dependent on storage temperature.

Polynucleobacter spp. only increased in oysters stored at low temperature (3.6ºC) while

sequences related to the genus Alkaliflexus only increased at higher storage temperatures

(14.9 and 30.4ºC). These species may be useful as indicator organisms for temperature

control.

6.3 Future

The integration of the Excel® predictive software program and/or the stochastic model in a

wireless traceability system would provide valuable information to the oyster industry. The

measurement of time and temperature in real-time would allow predictions of levels of
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V. parahaemolyticus and TVC (deterministic model) or percentage of oysters with

different levels of V. parahaemolyticus and TVC (stochastic model). As a result,

monitoring and interventions could be made proactively at any point along the supply

chain. Thereby, risk managers could have more objective recommendations and increased

flexibility in decision-making.

The identified bacterial species after oyster storage studies could be used in future projects

to find a quantitative correlation with oyster shelf-life to confirm if the predominant

microbes detected in this study represent significant spoilage indicators. Additional

information about TVC levels necessary for organoleptic rejection of oysters at different

temperatures would also help in the interpretation of model outcomes.

Further research could determine if predominant bacterial species in fresh and stored

oysters are antagonistic to human bacterial pathogens, thus helping to design new control

measures. Future research could include kinetic studies at different temperatures and

comparison with V. parahaemolyticus viability kinetics.

Differences in bacterial growth were observed between the two oyster species studied.

Future work is needed to understand the role of oyster physiology and host defence

systems on levels of V. parahaemolyticus in SRO.

Determining a correlation between the number of total and pathogenic

V. parahaemolyticus could be used to extrapolate model predictions to pathogenic strains.

However, performing more kinetic studies using pathogenic V. parahaemolyticus strains

would be necessary to ensure the same relationship is observed over different storage

temperatures.
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Information about the incidence and levels of pathogenic V. parahaemolyticus strains in

Australian oysters and the relationship with environmental factors (e.g. SST, turbidity,

salinity) could help build an appropriate mathematical model to predict

V. parahaemolyticus levels after harvest, analogous to the USFDA model for American

oysters.

It has been suggested that oysters from different geographical locations may present

different bacterial communities and thereby differently influence the growth of

V. parahaemolyticus. Additional data about bacterial community composition as well as

genetic differences in V. parahaemolyticus strains will enable the production of models

more suitable for growing regions.

The stochastic model was used for a Tasmanian oyster supply chain but it could be easily

modified for other states in Australia integrating their correspondent temperature-time data

from the different oyster supply chain operations.

In conclusion, the V. parahaemolyticus models can help risk managers make objective

decisions in exposure assessments. However, the models provide a “first estimate”. For

this reason, persons using the models need to interpret correctly the output and understand

models limitations. The tertiary model appeared to provide safe estimations and would be

applicable as a public health tool. However, a high variability in the performance was

observed and this should be considered. The models may be improved by adding other

parameters apart from temperature. For example, the bacteria identified during the

molecular studies may affect the growth of V. parahaemolyticus and could be included in
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the tertiary model. A stochastic approach to modelling V. parahaemolyticus should be also

considered as an alternative to reduce the present uncertainty and variability (e.g.

differences among strains, microbial interactions). These predictive microbiology tools

will be useful for oyster cold supply chain management, however further research can

improve the accuracy of predictions.
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Appendix A - Vibrio parahaemolyticus in C. gigas

temperature model

A1. Oyster injection test
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Figure A1.1. V. parahaemolyticus growth profiles for artificially contaminated Pacific

oysters stored at 20 and 25ºC injected in the visceral mass (■) and adductor muscle (■).

Levels of natural Vibrio spp. in sea-water injected oysters in the visceral mass (▲) and

adductor muscle (▲).The dashed line indicates the limit of detection by direct plating (2.8

log10 CFU/g).

