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1 Non-technical Summary 

 

2010/044: Quantitatively defining proxies for biological and economic 

reference points in data poor fisheries 

PRINCIPAL INVESTIGATOR: Dr Shijie Zhou 

ADDRESS: 
CSIRO Marine and Atmospheric Research 
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BRISBANE     QLD     4001 
Australia 
shijie.zhou@csiro.au 
 

OBJECTIVES: 
1. Build on current work for species in data poor fisheries 

under harvest strategies that: (1) identify biological 
reference points with associated performance measures and 
proxies, and (2) test harvest strategies and quantitatively 
defines limit and / or target reference points in line with the 
settings of the Commonwealth Harvest Strategy Policy. 

2. To identify cost-effective methods of incorporating 
economic indicators into biological reference points that 
could be determined in Objective 1. 

3. To develop case studies that demonstrate how these 
methods could be implemented in other Australian fisheries. 

 

 

OUTCOMES ACHIEVED TO DATE  

 A means to derive good estimates of economic variable values for use in bioeconomic 

analyses when some biological models exist but economic data are unavailable. 

 A means to estimate fishing mortality that equates to maximum sustainable yield (FMSY) when 

fisheries data are extremely limited. 

 A means to derive estimates of effort (and/or biomass) at maximum economic yield given 

FMSY and limited information on the type of fishing activity.  

 Developed and tested a simple catch rate gradient based harvest control rule for data-poor 

fisheries. 

 Established relationship between fishing mortality-based biological reference points 

(including FMSY) and fish life-history parameters, particularly the natural mortality rate. 
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The implementation of the Commonwealth Harvest Strategy Policy requires limit and target 

reference points for each fishery.  These reference points can be both biomass-based (e.g., BTARG, 

BMSY, BLIM etc.) and fishing mortality-based (e.g., FTARG, FMSY, FLIM etc.).  Estimating these reference 

points typically requires extensive biological and economic data and has only been achieved for a 

handful of data-rich target species.  This project aims to develop innovative approaches to derive 

reference points using limited information.  It involves both economic analysis and biological 

modelling.  

Proxy measures for economic target reference points 

The economic component of the project aimed to develop a methodology allowing proxy measures 

for maximum economic yield to be identified where economic information is limited. The economics 

component of the project involved three main activities: reviewing the literature on estimating 

proxy measures for MEY in data poor fisheries; estimating costs structures in fisheries where 

information was limited; and deriving “rules of thumb” that link fishery characteristics to ratios of 

BMEY to BMSY. 

Relatively few previous studies had attempted to estimate economic target reference points in data 

poor fisheries. The use of capacity utilisation measures have been proposed as a method in data 

limited environments as an indication as to the level of excess capacity in a fishery, and also to 

estimate what a fully efficient fleet may look like for a given target catch level. Capacity analysis 

ranged from approaches that just relied on catch and effort data, to more detailed approaches that 

incorporated economic information also (costs of fishing and prices). Other data poor approaches – 

 Developed and applied a statistical method for estimating gear efficiency, biomass, and fishing 

mortality based on catch data alone. 

 Developed methods to estimate catch-based or biomass-based reference points (including 

virgin biomass, maximum sustainable yield, limit biomass, and depletion) using primarily catch 

history.    

 

The outputs from this project will guide fishery management agencies in their development of 

policies and management rules. The final report will be made available to the relevant 

management agencies and industry, and findings will be communicated to various 

stakeholders further through seminars, meetings, publications and conferences. 
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aimed more at harvest control rules rather than defining target reference points – involved catch per 

unit effort indicators. 

The second stage of the study aimed at identifying a generic approach to estimating the key 

economic variables based on the data that are likely to be readily available for fisheries (in the 

absence of actual economic data). These cost estimates could be incorporated with biological 

models where available for bioeconomic analysis. The approach was based on econometric 

modelling of the main cost components of fishing operations, using information on the technical 

characteristics of fishing vessels and their fishing activity that is generally available. Economic data 

for a wide range of fisheries (both Commonwealth and South Australian) were used to derive simple 

relationships between the costs of fishing and the type of fishing activity. The key cost components 

that were modelled were variable costs (separated into fuel and oil, crew, freight and marketing, 

and other variable costs), quasi-fixed costs (including repairs and maintenance costs), fixed costs and 

capital and depreciation costs. Reasonable estimates of most cost components could be made given 

information on the average size of the vessels, their main fishing gears, the number of days fished, 

and the type of management under which vessels operate.  

The third stage of the research involved determining a methodology to identify proxy measures for 

EMEY (and BMEY) in fisheries in which only limited data are available. This involved identifying a generic 

model linking effort and fishing mortality at MSY, which a range of simple methods allow to estimate 

even with very limited catch and effort data, to effort and fishing mortality at MEY. Based on the 

static version of this generic model, it was then shown that the cost share of revenue - defined as 

the cost per unit catch divided by the price per unit catch - at MSY is a feasible proxy measure by 

which the optimal ratio of biomass and effort can be derived. In the dynamic model, optimal effort 

and biomass levels are also dependent on the ratio of the discount rate to the growth rate of the fish 

stock. While these cost shares of revenue at MSY are generally unknown, it was possible to derive 

reasonable estimates of these from the economic data used in the empirical analysis. The main 

variables influencing these cost shares were shown to be the vessel length, the fishery types to 

which they belong, as well as the average beach price of the fish landed by the vessels. Based on 

knowledge of these variables for a particular fleet, it is thus possible to estimate the likely cost share 

of this fleet, and from this, using the results of the generic model, to estimate the likely ratio of EMEY 

to EMSY for a particular fishery.  

Development of biological reference points (BRP) for data-poor fisheries 

Several methods have been developed, tested, and applied to case study stocks.  
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We derived fishing mortality-based biological reference points (FBRP) for data-poor fish species by 

conducting a meta-analysis on 245 fish species worldwide and linked three types of reference points 

(FMSY, Fproxy, and F0.5r) to natural mortality M and other life-history parameters (LHP). We used 

Bayesian hierarchical errors-in-variables models to investigate the relationships and included the 

effect of taxonomic class and order. We compared various models and found that natural mortality 

is the most important LHP affecting FBRP. The best model results in FMSY = 0.87 M (SD 0.05) for 

teleosts and FMSY = 0.41 M (SD 0.09) for chondrichthyans. Fproxy based on per-recruit analysis is about 

15% smaller than FMSY. Results could be used to estimate FBRP for many data-poor species when some 

life history parameters are available.    

A key feature of the Commonwealth Fisheries Harvest Strategy Policy is a set of biomass-based 

biological reference points (BBRP), including BTARG, BMEY, BMSY, BLIM, etc. Till now these reference points 

have only been estimated for TIER 1 data-rich species. We developed several methods to estimate 

BBRP.   

We first attempted to estimate biomass from catch data, which involved a major innovation—

estimating gear efficiency. The new method, referred as cross-sampling method, enables us to 

derive gear efficiency and abundance from catch data alone, circumventing traditional costly field 

experiments. The exceptional capacity of the cross-sampling method is empowered by utilizing 

mixed parametric statistical distributions and Bayesian techniques. By applying multiple gears, the 

method can be applied to difficult situations where individuals may have a non-random, aggregated 

distribution and where local abundance may vary at each sampling. We applied the cross-sampling 

method to five fish species (Tiger Flathead, Jackass Morwong, John Dory, Gemfish, and Ruby 

Snapper) and estimated their vulnerability to several gear types, including longline, trawl, seine, 

gillnet, fish trap, and minor lines (e.g., dropline, handline, etc.). The only source of data is the 

commercial logbook. We then modelled fish density using a general additive model (GAM). Together 

with distribution area, either from an existing distribution map, or from historical logbook data, we 

were able to derive annual abundance (biomass) for these case-study species. From estimated 

biomass, annual fishing mortality rates can be readily derived.  Fishing mortality in turn can be 

compared with reference points derived from life-history parameters to signal whether current 

fishing intensities are sustainable. 

We then developed three interconnected methods for estimating BBRP. There have been a few 

courageous attempts in the vein of stock reduction analysis (SRA) to achieve the unachievable: using 

catch data and some life-history parameters to derive reference points such as MSY, BMSY, and BLIM. 

We advanced similar ideas in this report. First, we developed a deterministic chase-catch (CC) 
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method to estimate BBRP using catch history, natural mortality rate, and stock status (either biomass, 

fishing mortality, or depletion) in one recent year. Second, a conditional stochastic stock reduction 

analysis (CSSRA) extends the CC method through stochastic simulations controlled by multiple 

conditions. Systematic simulations show that these approaches can produce reasonably accurate 

results where the bias in the key output parameters (e.g., virgin biomass B0, population growth rate 

r, maximum sustained yield MSY, and depletion ratio By/B0), is generally smaller than the potential 

bias in the inputs. However, the form and parameters of the priors can affect the results and it is 

difficult to choose priors. We applied these approaches to two case study species, Tiger Flathead and 

Jackass Morwong, because these TIER 1 species have full stock assessment results for comparison.  

The results from CC and CSSRA appear to be mixed: the estimate of MSY is more robust than other 

parameters such as B0 and depletion.  

The CSSRA and other similar methods require prior specification of key inputs such as carrying 

capacity K and population growth rate r, whereas the form of prior distributions and their 

parameters will affect the results. To resolve the difficulties of determining the priors for many data 

poor species, we finally developed an innovative “prior-free” approach to avoid these difficulties. 

We focused on posteriors instead of priors, that is, we used unconstrained priors for K and r, and 

closely examined the results after retaining viable iterations and excluding unlikely values.  Because 

K and r are negatively correlated and their log-log plot forms a straight line within the viable range of 

combinations, the retained data points on this line contain the likely true values. We conducted 

simulations to demonstrate the approach and applied the method to four case study species: Tiger 

Flathead, Jackass Morwong, John Dory, and Eastern Gemfish. Using primarily catch data, this simple 

posterior-focused method results in improved biological reference points (BBRP), including B0, MSY, 

BMSY, FMSY, and depletion status. 

 

Key words: data-poor, reference point, bioeconomic, life history, gear efficiency, biomass 

estimation, fishing mortality, harvest control rule
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2.1 Background  

In 2007, the Australian Commonwealth Fisheries Harvest Strategy Policy was developed (DAFF 

2007).  The objective of this policy is the sustainable and profitable utilization of natural aquatic 

resources.  The Commonwealth Harvest Strategy Policy relies on developing limit and target 

reference points for each Commonwealth fishery, with the former aimed at ensuring stocks remain 

above a critical minimum level and the latter aimed at identifying the target stock level that 

management should aim to achieve.  The harvest strategies for each Commonwealth fishery aim to 

establish a target biomass point BTARG equal to the stock size required to produce maximum 

economic yield (BMEY) and to ensure fish stocks remain above the limit biomass BLIM at least 90% of 

the time.  There is considerable interest in the harvest strategy policy by many State management 

agencies, and it is likely that – at some point in the future – similar policies will be in place at the 

State level. 

For many larger Commonwealth and State fisheries, there is a collection of both biological and 

economic information that can be used to meet the goals of a harvest strategy.  For example, the 

management of the NPF reflects the use of both biological and economic information to set 

management targets consistent with the MEY principal.  However, for many of the smaller fisheries 

there is limited availability of biological and economic data, precluding the use of sophisticated 

modelling techniques and analysis, such as bio-economic modelling and profit/productivity analysis 

in the management of these fisheries.  Further, many of the harvested species in Commonwealth 

and State’s fisheries do not have sufficient data to allow formal stock assessment to establish either 

biological or economic reference points.  These fisheries are typically referred to as "data poor".  

There are some stocks existing in "data poor" fisheries for which some limited biological information 

is available such as length frequency, weight-at-age, and CPUE time series.  These limited data may 

allow simple analyses such as yield-per-recruit, catch curves, biomass dynamics modelling, etc.  

However it is the case that many stocks in "data poor fisheries" have even less biological information 

than this, for example, catch only, and very limited economic information.  

In this report, we define data-poor fishery as a fishery where available data are insufficient for 

conducting a conventional stock assessment and/or bioeconomic analysis, which includes fisheries 

with few or limited data, as well as poor data quality.  For simplicity, we do not intend to explicitly 

distinguish between the terms of “data-poor” and “data-limited” and may use both terms 

interchangeably.  
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The Australian Bureau of Agricultural and Resource Economics and sciences (ABARES), and the 

former Bureau of Rural Sciences (BRS), produces annual "Fishery Status Reports" (Woodhams et al. 

2011).  However, stock status of many stocks in Commonwealth managed fisheries are uncertain in 

regard to overfishing or over fished, because many of the fish stocks are "data poor" and have not 

been assessed using quantitative methods.   

Just as the cost of acquiring accurate economic and biological information for data poor fisheries is 

prohibitive, some management arrangements (such as ITQs) are too costly to implement.  

Consequently, a different approach is required.  For smaller fisheries, a more generic set of 

information is required that can assist fisheries managers to integrate economic objectives in a 

practical and cost-effective manner and be useful for monitoring the economic health of these 

fisheries.  

To ensure sustainable exploitation of these data-poor stocks, research is needed to develop suitable 

quantitative reference points or proxies consistent with the intent of the Commonwealth Harvest 

Strategy Policy.  In addition to biological sustainability, Harvest Strategy Policy requires that the 

maximum economic yield be achieved for the fishing fleet.  Hence, it will be important that any 

target reference points adopted for fisheries also incorporate economic considerations, so that the 

MEY objective of maximising the long term economic returns to the fishing industry from the 

management of the fishery is actively pursued.  

In 2009, Commonwealth Fisheries Research Advisory Board (ComFRAB) requested proposals to 

develop innovative methods for incorporating economics into harvest strategies without 

bioeconomic models and quantitatively defining proxies for limit and target reference points in data 

poor fisheries.  While identified in the call as potentially two separate projects, there is considerable 

overlap, particularly in relation to the estimation of target reference points that, under the harvest 

strategy policy, require an economic focus.  As a result, this research project combines two initial 

projects, “Incorporating economics into harvest strategies without bioeconomic models” and 

“Quantitatively defining proxies for limit and target reference points in data poor fisheries”.   
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3 Need 

The Commonwealth Harvest Strategy Policy requires the estimation of specific reference points for 

each stock to which the policy applies.  Unfortunately, it is challenging, if not impossible, to estimate 

directly such reference points for many stocks due to limited, or absence of, economic data as well 

as biological data.  In most cases, this is due to the relatively small size of the fishery or the relatively 

low economic importance of the species concerned, making the routine collection of appropriate 

data too costly.  The current TIER system of assessment only attends to those fisheries that can 

either have a detailed quantitative assessment (TIER 1), have limited biological data and some 

ageing data (TIER 3), or have meaningful catch and catch rate statistics (TIER 4).  The methods and 

proxies already in place provide a means of designating a target and limit in terms of catch rates and 

catches.  However, these reference points are only useful for those species for which catch rate data 

are a meaningful reflection of stock status.  There are many species for which catch rates, even if 

available, are very poor performance measures.  Alternative methods and proxies need to be 

developed for even lower TIERs that provide for a consistent and defensible approach across all data 

poor fisheries.  In most of these fisheries, economic data will also be absent, so some consistent 

means of developing meaningful and defensible target reference points needs to be developed. 
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4 Objectives 

1. To build on current work for species in data poor fisheries under harvest strategies that:  

• identify biological reference points with associated performance measures and proxies, and 

• test harvest strategies and quantitatively defines limit and / or target reference points in line 

with the settings of the Commonwealth Harvest Strategy Policy. 

2. To identify cost-effective methods of incorporating economic indicators into biological 

reference points that could be determined in Objective 1. 

3. To develop case studies that demonstrate how these methods could be implemented in 

other Australian fisheries. 

 

 This report contains two sub-projects: Economic component — target reference points and 

biological component — developing methods for biological reference points. In the following 

Methods, Results, and Discussion sections, materials are structured against these two major 

components.  
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5 Methods 

Economic analysis — target reference points for 

data-poor fisheries 

5.1 Review of the literature on setting economic target reference 

points in data poor environments 

Current experiences in setting economic target reference points were examined by reviewing the 

available literature.  Attention was primarily given to peer-reviewed published journal articles, but 

“grey literature” (e.g. reports, working papers, conference papers etc) was also examined where 

appropriate. Key search engines used for finding appropriate references included Google Scholar, 

Sciencedirect, Scopus and Econlit.  

The review was undertaken in three components – a review of the theory underlying maximum 

economic yield (MEY) as a target reference point and how it has been implemented in practice, a 

review of alternative decision support approaches in data poor situations, and a review of empirical 

applications where models have been developed to assess MEY. 

The results of the review are presented in the results section. 

 

5.2 Developing generic cost models 

5.2.1 EMPIRICAL APPROACH 

Critical to even proxy measures or indicators of MEY is some understanding of the cost structure of 

the fishery. The purpose of this part of the project is to develop a generic model based on fishery 

characteristics that can be used to estimate likely cost structures for fisheries for which no cost 

information exists. This includes the data poor as well as data limited fisheries. Given the type of 
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fishery and characteristics of the vessels, the model will be able to indicate – at a minimum – if it is 

likely to have a high, medium or low unit cost of effort. 

There is an a priori expectation that fishing costs are related to the characteristics of the vessel and 

the type of fishing activity. For example, it would be expected that large boats towing trawl nets 

would use more fuel than smaller trawlers, as well as more fuel than similar sized vessels deploying 

more static fishing gear (e.g. gill nets). The targeted species, as well as the type of markets on which 

the fish are sold may also influence costs of catching and handling fish. The type of management in 

place may influence the cost structure as well. Given this, it is expected that econometric models of 

individual vessel costs against the vessel and fishery characteristics can be developed that could be 

used to provide proxy cost measures in fisheries where actual cost data are not collected. 

Information on costs of fishing is currently collected for a limited number of fisheries at the 

Commonwealth (e.g. ABARES) and State level (e.g. SA). From the ABARES surveys, information exists 

on the historical costs of fishing of a wide range of vessel sizes, fishing types (trawl, longline, squid 

jig, gillnet, hook and trap), as well as target species (prawns, multispecies finfish, tuna, squid, and 

shark). Economic data also exists on inshore fisheries in South Australia that covers prawns, finfish, 

lobsters, crab and abalone fisheries. These are harvested by smaller boats than those in the 

Commonwealth fisheries, using a range of methods some of which overlap with the Commonwealth 

fisheries (e.g. trawl, line and gillnet) as well as some that are restricted to inshore fisheries only (e.g. 

dive). 

In this section, we outline the methods used to estimate generic cost models based on the individual 

vessel cost data for the range of fishery types covered by the available economic survey data. The 

key cost components considered were the major variable costs (fuel, crew, freight and other running 

costs), fixed costs (capital costs and other annual costs), and quasi fixed costs (repairs and 

maintenance). A number of different functional and structural forms of the models linking the cost 

to the vessel and fishery characteristics were tested, and the models that best captured the 

variability in the data while also conforming to a priori expectations about the influence of particular 

variables were chosen1.   

                                                           

1 It is possible that a model may fit the data statistically well in terms of goodness-of-fit statistics, but have estimated coefficients that 
were nonsensical. For example, if fuel costs were estimated to decrease with the number of days fished then it is likely that there is 
something wrong with the structure of the model even though it may have a good statistical fit.  
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5.2.2 DATA 

The development of generic cost models required the use of detailed vessel-level cost data sourced 

from economic surveys of fisheries. Two main survey data sources used were a data set sourced 

from the Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) and a 

dataset sourced from consulting firm Econsearch. 

ABARES (formerly ABARE) has been conducting economic surveys of Commonwealth fisheries since 

the early 1980s and has maintained a regular survey program for selected fisheries since 1992. The 

current program focuses on the most valuable Commonwealth fisheries. Each individual fishery is 

surveyed every two years, requiring that data be collected for the previous two financial years. This 

biannual approach to the survey minimises survey respondent burden while also reducing the risk of 

recall error.  

The ABARES surveys program has allowed the development of a time series of economic information 

for surveyed fisheries. The number of vessels from each of the major Commonwealth fisheries that 

have been sampled by financial year since the early 1990s is given in Table 5-1. The aggregated 

financial and economic performance results generated from each survey are made publicly available 

through the annual Australian Fisheries Surveys Report series (see George, Vieira and New (2012) for 

the most recent report).  

Given the small number of firms in Commonwealth fisheries, an attempt is made to contact all 

operators in the fishery. In practice, the full population is never sampled as non-response is 

relatively high across fisheries, reflecting the difficulty in contacting some operators and a reluctance 

of others to participate. Sample design and weighting systems have been developed that reduce the 

effect of non-response on the final survey results.  
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Table 5-1.  ABARES survey sample (number of vessels) by year and fishery. 

  BSS CTS ETB GAB GHT NPF SBT SSh SSq SWT TSP TOTAL  
1990  38 28   65      131 

1991  42 40   69  41    192 

1992  34 39   58 16 44    191 

1993  35 47 4  43 32 31   13 205 

1994 18 44 33 5  48  35   14 197 

1995 27 44 39 5  59  27   17 218 

1996 19 51 33 5  66  40   24 238 

1997 28 41 40 4  69  42   21 245 

1998 16 46 23 6  70  23 10  26 220 

1999 18 37 40  41 57  27 14  20 254 

2000  37 20  32 60  23 6 12 23 213 

2001  38 32  33 56  25 11 8 18 221 

2002  39 32  23 58    12 28 192 

2003  20 44  28 41   2  18 153 

2004  25 23  13 43     19 123 

2005  27 27  16 28     12 110 

2006  23 34  17 29     12 115 

2007  19 33  17 34     13 116 

2008  14 24  16 30     12 96 

2009  15 24  16 31      86 

2010 8     33      41 

2011 7           7 

TOTAL  141 669 655 29 252 1047 48 358 43 32 290 3564 

BBS: Bass Strait Scallop; CTS: Commonwealth trawl sector; ETB: Eastern tuna and billfish; GAB: Great 

Australian Bight; GHT: Gillnet hook and trap; NPF: Northern Prawn Fishery; SBT: Southern bluefin 

tuna; SSh: Southern Shark; SSq: Southern squid; SWT: South West tuna; TSP: Torres Strait prawn. 

Survey interviews are generally undertaken with boat owners to obtain financial details of the 

fishing business, although skippers, bookkeepers and owner spouses may also be interviewed. 

Further information may also be subsequently obtained from accountants, selling agents and 

marketing organisations on the signed authority of the survey respondents. Key information 

collected as part of the survey includes: 
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- profit and loss statements which summarise all vessel revenues and costs; 

- the market value of the vessel, licences and endorsements; 

- characteristics of the labour employed by the vessel; and, 

- replacement cost, estimated market value and year of manufacture of vessel capital items.  

All information obtained is reconciled to produce the most accurate description of the financial 

characteristics of each boat sampled in the survey.  

Similar information is collected by EconSearch as part of their economic surveys of South Australian 

commercial fisheries. EconSearch has been undertaking these surveys since 1999 (EconSearch 

2010a, 2010b, 2010c, 2010d, 2010c). Each fishery is generally surveyed every three to four years and 

only data from the preceding financial year are collected. For the years between surveys for which 

survey data are not collected, the most recent survey estimates are imputed using primary and 

secondary information sources (fishery catch, effort and price data).  

As noted by EconSearch (2010a, 2010b, 2010c, 2010d, 2010c), survey definitions and terms have 

been kept consistent with those used by ABARES where possible. This means that the two datasets 

are reasonably consistent with each other and can be combined relatively easily. However, minor 

differences in data collection and recording practices do exist between the two surveys. These 

differences and how they were resolved for the purpose of the analysis presented here are 

discussed in the results section below.  

5.2.3 DATA USED IN THE ANALYSES 

A key aim of the project was to develop an approach to determining harvest strategy reference 

points for a wide range of data poor fisheries. Therefore, to allow applicability to a broad range of 

fisheries, it is important to estimate cost models using data associated with a variety of fisheries, 

fishing methods, target species, management arrangements and any other key characteristics that 

may affect a fishery’s cost structure.  

From the ABARES survey data outlined in Table 5-1, a sub-dataset that included eight 

Commonwealth managed fisheries was used to estimate the cost models (Table 5-2). These data 

were combined with catch, effort (days fished) and boat size data sourced from logbook data 

collected by the Australian Fisheries Management Authority (AFMA). The dataset was limited to 
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vessels sampled post 1998-99 financial year based on the available logbook data. The dataset was 

further limited to vessels that derived 100% of their fishing revenue from the surveyed fishery.  

Data for the seven South-Australian fisheries surveyed by EconSearch are also included in the 

analysis (Table 5-2). These data were available for financial years between 1997-98 and 2008-09. 

Given that EconSearch surveys South Australian fisheries every three to four years, survey data for 

each fishery are not available for all financial years within the latter time period. Further, while data 

were available at the individual vessel level, information on the identity of the vessels was not 

recorded by EconSearch to maintain confidentiality. Hence, it was not possible to link data for 

individual vessels surveyed through time. 

Further selection of observations from the combined sample was required to: 

 exclude missing values for the variables which were to be used in the estimations (see below, 

the results section); 

 exclude categories of vessels which, while different in their characteristics to the other vessels in 

the sample, were not represented to an extent which allowed statistical representation in the 

estimations (e.g. purse seine vessels and polling vessels from the South-West tuna fishery). 
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Table 5-2.  Final sample (number of vessels) by year and fishery. 

  Commonwealth fisheries     South Australian fisheries   

  BSS CTS ETB GHT NPF SSq SWT TSP   AB BC L&C MSF PSGWC RLNZ RLSZ SAR Total 

1998 

        

  0 13 

 

35 9 18 28 

 

60 

1999 10 34 27 37 57 12 

 

20 

         

45 

2000 

 

36 17 26 60 6 11 22 

         

47 

2001 

 

38 30 33 55 10 8 18 

 

13 13 

 

64 11 24 26 

 

146 

2002 

 

39 32 20 58 

 

12 27 

        

12 172 

2003 

 

19 44 26 41 

  

16 

   

27 

     

167 

2004 

 

24 23 12 43 

  

15 

         

112 

2005 

 

26 27 15 27 

  

11 

 

14 6 

  

22 26 89 

 

116 

2006 

 

19 33 17 29 

  

12 

   

22 

    

13 117 

2007 

 

19 33 16 34 

  

13 

    

112 

    

222 

2008 

 

14 24 13 29 

  

12 

 

15 5 

  

17 21 57 

 

107 

2009 

 

15 24 14 31 

      

16 

    

9 66 

2010 8 

   

33 

             2011 7 

                 Total 25 277 200 125 255 24 24 100 54 37 65 211         1377 

CTS: Commonwealth trawl sector; ETB: Eastern tuna and billfish; GHT: Gillnet hook and trap; NPF: Northern Prawn Fishery; SSq: Southern squid; SWT: South West tuna; 

TSP: Torres Strait prawn; AB: Abalone; BC: Blue crab; L&C: Lakes and Coorong; MSF: Marine Scalefish PSGWC: Spencer Gulf & West Coast Prawn; RLNZ: Rock lobster 

northern zone; RLSZ: Rock lobster southern zone; SAR: Sardines.  
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The characteristics of the final sample used for the analysis are described in Table 5-3. 

A key characteristic that will be a strong determinant of a vessel’s cost structure is the fishing 

method it uses. The sample data set covered a total of 13 fishing methods (Table 5-4). Trawl vessels 

were by far the most dominant vessel type in the sample data set, accounting for 38 per cent of the 

sample. This was followed by pelagic longline (15 per cent), pots (13 per cent), gillnet (9 per cent) 

and dropline (8 per cent). Other methods included automatic longline, Danish seine, demersal 

longline, diving, dropline, jigging, pots and mixed gear (predominantly a mix of gillnet, pots and 

dropline). 

Table 5-3.   Characteristics of the vessels included in the final sample 

Variable Min.    1st Qu. Median  Mean    3rd Qu. Max.    

freight 0 0 12,109  43,408  50,095  651,036  

otherrc 0 909  8,440  18,031  19,363  226,502  

fuel 182  20,000  65,000  109,183  166,552  791,048  

BRM 0 13,091  38,223  67,706  96,341  1,133,272  

GRM 0 0 7,416  18,912  30,225  222,679  

overheads 0 30,907  54,400  69,589  90,773  536,174  

crew2 424  81,245  159,107  182,783  261,231  1,528,848  

boatval 1,806  200,000  461,500  641,860  950,000  7,065,000  

replace 0 309,678  644,000  824,992  1,143,877  9,250,000  

length 3  12  18  17  22  46  

catch 0 15,334  50,735  95,200  99,088  7,467,163  

days 1  77  128  126  165  365  

age 0 10  18  18  24  67  

crewno 1 2.215 3 3.599 5 11 

Freight: freight, marketing and packaging costs; otherrc: other variable costs; fuel: fuel, oil and grease costs; 
BRM: boat repairs and maintenance costs; GRM: gear repairs and maintenance; overheads: overhead costs 
including administration, accounting, banking, electricity, licensing; crew2: labour costs for crew and skipper 
including imputed labour costs; boatval: market value of boat; replace: replacement cost of hull and engine; 
length: vessel length in metres; catch: catch in kilograms; days: days fishing; age: age of the hull in years.; 
Crewno: the number of crew on the vessel including the skipper (FTEs). 

In terms of fishery management arrangements, vessels managed under individual transferrable 

quotas accounted for the majority of the sample (39 per cent). This was followed by vessels 

managed under non-transferable effort-based management units (32 per cent) and individual 

transferable effort controls (29 per cent) (Table 5-5). The remainder of the vessels in the sample 

were managed under individual transferable effort controls.  
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Table 5-4. Number of vessel in the sample by year and fishing method. 

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Total 

Auto longline
a
 0 0 0 0 1 1 2 3 3 3 2 2 0 0 17 

Danish seine 0 9 10 6 6 4 6 8 4 4 7 7 0 0 71 

Demersal longline 0 7 3 5 5 6 6 9 7 6 5 6 0 0 65 

Diving 12 0 0 0 0 0 0 14 0 0 15 0 0 0 41 

Dropline 35 11 7 51 0 3 0 0 1 78 0 0 0 0 186 

Gillnet 0 19 16 35 15 44 6 6 30 9 8 24 0 0 212 

Jigging 0 12 6 10 0 0 0 0 0 0 0 0 0 0 28 

Mixed  gear 7 0 0 13 0 0 0 2 0 35 1 0 0 0 58 

Pelagic longline 0 27 24 38 44 44 23 27 33 33 24 24 0 0 341 

Pots 52 0 0 56 0 0 0 119 0 0 82 0 0 0 309 

Purse Seine 0 0 0 0 12 0 0 0 13 0 0 9 0 0 34 

Dredge 0 10 0 0 0 0 0 0 0 0 0 0 8 7 25 

Trawl 0 102 108 105 118 72 76 56 56 62 48 39 33 0 875 

Total 115 197 178 330 200 173 117 263 144 227 207 109 41 7 2308 

Note: a) Auto longline was only introduced in around 2006, but these vessels had different operation size based characteristic than other vessels in the fishery prior to the 

introduction of the new gear (enabling them to adopt the new gear) 
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Table 5-5.  Number of vessel in the sample by year and management arrangement. 

Year 
Non-transferable effort 

based  
Individual transferable 

quota 
Transferable effort 

units Total 
1998 62 53 0 115 

1999 39 81 77 197 

2000 34 62 82 178 

2001 147 110 73 330 

2002 44 71 85 200 

2003 71 45 57 173 

2004 23 36 58 117 

2005 49 176 38 263 

2006 54 49 41 144 

2007 145 35 47 227 

2008 41 125 41 207 

2009 40 38 31 109 

2010 0 8 33 41 

2011 0 7 0 7 

Total 749 896 663 2308 

 

5.2.4 VARIABLES INCLUDED IN THE DATA SET USED IN THE ANALYSES 

The final sample data set included the following key cost variables:  

 Freight – includes freight, marketing, cool storage and packaging; 

 Other running costs – includes bait, ice and food; 

 Fuel, oil and grease; 

 Total repairs and maintenance – includes boat repairs and maintenance and fishing gear repairs 

and replacements; 

 Overheads – includes a range of costs covering administration, accounting, banking, electricity, 

licensing etc.; 

 Crew cost – cost of skipper and crew (two measures: one based on cash cost only and the other 

including an imputed cost where labour is unpaid); 

 Boat and gear market value (representing the capital cost of the vessel). 
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Other key data included boat length, catch, days at sea fishing, hull age, crew number and boat 

receipts. Dummy variables were also created to indicate a boat’s primary fishing method, the fishery 

management arrangements it operated under, whether it was likely to freeze its catch at sea and 

whether a boat’s skipper was also its owner.  

 

5.2.5 INPUT PRICE INDEXES 

Costs are a function of both the level of input use and input price. Data on input prices in fisheries is 

generally unavailable, and where input price data has been used, it has either had to be derived 

based on a range of assumptions (e.g. Pascoe et al. 2011) or been provided by the industry (e.g. Punt 

et al. 2010). However, there is an a priori expectation that prices of inputs such as fuel, capital and 

freight in fisheries should be similar to input prices in agriculture.  

An advantage of defining the models in terms of the agricultural price paid indexes is that these are 

annually produced and published by ABARES (ABARES 2010), with a separate index for each major 

input category. The price indexes used for the analysis are given in Table 5-6. 

While it is expected that price changes in the fisheries sector should follow similar trends to that in 

agriculture, it is possible that they may change at different rates. The estimated coefficients relating 

to the price indexes in the model can be used to adjust these price indexes to make them more 

relevant to the fishing industry. 
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Table 5-6. Prices paid indexes used in the analysis. 

 Cost item in the analysis 

 Fuel Capital Maintenance 
Freight and 
Marketing 

Other 
running 
costs Fixed costs 

Indexes of 
prices paid 
by farmers 
in Australia 

Fuel and 
lubricants 

Capital items: plant 
and equipment 

Maintenance: 
plant and 
equipment 

Marketing: 
total 

Total 
prices paid 

Overheads: 
other 
overheads 

Year       

1998 0.522 0.686 0.690 0.747 0.706 0.712 

1999 0.543 0.708 0.706 0.767 0.71 0.734 

2000 0.775 0.730 0.733 0.784 0.739 0.741 

2001 0.752 0.773 0.773 0.816 0.777 0.774 

2002 0.669 0.795 0.795 0.840 0.797 0.797 

2003 0.663 0.818 0.818 0.866 0.858 0.821 

2004 0.753 0.838 0.838 0.887 0.868 0.841 

2005 0.872 0.860 0.860 0.908 0.892 0.861 

2006 1.099 0.888 0.888 0.937 0.913 0.889 

2007 1.087 0.914 0.914 0.964 0.959 0.914 

2008 1.271 0.945 0.945 1.070 1.095 0.946 

2009 1.101 0.975 0.975 1.024 1.051 0.976 

2010 1 1 1 1 1 1 

Note: Derived from ABARES’ Australian Commodity Statistics 2010 Table 92 (ABARES 2010) 

 

5.2.6 MODELLING FORMULATION AND ESTIMATION 

A key objective of the research was to determine if reasonable estimates of key cost parameters 

required in bioeconomic analysis could be derived from limited information about the fishery. To 

this end, an econometric model was developed for each main cost (e.g. fuel costs, crew cost, freight, 

repairs and maintenance, capital cost, depreciation rates and other fixed and variable costs). In each 

case, the cost – or some modification to the cost (e.g. crew share rather than crew cost) – was the 

dependent variable and vessel and fishery characteristics were the independent variables.  
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A number of different functional forms of the models were tested based on expectations as to how 

the costs were likely to relate to the various fishery and vessel characteristics. The initial model in 

each instance was based on assumptions as to how the inputs were likely to interact to affect the 

cost item. In most cases, a multiplicative assumption was made, and the models estimated in log-

linear form. That is, i i

i

C I , such that 0ln i i

i

C I   .The assumptions underlying each 

cost model are presented in the results section (Section 7.3) along with the final model formulation. 

The general principles involved in the development of the models were that they should 

 attempt to capture key drivers of the cost items; and  

 cover key cost components that are relevant for incorporation into appropriate bioeconomic 

models. 

Ideally, the models would have been run as panel data models to capture any vessel-specific 

characteristic not captured by the general characteristics considered. However, vessel identifiers 

were not recorded for the South Australian data and it was not possible to track individual vessels 

over time in the data.2 As a result, all observations are considered to be independently distributed. 

This may have some implications for the parameter estimates, although given the size and breath of 

the data set any biases introduced by excluding fixed (or random) effects are likely to be small.3  

Given the limited price information deliberately used in the analysis, there may be periods when 

relevant input prices for the fishing industry diverged from those of the agricultural sector, which 

would manifest itself in correlation between residuals from the different models over time. The 

models were initially estimated as system of equations to allow for the potential for 

contemporaneous correlation. However, the results of the initial model estimations suggested that 

the residuals were not correlated so individual models for each cost component were developed. 

Different final functional forms were adopted for the different cost components on the basis of what 

was most theoretically justifiable (i.e. had to have an a priori logic) and also which best fitted the 

data. The final functional forms are presented in the results section (as these forms are also results 

                                                           

2 Data stored by Econsearch does not include a vessel identifier to protect the confidentiality of the fisher. The data are not commonly 
used for the types of analyses we undertook, and problems of not having some form of vessel identified in the data had not previously 
arisen.  

3 An advantage of panel data is that omitted variable bias (due to unobserved or unmeasurable factors) is reduced. However, with such a 
diversity of fishing activities included in the analysis, differences between activities is likely to be more influential than 
unobserved/unmeasured differences between individuals within a given fishing activity. Without a panel data formulation, however, it is 
not possible to test this assumption. 
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of the analysis rather than just methodology). Most models include dummy variables representing 

the different types of fishing gear employed. In these cases, the base gear (i.e. the gear not included 

in the model but against which everything else is assessed) is fish trawl. 

5.3 Proxy target reference points for data poor fisheries 

5.3.1 INTRODUCTION 

The use of biological reference points as indicators to guide fisheries management has been well 

established (Caddy 1995, 2004). While numerous types of biological reference points exist (Mace 

1994), the most commonly applied are target and limit reference points, usually expressed in terms 

of either the biomass of the stock or the level of fishing mortality that achieves given outcomes. 

Limit reference points indicate a point which should be avoided, while the target reference point 

represents the point that management is aiming to achieve (Mace 1994). While maximum 

sustainable yield (MSY) is the most commonly applied target reference point (Caddy 2004), there is 

increasing interest in maximum economic yield (MEY) as an alternative target (Dichmont et al 2010). 

Maximum economic yield represents the level of fishing effort and catch that maximises the level of 

economic profits in the fishery (see section 2 of this report). As it generally involves a lower level of 

fishing effort, it is more conservative in terms of biomass than MSY, and as it generally involves a 

lower level of fishing effort is often considered to be more environmentally beneficial in terms of 

bycatch and habitat damage (Dichmont et al. 2008; Grafton et al. 2007). 

The Australian Commonwealth Harvest Strategy policy (DAFF 2007) identifies the level of biomass 

that achieves MEY (BMEY) as the target reference point for Commonwealth managed fisheries. The 

estimation of MEY requires an understanding of both the key economic and biological parameters 

relevant to the fishery. In data poor fisheries, some or all of these parameters may be missing. 

Where economic information is missing, the Policy suggests a default value of 1.2 BMSY as a proxy for 

the target reference point (DAFF 2007). However, estimation of BMSY also requires information about 

the biology of the stock, and assumes that each stock in a multi species fishery can be targeted 

separately (i.e. there are no technical interactions). Further, the default proxy measure does not 

take into account the effects of prices and costs, as well as the discount rate if a dynamic MEY is the 

target. 

In data poor fisheries, the ability to estimate BMSY is limited. However, a range of simple methods 

exist to estimate fishing mortality at MSY (FMSY) even with very limited catch and effort data, based 



METHODS: ECONOMIC ANALYSES 

46 

 

on assumptions about some of the biological characteristics of the species (Garcia et al. 1989). Given 

this, it may be possible to derive proxy target reference points of FMEY based on FMSY as an alternative 

to the BMEY/BMSY ratio. 

In this section, the relationship between BMSY and BMEY is explored through a stochastic simulation 

using a simple bioeconomic model. Further, and alternative target reference point is examined that 

compares effort and fishing mortality at MSY with that at MEY. The results of the analysis are 

synthesized using a regression tree approach to determine if there exists a simple set of criteria for 

determining an appropriate proxy value for FMEY.  

5.3.2 BASIC BIOECONOMIC MODEL OF THE FISHERY AND DEFINITION OF PROXY 

TARGET REFERENCE POINTS 

1.3.2.1 The basic model 

The basic bioeconomic model used in the analysis was based on a logistic biological growth model l 

for a single species fishery (Shaefer 1954, 1957) of the form 

1
(1 )

t t t t t
B B rB B K C


   

    

where Bt is the biomass in time period t, r is the instantaneous growth rate, K is the environmental 

carrying capacity and Ct is the catch in time period t. Catch is assumed to be a linear function of 

fishing effort and the level of biomass, given by  

t t t
C qE B

      

where q is a proportionality constant known as the catchability coefficient and Et is the level of 

fishing effort in time t. 

