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management performance clusters, except for (i) the low cost and fragmented management cases

which are similar to little spatial management case, but with less catch and effort; and (ii) for sub-

clusters of the “integrated management”: one (made up of regime shifts, extreme events, blooms etc.)

has higher primary production peaks; the high compliance case has target stock status at maximum
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greatest performance under any strategy or scenario (with acclimation) and the axes marked with a *

are inverted so the larger the value the better the performance. The strategies shown represent each of
the management performance clusters, except for ecosystem cap on landings which sits midway

between the “little spatial management” and “seasonal closures” cases for all performance measures
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This report summaries a multi-year effort to model potential futures for southeastern Australian marine
and coastal waters under climate change. The work was part of a multi-partner collaboration formed to
provide information in support of understanding and risk assessment. The membership of the group
included State and Commonwealth agencies, CSIRO, the University of Tasmania and the Fisheries Research
and Development Corporation. Together, this collaborative group developed a South-Eastern Australian
Program to address adaptation of fisheries and aquaculture to climate change through coordinated action,
which included social research on decision drivers, impact and risk assessment methods. The modelling
work presented in this report was a means of synthesizing all the available information so that potential
alternative futures could be explored. The outcome of these simulations can then provide guidance for
policy makers on the advantages and problems associated with a range of management arrangements and
development scenarios.

Climate change will be a driver that influences ecosystems and the sustainability of industries dependent
upon them, in turn impacting on the value of resources and ecosystem services to the community.
Biophysical consequences of global change are likely to include changed oceanic conditions (e.g. currents,
temperatures, sea levels, winds, stratification, oxygen concentrations, nutrient availability, pH and extreme
events), which are expected to impact the distribution and abundance of habitats, flora and fauna; and
then fisheries distributions and productivity in turn; which then influence markets, food security, social and
economic flow-on effects. Moreover, global and national policy responses for mitigating and adapting to
global change are expected to influence input costs (e.g. fuel and bait); providing challenges for existing
business, but also opportunities for new kinds of businesses.

Southeast Australia is a global hotspot for climate change (Hobday and Pecl 2014), but is also amongst
some of the most productive in Australia. In addition, they are the location of many marine industries and a
large proportion of Australia’s population. For industries, such as fisheries and aquaculture (two important
industries in the region), and societies who rely on marine resources, to remain viable despite the changes
they will need to adapt to change and uncertainty, as they have adapted to many other changes through
time. The response of these industries and communities will be dependent upon how well prepared and
adaptable the sectors, management and communities are. A sound risk-based and integrated approach is
critical for informing the decisions of sectors and management in preparing for climate change.

This project used end-to-end (whole-of-system) ecosystem models to help understand both the form of
potential changes, but also potentially resilient adaptation and management options. End-to-end
ecosystem simulation models, like Atlantis, have been recognised as an effective means of consider many
of the interacting components of socio-ecological systems (biophysical, social and economic) and can be a
useful tool for synthesising information, clarifying system understanding, exploring tradeoffs, opportunities
and challenges, laying out potential outcomes and highlighting contradictory, uncertain or missing
information. These models explicitly include the spectrum of system processes and components needed to
represent all the system components (e.g. environment, food webs, habitats and all relevant marine
industries; including recreational and commercial fisheries and aquaculture).

Atlantis models have a decade plus history of use in the southeast marine region of Australia, in both
Commonwealth and State waters, where they have been used to consider the broader regulatory context
of the system (e.g. potential alternative futures for the Southern and Eastern Scalefish and Shark Fishery;
Fulton et al 2014). These models were further refined for this project so that they included biodiversity and
evolution in addition to the social drivers, economic (and market) components, biophysical aspects of
climate change and the main management types in the region (including closures, incentive-based
structures and gear controls). The objective of the project was then to use these models to:

1. Assess the challenges to recreational and commercial fisheries and aquaculture management
arrangements within a changing climate

xii | Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations



2. ldentify potential barriers (for both Government and industry) to adaptation

3. Inform on changes to management arrangements that could provide for sustainable management
of the resource, provide for efficient operation of markets, foster industry adaptation and enable
businesses to manage challenges and take advantage of any emerging opportunities in the face of
uncertainty that will be associated with future climate impacts

4. Determine how to detect and attribute significant changes to the system to inform a management
response in the face of considerable on-going uncertainty

The results of the Atlantis models suggested that six types of potential barriers to adaptation are active in
southeast Australia, with the anthropogenic ones potentially posing the greatest future challenges. The first
type of barrier is related biological and ecological processes, such as shifts in primary productivity, or
changing abundance and spatial distribution of species that may disrupt the ecosystem. Across the range of
management strategies, parameterisation and potential emissions scenarios explored using the models
there is a non-linear relationship between the level of emissions (climate change scenario), biodiversity and
socioeconomic state, with a threshold point occurring around 550-560ppm of atmospheric pCO,e. Prior to
this point the ecosystem components are largely biologically capable of adapting, meaning that associated
socioeconomic impacts of changes in target species and their food webs is less than the extremes
suggested by taxonomically based exposure assessments. However, beyond 550ppm biological adaptation
and acclimation appears to be overwhelmed, with species relying on spatial range shifts as the major
coping mechanism — ultimately potentially running out of shelf habitat in the 2070s. This level of change
can express itself in regime shifts, particularly off Eastern Bass Strait resulting in a significant shift in
productivity and system structure — often favouring cephalopods and other pelagic fast growing, small
bodied species. Chondrichthyans also often perform well, but this may be a model artefact as little is
known of their likely responses to environmental shifts.

The remaining barriers to adaptation are all to do with the human components:

e Fisher behavioural barriers to adaptation are driven by personality and many forms of capital,
together they mean that not all fishers have equal flexibility to respond and adapt, with the smaller
operators apparently the least able to cope;

e Governance and regulatory barriers to adaptation may be minimised under sound sustainable
adaptive management (and can support a transformational change), but features of the regulatory
system may still inhibit adaptation, either via allowing fisheries to synergistically interact with
environmental change to exacerbate ecological shifts, or by imposing delays in the management
system, or by promoting strategies that cause economic and social hardship lowering adaptive
capacity;

e Economic and market related barriers to adaptation may be confounded by social drivers, or may
be shaped by short term drivers which can act counter to what is required for long term
adaptation;

e Technological barriers to adaptation are only beneficial if technologies needed to change targeting
or other behaviours exist, or if current technology encourages behaviours or system changes that
are adaptive;

e Knowledge based barriers to adaptation can undermine adaptive management and system
understanding, which is reliant on quality information, this means uncertainty, insufficient
information or poor communication can hinder decision making and stall adaptation.

Significant social, market and industry adaptation is required to remain viable through such trying times.
For example, seafood markets may need to be much more diverse in 2050-2070.

Overall integrated management has the most consistent and balanced performance relative to
conservation, industry and economic objectives. Specific management options (such as extensive spatial
management) can out perform integrated management for a sub-set of objectives, but at the expense of
performance in terms of other objectives. The synergistic action of changes in ocean temperature, ocean
acidification and human use on southeast Australian marine ecosystems supports previous suggestions that
effective resource management is an effective means of providing ecosystems with an improved capacity
for adaptation. For example, in offshore systems paying careful attention to the management of

Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations | xiii



mesopelagic species may provide greater than expected returns in protecting the food web from both
direct and indirect synergistic effects of fishing and climate change on predator-prey relationships.