Figure A1.2. Pacific oysters showing the injected site for visceral mass (a) and adductor

muscle (b).
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A2. TCBS and conventional MPN comparison for

Vibrio parahaemolyticus enumeration

Table A2.1. V. parahaemolyticus enumeration for two different samples of three oysters

using direct plating on TCBS or conventional MPN at different times after incubation at

20.0 and 30.4ºC. Student’s t test (significant level of 0.05, P >0.05)

0 2,520 3.40 2,400 3.38
0 2,130 3.33 1,100 3.04

24 2,170,000 6.34 24,000,000 7.38
24 850,000 5.93 11,000,000 7.04

57.5 18,800,000 7.27 110,000,000 8.04
57.5 14,800,000 7.17 46,000,000 7.66

12.25 13,500 4.13 11,000 4.04
12.25 19,500 4.29 11,000 4.04
35.25 154,000 5.19 210,000 5.32
35.25 226,000 5.35 110,000 5.04
103.5 91,000 4.96 46,000 4.66
103.5 269,000 5.43 1,200,000 6.08

0.16

0.64

0.83

Storage conditions Direct plating on TCBS Conventional MPN Student's t test
(significance level 0.05)

P valueTime (h) CFU/g log10 (CFU/g)

30.4ºC

0.47

0.06

0.08

MPN/g log (MPN/g)T (ºC)

20.0ºC
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Figure A2.1. V. parahaemolyticus growth profiles for Pacific oysters stored at 20.0 and

30.4ºC enumerated by direct plating on TCBS (▲) or by conventional MPN method (■).

Mean data for each time interval shown in Table A2.1 are used in the graphs.
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A3. V. parahaemolyticus and TVC secondary model data analysis

Table A3.1. Regression data analyses of the secondary models.

Eq. Microorganism Type Regression Coefficients Standard
Error t Statistic P-value Lower

95%
Upper
95%

Intercept -0.405 0.117 -3.447 0.041 -0.779 -0.031
x variable 0.030 0.005 5.815 0.010 0.014 0.047

Intercept -20.131 5.472 -3.679 0.067 -43.676 3.413
x variable 4,131.229 1,538.137 2.686 0.115 -2,486.839 10,749.296

Intercept 0.069 0.020 3.395 0.015 0.019 0.118
x variable 0.010 0.001 9.270 0.000 0.008 0.013

Total viable bacteria count Growth5

V. parahaemolyticus Growth3

V. parahaemolyticus Inactivation4
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Appendix B – Cold chain management tool for oysters: a

case study

B1. Sensitivity analyses for the simulation

Figure B1.1. Tornado plot of model inputs for V. parahaemolyticus levels at consumer

storage for the long supply chain in summer (left) and winter (right).

Figure B1.2. Tornado plot of model inputs for V. parahaemolyticus levels at consumer

storage for the short supply chain in summer (left) and winter (right).
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Figure B1.3. Tornado plot of model inputs for total viable bacteria count levels at

consumer storage for the long supply chain in summer (left) and winter (right).

Figure B1.4. Tornado plot of model inputs for total viable bacteria count levels at

consumer storage for the short supply chain in summer (left) and winter (right).
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Appendix C - Storage temperature effects on bacterial

communities in C. gigas

C1. Clone libraries analysis in fresh and stored Pacific oysters

Table C1.1. Summary of closest related genus to the clones from the different oyster