At equilibrium, 
1e t t

B B B


    and hence (1 )
e e e

C rB B K    where the right hand side represents 

the annual growth in the population, also referred to as the surplus production as it is surplus to 

what is required to keep the population at a stable level of biomass (in the absence of fishing). The 

maximum equilibrium level of catch (the maximum sustainable yield) is hence given by  

2 0e

e

e

dC
r rB K

dB
  
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and hence 

2
MSY

B K
      

That is, MSY is achieved when the level of biomass is half the carrying capacity. 

Equating catch to the surplus production in the population also allows the sustainable catch to be 

expressed as a function of fishing effort, given by  

2
2q K

C qEK E
r

 
     

From this  

2

2 0
dC q K

qK E
dE r

  
    

And hence 

2MSYE r q
      

The simple model assumes prices are independent of the quantity landed and are hence constant. 

Similarly, the cost per unit of fishing effort is also assumed constant, such that the average cost 

equals the marginal cost. Costs in the model are economic costs, and represent full opportunity cost 

of all inputs in the production process (including unpriced labour and a normal return to capital). 

Given this, the level of economic profits in the fishery can be given by 

pC cE   , 

where p is price and c is cost. The level of fishing effort that maximises profits is hence given by  

2

0

2

d dC
p c

dE dE

q K
p qK E c

r


  

 
   

      

From which  

 
2

/ 2MEY

q K
E qK c p

r
 
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Given 
2MSYE r q

, then  

MEY

MSY

c qK
E qK

p E

 
  
      

and hence 

 1MEY

MSY

E
c pqK

E
        Equation 5-1 

Given that fishing mortality is given by f qE , then  

 1MEY MEY

MSY MSY

f qE
c pqK

f qE
        Equation 5-2 

That is, the ratio of fishing mortality at MEY to fishing mortality at MSY is a function of prices, costs, 

catchability and the carrying capacity of the stock. This value will always be less than 1 for any value 

of 0c  . By definition, the proportional target reference point expressed in terms of fishing 

mortality is the same as that expressed in terms of fishing effort. 

Similarly, the biomass at MEY is given by  

( 2)(1 ) (1 )
MEY MSY

B K c pqK B c pqK   
    

and hence 

 

(1 )MEY

MSY

B
c pqK

B
        Equation 5-3 

As with the ratio of fishing effort and fishing mortality at MEY and MSY, the ratio of biomass at MEY 

and MSY is a function of prices, costs, catchability and the carrying capacity of the stock. This value 

will always be greater than 1 for any value of 0c  . 

1.3.2.2. Introducing discount rates 

The basic model presented above indicates the optimum level of fishing effort and biomass 

assuming it can be attained instantaneously. Usually, the process of reaching MEY will involve 
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adjustment delays for stock biomass as well as fishing capacity. In particular, in cases where excess 

fishing effort is being applied to the stock, adjusting to MEY may involve short term costs in terms of 

effort reduction (Dichmont et al. 2010), and hence the long term benefits need to be balanced 

against the short term costs. The functional definition of MEY in the Australian fisheries context is 

the level of biomass and fishing effort that maximises the net present value of economic profits over 

time (DAFF 2007). The dynamic version of MEY incorporates the discount rate to allow the trade-off 

between future benefits and short term costs to be factored into the analysis. Following Clark 

(1990), the level of biomass that produces the dynamic MEY (
DMEY

B ) is given by  

2

8
1 1

4
DMEY

K c d c d cd
B

pqK r pqK r pqKr

    
          
     

   Equation 5-4 

where d is the discount rate. When d = 0, the value of BDMEY is equivalent to that given in Equation   

5-2. Estimating the sustainable level of fishing effort that produces the dynamic MEY (
DMEY

E ) is less 

straightforward than in the case where the discount rate was zero. Instead, EDMEY needs to be 

estimated from the value of BDMEY, and the sustainable level of catch at BDMEY. The associated level 

of catch at MEY is given by    1-
DMEY DMEY DMEY

C rB B K   and the level of fishing effort by

DMEY DMEY DMEY
E C qB  . Consequently, the relationship between EDMEY and EMSY needs to be 

determined numerically rather than algebraically.  

The target reference point, however, needs to be distinguished from the path to achieve it over 

time. In practice, the pathway to building the biomass to the target level is often subject to a 

number of constraints (Dichmont et al. 2010; Martinet et al. 2007), which affects the speed of 

recovery, and, depending on the extent of the constraints, may influence the target reference point 

also (Dichmont et al. 2010). For data poor fisheries, factoring these considerations into the definition 

of dynamic target reference points is not possible due to the lack of the detailed dynamic models 

needed to estimate these reference points taking into account the constraints.  

5.3.3 NUMERICAL ANALYSIS 

A numerical version of the model was developed to assess the relationship between EMEY and EMSY, 

and to allow the derivation of a simple framework for determining appropriate target reference 

points in the case where data are limited. Values of the key parameters were varied stochastically 
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and a range of possible relative target reference points (i.e. EDMEY/EMSY and BDMEY/BMSY) were 

estimated.4 These ratios were subsequently linked via regression trees (De’ath and Fabricius 2000) 

to cost shares and vessel characteristics to determine a set of “rules of thumb” from which 

appropriates estimates of the target reference points could be derived for particular data poor 

fisheries.  

6.3.3.1  Data underlying the stochastic bioeconomic analysis 

The values used in the stochastic analysis and the distributions of the final “acceptable” values are 

given in Table 5-7. Ten thousand random values were generated for each of the parameters in Table 

5-7. However, a set of criteria was established to ensure that the set used for the analysis was 

relatively realistic. First, any set of parameters containing a negative value was discarded (removing 

some 250 sets). Second, any set of observations that would have result in negative economic profits 

at MSY was removed. While it is theoretically possible that MSY is not economically feasible, it is 

rarely observed for commercially important species. This resulted in only 5897 of the 10000 random 

sets of parameter values being used in the analysis.  

The choice of the initial mean values of the parameters and their standard deviations was aimed at 

producing sets of widely varying parameter values that were representative of a wide range of 

fisheries. The instantaneous growth rate (r) ranges from relatively slow growing species (such as 

shark (Cortes 1998) to fast growing species (such as prawns). The mean price of all wild caught 

Australian produce in 2008-09 was $8.10 (Figure 5-1), although prices varied widely between (and 

within) different types of species groups (ABARES 2000). A mean of $10/kg was chosen for the 

purposes of the stochastic analysis. This is higher than the current average but, with a standard 

deviation of $4/kg, the distribution largely captured the range of prices observed for Australian wild 

caught fisheries. Catchability and the carrying capacity are inversely related in terms of scale, as the 

derivation of the target reference points relies on the value of their product (qK). For the stochastic 

simulations, mean values of q, K and c were chosen in order to give an estimated cost per unit catch 

at MSY5 of approximately $7.50/kg (i.e. 75 per cent of the average price). This implies that economic 

profits are assumed to be at approximately 25 per cent of the revenue at MSY, on average. This was 

                                                           

4 While some parameters are generally correlated (e.g. r and K), these correlations were not captured in the stochastic simulations. This 
contributed to some of the infeasible outcomes detailed above. 

5 Cost per unit catch at MSY is given by  0.5c qK . 
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an arbitrary assumption but, as noted above, ensures that a sufficiently high proportion of cases 

with positive economic profits at MSY are obtained. 

Table 5-7.  Key parameters used in the stochastic analysis. 

 

Values used in 
stochastic analysis Distribution of “acceptable” values 

Mean Standard 
deviation Min. 1st Qu. Median Mean 3rd Qu. Max. 

r 1.4 0.4 0.065 1.140 1.396 1.400 1.661 3.122 
q 0.004 0.001 0.001 0.004 0.004 0.004 0.005 0.008 
K 1000 400 138.8 901.0 1126.0 1142.0 1365.0 2639.0 
c 15 6 0.021 9.517 13.150 13.320 17.030 33.640 
p 10 4 0.575 9.017 11.400 11.510 13.860 25.460 
d 0.1 0.04 0.000 0.074 0.101 0.101 0.128 0.251 
 

 

Figure 5-1.  Average prices for Australian fish species 2008-09.  Source: ABARES (2000) 

 

6.3.3.2  Estimating cost shares 

From Equations 6-1 and 6-2, both BDMEY/BMSY and EDMEY/EMSY are dependent upon the ratio   c pqK  

where  c qK effectively represents the cost per unit catch given an unexploited biomass, which is 
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unknown. However, given that the catch per unit of effort at MSY is given by 0.5qK (as 0.5
MSY

B K ), 

then the cost per unit of catch at MSY is equivalent to  0.5c qK  which is directly proportional to 

the cost per unit catch given an unexploited biomass6.  Consequently, at MSY, the cost share of 

revenue, defined as the cost per unit catch divided by the price, is a feasible proxy measure by which 

the optimal ratio of biomass and effort can be derived in a comparative statics context. Multiplying 

both numerator and denominator by the catch at MSY gives the cost share as the ratio of the total 

fishing cost to the total revenue. 

As noted above, cost and revenue information is currently available at the individual vessel level for 

a substantial number of fisheries at the Commonwealth (e.g. ABARES) and State level (e.g. SA). The 

data described above (Section 6.2.3) covered the period 1998 to 2010. Over most of the period of 

the data, the management target for most fisheries was maximum sustainable yield, although 

several Commonwealth fisheries were transitioning to a target of MEY from 2008. About 20 per cent 

of stocks in Commonwealth fisheries were considered overfished in 1999 (Caton and McLoughlin 

2000), although this declined to less than 10 per cent in 2010 (Woodhams et al. 2010). For South 

Australian fisheries, around 20 per cent of stocks were considered over fished during the middle 

period of the data (2002-2005) (PIRSA 2007). Given this, it can be assumed that most fisheries were 

at or around MSY for most of the period of the data, and hence the empirical cost shares of revenue 

are representative of the theoretical shares required for the analysis. 

6.3.3.3   Regression tree analysis 

A regression tree analysis was undertaken with the BMEY/BMSY and EMEY/EMSY as the dependent 

variables, and cost share and the ratio of the discount rate to the stock growth as the explanatory 

variables, based on Equations 6-1, 6-3, and 6-4. A regression tree analysis was also run with cost 

share as the dependent variable and price, length, and gear types (trawl, dive, long line, purse seine 

and other static gear) as the explanatory variables. 

The results from the regression tree analyses, presented in Section 7.3, provide a set of “rules of 

thumb” with which target reference points can be estimated for a wide variety of data poor 

fisheries. 

                                                           

6 The value 0.5qK is equivalent to the catch per unit effort (CPUE) at MSY. Given these relationships, the cost per unit catch at MSY is twice 
that at the unexploited biomass. 
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Biological analysis — developing methods for 

biological reference points for data-poor fisheries 

5.4 Simple catch rate gradient based harvest control rules for 

data-poor fisheries. 

5.4.1 INTRODUCTION 

Precautionary fisheries management usually includes harvest control rules (HCR) that react to stock 

assessments by manipulating catches or effort to manage a fishery towards a defined target 

reference point and away from a related limit reference point (Garcia, 1994; FAO, 1996). Fishing 

mortality rates or spawning stock size are often the basis for many management reference points 

(DAFF, 2007), but, estimating such performance measures for data-poor fisheries presents obvious 

difficulties because of insufficient suitable data, which is a research area where we attempt to 

develop new methods (see following sections).  

Data-poor situations can arise in many circumstances (Haddon et al., 2005), including new or 

developing fisheries (only short time series of data collected, if any), low value fisheries (no facilities 

or resources to collect data), bycatch or byproduct fisheries (data is only collected on more valuable 

target species, a common situation in multi-species fisheries), fisheries with Illegal, unreported and 

unregulated activities (IUU fishing), and fisheries with a high degree of spatial structure (where 

fishing occurs on many small mostly separate stocks with different characteristics).  Despite these 

difficulties there is growing recognition that fisheries management advice about allowable catch or 

effort levels is required even for relatively data-poor species (Cadrin & Pastoors, 2008). In response 

there has been a recent increase in the examination of alternative formal harvest strategies with 

harvest control rules (HCRs) that only need information regarding catches and/or catch rates 

(Dichmont et al., 2006; Cope and Punt, 2009; O’Neill et al., 2010; Dick & MacCall, 2010, 2011; Little 

et al., 2011). 

In Australia, such relatively simple harvest control rules have been implemented, for example, in 

Australia’s Southern and Eastern Scalefish and Shark Fishery, the SESSF (Smith et al., 2008), and the 

Queensland fishery for spanner crabs (Dichmont & Brown, 2010). One of the simplest strategies is to 

alter allowable catches in relation to changes in the recent trends in catch rates (Haddon, 2007; 
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Smith et al, 2008); for example a very simple Harvest Control Rule (HCR) converts a catch rate 

gradient and current catches into a TAC: 

 1 3: 3:1 .y y y y yTAC Gradient C       Equation 5-5 

where TACy+1 is the total allowable catch in the coming year,  is a scaling factor, Gradienty-3:y is the 

gradient from a linear regression of the previous four years catch rates against year, and 
3:y yC 

is an 

estimate of the average of all catches (landings plus discards) over the same four years. The 

management advice, that is the recommended future catch level, is thus produced without a formal 

stock assessment. Rather, this empirical HCR uses catch rates (in this case standardized catch rates) 

as a fishery performance measure. Such a performance measure provides the direction in which to 

move a fishery rather than specifying a target or a limit (though thresholds for special actions can be 

added to this particular HCR).  

One of the guiding principles for the development of the empirical HCRs in the SESSF was that they 

should be capable of recovering depleted stocks. However, experience with applying this CPUE 

gradient based HCR (Haddon, 2007, 2009) demonstrated that in its original form it did not appear 

capable of rebuilding a depleted stock and it was also vulnerable to a downward ratchet in the 

catches brought about by the industry never quite managing to catch the complete TAC (Appendix 

2). As the TAC was based on previous catches this latter was a serious flaw that led to a complete 

change in the HCR to one which used a comparison of the average catch rates from the last four 

years with that expressed during a period that acts as a target for the fishery (Little et al., 2009; Little 

et al., 2011). While this change was useful for the relatively data-poor species in the SESSF it does 

require sufficient years of catch and effort data to provide a target period (the default was ten years) 

which, ideally, does not overlap with the latest years used to monitor the current state of the 

fishery. For very data-poor fisheries where only a few years of catch and effort data are available 

(e.g. less than ten years), different changes are possible to the catch-rate gradient HCR that may 

allow it to continue to be useful for management despite not having specified target or limit 

reference points. One of the aims of this present work is to examine the behaviour of simple catch-

rate gradient control rules to determine their potential value for data-poor fisheries. 

Changes that will be considered to the HCR described by Equation 5-5 will include:  
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 To use the gradient of the last four year’s standardized catch-rates to modify the TAC rather 

than the current catches. That should prevent the ratchet effect on TACs and related catches.  

 In stocks suspected of being in a depleted state the effect of changing the initial catch levels at 

the same time as introducing the new HCR will be examined.  

 

5.4.2 METHODS 

Management strategy evaluation was used to simulation test the performance of the modified 

catch-rate gradient HCR. Instead of fitting an age-structured model (Appendix 2) to a specific fishery 

and its history, and have that act as the operating model, the model was conditioned on the biology 

and fishery for Tiger Flathead (Neoplatycephalus richardsoni) so as to behave similar to a flathead 

species and the population initiated in an unfished state with no harvest and constant recruitment. 

This simulated population could then be depleted to some desired level by applying a simulated 

catch history for a given number of years, the HCR is then introduced and the dynamics projected 

forward for a further period of years. In this way the recruitment dynamics remain as originally 

defined despite any given level of depletion, thus the average recruitment levels when the stock is in 

a depleted state will be expected to be lower than when it is put in to a less depleted state. This 

means that it becomes possible to examine the behaviour of the HCR when the stock has the same 

biological properties of production but the stock can be in either a depleted state, close to a given 

target, or above a given target.  

The standard Commonwealth proxy target for Maximum Economic Yield (0.48B0) is intended to be 

1.2 x MSY, with the proxy for the BMSY being 0.4B0; the proxy limit reference point in the 

Commonwealth is 0.2B0 (DAFF 2007)  In the simulations used here, above the target BTARG was taken 

as about 60%B0, the target was taken to be about 32%B0 (about BMSY), and below the target was 

taken to be about 15%B0.  

The three depletion options, that is below, at, and above the BMSY target, will be explored using the 

basic HCR. In addition, instead of starting the TAC at the introduction of the HCR at the same level of 

catches imposed by the catch history, an array of different TAC levels (75%, 100% and 125% of the 

status quo TAC) would be examined to determine their impact of the HCR’s performance. This would 

generate nine different scenarios combining different depletion levels with different initial TAC 

levels. Other depletion levels were also examined where they could improve interpolations between 

the three main depletion levels. 
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5.4.3 POPULATION CHARACTERIZATION 

The productivity of the simulated stock was determined by taking the unfished equilibrium stock and 

applying in turn an array of different constant harvest rates, each for 70 years with deterministic 

recruitment, to achieve equilibrium catch and spawning biomass levels. In this way the production 

curve that defines the maximum sustainable yield was produced (Figure 6-16) along with a 

determination of the state of depletion (BMSY) that gives rise to the MSY. This was the only time that 

constant recruitment was used, in all other simulations recruitment variation was included. 

5.4.4 DIFFERENT INITIAL DEPLETION LEVELS WITH CONSTANT CATCH 

Seven different initial spawning biomass depletion levels were considered ranging from about 15 – 

62% of unfished spawning biomass. The constant catch needed to obtain the initial pre-depletion 

level differed for a number of the lower depletion levels. The constant catches were selected to 

ensure that catch rates were relatively flat at the inception of the HCR. 

Once the initial depletion level was achieved in each scenario the revised Tier 4 HCR was introduced 

into the dynamics and variation included in recruitment and the estimated catch rates. In each case 

1000 runs of each scenario were made and the outcomes summarized graphically and by recording 

the final TAC and final depletion level. 

5.4.5 DIFFERING INITIAL CATCH RATES 

The HCR is dependent upon the gradient of catch rates for its operation so it is to be expected that 

the catch rates over the previous few years before the introduction of the HCR may have an 

influence over its effectiveness. To examine this potential influence three catch history 

arrangements were devised to be applied to the unfished simulated population. To illustrate the 

effect of initial catch rates on the outcome the first scenario considered was designed to have the 

stock depleted to about 15% at the start of the HCR but have falling catch rates at the same time. 

The remaining two catch histories were devised to drive the stock to a depletion level of about 25% 

but one with declining catch rates and the other with increasing catch rates at the time of 

introducing the HCR. 
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5.4.6 ALTERING THE INITIAL TAC TO BE DIFFERENT FROM CURRENT CATCHES 

If catch rates are stable then it would not be expected that a HCR based on catch rate gradients is 

likely to be rapid in producing any management interventions to prevent stock declines or rebuild 

depleted stocks. Three depletion levels were therefore selected to compare the analyses already 

completed, i.e. initial TAC = 100% current catches, with identical analyses except that the initial TAC 

would be 75% and 125% of current catches. The depletion levels selected were below the target 

(and limit), at the target, and above the target, that is, 15.4%, 32.5%, and 60.5%. 

This also simulates the possibility of using the HCR with only four year’s data as the TAC could be 

considered to be independent of the previous information. This would be appropriate for any fishery 

in which data had only just begun to be collected, at least for the minimum period required by the 

HCR (in this case defaulting to four years). 
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5.5 Application of cross-sampling method for estimating gear 

efficiency, biomass, and fishing mortality rate 

 

5.5.1 INTRODUCTION 

Fishing gears typically catch only a fraction of the fish that reside within the affected area in each 

gear deployment.  The quantity that links the catch to the true abundance N or biomass B available 

to the gear at each gear operation (shot or unit of effort) is called gear efficiency Q (also referred to 

as fishing power, or probability of catching a fish).  When we consider the true population size of the 

whole stock, this quantity is defined as catchability (q) in fisheries (Arreguin-Sanchez 1996).  Fish 

availability for a fishing operation is affected by the distribution of the entire fish stock by time, area 

and depth. Catchability is a combination of both gear efficiency (Q) and stock availability.  Estimating 

gear efficiency is necessary when deriving absolute abundance estimates from catch data, as well as 

when refining estimates of catchability in stock assessment models (Somerton et al. 1999).   

The traditional approach used to estimate gear efficiency is by field experiments and is typically 

applied to trawling.  Somerton et al. (1999) categorized four techniques for studying trawl efficiency: 

(1) gear comparison experiments where Q is estimated as the quotient of fish density (catch per area 

swept) from the trawl to density estimates from a gear type believed to be completely efficient, such 

as visual transects from a ROV or minisub. (2) Depletion experiments where Q is estimated by 

repeatedly trawling on a small closed population then fitting a model to the decline in catch per unit 

effort (CPUE) as a function of cumulative catch. (3) Tagging experiments where Q is estimated by 

determining the fate of individual fish, identified with acoustic transponding tags, which were 

initially positioned in the trawl path. (4) Experiments focused on vertical herding, horizontal herding, 

and escapement.  The estimates of Q are then obtained by combining the three components in a 

mathematical model of the catching process (Dickson 1993).  As these approaches are costly, only a 

few studies have been conducted for a limited number of species and trawl types.  In addition, gear 

efficiency can be affected by many factors, including selectivity, fish behaviour, fisher skills, and 

environmental conditions (Arreguin-Sanchez 1996).  This makes the result for one species in one 

study difficult to be applied to another species or in a new region. 

Estimating gear efficiency is even more difficult for other gear types, such as hook and lines, seine, 

gillnets, and traps.  Studies on these gear types often focus on relative selectivity rather than overall 
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efficiency (Borgström and Plahte 1992; Prchalová et al. 2009).  Unlike trawls, clearly defining the 

gear affected area (or area fished) is not easy for gears that do not physically sweep a measurable 

area.  Absolute abundance estimates using these gear types are rare.   

A cross-sampling method has been developed in this and a closely related project7 to estimate gear 

efficiency and abundance from catch data alone.  The method is suitable in complicated situations 

where assumptions of random distribution of individuals and constant abundance at each site over 

time are not appropriate.  In these situations, the method only requires repeated shots in an area 

with more than one fishing gear.  The data can come from commercial catches or from scientific 

surveys.  Therefore, the method can be applied to data-rich or data-poor species as long as there are 

sufficient catch data.  In this section, we applied the cross-sampling method to gear efficiency and 

biomass for several species caught by multiple gears. 

5.5.2 METHODS FOR ESTIMATING GEAR EFFICIENCY, BIOMASS, AND FISHING 

MORTALITY RATE 

Data source and preparation 

The commercial logbooks provided the primary data in this study.  Multiple gear types have been 

used in the Southern and Eastern Scalefish and Shark Fishery (SESSF), including: longlines (manual 

and automatic), Danish seine, gillnet, trawls, fish trap, minor lines (handline, dropline, troll) etc.  We 

used data from 2000 to 2012 to estimate gear efficiency, which was then used to estimate biomass 

in recent years.  

We defined and estimated gear affected area a for each gear type in one deployment (shot) as 

follows: 

Longline: a = wL 

Seine:  a = π(L/2π)2  

Gillnet: a = wL 

Trawl:  a = 0.7Lh  

                                                           

7 FRDC Project Number 2011/029: ERA extension to assess cumulative effects of fishing on species 
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Where a is swept area, L is the length of longline, gillnet, seine net, or trawling length in km, w is the 

width in km along the length of the gear within that range fish can be affected, h is the headrope 

length, and 0.7 is the spread factor when the trawl is towed under the water (Milton et al. 2007; 

Pezzuto et al. 2008).  For the longline and gillnet, it is difficult to define the distance from the gear 

(i.e., 0.5w) within which a fish may be likely to be caught.  For gears that use baits to attract fish, 

gear affected area depends on various factors, including type of bait, soak time, physiological state 

of the fish (duration of food deprivation), current speed, fish swimming speed, body size, etc. 

(Løkkeborg et al. 1989, 1995).  The active space where the odour concentration is present in super-

threshold quantities shrinks with soak time.  Within the first hour, the maximum length of the active 

space for sablefish is 925 m, in 2 h is 793 m, and in 6 h is 654 m (Løkkeborg et al. 1995).  In a field 

study using baited gillnet, cod were observed to move directly towards the gear from distances up to 

400 m (Kallayil et al. 2003).  Near 90% of sablefish were hooked within 3 hours of soak time, which 

corresponds to the leading edge of the plume of about 800 m from the bait (Sigler 2000).  In a baited 

video experiment, the greatest distance of fish attraction was 48-90 m for a 200 mm fish in a current 

velocity of 0.1- 0.2 m s-1 (Ellis and DeMartini 1995).  If the current speed is about 0.2 m s-1, 1 hour 

soaks of baits may have an effective range of attraction of about 480 m for fish of 200-300 mm 

length (Cappo et al. 2004).  Based on these studies, for baited gears we assumed that the gear 

affected area was w = 1 km from the gear.  Similarly, for minor gears, including handline (HL), 

dropline (DL), trolling (TL), and fish trap (FP), we assumed that a for each shot was 1 km2.  Within a 

reasonable range, the delineation of gear affected area a is relatively robust in estimating fish 

density, because gear efficiency Q is a relative scaling parameter negatively correlated to a so the 

effect is mitigated in density or biomass estimation as long as the same a is used in estimating Q and 

later in estimating density or biomass (see below).  Nevertheless, more accurate definition of gear 

affected area would be helpful in future studies. 

The spatial and temporal resolution of the analysis can be expressed at various scales, for example, 

space at 0.1 by 0.1 degrees and time by year and month, space at 0.1 by 0.1 degree and time by year 

only, space at 1 by 1 degrees and time by year and month, space at 1 by 1 degree and time by year 

only, etc.  To increase the number of spatial-temporal units where different types of gears overlap 

while reducing the variance of CPUE (expressed as catch per unit of area here), we used the 

resolution of 1 by 1 degree by year.  This level of scaling therefore allows that the abundance of a 

particular species has a non-random annually-varying distribution among 1*1 degree cell and a 

random (Poisson) distribution within each grid cell is assumed in the following Bayesian cross-

sampling model.   
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Estimating gear efficiency Q from Bayesian cross-sampling model 

We used commercial logbook data from the SESSF (generally from 2000 to 2012) to estimate gear 

efficiency.   Abundance among unique grid-year units was modelled as a negative binomial 

distribution 

Ni ~ negbin(p, r),  

where unit i can represent either a unique grid cell or the same grid cell but in different years.  The 

negative binomial distribution (negbin) is parameterized as  
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where p [  (0, 1)] is the success probability in each experiment.  The shape parameter r describes 

the extent of aggregation and measures overdispersion (r > 0).  As r→ ∞, the negative binomial 

converges in distribution to the Poisson so the variance approaches the mean.  The mean is  = r(1 – 

p)/p and the variance is 2 = r(1 - p)/p2.  Within each grid-year unit, the local abundance available to 

each shot was assumed to following a Poisson distribution: 

Nij ~ pois(Ni). 

Catch data were then modelled as a binomial distribution: 

Cijk ~ binom(Qik, Nij),  

where j is the number of shots in the same grid-year unit by the same type of gear k.  In this 

equation, Nij is the abundance within the gear affected area, i.e., Nij = Dij aijk, where D is gear-

independent fish density.  Hence, for the same gear type, as observed catch Cijk is fixed, Q and a 

correlate negatively within a reasonable spatial range.  Assuming a larger a will result in a relatively 

smaller Q, and vice versa.  Weak informative priors were given to p, r, and Qik as: 

P ~ beta(1, 1) 

r ~ lognorm(0, 0.01) 

Qik ~ beta(1, 1). 

The probability density function of the beta distribution with shape parameters  > 0 and  > 0 is  
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With  = 1 and  = 1 in the distribution of beta(1, 1) is essentially a flat line (a non-informative prior).  

The expected gear efficiency for gear type k is the mean over all grid-year units: 

   
 

 
    

 

   

 

 

In real fishery data, catch is recorded either in weight or counts, or both.  The discrete statistical 

distributions, such as Poison and binomial, are typically applied to count data.  If weight is used in 

the analysis, the unit chosen may have a dispersion issue which will affect the variance estimate but 

not the point estimate.  For serious application, it may be worth correcting the dispersion parameter 

when weight is used (Zhou et al. 2008).  

Estimation of fish density and biomass 

After obtaining Q for each gear type, we can apply it to all historical data where gear efficiency can 

be reasonably assumed to be unchanged, and derive gear-independent fish density Dyij in each shot 

by expanding each catch in year y, grid cell i, shot number j, with estimated gear efficiency above: 

     
     

       
. 

 

Note that gear affected area ayijk should be the same as that used in estimating Q above.  This 

density, which may be referred to as “observed density”, can be sufficient for deriving biomass in a 

particular year.  However, fishing typically takes place in a limited area in a particular year and does 

not cover all of the stock distribution range.  It is desirable to “smooth” the observed density and 

predict potential density in any year based on all locations where the species has been previously 

caught.  Here we used a simple general additive model (GAM) and only data in the logbooks to 

model the observed density: 

                                           ,    

where the f1 , f2, and f3 are smoothing splines, and lon and lat are longitude and latitude.  We tested 

alternative splines, e.g., thin plate splines, cubic spline, P-splines etc. (Wood 2006).  The GAM model 

can be affected not only by the type of smoothing function, but also other factors, such as number 
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of knots and degrees of freedom.  With a large dataset, computing capacity may become an issue.  

The model output was in turn used to predict density for any year of interest at each shot location 

(i.e., with predictors lon, lat, and depth) where the species had been previously caught and recorded 

in the fishery.   

To estimate total biomass in a given year, we used one of the following two approaches depending 

on data availability.  In the first approach, the stock distribution area was defined as its core 

distribution from refined Bioregional Mapping (Heap et al. 2005).  The total fishable biomass in year 

y is then 

          

 

   

 

where      is the median density predicted by the GAM model above within each polygon g, Ag is the 

area size in polygon g within the Core range, and n is the total number of polygons where the 

species has been recorded in the history of the logbook.  This method can be only applied to species 

where core range has been previously defined. 

The second method assumed that any point location where the species had been caught represents 

a suitable habitat.  This method requires determining the size of each point location.  We examined 

three sizes, i.e., 0.1*0.1 degree, 0.05*0.05 degree, and 0.01*0.01 degree.  For example, the size of 

0.05 by 0.05 degree grid is derived as:  

    
     

   
  

 
          

    

 
 
     

   
 , 

where R (= 6371 km) is the earth radius.  In the southeast region, the mean A of 0.05*0.05 degree is 

about 24.2 km2.  The grid size and the total number of 0.05 by 0.05 degree cells where the species 

has been recorded in the history of logbook can be fed into the equation in the first method above 

to derive the total fishable biomass in year y.  For this method, the estimated biomass tends to 

increase as the size of the unit Ag increases.  It appears a grid size of 0.05*0.05 degree is more 

appropriate, while 0.1*0.1 degree tends to over-estimate the biomass and 0.01*0.01 degree under-

estimate the biomass. 

Estimating fishing mortality rate F 

Fishing mortality in year y by gear k is: 
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The overall fishing mortality in a year is simply    
  

  
.  Note that the ratio of Cy : By is closer to 

instantaneous fishing mortality rate F than exploitation rate (commonly represented by U) because 

we have used the catch data over the entire year so the biomass is not the peak biomass but the 

average over the year.  This Fy can then be compared with reference points such as FMSY derived from 

the natural mortality rate (or other means) to gauge whether fishing intensity is sustainable: 

      , 

Where  is a class- and order-specific scaling parameter estimated from a meta-analysis (Zhou et al. 

2012).  
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5.6 Conditional stochastic stock reduction analysis: deriving 

biomass-based reference points from catch history 

5.6.1 INTRODUCTION 

Catch statistics are perhaps the easiest data to collect and the most widely available information in 

many fisheries, including Australian Commonwealth managed fisheries.  However, it is difficult to 

use catch alone in fishery stock assessments to develop reference points and associated indicators 

for management.  Even the simplest population dynamics model—surplus production (aka biomass 

dynamics) model and depletion models require additional information, at least fishing effort, to 

derive catch-per-unit-effort (CPUE) as an indicator of relative biomass.  Yet, in some fisheries, effort 

is not available, is difficult to measure or standardize, or CPUE cannot be used as an indicator of 

biomass because the distribution of fishing effort is not related to species distribution.   

Recently, there is an increased interest in stock reduction analysis (SRA) which was first suggested by 

Kimura and Tagart (1982) and Kimura et al. (1984).  Walters et al. (2006) demonstrated the use of 

Monte Carlo simulation in SRA.  Dick and MacCall (2011) proposed Depletion-Based Stock Reduction 

Analysis (DB-SRA), which merges stochastic SRA with Depletion-Corrected Average Catch (MacCall 

2009).  Martell and Froese (2012) used similar methods to estimate MSY from catch and resilience 

that links to population growth rate.  The basic idea of these approaches is similar: to reconstruct 

possible trajectories of stock change from the beginning of the fishery, given historical catch data 

and known or assumed stock status (either biomass, proportion of depletion, or fishing mortality 

rate) in one or more recent years.  Since the end point is approximately fixed, the biomass 

trajectories are determined by only two variables: an initial biomass at the beginning of the fishery 

(B0) and a population growth rate (for example r in the surplus production model) over time.  The 

combination of these two parameters can be found by tracing back from the end stock status and 

historical removals.  

Although the idea is simple, there is a wide range of B0 and r combinations that may produce the 

same historical catch and end in the same stock size (Martell and Froese 2012).  Further, it has been 

shown that these methods are highly sensitive to the end stock status (Dick and MacCall 2009; 

Wetzel and Punt 2011); e.g. the effect of fishing on the population can be underestimated when an 

overly-optimistic value for the ratio of the recent to starting biomass is assumed.  
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We propose several improvements to SRA-based depletion estimation in this report.  The first step is 

a deterministic method to “guess” the initial virgin biomass (referred to as “chase-catch” or CC 

method for convenient referral in this report).  Secondly, we construct a possible distribution of 

population growth rate from life history traits developed in Appendix 3.  We then use the biomass 

estimated by expanding the cross-sampling method in the section 5.5, instead of assuming a 

depletion level.  Finally, we apply stochastic stock reduction analysis conditioned on multiple rules 

(referred to as “conditional stochastic stock reduction analysis” or CSSRA for the same reason in this 

report).   Simulations were conducted to evaluate the performance of CSSRA and to compare CC and 

CSSRA results with data-rich species that have full stock assessments.  The methods were also 

applied to several data-poor stocks that have not been able to be fully assessed previously.  

5.6.2 METHODS OF DERIVING BIOMASS-BASED REFERENCE POINTS FROM CATCH 

HISTORY 

Deterministic chase-catch (CC) method 

The basic idea of this CC method is to estimate virgin biomass B0 (AKA carrying capacity K and we 

may use both symbols interchangeably herein), given the complete catch history, assumed known 

stock status in one or more recent years (either biomass, fishing mortality rate, or depletion status), 

and an assumed population growth rate.  The stock status should be obtained from auxiliary data or 

other sources, while the population growth rate can be deduced from life-history traits.   

Let Bt be the time series of mean stock biomass in year t (t = 1, 2, … n),  B1 be the biomass in the first 

year of the time series, Gt the growth, and Ct the observed catch.  At any year y ( ty ), 
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Assume at year y, biomass By or fishing mortality Fy is known, e.g., from catch-curve analysis or 

based on aerial overlap, then By = Cy/Fy is known.  In the above equation, B1 and Gt are unknown.  If 

fishing continues, By (average biomass in year y) must be less than B1.  That is, the summed net 

growth must be smaller than the summed catch.   
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Step 1: The amount of catch that is more than growth during the same period is 
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Here guessB1 is a biased guess of the true biomass B1 (
guessB1 ≤ B1) and By is the biomass at year y, 

which can be the last year n in the time series.  

Step 2: Assume the population can be expressed by the general biomass dynamics model: 
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where r is the population growth rate, B0 is the carrying capacity, and m is the shape parameter.  

Note that including the shape parameter makes the model more flexible but this parameter is 

difficult to estimate for real data (Clark et al. 2010).  In this model, maximum sustainable yield and 

fishing mortality at MSY are 
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The estimated guessB1 can be used as B1.  Further, in most cases it is reasonable to assume B0 = B1 and 

natural mortality M is known.  Natural mortality is certainly a good predictor for FMSY, for example r = 

msyF
m

m
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, where  is a class- and order-dependent scale from a meta-analysis 

(Zhou et al. 2012).  The adjusted excessive catch is then: 
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The adjusted biomass at the beginning (year 1) is 

adj

excy

adj CBB 1          

Step 3: repeat this step by replacing guessB1 with adjB1 . The estimated excessive catch is: 
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The estimated biomass at year 1 is 

est
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est CBB 1          

Step 2 and Step 3 can be repeated until the difference between 
adjB1 and 

estB1  
is small enough, for 

example, %001.0
1

11 

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adjest

B
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.
 

 

Sensitivity analysis 

If the population process can be described by the biomass dynamics model (3), the accuracy of the 

estimated biomass is affected by three variables: the population growth rate, the estimated biomass 

in one particular year y By, and the shape parameter m.  For the general Graham-Schaefer model, it 

is the growth rate and biomass in a particular year that are important for estimating B0.  We test the 

sensitivity of the method by multiplying the true r by a range of values from 0.2 to 2.0, i.e., a relative 

bias from -0.8 to 1 of the true value (0 means the true value of r is used).  The bias in r may result 
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from uncertainty in M and its relation with FMSY. We also vary the estimated By by multiplying it by a 

range of values from 0.2 to 2.0. The relative error in the estimated B0 is: 
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Because estimated biomass for a single year By may be inaccurate, it may be desirable to use 

average biomass from several years {By-x, … By-1, By}.  

We call this method “chase-catch” for two reasons.  First, the method requires catch history as the 

key data.  Second, the process is similar to the game of chase-and-catch where an initial guess of the 

biomass is fed into a population dynamic model.  The model produces an improved estimate.  In 

each reiteration, the process “chases” the true value closer and closer and eventually “catches” the 

true value. 

Conditional stochastic stock reduction analysis (CSSRA) 

This method is similar to the stochastic stock reduction analysis (Walters et al. 2006) and the 

depletion-based stock reduction analysis (Dick and MacCall 2011).  We make several improvements 

and modifications.  1. Derive initial biomass B0 from chase-catch method; 2. Apply parameter  from 

a meta-analysis of hundreds of species; 3. Instead of assuming a relative depletion level (By/B0), we 

estimate 
est

yB  based on auxiliary information or using the method described in the previous chapter 

(cross-sampling method); 4. Use multiple rules (so conditional SSRA) to retain a plausible stochastic 

sample i.  These rules may include but are not limited to:  
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where precision scale  is specified by the user to allow uncertainty in estimated biomass in year y, 

for example 0.1 (i.e., 10% deviation from
est

yB ).  The priors for the two key parameters are assumed 

to have ]),[log(log~ 2

00 0B

estBnormalB   and ]),2[log(log~ 2

rMnormalr  . 

Simulations 

We carried out simulations with various known input parameters to evaluate the performance of the 

CSSRA.  These simulations involved three steps: data generation, parameter estimation, and 

evaluation of estimation performance.  We used the Graham-Schaefer surplus-production model 

(i.e., m = 1 in the general biomass dynamics model) to generate each time series of Bt.  The catch 

history was selected to mimic that of typical fisheries: relatively low catch at the beginning of the 

fishery, increasing to a peak and then flattening out or declineing in recent years (e.g., Figure 5-2).  

We carried out the following sensitivity analyses: 

1. Effect of variability in B0, and r on posterior (retained) B0, r, MSY, and By/B0 by changing cv[B0] 

or cv[r] from 0.1, 0.2, …to 1.0.  

2. Effect of bias in priors r and B0 on posterior B0, r, MSY, and By/B0 by changing relative error from 

-0.8, -0.6, -0.4, …to 1.0 (relative bias 1.0 means the assumed value is twice as large as the true 

value).  

3. Effect of bias in final biomass By on posterior B0, r, MSY, and By/B0 by changing relative error in By 

from -0.8, -0.6, -0.4, …to 1.0 (relative bias 1.0 means the assumed value is twice as large as the 

true value).  

For each combination of parameter set, we ran Monte Carlo simulations until 1000 iterations met all 

rules a to d above.   

The performance of the method was evaluated by the mean and distribution for the relative error of 

the posterior medians for parameter   (i.e., B0, r, MSY, and By/B0).  For example, the relative error of  

the final estimate of B0 from simulation i is: 
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The mean relative error of  is: 
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Figure 5-2.  General pattern of catch and biomass trends used as input in the simulations.  

 

Application of CC and CSSRA methods to selected stocks 

To estimate the robustness of these methods we apply the chase-catch and conditional stochastic 

stock reduction analysis to selected stocks that have been assessed using full quantitative methods.  