While integrated adaptive management across all sectors active on the shelf and in the coastal zone leads
to the most robust system state, some of the required regulatory and industry shifts are currently
unpalatable to at least some segments of Australian society. For instance, the simulations showed that
effective management is required across fisheries; this would require more stringent regulation of
recreational fishing (which is effectively open access at present). Simulations also indicated that smaller
boats that were socially tied to a specific geographic region (and port) were economically vulnerable to the
loss of target species, but also ecologically damaging. This is because they caused more localised
depletions, as they were forced to rely on nearby (and potentially marginal) stocks instead of being able to
shift to the location of the most robust stocks. This means that either the society at large would need to be
carefully led through why larger vessels are required (and can be used sustainably), so as to avoid the kind
of controversy seen in 2013 around the potential use of a “super trawler”. Alternatively, industry or
government restructuring and resettlement plans would be periodically required to relocate and refit the
vessels according to new ecological states. Inertia in the management system (e.g. lags in multi-year
assessments) and industry responses have serious implications for stock status and harvest volatility when
system productivity is changing.

It must be stressed however that while system models can be useful learning tools they are the
mathematical equivalents of cartoons of the system; useful caricatures but not a crystal ball. They can
provide ideas around challenges that alternative futures may hold, but they are unlikely to predict the exact
form any one future will take. This is why it will be important to follow up on this work by trying to reduce
some of the uncertainty evident in the broad range of possible outcomes seen under the model
parameterisations. Good decision-making is reliant on good information, sustained observing of the marine
system is required to really detect and attribute current and future changes. Such data streams would help
constrain uncertainty. More targeted information is also required. Improved understanding of responses of
species from southeast Australia, especially large-bodied species like sharks (etc.) needs to be gained as
rapidly as possible to determine which species are most likely to be impacted in future and where
management attention is most needed. Scientifically there is also a need for more dedicated modelling
tools targeting species that may have a future spatial distribution pattern that is drawn out over source and
sink locations, complicating management across jurisdictions. There would also be significant benefit in
initiating discussions around what would be required to operationalize integrated adaptive management
(across all users of the marine and coastal environments).

A key step in making sure that maximum benefit is gained from the modelling work and the SEAP body of
work more broadly is to make sure it is broadly disseminated. To that end the seaview

( ) and Redmap websites ( ) will be updated and cross connected
so that all results and factsheets are publically available. Simple animations could also be done to
communicate the major findings from the work in a simple form. A couple of animations are already under
development and will be posted to the seaview website, but there is plenty of scope for future targeted
projects to create a larger library of animations for communication purposes. Given the sensitivity of the
system to barriers to adaptation associated with human responses, education around potential changes
and adaptation strategies (across all parts of society) are very important if maladaptive responses are to be
avoided.

Climate change, adaptation, fisheries, aquaculture, ecosystem modelling, management strategy evaluation
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The objectives of this model-based research were

1. Assess what the challenges are for recreational and commercial fisheries and aquaculture
management arrangements within a changing climate

2. ldentify potential barriers (for both Government and industry) to adaptation

3. Inform on changes to management arrangements that provide for sustainable management of the
resource, provide for efficient operation of markets, foster industry adaptation and enable
businesses to manage challenges and take advantage of any emerging opportunities all in the face
of uncertainty associated with climate impacts

4. Determine how to detect and attribute significant changes in the system to inform a management
response in the face of considerable on-going uncertainty
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Global change via cumulative human action on Earth’s systems has the potential to reshape the
environmental conditions experienced in Australia’s southeast, with the region already identified as a
global hotspot (Wu et al 2012, Hobday and Pecl 2014). The latest IPCC scenarios for fossil fuel emissions
(Moss 2010) suggest that within the next 60-100 years ocean surface temperatures are likely to warm by
1.8 - 4°C, sea level is predicted to rise by 0.2-1.0m, ocean acidification may lead to declines in pH of 0.14-
0.5 (IPCC 2013, 2014) and storms are likely to intensify (Knutson et al 2010). The projected rise in global
population to 9 billion by 2050 (UN 2009) is also expected to see the majority of the worlds population
concentrated along coastal fringes (Small et al 2000, CCSR 2006), much as it is already in Australia (ABS
2012). The combination of rising and intensifying coastal populations, marine resource use and
environmental change has the potential to impact upon many critical marine ecosystem services (Cheung
et al 2008, Cheung et al 2009, Fulton 2011, Barange et al 2014).