samples depending on library sample

F4 F15 F30 S4 S15 S30 F4 F15 F30 S4 S15 S30

1 Spirochaetes Spirochaeta 7 3 6 1 2 3 9 5 7 1 2 3

2 Spirochaetes Cristispira 4 0 3 4 1 0 5 0 3 4 1 0

3 Alphaprot. Sphingomonas 6 0 3 3 6 0 8 0 3 3 7 0

4 Alphaprot. Thalassospira 7 12 12 8 1 1 9 21 14 9 1 1

5 Alphaprot. Mesorhizobium 0 0 18 0 2 0 0 0 21 0 2 0

6 Alphaprot. Prostheco-
microbium 0 0 2 0 0 0 0 0 2 0 0 0

7 Alphaprot. Roseobacter 0 2 0 0 0 0 0 4 0 0 0 0

8 Alphaprot. Tistrella 0 0 1 0 0 0 0 0 1 0 0 0

9 Alphaprot. Octadecabacter 0 0 1 0 0 0 0 0 1 0 0 0

10 Alphaprot. Candidatus
Odyssella 0 0 1 0 0 0 0 0 1 0 0 0

11 Alphaprot. Anaplasma 3 0 0 1 0 0 4 0 0 1 0 0

12 Alphaprot.   Candidatus
Midichloria 1 0 0 0 0 0 1 0 0 0 0 0

13 Alphaprot. Rickettsia 1 0 0 1 0 0 1 0 0 1 0 0

14 Alphaprot. Rhodobacter 1 0 0 0 0 0 1 0 0 0 0 0

15 Alphaprot. Filomicrobium 1 0 0 0 0 0 1 0 0 0 0 0

16 Alphaprot. Loktanella 1 0 0 0 1 0 1 0 0 0 1 0

17 Alphaprot. Azospirillum 1 0 0 0 0 0 1 0 0 0 0 0

18 Alphaprot. Amaricoccus 1 0 0 1 0 0 1 0 0 1 0 0

Number of clones Percentage of clones (%)
Sample identification

(closest related genus)

Clones depending on library sample
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F4 F15 F30 S4 S15 S30 F4 F15 F30 S4 S15 S30

19 Alphaprot. Porphyrobacter 0 0 0 1 0 0 0 0 0 1 0 0

20 Alphaprot. Ehrlichia 1 0 0 0 0 0 1 0 0 0 0 0

21 Alphaprot. Paracoccus 0 1 0 0 0 0 0 2 0 0 0 0

22 Alphaprot. Sulfitobacter 0 1 1 0 0 1 0 2 1 0 0 1

23 Alphaprot. Sphingopyxis 0 1 0 0 0 0 0 2 0 0 0 0

24 Betaprot. Polynucleobacter 4 2 2 6 0 0 5 4 2 7 0 0

25 Betaprot. Alcaligenes 0 0 1 1 0 0 0 0 1 1 0 0

26 Betaprot. Burkholderia 0 1 0 0 0 0 0 2 0 0 0 0

27 Epsilonprot. Arcobacter 0 0 0 2 0 5 0 0 0 2 0 6

28 Epsilonprot. Helicobacter 0 1 0 0 0 0 0 2 0 0 0 0

29 Deltaprot. Geopsychrobacter 1 0 0 0 0 0 1 0 0 0 0 0

30 Deltaprot. Desulfuromonas 1 0 0 0 0 0 1 0 0 0 0 0

31 Gammaprot. Legionella 1 0 0 0 0 0 1 0 0 0 0 0

32 Gammaprot. Thioprofundum 1 0 0 0 0 0 1 0 0 0 0 0

33 Planctomycetes Rhodopirellula 0 3 0 0 0 0 0 5 0 0 0 0

34 Planctomycetes Pirellula 0 0 1 0 0 0 0 0 1 0 0 0

35 Verrucomicrobia Pelagicoccus 0 0 1 0 0 0 0 0 1 0 0 0

36 Verrucomicrobia Coraliomargarita 1 0 0 0 0 0 1 0 0 0 0 0

37 Fusobacteria Ilyobacter,
Psychrilyobacter

9 2 2 39 11 18 11 4 2 44 12 20

38 Fusobacteria Fusobacterium 0 0 0 0 0 1 0 0 0 0 0 1

39 Fusobacteria Cetobacterium 0 0 0 0 1 0 0 0 0 0 1 0

40 Firmicutes Bacillus 0 0 0 1 0 0 0 0 0 1 0 0

41 Firmicutes Eubacterium 0 2 0 0 0 0 0 4 0 0 0 0

42 Tenerictues Mycoplasma 1 3 1 3 2 0 1 5 1 3 2 0

43 Tenerictues Spiroplasma 3 3 3 1 4 1 4 5 3 1 4 1

44 Tenerictues Haloplasma. 0 0 1 0 0 0 0 0 1 0 0 0

45 Cyanobacteria Synechococcus 6 10 9 2 0 4 8 18 10 2 0 5

46 Bacteroidetes Alkaliflexus 0 0 0 0 31 7 0 0 0 0 34 8

47 Bacteroidetes Dokdonia. 0 0 0 1 0 5 0 0 0 1 0 6

Sample identification
(closest related genus)