The Southern and Eastern Scalefish and Shark Fishery (SESSF) is a multi-species and multi-gear 

fishery that catches over 80 species of commercial value.  More than 20 commercial species or 

species groups are currently under quota management.  Full quantitative stock assessments have 

been conducted annually for most of these species.  The quantitative assessments produce time 

series of annual biomass for species that fall under TIER 1 management, along with other biological 

and management quantities (Tuck 2011).  Because the CSSRA method produce two key parameters: 

virgin biomass B0 and population growth rate r, and from them MSY can be derived.  For the purpose 

of comparison, we fit a biomass dynamics model to these estimated time-series biomasses to 

produce “true” B0, r, m, MSY, and By/B0.  
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We also compared the general and hybrid surplus production models.  To facilitate the comparison, 

we re-parameterize the general surplus production model as in the Fletcher (1978) formulation of 

the Pella-Tomlinson model (PTF):  
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where    
 

 
   

   
 and m = MSY.  The peak production occurs at 

    

 
  

 

 
 

 

   
.  The popular Schaefer 

model is a special case of this Fletcher model when n = 2.   

This general model may overestimate production when the curve is considerably skewed (Fletcher 

1978, Dick and MacCall 2011).  McAllister et al. (2000) and Dick and MacCall (2011) used hybrid 

Schaefer-PTF model and we adopted similar idea here.  The hybrid production model is a 

combination of the Shaefer model and PTF model:  

 Use Shaefer model when n < 2 and Bt < Bjoin or when n > 2 and Bt > Bjoin; 

 Use PTF model when n < 2 and Bt > Bjoin or when n > 2 and Bt < Bjoin. 

The join point for the Shaefer and PTF models is obtained by numerically solving   

         
     

 
    

     

 
 
     

 
 
   

        

Additional input values and assumptions are provided in the result section. 

 

  



METHODS: BIOLOGICAL ANALYSES 

73 

 

5.7 Posterior-focused Catch-biological reference points (Posterior 

Catch-BRP) 

5.7.1 INTRODUCTION AND METHOD 

The CSSRA and other similar methods require priors on carrying capacity K and population growth 

rate r, as well as assumed known stock status in one or more recent years (biomass, fishing mortality 

rate, or depletion).  The choice of prior distributions (for example, uniform, lognormal) and their 

lower and upper ranges will affect the results.  It is difficult to determine these priors for many data 

poor species.  In attempting to deal with these issues, we developed an innovative approach to 

avoid such difficulties in prior selection. 

The idea is to use unconstrained priors for K and r, that is 0 < K < ∞ and 0 < r < ∞.  After retaining 

viable iterations where Bt > Ct, Bt > 0, and Bt <= K, we examine the results and exclude unlikely 

values.  In another word, this approach focuses on “posterior” rather than “prior”.  If fact, because K 

and r are negatively correlated, the maximum K is constrained by r = 0 and is much smaller than 

infinity, while the maximum r value is constrained by the minimum viable K.  The typical log(r) ~ 

log(K) plot is a straight line at the middle and curves at the two ends.  At one end is high r low K 

values where high values of r cause chaotic dynamics of the population dynamics model (Quinn and 

Deriso 1999).  To maintain a population, K has to change rapidly.  At the other end is high K low r 

values where a small change in K requires an enormous change in r in the opposite direction in order 

to sustain the population. Therefore, a population with r ~ K pairs at the two ends is unlikely to be 

viable.   The challenge in this approach is to identify the likely range and the most likely r ~ K 

combination on the curve that make the population viable.  When the most likely r and K values are 

identified, biological reference points (BRP), such as MSY, BMSY, FMSY can all be derived.  As catch is 

the primary required data, we refer to this approach as posterior-focused catch-BRP.  We first 

demonstrate this approach by a simulation, and then apply the method to four case-study species 

and compare the results with other methods. 

In the simulation, we assumed a stock with true r = 0.5 was fished for 30 years where catch 

increased to a peak and then flattened out with a slight decline.  The carrying capacity is 6 times the 

maximum catch in the 30-year history, which is 324 t in this case.  The population follows the 

Graham-Shaefer production model.  The biomass at year 30 is assumed to be known and equal to 

the true biomass of 288 t.  The priors for r and K cover all possible values: r ~ dunif(0, 20), K ~ 

dunif(0, 10000).   
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The posterior retained iterations encompass only a fraction of the wide prior ranges (Figure 5-3).  

Many randomly generated values for r and K are simply too large or too small to be possible 

combinations.  To determine the most likely region within the retained r ~ k curves, we propose 

several alternatives.  

 

 

Figure 5-3.  Plots of growth rate r and carrying capacity K for all retained iterations.  The true r = 0.5 and K = 

324.  Prior use: r ~ dunif(0, 20), K ~ dunif(0, 10000). 

 

 

Visual inspection 

In the Graham-Schaefer production model, at equilibrium where biomass remains unchanged, 

growth equals fishing mortality,      
 

 
   .  Hence, 
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Where  = B/K is the depletion ratio from virgin biomass.  In this equation, log(r) and log(K) form a 

straight line with a slope of -1.  When the population is not at equilibrium, i.e., biomass changes 

from one year to the next year, the slope will be smaller than -1 when the population declines and 

greater than -1 when it increases.  From the log~log plot in Figure 5-3, it is apparent that data points 

that do not fall in on the narrow linear band are unlikely to be viable, i.e., log(r) > 0 and log(K) > 6.6 

are not possible values.  By excluding the data points at the two ends, we obtained the plots in 

Figure 5-4.  Panel D compares the key parameters from resulting r-K pairs in panels B and C with true 

input values.  Generally, the relative biases are reasonably small and the section chosen appears to 

be fairly robust for inference as long as the selected region does not include the extreme data at the 

two ends.  In fact, this can be further improved by excluding additional data points at the two ends 

in panel C.  
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Figure 5-4.  Result of visual identification by excluding iterations with r > 1 and log(K) > 6.6 in Figure 5-3.  

 

Search mid point 

In Figure 5-3 and Figure 5-4, there is an inflection region in the middle of the r ~ K curves, which is 

the most likely area containing the point values of true r and K.  Alternative techniques may be used 

to identify the inflection point.  We used the following steps to find out this point: 

Standardize the r and K as:    
         

  
     and    

         

  
; 
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Scale K’ and r’ to the same breadth: 

 

     
  

       

       
 

                  

           

  

 

     
  
       

        
                  

           

  

 

Calculate the distance to the origin at (0, 0):             ; 

The most likely r and K locate at min(d); 

Use 10% data points surrounding [r|min(d)] and [K|min(d)] for inference. 

 The results are shown in Figure 5-5.  The shape of d ~ K plot looks similar to a typical likelihood 

profile.  Relative bias is less than 10% for all key parameters.  
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Figure 5-5.  Simulation with true r = 0.5 and K = 324.  Prior r ~ unif(0, 5), k ~ unif(0, 10000).  Use iterations 

that result in a line with -2 < slope < 0. 
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5.8 Testing Stock Reduction Analysis through Management 

Strategy Evaluation (SRA MSE) 

5.8.1 INTRODUCTION 

Stock reduction analysis (SRA) was first described by Kimura and Tagart (1982) and Kimura et al. 

(1984). Recent interest in the procedure has been for data-poor situations, leading to further 

developments. Walters et al. (2006) demonstrated use of Monte Carlo simulation in SRA, Dick and 

MacCall (2011) proposed Depletion-Based Stock Reduction Analysis (DB-SRA), which merges 

stochastic SRA with Depletion-Corrected Average Catch (MacCall 2009). These approaches 

essentially reconstruct possible trajectories of stock change from the beginning of the fishery, given 

historical catch data and known or assumed stock status (either biomass, proportion of depletion, or 

fishing mortality rate) in one or more recent years.   

Section 5.5 describes a method that provides an estimate of biomass in a recent year using 

estimated fishing gear efficiency and the spatial distribution of fishery catch rates. Use of such a 

biomass estimate in combination with SRA (CCSRA) allows the full historical biomass series to be 

determined. This therefore provides a stock assessment that can be used in combination with a 

harvest control rule (HCR) to set fishery catch levels.  

It is unknown how well such a stock assessment and HCR performs according to expectations of the 

Commonwealth harvest strategy policy (CHSP) introduced in 2007. Management strategy evaluation 

(MSE) has become a globally accepted method of testing fishery harvest strategies (HS) – the 

combination of a stock assessment with a HCR, with performance measures developed in 

accordance with policy goals. This chapter describes the application of MSE to test the performance 

of CCSRA in terms of the objectives of the CHSP.   

The guidelines for implementation of the CHSP encourage a tiered approach to cater for varying 

levels of knowledge about a stock. In the Southern and Eastern Scalefish and Shark Fishery (SESSF), 

the Tier 1 harvest strategy uses a fully-integrated quantitative stock assessment to estimate the 

current biomass level, which is input into a target- and limit-based harvest control rule (HCR). The 

Tier 3 HS (Wayte and Klaer, 2010) uses information on the age frequencies of annual catches, annual 

total catch, and basic biological parameters to estimate current fishing mortality, which is then used 

in an HCR to calculate the subsequent year’s intended fishing mortality. A new harvest strategy 

(Klaer and Wayte 2012) has been developed that is similar to Tier 3, but uses average length in the 
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estimation of current fishing mortality. Tier 4 stocks are assessed by an empirical rule based on 

trends in standardized catch rates combined with target catches (Little et al., 2011). 

5.8.2  METHODS 

Two species were examined: Tiger Flathead and Jackass Morwong. These species are data rich, Tier 1 

species in the SESSF. MSE testing is normally carried out using data rich species, plausible operating 

models can be developed. The estimates of 2009 biomass for these species were available from 

Section 6.5 (Table 5-8). The estimated SSB0 (virgin spawning biomass) from Tier 1 full assessment 

was 21,856 tonnes for Tiger Flathead and 25,065 tonnes for Jackass Morwong, respectively. Hence, 

the target spawning stock B48 was 10,491 tonnes for Flathead and 12,031 tonnes for Morwong. Two 

scenarios were considered for each species: where the assumed “true” stock status at the start of 

the projection period was below or above the target stock status of B48. These levels were obtained 

by manipulating the initial stock size in the operating model so that the below-target and above-

target starting SSBs were 35% and 60% respectively, of the unfished SSB, which is smaller than the 

recruited biomass. We can see from Table 1 that the ratio of estimated to “true” recruited biomass 

was 232% and 99% for Flathead, and 126% and 23% for Morwong. 

 

Table 5-8. The estimated recruited biomass (not SSB) in 2009 used to MSE assessment, and the ‘true’ value 

for each of the initial stock status scenarios, for fleets that had the highest proportion of catch in the 

previous 5 years.  For both species this was NSW/Vic trawl. The numbers in parentheses are the ratios 

between estimated biomass and “true” biomass.  

 Estimated Below target Above target 

Flathead 21,798 9,411 (2.32) 21,971 (0.99) 

Morwong 12,744 10,152 (1.26) 54,752 (0.23) 

Note: these values will be slightly different for each simulation as recruitments are only fixed until 2005 for 

Flathead and 2004 for Morwong. The values here are from one of the 100 simulations. 

 

SRA was implemented as in Klaer (2006). This model allows different biological characteristics by sex, 

but was mostly based on the procedure described by Francis (1992). To generate recommended 

biological catch (RBC) levels, the MSE framework requires that an assessment method uses 

particular sources of simulated data provided by the operating model, and also a fixed HCR 
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appropriate to that assessment method. The CCSRA implementation used the 2009 absolute 

biomass values given in Table 1, and the catch history to estimate B0, current depletion, and fishing 

mortality (F) (with a constraint that F in any year is no greater than 2.0). As it has the same input 

requirements of current depletion and current F, the standard SESSF Tier 1 HCR was used to 

generate RBC values from the CCSRA assessment.  

The MSE framework was implemented as described in Wayte and Klaer (2010), with the operating 

model dynamics described in Fay et al. (2009). 

The aims of harvest strategies as specified in the Australian government Commonwealth Harvest 

Strategy Policy are to: maintain fish stocks, on average, at a target biomass point equal to the 

spawning stock biomass (SSB) required to produce maximum economic yield (BMEY); ensure fish 

stocks remain above a limit biomass where the risk to the stock is regarded as too high; and, ensure 

that the stock stays above the limit biomass level at least 90% of the time (DAFF, 2007). The limit 

biomass level is set as half of the SB required to produce maximum sustainable yield (BMSY). The use 

of proxies of B40 (40% of unfished equilibrium SSB) for BMSY, and 1.2BMSY for BMEY result in a limit SB 

reference point of B20, and a target SB reference point of B48. Stock status in any particular year y is 

defined as the ratio of that year’s SSB (By) compared to the unfished equilibrium SSB (B0). The 

harvest control rule calculates the exploitation rate as a function of the current stock status, and a 

RBC is calculated by applying this exploitation rate to the estimate of exploitable biomass at the start 

of the quota year for which the RBC is required.  
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6 Results and Discussion 

Economic analysis — target reference points for 

data-poor fisheries 

6.1   Estimating maximum economic yield in data poor fisheries – 

a brief review 

Maximum Economic Yield (MEY) in a fishery can be defined as the point at which the sustainable 

fishing effort level and catches in the fishery entail maximum profits, or the greatest difference 

between total revenues and total costs of fishing (Kompas 2005). The main determinants of MEY are 

illustrated in Figure 6-1. The point will change with input and output prices, as will the associated 

level of profits, and identifying MEY in any given fishery requires an assessment procedure allowing 

to track these changes (Kompas et al 2009). The dynamic nature of the MEY objective should be fully 

accounted for in such assessment procedures (Dichmont et al. 2010; Grafton et al. 2010). 

While the concept has long been identified by fisheries economists as a target that should drive 

fisheries management (Gordon 1954), its identification had largely remained a theoretical exercise 

until recent years, as it had not been formally adopted as a policy objective internationally. With its 

inclusion in the Australian Commonwealth fisheries policy8, and growing debates on its relevance as 

an operational management objective in other parts of the world (Christensen 2010; Norman-Lopez 

and Pascoe 2011; Bromley 2009; Dichmont et al. 2008), the problem of estimating MEY in real 

fisheries has attracted growing attention. First attempts at identifying MEY as an actual management 

target have highlighted the empirical difficulties which need to be addressed in doing so, and relate 

in particular to the alternative treatments of prices and costs, which may result in differing estimates 

of MEY and associated adjustment trajectories (Dichmont et al. 2010). 

 

                                                           

8 Ministerial Direction to the AFMA under Section 91 of the Fisheries Administration Act 1991 issued by the Australian Government 
Minister for Fisheries, Forestry, and Conservation in December 2005. 
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Figure 6-1.  Main determinants of Maximum Economic Yield in fisheries (Source: [6, 7]) 

 

It has been possible to overcome these difficulties in the context of data rich fisheries, to which the 

analysis was first applied. However, MEY is also to be applied as a management objective in a 

broader set of fisheries, including some which are less well monitored and researched. This requires 

identification of possible approaches to applying this objective in data poor contexts. 

In this section of the report, we provide a brief review of the literature on the identification of 

harvest objectives and management strategies in data poor contexts. 

6.1.1 DECISION SUPPORT APPROACHES FOR FISHERIES MANAGEMENT IN DATA 

POOR CONTEXTS 

There has been growing recognition that specific decision support methods and tools for fisheries 

management are needed in data poor contexts, both in the developed (Kelly and Codling 2006) and 

the developing world (Johannes 1998). Using the case of New Zealand fisheries (see figure below), 

Bentley and Stokes (Bentley and Stokes 2009a, 2009b) explain that the amount of detailed 

assessment information available for fisheries is often limited to non-existent as regards biological 
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status of the fish stocks, and is usually driven by the value of the fishery. In the face of these 

limitations, the authors call for a shift of focus from assessment to procedural approaches, and for 

the identification of generic management procedures that depend on easily observed characteristics 

of a fishery, including biological, economic and social attributes. 

Smith et al. (2009) illustrate the approach which has been adopted in the context of Australian 

Commonwealth fisheries to achieve such a procedural approach using Harvest Control Rules (HCR). 

These apply across a broad range of contexts, including data poor fisheries. In their conclusions, the 

authors stress the paucity of economic data in data-poor fisheries. Given that it will usually not be 

possible to collect detailed economic data for specific fisheries, the authors call for a formal 

evaluation of the proxies which may be considered for the MEY management target in data-poor 

contexts. 

Dowling et al. (2008) stress the fact that when determining harvest strategies in data poor fisheries, 

uncertainty creates a trade-off between the risk of setting proxy reference points that would be too 

conservative, and the cost associated with improving the information needed to allow for reference 

points to be set closer to levels at which industry profits can be maximised. In a specific research 

project conducted with the Australian Commonwealth Fisheries Management Agency, the authors 

worked with fishery managers and stakeholders to develop a set of Harvest Strategies that would 

apply in data poor contexts. The approach is based on the definition of trigger levels associated with 

the biological status of the resources. An application to three Australian fisheries is presented. 

Economic dimensions are however not included in the analysis. 

Dichmont et al. (2010) present an example of developing Harvest Control Rules in a Management 

Strategy Evaluation (MSE) framework applied to the data poor and low value spanner crab fishery in 

Queensland, Australia. The authors stress that while the economic circumstances of the fishery were 

considered important, they were never factored explicitly into the analysis, other than through the 

imposition of constraints regarding, e.g. the stability of Total Allowable Catches. This constraint is 

further examined by O’Neil et al. (2010) who present a revision of the initial MSE that was adopted 

to reduce chances of large fluctuations in Total Allowable Catch, which would be negatively 

perceived by the industry. The economic condition of the fishery was however not directly 

considered in their analysis. 
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Figure 6-2.  Types of assessments for NZ fish stocks according to their annual value. (Source: Bentley 2009b) 

 

Kelly et al. (2006) propose an approach based on harvest rules and simple empirical indicators, to 

develop management strategies for fisheries in which data are unreliable or unavailable, and 

complex analytical models cannot be applied. They suggest that this approach, which would also rest 

on the definition of Harvest Control Rules, should be applied to North Atlantic fisheries 

management. 

Overall, while there have been increasing research efforts dedicated to the development of harvest 

strategies under data poor conditions, to date, none of these have explicitly attempted to address 

the issue of identifying approaches which could be used to drive fisheries towards Maximum 

Economic Yield. 

6.1.2 EMPIRICAL APPROACHES. 

Empirical estimations of MEY in fisheries are only rarely encountered, and if they are, it is largely as a 

negative image, in terms of lost rent. This has been the case at the scale of both global fisheries, and 

local fisheries, as researchers have attempted to measure the extent of excess capacity at both 

levels, and to demonstrate the need for management changes.  

The range of empirical approaches from data rich to data poor situations are illustrated in Figure 6-3. 

Empirical analysis of MEY in fisheries has largely focused on the development of bioeconomic 

models. These have been developed for a wide variety of fisheries and for fisheries in most regions 

of the world (Armstrong and Sumaila 2001; Doole 2005; Kar and Chakraborty 2011; Kompas et al. 
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2010; Ulrich et al. 2002). Such models require, at a minimum, some underlying stock dynamics 

models as well as information on costs of different fishing activities and prices of the main species. 

Models range in type from static equilibrium based models assuming a single homogenous fleet 

(Chae and Pascoe 2005; Kompas et al. 2010) to complete ecosystem based approaches (Fulton et al. 

2007) or multi-species and multi-fleet models (Punt et al. 2011; Pelletier et al. 2009; Ulrich et al. 

2007). These models are case specific, such that general rules cannot readily be derived that could 

be applied in data poor contexts. While the models themselves could be adapted to other fisheries, 

these would require sufficient appropriate data to populate the model parameters. For management 

purposes, the reliability of these models is intrinsically linked to the data on which they were based, 

and acceptance of these models by industry and managers is also greatly influenced by data quality 

(and quantity) (Dichmont et al. 2010). 

 

 

Figure 6-3.  Empirical approaches to estimating target reference points. 

 

Non-model based approaches to estimate optimal fleet size in fisheries have largely focused on the 

estimation of fishing capacity and capacity utilisation (Felthoven and Morrison 2004). These can be 

derived using vessel level catch and effort data, but require assumptions as to what catch levels may 

be appropriate at MEY. At best, they can identify how much excess capacity may exist in the fishery, 

but do not provide an indication as to what may be an optimal level of either effort or catch. 

Several attempts at developing indicators of economic performance exist that can be used to assess 

whether or not fisheries are improving or deteriorating. These include information on licence values 

(Arnason 1990), although most approaches require more detailed cost and earnings information 
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(Whitmarsh et al. 2000). As with the capacity measures, these indicators alone do not provide 

information on where an optimal level of fishing effort or catch may be. 

Harvest Control Rules (HCR) (Smith et al. 2009) have been applied across a broad range of fisheries, 

including data poor fisheries. One such approach is based on the definition of trigger levels 

associated with the biological status of the resources that also reflect economic performance 

(Dowling et al. 2008). Several examples of trigger-based management systems exist that have an 

implicit economic consideration but no explicit economic analysis. These include the data poor and 

low value spanner crab fishery in Queensland, Australia (Dichmont and Brown 2010; O’Neil et al. 

2010), and the banana prawn fishery component of the Northern prawn fishery – a relatively data 

rich fishery but one in which modelling approaches have proven unreliable. In both cases, 

appropriate triggers are determined through a co-management arrangement involving industry, 

scientists and managers. Similar approaches have been proposed for definition of Harvest Control 

Rules for North Atlantic fisheries management for fisheries in which data are unreliable or 

unavailable, and complex analytical models cannot be applied (Kelly and Codling 2006). 

Much of the attention in these analyses has been on either identifying the potential economic 

output from a fishery. Munro (2010) presents a synthesis of recent studies commissioned by the 

World Bank and the Food and Agricultural Organization of the United Nations, which aimed to assess 

rent losses in global fisheries, and a selection of individual fisheries. The so-called “Sunken Billions 

report” estimated that the annual lost rent due to global fisheries being sub-optimally managed 

amounted to approximately US$50 billion over the 1974–2008 period, taking 2004 as the base year 

World Bank and FAO 2009). Of this lost rent, US$45 billion is due to the fact that fisheries generate 

rents but that these could be higher, but US$5 billion is estimated to be due to negative rents being 

generated in some of the world’s fisheries, due to over-harvesting and depletion of higher valued 

stocks. 

The estimation is based on an approach which could to some extent be considered a data poor 

approach, as it is based on highly aggregated data of heterogeneous nature, and seeks to develop an 

estimation method which is based on a contained number of parameters. The authors of the study 

construct an aggregate model which assumes a global stock and biomass growth function (assuming 

either Schaefer-type or Fox models), and an aggregate fishing fleet with unique production, cost and 

profit functions. It takes into account the dynamic nature of fisheries and the rents they generate, 

and makes several assumptions in defining the concept of lost rents, particularly as regards the 

selection of a reference year from which to assess these, but also concerning reversibility of 

biological overfishing in the long run, and the treatment of transition costs to MEY (Munro 2010 p8). 
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As stressed by Munro (2010) in the conclusion of his report, while the results of the study clearly 

illustrate the need for change in world fisheries if they are to produce increased wealth, they do not 

provide a way forward in addressing the question of how to achieve high economic returns in global 

fisheries. 

At the fishery level, there have been growing efforts at estimating excess capacity in fisheries (e.g. 

Felthoven and Morrison 2004; Tingley et al. 2003; Szakiel et al. 2006; Eggert and Tveteras 2007; 

Asche and Egger 2008)). Kompas et al. (2010) assess the lost rent from over-harvesting of the tunas 

of the Western and Central Pacific. As for the global estimates above, while these studies have help 

identify the potential to improve the economic performance of the fisheries studied, they do not 

focus on the identification of possible approaches to MEY. 

Kompas et al (Kompas 2005) review possible approaches to the assessment of the economic status 

of fisheries, and illustrate their application to selected Australian Commonwealth managed fisheries. 

The authors provide MEY estimates for the northern prawn fishery (NPF) and the south east trawl 

fishery (SETF), and show that most current stock levels are much smaller than stock levels at MEY, 

leading to lost rents in these fisheries (see also Kompas et al. (2010) and Dichmont et al. (Dichmont 

et al. 2010; Dichmont et al. 2008) for further details on the NPF case). The study also estimates 

vessel-level efficiency in these fisheries, which show considerable efficiency losses, as well as 

productivity indexes and profit decompositions (applied to the SETF and the eastern tuna and billfish 

fishery). While the indicators produced are directly relevant as support tools for the identification of 

management strategies aimed at MEY, they require significant data and data analysis, which 

precludes their application in data poor contexts. 

Szakiel et al. (1990) reviewed possible methods and metrics to assess the status of Commonwealth 

fisheries, including some economic indicators (Figure 6-4). The methods they discuss range from 

detailed bio-economic models required extensive data, to what they call “nonmetric approaches”, 

requiring only limited information. They warn that although these nonmetric indicators can be 

relatively easy to obtain, they may be biased and provide limited information on which to base 

assessments of the status of a fishery. Whitmarsh (2000) emphasized the importance of 

distinguishing between the financial profitability of fishing fleets and their economic performance, 

and how care should be taken in interpreting financial indicators that are estimated based on 

current cost and earning surveys. 
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Figure 6-4.  Non-metric indicators proposed to assess the status of Commonwealth fisheries.  (Source: 

Szakiel et al 2006) 

 

6.2 Deriving proxy measures of costs based on vessel and fishery 

characteristics 

A key component of the study was to determine the extent to which cost components could be 

estimated based on characteristics of the vessels and fisheries within which they operated. 

Bioeconomic analysis requires estimates of costs and cost structures. However, these are often 

unavailable and expensive to collect. As outlined in the methods section, available economic data for 

a range of fisheries for which regular surveys were undertaken were used to test the relationship 

between costs and simple indicators such as vessel size and gear type used. Costs were 
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disaggregated into variable costs, fixed costs and quasi-fixed costs. The results of the analysis are 

given below 

6.2.1 VARIABLE COSTS 

Fuel costs 

Fuel costs were considered separately from other operating costs as they represent a significant 

component of these, and are usually well identified in the survey data. The importance of fuel costs 

in the overall cost structure of a fishing vessel however varies with the type of fishing gear used. 

Fixed gear fleets will use relatively less fuel per nominal unit of fishing effort than fleets using mobile 

gears. Hence, fuel costs were estimated in two separate models for vessels using mobile gears 

(trawl, dredge, Danish seine) and vessels using fixed gear (pot, net, line). 

The models were estimated on the assumption that fuel costs vary with (i) nominal fishing effort, 

measured in days fished in our sample; (ii) size of the vessel as larger boats have larger engines 

which use more fuel per unit of time; (iii) types of fleets within each category of gear (fixed or 

mobile) and vessel size, as some vessels will spend more fuel than others in a given day of fishing 

depending on the type of fishing gear they use, which may itself depend on  the species targeted. 

Other explanatory variables tested in the estimation of the models included the nature of access 

regulation which applied to the fishery in which the fleets operate, and whether regulations are 

based on input controls, which could impact the way in which the fleets operate and affect their fuel 

costs. We also considered the age of vessels as this could affect their fuel efficiency, with 

technological innovations improving the fuel efficiency of newer vessels. 

A generic multiplicative model was chosen as the most appropriate structural form, given by  

 0 DpFL L E A D

FL
FL e p L E A e

        (1) 

where FL is the total fuel cost of the vessel over the year, pFL is the price index for fuel, L is the length 

of the boat using mobile gear, E is the level of fishing effort (measured in terms of days fished), A is 

the age of the vessel (in years), and D is a set of dummy variables representing type of fishing gear 

used within the set of mobile gears, management type and other vessel characteristics.  

The model was estimated as a log-linear regression model, the function form given by 

0
ln ln ln ln

pFL FL L A D
FL p L A D          (2) 



RESULTS: ECONOMIC ANALYSES 

91 

 

The model was estimated in two parts given the very different fishing practices. All mobile gear (i.e. 

trawl) fleets were included in one model and static gear (nets, line, dive and pots) in the other. For 

the mobile gear model, fish trawl was considered the base fishing method (the default base in all the 

analyses), while for the static gear vessels, gillnets was chosen as the base fishing method (as it was 

the most common in the data set). 

The results of the estimations for the best model are presented below. The agricultural fuel price 

index appeared to slightly overestimate the fisheries fuel price trend (as the coefficient is less than, 

but is not significantly different from, 1), so an adjustment to this needs to be made when estimating 

costs in data poor fisheries. Fuel costs increased at a less than proportional rate with vessel length, 

suggesting economies of scale in terms of fuel usage. As would be expected, static gear boats 

generally had lower fuel costs than mobile gear boats, ceteris paribus. 

Fuel costs also increased at a less than proportional rate with days fished. An a priori assumption 

was that fuel costs would be linearly related to days fished for a given size/gear type. As steaming 

time is not included in the days fished measure (other than steaming time on the same day as fishing 

tool place), this result may be an artefact of the data. For example, the smaller vessels mostly 

operated on a day basis, and had a large number of days fished relative to total days at sea. For the 

larger vessels operating further offshore, the number of days fished may have been substantially less 

than the total days at sea (Table 6-1). The restricted model (where some non-significant variables 

were removed) was derived through backwards stepwise regression, with the Akiake Information 

Criterion (AIC) used to determine the most appropriate functional form. The model was able to 

explain a relatively high proportion of the variation in the data (79 per cent). 

The agricultural fuel price index appeared to slightly overestimate the fisheries fuel price trend (as 

the coefficient is less than, but is not significantly different from, 1), so an adjustment to this needs 

to be made when estimating costs in data poor fisheries. Fuel costs increased at a less than 

proportional rate with vessel length, suggesting economies of scale in terms of fuel usage. As would 

be expected, static gear boats generally had lower fuel costs than mobile gear boats, ceteris paribus. 

Fuel costs also increased at a less than proportional rate with days fished. An a priori assumption 

was that fuel costs would be linearly related to days fished for a given size/gear type. As steaming 

time is not included in the days fished measure (other than steaming time on the same day as fishing 

tool place), this result may be an artefact of the data. For example, the smaller vessels mostly 

operated on a day basis, and had a large number of days fished relative to total days at sea. For the 
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larger vessels operating further offshore, the number of days fished may have been substantially less 

than the total days at sea.  

Table 6-1.  Estimated model for fuel costs. 

 Initial model  Restricted model  

 Estimate Std. Error t value  Estimate Std. Error t value  

Constant 7.134 0.250 28.542 *** 7.099 0.231 30.798 *** 

Fuel price index 0.921 0.057 16.107 *** 0.931 0.057 16.371 *** 

Length  0.875 0.067 13.028 *** 0.932 0.055 16.854 *** 

Days fished 0.410 0.032 12.845 *** 0.389 0.030 13.046 *** 

Gear type dummy variables         

Danish seine -1.158 0.097 -11.902 *** -1.182 0.094 -12.587 *** 

Gillnets -1.444 0.083 -17.486 *** -1.482 0.079 -18.800 *** 

Longline demersal -1.296 0.162 -8.011 *** -1.265 0.123 -10.255 *** 

Longline pelagic -0.424 0.475 -0.893  -0.687 0.048 -14.340 *** 

Longline automatic 0.229 0.506 0.453      

Trawl roughy 0.169 0.496 0.340      

Trawl prawn tropical 0.263 0.474 0.554      

Trawl prawn temperate -0.165 0.141 -1.175  -0.330 0.102 -3.242 ** 

Dropline  -1.973 0.100 -19.670 *** -2.056 0.087 -23.611 *** 

Dive -0.701 0.141 -4.956 *** -0.706 0.135 -5.232 *** 

Pots -1.186 0.071 -16.746 *** -1.200 0.067 -17.933 *** 

Purse seine 0.199 0.132 1.507      

Jigging (squid) -0.700 0.275 -2.542 * -0.864 0.258 -3.347 *** 

Multiple Gear -1.608 0.116 -13.901 *** -1.672 0.109 -15.306 *** 

Freezer dummy 0.427 0.471 0.907  0.547 0.055 9.971 *** 

Effort control dummy -0.110 0.080 -1.379      
 

0.790    0.790    

F 388.6   *** 527.3   *** 

AIC -1606.44    -1610.46    

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

2R
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Crew 

Crew costs are a particularly difficult cost component to estimate as they will vary according to the 

conventions adopted by the vessel owners and crews in determining crew payments, which can vary 

significantly across fisheries and types of fishing firms. Variability can also arise from the diversity of 

labour costs which can in principle be considered part of a fishing firm’s cost structure, including on-

land labour costs which may reflect a range of activities supporting the catching component of the 

firm’s activity. Further, the extent to which these costs are included in the data collected through 

the surveys is not always clear. For both the Commonwealth and South Australian surveys, this has 

led to the estimation of imputed labour costs, which attempt to assess the total crew costs, 

including items not accounted for in the raw information collected through the surveys.  

The share system is common in fisheries both within Australia and internationally (Arnason 1990). 

However, the way this system operates may differ from fishery to fishery. In Commonwealth 

fisheries, the general approach is to pay crew (and any employed skipper) a share of the total 

revenue. In at least some Australian State fisheries, and in most European (Whitmarsh et al. 2000) 

and US fisheries (Arnason 1990), crew are paid a share of the revenue less running costs (varying 

combinations of fuel, food, ice and bait). In order to estimate a generic model, we defined crew 

share as the ratio of crew payments to gross returns from fishing (but net of any marketing and 

freight charges due to the inconsistency in the way these were recorded in the data). 

The median crew share across fisheries was relatively constant at around 30 per cent (Figure 6-5), 

although this varied considerably between vessels. Lower crew shares most likely represent a higher 

proportion of unpaid labour, although substantially higher crew shares were also observed. In the 

smaller scale South Australian fisheries which all had owner-operator labour and many with only a 

part time crew, median crew payments were substantially lower than their Commonwealth 

counterparts (Figure 6-5).  

We tested estimations of crew costs using both cash costs only and also adding the imputed 

measures for the different fleets. However, the imputed values displayed large variability, probably 

due to the existence of different conventions regarding imputation. In the case of the South 

Australian fisheries, all were owner-operated and had a high proportion of unpaid labour. 

The final model was estimated using raw measures of crew costs (i.e. cash payments to employed 

crew and skippers only). From this, given the mix of employed and owner-operator skippers, it was 
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possible to impute a consistent opportunity cost (in share terms) for owner-operator labour (see 

model results below). 

Several alternative forms of the model were tested. Here, we describe the variables which were 

used in the final model estimation. To capture the fact that crew share might not increase 

proportionally to gross returns, the size of the vessel’s activity (in terms of net returns from fishing) 

was included as an explanatory variable. We also considered the possible influence of the type of 

firms on crew share. It has been shown that owner operated vessels tend to have smaller crew 

shares than vessels operated by a paid skipper, as owner-operators will pay for the time they spend 

running their vessel, through firm profits (Whitmarsh et al. 2000). A dummy variable capturing the 

owner-operator status of the vessel was added to measure the possible influence of this factor on 

crew shares in the Commonwealth fleets (all South Australian vessels in the sample being owner-

operated). 

 

 

Figure 6-5.  Distribution of the crew share of revenue for each fishery. 

 

In addition, recent research on the impacts of catch share systems in fisheries have shown that crew 

share could be reduced in fisheries managed under ITQs (Eggert and Tveteras 2007; Asche and 

Eggert 2008). A dummy variable describing whether the vessel operates under an input control 

regulatory system was added to capture this effect.  
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The structural form of the final model was: 

                       (3) 

where     is the crew share     is the net annual return from fishing (i.e. the difference between 

gross returns and freight costs),    is a dummy variable stating whether the vessel is owner 

operated (1 if it is; 0 otherwise) and    is a dummy variable stating whether the vessel operates 

under an output control regulatory system (1 if it does; 0 otherwise). 

Given the large variability observed in crew shares within most of the fisheries included in the 

sample (Figure 6-5), extreme values (crew shares that were above 0.5) were excluded from the 

estimation. The results for the final model are presented below (Table 6-2.) for the aggregate 

sample, and separately for the Commonwealth (Table 6-3.) and South Australian (Table 6-4. ) 

components of the sample. 

 

Table 6-2.  Estimated model for crew share: total sample. 

Coefficients Estimate Std. Error t value  

Constant 0.351 0.005 77.836 *** 

Output control (I) 0.011 0.002 4.218 *** 

Owner (O) -0.048 0.004 -10.924 *** 

Net returns (NR) -5.63E-08 4.72E-09 -11.909 *** 

2R  0.126    

F 79.55   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Given the large variability in observations of crew share within fisheries, the explanatory power of 

the model is limited, with an adjusted R2 of 0.126. As is reflected in the descriptive representation of 

observations presented in Figure 6-5, the estimated crew share over the entire sample averages at 

around 35%, with crew payments lower for owner-operated vessels averaging around 30 per cent 

(implying that the opportunity cost of an unpaid owner-operator skipper is around 5 per cent). The 

marginal increase in crew share with net returns is also negative, although the estimated effect 

appears very small. However, as this is a linear model and the units of net return often run into the 

hundreds of thousands (or in some case millions) of dollars, then this effect may be substantial. In 



RESULTS: ECONOMIC ANALYSES 

96 

 

the aggregate sample, the nature of the regulatory system under which the vessel operates (i.e. ITQs 

or effort controls) appeared to have a significant influence on the estimated crew share, with crew in 

ITQ fisheries having a slightly higher share than vessels operating in input control fisheries.  

Application of the model to the sub-sample of Commonwealth vessels only results in a similar 

estimation (Table 6-3), although average crew share was estimated to be slightly lower – 

approximately 25% on average. Owner operated vessels reduces the crew share by 5%, leading to 

average catch shares of approximately 20% on vessels with an unpaid owner-skipper. Contrary to 

the recent literature on the effects of ITQs on labour contracts in fisheries (Eggert and Tveteras 

2007; Asche and Eggert 2008), vessels under output controls had slightly larger crew shares than the 

reference fleet which is managed under an input control system. 

 

Table 6-3.  Estimated model for crew share: Commonwealth fleets 

Coefficients Estimate Std. Error t value  

Constant 0.249 0.008 31.659 *** 

Output control (I) 0.010 0.004 2.252 ** 

Owner (O) -0.051 0.008 -6.779 *** 

Net returns (NR) 3.02E-08 8.47E-09 3.565 *** 

2R  0.061    

F 38.22   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

When applied to the South Australian sub-sample, which is composed of only owner-operated 

vessels (although some operations may be leasing the quota they need to fish), the model estimates 

that catch shares are approximately 30% (Table 6-4), which is higher than that in the estimation 

from the Commonwealth sub-sample, but lower than the combined sample. The regulatory dummy 

variable in this case has the expected influence on crew share (based on the key literature in the 

area), which decreases in output controlled fisheries. This may be due to the longer history of ITQs in 

the SA fishery, as compared to the Commonwealth fisheries. The crew share appeared to be less 

influenced by the net returns (the coefficient of which was not significantly different to zero) than in 

the Commonwealth fishery, but this may also reflect the substantially lower, and more 

homogeneous, revenues on many of the State vessels. While the key explanatory variables were 
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significant, the overall explanatory power of the model was extremely low suggesting that other 

factors may affect the variability in crew shares. 

 

Table 6-4.  Estimated model for crew share: South Australian fleets. 

Coefficients Estimate Std. Error t value  

Constant 0.306 0.007 44.378 *** 

Output control (I) -0.029 0.008 -3.771 *** 

Net returns (NR) 1.97E-09 1.19E-08 0.165  

2R  0.0228    

F 7.334   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Based on pooled analysis, an assumption of an average crew share of around 35 per cent (including 

an allowance for the skipper) decreasing by 6 per cent for every million dollars of revenue of the 

vessel may be a reasonable assumption for data poor fisheries. This is fairly consistent with current 

bioeconomic models used for estimating MEY in Australian fisheries. For example, the NPF model 

uses a crew share of 23 per cent (Tingley and Pascoe 2005), while average revenues in the fishery 

are around $1.5 million (Kompas et al. 2010). 

Freight 

Freight costs included not only the costs associated with the freight of catch, but also costs 

associated with the marketing, selling and packaging of catch. These costs were expected to be 

dependent on a variety of factors including market proximity, fishery management structure and 

fishing business structure. Generally, the cost per unit output was relatively low, although it varied 

considerably within and across the fisheries (Figure 6-6). For the South Australian fisheries, these 

costs were not identified as they were negligible. The catch was generally landed at the local 

fisheries co-operative that dealt with subsequent marketing costs, and hence the price paid to the 

fisher was the price net of any subsequent freight and marketing costs.  

A multiplicative model was chosen as the most appropriate structural form, given by  

 0 DpFR OP M D

FR
FR C e p OP M e

       
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where FR is the freight cost per vessel, C is catch, pFR is an index for the price of freight, OP is the 

average output price received by a vessel, M represents approximate distance to market for the 

fishery the vessel operates in and D represents a set of dummy variables. Output prices were 

included as a potential explanatory variable as it is likely that greater care would be taken for more 

valuable species. Dummy variables included vertical integration of the fishing firm, export focus, 

whether the vessel operates under ITQs, and has onboard freezing facilities.  

 

Figure 6-6.  Distribution of freight costs ($/kg). 

 

The model was estimated as a log-linear model, with the functional form 

  0
ln ln ln ln

pFR FR OP M D
FR C p OP M D           

Initial models were found to have a low explanatory power. This was improved to a degree by 

estimating the model using only data for boats that had non-zero values for this cost variable. 