Marine species are influenced by their surrounds and the shifting pressures in the southeast region of
Australia are already leading to significant shifts in the distributions of some species (Last et al 2011, Pecl et
al 2011), and are likely to alter survivorship (Fabry et al 2008; Hall-Spencer et al 2008), foraging and
reproductive success (Kleypas et al 2006, Widdicombe and Spicer 2008, Bograd et al 2009, Doney et al
2009, Munday et al 2009). This ecological change has the potential to shift species distributions and
community compositions, which in turn has fisheries and other social and economic implications (Fulton
2011, Griffith et al 2011, Griffith et al, Barange et al 2014). The majority of recent projections (IPCC 2013,
IPCC 2014, Barange et al 2014) indicate that these shifts will not all be negative, with many opportunities
available for Australian (and global) fisheries and aquacultural production so long as Australian industry and
society has sufficient adaptive capacity to make the most of opportunities presented.

Adaptation and transformational change is the focus of extensive and growing bodies of literature. All
forms of capital — natural, built, human (including psychological), knowledge, financial and social — have
been considered in terms of the barriers to adaptation (Adger and Vincent 2005, Marshall and Marshall
2007, Cinner et al 2009, Productivity Commission 2012). Nevertheless the feedbacks between the different
forms of capital has not received as much attention, with shifting system structure lowering some barriers,
but potentially raising or strengthening others. For example, demographic truncation, evolution to smaller
size and restructuring of food webs (Frank et al 2005, Ottersen et al 2006, Audzijonyte et al 2013a) towards
faster turnover “weedier” species, altering responses to environmental shifts (Planque et al 2010).

Improved knowledge of interactions between ecosystem components and cumulative stressors has the
potential to allow for more informed decision-making that breaks away from classical approaches that have
typically been based on combating specific individual effects (Crowder et al 2006). While it is true that
dealing with multiple stressors is non-trivial, simulation models that reproduce key features of the
combined system provide a valuable test-bed for exploring potential alternative futures (Fulton et al 2014)
and identifying potential barriers to adaptation that arise from the kinds of multifaceted interactions typical
of systems as complex as those in Australia’s south eastern marine and coastal waters (Travers et al 2007,
Fabry et al 2008, Doney et al 2009, Blackford 2010, Fulton 2011).

This report presents the outcomes from a simulation-based analysis of the potential futures of these
southeastern marine ecosystems, fisheries and associated aquaculture industries. It considers how the
ecosystem and human use may be reshaped into the future and what barriers to adaptation may exist
within the system.
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The simulations used to explore the alternative futures represented in this report were done in the context
of a management strategy evaluation (MSE) framework. This is a simulation-based technique which
attempts to model each part of the adaptive management cycle (de la Mare 1996, 1998; Figure 1). Evidence
based decision making and updating that underlies adaptive management can be undermined in situations
like that faced under climate change. This is because of delays in responses so that adaptive iterations
occur on generational time scales and because decisions could have highly undesirable or irreversible
outcomes. It is desirable in such circumstances to simultaneously evaluate multiple alternatives; the
advantage of doing that via simulations is that it can happen with rapidity free of real world consequences
for the poor performing options. Lastly, such a model based process also provides learning tools, so that a
broad range of stakeholders can have input and modify requests in response to emerging concerns and
changing circumstances (for instance a decade ago ocean acidification was rarely mentioned where it is
now a chief concern for bivalve aquaculture in some locations).
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Industry independent monitoring

MSE has been used in fisheries for more than two decades, with the method now widely accepted as a best
practice approach for single stock and ecosystem-level management questions. The MSE approach is the
corner stone of assessments by international bodies such as the International Whaling Commission (e.g.
IWC 1992, Kirkwood 1997) and CCAMLR (de la Mare 1996), but also national fisheries departments in South
Africa (Punt and Butterworth 1995, Cochrane et al 1998, Butterworth et al 1998); Europe (Horwood 1994,
as of Butterworth and Punt 1999); New Zealand (Starr et al 1997); Australia (Punt and Smith 1999) and
some of the US fisheries councils (e.g. North Pacific Fishery Management
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Council). Useful reviews of the approach can be found in Butterworth and Punt (1999), Sainsbury et al
(2000), Rademeyer et al (2007) and Bunnefeld et al (2011).