Clones depending on library sample
Number of clones Percentage of clones (%)
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F4 F15 F30 S4 S15 S30 F4 F15 F30 S4 S15 S30

48 Bacteroidetes Psychroserpens 0 0 0 0 1 5 0 0 0 0 1 6

49 Bacteroidetes Bizionia 0 0 0 2 4 4 0 0 0 2 4 5

50 Bacteroidetes Polaribacter 0 2 0 3 2 7 0 4 0 3 2 8

Bacteroidetes
Cytophaga

transferred to
Alkaliflexus

0 0 0 0 4 4 0 0 0 0 4 5

51 Bacteroidetes Eudoraea 0 0 1 0 0 0 0 0 1 0 0 0

52 Bacteroidetes Tenacibaculum 1 0 0 0 1 1 1 0 0 0 1 1

53 Bacteroidetes Salegentibacter 0 0 0 0 1 1 0 0 0 0 1 1

54 Bacteroidetes Cellulophaga 0 0 0 1 0 0 0 0 0 1 0 0

55 Bacteroidetes Actibacter 1 0 0 0 0 0 1 0 0 0 0 0

56 Bacteroidetes Algibacter 1 0 0 0 0 0 1 0 0 0 0 0

57 Bacteroidetes Winogradskyella 1 0 0 0 0 0 1 0 0 0 0 0

58 Bacteroidetes Fulvivirga 1 0 0 0 0 0 1 0 0 0 0 0

59 Bacteroidetes Gilvibacter 1 0 1 0 0 0 1 0 1 0 0 0

60 Bacteroidetes Flavobacterium 2 0 1 1 3 3 3 0 1 1 3 3

61 Bacteroidetes Ulvibacter 0 0 0 2 0 0 0 0 0 2 0 0

62 Bacteroidetes Gramella 0 0 0 0 2 2 0 0 0 0 2 2

63 Bacteroidetes Prolixibacter 0 0 0 0 3 0 0 0 0 0 3 0

64 Bacteroidetes Robiginitalea 0 0 1 0 0 0 0 0 1 0 0 0

65 Bacteroidetes Croceitalea 1 0 0 0 0 0 1 0 0 0 0 0

66 Bacteroidetes Fluviicola 0 0 1 0 0 3 0 0 1 0 0 3

67 Bacteroidetes Krokinobacter 0 0 0 0 0 1 0 0 0 0 0 1

68 Bacteroidetes Lishizhenia 0 0 0 0 0 1 0 0 0 0 0 1

69 Bacteroidetes Lacinutrix 0 0 0 0 0 1 0 0 0 0 0 1

70 Bacteroidetes Lutimonas 0 0 0 0 0 1 0 0 0 0 0 1

71 Bacteroidetes Bacteroides 0 0 0 0 0 1 0 0 0 0 0 1

72 Bacteroidetes Persicivirga 0 0 0 0 0 2 0 0 0 0 0 2

73 Bacteroidetes Olleya 0 0 0 0 0 1 0 0 0 0 0 1

Sample identification
(closest related genus)

Clones depending on library sample
Number of clones Percentage of clones (%)

Fresh (F) and stored (S) Pacific oysters at 4, 15 and 30ºC



Appendixes

- 212 -

C2. TRFLP profiles for clones
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Figure C2.1. TRFLP profile for clone (JF827404) identified as Psychrilyobacter spp.
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Figure C2.2. TRFLP profile for clone (JF827561) identified as Psychrilyobacter spp.
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Figure C2.3. TRFLP profile for clone (JF827488) identified as Alkaliflexus-related spp.
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Figure C2.4. TRFLP profile for clone (JF827564) identified as Alkaliflexus-related spp.