Collinearity problems also arose with the vertical integration dummy variable and market distance.9 

Various forms were attempted but the final model excluded both variables. While the remaining 

variables were significant and had the expected signs (Table 6-5), the explanatory power of the final 

model was still low with an adjusted R-squared value of 0.28 (Table 6-5).  

                                                           

9 The market distance was average for the fishery rather than each individual vessel, so it is likely that this was a poor indicator of the 
actual cost to the individual. 
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The inability to estimate a strong relationship for this cost item simply reflects the random variation 

in these costs across both fisheries and vessels as reflected in Figure 6-6. Across vessels, this 

variation is likely to reflect not only variation in the costs that vessels are actually incurring but also 

variation in reporting practices. In some cases, vessels will report a gross receipts amount in their 

financial statements and, therefore, report all freight, marketing and packaging costs. For other 

vessels, the revenue reported reflects the price received from fish buyers after a deduction of 

freight, marketing and packaging costs (i.e. net receipts) and, therefore, these costs will not be 

reported in their financial statements. For this reason and for the purpose of the overall study, 

freight costs may best be excluded in the treatment of costs for the stage of the project (MEY 

modelling). This requires that net revenues (net of freight, marketing and packaging) as opposed to 

gross revenues are used for the analysis of MEY.  

 

Table 6-5.  Estimated model for freight costs. 

Coefficients Estimate Std. Error t value  

Constant -2.859 0.161 -17.73 *** 

Price index for marketing costs 2.120 0.287 7.374 *** 

ITQ fishery (dummy) 1.142 0.076 14.976 *** 

Freezer (dummy) -0.608 0.205 -2.972 *** 

Export (dummy) 2.223 0.227 9.805 *** 

Average price of outputs ($/kg) 0.758 0.077 9.821 *** 

2R  0.277    

F 80.21   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

Other variable costs 

Variable costs are those costs that vary with changes in a boat’s effort input into a fishery. The other 

variable cost variable here captures those variable costs not captured in the other estimated cost 

models and included three cost items: bait costs, ice costs and food costs. The model was estimated 

on the assumption that variable costs will vary uniformly with days fished. It was also expected that 

these costs would be higher for larger boats. 
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The first attempts to run the model were not very successful. A key problem was that the three cost 

items that defined other variable costs will not occur for all fishing methods and operation types. Of 

the three cost items, food is the only item that can be expected to occur for all vessel types, 

although it is less likely to occur for boats that primarily engage in day trips. Bait costs are only 

incurred by vessels that use hook (longline and dropline) and pot based fishing methods. While ice 

costs are typically incurred by vessels that take short fishing trips and that are not fitted out with 

onboard freezers.  

To deal with this issue, three dummy variables were defined: a food dummy was defined for boats 

that were expected to have food costs (given their typical trip length); an ice dummy was defined for 

boats that were not fitted with freezers; and, a bait dummy was created for vessels that used bait 

based fishing methods.  

The model was also run on a subset of the sample data which only included boats that had a positive 

value for other variable costs as the large number of zero values was impeding the models 

explanatory power.  

The structural form of the model was given by:  

                             

where poth is the price index for other variable costs, Lv is the length of the boat, Ev is the level of 

fishing effort (measured in terms of days fished), CRv is the number of crew and Dvj is a set of dummy 

variables. Specifically, these dummy variables include the food, ice and bait dummies mentioned 

above as well as dummies for vessels that use pelagic longline and also owner-operator dummies. 

These pelagic longline dummy variable effectively reflects the methods that use large number of 

hooks and therefore use large amounts of bait relative to the size of the vessel. Owner operator 

vessels were a priori assumed to be more cost efficient in regard to these costs than skipper 

operated vessels (who had less of an incentive to reduce their costs).  

The agricultural price index for running costs (Table 6-5) was assumed to be a reasonable proxy 

measure for the input prices related to these variable costs. Initial model estimates suggested that 

the coefficient on this variable was not significantly different to 1 (one). Restricting this to a value of 

one did not reduce the model performance. Similarly, early results suggested that the coefficient on 

days fished was also not significantly different from one, and again restricting this to one did not 

have an adverse effect on the model. 
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Given this, the final functional form of the model was: 

0ln ln( ) ln( )v
l v CR v j vj

joth v

OV
L CR D

p E
   

 
    

 


   

  
                     

   

 

The final estimated model parameters are given in Table 6-6.. Costs increased slightly with length, 

although this was not significant. A priori, it might be expected that length would be positively 

related to these costs as larger vessels tend to spend longer at sea (so use more food), although are 

also more likely to have freezers (so use less ice). The effect of crew number on running costs was 

significantly different from zero, but also very small. Costs were higher for both multiday trip boats 

and boats using bait based fishing methods as expected, although boats that did not use freezers 

had no significant increase in their costs. Owner operator vessels had lower other running costs as 

expected. 

 

Table 6-6. Estimated model for other variable costs. 

Coefficients Estimate Std. Error t value  

Constant 2.070 0.221 9.387 *** 

Length  0.133 0.086 1.535  

Multiday trips (use food)  1.638 0.090 18.297 *** 

No freezer (use ice) 0.119 0.079 1.509  

Bait based fishing method 0.614 0.069 8.920 *** 

Longline pelagic dummy variable 1.208 0.102 11.890 *** 

Crew number 2.0E-06 2.8E-07 7.179 *** 

Owner operator -0.216 0.071 -3.036 ** 

2R  0.565    

F 298.3   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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6.2.2 REPAIRS AND MAINTENANCE (QUASI-FIXED COST) 

Repairs and maintenance is a major cost component for many fleets, although it presents several 

challenges for modelling. The costs of repairs and maintenance was not collected consistently at the 

State and Commonwealth levels, with the former combining repairs to boat and gear while the later 

separated boat repairs from gear repairs and replacement. For the purposes of model development 

to provide cost structure estimates in a data poor fishery, the boat and gear repair costs were 

combined to fully utilise the data available. 

The treatment of repairs and maintenance in bioeconomic modelling varies considerably, with some 

studies assuming that they are all fixed costs (Lleonart et al 2003; Guyader et al. 2004; Hoff et al. 

2012) while others treat them as variable costs (Dichmont et al. 2008; Punt et al. 2010; Hupper and 

Squires 1987). The implications of how they are treated in the analysis for MEY estimation can be 

considerable, with treatment as a variable cost resulting in lower optimal effort levels than if treated 

as a fixed cost (Dichmont et al. 2010). From discussions with industry, repairs and maintenance costs 

have both a fixed and a variable component. Some maintenance is required each year on the vessels 

irrespective of how much it fished. Similarly, gear needs replacement regularly even if used 

infrequently as it often starts to deteriorate once it has been exposed to salt water. However, the 

more a vessel and its gear is used, the more the need for repairs and maintenance increases due to 

wear and tear. Gear costs may also have a highly random component as gear can be lost or damaged 

irrespective of how many trips have been made. Similarly, boats periodically undergo major refits, 

with much of this cost being included in the boat repairs category and appearing as greater than 

normal expenditure. 

The development of the model for repairs and maintenance costs was based on several a priori 

expectations. First, the model would need both a fixed and variable cost component, with the input 

price proxy variable applied to both components. Second, repairs costs were expected to increase 

with boat size, and as larger boats tend to use more gear, it was expected that gear repairs and 

replacement costs would also be related to vessel size.  

The structural form of the model was given by  

0 1
( )( )

v rm v v j vj

j

RM p L E D  
 

   
 


  

where prm is the price index for repairs and maintenance, Lv is the length of the boat, Ev is the level of 

fishing effort (measured in terms of days fished), and Dvj is a set of dummy variables representing 
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gear type, management type and other vessel characteristics. The particular fishery and vessel 

characteristics are assumed to affect the fixed component of the cost category, while the variable 

component of the cost was a function of just boat size and effort level. The price index was also 

assumed to be a reasonable proxy measure for the input prices related to gear and boat repairs and 

maintenance. 

The functional form of the model was given by  

0 1 2

v

v j vj j v vj

j j
rm v

RM
E D E D

p L
       

 

Initial runs of the model identified a number of outliers (Figure 6-7) that were assumed to represent 

either refits or unusually large gear replacement costs (positive outliers), or observations where 

owners reduced usual repair and maintenance expenditure (negative outliers). Dummy variables 

were added to the model representing observations with positive or negative outliers (defined as 

having standardised residuals with a value greater than 2 or less than -2).  

 

 

Figure 6-7. Distribution of normalised residuals of cost per metre by survey. 

 

The final estimated model parameters are given in Table 6-7. Most of the parameters are significant 

and the model is able to explain around 70 per cent of the variation in the data. The signs on the 

coefficients of the model conform to a priori expectation, namely that repairs and maintenance 

increase with both length (as indicated by the constant term that is modified upwards or downwards 

by the gear specific dummy variables) and days fished. Generally (with the exception of the 
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automatic and pelagic longliners), boats using static gear tended to have lower repairs, maintenance 

and gear replacements costs that the more mobile vessels.  

Table 6-7.  Estimated model for repair and maintenance costs per metre. 

 Initial model  Restricted model  

 Estimate Std. Error t value  Estimate Std. Error t value  

Constant -8.02 759.85 -0.01 

 

609.66 323.19 1.89 * 

Days fished 32.26 4.37 7.38 *** 28.58 2.05 13.94 *** 

Gear type dummy variables 

        Danish seine 1412.97 1707.17 0.83 

 

795.29 1560.21 0.51 

 Gillnets 1956.92 934.52 2.09 ** 1319.71 631.22 2.09 ** 

Longline demersal -1057.17 1649.01 -0.64 

     Longline pelagic 2426.54 927.14 2.62 *** 1792.30 251.10 7.14 *** 

Longline automatic 7064.44 2184.88 3.23 *** 4805.28 685.95 7.01 *** 

Trawl roughy 5449.29 2254.93 2.42 ** 4433.85 765.11 5.80 *** 

Trawl prawn tropical 7469.16 1020.65 7.32 *** 7036.04 680.13 10.35 *** 

Trawl prawn temperate 570.12 1558.08 0.37 

     Dropline  863.08 929.45 0.93 

 

397.41 564.77 0.70 

 Dive 3704.13 1151.68 3.22 *** 2627.07 532.43 4.93 *** 

Pots 1078.40 871.43 1.24 

 

463.23 534.74 0.87 

 Purse seine 236.56 2540.64 0.09 

     Jigging (squid) 1343.70 1870.10 0.72 

 

2270.22 563.91 4.03 *** 

Multiple Gear 3076.93 1194.78 2.58 ** 2465.48 975.62 2.53 ** 

Effort control dummy 183.50 322.20 0.57 

     Outlier dummy 15289.46 367.74 41.58 *** 15279.79 365.82 41.77 *** 

Days fished*gear dummy  

        Danish seine -26.58 14.24 -1.87 * -22.90 13.69 -1.67 * 

Gillnets -33.06 5.21 -6.34 *** -28.81 3.36 -8.59 *** 

Longline demersal 9.24 17.99 0.51 

     Longline pelagic -5.43 5.53 -0.98 

     Longline automatic -17.68 20.18 -0.88 

     Trawl roughy -6.18 13.19 -0.47 

     Trawl prawn tropical -22.75 6.01 -3.78 *** -19.07 4.61 -4.14 *** 

Trawl prawn temperate 0.37 24.28 0.02 

     Dropline  -33.27 5.48 -6.07 *** -29.45 3.88 -7.59 *** 

Dive -16.78 21.34 -0.79 

     Pots -25.73 5.08 -5.07 *** -21.90 3.28 -6.67 *** 

Purse seine -23.02 66.05 -0.35 

     Jigging (squid) 28.79 34.59 0.83 

     Multiple Gear -42.56 8.06 -5.28 *** -37.91 6.86 -5.53 *** 
 

0.696    0.697    

F 145.4   *** 237.7   *** 

AIC 31366.5    31348.5    

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

2R
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The distribution of the repairs and maintenance costs between fixed and variable cost categories, 

varies considerably by gear type. From the coefficients in Table 14 and using a common days fished 

measure (200 days), for some gears the cost is completely fixed (e.g. gillnets) while for other gears 

the costs are completely variable (e.g. temperate prawns) (Figure 6-8). However, for most gear 

types/fisheries, the cost share varies (Figure 6-8). 

 

Figure 6-8. Examples of distribution of repairs and maintenance costs between fixed and variable cost 

categories. 

6.2.3 FIXED COSTS 

Fixed costs are often a major component of total costs of a fishing firm, and include a wide range of 

largely administrative cost items (e.g. management levies, accountancy fees, bank charges, etc) as 

well as insurance costs, wharfage fees, licence fees and a wide range of other costs that do not vary 

directly with the level of fishing effort or catch. Some of these costs are likely to be fishery specific 

(e.g. management cost related), while others are likely to vary with the size of the boat (e.g. 

insurance costs, wharfage fees, protective clothing, which is indirectly related to length through the 

number of crew). 

A multiplicative model was chosen as the most appropriate structural form, given by 

 0 DpFX L D

FX
FX e p L e

     where FX is the vessel total fixed costs, pF is the price index for fixed 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Gillnet Dive Trawl Prawns  
Tropical 

Trawl Prawns  
Temperate 

Variable 

Fixed 



RESULTS: ECONOMIC ANALYSES 

106 

 

(derived from the agricultural price index for overheads, Table 6-8), L is the length of the boat, and D 

are the set of fishery and other characteristics dummies. The model was estimated as a log-linear 

model, the functional form given by 

0
ln ln ln

pFX FX L D
FX p L D        

The results of the model estimation are given in Table 6-8. Most of the coefficients were significantly 

different from zero, with the model explaining roughly half the variation in the data. From the 

results, the coefficient relating to the price index is less than 1, although is not significantly different 

to 1. This suggests that the agricultural price index for overheads is a reasonable approximation of 

the price index for fisheries fixed costs, but may, on average, underestimate the price change. The 

coefficient on length is less than 1, suggesting that fixed costs increase at a less than proportional 

rate with boat length. According to the model, effort control fisheries have lower fixed costs, on 

average, than ITQ fisheries. 

Table 6-8. Estimated model for fixed costs. 

Coefficients Estimate Std. Error t value  

Constant 9.702 0.188 51.694 *** 

Price index for overheads 0.692 0.144 4.807 *** 

Length 0.481 0.061 7.879 *** 

Gear type dummy variables     

Danish seine -0.581 0.088 -6.593 *** 

gillnets -0.394 0.075 -5.241 *** 

Longline demersal -0.723 0.146 -4.964 *** 

Longline pelagic -1.020 0.432 -2.363 ** 

Longline automatic -1.078 0.461 -2.336 ** 

Trawl roughy -0.622 0.452 -1.375  
Trawl prawn tropical -0.555 0.432 -1.286  
Trawl prawn temperate 0.288 0.118 2.437 ** 

Dropline  -1.365 0.089 -15.400 *** 

Dive 0.496 0.121 4.087 *** 

Pots -0.329 0.064 -5.110 *** 

Purse seine 0.491 0.115 4.259 *** 

Jigging (squid) -1.118 0.243 -4.608 *** 

Multiple Gear -0.707 0.104 -6.789 *** 

Freezer dummy 1.202 0.429 2.799 *** 

Effort control dummy -0.107 0.071 -1.511  
2R  0.614    

F 174.2   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 



RESULTS: ECONOMIC ANALYSES 

107 

 

6.2.4 CAPITAL COSTS AND ECONOMIC DEPRECIATION 

The level of capital invested in the vessel (including the engine, electronics and gear) is expected to 

vary with the length of the vessel and the type of fishery. Estimating capital values in fisheries is 

complex as vessels are constantly repaired and ungraded (through refits), and vessels have widely 

varying configurations in terms of specifications and on-board equipment. As with many other 

studies, capital values are based on the owner’s estimated market value of the vessel in each time 

period.  

Capital value is expected to decrease over time due to depreciation, but at a lower rate than 

standard accounting depreciation as ongoing repairs and maintenance (which are also included as 

costs) is likely to help maintain the value of the capital asset. The rate of economic depreciation, 

therefore, represents the rate of net loss of capital value, as indicated by changes in the resale value 

of the capital asset over time (also adjusting for general price changes) (Hulten and Wykoff 1996). 

Several different modelling approaches exist to estimate the rate of economic depreciation 

(Jorgenson 1996). As the objective of this study was aimed at estimating a general model for capital 

values in fisheries that included economic depreciation, a multiplicative model was chosen of the 

form (dropping vessel subscripts for simplification): 

 0 D Apk L D A

K
K e p L e e

       

where K is the capital value, pk is the price index for capital (derived from the agricultural price 

index), L is the length of the boat, D are the set of fishery and other characteristics dummies and A is 

the age of the boat in each time period. The estimated coefficient 
A

  represents the rate of 

economic depreciation. 

The functional form of the model is given by  

0
ln ln ln

pk k L D A
K p L D A          

 Eq  6-1 

The results of the model are given in Table 6-9. The model was able to explain around 73 per cent of 

the variation in the data, and most of the coefficients were significantly different from zero. From 

the table, the rate of economic depreciation is estimated to be 2.3 per cent a year. This comparable 

to what is currently being used in the Northern Prawn Fishery analysis (2.9 per cent (Punt et al. 

2010), although this value was based on earlier European studies (Pascoe and Mardle 2001) as no 

equivalent Australian analysis had previously been undertaken.  
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Table 6-9. Estimated model for Capital costs. 

Coefficients Estimate Std. Error t value  

Constant 9.584 0.187 51.376 *** 

Price index for capital 1.050 0.129 8.146 *** 

Length 1.325 0.059 22.378 *** 

Gear type dummy variables     

Danish seine -0.216 0.085 -2.530 * 

gillnets -0.320 0.073 -4.370 *** 

Longline demersal -0.400 0.142 -2.828 ** 

Longline pelagic -0.729 0.420 -1.737 . 

Longline automatic -0.457 0.449 -1.018  

Trawl deep water -0.129 0.439 -0.293  

Trawl prawns tropical -0.416 0.419 -0.993  

Trawl prawns temperate 0.488 0.115 4.256 *** 

Dropline  -1.109 0.086 -12.882 *** 

Dive 0.254 0.121 2.091 * 

Pots 0.302 0.064 4.680 *** 

Jigging (squid) -0.653 0.235 -2.774 ** 

Multiple Gear -1.174 0.101 -11.593 *** 

Purse seine 1.020 0.113 9.054 *** 

Freezer dummy 0.750 0.417 1.797 . 

Effort control dummy 0.405 0.070 5.812 *** 

Vessel age -0.023 0.002 -14.968 *** 

     

2R  0.749    

19,1941F
 309.5   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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The coefficient on the price index for capital is not statistically different from one (1) as would be 

expected. However, as the price index is for agricultural capital, then some divergence from the a 

value of one is reasonable if the cost of building fishing vessels has generally increased at a faster 

rate than capital costs in agriculture in general.  

Capital costs also appear to increase at an increasing rate as vessel size increases. Again this is not 

unexpected, as length is a one dimensional measurement whereas vessels are three dimensional 

objects. Larger boats would also be able to use more crew, increasing the need for accommodation 

on board but also allowing proportionally more gear to be held on board. More and larger engines 

are also required to run the larger vessels and the larger vessels are also likely to use proportionally 

more electronics than their smaller counterparts. While it would be expected that larger vessels 

would have a freezer, this is captured separately in the model, as a factor that increases capital 

costs.  

The effort control dummy suggests that – length for length – vessels operating in effort control 

fisheries have higher capital costs than those in ITQ fisheries. Incentives exist for “capital stuffing” in 

input controlled fisheries where as ITQs create incentives to reduce costs, including capital costs 

(Asche and Eggert 2008). 

6.2.5 DISCUSSION 

The model results suggest that reasonable estimates of several key cost components may be made 

for data poor fisheries given some information on the average size of the vessels, their main fishing 

gears, the number of days fished, the type of management under which vessels operate, and the 

business structure of the fishing firms. While input price data are generally unavailable for fisheries, 

agricultural prices paid indexes provide a guide to changes in fisheries input prices, and the models 

provide an indication as to how much these need to be adjusted (up or down) to reflect price trends 

in fisheries. 

The two models that were the weakest were freight and crew shares. Freight costs appear to be very 

fishery specific, depending on the distance of the market, level of vertical integration, type of market 

(export or domestic), product form and value of the species. However these variables explained only 

a small proportion of the variation in freight costs, suggesting that there is considerable 

heterogeneity in fisheries as to how fishers sell their product, and also considerable variability in the 

way in which these costs are accounted for and reported by fishing firms. Given this, it is unlikely 

that a generic model will adequately be able to estimate freight and marketing costs, but fishers in 
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data poor fisheries may be able to provide information on prices net of these charges. Since most 

data poor fisheries in Australia involve sale of product to a processor with price recorded at that 

point, this may not be a significant problem in practice. 

Crew shares also had relatively low goodness of fit measures as a result of differences in the 

proportion of paid and unpaid labour in the different sectors. However, the models were generally 

consistent in that a base assumption of 30-35 per cent modified by the level of average vessel 

revenue appears to be a good assumption for most fisheries. Within this, the opportunity cost of an 

owner-skipper’s labour appears to be around 5per cent of revenue. 

The analysis also provided an indication of the level of economic depreciation that can be used in 

bioeconomic analysis in both data poor and data rich fisheries. The estimated value of 2.3 per cent is 

slightly lower than is currently being used in the NPF analysis, which was based on studies overseas. 

This provides a more appropriate measure for use in Australian fisheries. 

The analysis also confirmed the existence of capital stuffing in effort controlled fisheries, suggesting 

that it is important to take the management context into account in developing estimates of MEY in 

data poor fisheries, as well as the potential effect on these estimates of current moves to output 

controls, which may result in lower capital costs in the longer term. 

6.3 Proxy target reference points for data poor fisheries 

The bioeconomic model detailed in the methods section was run 10000 times, although only 5897 

results were useable as 1) some resulted in negative economic profits as MSY and 2) others used 

negative parameter values (a consequence of the randomly generated variables). 

The target reference points were regressed against the key variables to ensure that the variables 

were having the appropriate effects (Table 6-10). As expected, the ratio of BDMEY/BMSY increased with 

growth rate and cost per unit effort, and decreased with increasing values of the other parameters. 

Also as expected, increasing the discount rate reduced the ratio of BDMEY/BMSY. Conversely, the ratio 

of EDMEY/EMSY decreased with growth rate and cost per unit effort and increased with increasing 

values of the other parameters. 
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Table 6-10. Meta analysis of the simulation results for theoretical consistency check. 

 BMEY/BMSY EMEY/EMSY 

 Coefficient Std. Error t value Coefficient Std. Error t value 

Constant 2.750 0.011 244.67 -0.750 0.011 -66.79 

r 0.019 0.003 6.48 -0.019 0.003 -6.47 

q -128.50 1.36 -94.26 128.50 1.36 94.33 

K -0.0005 0.0000 -123.77 0.0005 0.0000 123.83 

c 0.016 0.000 123.24 -0.016 0.000 -123.33 

p -0.047 0.000 -127.00 0.047 0.000 127.09 

D -0.142 0.029 -4.83 0.143 0.029 4.84 

2R  0.8808   0.8807   

F 5381   5388   

See section 5.3.2 for the definition of the variables and parameters included in this table 

The model was also run with the discount rate fixed at various levels. The distribution of the target 

reference points at the 5 and 10 per cent discount rate is illustrated in Figure 6-9. From Figure 6-9, in 

most cases, BDMEY/BMSY >1, while EDMEY/EMSY < 1, with the former being distributed mainly between 

1.1 and 1.4 and the latter between 0.6 and 0.9. At higher discount rates, the distribution of 

BDMEY/BMSY shifts to the left, and that of EDMEY/EMSY shifts to the right. 
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Figure 6-9. Distribution of dynamic target reference point ratios. 

 

6.3.1 FRAMEWORK FOR DETERMINING APPROPRIATE ECONOMIC TARGET 

REFERENCE POINTS WITH LIMITED INFORMATION 

In data poor fisheries, it is unlikely that the values of the key biological and economic parameters will 

be known. Garcia et al (1989) demonstrated that reasonable estimates of BMSY and EMSY can be made 

with very limited data, based on a few assumptions about the characteristics of the fishery. Similarly, 

reasonable estimates of cost per unit of effort and prices could be obtained through a similar 

approach.10 

                                                           

10 The earlier section of this report demonstrated that reasonable estimates of costs can be obtained based on limited information on the 
characteristics of the fishing fleet and its activity. Prices are more readily observed from market transactions. 
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From Equation 5-1 and Equation 5-2, both BDMEY/BMSY and EDMEY/EMSY is dependent upon the 

 c pqK  where  c qK  effectively represents the cost per unit catch given an unexploited 

biomass, which is unknown. However, given that the catch per unit of effort at MSY is given by 

0.5qK  (as 0.5
MSY

B K ), then the cost per unit of catch at MSY is equivalent to  0.5c qK  which is 

proportional to the cost per unit catch given an unexploited biomass.11 Consequently, the cost share 

of revenue, defined as the cost per unit catch divided by the price,12 at MSY is a feasible proxy 

measure by which the optimal ratio of biomass and effort can be derived.  In the dynamic model, 

BDMEY, and hence EDMEY, is also dependent on the ratio of the discount rate to the growth rate (from 

Equation 5-3). 

A regression tree analysis was undertaken with cost share and the ratio of the discount rate to the 

growth as the explanatory variables. These were undertaken for a given discount rate as this is 

generally determined exogenously for all fisheries (and public policy) analyses. For the analyses using 

four standard discount rates (0, 0.05, 0.1 and 0.5), the tree was split only in terms of the cost share 

component. This is illustrated for the 5 per cent discount rate case in Figure 6-10 (and the other 

discount rates in Annex). The residual mean deviance of both models was extremely low (0.0004726 

for the 5 per cent discount rate model) indicating that the regression tree provided a good 

representation of the characteristics of the data. The distribution of the error terms (Figure 6-11) 

also suggests that the model captures most of the variation in the ratios. The current proxy value for 

BDMEY/BMSY adopted in Australian fisheries management is 1.2 (DAFF 2007), and the commonly 

adopted discount rate for MEY estimation is 5 per cent (Punt et al. 2010). From the tree in Figure 

6-10, this figure is appropriate for fisheries where the cost share is expected to fall between 

(roughly) 45 and 55 percent. That is, expected economic profits at MSY are also between 45 and 55 

percent of revenue. According to this analysis, a BDMEY/BMSY ratio of 1.2 would appear to be 

conservative in fisheries with a cost share greater than 65%, where a ratio of 1.33 to 1.45 would 

appear to be more appropriate. 

 

                                                           

11 The value 0.5qK is equivalent to the catch per unit effort (CPUE) at MSY. 

12 This can also be estimated as total cost divided by total revenue, which was the approach used in the subsequent analysis. 
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Figure 6-10. Predicted BDMEY/BMSY and EDMEY/EMSY ratios as a function of the economic characteristics (cost 

share) characterizing the fishery, at a 5 per cent discount rate. 
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Figure 6-11. Distribution of residuals from the regression tree analysis. 

 

6.3.2 RELATIONSHIP BETWEEN COST SHARES AND FISHERY CHARACTERISTICS 

The theoretically derived model results above require some estimate of the cost share of revenue at 

MSY in order to derive an appropriate proxy for EMEY/EMSY. While these cost shares are unknown, a 

reasonable estimate of them may be made based on the economic data used in the previous 

analysis. The objective of MEY has only been implemented since 2007, and only one fishery (the 

Northern Prawn Fishery) has had an active policy of moving to MEY (Dichmont ea al. 2010), although 

to date this has not been realised. For the other fisheries, and prior to 2007, the main management 

objective remains linked to maximising sustainable yields. While these were not necessarily achieved 

each year and in each fishery (Woodhams et al. 2012), on balance it could be assumed that the 

observed cost share of revenue was roughly equivalent to the costs shares at or near MSY for most 

of the period of the data. 

The distribution of cost share of revenue in each of the fisheries for which economic data were 

available is given in Figure 6-12. Median cost shares for the SA fisheries appeared lower than those 

of the Commonwealth fisheries, although they were subject to considerably greater variability.  

A priori there is an expectation that cost shares in ITQ fisheries would be lower than those in input 

control fisheries due to the different incentives faced (Asche and Eggert 2008). This is supported to 
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some extent by the data, although there is not a clear significant difference between the cost shares 

solely on the basis of management type (Figure 6-13). 

 

Figure 6-12. Distribution of cost share of revenue in fisheries with economic survey data. 

 

Figure 6-13. Cost share by management type. 

 



RESULTS: ECONOMIC ANALYSES 

117 

 

The relationship between cost share of revenue and fishery characteristics was examined through 

simple regression analysis. A priori, it was expected that boat size, fishing method (expressed as 

dummy variables with trawl as the base), management method (i.e. ITQ or effort controls), and 

potentially average price would affect the cost share of revenue. A log linear form of the model was 

assumed.  

The results of the model are given in Table 6-11. The explanatory power was relatively low (33%), 

although this is as expected given the considerable variability between individual observations in the 

data. However, most of the signs on the coefficients were as expected: fisheries with higher prices 

are likely to have a lower cost share (as revenues are higher, ceteris paribus); larger boats are likely 

to be higher cost than smaller boats relative to revenue, and cost share differed by main fishing 

method. The coefficient on the effort control was negative, although this was not significantly 

different from zero suggesting that effort control fisheries do not have a significantly higher cost 

share than output control fisheries (consistent with the distribution in Figure 6-13). 

 

Table 6-11. Regression results for lnCostShare 

 
Estimate Std. Error t value 

 Constant -0.365 0.059 -6.149 *** 
lnPrice -0.045 0.010 -4.450 *** 
lnLength 0.078 0.018 4.245 *** 
Method dummy variables 

    Dropline -0.083 0.027 -3.049 *** 
Trawl prawn 0.029 0.026 1.122 

 Gillnet -0.125 0.023 -5.437 *** 
Pots -0.101 0.027 -3.725 *** 
Dive -0.369 0.042 -8.824 *** 
Longline 0.061 0.020 3.067 *** 
Danish seine -0.091 0.028 -3.197 *** 
Purse seine -0.166 0.043 -3.868 *** 

Effort control dummy -0.001 0.017 -0.047 
 2R  0.338    

F 61.38   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

The coefficients on dropline, gillnets, pots and Danish seine were not significantly different from 

each other. While Danish seine is a trawl based method, it is very different to other trawl methods 

so a cost share similar to other static gears is not surprising. For the subsequent analyses, these four 
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gear types were amalgamated into an “other static gear” variable. Prawn trawl was not significantly 

different than other (fish) trawls.  

As the aim of the study was to develop proxy estimates of MEY from limited data, a regression tree 

analysis was run with cost share as the dependent variable and price, length, and gear types (trawl, 

dive, long line, purse seine and other static gear) as the explanatory variables. The resultant tree is 

illustrated in Figure 6-14, and the distribution of residuals given in Figure 6-15. The residual mean 

deviance was 0.014, and in most cases the residuals were less than 0.1. Given individual variability in 

the fisheries between vessels and between years, this degree of “error” is relatively low, as factors 

such as individual skipper/crew efficiency and random variations (“luck”) in catch also affect the 

output and hence cost share of revenue. 

 

 

Figure 6-14. Predicted cost share of a fishery, as a function of the its technical and economic characteristics. 
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Figure 6-15. Distribution of cost share residuals. 

 

From Figure 6-14, larger boats tend to have higher cost shares than smaller boats, although this is 

not always the case. For example, based on the data available, small longline vessels and small 

vessels targeting low valued fish species tend to have comparable cost shares to the larger trawl 

vessels. 

Combining Figure 6-10 and allows an estimate of the ratio BDMEY/BMSY or EDMEY/EMSY to be derived 

based on limited information on the fishery – effectively some indication of the average price, 

average boat size and the main fishing methods. From the two figures, for example, a trawl vessel 

targeting relatively high valued species (i.e. > $15.50/kg) would have an average cost share of 

around 0.77 (Figure 6-14), which would imply a BDMEY/BMSY ratio of around 1.38 at a 5% discount rate. 

A summary of the relationships between fishing gear type, size and price and the ratio EDMEY/EMSY is 

also presented in Table 6-12. 
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Table 6-12. Determination of a proxy target EDMEY/EMSY ratio based on the results of our empirical analysis. 

Main fishing 
gear# 

Vessel Length 
Class# 

Average first 
sale price of 
fish landed 
($)# 

Estimated cost 
share of 
revenue at 
MSY# 

Cost share 
class* 

EMEY/EMSY at 
5% discount 
rate* 

Longline < 13.5m Any 0.85 > 0.85 0.55 

Active gear > 13.5m < $15.5 0.86 > 0.85 0.55 

Active gear > 13.5m > $15.5 0.77 
[0.75, 
0.85[ 

0.62 

Active gear < 13.5m > $10.5 0.66 
[0.65, 
0.75[ 

0.67 

Active gear < 13.5m < $10.5 0.72 
[0.65, 
0.75[ 

0.67 

Other static gear > 20.5 m Any 0.73 
[0.65, 
0.75[ 

0.67 

Other static gear 
[13.5m - 
20.5m] 

Any 0.56 
[0.55, 
0.65[ 

0.72 

Dive < 13.5m Any 0.48 
[0.45, 
0.55[ 

0.77 

* See Figure 6-10; # See Figure 6-14 

 

6.3.3 COMPARISON WITH EXISTING ESTIMATES OF EMEY AND BMEY 

Relatively few studies have attempted to quantity the revenue share of economic profits at MSY 

although several studies have looked at the potential share of profits in the fishery at MEY. Dupont 

(1990) found that in the Canadian Pacific salmon fishery, potential economic profits were about 42 

per cent of total revenue. Potential economic profits were estimated to be between 20-30 per cent 

of revenue for Denmark, Sweden and the UK, and even higher for Iceland and Norway (Asche and 

Eggert 2008; Pascoe and Mardle 2001). Assuming that economic profit at MSY is around half that at 

MEY13 such that the ratio of economic profits to revenue at MSY ranges between 10-20 per cent, 

then more appropriate “default” proxy values for BMEY may be 1.3-1.4 times BMSY. Similarly, it might 

be expected that optimal effort levels are most likely to fall between 55 and 65 per cent of those at 

MSY. 

                                                           

13 This relationship varies substantially depending on the relative costs and prices. For some fisheries economic profits at MSY may be 
small relative to those at MEY whereas in other fisheries the difference in economic profits may be small. 
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MEY has been assessed for the Northern Prawn fishery (Punt et al. 2011). This is a relatively high cost 

per unit effort fishery, and with a low catch is a relatively high cost per unit catch fishery also. Based 

on the most recent published economic survey estimates, total costs were roughly 84 per cent of 

revenue for the fishery as a whole in 2008-09 (Vieira et al. 2010). Estimates of BMEY/BMSY for the three 

primary species in the fishery were 1.15, 1.255 and 1.38, with the stocks in 2009 (the reference year 

for the analysis) for the latter two believed to be close to, but above, MSY (Punt et al. 2011). From 

the regression tree, a proxy value of 1.38 would have been selected (i.e. 0.75< cost share < 0.85) as 

appropriate for the fishery, reasonably consistent with at least one of the key target species and not 

substantially greater than the bioeconomic model estimates for the other two species. This also 

corresponds to the illustration given above based on the combination of both regression trees, 

where a trawl vessel targeting high value species on average would have a cost share of around 0.77 

and a proxy value of 1.38. 

Estimates of the ratio BMEY/BMSY have also been undertaken for several species in the South East 

Trawl fishery, with values ranging from 1.06 for flathead (taken primarily by Danish seiners) to 1.53 

or orange roughy (taken primarily by large trawlers), with an average of 1.26 for the set of species 

considered (Kompas). Published economic survey results for the fishery as a whole suggest that, in 

2009-10, economic profits and total costs were roughly 21 per cent and 79 per cent of the total 

revenue respectively (Perks and Vieira 2010). Based on the cost share regression tree model, the 

optimal ratio of BMEY to BMSY would again be 1.38, substantially overestimating the optimal values of 

some species and underestimating them for others. However, several of the species are overfished 

or are subject to overfishing, and hence lower costs per unit of catch would be expected at higher 

stock levels (such as BMSY). Adjusting for this would result in a lower optimal biomass ratio (or higher 

effort ratio) using the regression tree model. 

The example fisheries above are all multispecies fisheries, which add an extra complexity to the 

analysis. The models used in this analysis were based on a single species fishery. In multispecies 

fisheries, the optimal harvest rate of any individual species in a fishery subject to joint production 

may differ from the optimal harvest rate of the species if it was a single species fishery. 

Nevertheless, the proxy values for the relative target reference points based on the single species 

model were closer to that estimated using a multispecies bioeconomic model than the base 

assumption of BMEY=1.2BMSY. 

Modifying the models to allow for multispecies fisheries with joint production is the subject of a 

follow on project, the preliminary results of which should be available next year. From the more 

detailed models, the optimal ratio of BDMEY/BMSY varies by species. However, in multispecies fisheries 
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where the species are caught jointly, there will be only one measure of effort that maximises profits 

across the fishery (EMEY), and one measure of effort that maximises overall sustainable catch (EMSY), 

so effort based target reference points may be of more value as a fisheries management tool than 

biomass based measures in multispecies fisheries. 

6.3.4 DISCUSSION 

Proxy measures for economic target reference points 

The 2007 Australian Commonwealth Fisheries Harvest Strategy Policy established that levels of 

commercial fish stocks should be managed such that they equal the stock size required to produce 

maximum economic yield (BMEY). For many fisheries where there is limited availability of biological 

and economic data, detailed modelling techniques are not available to assess the likely value of this 

reference point. There is thus a need to develop innovative methods for incorporating economics 

into harvest strategies without bio-economic models. 

The economic component of the project aimed to develop a methodology allowing proxy measures 

for maximum economic yield to be identified where economic information is limited. The economics 

component of the project involved three main activities: reviewing the literature on estimating 

proxy measures for MEY in data poor fisheries; estimating costs structures in fisheries where 

information was limited; and deriving “rules of thumb” that link fishery characteristics to ratios of 

BMEY to BMSY. 

Literature review 

Relatively few previous studies had attempted to estimate economic target reference points in data 

poor fisheries. Most studies in data rich environments developed bioeconomic models from which 

target reference points could be developed. The use of capacity utilisation measures have been 

proposed as a method in data limited environments as an indication as to the level of excess 

capacity in a fishery, and also to estimate what a fully efficient fleet may look like for a given target 

catch level. Capacity analysis ranged from approaches that just relied on catch and effort data, to 

more detailed approaches that incorporated economic information also (costs of fishing and prices). 

Other data poor approaches – aimed at more harvest control rules – involved catch per unit effort 

indicators. For example, with falling catch rates the allowable (or target catch) is reduced and vice 

versa. An explicit economic target is often not possible except through stakeholder agreement. 
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Estimating cost structures in a data poor environment 

The use of bioeconomic models is the most appropriate means of deriving economic target 

reference points, although these require information on both biological and economic features f the 

fishery. Simple biological models can be developed from catch and effort data (e.g. surplus 

production models or biomass dynamics models), but some indication of costs of fishing is still 

required. 

The second stage of the study aimed at identifying a generic approach to estimating the key 

economic variables determining the profitability of fishing operations, based on the data that are 

likely to be readily available for fisheries (in the absence of actual economic data). The approach was 

based on econometric modelling of the main cost components of fishing operations, using 

information on the technical characteristics of fishing vessels and their fishing activity that is 

generally available. Economic data for a wide range of fisheries (both Commonwealth and South 

Australian) was used to derive simple relationships between the costs of fishing and the type of 

fishing activity. The key cost components that were modelled were variable costs (separated into 

fuel and oil, crew, freight and marketing, and other variable costs), quasi-fixed costs (including 

repairs and maintenance costs), fixed costs and capital and depreciation costs. Modelling prices was 

also considered, although discussions with a range of stakeholders and managers suggested that 

reliable estimates of prices could be obtained from industry with minimal complexity, and hence 

there was little value added in developing models for these. 

Results of the analysis suggest that reasonable estimates of several key cost components may be 

made for data poor fisheries given some information on the average size of the vessels, their main 

fishing gears, the number of days fished, the type of management under which vessels operate, and 

the business structure of the fishing firms. While input price data are generally unavailable for 

fisheries, indexes of agricultural input prices provide a guide to changes in fisheries input prices, and 

the models provide an indication as to how much these need to be adjusted (up or down) to reflect 

price trends in fisheries. 

The two models that were statically the weakest were freight and crew shares. Freight costs appear 

to be very fishery specific, depending on the distance of the market, level of vertical integration, 

type of market (export or domestic), product form and value of the species. However these variables 

explained only a small proportion of the variation in freight costs, suggesting that there is 

considerable heterogeneity in fisheries as to how fishers sell their product, and also considerable 

variability in the way in which these costs are accounted for and reported by fishing firms. Given this, 
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it is unlikely that a generic model will adequately be able to estimate freight and marketing costs, 

but fishers in data poor fisheries may be able to provide information on prices net of these charges. 