A particular strength of the MSE approach is that it does not try to find a single optimal solution based on a
single model. Instead alternative strategies and hypotheses are evaluated using multiple candidate models.
In this way the outcomes can then be evaluated across the models to check for the robustness of the
results given uncertainty in parameters, connections (e.g. in the food web or social networks), responses
and mechanisms. One way of visualising this array of alternatives is as a cube, with dimensions spanning
biological and environmental uncertainty as well as the management strategies of particular interest
(Figure 2) — where each cell (square) in the cube represents a realised combination of biological
uncertainty, environmental uncertainty and management strategy. In this study three emission scenarios,
two ecosystem models (each with multiple productivity and food web parameterisations), eighteen system
contexts and nine management strategies were evaluated. Each of these aspects is described in more detail
below.

As the full set of combinations wasn’t computationally tractable all management options were run for both
a 2010 system context and a full cumulative change (“worst case”) scenario, as this will bound the extent of
possible outcomes. Then to give insight into how other contexts may sit between these extremes the other
contexts (e.g. blooms, productivity shifts, shifted markets, new fisheries, range extending species etc) were
run under the best performing (integrated) management. This set of simulations was repeated under
alternative emissions scenarios — the IPCC defined Representative Carbon Pathways (RCP) 3, 4.5 and 8.5.
For reference (as comparative controls), versions of the status quo and cumulative change scenarios were
run (i) with no climate shifts and (ii) without evolution and acclimation. In total 310 simulations were run
for each of the Atlantis models - Atlantis-SE and Atlantis-SEAP.

/

Biological
Uncertainty
b~  (e.g. productivity)

7

Environmel;tal \Q =

Uncertainty
(e.g. magnitude of change)

The modelling framework used as the basis of this MSE was Atlantis, which is a whole of system (or end-to-
end) ecosystem model (Fulton et al 2007, Fulton et al 201143, Fulton et al 2014) that has been implemented
in a large number of systems around the world (Figure 3). Atlantis includes representations of each
significant component of the adaptive management cycle - biophysical system, human users (industry) and
their socioeconomic drivers, monitoring, assessment and management decision processes (Figure 4). All of
these components are dynamic and two-coupled (i.e. they interconnect and feedback on each other within
a simulation).

4 | Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations



Atlantis is not a single model, it a modelling toolbox that allows the user to make a model out of the many
different options available for each process represented in the model. Consequently a full exposition of the
Atlantis equations is not feasible here, but documentation and access to the code is available on a wiki at

For the purposes of exploring alternative futures for southeast Australian fisheries and aquaculture two
ecosystem models were used. One focusing more on the commonwealth waters (Atlantis-SE) and one more
detailed for shelf waters (Atlantis-SEAP). Both of these models are deterministic, with (coarsely) spatially-
resolved 3D biophysical sub-models that track nitrogen and silica flows through the food web on a 12 hour
time-step. Ecologically the model explicitly represents consumption, production, waste cycling, movement,
recruitment and habitat dependency. Physiological responses to ocean pH, acclimation and evolution were
also specifically added for this project. The physical environment (including water and substrate properties
and processes) are represented using irregular polygons matched to the major geographical and
bioregional features of the simulated marine system. The anthropogenic components of the model
represents the impact of pollution and coastal development, but is focused on the detailed dynamics of
fishing fleets and management regimes. The exact form used can again be drawn from a wide list of
options. Atlantis-SE includes explicit socio-economically driven effort allocation, while Atlantis-SEAP uses a
simpler CPUE based effort allocation model. Both Atlantis models used here incorporate regulation based
on gear restrictions, individual transferable quotas, spatial and temporal zoning, discarding restrictions, size
limits, bycatch mitigation, and dynamic reference points and decision 