Crew shares also had relatively low goodness of fit measures as a result of differences in the 

proportion of paid and unpaid labour in the different sectors. However, the models were generally 

consistent in that a base assumption of 35 per cent modified by the level of average vessel revenue 

appears to be a good assumption for most fisheries. Within this, the opportunity cost of an owner-

skipper’s labour appears to be around 5 per cent of revenue. 

The analysis also provided an indication of the level of economic depreciation that can be used in 

bioeconomic analysis in both data poor and data rich fisheries. The estimated value of 2 per cent has 

already been adopted for use in bioeconomic models of major Australian fisheries. 

The analysis also confirmed the existence of capital stuffing in effort controlled fisheries, suggesting 

that it is important to take the management context into account in developing estimates of MEY in 

data poor fisheries, as well as the potential effect on these estimates of current moves to output 

controls, which may result in lower capital costs in the longer term. 

Proxy measures for MEY 

The third stage of the research involved determining a methodology to identify proxy measures for 

EMEY (and BMEY) in fisheries in which only limited data are available. This involved identifying a generic 

model linking effort and fishing mortality at MSY, which a range of simple methods allow to estimate 

even with very limited catch and effort data, to effort and fishing mortality at MEY. Based on the 

static version of this generic model, it was then shown that the cost share of revenue - defined as 

the cost per unit catch divided by the price per unit catch - at MSY is a feasible proxy measure by 

which the optimal ratio of biomass and effort can be derived. In the dynamic model, optimal effort 

and biomass levels are also dependent on the ratio of the discount rate to the growth rate of the fish 

stock. 

While these cost shares of revenue at MSY are generally unknown, it was possible to derive 

reasonable estimates of these from the economic data used in the empirical analysis. The main 

variables influencing these cost shares were shown to be the vessel length, the fishery types to 

which they belong, as well as the average beach price of the fish landed by the vessels. Based on 

knowledge of these variables for a particular fleet, it is thus possible to estimate the likely cost share 

of this fleet, and from this, using the results of the generic model, to estimate the likely ratio of EMEY 

to EMSY for this particular fishery. Given that EMSY can be readily estimated in data poor contexts, this 
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provides a set of tools by which proxy targets for achieving maximum economic yield can be 

identified in these fisheries. 
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Biological analysis — developing methods for 

biological reference points for data-poor fisheries 

6.4 Simple catch rate gradient based harvest control rules for 

data-poor fisheries 

In this section, we demonstrate the method described in section 5.4, Simple catch rate gradient 

based harvest control rules for data-poor fisheries., using Flathead (Neoplatycephalus richardsoni) as 

an example.   

6.4.1 POPULATION CHARACTERIZATION 

The constants used to condition the operating model were based on the latest Flathead assessment 

for the Australian east coast down to the north of Tasmania in the SESSF (Klaer, 2011), these 

included details of weight at age, maturity, steepness, and related parameters (Table 6-13; Figure 

6-16). 

Table 6-13. Series of constant input into the operating model (see Appendix 2) to condition it to be similar to 

a Flathead (Neoplatycephalus richardsoni).  See Klaer, 2011. 

Parameter Value Parameter Value 

M 0.27 Age @ 50% Maturity 2 

L∞ 55.9 0.5 Interquartile Distance 0.75 

K 0.175 SSB0 36000 

t0 -1 SigmaR – recruitment 0.35 

Growth CV 0.096 SigmaCE – catch rates 0.1 

Weight at Length a 0.00000588 catchability 1.51E-06 

Weight at Length b 3.31 age at 50% selection 3 

Steepness 0.62 0.5 Interquartile Distance 0.5 

 

Given the assumption of an unfished spawning biomass of 32,000t and the other parameters 

relating to productivity this led to an expected Maximum Sustainable Yield (MSY) of 2,356 t at a 

depletion level of 32.9%SSB0. The steepness of 0.62 implies a significant decline in average 
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recruitment as the stock size declines (Figure 6-16). This implies that there would be a decline in the 

number of fish at ages and sizes below those that would be selected by the fishery (Figure 6-17). 

 

Figure 6-16. Characteristics of the unfished simulated population used in the management strategy 

evaluation. The top left graph depicts the production curve with an MSY of 2,356t at a depletion level of 

32.9%SSB0. The cohort structure of the unfished stock in the top left graph omits the 0 year old fish for 

clarity. The vertical grey line in the top right graphs is the age and size at 50% selection. The spawning stock 

– recruitment relationship is illustrated in the middle of the bottom line of graphs. 

 

 

Figure 6-17. By fishing the unfished population with a constant catch of 2,300t for 35 years the stock is 

depleted to a level of 26.95% SSB0. The vertical grey lines are the age and size at 50% selection. 
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6.4.2 DIFFERENT INITIAL DEPLETION LEVELS WITH CONSTANT CATCH AND CATCH 

RATES 

The outcome from applying a constant catch to the fishery and then applying the HCR is at least 

partially dependent upon what catch rates are exhibited in the last few initialization years. If catch 

rates are essentially flat and the TAC is set initially at the constant catch being applied, then the 

outcome is effectively the status quo in terms of catches, catch rates, and TAC (Figure 6-18, Figure 

6-19, and Figure 6-20; Table 6-14). When the initial depletion level is above about 20%B0 the 

outcome of applying the HCR is usually a slight reduction in the final TAC and a slight increase in the 

spawning biomass (Figure 6-20). If the initial depletion is below 20%B0 the end result of applying the 

HCR changes to involve a slight increase in TAC and in the spawning biomass, however, these 

changes only appear to begin after about 15 – 17 years of applying the HCR. The increase in 

spawning biomass, however, is only a little more than 2% and so it could not be claimed that this 

HCR is capable of rebuilding depleted stocks. 

 

 

Figure 6-18. The simulation outputs when the unfished fishery is first depleted to 15.4%B0, then fished for 

35 years at 1,927t, and then fished for a further 35 years under control of the HCR. The TAC begins at 1,927t 

and ends at 2,000 and a depletion level of 17.8%B0t. The blue dashed line is the value of the variable 

concerned at the introduction of the HCR. In the catch graph the green lines are the inner 50% quantiles and 

the red lines are the inner 90% quantiles. In the depletion graph the light blue line is the 48%B0 target used 

in the Commonwealth and the green line is the estimated BMSY.  
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Figure 6-19. The simulation outputs when the unfished fishery is first depleted to 60.5%B0, then fished for 

35 years at 1,800t, and then fished for a further 35 years under control of the HCR. The TAC begins at 1,800t 

and ends at 1,729t. The blue dashed line is the value of the variable concerned at the introduction of the 

HCR. In the catch graph the green lines are the inner 50% quantiles and the red lines are the inner 90% 

quantiles. In the depletion graph the light blue line is the 48%B0 target used in the Commonwealth and the 

green line is the estimated BMSY.  

 

 

 

Figure 6-20. The outcome of applying the HCR for 1000 runs. At spawning biomass levels above the BMSY 

and down to about 25%B0 the mean TAC in the final year is about 96.5% of the original TAC. At and below 

25%B0 the final TAC moves closer to the initial TAC until below about 20%B0 the final TAC is proportionally 

greater than the initial TAC. The absolute amount of the initial TAC needed to vary in order to achieve the 

different initial spawning biomass depletion levels with relatively flat catch rates. The vertical red line in 

each graph denotes the BMSY. 
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Table 6-14. Simulation outcomes from applying a constant catch to a stock at a given depletion level when 

catch rates are relatively flat at the time when the HCR is introduced. 

Initial Depletion 15.4 19.99 27.82 32.48 36.35 40.29 50.51 60.5 

Final Depletion 17.77 21.91 29.53 34.26 38.01 41.85 51.93 61.64 

Catch History 1927 2155 2335 2350 2350 2300 2100 1800 

Initial TAC 1927 2155 2335 2350 2350 2300 2100 1800 

Final TAC 2000 2140 2274 2287 2264 2214 2027 1729 

Depletion 2.37 1.92 1.71 1.78 1.66 1.56 1.42 1.14 

InitialTAC 103.79 99.30 97.39 97.32 96.34 96.26 96.52 96.06 

 

6.4.3 DIFFERING INITIAL CATCH RATES 

The outcome of apply the HCR is at least partially a function of conditions immediately prior to 

initiating the HCR. If catch rates are flat and catches are maintained then, in effect, the status quo is 

maintained (Figure 6-20; Table 6-14). However, if catch rates are declining when the HCR is 

introduced there will be an immediate decrease in the TAC until the catches approximately match 

the productivity of the remaining spawning biomass and catch rates stabilize again (Figure 6-21). 

While this doesn’t lead to a stock recovery the effect of the HCR is that further declines in the 

spawning biomass can be mostly avoided (Figure 6-21). This also operates when the depletion is not 

so marked, although the changes to the TAC and other variables are not so dramatic (Figure 6-22). 

 

In addition, when the catch rates are increasing, reflecting increases in the spawning biomass, the 

introduction of the HCR has the effect of slowing and eventually stopping this increase by stabilizing 

the spawning biomass level (Figure 6-23). However, in both cases where catch rates were initially 

declining the decline in spawning biomass was very rapid and stable. In contrast, when catch rates 

were initially increasing there is a rapid change but only in the rate of change. Spawning biomass 

continues to increase slowly until it becomes much closer to BMSY (Figure 6-23). 
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Figure 6-21. The simulation outputs when the unfished fishery is first depleted to 24.77%B0, then fished for 

35 years at 2,350t, which further depleted the stock to 15.12%B0, and then fished for a further 35 years 

under control of the HCR and an initial TAC of 2,350t, leading to a final TAC of 1,782t. The blue dashed line is 

the value of the variable concerned at the introduction of the HCR. In the catch graph the green lines are the 

central 50% quantiles and the red lines are the central 90% quantiles. In the depletion graph the light blue 

line is the 48%B0 target used in the Commonwealth and the green line is the estimated BMSY.  

 

Figure 6-22. The simulation outputs when the unfished fishery is first depleted to 29.56%B0, then fished for 

35 years at 2,400t, which further depleted the stock to 24.84%B0, and then fished for a further 35 years 

under control of the HCR and an initial TAC of 2,400t, leading to a final TAC of 2,283t. The blue dashed line is 

the value of the variable concerned at the introduction of the HCR. In the catch graph the green lines are the 

inner 50% quantiles and the red lines are the inner 90% quantiles. In the depletion graph the light blue line 

is the 48%B0 target used in the Commonwealth and the green line is the estimated BMSY.  
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Figure 6-23. The simulation outputs when the unfished fishery is first depleted to 17.56%B0, then fished for 

35 years at 1,900t, which allows the stock to recover up 25.09%B0, and then fished for a further 35 years 

under control of the HCR and an initial TAC of 1,900t, leading to a final TAC of 2,328t and a depletion level of 

31.04%B0. The blue dashed line is the value of the variable concerned at the introduction of the HCR. In the 

catch graph the green solid lines are the inner 50% quantiles and the red lines are the inner 90% quantiles. 

In the depletion graph the light blue line is the 48%B0 target used in the Commonwealth and the green 

dashed line is the estimated BMSY.  

 

In the case of an initial depleted state but with increasing catch rates it appears as if the HCR slows 

stock recovery but continues that recovery until the spawning biomass becomes close to the BMSY. 

While catch rates would continue to increase with stock biomass any increases in TAC beyond the 

MSY would act to reduce catch rates and hence the HCR would find it difficult to lead to the stock 

increasing beyond BMSY. When this scenario is run without variation in recruitment or catch rates the 

effectively deterministic outcome is that some stock recovery still occurs but that it is more limited 

than when there is variation present.  

Thus, in all cases, where catch rates are declining the HCR appears to act to halt the decline in both 

catch rates and spawning biomass. This reflects that the HCR responds to declining catch rates with 

decreases in the TAC, which will in turn stop the decline in stock biomass which will stabilize catch 

rates. The HCR, in its current form, cannot turn the catch rate trend around so that they increase and 

thus maintain the status quo with regard the state of spawning biomass depletion, but the impact on 

catches, catch rates, and TACs is dependent upon the manner in which catch rates are changing at 

the time of introducing the HCR. When the stock is depleted and recovering the maintenance of 

spawning biomass is not as constrained as when the stock is declining. 
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6.4.4 ALTERING THE INITIAL TAC AWAY FROM CURRENT CATCHES 

Even though the three trials used all had stable CPUE at the onset of the new HCR the alterations to 

the TAC away from contemporary catches had the effect of introducing contrast into the catch rates, 

which, in turn, led to significant changes away from the status quo. By comparing Figure 6-18 with 

Figure 6-24 the dynamics of the fishery changes from barely moving away from the status quo to a 

significant recovery of the stock biomass. 

 

 

Figure 6-24. The simulation outputs when the unfished fishery is first depleted to 15.4%B0, then fished for 

35 years at 1,927t, and then fished for a further 35 years under control of the HCR. The TAC begins at 1,445t 

and ends at 2,340t and a depletion level of 28.3%B0. The blue dashed line is the value of the variable 

concerned at the introduction of the HCR. In the catch graph the green solid lines are the inner 50% 

quantiles and the red lines are the inner 90% quantiles. In the depletion graph the light blue line is the 

48%B0 target used in the Commonwealth and the green dashed line is the estimated BMSY. 
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Figure 6-25. The simulation outputs when the unfished fishery is first depleted to 15.4%B0, then fished for 

35 years at 1,927t, and then fished for a further 35 years under control of the HCR. The TAC begins at 2409t 

and ends at 1653t and a depletion level of 12.0%B0. The blue dashed line is the value of the variable 

concerned at the introduction of the HCR. In the catch graph the green solid lines are the inner 50% 

quantiles and the red lines are the inner 90% quantiles. In the depletion graph the light blue line is the 

48%B0 target used in the Commonwealth and the green dashed line is the estimated BMSY. 

 

Most of the changes to the stock biomass occur in the first 15 years after which increases in the 

spawning biomass and in the average catch rate slow markedly. The spawning biomass fails to 

achieve BMSY but nevertheless, the initial 25% cut in catches leads to almost double the initial 

spawning biomass with an increase of 12.9% and about an 80% increase in catch rates. If, however, 

initial catches are increased by 25% the changes in the dynamics occurs more rapidly with most of 

the changes occurring in the first five – seven years following the introduction of the HCR (Figure 

6-25). 

By increasing the initial catches when the stock is relatively depleted, the spawning biomass declines 

further, though only by about 3.4%, however, the TAC and total catches decline significantly through 

time and while they exhibit slow signs of recovery in the last 10 years of the projections catch rates 

remain at about 75% of those at the introduction of the HCR. 

If the stock is initially depleted to a state very close to BMSY, then, once again, if the initial TAC is set 

equal to the conditioning catches the status quo is effectively maintained with a final drop in TAC of 

only about 80 t and the spawning biomass depletion level increasing by 1.8%. However, if the initial 
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TAC is reduced by 25% to about 1,760 t with the introduction of the HCR then, once again, the 

spawning biomass level increases along with catch rates while the catches rebound but do not 

increase above the MSY. The spawning biomass increases from an initial 32.5%B0 to 45.0%B0, a 

12.5% increase (Figure 6-26). 

 

 

Figure 6-26. The simulation outputs when the unfished fishery is first depleted to 32%B0, then fished for 35 

years at 2,350t, and then fished for a further 35 years under control of the HCR. The TAC begins at 1762.5t 

and ends at 2233t and a depletion level of 45.0%B0. The blue dashed line is the value of the variable 

concerned at the introduction of the HCR. In the catch graph the green lines are the inner 50% quantiles and 

the red lines are the inner 90% quantiles. In the depletion graph the light blue line is the 48%B0 target used 

in the Commonwealth and the green line is the estimated BMSY. 

 

In contrast, if the initial catches at the introduction of the HCR are 125% of the historical catch levels, 

once again, the dynamics of the fishery react over between five – seven years and limit the decline in 

the spawning biomass and catch rates (Figure 6-27). 
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Figure 6-27. The simulation outputs when the unfished fishery is first depleted to 32%B0, then fished for 35 

years at 2,350t, and then fished for a further 35 years under control of the HCR. The TAC begins at 2937.5t 

and ends at 2133t and a depletion level of 27.27%B0. The blue dashed line is the value of the variable 

concerned at the introduction of the HCR. In the catch graph the green lines are the inner 50% quantiles and 

the red lines are the inner 90% quantiles. In the depletion graph the light blue line is the 48%B0 target used 

in the Commonwealth and the green line is the estimated BMSY. 

 

Finally, if the stock is depleted to a depletion level of about 60.5%B0 and fishing continues at the 

same catch levels that led to the initial state then the depletion level only changes by 1.1% to 

61.6%B0 and the TAC only declines from 1,800t to 1,729t, a decline of about 70t (Figure 6-19), 

thereby effectively maintaining the status quo. In this case, if the initial TAC is only 75% of the 

historical catches there is a rapid but small rise in spawning biomass and catch rates, with associated 

small rises in catches and TAC (Figure 6-28). 

If the initial TAC is 125% of historical catches then over a 15 year period catches (TAC), catch rates, 

and spawning biomass all decline though only by relatively small proportions (Figure 6-29). 
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Figure 6-28. The simulation outputs when the unfished fishery is first depleted to 60.0%B0, then fished for 

35 years at 1,800t, which leads to a depletion state of 60.5%B0, and then fished for a further 35 years under 

control of the HCR. The TAC begins at 1,350t and ends at 1,458t and a depletion level of 69.8%B0. The blue 

dashed line is the value of the variable concerned at the introduction of the HCR. In the catch graph the 

green lines are the inner 50% quantiles and the red lines are the inner 90% quantiles. In the depletion graph 

the light blue line is the 48%B0 target used in the Commonwealth and the green line is the estimated BMSY. 

 

Figure 6-29. The simulation outputs when the unfished fishery is first depleted to 60.0%B0, then fished for 

35 years at 1,800t, which leads to a depletion state of 60.5%B0, and then fished for a further 35 years under 

control of the HCR. The TAC begins at 1,350t and ends at 1,458t and a depletion level of 69.8%B0. The blue 

dashed line is the value of the variable concerned at the introduction of the HCR. In the catch graph the 

green lines are the inner 50% quantiles and the red lines are the inner 90% quantiles. In the depletion graph 

the light blue line is the 48%B0 target used in the Commonwealth and the green line is the estimated BMSY. 
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6.4.5 CONCLUSION 

The maximum TAC that can be taken on a continuous basis is the MSY. Catch rates can be expected 

to decline steadily with stock biomass, however, the surplus production decreases either side of 

BMSY. The significance of this is that if the TAC is greater than the surplus production then the stock 

will become more depleted and catch rates will decline leading to a decrease in the TAC. Conversely, 

if the TAC is smaller than the surplus production then the stock will become less depleted and the 

cpue will increase leading to an increase in the TAC. The effect of the HCR is to find the balance 

between these two opposing directions. This is what arrests the increase in stock depletion level 

when catch rates are declining. The effect in the case of increasing catch rates with a depletion level 

below BMSY, catches below the surplus production lead to some recovery rather than rapid stability in 

depletion level because as both the catch rates increase and the stock becomes less depleted the 

surplus production also increases. Thus achieving the balance of the TAC and the surplus production 

takes longer than when the stock is declining below BMSY. When the stock is below BMSY, the rate of 

decline in catch rates accelerates as the depletion becomes worse so the decline in TAC is also 

faster. These dynamics are what is behind the effects brought about by lowering the initial TAC at 

the introduction of the HCR. Generally there are other sources of information about the state of 

depletion in the stock; catches may now be far less than fishers remember. But even if there has 

been relative stability for a long period, if a drop in catches leads to a large increase in catch rates 

this can be taken as evidence for significant depletion, especially if the catch rates are maintained 

once the catches are slowly increased again. 
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6.5 Results of application of cross-sampling method for estimating 

gear efficiency, biomass, and fishing mortality rate 

In this section 7.5 we use the methods developed in section 5.5 to estimate gear efficiency, biomass, 

and fishing mortality rate.  We applied the methods to five case study species: Tiger Flathead, 

Jackass Morwong, John Dory, Gemfish, and Ruby Snapper.  

6.5.1 TIGER FLATHEAD 

Five gear types have caught Tiger Flathead (Neoplatycephalus richardsoni): automatic longline, 

demersal longline (mainly manual longline), Danish seine, gillnet, and trawls.  We used data from 

2000 to 2012 for estimating gear efficiency.  The sampling unit was 1 degree by 1 degree by year.  

This treatment resulted in a total of 53 unique spatial-temporal grid-year cells and 765 data points.  

The majority of the cells (50) had only two gear types while 3 cells had 3 gear types. 

Gear efficiency 

The cross-sampling model using all 5 gear types converged well and there was no abnormal 

behaviour of the MCMC (estimation) process. 

Significant differences in Q existed among gear types (Table 6-15).  Danish seine and trawl were the 

most effective gears for Flathead (median QDS = 0.84 and QTW = 0.71), while gillnet was the least 

effective (QGN = 0.004). Longlines had similar catchability, with Auto longline (QAL = 0.03) slightly 

higher than demersal longline (QBL= 0.01). The two gears with the highest Q values (trawl and Danish 

seine) are also the gears that take the bulk of the catch of this species. 

 

Table 6-15.  Summary of Bayesian posteriors for gear efficiency of Flathead from logbook data.    

Qk mean sd 2.5% median 97.5% 

Auto longline 0.03 0.02 0.01 0.03 0.10 

Demersal longline 0.01 <0.01 0.01 0.01 0.01 

Danish Seine 0.83 0.09 0.63 0.84 0.97 

Gillnet <0.01 <0.01 <0.01 <0.01 <0.01 

Trawl 0.71 0.04 0.62 0.71 0.80 
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Population size 

A total of 126,086 gear deployments (shots) from 2000 to 2012 were included in modelling fish 

density.  Location (lon and lat), depth, and year in the GAM model all had a significant effect on the 

distribution of fish density (Figure 6-30).  

We used year 2009 as an example because this was the latest year with stock-assessment results.  

Catches of Tiger Flathead occurred in only two large polygons in 2009 (Figure 6-31).  The total area 

of these two polygons was 250,011 km2.  We expanded the predicted log density in each location in 

the specified year by the area of each polygon to derive biomass.  The total biomass in year y is the 

sum across all polygons in the Core distribution area within the SESSF region.  This resulted in 

median fishable biomass B2009 = 21,798 t in 2009 with a log scale  = 0.94.  As a comparison, the 

estimated biomass from the full stock assessment (Klaer 2011) was 23,070 t in 2009, i.e., about 6% 

higher than our median estimate.   
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Figure 6-30.  Estimated smooth terms for the Flathead density GAM model. The upper panel shows the 

smooth of location, the middle panel is the smooth of depth expressed as deviation from mean depth of all 

sample locations, and the lower panel is the smooth of year.   
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Figure 6-31.  Boxplot of estimated log(B2009) for Tiger Flathead in each polygon within the Core distribution 

range in 2009. 

 

6.5.2 JACKASS MORWONG 

Gear efficiency 

From 2000 to 2012, the following gear types have caught Jackass Morwong (Nemadactylus 

macropterus): auto longline (AL), demersal longline (BL), Danish seine (DS), gillnet (GN), trawl (TW), 

fish trap (FP), dropline (DL), handline (HL), rod and reel (RR), and troll (TL).  Gear affected area for 

the last five gear types was assumed to be 1 km2 per deployment.  To increase sample size, we 
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combined AL and BL as longline, and all minor lines (DL, HL, RR, and TL) as one group. This resulted in 

a total of 117 grid-year cells fished by at least two gear types.  The cross-sampling model involving 

these 6 gear types converged well and there was no abnormal behaviour of the MCMC process. 

Significant differences in Q existed among gear types (Table 6-16).  Trawl was the most effective gear 

for Morwong (QTW = 0.71), while fish trap was the least effective (QGN = 0.04).  Longlines, Danish 

seine, gillnet, and minor lines had similar catchability (Figure 6-32).  

Table 6-16.  Summary of Bayesian posteriors for gear efficiency of Jackass Morwong from logbook data.  

Gear mean sd 2.5% median 97.5% 

Longline 0.08 0.01 0.06 0.08 0.11 

Danish seine 0.11 0.02 0.07 0.11 0.16 

Gillnet 0.11 0.02 0.06 0.10 0.15 

Trawl 0.71 0.03 0.65 0.71 0.76 

Fish trap 0.04 0.02 0.01 0.04 0.10 

Minor lines 0.15 0.03 0.09 0.15 0.21 

  

Population size 

A total of 163,967 gear deployments (shots) from 1977 to 2012 were included in modelling fish 

density.  These shots have sufficient data allowing estimation of gear affected area (with length 

recorded) and hence fish density.  The GAM model in section 5.5.2 fit the data fairly well.  Location 

(lon and lat), depth, and year all had a significant effect on the distribution of fish density (Figure 

6-33).   

There were four polygons where Jackass Morwong were predicted (Figure 6-34), with a total area of 

172,936 km2.  The fishable biomass was estimated to be 12,744 t in 2009, using the median 

predicted fish density and the Core distribution area within SESSF jurisdiction.  In comparison, the 

total biomass was 10,551 t (Morwong and Morwong West) from the full stock assessment (Wayte 

2011), a 17% lower than our estimate.  The gear efficiency analysis shows trawling as the most 

efficient gear, again corresponding to the gear that takes the bulk of the catch. 
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Figure 6-32.  Probability distribution of gear efficiency for six gear types for Jackass Morwong. 
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Figure 6-33.  Estimated smooth terms for the Jackass Morwong density GAM model.  The upper panel shows 

the smooth of location, the middle panel is the smooth of depth express as deviation from mean depth, and 

the lower pane is the smooth of year.   
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Figure 6-34.  Boxplot of estimated log(B2009) for Jackass Morwong in each polygon within the Core 

distribution range in 2009. 

 

6.5.3 GEMFISH 

Gear efficiency 

From 2000 to 2012, the following gear types caught Gemfish (Rexea solandri): AL, BL, DS, GN, and 

TW.  A total of 146 grid-year cells were fished by at least two gear types.  The cross-sampling model 

involving these 4 gear types converged well and there was no abnormal behaviour of the MCMC 

process. 
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Significant differences in Q existed among gear types (Table 6-16).  Again, trawl was the most 

effective gear (QTW = 0.61), followed by Danish seine (0.49), while longline was the least effective 

(QGN = 0.05).   

Table 6-17.  Summary of Bayesian posteriors for gear efficiency Q of Gemfish from logbook data.  

Gear mean sd 2.5% median 97.5% 

Longline 0.05 0.01 0.04 0.05 0.06 

Danish seine 0.49 0.04 0.41 0.49 0.58 

Gillnet 0.15 0.03 0.09 0.15 0.23 

Trawl 0.61 0.02 0.57 0.61 0.66 

 

Population size 

A total of 89,784 gear deployments (shots) from 1977 to 2012 were included in modelling Gemfish 

density, which include both Eastern and Western stocks.  These shots had sufficient data to allow 

estimation of gear affected area (with length recorded) and hence fish density.  The GAM model in 

section 5.5.2 fit the data fairly well.  Location (lon and lat), depth, and year all had a significant effect 

on the distribution of fish density (Figure 6-35).   

There were 23 polygons where Gemfish density was predicted to be greater than zero (Figure 6-36).  

These polygons have a total area of 34553 km2.  The fishable Gemfish biomass was estimated to be 

6650 t in 2009, using the median predicted fish density and the Core distribution area within SESSF 

jurisdiction.  Gemfish is divided into Eastern and Western stocks in full stock assessment.  Only the 

Eastern stock has estimated biomass, which was 4177 t from in 2009 (Little and Rowling 2011).  If 

our estimate is correct, the Eastern stock makes up about 63% of the total biomass.  
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Figure 6-35.  Estimated smooth terms for the Eastern Gemfish density GAM model.  The upper panel shows 

the smooth of location, the middle panel is the smooth of depth express as deviation from mean depth, and 

the lower pane is the smooth of year.   
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Figure 6-36.  Boxplot of estimated log(B2009) for the Eastern Gemfish in each polygon within the Core 

distribution range in 2009. 

 

6.5.4 JOHN DORY 

Gear efficiency 

John Dory has been caught by three major gear types: Danish seine, gillnet, and trawl.  Danish seine 

and trawl simultaneously fished in 62 grid-year cells while gillnet and trawl fished together in 1 grid-

year cell.  Gillnet occurred in a total of 299 grid-year cells and we included these cells with Danish 
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seine and trawl overlapping cells.  The cross-sampling model involving these 3 gear types converged 

well and there was no abnormal behaviour of the MCMC process. 

Significant differences in Q existed among gear types (Table 6-18).  Again, trawl was the most 

effective gear (QTW = 0.59), while seine and gillnet had similar efficiency (Figure 6-37).   

 

Table 6-18.  Summary of Bayesian posteriors for gear efficiency Q of John Dory from logbook data.  

Gear mean sd 2.5% median 97.5% 

Danish seine 0.21 0.02 0.18 0.21 0.25 

Gillnet 0.24 0.01 0.21 0.24 0.27 

Trawl 0.58 0.03 0.52 0.59 0.65 

 

Population size 

A total of 112683 gear deployments (shots) from 1978 to 2012 were included in modelling fish 

density to increase sample size.  These shots have sufficient data allowing estimation of gear 

affected area (with length recorded) hence fish density.  The GAM model in section 5.5.2 fit the data 

fairly well.  Location (lon and lat), depth, and year all had a significant effect on the distribution of 

fish density (Figure 6-38).   

Because John Dory’s distribution area has not been appropriately defined in the Core map, we opted 

to use the historical catch location to derive total abundance.  From 1978 to 2012, John Dory were 

caught in 2458 0.05 by 0.05 degree grid cells with location and depth recorded.  The total area sums 

to 60,896 km2.  The fishable John Dory biomass was estimated to be 1935 t in 2009, using the 

median predicted fish density and the actual distribution area within the SESSF jurisdiction.  There is 

no biomass estimate for comparison for this species using other methods.  
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Figure 6-37.  Probability distribution of gear efficiency of three gear types for John Dory. 
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Figure 6-38.  Estimated smooth terms for John Dory density GAM model.  The upper panel shows the 

smooth of location, the middle panel is the smooth of depth express as deviation from mean depth, and the 

lower pane is the smooth of year.   
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6.5.5 RUBY SNAPPER (ETELIS CARBUNCULUS) 

Gear efficiency 

Ruby Snapper is a target species in the Western Deepwater Trawl Fishery.  Trawl is the major gear 

catching the species, but other gears also caught them, including longlines, dropline, fish trap (FT), 

and minor hook and lines.  From 2000 to 2010, few grid-year cells were fished simultaneously by 

multiple gears.  To increase the sample size, we included 499 grid-cells and 612 records that had 

repeated samples by single gear but not necessary by overlapping multiple gears.  The cross-

sampling model involves 5 gears (Table 6-19). 

 

Table 6-19.  Summary of Bayesian posteriors for gear efficiency Q of Gemfish from logbook data.  

Gear mean sd 2.5% median 97.5% 

Longline 0.38 0.03 0.32 0.38 0.44 

Drop line 0.31 0.02 0.27 0.31 0.35 

Fish trap 0.16 0.07 0.04 0.15 0.32 

Trawl 0.50 0.02 0.47 0.50 0.54 

Minor lines 0.36 0.07 0.23 0.36 0.52 

 

 

Population size 

A total of 1287 gear deployments (shots) were included in modelling fish density.  These shots have 

sufficient data to allow estimation of gear affected area (with length recorded) and hence fish 

density.  Location (lon and lat), depth, and year all had a significant effect on the distribution of fish 

density (Figure 6-39).   

Ruby Snapper’s distribution range has not been appropriately defined.  We used the actual locations 

where this species has been caught to derive biomass.  From 1994 to 2010 Ruby Snapper were 

caught in 148 0.05 by 0.05 degree grid cells with a total area of 4173 km2.  The median fishable Ruby 

Snapper biomass was estimated to be 2069 t in 2009.   
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Figure 6-39.  Estimated smooth terms for Ruby Snapper density GAM model.  The upper panel shows the 

smooth of location, the middle panel is the smooth of depth express as deviation from mean depth, and the 

lower pane is the smooth of year.   
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6.5.6 ESTIMATED FISHING MORTALITY RATE 

From the catch data and the estimated biomass, we were able to derive fishing mortality rates for 

the five case study species examined above.  Using the natural mortality rate, as well as the scaling 

parameter between FMSY and M, it was possible to compare the estimated F with the reference 

point FMSY (Table 6-20).  For the five species we examined, we also list the fishing mortality rate 

estimated by the corresponding stock assessment.  The results appear to be very close to each 

other.  It is important to keep in mind that the key data required for the method we described were 

catch statistics only. 

 

 Table 6-20.  Comparison of estimated fishing mortality rates and reference points FMSY for the case study 

species.   

      
F2009 

Species M  FMSY B2009 C2009 Cross-samp  Full assess 

Tiger Flathead 0.27 0.69 0.19 21798 3031 0.139  0.131 

Jackass Morwong 0.15 0.92 0.14 12744 478 0.038  0.045 

John Dory 0.36 0.90 0.32 1935 129 0.067  0.089 

Gemfish 0.33 0.92 0.30 6650 406 0.061  0.064 

Ruby Snapper 0.33 0.92 0.30 2069 13 0.006  
 

 

Note:  natural mortality rate M is adopted from the stock assessment for Tiger Flathead, Jackass 

Morwong, and John Dory, while it is adopted from the ERA study by Zhou et al. (2011a) for Gemfish 

and Ruby Snapper.  Catches are combined for Eastern and Western stocks for Jackass Morwong and 

Gemfish.  For Gemfish, full assessment F is for the Eastern stock only.  

6.5.7 DISCUSSION 

We applied cross-sampling method to estimate average gear efficiency for five case-study species, 

some of which have full stock assessment while others do not.  There is no reference for direct 

comparison of gear efficiency for all these species, as this is a very difficult parameter to estimate 

and is traditionally obtained from field experiments.  However, our results for different gear types 

fall within sensible ranges.  For example, Dickson (1993) compared trawl gear efficiency for catching 

cod (Gadus morhua L.) and haddock (Melanogramrnus aeglefinus L.) and found that gear efficiency 
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typically ranged from 0.1 to 0.8 for different size groups.  When no information is available for gear 

efficiency, it is often assumed that Q = 1 or Q = 0.5 (Pauly 1979; Somerton et al. 1999; Pope et al. 

2000).  We believe that the method described here provides more realistic estimates than the 

default assumption. 

Gear efficiency is not only essential in converting survey or commercial catch to abundance, but it 

can also be useful in stock assessment for estimating catchability.  When individuals are assumed to 

be randomly or evenly distributed in stock area A, the relationship between gear efficiency Q and 

common catchability q in stock assessment is (Somerton et al. 1999): 

 q = Q a/A 

where a is the average swept area in each tow (for trawl).  When the data needed in a stock 

assessment model are insufficient, or when there is large uncertainty in the stock assessment, gear 

efficiency based on the cross-sampling method can improve the assessment and reduce the 

likelihood of large biases in the biomass estimates. 

The results from the application of the cross-sampling method show that the estimated biomass (or 

fishing mortality rate) for the five species is by and large comparable with the corresponding values 

from the stock assessment.  However, such a direct comparison should be treated with some 

caution.  Besides many other factors, the populations assessed by the two methods may not be the 

same.  Our method uses annual varying density expanded by distribution area that generally does 

not change much from year to year.  In contrast, stock assessment uses annual fishery catch data 

and only infers the population affected by the fishery.  If the fleet did not explore the entire stock 

areas within the jurisdiction in a particular year and the fish between fished and unfished areas did 

not mix (migrate) well, there might be sub-populations that were not available to the fishery and this 

proportion of the population will be missed out in the stock assessment result (Zhou et al. 2011b). 

Our objective in this chapter is to derive average gear efficiency for each gear type and each species.  

This new method uses easily available commercial logbook data, which avoids costly field 

experimental approaches.  We have not explored the effects of many factors that possibly influence 

gear efficiency, including fish size, fishing season and time, habitat, and other environmental 

conditions (Arreguin-Sanchez 1996).  Although we treat these variables as random effects, they can 

be incorporated into the model if deemed appropriate.  

It is interesting to note the similarity in estimated fishing mortality rates between our method and 

those derived from conventional stock assessment.  Comparing to the reference point, the fishing 
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intensity is relatively conservative for all five case-study species.  The method can be applied to 

species where only catch data are available.  

 

  



RESULTS: BIOLOGICAL ANALYSES 

158 

 

6.6 Results of conditional stochastic stock reduction analysis 

6.6.1 DETERMINISTIC CHASE-CATCH (CC) METHOD 

The deterministic chase-catch method can produce exact B0 (and other biomass-based reference 

points such as BMSY and MSY) if the assumptions are met (including correct population dynamic 

model, an estimate of biomass in one year By, M, m, and the relationship between FMSY and M 

known).  Biases in By, M, and the FMSY ~ M relationship cause bias in estimated B0 (Figure 6-40).  

However, the relative errors in estimated B0 are generally smaller than the errors in the input 

predictors.  For example in this instance, when input growth rate r or biomass in year y (By) is twice 

as large as the true value (relative error = 1), B0 is underestimated by or overestimated by -0.19 or 

+0.63, respectively.  When input r or By is 0.4 of the true value (relative error = -0.6), B0 is 

overestimated by 0.6 or underestimated by -0.25, respectively.  

Estimates of B0 and r are sensitive to errors in input parameters.  However, the estimate of MSY is 

rather stable (Figure 6-41).  This is because the bias in r and B0 are in the opposite direction.  For 

example, when the assumed B0 is too large, in order to end at the correct By after the series of catch 

removals, r will need to be biased low.  Such a combination of opposite bias results in relatively 

accurate estimates of MSY.  
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Figure 6-40.  Relative error in estimated B0 caused by relative error in growth rate r or biomass in the year y, 

By.  

 

Figure 6-41.  Effect of relative error in prior B0 on posterior retained r, B0, and MSY.   
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6.6.2 CONDITIONAL STOCHASTIC STOCK REDUCTION ANALYSIS (CSSRA) 

The results of the CSSRA method are affected by many potential variables, including the distributions 

of priors and their parameters, the assumed shape of the production model, and the accuracy of the 

estimate of biomass in year y, By.  The effect of growth rate r works through its predictors, the 

natural mortality M and the relationship between FMSY with M.  In the results below, rules a to d in 

the Method section are applied.  In rule d,
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, we assume estimated biomass in 

year y is known and set  =0.2. 
 

Effect of prior variability 

We conducted simulations by varying prior standard deviation B0 and r.  Both B0 and r were 

assumed to have a lognormal distribution: 

               
        

   

                  
   

The standard deviation is based on              .  Apparently, increasing the CV results in 

high variance in the posterior retained key parameters (Figure 6-42, Figure 6-43).  This change also 

causes bias to some extent in addition to imprecision.  The reason is because of the skewed 

distribution of lognormal density where mean increases with the CV (Figure 6-44).  Nevertheless, the 

bias is not too large even at high CV.  The bias for the estimated MSY and depletion By/B0 are 

typically smaller than those for the B0 and r.  

Effect of bias in priors r and B0 

In these simulations, we fix  = 0.5 for both B0 and r.  Changing relative error in B0 and r from -0.8, to 

1.0 causes some systematic errors in posterior retained key parameters (Figure 6-45 to Figure 6-48).  

This is expected.  However, when there is no bias (bias = 0) in priors B0 and r, the posterior retained 

B0, r, MSY, and By/B0 are still biased.  This bias is caused by the skewed lognormal distribution of the 

priors, as shown above.  Even so, all biases are smaller than the input bias in the priors.   
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Effect of bias in the estimated biomass By  

In the CC and CSSRA methods, it is necessary to have an estimate of the biomass in at least one year 

By, or fishing mortality Fy, or depletion ratio By/B0.  Compared to priors for B0 and r, the assumption 

about the current stock status seems to have a higher impact on other parameters (Figure 6-49 and 

Figure 6-50).  The effect on MSY and By/B0 is of more concern, as the bias can be higher than 50% at 

extreme cases, even though it is still smaller than input bias in By.  

 

 

Figure 6-42.  Effect of prior variability in growth rate r (expressed in coefficient of variance) on posterior B0, 

r, MSY, By/B0 ratio when cv[B0] is fixed at 0.5. 
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Figure 6-43.  Effect of variability (expressed in coefficient of variance) in both growth rate r and initial 

biomass B0 from 1000 simulations.  The priors are centred at the true values derived from the CC method.  

Increasing CV increases variance of relative error in these four parameters, as well as their median values. 
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Figure 6-44.  Density of log-normally distributed prior r.  The dashed lines are the medians and the solid lines 

are the means. 
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Figure 6-45.  Effect of bias in initial biomass prior B0 on estimated B0, r, MSY, and depletion level By/B0.  A 

standard deviation of  = 0.5 are used for both priors B0 and r.  Bias = 1 in prior B0 means that the assume 

biomass is centred at twice the true value.  
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Figure 6-46.  Effect of B0 bias on trajectories of estimated biomass.  The solid thick green lines are the 

median of the 1000 simulations and the dashed red lines are the true biomass. 
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Figure 6-47.  Effect of bias in assumed growth rate r on estimated B0, r, MSY, and depletion from 1000 

simulations.  Both r and B0 are assumed to be lognormally distributed with sd = 1.  Bias = 1 in r means that 

the assumed r is centred at twice the true value.  Increase in r bias has systematic effect on these four 

parameters.  For example, B0 tends to be overestimated while r, MSY, and depletion underestimated when 

bias in r is negative (i.e., the assumed r is smaller than true r).   
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Figure 6-48.  Effect of r bias on trajectories of estimated biomass.  The solid thick green lines are the median 

of the 1000 simulations and the dashed red lines are the true biomass. 
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Figure 6-49.  Effect of bias in biomass By on estimated B0, r, MSY, and depletion level By/B0.  The priors B0 

and r are log-normally distributed with  = 0.5.  Bias = 1 in By means that the assume biomass is centred at 

twice the true value.  Too few iterations are retained at bias = -0.8. 
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Figure 6-50.  Effect of By bias on trajectories of estimated biomass.   The solid thick black lines are the 

median of the 1000 simulations and the dashed red lines are the true biomass. 

 



RESULTS: BIOLOGICAL ANALYSES 

170 

 

6.6.3 APPLICATION TO SELECTED STOCKS 

Tiger Flathead (Neoplatycephalus richardsoni) 

The catch history and natural mortality come from the most recent stock assessment (Klaer 2011).  

Biomass in 2009 is assumed known and we tested two biomass estimates, one from the stock 

assessment and the other one derived from catch data using the cross sampling method (see 

previous chapter).  The biomass used is the “summary biomass” from the full stock assessment, 

which includes both sexes, spawning biomass, and biomass of juveniles above the size at 

recruitment.  From catch time-series and natural mortality, the chase-catch method produces an 

initial estimate of virgin biomass B0,prior. 

The inputs and assumptions are listed in Table 6-21.  Two estimates of B2009 were compared, one 

from full stock assessment and one from cross-sampling described in the previous chapter.  The 

scale  linking FMSY to M is from Zhou et al. (2012).   

The results were compared with full stock assessment output, assuming the latter is correct (Table 

6-22, Figure 6-52).  The full retained stochastic trajectories of biomass over the fishing history are 

shown in Figure 6-52 and the distribution of retained B0 in Figure 6-53.  The CSSRA produced a 

slightly lower B0, higher r, MSY, and depletion B2009/B0,post (Table 6-22).  The differences indicate that 

the stock was estimated to be more productive (a larger r) than predicted by the full stock 

assessment.   

 

Table 6-21.  Input parameters for Tiger Flathead.  

Parameter Distribution Value 

B2009  
23070 (stock assessment) 

21798 (cross-sampling) 

B0,prior, median  35956  (from CC) 

B0,prior, distribution Uniform lognormal log(0.5 B0,prior), log(1.5 B0,prior) 

M  0.27 

 (for Scorpaeniforms)  0.694 

r Uniform lognormal log(0.5*2*M), log(1.5*2*M) 

BMSY/B0,post Uniform  0.1, 0.9 
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Table 6-22. CSSRA results for Tiger Flathead.  CSSRA 1 used B2009 from stock assessment and CSSRA 2 used 

B2009 from cross-sampling. 

Parameter 
Stock 
assessment 

CSSRA 1 

 

CSSRA 2 

2.5% median 97.5% 

 

2.5% median 97.5% 

B0,post 43159 29421 37921 52429 

 

29954 39121 52590 

rpost 0.24 0.23 0.39 0.55 

 

0.22 0.40 0.56 

n 2 0.18 1.56 15.97 

 

0.18 1.57 15.37 

MSY (Hybrid) 

 

2734 3537 4682 

 

2692 3647 4910 

MSY (Shaefer) 2564 2763 3686 5081 

 

2710 3804 5267 

B2009/B0,post 0.534 0.39 0.58 0.73 

 

0.40 0.60 0.74 

 

 

Figure 6-51.  Tiger Flathead biomass trajectories from 1915 to 2009.  The median trajectory is compared with 

summary biomass from full stock assessment.  The CSSRA method assumes that the biomass in 2009 is 

known, and is the same as that from the full stock assessment.  The scalar  = 0.694 for Scorpeaniforms is 

used. 
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Figure 6-52.  Tiger Flathead relative error for key parameters based on hybrid Graham-Shaefer and Pella-

Tomlinson-Fletcher models (MSY_hy)  and using B2009 from stock assessment.  As a comparison, MSY_Sh is 

from Shaefer’s model. 
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Figure 6-53.  B0 distribution for Tiger Flathead from full stock assessment and CSSRA method.  

 

Jackass Morwong (Nemadactylus macropterus): Eastern and Western Stocks 

The source of input data are the same as for Flathead, that is, the catch history and natural mortality 

from the most recent stock assessment, and the scalar  from Zhou et al. (2012).  We also tested 

two estimates of B2009, one from the full stock assessment and one from the cross-sampling method 

(Table 6-23).  The full retained stochastic trajectories of biomass over the fishing history are shown 

in (Figure 6-52).  The results were compared with full stock assessment output, assuming the latter is 

correct (Table 6-22, Figure 6-52).   In general, the results are not too far off.  The CSSRA produced a 

slightly lower B0, higher r, MSY, and depletion than the full stock assessment (Figure 6-53), indicating 

that the stock was more productive (a larger r) than predicted by the full stock assessment.  Using 

B2009 from cross-sampling method increases the difference because the final biomass is larger than 

for the full stock assessment. 
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Table 6-23.  Input parameters for Jackass morwong.   

Parameter Distribution Value 

B2009  
10551 (full stock assessment) 

12744 (cross sampling) 

B0,prior, median  22262 (chase-catch method) 

B0,prior, distribution Uniform lognormal log(0.5 B0,prior), log(1.5 B0,prior) 

M  0.15 

  0.92 

r Uniform lognormal log(0.5*2*M), log(1.5*2*M) 

BMSY/B0,post Uniform  0.1, 0.9 

 

 

Table 6-24.  CSSRA results for Jackass Morwong.  CSSRA 1 used B2009 from stock assessment and CSSRA 2 

used B2009 from cross-sampling. 

Parameter 
Stock 
assessment  

CSSRA 1  

  

CSSRA 2 

 2.5% median 97.5% 

 

2.5% median 97.5% 

B0,post 30128 17086 27168 33103 

 

16647 20215 32500 

rpost 0.24 0.17 0.24 0.41 

 

0.19 0.37 0.41 

n 2 0.17 1.68 26.05 

 

0.15 0.76 9.21 

MSY (hybrid) 

 

1410 1576 1713 

 

1454 1685 1853 

MSY (Shaefer) 1482 1413 1636 1988 

 

1458 1756 2079 

B2009/B0,post 0.35 0.28 0.40 0.70 

 

0.36 0.70 0.87 
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Figure 6-54.  Retained simulations of Jackass Morwong biomass trajectories from 1915 to 2009.  The median 

trajectory is compared with the summary biomass from the full stock assessment.  The CSSRA method 

assumes that the biomass in 2009 is known, and is the same as that from the full stock assessment.   
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Figure 6-55.  Relative bias of key parameters from CSSRA for Jackass Morwong using B2009 from stock 

assessment.  The posterior MSY is based on the hybrid Graham-Shaefer and Pella-Tomlinson-Fletcher 

models.  
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Figure 6-56.  Retained simulations of Jackass Morwong biomass trajectories from 1915 to 2009.  The median 

trajectory is compared with summary biomass from full stock assessment.  The CSSRA method assumes that 

the biomass in 2009 is known, which is derived from cross-sampling method with fish density and 

distribution area.   
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Figure 6-57.  Relative bias of key parameters from CSSRA for Jackass Morwong using B2009 = 12,744 t derived 

from cross-sampling method, with fish density and distribution area.  The posterior MSY is based on the 

hybrid Graham-Shaefer and Pella-Tomlinson-Fletcher models and. 

 

 

 

 



RESULTS: BIOLOGICAL ANALYSES 

179 

 

 

Figure 6-58.  Morwong biomass dynamics model based on “true biomass” from full stock assessment.  The 

circles with line are “true catch”.  

 

6.6.4 DISCUSSION 

In this chapter, we describe the deterministic method (chase-catch, CC) and the conditional 

stochastic stock reduction analysis (CSSRA) to derive biomass-based reference points including MSY.  

The primary data required are complete catch history and an estimate of recent biomass.  They can 

be considered as methods for data-poor or data-limited situations because they do not need 

information about age composition, fish effort, catch rate, fishery-independent survey, sex 

composition, individual growth, reproduction patterns, etc.  We conducted extensive simulations to 

evaluate the sensitivity and performance of these methods, and applied them to real stocks and 

compared with results from other methods.  
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The results show that the CC method can estimate the virgin biomass, and hence other biological 

reference points, such as MSY, BMSY, FMSY, etc., if the assumptions can be satisfied: accurate catch 

history, known natural mortality rate and its relationship with FMSY, and known biomass, or fishing 

mortality rate, or depletion status in one recent year.  Although biases in these assumed parameters 

(i.e., By, M, and FMSY ~ M relationship) will cause bias in estimated B0 and the resulting BRP, the 

relative errors are generally smaller than the errors in the input predictors.  Importantly, the 

estimate of MSY is more stable than the bias in r and B0 due to these biases acting in the opposite 

direction.  This is perhaps why previous studies have focused on estimating MSY alone (e.g., Martell 

and Froese 2012).  

Several recent papers studied stochastic stock reduction analysis (Walters et al. 2006, Dick and 

MacCall 2011, Wetzel and Punt 2011, Martell and Froese 2012).  In this study we have attempted to 

improve the method and have carried out systematic simulations to evaluate performance and 

sensitivity of the method.  

Our results (unsurprisingly) reveal that an increase in prior variability results in high variance in the 

posterior for retained key parameters.  Besides, this change also causes bias to some extent in 

addition to imprecision when the prior has a skewed distribution.  Bias in priors, including assumed 

virgin biomass B0, population growth rate r, and biomass in recent year By, results in corresponding 

bias in the posterior for key parameters.  Yet, all the resulting biases are smaller than the bias in the 

input parameters and are typically within the range of 0.5 times the true value.  Such a level of bias 

may be tolerable for data poor species.  Bias for the estimated MSY appears to be smaller than that 

for the virgin biomass and population growth rate.  

The results also reflect uncertainty about the type of priors, their distributions and parameter 

values, as all these affect the posterior estimates to some degree.  Is there a better approach free of 

more or less arbitrary determined priors?  This question is explored in the next chapter.   
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6.7 Application of Posterior-focused Catch-BRP to Australian 

stocks 

6.7.1 TIGER FLATHEAD (NEOPLATYCEPHALUS RICHARDSONI) 

The data used are the same as in the CSSRA section.  That is, catch history comes from the full stock 

assessment, and the biomass in 2009 is assumed known, and is the same as in the full stock 

assessment.  These are the only information needed for the catch-BRP method and natural mortality 

as well as its relationship with FMSY is not required.  The priors for r and K are uniform and large: r ~ 

dunif(0, 10), and K ~ dunif[max(C), 800,000].  We assumed some values here (i.e., 10, max(C), and 

800,000) simply for the purpose of reducing the computation time because values outside the range 

will certainly not be retained.  This means that the priors are essentially free of statistical distribution 

constraints.  Any iterations that results in Bt < K, Bt > Ct, and |(By – B2009)/B2009| < 0.2 are retained.   

Simulations did not retain extremely large values for r and K.  For the retained iterations, it is 

apparent that K > exp(12) is unlikely (Figure 6-59 and Figure 6-62).  The log-log plot in panel C is not 

ideal.  However, the results from such a wide range of priors are not far from full stock assessment, 

and in particular, the relative bias of MSY is less than 5%.   

The results are improved after the data at the two ends of panel B and C in Figure 6-59 are excluded 

using the mid-point approach (Figure 6-60).  The posterior key parameters are similar to those 

estimated in the full stock assessment (Table 6-25, Figure 6-61). 

 

Table 6-25. Catch-BRP results for Tiger Flathead and compared to other methods.  B2009 from stock 

assessment is assumed. 

Parameter 
Stock 
assessment 

CSSRA 1 

 

Catch-BRP 

2.5% median 97.5% 

 

2.5% median 97.5% 

B0,post 43159 29421 37921 52429 

 

42382 48130 55422 

rpost 0.24 0.23 0.39 0.55 

 

0.18 0.23 0.26 

n 2 0.18 1.56 15.97 

    MSY (Hybrid) 

 

2734 3537 4682 

    MSY (Shaefer) 2564 2763 3686 5081 

 

2501 2711 3011 

B2009/B0,post 0.534 0.39 0.58 0.73 

 

0.38 0.49 0.57 
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Figure 6-59.  Result of Tiger Flathead using all retaining iterations from priors r ~ dunif(0, 10), and K ~ 

dunif(0, 800,000).   
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Figure 6-60.  Results of Tiger Flathead after removing data at the ends of the r ~ K curves using mid-point 

method.  The red circle is where standardized distance to the origin is minimum.  
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Figure 6-61.  Catch-BRP result of Tiger Flathead biomass trajectories from 1915 to 2009.  The median 

trajectory is compared with summary biomass from full stock assessment, where the biomass in 2009 is 

assumed same. 

 

6.7.2 JACKASS MORWONG 

Only two types of input data were used: the catch history and assumed biomass at the end of the 

time series, where we used the same values from the full stock assessment so the results can be 

compared.  Natural mortality, growth rate, the scale parameter between FMSY and M, etc., are not 

needed.  The priors for r and K are sufficiently large to encompass all possible values: r ~ dunif(0, 3), 

and K ~ dunif[max(C), 70,000].  Any iterations that result in Bt < K, Bt > Ct, and |(By – B2009)/B2009| < 

0.2 are retained.   
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Apparently, it is unlikely that r > 0.7 and K > exp(11.0) (Figure 6-62).  The log-log plot in panel C is not 

ideal.  However and surprisingly, the result from such a wide range of priors are not far from full 

stock assessment, and in particular, the biases of K, MSY, and depletion B2009/K were less than 5%.   

 

 

Figure 6-62.  Result of Jackass Morwong using all retaining iterations from priors r ~ dunif(0, 3), and K ~ 

dunif(max(C), 70,000).   

 

We may refine the retained iterations by gradually removing the data points at the two ends of 

panels B and C in Figure 6-62 until a sufficiently good linear regression line is obtained (Figure 6-63).  

Using the mid-point method and comparing to the full stock assessment result, this refinement does 
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not improve much over Figure 6-62, except for MSY and r (Table 6-26).  The relative biases for K, r, 

MSY, and depletion are -0.12, -0.08, -0.01, and 0.18, respectively.  Overestimation of B2009/K is due to 

an underestimation of K (Figure 6-64). 

 

 

Figure 6-63.  Results of Jackass Morwong after removing data at the ends of the r ~ K curves.  The red circle 

is where the standardized distance to the origin is at the minimum.  
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Table 6-26.  Catch-BRP results for Jackass Morwong and compared with other methods.  B2009 from stock 

assessment is assumed.   

Parameter 
Stock 
assessment  

CSSRA 1  

 

Catch-BRP 

2.5% median 97.5% 

 

2.5% median 97.5% 

B0,post 30128 17086 27168 33103 

 

21992 26577 29689 

rpost 0.24 0.17 0.24 0.41 

 

0.19 0.22 0.28 

n 2 0.17 1.68 26.05 

    MSY (hybrid) 

 

1410 1576 1713 

    MSY (Shaefer) 1482 1413 1636 1988 

 

1424 1472 1535 

B2009/B0,post 0.35 0.28 0.40 0.70 

 

0.33 0.41 0.49 

 

 

Figure 6-64.  Retained simulations of Jackass Morwong biomass trajectories from 1915 to 2009.  The median 

trajectory is compared with summary biomass from full stock assessment.   
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6.7.3 JOHN DORY 

The catch history was provided by N. Klaer (CSIRO), and includes discards.  We used the biomass in 

2009 from cross-sampling method and area expansion because it was not available from other 

sources.    The priors for r and K are very large: r ~ dunif(0, 3), and K ~ dunif[max(C), 60,000].  Any 

iterations that results in Bt < K, Bt > Ct, and |(By – B2009)/B2009| < 0.2 are retained.   

Simulations did not retain r greater than about 2 and K greater than about 7,000 (Figure 6-65).  For 

the retained iterations, it is apparent that values of log(K) smaller than 7.9 and greater than 8.5 are 

unlikely (Figure 6-62).  After excluding the data at the two ends of the curves and using the mid-

point method, we obtained improved results (Figure 6-66, Table 6-27).  The posterior key 

parameters are slightly larger than those derived from fitting a biomass dynamics model to catch 

rate data (result provided by N. Klaer). 

 

Figure 6-65.  Result of John Dory using all retaining iterations from priors r ~ dunif(0, 3), and K ~ 

dunif(max(C), 70,000).  
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Table 6-27. Catch-BRP results for John Dory and comparison with fitting biomass dynamics model to catch 

rate data.   B2009 from stock assessment is assumed. 

Parameter Biomass dynamics model 

Catch-BRP 

2.5% median 97.5% 

B0,post 3022 2881 3300 3724 

rpost 0.205 0.17 0.21 0.24 

MSY (Shaefer) 155 148 172 193 

B2009/B0,post 0.47 0.47 0.58 0.67 

 

 

Figure 6-66.  Results of John Dory after removing data at the ends of the r ~ K curves.  The red circle is the 

where standardized distance to the origin is minimum.  
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Figure 6-67.  Retained simulations of John Dory biomass trajectories from 1986 to 2010.   

 

6.7.4 EASTERN GEMFISH 

  We used catch data and B2009 from the full stock assessment (Tuck 2011) for illustration, because 

biomass estimated from cross-sampling method and area expansion includes both Eastern and 

Western stocks.  The priors for r and K are very large: r ~ dunif(0, 5), and K ~ dunif[max(C), 

max(C)*100].  Any iterations that result in Bt < K, Bt > Ct, and |(By – B2009)/B2009| < 0.2 are retained.   

Interestingly, very few simulations were retained from 10,000 random iterations.  Figure 6-68 

compared all retained iterations with the result from fitting a Shaefer production model to the catch 

rate data (result provided by N. Klaer).  
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Since it is unlikely that log(K) > 11.0, we obtained improved results after excluding these extreme 

data points and using the mid-point method (Figure 6-66, Table 6-27).  However, very few data 

remained for inference.  One reason for this is that the initial biomass in year 1968 may be much 

smaller than the carrying capacity K (Figure 6-70).  The biomass dynamics model used in the Catch-

BRP method cannot accept biomass in any year larger than K.   

 

Table 6-28.  Catch-BRP results for Eastern Gemfish and comparison with fitting biomass dynamics model to 

catch rates.   B2009 from stock assessment of 4177 t is assumed. 

Parameter Biomass dynamics model 

Catch-BRP 

2.5% median 97.5% 

B0,est 3700 47092 51526 51696 

rest 0.208 0.19 0.19 0.23 

MSY (Shaefer) 1925 2419 2430 2714 

B2009/B0 0.11 0.09 0.09 0.10 
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Figure 6-68.  Result of Eastern Gemfish using all retaining iterations from priors r ~ dunif(0, 5), and K ~ 

dunif[max(C), max(C)*100].  
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Figure 6-69.  Results of Eastern Gemfish after removing data at the ends of the r ~ K curves.  The red circle is 

the where standardized distance to the origin is at a minimum. 
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Figure 6-70.  Retained simulations of Eastern Gemfish biomass trajectories from 1966 to 2009.  

 

6.7.5 DISCUSSION 

The method described in this section (referred to as Posterior-focused Catch-BRP for convenience) 

demonstrates a promising way to further improve CSSRA.  The central advantage is the avoidance of 

choosing priors and the priors’ impact on the posteriors.  The main challenge is to accurately 

determine the viable range in the r-k curves, even though the results are robust to some extent to 

the variation of the range chosen.  However, determining the viable range in the posterior r-k curve 

is less troublesome than choosing the priors.  We use visual identification and find mid-point 

methods, but it would be possible to develop a more rigorous mathematical or statistical method for 

such purpose.   



RESULTS: BIOLOGICAL ANALYSES 

195 

 

As we described above, the log(r) ~ log(K) plot forms a straight line.  When the population is at 

equilibrium, the slope of the line is -1.  The degree of departure from -1 may be used as a quantity to 

signal the rate of biomass changes over the timeframe of the catch history being used for analysis.  

Combined with the length of the history, it may be another measure of stock depletion.  This could 

be an interesting topic for further research. 

The methods described in the report, including CC, CSSRA, and Catch-BRP, require a complete and 

accurate catch history.  If data in early years are missing or unreliable, or significant discards are not 

included, obviously the results will be affected.   Furthermore, if the catch is very small compared to 

the stock size, there may not be sufficient signal to detect the reduction so the methods cannot be 

applied.  We tried to apply the methods to Ruby Snapper in the Western Deepwater Trawl Fishery 

without success because the catch recorded in the logbook did not include data for Western 

Australia and was sporadic and very low.  
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6.8 SRA MSE testing results 

One hundred 30-year simulations were conducted for each scenario, with differences between 

simulations due to observation error in the generated data, and process error in the population 

dynamics (future recruitment deviations). Summary statistics were combined over all simulations to 

provide a set of performance measures for assessing scenarios. In the figures showing the future 

trajectories of relative biomass and catch (Figures 7-71 to 7-74), the RBC shown in the middle right-

hand plot is that calculated by the SRA assessment. The TAC  shown in the bottom left plot can differ 

from the RBC by the subtraction of expected discards, and by the constraints that the TAC cannot 

change more than 50% from year to year, and remains the same if the change from one year to the 

next is less than 10%. The catch shown in the bottom right plot can differ from the TAC if the TAC is 

greater than the remaining vulnerable biomass. 

For all scenarios, the SRA assessment is not performed for the first two years of the simulation, and 

instead the TAC from the final historic year is used as the RBC. This is because, in order to simulate 

what happens in practice, the RBC for each year is calculated from data ‘collected’ two years 

previously. Thus, as the historic data input to the simulations ends in 2008, the first two assessments 

determine the RBC in 2009 and 2010, using data from 2007 and 2008, respectively.  As the SRA is 

fitting to recruited biomass in 2009, this cannot be used until 2011.  

For the flathead below-target scenario (Figure 7-71), where the 2009 estimated recruited biomass 

used in the SRA was considerably higher (232%) than the true value (Table 6-8), the SRA 

overestimates stock status and current biomass. Thus the catch is set too high, and the stock 

remains at a low level. The RBC is slightly different each year, but as it is less than 10% different from 

the previous year’s TAC , the TAC remains unchanged until the RBC does become greater than 10% 

higher than the previous year’s TAC at around year 2024. At this point the TAC increases, causing the 

step in the future catch trajectory, and depleting the stock further.  In some simulations towards the 

end of the projection, the TAC can no longer be taken, and the actual catch is much less than the 

TAC. 

As the estimated 2009 recruited biomass used in the SRA is closer to the true value for the above-

target scenario (Table 6-8), the final relative biomass level is correspondingly closer to the target 

relative biomass for this scenario (Figure 7-72). 
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Figure 6-71. The operating model trajectory of relative biomass and RBC, TAC and catch over time for the 

Flathead below-target scenario. The solid line is the median, and the dotted lines are the 2.5 and 97.5 

percentiles. The horizontal gray line indicates the biomass target (B48) and the vertical gray line indicates the 

start of future projections. The top two plots show both the historic and projected relative biomass and 

catch series, and the remaining plots show only the future projections.  
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Figure 6-72. The operating model trajectory of relative biomass and RBC, TAC and catch over time for the 

Flathead above-target scenario. The figure description is as for Figure 6-71. 
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Figure 6-73. The operating model trajectory of relative biomass and RBC, TAC and catch over time for the 

Morwong below-target scenario. The figure description is as for Figure 6-71. 
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Figure 6-74. The operating model trajectory of relative biomass and RBC, TAC and catch over time for the 

Morwong above-target scenario. The figure description is as for Figure 6-71. 
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Figure 6-75. Box plots of performance statistics for the four scenarios. The top plots show the average catch 

over the 30 year projection period (left), and in the first five years (right). The plots in the second row show 

the ‘true’ stock status in the final and fifth years of the projection. The gray horizontal line is the target stock 

status. The third row shows the catch variability (average percentage difference in catch from year to year) 

over the 30 year projection period (left), and in the first five years (right). The bottom left plot shows the 

minimum ‘true’ stock status (lowest SSB/SSB0 ratio in any year) over the projection period. The gray 

horizontal line is the limit stock status. The bottom right plot shows the probability of the ‘true’ stock status 

being below the 20% limit reference point during the projection. 

 

With the starting “true” biomass close to BLim while the estimated biomass was near the target, the 

Flathead below-target scenario does not meet the first risk criterion of the CHSP in the long-term, as 
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the median minimum relative biomass over the 30 year projection is slightly below the limit level 

(Figure 6-75, Minimum stock status), although the median probability of the true spawning biomass 

falling below the limit reference point is lower than 10% [Figure 6-75, P(B<B20)]. Only the above-

target scenario meets the target biomass criterion of the CHSP in the long-term (Figure 5, Final stock 

status).  

For the Morwong below-target scenario (Figure 6-73) the 2009 estimated recruited biomass used in 

the SRA is slightly higher (126%) than the true 2009 biomass (Table 5-8), so the SRA is able to return 

the stock to the target level even though the catch may have been set too high. In the Morwong 

above-target scenario, the starting “true” biomass was 4.3 times of the estimated biomass and catch 

was set too low. Consequently, biomass increases rapidly to about 80% B0 in 30 years.  However, this 

level of bias is much lower than the initial bias in the estimated biomass. 

Both of the Morwong scenarios meet the risk criteria of the CHSP, but only the below-target 

scenario meets the target biomass criterion (Figure 6-75). 

 

6.8.1 DISCUSSION 

SRA is a simple procedure that provide a means to estimate B0 and relevant biological reference 

points using catch history alone when catch at age or CPUE data are not available. As implemented 

here, the method contains no time-varying biological processes and cannot detect changing stock 

productivity over time. More sophisticated assessment methods have the ability to estimate, in 

particular, annual recruitment deviations. For standard SRA, a fixed stock-recruitment relationship is 

assumed, and all annual recruitments are assumed to be at average values using that relationship. 

This means that if the full catch history is known and time-invariant assumptions can be made about 

fishery selectivity and stock biological characteristics, the full biomass series is determined if the 

biomass or F in any year is also known (with an additional constraint on the maximum F allowed in 

any year). Extension of the SRA procedure for data-poor stocks simply says that if a recent F or 

biomass value is known or can be reasonably estimated, the full stock biomass series can also be 

determined using the catch history. Probably the most significant assumption that makes this 

possible is that recruitment deviations from the average relationship are zero. On the other hand, 

for the purpose of obtaining B0, an accurate full stock biomass series is not essential.   
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Clearly the estimate of absolute stock biomass or F in recent times will affect the result, and 

essentially scale the entire biomass series. That estimate effectively provides the answer for how 

depleted the stock is, compared to the unfished level, and whether overfishing is currently 

occurring.  It follows then, that the behaviour of the CCSRA method and HCR combination to 

determine RBC values should critically depend on how well the recent biomass/F estimate matches 

that of the true population. The SRA method tested here does lead to the required biomass target if 

the initial biomass guess is close to the true value. If the initial guess is greater than the true value, 

the stock stabilises below the target, and vice versa.



BENEFITS 

204 

 

7 Benefits 

Several novel methods have been developed in this project, using both biological analysis for limit 

reference points and economic analysis for target reference points.  These methods are generic in 

nature.  Hence they can be applied to any fisheries that have similar limited data.  The immediate 

sectors to benefit will be the Commonwealth managed fisheries that use the Harvest Strategy Policy.  

Applying the methods developed in this project, reference points and associated indicators can be 

quantified for a range of stocks where this was not considered feasible at the beginning of the 

project.  The outcomes will be valuable to fishery managers, including AFMA and its MACs and RAGs, 

who are required to develop harvest strategies.  The State and recreational fisheries can also benefit 

from this project should they adopt the methodology.   

The success of the project and the development of effective reference points and associated 

measures in data poor fisheries will lead to improved profits for the fishing industry.  This will be due 

to a combination of increased productivity leading to lower costs, improved management practices, 

and increases in efficiency.  The associated higher stocks will lead to enhanced resource 

sustainability, be more resilient to environmental fluctuations and have potentially lower variability 

in annual catches. 

This project has achieved more than we expected in the original proposal.  For example, in the 

beginning of the project we were not sure if it was possible to develop reference points and 

associated performance measures by using catch only data, which are commonly available for many 

fisheries.  Here we have developed the innovative cross-sampling method that can estimate fishing 

gear efficiency, abundance, fishing mortality, as well as true biological reference points (rather than 

proxies), including BMSY, BLIM, MSY, depletion level, etc.  

In the economic component, we have estimated costs structures in data-limited fisheries and 

derived “rules of thumb” that link fishery characteristics to ratios of BMEY to BMSY.  The method 

enables reasonable estimates of most cost components to be made given information on the vessel 

sizes, fishing gears, fishing effort, and the type of management.  Based on knowledge of these 

variables, it is possible to estimate the likely ratio of EMEY to EMSY for a particular fishery.  
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8 Further Development  

In this report, we apply new methods to several selected species, mainly to test their performance 

and as case studies.  Most of the methods are ready to be applied to other fisheries and stocks.  We 

recommend that relevant fishery managers (AFMA and its RAGs and MACs.) critically review these 

approaches and assess whether they could be adopted in the annual management process.  Besides 

the utility for data-poor and data-limited situations, the methods can also be used as a comparison 

for stocks that have been assessed by other more data intensive methods.   

Some methods will benefit from further fine tuning and development.  For example, in the cross-

sampling method, gear affected area can be more rigorously defined and tested for non-sweeping 

gear types such as line and hook, trap, and gillnet.  When estimating biomass using catch data, an 

improved species distribution map and the relationship between abundance and grid cell size will 

increase the accuracy of the method.  Computing limitation in fitting GAM model can be solved by 

using alterative operating system or different software.  More rigorous techniques can be developed 

to determine the optimal scope of the posterior key parameters in the Posterior-focused Catch-BRP 

method.  Hence research in these areas will be valuable for data poor species assessment.  

The relationship between EMEY and EMSY (and BMEY and BMSY) has been developed primarily for single 

species fisheries, although the results appeared relevant for key species in multispecies fisheries 

(based on comparison with bioeconomic modelling results for several fisheries). For many minor 

species, the ratio is likely to depend on other factors, such as the contribution of the species to the 

overall revenue. Work is being undertaken in a separate project (FRDC project 2011/200) to progress 

this work in a multispecies framework with particular focus on the byproduct species.  

 Clearly, the project outputs have management application for many data-poor fisheries.  The 

outputs from this project will guide fishery management agencies in their development of policies 

and management rules. The final report will be made available to the relevant management 

agencies and industry, and findings will be communicated to various stakeholders further through 

seminars, meetings, publications and conferences. The methods developed in the report, with 

endowment from relevant management bodies, can be readily applied to similar fisheries and 

species.  
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The large proportion of the data used in the project comes from existing database, such as AFMA 

logbook, Bioregional mapping, fishbase, and published literature. The economic analysis uses some 

confidential data, which are maintained by ABARES and will continue to be maintained by the same 

agency.  Hence, there is no data storage, maintenance, or security issue after the completion of the 

project. 
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9 Planned outcomes 

The planned outcomes in the project application were:  

The project will develop improved proxy measures for maximum economic yield for fisheries where 

reasonable stock information is available but economic information is limited.  Further, the planned 

outputs will include methods that identify biological, economic or fishery related indicators that 

correlate with target or limit reference points for selected representative data-poor stocks.  

Standard options will be developed to cope with data poor situations where there are either 

unreliable or no catch rate data, and where there are no reliable fisheries data.  Minimum data 

requirements for the estimation of limit and reference points will be identified. 

The economic component has developed improved proxy measures that provide greater options 

than jus the default 1.2BMSY. The results suggest that for many fisheries, it is likely that an 

appropriate target reference point would be higher than this (in the range 1.3 to 1.4 BMSY). This work 

will have direct implications for the review of the Commonwealth Harvest Strategy that is currently 

underway. The results of the cost modelling also have implications for setting target reference points 

in data-rich fisheries where bioeconomic models are available. The results of the analysis relating to 

depreciation rates was adopted relatively early in the Northern Prawn Fishery modelling work, and 

has been used in the last two years’ assessments. There has been considerable interest in the results 

from overseas agencies who have been confronted by similar issues.14 

In the biological component, we have developed both F-based and B-based reference points for data 

poor fisheries, as well as their associated indicators.  These measures can be considered as actual 

quantities derived from alternative and novel approaches, rather than proxies that may have 

different meaning from traditional stock assessment.  Therefore, they can be easily understood by 

fishery biologists, managers, and the industry.  In the current Commonwealth TIER management 

system, catch rate data are necessary for the lowest TIER 4 approach.  Our methods only require 

catch data, which means they can be applied to fisheries where catch rate data are not available or 

reliable.  For the F-based reference points, our approach only requires limited life-history 

                                                           

14 A paper on the methods and results was presented at an international conference in July 2012, and several requests for copies of the 
paper have already been received. 
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parameters, particularly the natural mortality rate.  Hence, it can be applied to fisheries where 

reliable fisheries data are not available.  

Some of the outcomes from the project have been published in scientific journals. Additional papers 

will be prepared for publication after the completion of the project.  We have presented and will 

continue to present the result in national and international conferences.  In addition to a final 

report, we intend to provide the results and outcomes to relevant fishery managers and industries in 

other forms, such as seminars and meetings.  
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10 Conclusion 

This project aimed to: (1) identify biological reference points with associated performance measures 

and proxies for data-poor fisheries, and to test harvest strategies and quantitatively define limit and 

/ or target reference points in line with the requirements of the Commonwealth Harvest Strategy 

Policy.  (2) Identify cost-effective methods of incorporating economic indicators into biological 

reference points that could be determined. (3) Develop case studies that demonstrate how these 

methods could be implemented in other Australian fisheries.  

The project has successfully identified methods to determine and use biological reference points 

(BRP) with associated performance measures for data-poor fisheries.  To facilitate the 

understanding, acceptance, and implementation in management, we have devoted our effort to 

identifying the reference points and associated performance measures specified in the 

Commonwealth Fisheries Harvest Strategy: BTARG ≥ BMEY; BLIM ≥ 0.5 BMSY; and FLIM ≤ FMSY.  Another 

advantage of using these reference points (rather than identifying new and uncommon proxies) is to 

reduce the need of further testing of their performance in harvest strategy and management. 

However the level of uncertainty in some of these reference points may require further analysis. 

For fishing mortality-based reference points, we have derived FMSY (as well as Fproxy, F0.5r) through a 

meta-analysis on 245 fish species worldwide and linked FBRP to M and other life-history parameters 

(LHP).  We used Bayesian hierarchical errors-in-variables models to investigate the relationships and 

included the effect of taxonomic class and order.  We compared various models and found that 

natural mortality is the most important LHP affecting FBRP.  Other covariates, such as von Bertalanffy 

growth coefficient, asymptotic length, maximum age, and habitat types add little to the relationship, 

partially due to correlation and large measurement and process errors.  The best model results in 

FMSY = 0.87 M (SD 0.05) for teleosts and FMSY = 0.41 M (SD 0.09) for chondrichthyans.   

For biomass-based and catch-based reference points, we developed and applied the cross-sampling 

method to estimate biomass from catch data alone.  From estimated annual biomass, fishing 

mortality rate can be readily obtained.  Further, the estimated biomass can be fed into chase-catch 

(CC) and conditional stochastic stock reduction analysis (CSSRA) to derive various BRPs, including B0, 

MSY, BMSY, BLIM, FMSY, and depletion status.   
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Finally, the CSSRA method is improved by Posterior-focused Catch-BRP where the difficulties in 

choosing priors on key inputs are avoided.  The success of this project enables us to estimate BRP 

and associated measures from limited data: catch history and a few life-history parameters.  In this 

sense, the project has exceeded its original objectives.  

For high value fisheries, bioeconomic analysis with “real” data is still preferred for assessing target 

reference points, but for many fisheries with a relatively low overall value, the cost of specific 

economic data collection and full bioeconomic model development may outweigh the benefits of 

the improved information. In such cases, the approach developed in this report provides a good 

alternative to establish economic reference points. The econometric methods applied to estimate 

cost structures for different fleet types could also be repeated in the future, as the economic 

information that is collected for higher value fisheries is updated, leading to revised economic 

targets. 

 

 



REFERENCES 

211 

 

11 References 

ABARES. 2010a. Australian Commodity Statistics 2010. Canberra: ABARES. p. 233. 

ABARES. 2010b. Australian Fisheries Statistics 2009. Canberra: ABARES. 

Armstrong, C. W., and Sumaila, U. R. 2001. Optimal Allocation of TAC and the Implications of 

Implementing an ITQ Management System for the North-east Artic Cod. Land Economics, 77: 350-

359. 

Arnason, R. 1990. Minimum Information Management in Fisheries. Canadian Journal of Economics, 

23: 630-653. 

Arreguin-Sanchez, F. 1996. Catchability: a key parameter for fish stock assessment. Reviews in Fish 

Biology and Fisheries 6: 221-242. 

Asche, F., Eggert, H., Gudmundsson, E., Hoff, A., and Pascoe, S. 2008b. Fisher's behaviour with 

individual vessel quotas - Over-capacity and potential rent: Five case studies. Marine Policy, 32: 920-

927. 

Bentley, N., and Stokes, K. 2009a. Contrasting Paradigms for Fisheries Management Decision 

Making: How Well Do They Serve Data-Poor Fisheries? Marine and Coastal Fisheries 1: 391-401. 

Bentley, N., and Stokes, K. 2009b. Moving Fisheries from Data-Poor to Data-Sufficient: Evaluating the 

Costs of Management versus the Benefits of Management. Marine and Coastal Fisheries: Dynamics, 

Management, and Ecosystem Science 1: 378-390. 

Boncoeur, J., Coglan, L., Gallic, B. L., and Pascoe, S. 2000. On the relevance of rates of return 

measures of economic performance to small boats. Fisheries Research 49: 105-115. 

Borgström, R., Plahte, E. 1992. Gillnet selectivity and a model for capture probabilities for a stunted 

brown trout (Salmo trutta) population. Canadian Journal of Fisheries and Aquatic Sciences 49: 1546–

1554. 

Brandt, S. and Ding, N. 2008. Impact of property rights on labor contracts in commercial fisheries. 

Ocean & Coastal Management 51: 740-748. 



REFERENCES 

212 

 

Bromley, D. W. 2009. Abdicating responsibility: the Deceits of Fisheries policy. Fisheries 34: 280-291. 

Caddy, J. F. 2004. Current usage of fisheries indicators and reference points, and their potential 

application to management of fisheries for marine invertebrates. Canadian Journal of Fisheries and 

Aquatic Sciences 61: 1307-1324. 

Caddy, J. F., and Mahon, R. 1995. Reference points for fisheries management. 83 pp. 

Caddy, J.F. 1995. Mahon R. Reference points for fisheries management.  FAO Fisheries Technical 

Paper 347. Rome: FAO. p. 83. 

Caddy, J.F. 2004. Current usage of fisheries indicators and reference points, and their potential 

application to management of fisheries for marine invertebrates. Canadian Journal of Fisheries and 

Aquatic Sciences 61: 1307-24. 

Cadrin, S.X. and M.A. Pastoors. 2008. Precautionary harvest policies and the uncertainty paradox. 

Fisheries Research 94: 367-372. 

Cappo, M., Speare, P. and D’eath, G.  2004.  Comparison of baited remote underwater video stations 

(BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the 

Great Barrier Reef Marine Park.  Journal of Experimental Marine Biology and Ecology 302: 123-152. 

Caton, A., McLoughlin, K. 2000. Fisheries Status Reports 1999. Canberra: Bureau of Rural Sciences. 

Chae, D. R., and Pascoe, S. 2005. Use of simple bioeconomic models to estimate optimal effort levels 

in the Korean coastal flounder fisheries. Aquatic Living Resources 18: 93-101. 

Christensen, V. 2010. MEY = MSY. Fish and Fisheries 11: 105-110. 

Clark, C. W. 1973. The Economics of Overexploitation. Science 181: 630-634. 

Clark, C. W. 1990. Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 

John Wiley and Sons, USA. 

Clark, F, Brook, B.W., Delean, S. Akcakaya, H.R., Bradshaw, C.J.A. 2010. The theta-logistic is 

unreliable for modelling most census data. Methods in Ecology and Evolution 1: 253–262.  

Cope, J.M. and Punt, A.E. 2009. Length-based reference points for data-limited situations: 

Applications and restrictions. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem 

Science 1: 169-186. 



REFERENCES 

213 

 

Cortés, E. 1998. Demographic analysis as an aid in shark stock assessment and management. 

Fisheries Research 39: 199-208. 

DAFF (Australian Government Department of Agriculture, Fisheries and Forestry).  2007.  

Commonwealth Fisheries Harvest Strategy: policy and Guidelines, DAFF, Canberra. 55p. 

Dichmont, C.M., Deng, A.R., Punt, A.E., Venables, W. and M. Haddon. 2006. Management strategies 

for short-lived species: The case of Australia’s Northern Prawn Fishery 2: Choosing appropriate 

management strategies using input controls. Fisheries Research 82: 221-234. 

Dichmont, C. M., Deng, A., Punt, A. E., Ellis, N., Venables, W. N., Kompas, T., Ye, Y., et al. 2008. 

Beyond biological performance measures in management strategy evaluation: Bringing in economics 

and the effects of trawling on the benthos. Fisheries Research 94: 238-250. 

Dichmont, C. M., and Brown, I. W. 2010. A Case Study in Successful Management of a Data-Poor 

Fishery Using Simple Decision Rules: the Queensland Spanner Crab Fishery. Marine and Coastal 

Fisheries: Dynamics, Management, and Ecosystem Science: 1-13. 

Dichmont, C. M., Pascoe, S., Kompas, T., and Punt, A. E. 2010b. On implementing maximum 

economic yield in commercial fisheries. Proceedings of the National Academy of Science 107: 16-21. 

Dick, E.J., and MacCall, A.D. 2011. Depletion-Based Stock Reduction Analysis: A catch-based method 

for determining sustainable yields for data-poor fish stocks. Fisheries Research 110: 331-341. 

Dick, E.K. and A.D. MacCall. 2010. Estimates of sustainable yield for 50 data-poor stocks in the Pacific 

Coast Groundfish Fishery Management Plan. NOAA Technical Memorandum NMFS-SWFSC-460, 208p 

Dickson, W. 1993. Estimation of the capture efficiency of trawl gear. II: Testing a theoretical model. 

Fisheries Research 16: 255-272. 

Doole, G. J. 2005. Optimal Management of the New Zealand Longfin Eel (Anguilla dieffenbachia). 

Australian Journal of Agricultural and Resource Economics 49: 395-411. 

Dowling, N. A., Smith, D. C., Knuckey, I., Smith, A. D. M., Domaschenz, P., Patterson, H. M., and 

Whitelaw, W. 2008. Developing harvest strategies for low-value and data-poor fisheries: Case 

studies from three Australian fisheries. Fisheries Research 94: 380-390. 

Dupont, D. P. 1990. Rent dissipation in restricted access fisheries. Journal of Environmental 

Economics and Management 19: 26-44. 



REFERENCES 

214 

 

EconSearch. 2010a. Economic Indicators for the South Australian Lakes and Coorong Fishery 

2008/09.  Report prepared for Primary Industries and Resources South Australia. Marryatville: 

EconSearch. 

EconSearch. 2010b. Economic Indicators for the South Australian Abalone Fishery 2008/09.  Report 

prepared for Primary Industries and Resources South Australia. Marryatville: EconSearch. 

EconSearch. 2010c. Economic Indicators for the South Australian Blue Crab Fishery 2008/08.  Report 

prepared for Primary Industries and Resources South Australia. Marryatville: EconSearch. 

EconSearch. 2010d.Economic Indicators for the South Australian Marine Scalefish Fishery 2008/08.  

Report prepared for Primary Industries and Resources South Australia. Marryatville: EconSearch. 

Eggert, H., and Tveteras, R. 2007. Potential rent and overcapacity in the Swedish Baltic Sea trawl 

fishery for cod (Gadus morhua). ICES Journal of Marine Science 64: 439-445. 

Ellis, D. M. and DeMartini, E. E. 1995.  Evaluation of a video camera technique for indexing the 

abundances of juvenile pink snapper, Pristipomoides filamentosus, and other Hawaiian insular shelf 

fishes.  Fishery Bulletin 93: 67-77. 

FAO. 1996. Precautionary approach to fisheries. FAO Fisheries Technical Paper 350(2) Rome, FAO, 

210p. 

Fay, G., Punt, A.E., Smith, A.D.M. 2009. Operating model specifications. In: Wayte, S.E. (Ed.), 

Evaluation of New Harvest Strategies for SESSF Species. CSIRO Marine and Atmospheric Research, 

Hobart and Australian Fisheries Management Authority, Canberra, pp. 125–133. 

Felthoven, R. G., and Morrison Paul, C. J. 2004. Multi-output, nonfrontier primal measures of 

capacity and capacity utilization. American Journal of Agricultural Economics 86: 619-633. 

Fletcher, R.I. 1978. On the restructuring of the Pella–Tomlinson system. Fish. Bull. 76 (3), 515–521. 

Francis, R. I. C. C. 1992. Use of risk analysis to assess fishery management strategies: a case study 

using Orange Roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Canadian Journal 

of Fisheries and Aquatic Sciences 49, 922-930. 

Fulton, E. A., Smith, A. D. M., and Smith, D. C. 2007. Alternative Management Strategies for 

Southeast Australian Commonwealth Fisheries: Stage 2: Quantitative Management Strategy 



REFERENCES 

215 

 

Evaluation. Report to the Australian Fisheries Management Authority and the Fisheries Research and 

Development Corporation. 400 pp. 

Garcia, S., Sparre, P., and Csirke, J. 1989. Estimating surplus production and maximum sustainable 

yield from biomass data when catch and effort time series are not available. Fisheries Research, 8: 

13-23. 

Garcia, S.M. 1994. The precautionary principle: its implications in capture fisheries management. 

Ocean & Coastal Management 22: 99-125. 

George, D. Vieira, S. and New R., 2012, Australian fisheries surveys report 2011, results for 

selected fisheries 2008–09 to 2010–2011, Australian Bureau of Agricultural and Resource 

Economics and Sciences, Canberra, February. 

Gordon, H. S. 1954. The economic theory of a common-property resource: The fishery Journal of 

Political Economy 62: 124–142  

Grafton, R. Q., Kompas, T., and Hilborn, R. W. 2007. Economics of Overexploitation Revisited. 

Science 318: 1601. 

Grafton, R. Q., Kompas, T., Chu, L., and Che, N. 2010. Maximum economic yield. Australian Journal of 

Agricultural and Resource Economics 54: 273-280. 

Grafton, R.Q., Kompas, T., Hilborn, R.W. 2007. Economics of Overexploitation Revisited. Science 318: 

1601. 

Guyader, O., Daures, F., and Fifas, S. 2004. A bioeconomic analysis of the impact of decommissioning 

programs: application to a limited-entry French scallop fishery. Marine Resource Economics 19: 225-

242. 

Haddon, M. 2007. Tier 4 Analyses 1994 – 2006 pp 498 – 545 in Tuck, G.N.(ed) Stock Assessment for 

the Southern and Eastern Scalefish and Shark Fishery 2006 – 2007 Volume 2: 2007. Australian 

Fisheries Management Authority, Canberra, and CSIRO Marine and Atmospheric Research, Hobart. 

584p. 

Haddon, M. 2009. Tier 4 Analyses 1994 – 2007 pp 255-304 in Tuck, G.N.(ed) Stock Assessment for the 

Southern and Eastern Scalefish and Shark Fishery 2008 Volume 2. Australian Fisheries Management 

Authority, Canberra, and CSIRO Marine and Atmospheric Research, Hobart. 331p. 



REFERENCES 

216 

 

Haddon, M., Ziegler, P., Lyle, J. and P. Burch. 2005. Using a spatially structured model to assess the 

Tasmanian fishery for banded morwong (Cheilodactylus spectabilis) pp 737-756. In Assessment and 

Management of New and Developed Fisheries in Data-Limited Situations. Lowell Wakefield 

Symposia; Alaskan Sea-Grant Program. 948 p. 

Heap, A.D., Harris, P.T., Last, P., Lyne, V., Hinde, A., Woods, M. 2005. Draft Benthic Marine 

Bioregionalisation of Australia’s Exclusive Economic Zone. Geoscience Australia Report to the 

National Oceans Office. Geoscience Australia, Canberra. 

Hoff, A., and Frost, H. 2007. Optimal vessel quotas and capacity of a Danish trawler fleet segment: A 

dual approach. Marine Resource Economics 22: 1-14. 

Hoff, A., Andersen, J., Christensen, A., and Mosegaard, H. 2012. Modelling the economic 

consequences of Marine Protected Areas using the BEMCOM model. Journal of Bioeconomics: 1-19. 

Hulten, C. R., and Wykoff, F. C. 1996. Issues in the measurement of economic depreciation 

introductory remarks. Economic Inquiry 34: 10-23. 

Huppert, D. D., and Squires, D. 1987. Potential economic beneflts and optimum fleet size in the 

Pacific Coast trawl fleet. Marine Resource Economics 3: 297-318. 

Johannes, R. E. 1998. The case for data-less marine resource management: examples from tropical 

nearshore finfisheries. Trends in Ecology & Evolution 13: 243-246. 

Jorgenson, D. W. 1996. Empirical studies of depreciation. Economic Inquiry 34: 24-42. 

Kallayil, J.K., Jørgensen, T., Engas, A., Ferno, A.  2003.  Baiting gill nets—how is fish behaviour 

affected?  Fisheries Research 61: 125–133.  

Kar, T. K., and Chakraborty, K. 2011. A bioeconomic assessment of the Bangladesh shrimp fishery. 

World Journal of Modelling and Simulation 7: 58-69. 

Kelly, C. J., and Codling, E. A. 2006. `Cheap and dirty' fisheries science and management in the North 

Atlantic. Fisheries Research 79: 233-238. 

Kimura, D.K., and Tagart, J.V. 1982. Stock reduction analysis, another solution to the catch 

equations. Canadian Journal of Fisheries and Aquatic Sciences 39: 1467–1472. 



REFERENCES 

217 

 

Kimura, D.K., Balsiger, J.W., and Ito, D.H. 1984. Generalized stock reduction analysis. Can. J. Fish. 

Aquat. Sci. 41: 1325–1333. 

Klaer, N.L. 2006. Changes in the Structure of Demersal Fish Communities of the South East Australian 

Continental Shelf from 1915 to 1961. PhD Thesis, University of Canberra. 

Klaer, N.L., Wayte, S.E., and Fay, G. 2012. An evaluation of the performance of a harvest strategy 

that uses an average-length-based assessment method. Fisheries Research 134-136:42-51. 

Klaer, N., 2011. Tiger flathead (Neoplaycephalus richardsoni) stock assessment based on data up to 

2009. In: Tuck, G.N. (Ed.), Stock Assessment for the Southern and Eastern Scalefish and Shark 

Fishery: 2010, vol. 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric 

Research, Hobart, pp. 238–247. 

Kompas, T. 2005. Fisheries management: economic efficiency and the concept of 'maximum 

economic yield'. Australian Commodities 12: 152-160. 

Kompas, T., Dichmont, C. M., Punt, A. E., Deng, A., Che, T., Bishop, J., Gooday, P., et al. 2010a. 

Maximizing profits and conserving stocks in the Australian Northern Prawn Fishery. Australian 

Journal of Agricultural and Resource Economics, 54: 281-299. 

Kompas, T., Dichmont, C. M., Punt, A. E., Deng, A., Che, T. N., Bishop, J., Gooday, P., et al. 2010b. 

Maximizing profits and conserving stocks in the Australian Northern Prawn Fishery. Australian 

Journal of Agricultural and Resource Economics 54: 281-299. 

Kompas, T., Grafton, R. Q., and Che, T. N. 2010c. Bioeconomic losses from overharvesting tuna. 

Conservation Letters 3: 177-183. 

Kompas, T., Grafton, R. Q., Che, N., and Gooday, P. 2009. Development of methods and information 

to support the assessment of economic performance in Commonwealth fisheries. 

Little, R. and Rowling, K. 2011. Update of the Eastern Gemfish (Rexea solandri) stock assessment. In: 

Tuck, G.N. (Ed.), Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2010, 

vol. 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, 

Hobart, pp. 97–127. 

Little, L.R., Wayte, S.E., Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., 

Day, J. and M. Fuller. 2011. Development and evaluation of a cpue-based harvest control rule for the 



REFERENCES 

218 

 

southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science 68: 

1699-1705. 

Little, L.R., Wayte, S.E., Tuck, G.N., Thomson, R., Smith, A.D.M., Klaer, N., Punt, A.E. and M. Haddon.  

2009. Testing an alternative Tier 4 control rule and CPUE reference points for the SESSF. Pp 98-112 in 

Wayte, S.E. (ed) Evaluation of new harvest strategies for SESSF species. Australian Fisheries 

Management Authority, Canberra, and CSIRO Marine and Atmospheric Research, Hobart. 2006/815. 

137pp.  

Lleonart, J., Maynou, F., Recasens, L., and Franquesa, R. 2003. A bioeconomic model for 

Mediterranean fisheries, the hake off Catalonia (western Mediterranean) as a case study. Scientia 

Marina 67: 337-351. 

Løkkeborg, S., Bjordal, A., and Ferno, A. 1989.  Responses of cod (Gadus morhua) and haddock 

(Melanogrammus aeglefinus) to baited hooks in the natural environment.  Canadian Journal of 

Fisheries and Aquatic Sciences 46: 1478–1483. 

Løkkeborg, S., Olla, B.L., Pearson, W.H., and Davis, M.W. 1995.  Behavioural responses of sablefish, 

Anoplopoma fimbria, to bait odour. Journal of Fish Biology 46: 142–155. 

MacCall, A.D. 2009. Depletion-corrected average catch: a simple formula for estimating sustainable 

yields in data-poor situations. ICES Journal of Marine Science 66: 2267–2271. 

Mace, P.M.  1994. Relationships between Common Biological Reference Points Used as Thresholds 

and Targets of Fisheries Management Strategies. Canadian Journal of Fisheries and Aquatic Sciences 

51: 110-122. 

Martell, S., and Froese Rainer. 2012. A simple method for estimating MSY from catch andresilience. 

Fish and Fisheries. DOI: 10.1111/j.1467-2979.2012.00485.x 

Martinet, V., Thébaud, O., and Doyen, L. 2007. Defining viable recovery paths toward sustainable 

fisheries. Ecological Economics 64: 411-422. 

McAllister, M.K., Babcock, E.A., Pikitch, E.K., Prager, M.H., 2000. Application of a non-equilibrium 

generalized production model to South and North Atlantic swordfish: combining Bayesian and 

demographic methods for parameter estimation. Col. Vol. Sci. Pap. ICCAT 51: 1523–1550. 

McConnell, K. E., and Price, M. 2006. The lay system in commercial fisheries: Origin and implications. 

Journal of Environmental Economics and Management 51: 295-307. 



REFERENCES 

219 

 

Milton, D., S. Zhou, G. Fry, and Q. Dell. 2007. Risk assessment and mitigation for sea snakes caught in 

the Northern Prawn Fishery. Final Report on FRDC Project 2005/051. CSIRO Cleveland. pp. 130. 

Munro, G. R. 2010. From drain to gain in capture fishery rents: a synthesis study. ICES Document 

538. 49 pp. 

Norman-López, A., and Pascoe, S. 2011. Net economic effects of achieving maximum economic yield 

in fisheries. Marine Policy 35: 489–495. 

Olson, J. 2011. Understanding and contextualizing social impacts from the privatization of fisheries: 

An overview. Ocean & Coastal Management 54: 353-363. 

O'Neill, M. F., Campbell, A. B., Brown, I. W., and Johnstone, R. 2010. Using catch rate data for simple 

cost-effective quota setting in the Australian spanner crab (Ranina ranina) fishery. ICES Journal of 

Marine Science 67: 1538-1552. 

Pascoe, S., and Mardle, S. 2001. Optimal fleet size in the English Channel: a multi-objective 

programming approach. European Review of Agricultural Economics 28: 161-185. 

Pascoe, S., Vieira, S., Dichmont, C. M., and Punt, A. E. 2011. Optimal vessel size and output in the 

Australian northern prawn fishery: a restricted profit function approach. Australian Journal of 

Agricultural and Resource Economics 55: 107-125. 

Pascoe, S., Vieira, S., Dichmont, C.M., Punt, A.E. 2011. Optimal vessel size and output in the 

Australian northern prawn fishery: a restricted profit function approach. Australian Journal of 

Agricultural and Resource Economics 55: 107-25. 

Pauly, D. 1979. Theory and management of tropical multispecies stocks: A review, with emphasis on 

the Southeast Asian demersal fisheries. ICLARM Studies and Reviews No. 1, 35 p. International 

Centre for Living Aquatic Resources Management, Manila. 

Pelletier, D., Mahevas, S., Drouineau, H., Vermard, Y., Thebaud, O., Guyader, O., and Poussin, B. 

2009. Evaluation of the bioeconomic sustainability of multi-species multi-fleet fisheries under a wide 

range of policy options using ISIS-Fish. Ecological Modelling 220: 1013-1033. 

Perks, C., Vieira, S. 2010. Australian fisheries surveys report 2010. Results for selected fisheries, 

2007-08 and 2008-09. Preliminary estimates for 2009-10.  ABARES report prepared for the Fisheries 

Resources Research Fund. Canberra: ABARES. p. 67. 



REFERENCES 

220 

 

Pezzuto, P.R., Alvarez-Perez, J.A., and Wahrlich, R. 2008.  The use of the swept area method for 

assessing the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862) biomass and removal rates based 

on artisanal fishery derived data in southern Brazil: using depletion models to reduce uncertainty. 

Latin American Journal of Aquatic Research 36: 245-257. 

PIRSA. 2007. South Australian Fisheries Resources — Current Status and Recent Trends 2006.  South 

Australian Fisheries Management Series Paper number 49. Adelaide: Primary Industries and 

Resources South Australia. 

Pope, J.G., MacDonald, D.S., Daan, N., Reynolds, J.D. and Jennings, S. 2000. Gauging the impact of 

fishing mortality on non-target species. ICES Journal of Marine Science 57: 689–696. 

Prchalová, M, Kubecka, J., Ríha, M., Mrkvicka, T., Vasek, M., Juza, T., Kratochvíl, M., Peterk, J., 

Drastíka, V., and Krízek, J. 2009.  Size selectivity of standardized multimesh gillnets in sampling 

coarse European species.  Fisheries Research 96: 51–57. 

Punt, A. E., Deng, R. A., Dichmont, C. M., Kompas, T., Venables, W. N., Zhou, S., Pascoe, S., et al. 

2010. Integrating size-structured assessment and bioeconomic management advice in Australia's 

northern prawn fishery. ICES Journal of Marine Science 67: 1785-1801. 

Punt, A. E., Deng, R., Pascoe, S., Dichmont, C. M., Zhou, S., Plagányi, É. E., Hutton, T., et al. 2011. 

Calculating optimal effort and catch trajectories for multiple species modelled using a mix of size-

structured, delay-difference and biomass dynamics models. Fisheries Research 109: 201-211. 

Schaefer, M. B. 1954. Some aspects of the dynamics of populations important to the management of 

commercial marine fisheries. Bulletin of the Inter-American Tropical Tuna Commission 1: 25-56. 

Schaefer, M. B. 1957. A study of the dynamics of fishery for yellowfin tuna in the Eastern tropical 

Pacific Ocean. Bulletin of the Inter-American Tropical Tuna Commission 2: 247-285. 

Scott, A. 1955. The Fishery: The Objectives of Sole Ownership. The Journal of Political Economy, 63: 

116-124. 

Sigler, M.F.  2000. Abundance estimation and capture of sablefish (Anoplopoma fimbria) by longline 

gear.  Canadian Journal of Fisheries and Aquatic Science 57: 1270–1283. 

Smith, A.D.M., Smith, D.C., Tuck, G.N., Klaer, N., Punt, A.E., Knuckey, I., Prince, J., Morison, A., Kloser, 

R., Haddon, M., Wayte, S., Day, J., Fay, G., Pribac, F., Fuller, M., Taylor, B., and L.R. Little. 2008. 



REFERENCES 

221 

 

Experience in implementing harvest strategies in Australia's south-eastern fisheries. Fisheries 

Research 94: 373-379. 

Smith, D., Punt, A., Dowling, N., Smith, A., Tuck, G., and Knuckey, I. 2009. Reconciling Approaches to 

the Assessment and Management of Data-Poor Species and Fisheries with Australia's Harvest 

Strategy Policy. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science: 244-

254. 

Somerton, D., Ianelli, J., Walsh, S., Smith, S., Godø, O. R., and Ramm, D. 1999. Incorporating 

experimentally derived estimates of survey trawl efficiency into the stock assessment process: a 

discussion.  ICES Journal of Marine Science 56: 299–302. 

Szakiel, S., Che, N., Gooday, P., and Elliston, L. 2006. Measuring Capacity in Commonwealth Fisheries. 

ICES Document 06.1. 28 pp. 

Tingley, D., and Pascoe, S. 2005. Factors Affecting Capacity Utilisation in English Channel Fisheries. 

Journal of Agricultural Economics 56: 287-305. 

Tingley, D., Pascoe, S., and Mardle, S. 2003. Estimating capacity utilisation in multi-purpose, multi-

métier fisheries. Fisheries Research 63: 121-134. 

Townsend, R. E. 1985. On "Capital-stuffing" in Regulated Fisheries. Land Economics, 61: 195-197. 

Tuck, G.N. (ed.) 2011. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 

2010. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric 

Research, Hobart. 419 p.  

Ulrich, C., Andersen, B. S., Sparre, P. J., and Nielsen, J. R. 2007. TEMAS: fleet-based bio-economic 

simulation software to evaluate management strategies accounting for fleet behaviour. ICES Journal 

of Marine Science 64: 647-651. 

Ulrich, C., Pascoe, S., Sparre, P. J., De Wilde, J. W., and Marchal, P. 2002. Influence of trends in 

fishing power on bioeconomics in the North Sea flatfish fishery regulated by catches or by effort 

quotas. Canadian Journal of Fisheries and Aquatic Sciences 59: 829-843. 

Upston, J. and Klaer, N. 2011. Integrated Scientific Monitoring Program for the Southern and Eastern 

Scalefish and Shark Fishery – Discard estimation: 2010. CSIRO report to the Australian Fisheries 

Management Authority. 



REFERENCES 

222 

 

Vieira, S., Perks, C., Mazur, K., Curtotti, R., and Li, M. 2010. Impact of the structural adjustment 

package on the profitability of Commonwealth fisheries. ABARE research report 10.01, Canberra, 

February. 

Walters, C.J., Martell, S.J.D., Korman, J., 2006. A stochastic approach to stock reduction analysis. 

Canadian Journal of Fisheries and Aquatic Sciences 63: 212–223. 

Wayte, S.E. and Klaer, N.L. 2010. An effective harvest strategy using improved catch-curves. Fisheries 

Research 106: 310–320. 

Wayte, S., 2011. Jackass Morwong (Nemadactylus macropterus) stock assessment based on data up 

to 2009. In: Tuck, G.N. (Ed.), Stock Assessment for the Southern and Eastern Scalefish and Shark 

Fishery: 2010, vol. 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric 

Research, Hobart, pp. 135–187. 

Wetzel, C.R. and Punt, A.E. 2011. Model performance for the determination of appropriate harvest 

levels in the case of data-poor stocks. Fisheries Research 110: 342–355. 

Whitmarsh, D., James, C., Pickering, H., and Neiland, A. 2000. The profitability of marine commercial 

fisheries: a review of economic information needs with particular reference to the UK. Marine Policy 

24: 257-263. 

Wood, S.N. 2006. Generalized Additive Models: An Introduction with R. CRC/Chapman & Hall. 

Woodhams, J., Stobutzki, I., Vieira, S., Curtotti, R., and Begg, G.A. (eds).  2011.  Fishery Status Reports 

2010: status of fish stocks and fisheries managed by the Australian Government, ABARES, Canberra. 

World Bank and FAO. 2009. The Sunken Billions: the economic justification for fisheries reform. 104 

pp. 

Zhou, S., A.D.M. Smith, M. Fuller. 2011a. Quantitative ecological risk assessment for fishing effects 

on diverse data-poor non-target species in a multi-sector and multi-gear fishery. Fisheries Research 

112: 168-178. 

Zhou, S., A.E. Punt, R. Deng, M. Kienzle, and W. Rochester. 2011b. Bayesian fishable biomass 

dynamics models incorporating fished area and relative fish density. Canadian Journal of Fisheries 

and Aquatic Sciences 68: 1603-1614. 



REFERENCES 

223 

 

Zhou, S., D.J. Vance, C.M. Dichmont, C.Y. Burridge, and P.J. Toscas. 2008.  Estimating prawn 

abundance and catchability from catch-effort data: Comparison of fixed and random effects models 

using maximum likelihood and hierarchical Bayesian methods. Marine and Freshwater Research 59: 

1-9. 

Zhou, S., Yin, S., Thorson, J.T., Smith, A.D.M., Fuller, M. 2012. Linking fishing mortality reference 

points to life history traits: an empirical study. Canadian Journal of Fisheries and Aquatic Science 69: 

1292–1301. 

  



APPENDIX 1 

224 

 

12 Appendix 1: list of project team 

James Larcombe, ABARES 

Malcolm Haddon, CSRIRO Hobart 

Natalie Dowling, CSRIRO Hobart 

Neil Klaer, CSRIRO Hobart 

Olivier Thebaud, CSRIRO Brisbane 

Sean Pascoe, CSRIRO Brisbane 

Sally Wayte, CSIRO Hobart 

Shijie Zhou, CSRIRO Brisbane 

Simon Vieira, ABARES 

Tony Smith, CSRIRO Hobart 



APPENDIX 2 

225 

 

13 Appendix 2. The rejected catch-rate gradient 
method 

13.1  Model specification 

The full specification of the original Tier 4 HCR in the SESSF (Haddon, 2007) contains three 

components 1) the catch rates and their regression, 2) the calculation of average catches and 

discards, and 3) the calculation of the TAC from the catches and regression. 

In 2007, for the Tier 4 analyses, it was agreed that the best option was to conduct a linear regression 

on the standardized catch-rates, the yearly indices of which are the proportional differences in catch 

rate between years. To standardize the catch-rate data, the CPUE, conditioned on positive catches of 

the species of interest, was statistically modelled with a normal GLM on log-transformed CPUE data: 

    0 1 ,1 2 ,2

3

Ln
N

i i i j ij i

j

CPUE x x x    


      (0.1) 

where Ln(CPUEi) is the natural logarithm of the catch rate (usually kg/h, but sometimes kg/shot) for 

the i-th shot, xij are the values of the explanatory variables j for the i-th shot and the αj are the 

coefficients for the N factors j to be estimated ( is the intercept,  is the coefficient for the first 

factor, etc.). For the lognormal model the expected back-transformed year effect involves a bias-

correction to account for the log-normality; this then focuses on the mean of the distribution rather 

than the median: 

  
 2 2t t

tCPUE e
 

  (0.2) 

where γt is the Year coefficient for year t and σt is the standard deviation of the log transformed data 

(obtained from the analysis).  

The linear regression of catch-rates against year is simply: 

  .i iCPUE Intercept Gradient Year   (0.3) 

where i indexed the most recent four years. 
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 Ccur is the average total catch combined with any discards across the same four most recent years as 

the regression catch-rates.  

  

4

1

4

yr

yr

cur cur

C

C D


 


 (0.4) 

The estimated discards were changing rapidly at the time the harvest strategies were being 

introduced. The expected level of discards was estimated as a weighted average from the previous 

four years with earlier years being given less weight: 

   1 2 3 41.0 0.5 0.25 0.125 /1.875i i i i iD D D D D        (0.5) 

Because the CPUEi are proportional changes through time this has the additional advantage that the 

 in:  

  
 1 . curTAC Gradient C 

 (0.6) 

can be set at 1.0 for all species rather than having to have a specific value for each species. 

The age-structured operating model, described in Section 14.2, was used to examine the 

performance of the original Tier 4 HCR. First the characteristics of a simulated population were 

determined (Figure). The unfished stock had a constant catch applied for sufficient years so as to 

deplete it from unfished. In the example given this treatment depleted the simulated stock to about 

26.3% unfished spawning biomass levels. 

Following the initial depletion the simulated fishery was exposed to 35 years of constant catches at 

2,300 t, which is approximately the maximum sustainable yield. After that there followed a further 

35 years during which the HCR was applied to the fishery along with recruitment variability and 

variation applied to the estimated catch-rates (Figure).  
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Figure 14-1. Characterization of the properties of the unfished simulated fish population obtained 

from the operating model that was used to test the original Tier 4 HCR.  

 

Figure 14-2. The simulated fishery after 35 years of the Tier 4 HCR; 1000 iterations. In the top left 

graph the green lines are the inner 50% quantiles while the red lines are the inner 90% quantiles. In 

the bottom left graph the blue line is the SESSF target of 48%B0 and the green line is the depletion 

that gives rise to the MSY. 
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Figure 14-3. 1000 iterations of the simulated fishery after 35 years of the Tier 4 HCR with only 90-

100% of the TAC being taken each year (Figure). In the top left graph the green solid lines are the 

inner 50% quantiles while the red lines are the inner 90% quantiles. In the bottom left graph the blue 

line is the SESSF target of 48%B0 and the green dashed line is the depletion that gives rise to the 

MSY. 

 

The notion that this HCR tends to lead to a status quo appears justified. However, this assumes that 

the TAC is always taken exactly. In fact, in many years, the TAC is not taken in many species because 

the available quota is spread among numerous operators and each tends to retain some quota right 

to the end of the year to prevent them having problems reconciling their catches against their quota. 

It is often the case that between 100 and 90% of the TAC is taken (Figure). Because the original Tier 

4 HCR calculated the TAC based on actual catches such a failure to take the TAC, purely for 

operational reasons rather than availability, was expected to lead to a gradual ratchet down of the 

TAC (Figure). 

 



APPENDIX 2 

229 

 

Clearly the effect of the catch ratchet was detrimental to the fishery. While it certainly led to the 

stock becoming larger and catch rates rising, such a fall in catches would continue until only a tiny 

fishery remained. This HCR needed to be changed. 

 

 

Figure 14-4. The distribution of deviations from the TAC included in the simulations depicted in 

Figure. This is the complement of a truncated normal distribution with mean = 0.0, and standard 

deviation = 0.025. 

13.2 Operating model 

13.2.1 INITIATION OF AGE-STRUCTURED MODEL 

At equilibrium, in an un-exploited population, the age-structure is assumed to be the result of 

natural mortality acting alone upon constant average unfished levels of recruitment. This would be 

the stable age distribution, which in year 1 of the time series is defined as: 
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  (0.7) 

where Na,1 is the numbers of age a, in year 1, ax is the maximum age modelled (the plus-group), and 

M is the instantaneous rate of natural mortality. In a pre-exploitation population there is no fishing 

mortality. The final component of Eq. (0.7), where a = amax, is referred to as the plus group because it 

is the series which combines ages ax and all older ages that are not modelled explicitly. This requires 

the inclusion of the (1 – e-M) divisor to force the equation to be the sum of an exponential series. 
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13.2.2 DEFINING THE SPAWNING STOCK RECRUITMENT RELATIONSHIP 

The biomass A0 can be defined as the mature stock biomass that would develop given a constant 

recruitment level of one i.e. in Eq. (0.7), N0,1e
-M = 1. Thus, at a biomass of A0, distributed across a 

stable age distribution, the resulting average recruitment level would be R0 = 1.  A0 acts as a scaling 

factor in the recruitment equations by providing the link between R0 and B0  

   
x

0 ,1

1

a

a a a

a

A n m w


   (0.8) 

where mi is the proportion mature at age a, na,1 is the virgin number of animals per recruit of age a in 

year 1, and wa is the weight of an animal of age a. The average unfished recruitment level, R0, is 

directly related to the virgin mature, or recruited, biomass, B0 

  
0 0 0/R B A   (0.9) 

 By determining A0, from a constant recruitment level of one, the recruitment levels from 

realistic B0 levels can be obtained by applying Eq. (0.9). Once R0 has been determined the unfished 

number at age distribution can be obtained by substituting R0 into the first term of Eq. (0.7).The 

spawning stock – recruitment relationship can be described by the Beverton – Holt relationship: 

   
2 /2

1
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y S

y
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R e

b B

 

 


 (0.10) 

A re-parameterization of the Beverton-Holt parameters in terms of steepness, h, and B0 is possible: 

   
 0 04 1

            and             
5 1 5 1

hR B h
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h h


 

 
 (0.11) 

Using this re-parameterization the Beverton-Holt relationship can be used to determine the number 

of recruits produced in year y from the spawning biomass in year y-1: 
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 (0.12) 

The expected residual error distribution around the expected is log-normal; the 
2 / 2R is the log-

normal bias correction term. In the simulations, if the 
R term is set as a very small number the 

recruitment will be effectively deterministic. 
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13.2.3 STOCK DYNAMICS 

To describe the dynamics subsequent to population initiation (i.e. the generation of Na,y, the number 

at age a in year y, for years other than 0), requires the inclusion of the stock recruitment relationship 

and the impact of fishing mortality. Not all age classes are necessarily fully selected, thus the fishing 

mortality term must be multiplied by the selectivity associated with the fishing gear for age a, sa, 

described by a logistic curve: 

  
50

1

1

a a a
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e 

 
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 


 
 

 
 

 (0.13) 

where a50 is the age at which 50% of individuals are selected by the fishing gear, and  is a 

parameter that determines the width or steepness of the selectivity ogive. A term is also needed for 

the recruitment in each year, equation (0.12), and this is assumed to be a function of the spawning 

biomass of the stock at the end of the previous year y, 
Sp

yB . The spawning biomass for a year y is: 
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B m w N


  (0.14) 

If this is applied to the unfished stable age distribution this would provide an estimate fo the 

unfished spawning biomass-per-recruit. When using difference equations (rather than continuous 

differential equations) the dynamics of the fishery, in terms of the order in which growth, natural, 

and fishing mortality occur, are important when defining how the numbers at age change. If the 

transition of numbers at age in year y into numbers at age in year y+1 is made in a number of steps 

this simplifies the calculation of internally consistent estimates of exploitable biomass, catch rates, 

and harvest rates. If it is assumed that the dynamics of a population entails that fish first grow from 

year y-1 to year y, then undergo half of natural mortality before they are fished and only then 

undergo the final half of natural mortality this would imply two steps to define the transition from 

one year to the next. The first step entails recruitment, growth from each age class to the next, and 

the application of the effect of half of natural mortality:  
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where N0,y is defined by Equ (0.12), ages 1 to ax-1 are modelled by adding 1.0 to the previous year’s 

ages 0 to ax – 2 and imposing the survivorship from half the natural mortality, and the plus group (ax) 

is modelled by adding 1.0 to the previous year’s age ax - 1 and adding those to the numbers in the 

previous year’s age ax and then applying the survivorship from half the natural mortality. Equation 

(0.15) thus leads to the mid-year exploitable biomass (mid-year being the reason for the e-M/2) in 

year y being defined as: 
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B w s N


  (0.16) 

The dynamics within any year are completed by the application of the survivorship following fishing 

mortality across all ages (expressed as an annual harvest rate), followed by the survivorship 

following the remainder of natural mortality. Natural mortality is not applied directly to the new 

recruits until they grow into the next year: 
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 (0.17) 

In equation (0.17), the Na,y refer the numbers in age a at the end of year y (i.e. after all the dynamics 

have occurred). The predicted harvest rate, ˆ
yH , given an observed or recommended catch level in 

year y, yC , is estimated as 

ˆ y

y E

y

C
H

B
      (0.18) 

where E

yB  is defined in equation (0.16).  

The catch at age, in numbers, is therefore defined by: 

  
, , *

ˆN

a y a y a yC N s H  (0.19) 

and the total catch by mass is the sum of the separate catches at age multiplied by their respective 

average weights for all ages:  
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Predicted catch rates also derive from the exploitable biomass although this would also have some 

observation error associated with the catchability coefficient, q, in any real fishery: 

  
2 /2y qE

y yI qB e
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  (0.21) 
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14.1 Abstract 

The rule of thumb that fishing mortality to achieve maximum sustainable yield (Fmsy) equals natural 

mortality (M) has been both criticised and supported by theoretical arguments.  However, the 

relationship has been rarely investigated using empirical data.  We carried out a meta-analysis on 

245 fish species worldwide and linked three types of reference points (FBRP: Fmsy, Fproxy, and F0.5r) to M 

and other life-history parameters (LHP).  We used Bayesian hierarchical errors-in-variables models to 

investigate the relationships and included the effect of taxonomic class and order.  We compared 

various models and found that natural mortality is the most important LHP affecting FBRP.  Other 

                                                           

15 Published in Canadian Journal of Fisheries and Aquatic Science 69: 1292–1301 (2012). 
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covariates, such as von Bertalanffy growth coefficient, asymptotic length, maximum age, and habitat 

types add little to the relationship, partially due to correlation and large measurement and process 

errors.  The best model results in Fmsy = 0.87 M (SD 0.05) for teleosts and Fmsy = 0.41 M (SD 0.09) for 

chondrichthyans.  Fproxy based on per-recruit analysis is about 15% smaller than Fmsy.  Results could 

be used to estimate FBRP from LHP in data-poor situations.    

  

Key words: stock assessment, per-recruit, life table, demographic analysis, measurement error, 

bycatch, non-target 

14.2   Introduction 

Biological reference points (BRPs) are used both as targets and limits in stock status assessment, 

harvest control rules and tactical fisheries management.  Generally, BRPs may be based either on 

fishing mortality (FBRP) or biomass (BBRP).  There are also two general approaches to calculating FBRP 

and BBRP.  Fmsy and Bmsy are calculated from population dynamics models (e.g., stock-recruitment or 

biomass dynamic models) and include estimated compensatory effects (e.g. recruitment 

compensation).  Alternatively, F0.1, Fx%, B0.1, Bx% are based on per-recruit analysis (e.g. yield-per-

recruit or spawner-per-recruit).  The per-recruit approach requires fishery selectivity and individual 

growth and mortality parameters, and does not use data to estimate recruitment processes or 

density-dependent mechanisms, although the numeric target for each per-recruit proxy (e.g., F35% vs. 

F25%) implies an assumed value for steepness (see Quinn and Deriso 1999 for more details).  Data 

required for deriving these BRPs vary widely and MSY-based BRPs may be preferred over per-recruit 

BRPs when data are available to estimate recruitment compensation, recognizing that the precision 

of MSY-based reference points depends on the specific model and the quality of the data. 

Estimating BRPs for fishery management can be difficult.  Reliable estimation requires parameters 

derived from quantitative stock assessments (e.g., selectivity at age), and often requires time series 

data and considerable biological information.  Unfortunately, most commercial species worldwide 

do not have sufficient data to use quantitative stock assessment methods.  This is particularly the 

case for small fisheries with low economic value, new fisheries in exploratory or developmental 

phases, species fished opportunistically due to sporadic availability, by-product species, etc.  

Furthermore, the goals of maintaining biodiversity and ecosystem structure in fishery management 

require that all species impacted by fishing be sustainable in the long term.  The ecosystem approach 

to fishery management calls for sustainability evaluation for both target and non-target species (FAO 
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2003).  However, it would be impossible to develop BRPs using formal stock assessment methods for 

hundreds of non-target bycatch species that have little data.  

One possible approach to identifying FBRP for data-poor stocks is to identify a relationship between 

FBRP and commonly available estimates of life history traits.  There has been a long history of interest 

in using life history traits as a surrogate for optimal fishing mortality.  Early studies included Alverson 

and Pereyra (1969), who suggested using natural mortality as a proxy for sustainable fishing 

mortality, and Gulland (1970, 1971), who used natural mortality and pristine biomass to derive an 

estimate for maximum sustainable yield. These early works resulted in the well-known 

approximation Fmsy = M. 

Since the 1970s, numerous theoretical studies (Table 1) have tried to prove, improve, or disprove 

this relationship between FBRP and M.  Francis (1974) showed that optimal fishing mortality Fmsy = M 

held if recruitment was constant using Schaeffer surplus production model, but that density-

dependent recruitment would affect this relationship.  Deriso (1982) included the von Bertalanffy 

growth coefficient () and reproductive parameters using a delay-difference model, and found that 

Fmsy could be equal to, less than, or greater than M depending on other variables. Deriso (1987) 

explored the impact of life history parameters, and concluded that F0.1/M ranged from 0.88 to 1.25 

over a wide range of M/ (i.e., ratio between natural mortality and growth parameter).  Through 

simulation with a range of life history parameter values typical of demersal fish and a range of 

realistic spawner-recruit relationships, Clark (1991) showed that yield will be at least 75% of 

maximum sustainable yield so long as the spawning biomass was maintained in the range of about 

20-60% of the unfished level, regardless of the form of the spawner-recruit relationship.  A relative 

spawning biomass in this range can be achieved by choosing a fishing mortality rate that will reduce 

the spawning biomass per recruit (SPR) to about 35% of the unfished level.  This is the level of fishing 

mortality that maximizes the minimum yield among all of the spawner-recruit relationships. Clark 

(1993) revised the recommendation of 35% SPR to 40% due to serial correlation in recruitment, and 

even higher for species with low levels of resiliency (Clark 2002).  Similarly, Thompson (1992) found 

that Fmsy could be greater or less than M depending on the power parameter in a stock-recruitment 

relationship, while Thompson (1993) concluded that setting a maximum fishing mortality rate at 80% 

of the natural mortality rate would in general prevent overfishing. 

Other studies have used age-structured and multispecies models to explore the relationship 

between FBRP and M.  Mace (1994) used age-structured population models and assumed forms for 

recruitment compensation, and showed that F0.1, Fmax, F20%, and F35% all increased with both M and . 

For each M-k combination, F0.1, F35%, and F = M were of similar magnitude. Using a fully age-
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structured model, Kirkwood et al. (1994) showed that when recruitment was constant and 

independent of mature stock size, the yield as a proportion of unexploited biomass was directly 

proportional to the natural mortality rate.  When recruitment was allowed to vary deterministically 

with mature stock size, this proportional relationship held approximately, at least for biologically 

feasible parameter combinations.  Collie and Gislason (2001) tested a suite of FBRP types for their 

robustness to observed changes in natural mortality and growth rates in a multispecies context, and 

found that FBRP was much more sensitive to the changes in natural mortality rates than to growth 

variation. Siddeek (2003) developed a general formulation of the Fmsy to M relationship, and found 

that Fmsy exceeded M for most cases. Using life-history invariants, Beddington and Kirkwood (2005) 

estimated Fmsy from growth parameters, length at first capture, and recruitment steepness, and 

concluded that Fmsy/M increased with higher levels of  steepness, but that Fmsy < M for most stocks. 

By contrast to these theoretical and simulation modelling studies, few studies have empirically 

investigated the relationship between FBRP and LHP.  Such a relationship from data-rich stocks would 

be extremely valuable for data-poor stocks.  Patterson (1992) related change in stock biomass to 

exploitation rate using data from 28 stocks of 11 small pelagic species.  He concluded that fishing at 

exploitation rate F/Z = 0.4 would keep biomass from declining.  This is equivalent to F = 2/3M.  Mertz 

and Myers (1998) compiled data for a broad range of taxa and found that the long-term ratio of 

biomass-averaged fishing mortality to the biomass-averaged total mortality (F/Z) around 0.8 for 

piscivore ground fish and near 0.5 for prey species, which means F = 4 M and F = M, respectively.   

In this paper, we compiled FBRP data for more than 200 species and stocks worldwide that have been 

assessed with different methods.  We conducted a meta-analysis and linked fishing mortality based 

reference points to natural mortality and other commonly available life-history parameters by taking 

errors in variables into account.  Our goals were (1) to estimate the ratio of FBRP to M; (2) to estimate 

the differences between Fmsy, Fproxy, and F0.5r; (3) to explore the impact of other life history 

parameters on FBRP; and (4) to explore differences in productivity (e.g., FBRP/M) by taxonomic class 

and order.  The results aim to provide management guidance for data-poor and bycatch species 

(Smith et al. 2009; Zhou et al. 2009a) that do not have sufficient data for quantitative stock 

assessment.   
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14.3 Materials and Methods 

14.3.1 DATA 

We collected FBRP data from a variety of sources, including published research papers, reports, and 

unpublished documents.  Fishing mortality has often been expressed in two ways: the instantaneous 

fishing mortally rate (F) and exploitation rate (E).  The majority of data we collected were based on 

FBRP.  For the literature that reported exploitation rates, we converted EBRP into FBRP by incorporating 

natural mortality (Quinn and Deriso 1999).  When available, we recorded life-history parameters 

from the same paper, report, or document as used to provide the FBRP.  When LHP were not listed in 

the original material, we collected these data from fishbase (www.fishbase.org).  Considering 

potential large uncertainty in fishbase, we avoided using data flagged as “questionable”.  Data from 

fishbase may not be deemed to be accurate by local practitioners, but represents a data source that 

is generally available for data-poor assessments.  We therefore believe that sourcing data from 

fishbase allows model estimates of error-in-variables that will be immediately applicable for future 

data-poor assessments.  A total of 245 species with 333 FBRP were included in the analysis (Table 2). 

14.3.2 FISHING MORTALITY-BASED BIOLOGICAL REFERENCE POINTS (FBRP) 

We distinguish between three broad categories of FBRP when compiling and analysing these data. 

Within each category, definitions and methods used to derive the reference points may differ, but 

we do not distinguish them further.  For example, Fmsy can be defined from an age-structured model 

or a biomass dynamics model. This broad grouping is to increase the sample size in each category 

while allowing the models to capture the uncertainty.     

 Fmsy from formal stock assessments: This category includes age-structured stock assessment models 

fit to time-series data for estimating fishing mortality rate that will result in maximum sustainable 

yield.  It also includes biomass-dynamic (a.k.a. surplus production) models fitted to survey or annual 

catch-effort data.  The resulting estimate of Fmsy accounts for compensatory processes (recruitment 

compensation for age-structured models, or aggregate compensation for surplus production 

models), and is currently the standard for single-species stock assessment FBRP.  It should be noted 

that the values of Fmsy depend on the methodologies, assumptions, and data being used to estimate 

them and thus represent a summary of current stock assessment estimates of Fmsy with any 

inaccuracies or biases this may imply.  

http://www.fishbase.org/
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 Fproxy from per-recruit methods: This category includes BRPs derived from yield-per-recruit (e.g., F0.1) 

and spawner-per-recruit (Fx%) analyses.  Per-recruit analysis incorporates information about 

individual growth and fishery selectivity parameters and is generally less data-intensive than 

assessment estimates of Fmsy.  When multiple proxies were available, we chose to use F0.1 (i.e. the 

fishing mortality where marginal yield-per-recruit is 10% of its level for an unexploited population). 

 F0.5r from demographic analyses of intrinsic growth rate: Population growth rate r for a given 

population can be derived from life history tables and or Leslie matrices (e.g., Smith et al. 1998; 

Cortes 2002).  The resulting estimate r has often been interpreted as the intrinsic growth rate in the 

fisheries literature (Smith et al. 1998; Cortes 2002, 2006), although this is only true where the 

demographic parameters are estimated while the population is severely depleted (Gedamke et al 

2007).  Resulting estimates of r can then be transformed to an estimate of Fmsy, given an assumed 

form for the surplus production relationship.  We adopt the convention that Fmsy = F0.5r = r/2, as 

implied by the Schaeffer surplus production model (Quinn and Deriso 1999).  

Within the three categories, Fmsy is our primary interest because it takes density-dependent 

processes into account and hence incorporates information regarding long term sustainability of a 

stock.  The second category, Fproxy, implies an assumed value for recruitment compensation.   It is 

interesting to compare it with Fmsy because Fproxy is widely used in fishery management.  The third 

category of FBRP based on population growth rate is typically used in conservation but rarely used in 

fishery management.  However, it is often the only method available for long-lived species such as 

sharks so it is also informative to include F0.5r as a comparison, noting the potential bias pointed out 

by Gedamke et al (2007). 

14.3.3 PARAMETER ESTIMATION USING BAYESIAN HIERARCHICAL ERROR-IN-

VARIABLE MODELS (BHEIV) 

The LHPs that we investigated were natural mortality rate (M), von Bertalanffy growth coefficient 

(), asymptotic length (L∞), maximum age (Amax), and habitat type (H).  These data were sourced 

primarily from fishbase, so that model inference would be appropriate when applied to data-poor 

species where fishbase often represents the only available source of life history information.  Species 

are categorized into five habitat types: bathypelagic (depth about 1000-4000 m), benthopelagic 

(about 100 m off the bottom of the ocean), demersal (close to the bottom of the ocean), pelagic 

(near the surface), and reef fish.  We group data at class (Teleosts and Chondrichthyes) and order 

levels to capture major life-history variability and to avoid over-parameterization at species or stock 
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levels.  Along with three FBRP categories (Type), we consider these groups (a matrix composed of 

taxonomic levels and the type of methods) as multiple populations.  The amount of data and their 

quality vary substantially among these populations (Table 2) but populations share certain 

similarities in their life-history traits and BRPs.  Hence, we take the advantage of Bayesian 

hierarchical modelling to derive robust estimates from such a multilevel structure.  

Because natural mortality rate M, growth coefficient , asymptotic length L∞, and maximum age 

Amax, cannot be accurately measured, ignoring errors in these variables would result in biased 

estimates of their effects on FBRP.  To obtain unbiased estimates, we specifically incorporated 

measurement errors in these variables by using an error-in-variable (EIV, also called measurement-

error) model (Fuller 1987; Quinn and Deriso 1999).  Let us assume that yi is the real unobserved 

values of the observed explanatory variable xi for species i. The EIV model is then 

iexy ii
,x ,       (1)                                                                                        

where ),0(~ 2

,, xx  normali . Assuming lognormal distribution for yi avoids generating negative 

values and is generally appropriate for life history parameters such as natural mortality rate (Hilborn 

and Mangel 1997).  Hence, the general model can be expressed as  

ioctioctixoct

ioctiyoctioctBRP

e

eF

,,,,,,,,,,

,,,,,,,,,,

)exp( 



xx

y





  (2)     

where xi is a matrix of covariates (composed of one or more of M, , L∞, Amax, and H depending on 

the model evaluated), 
xoct ,,, is the parameter for variable x for method type t, class c, and order o.  

This model has an additive error structure where ie ,  is an independent normal random variable 

with mean 0 and variance
2

e .  The symbol • indicates that the heterogeneity may vary between 

types, classes, or orders depending on model specification. We also tested a multiplicative error 

structure but focused on models of additive error structure because the plot of FBRP with M does not 

show clear evidence of increasing variability as M increases.  The results from the additive error 

model indicate a more significant contribution from each LHP than models of multiplicative error 

structure.  We used the classical stepwise model building as a preliminary step to evaluate relative 

important of various covariates in Eqn (2), but only reported the result of BHEIV models. 
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We assumed ),(~ 2

, xxx   normal , where 
x

 is the prior mean for parameter X, and 2

x
 is the 

variance.  As natural mortality is the key predictor, we treated , and 2

M
  as hyper-parameters 

across populations and assumed ),(~ 2

MMM
normal

  and 

)01.0,01.0(~2    rgamma
M

(Gelman 2006; Zhou et al. 2009b).  We tested gamma and 

half-Cauchy distributions for 2

M
  but reported )01.0,01.0(~2  


rgamma

M
as the results 

were similar. Further, we used a normal distribution with a large variance for the hyper-mean, 

)1000,5.0(~ normal
M

 .  For the measurement error variance, we specified

)01.0,01.0(~2

,    rgammax
.  These specifications provide relatively non-informative priors 

and hyper-priors, as gamma(0.01, 0.01) represents a mean 1 and variance 100.  We tested a range 

of models (Table 3) with alternative priors and used deviation information criteria DIC (Spiegelhalter 

et al. 2003) as primary criteria for model comparison. 

We applied the Gibbs sample implemented using the WinBUGS program to sample parameter 

vectors from the above posterior distribution.  Three Markov chains were constructed based on 

dispersed initial values and the results of the first 10,000 cycles of each chain were discarded.  The 

results of an additional 30,000 cycles from the three chains were saved for further analysis.  We 

visually examined the chains for each parameter in the model as well as analysed the saved samples 

by using the CODA package (Best et al. 1996) to ensure that there was no evidence for non-

convergence in the MCMC sampling chain.  

14.4 Results 

We investigated a range of models, ranked by the preliminary stepwise regression and confirmed by 

BHEIV models.  These models included various LHPs with normally distributed and log-normally 

distributed error structures, and heterogeneity among populations for both measurement error i,

and process error ie ,  in Eqn (2).  Most of these models converged quickly, in less than 2000 cycles 

of the MCMC algorithm.  There was no evidence of non-convergence for any model after sufficient 

cycles.  Comparison of the top seven low DIC models is presented in Table 3.  The best model with 

the lowest DIC has natural mortality M and growth coefficient  as predictors with a homoscedastic 

error between populations (Model 1 in Table 3).  The posterior mean and standard deviation of 

parameters are provided in Table 4 and their distributions are shown in Figure 1.   
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Although including growth coefficient  leads to a reduction in DIC, the parameter  itself is very 

small: the 95% credible interval encompasses zero, meaning it is biologically insignificant (Table 4). 

Clearly, the relationship between FBRP and M differs between chondrichthyans and teleosts, and 

between the three types of reference points.  For example, the overall Fmsy:M ratio (where M is a 

median as in Eq. 1) for chondrichthyans is 0.411, which is about half of the teleost Fmsy:M value 

(0.866).  The coefficient of variation (cv) for the posterior mean Fmsy:M ratio is 0.21 and 0.06 for 

chondrichthyes and teleosts, respectively (Table 4).  Their overall predictive cv is 0.55.  Most 

analyses for chondrichthyans are based on the demographic method, which results in a much lower 

F0.5r:M than Fmsy:M ( 0.253 vs. 0.411).  Within teleosts, Fproxy:M is smaller than Fmsy:M by about 14%.  

Models at order level (Models 3-7 in Table 3) have higher DIC than the two models with lowest DIC 

at class level.  However, we present results for Model 6 (which includes M and  similar to DIC-

selected Model 1) to illustrate the effect of taxonomic order on the ratio of FBRP:M (Table 5, Figure 

2).  Within chondrichthyans, Carcharhiniforms has a lower Fmsy:M  ratio than the combined 

chondrichthyans.  However, this is not necessary true for Fproxy:M  and F0.5r:M ratios.  This indicates 

that the results of a lower M from stock assessment method for carcharhiniforms may be artificial, 

because the sample size is very small, i.e., only one species in the two non-carcharhiniforms Orders.  

Within teleosts, scorpaeniformes has the lowest M than other orders (Figure 2).  Scorpaeniformes 

include many groundfish species and they tend to have a lower productivity (for example, expressed 

as maximum reproductive rate at low population sizes) than other species (Myers et al 1999).  Again, 

the parameter  is very small at order level and its 95% credible interval encompasses zero. 

The results of the errors-in-variables model (Eqn 1) indicated that the values of input covariates from 

the literature and fishbase contained high uncertainty.  For the natural mortality M the log-scale 

median measurement-error variance 
2

,M is 0.23, representing a cv[M] = 1)23.0exp(  = 0.51.  In 

comparison, the hierarchical Model 2 resulted in 
2

e = 0.0012, corresponding to cv[Fmsy] = 0.15.  

When measurement error is taken into account, the mean natural mortality for each stock is higher 

than the reported value which is assumed to be median-unbiased.  Thus, the mean natural mortality 

will be exp(
2

,M /2) = 1.12 higher than the reported value.  This is equivalent to increasing M in 

Tables 3 and 4, which are calculated from the observed median M as in Eqn 2.  For example, the 

mean-unbiased Fmsy:M ratio becomes 0.970 for teleosts (compared to 0.866), and 0.460 for 

chondrichthyans (compared to 0.411).  
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14.5 Discussion 

This paper appears to be the first research to undertake a comprehensive empirical analysis linking 

various biological reference points to fish life-history traits.  Through a meta-analysis on more than 

200 species we estimated effects between several fishing mortality-based BRPs and LHPs for 

different taxonomic groups.  

14.5.1 EFFECT OF LIFE HISTORY TRAITS ON FBRP 

Our results show that data collected from stock assessments worldwide generally support previous 

theoretical research regarding FBRP and LHPs.  Specifically, we find that natural mortality is the most 

important factor affecting FBRP.  Other life-history parameters, such as maximum age, growth 

coefficient, maximum length, and habitat type contribute limited additional improvement to the 

relationship.  Although DIC selects the von Bertalanffy growth coefficient  in addition to natural 

mortality M, its 95% credible interval overlaps zero and hence has little interpretable impact on FBRP.  

One of the possible explanations is that natural mortality M is often incorporated into models that 

are used to estimate FBRP thus causing a strong correlation between M and FBRP.  Furthermore, 

natural mortality is rarely estimated in assessment models but often calculated from an assumed 

relationship between M with  and L∞.  This means that it is in fact  and/or L∞ that are the reliable 

predictors (Zhou et al. in preparation).  These von Bertalanffy growth parameters are often available, 

even for many data-poor species.  Because natural mortality correlates with many other life history 

parameters (Charnov 1993; Jennings et al. 1998; Goodwin et al. 2006), including growth rate, and life 

history parameters may involve considerable measurement errors, our result implies that using M 

alone as the predictor is generally sufficient to determine the F-based biological reference points.  

This result suggests that it may be redundant and overuse of information to include multiple life 

history parameters in qualitative and semi-qualitative assessment of species vulnerability (e.g. 

Stobutzki et al. 2001; Wesley et al. 2010).  

14.5.2 COMPARISON OF FMSY:M RATIO BETWEEN TAXONOMIC GROUPS 

Our study reveals significant differences between chondrichthyans and teleosts. Most 

chondrichthyans are long-lived species with low natural mortality and low fecundity.  Their life-

history traits already make them more vulnerable to fishing (Stevens et al. 2000).  On top of this 
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vulnerability, our analyses demonstrate that the ratio of Fmsy:M is much smaller for chondrichthyans 

than for teleosts (i.e., 0.41 vs. 0.87).  Furthermore, the order Carcharhiniformes contains the largest 

sample size and has a mean Fmsy:M ratio of 0.34.  Because large species of chondrichthyans have 

lower growth rates and lower potential population increases (Frisk et al. 2001), the results support 

the assertion that assuming Fmsy > 0.5M for sharks and rays must be carefully justified (Walters and 

Martell 2002). 

We estimate that the Fmsy:M ratio is less than 1 for teleosts when observed M is assumed to be a 

median from a log-norm distribution and when all species are analysed together (mean 0.87, 95% CI 

between 0.77 and 0.97).  Closer examination reveals some difference among orders.  For example, 

Gadiformes, Perciformes, and Pleuronectiformes have Fmsy:M ratio close to 1, while this ratio is less 

than 0.7 for Scorpaeniformes.  This latter order has the largest sample size, which may have lowered 

the overall estimate to 0.87.  The result at order level reinforces that the “rule of the thumb” 

approximation Fmsy = M is by and large acceptable for many teleosts (Alverson and Pereyra 1969; 

Gulland 1970, 1971).  On the other hand, the result at class level (i.e., combining all teleosts) also 

supports the argument that Fmsy should be lower than M for most species (Thompson 1993; 

Beddington and Kirkwood 2005).   

Few studies have established a link between FBRP and LHP for chondrichthyans.  This is 

understandable, since there have been few quantitative stock assessments using time-series data for 

this Class of fishes.  Furthermore, assessments of chondrichthyans often acknowledge uncertainty 

about basic demographic parameters and instead report results for a wide range of demographic 

values (Punt 2000; Cortes 2006).   

14.5.3 BAYESIAN HIERARCHICAL ERROR-IN-VARIABLES MODEL 

Bayesian hierarchical models have several advantages over classical data analysis methods. BHM can 

explicitly model all variability sources, can be applied to small sample sizes as they borrow 

information from all studies, and are well-suited for meta-analysis. The hierarchical Bayesian 

estimates of between-group divergence are less variable than maximum likelihood estimates 

because they are based on the data from all populations (Lockwood et al. 2001).  These improved 

between-group variance estimates improve the estimation of the optimal degree of shrinkage, 

which is less affected by sampling variability at each population.  BHM has the tendency to shrink 

population parameters toward the population mean, where parameters with more precise data are 

pooled less toward the population mean than more variable data.  Shrinkage of the model as a 
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whole makes use of the fact that the multilevel estimates of the individual parameters, if treated as 

point estimates, understate the between-group variance (Gelman and Pardoe 2006).  

The challenge of building a credible relationship between BRPs and LHPs hinges on obtaining reliable 

life-history parameters.  We emphasize the errors-in-variables models because it is clear that the 

dependent variables such as M cannot be accurately measured and the estimates are biased when 

measurement errors are not taken into account (Fuller 1987).  The difficulty of estimating LHP is well 

recognized by fisheries scientists (Quinn and Deriso 1999).  The uncertainty in LHP may arise from 

two major sources: (1) natural variation among stocks of the same species due to variability in stock 

structure, location, time, and other environmental factors, and (2) true measurement error due to 

our inability to accurately measure LHP for specific stock at specific time and location.  For example, 

our estimation of large measurement error in natural mortality is consistent with other studies and 

observations (Quiroza et al. 2010).  MacCall (2009) also reported the large standard error (0.56 and 

0.50) in estimating M based on the Pauly (1980) and Hoenig (1983) methods, which values are very 

close to our results.  The data in fishbase show that large differences exist in the estimated M for the 

same species.  Different methods may result in very different estimates of M for the same species 

(Zhou et al. 2011).  For these reasons, it is essential to take errors in variables into account when one 

studies the relationship between BRP and LHP. 

The posterior measurement-error variance for natural mortality, 
2

,M is substantial.  This indicates 

a skewed distribution of M.  If one is interested in the mean value, which is affected by potential 

outliers, then applying a factor of 1.12 to obtain expected M increases the posterior M, pushing 

Fmsy:M ratio closer to 1 for combined teleosts.  However, this is not a normal way for specifying M in 

fishery stock assessments. 

14.5.4 COMPARISON BETWEEN TYPES OF REFERENCE POINTS 

Fmsy is our focus in this study because it is based on analysis of time series data, results from 

population dynamics across many generations, and takes compensatory processes into account.  It is 

also widely used in stock assessment and harvest control rules. We include Fproxy and F0.5r mainly for 

the purpose of comparison with Fmsy.  Fproxy is based on per-recruit analysis and does not directly take 

compensatory processes into account.  Overall, Fproxy (primarily composed of F0.1) is a more 

conservative reference point than Fmsy for teleosts (about 15% lower than Fmsy).  Other studies have 

also found that more species had Fmsy greater than their F0.1 (Deriso 1987).  In contrast, per-recruit 
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analysis has rarely been applied in chondrichthyans.  The small sample size for Fproxy (total 4 species) 

in chondrichthyans produces a greater Fproxy than Fmsy with a large variance. 

A large number of studies on chondrichthyan population vulnerability are based on demographic 

analyses of intrinsic growth rate derived from life history tables or Leslie matrices.  Our analyses 

show surprisingly high precision in the posterior F0.5r but the mean value is smaller than Fmsy for 

chondrichthyans.  This method however has two major potential problems. Firstly, life history tables 

and Leslie matrices generally assume no density dependence.  They provide an instantaneous rate of 

population growth for a specified set of life history traits that correspond to a specific population 

size (Gedamke et al 2007).  Many investigators use these models to compute rates of population 

growth and claim this is the maximum (intrinsic) population growth rate.  However, demographic 

modelling cannot estimate intrinsic r without additional information.  The estimate r in much of the 

literature is typically population growth rate under special conditions.  Secondly, Fmsy = r/2 is only 

true when the population dynamics can be expressed by the symmetric Schaeffer surplus production 

model.  On the first of these issues, it is interesting to note that estimates of r for chondrichthyans 

seem to be biased low by a factor of nearly 0.5.  This would be consistent with these estimates being 

derived from populations that are on average at about half carrying capacity, rather than from highly 

depleted populations. 

Our results, in particular the relationships between Fmsy from stock-assessment and natural mortality 

M, will have wide applicability in management of data-poor species. Furthermore, ecosystem-based 

fishery management is being developed worldwide to conform to increasingly strict environmental 

and fishery legislation. Combining these issues, fishery scientists and managers are looking for 

innovative methods that can be utilized for the evaluation of fishing impact on non-target species 

that have very limited information.  The results of this study will be useful in helping to meet the 

broad objectives of ecosystem-based fisheries management. 
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Table 1. Examples of theoretical studies on biological reference points with life-history traits. 

Reference Formula Note 

Francis (1974) Fmsy = M  If recruitment was constant 

Deriso (1982) Fmsy = ( – M)/2 : parameter of logistic spawner-recruit 
model 

Deriso (1987) F0.1 = 0.88 ~ 1.25M For a wide range of M/ 

Clark (1991) Fmmy ≈ F0.1 ≈ M In most cases. Fmmy is the maximum of the 
minimum yields at each level of spawning 
biomass per recruit 

Thompson (1992) Fmsy > or < M Depending on the power parameter in a 
power function of stock-recruitment 
relationship 

Thompson (1993) F  0.8 M Would prevent stock from overfishing 

Mace (1994) F0.1 ≈ F35% ≈ M  For each M- combination.  

Kirkwood et al. (1994) Fmsy  M  For given length at first exploitation lc and 

M/ 

Siddeek (2003) 

 
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M
tZRXW
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Based on general growth and mortality 
assumptions 

Beddington and 
Kirkwood (2005) 

Fmax = a(Lc, h) a(Lc, h) is a constant depending on the 
length at first exploitation and steepness 
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Table 2. Number of species and data points included in the analysis. Type is the methods used to 

derive the three types of reference points.  

 

 Chondrichthyes Teleost 

Type Species Data points Species Data points 

Fmsy 10 12 73 88 

Fproxy 4 4 99 131 

F0.5r  52 87 7 11 

Total  66 103 179 230 

  

 

 

 

Table 3. Comparison Bayesian hierarchical error-in-variable models using deviation information 

criteria. Type is the type of methods, i.e., Fmsy, Fproxy, and F0.5r, M is natural mortality,  and L∞ are von 

Bertalanffy growth parameters, Amax is maximum age, and H habitat.  

 

Model Variables DIC 

1 Class, Type, M,  0 

2 Class, Type, M 63.4 

3 Class, Order, Type, M, , Amax, H 260.3 

4 Class, Order, Type, M, , L∞, Amax, H 261.8 

5 Class, Order, Type, M, , H 278.6 

6 Class, Order, Type, M,  316.0 

7 Class, Order, Type, M 322.7 
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Table 4.  Posterior mean and standard deviation of Bayesian hierarchical errors-in-variables model 

FBRP,i = t,c,M Mi  exp(M)+i + ei (t = type of method, c = class), and n is sample size.  

 

  

Parameter Class Type Mean SD n 

1,1,M Chondrichthyes Fmsy 0.411 0.088 12 

2,1,M Chondrichthyes Fproxy 0.825 0.215 4 

3,1,M Chondrichthyes F0.5r 0.253 0.026 87 

1,2,M Teleost Fmsy 0.866 0.053 88 

2,2,M Teleost Fproxy 0.730 0.036 131 

3,2,,M Teleost F0.5r 0.920 0.147 11 

   0.017 0.009 333 

 



APPENDIX 3 

254 

 

Table 5. Posterior mean and standard deviation of Bayesian hierarchical errors-in-variables model 

FBRP,i = t,c,o,M Mi  exp(M)+i + ei (t = type of method, c = class, o = order), and n is sample size.  

Parameter Class Type Order Mean SD n 

1,1,1,M Chond Fmsy Carcharhiniformes 0.335 0.095 10 

1,1,2,M Chond Fmsy Lamniformes 0.463 0.365 1 

1,1,3,M Chond Fmsy Other chondrichthyes 0.967 0.561 1 

2,1,1,M Chond Fproxy Carcharhiniformes 0.876 0.323 2 

2,1,,2,M Chond Fproxy Lamniformes 0.640 0.365 1 

2,1,3,M Chond Fproxy Other chondrichthyes 0.801 0.415 1 

3,1,1,M Chond F0.5r Carcharhiniformes 0.266 0.038 55 

3,1,2,M Chond F0.5r Lamniformes 0.280 0.101 11 

3,1,3,M Chond F0.5r Other chondrichthyes 0.269 0.086 21 

1,2,4,M Teleost Fmsy Clupeiformes  0.880 0.200 2 

1,2,5,M Teleost Fmsy Gadiformes 1.014 0.136 11 

1,2,6,M Teleost Fmsy Perciformes 0.922 0.092 23 

1,2,7,M Teleost Fmsy Pleuronectiformes  1.160 0.154 12 

1,2,8,M Teleost Fmsy Scorpaeniformes 0.694 0.095 35 

1,2,9,M Teleost Fmsy Other teleost 0.896 0.162 5 

2,2,4,M Teleost Fproxy Clupeiformes  0.634 0.100 10 

2,2,5,M Teleost Fproxy Gadiformes 0.718 0.074 21 

2,2,6,M Teleost Fproxy Perciformes 0.742 0.043 66 

2,2,7,M Teleost Fproxy Pleuronectiformes  0.715 0.087 19 

2,2,8,M Teleost Fproxy Scorpaeniformes 0.667 0.132 3 

2,2,9,M Teleost Fproxy Other teleost 0.683 0.090 12 

3,2,4,M Teleost F0.5r Clupeiformes  0.843 0.290 1 

3,2,5,M Teleost F0.5r Gadiformes 1.013 0.200 8 

3,2,6,M Teleost F0.5r Perciformes 0.752 0.323 1 

3,2,7,M Teleost F0.5r Pleuronectiformes  0.966 0.324 1 

    -3.4×10-6 7.2×10-5 333 
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Figure 1. Posterior distributions for coefficient of natural mortality •,M by Class (chondrichthyans 

and teleosts) and Type (Fmsy, Fproxy, and F0.5r). 
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Figure 2. Posterior distributions for coefficient of natural mortality •,M by Class (chondrichthyans 

and teleosts), and Order (Carcharhiniformes, Lamniformes, Other chondrichthyes; Clupeiformes, 

Gadiformes, Perciformes, Pleuronectiformes, Scorpaeniformes, Other teleost) for stock assessment 

method (Type Fmsy). The thin lines are chondrichthyans and the thick lines are teleosts. Four Orders 

are indicated while there is only one species in the Order of Lamniformes and other chondrichthyes. 
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15.1 Abstract16 

Australia has a policy of achieving maximum economic yield (MEY) in Commonwealth fisheries, with 

many States also interested in the MEY target. Bioeconomic models are being developed for 

estimating MEY for several fisheries, supported by economic surveys of the fisheries. While most 

cost components can be derived directly from the survey information, capital values are 

incorporated into the models usually through the opportunity cost of capital and depreciation – both 

imputed values. Information on the former can be derived from capital markets. Depreciation 

measures, however, are often distorted by accounting practices and taxation regulations rather than 

actual capital consumption. In this paper, we estimate the actual rate of economic depreciation in 

Australian fisheries, and find it is substantially lower than values usually used in most bioeconomic 

analyses. 

 

                                                           

16 Submitted to Marine Resource Economics 
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15.2 Introduction 

Increasingly in Australian fisheries and elsewhere, there is a move to include economic 

considerations into fisheries management. In Australia, the Commonwealth Government has 

introduced an explicit policy of pursuing maximum economic yield (MEY) as its primary objective for 

fisheries management (DAFF, 2007), and some States have also identified MEY as a management 

target (DEEDI, 2009).  

The move to MEY, and dynamic MEY in particular (Grafton et. al., 2010), as a management target 

requires the development of appropriate bioeconomic models and the use of appropriate economic 

data (Dichmont et. al., 2010). Most economic data can be collected from industry, and economic 

surveys are common features in many fisheries internationally (Lam et. al., 2011). While most 

fisheries inputs are bought through competitive markets (e.g. labor and fuel), these cash costs can 

be assumed to be reasonably representative of the opportunity cost (and hence economics cost) of 

the inputs. However, not all costs are cash costs, notably the value of owner operator labor, the 

opportunity cost of capital and depreciation. In fleets where there is a mixture of owner-operators 

and employed skippers, the share paid to skippers can be used as a reasonable proxy for the 

opportunity cost of owner-operator labor (on the assumption that the next best use of their time is 

skippering someone else’s boat). The opportunity cost of capital is, to a large extent, defined by 

capital markets so an independent value can be derived.i Depreciation in vessel accounts, however, 

is largely defined by taxation regulations, with incentives in some instances created to encourage 

investment by allowing high deprecation rates. 

The concept of economic depreciation is based on the actual capital consumption during the 

production process. This can only be measured through changes in capital values over time. Capital 

consumption (economic depreciation) can be offset by repairs and maintenance (Eggert and 

Ulmestrand, 1999), which are generally treated as either fixed or variable costs in their own right 

(Dichmont et. al., 2010). Hence, the rate of depreciation is to a large extent endogenous, as more 

intensive use increases the cost of its maintenance, and the net impact on capital depends on set of 

incentives for maintaining the asset (Koulovatianos and Mirman, 2007). 

Earlier theoretical analyses showed that the depreciation rate plays complex roles in determining 

optimal investment levels (Charles, 1983) as well as optimal participation rates in international 

fisheries (Charles, 1986). An increase in depreciation rate results in lower optimal fish stock levels 

through its impact on costs. However, it may also have other effects through its impact on the rate 

of investment, and these may vary depending on the unit capital costs. Theoretical model have 
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found that depreciation and opportunity cost of capital are key determinants of optimal capital stock 

and investment strategies in a fishery when capital is malleable (McKelvey, 1983). Others suggest 

that the depreciation rate and discount rate play identical roles in determining optimal capacity 

(Charles, 1985).  

Despite the apparent importance of depreciation as a cost, it has received little attention in the 

literature, and many modeling approaches seem to apply depreciation rates in an ad hoc manner. 

The aim of this paper is to determine an appropriate rate of depreciation to use in bioeconomic 

modeling, at least in the Australian context when deriving estimates of MEY. We derive the 

depreciation rate from economic survey information collected from a wide range of Australian 

fisheries. 

15.3 Depreciation in the literature 

A review of bioeconomic models suggests that only cursory attention is paid to depreciation rates. In 

many cases they are assumed zero, while in others they range from 1 per cent to 30 per cent (Table 

1). In some cases, a justification was given in terms of an annualized cost of capital based on the 

expected life of the vessel, but in many cases, no justification for the rate was given, and instead an 

assumed rate was imposed. A greater number of papers than those indicated in Table 1 did not 

report a depreciation rate per se, but included depreciation as a given (fixed) cost. Similarly, a large 

number of papers reported depreciation as a component of fixed costs but did not specify how it 

was calculated (or how much of the fixed cost it comprised). That is, it was treated as a given. 

Many of the studies with zero discount rate were theoretical in nature, and assumed a zero rate on 

the basis that capital investment was irreversible (Clark et. al., 1979; Sumaila, 1995) or assumed a 

zero rate to simplify the analysis (Munro and Sumaila, 2002). Others developed more applied 

models, but also applied a zero rate assuming capital was a sunk cost (Castro et. al., 2001; Gasalla et. 

al., 2010). As a general rule, papers with depreciation rates between 1 and 10 per cent were based 

on an assumed rate; higher rates were based in straight-line annualization of capital costs assuming 

a given life of a vessel and zero scrap value. 
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Table 1. Rates used in bioeconomic models and other fisheries economic analyses 

Rate citation Rate citation 

0 (Sumaila, 1995) 0.05-0.1 (Lee et. al., 1997) 

0 (Gasalla et. al., 2010) 0.06-0.2 (Ponce-MarbÃ¡n et. al., 2006) 

0 (Clark et. al., 1979) 0.08 (Eggert and Tveteras, 2007) 

0 (Castro et. al., 2001) 0.1 (Drynan and Sandiford, 1985) 

0 (Munro and Sumaila, 2002) 0.1 (Martinez and Seijo, 2001) 

0.0001 (Ganguly and Chaudhuri, 1995) 0.1 (Smith and Crowder, 2011) 

0.01 (Pradhan and Chaudhuri, 1999) 0.1 (Huo et. al., 2012) 

0.01 (Kar, 2004) 0.1 (Najmudeen and Sathiadhas, 2008) 

0.03 (Maynou et. al., 2011) 0.1-0.2 (Ceregato and Petrere Jr, 2003) 

0.03-0.04 (Macher et. al., 2008) 0.12 (Breen et. al., 2008) 

0.04 (Clarke et. al., 1992) 0.15 (Charles, 1983) 

0.04 (De Ionno et. al., 2006) 0.15 (Clark and Lamberson, 1982) 

0.05 (Warren et. al., 1982) 0.15 (Charles and Munro, 1985) 

0.05 (Stage, 2006) 0.16 (Duy et. al., 2012) 

0.05 (Kjaersgaard and Frost, 2008) 0.175 (Henderson and Tugwell, 1979) 

0.05 (Wespestad and Terry, 1984) 0.2-0.3 (Sanders and Beinssen, 1996) 

0.05 (Vestergaard et. al., 2011)   

 

 

15.4 Methods and data 

Depreciation represents the rate of change in capital stock as a result of its use. Hence, to estimate 

depreciation rates, we need to estimate how the stock of capital used in fishing changes over time. 

The rate of economic depreciation, therefore, represents the rate of net loss of capital value, as 

indicated by changes in the resale value of the capital asset over time (also adjusting for general 

price changes) (Hulten and Wykoff, 1996).  

Estimating capital values in fisheries is complex as vessels are constantly repaired and upgraded 

(through refits), and vessels have widely varying configurations in terms of specifications and on-

board equipment. Capital value is expected to decrease over time due to depreciation, but at a 

lower rate than standard accounting depreciation as ongoing repairs and maintenance (which are 

also included as costs) is likely to help maintain the value of the capital asset. Estimating capital 
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values is also made difficult by relatively few market transactions for second-hand vessels. In most 

economic analyses, capital values are based on the owner’s estimated market value of the vessel in 

each time period. 

Given that reasonable estimates of capital values can be obtained, the level of capital invested in the 

vessel (including the engine, electronics and gear) is expected to vary with the length of the vessel 

and the type of fishery. Several different modeling approaches exist to estimate the rate of 

economic depreciation (Jorgenson, 1996). In this study, a multiplicative model was chosen of the 

form: 

 
 0 D Apk L D A

K
K e p L e e

      (1) 

where K is the capital value, pk is the price index for capital, L is the length of the boat, D are the set 

of fishery and other characteristics dummies and A is the age of the boat in each time period. The 

estimated coefficient 
A

  represents the rate of economic depreciation. 

The functional form of the model is given by  

 0
ln ln ln

pk k L D A
K p L D A          (2) 

15.4.1 DATA 

Information on costs of fishing in Australia is currently collected for a limited number of fisheries at 

the Commonwealth (e.g. ABARES) and State level (e.g. SA). ABARES (formerly ABARE) has been 

conducting economic surveys of Commonwealth fisheries since the early 1980s and has maintained 

a regular survey program for selected fisheries since 1992. The current program involves surveying 

major Commonwealth fisheries every two years with each survey collecting data for the previous 

two financial years. The aggregated financial and economic performance results generated from 

each survey are made publicly available through the annual Australian Fisheries Surveys Report 

series (Perks and Vieira, 2010) for the most recent report). Similar information is collected by the 

consulting firm Econsearch as part of their economic surveys of South Australian commercial 

fisheries. EconSearch has been undertaking these surveys since 1999 (EconSearch, 2010a, b, c, d). 

Each fishery is generally surveyed every three to four years and only data from the preceding 

financial year are collected. Survey definitions and terms have been kept consistent with those used 

by ABARES where possible (EconSearch, 2010a, b, c, d),. This means that the two datasets are 

reasonably consistent with each other and can be combined relatively easily. 
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Data from the two surveys over the period 1998 to 2010 were pooled. In total, 1961 observations 

were available across 14 different fishing methods (Table 2). Ideally, the models would have been 

run as panel data models to capture any vessel-specific characteristic not captured by the general 

characteristics considered. However, vessel identifiers had been removed for the south Australian 

data and it was not possible to track individual vessels over time in the data. As a result, all 

observations are considered to be independently distributed. 

Capital costs were kept in nominal terms for the analysis, as a capital price index (Figure 1) was 

included in the model. Data on input prices in fisheries is generally unavailable, and where input 

price data has been used, it has either had to be derived based on a range of assumptions (e.g. 

(Pascoe et. al., 2011)) or been provided by the industry (e.g. (Punt et. al., 2010)). However, there is 

an a priori expectation that prices of inputs such as fuel, capital and freight in fisheries should be 

similar to input prices in agriculture. Agricultural price paid indexes are annually produced and 

published by ABARES (ABARES, 2010), with a separate index for each major input category.  

Table 2 – Summary of vessels in the data set 

Gear type  Number Capital Length Age 

 

 of obs. Average St. Dev. Average St. Dev. Average St. Dev. 

Automatic Longline 20 508,000  606,887      18.17       2.65      23.40      10.22  

Danish Seine 67 249,403  111,119      16.84       1.33      26.04        5.75  

Demersal Longline 16 103,750  82,412      11.41       2.30      33.94      11.71  

Dive 41 231,393  171,474        7.14       0.70        6.41        4.66  

Dropline 167 106,393  139,621        8.09       3.22      14.54      10.26  

Fish Trawl  161 435,460  278,319      19.84       3.86      25.28        7.80  

Gillnet 170 209,230  167,835      11.61       5.85      18.35        9.16  

Mixed Gear 58 110,806  122,051        8.91       2.80      14.26        9.10  

Pelagic Longline 327 826,894  447,358      20.24       4.75      12.93        9.55  

Pots 309 375,423  201,084      11.98       2.92      14.09      10.22  

Purse Seine 34 2,066,110  1,470,460      24.25       3.66      16.50      13.16  

Squid Jigging 7 323,571  139,245      18.42       4.32      18.14      10.95  

Trawl Prawns 
Temperate 59 1,377,145  709,305      21.10       0.91      13.41        9.42  

Trawl Prawns Tropical 509 1,099,984  453,210      22.24       2.67      18.12        7.08  

Trawl Roughy 16 1,369,750  534,106      36.25       6.08      27.69      14.30  

All gears 1961 657,757  594,169      17.04       6.67      16.93        9.97  
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While it is expected that price changes in the fisheries sector should follow similar trends to that in 

agriculture, it is possible that they may change at different rates. The estimated coefficients relating 

to the price indexes in the model can be used to adjust these price indexes to make them more 

relevant to the fishing industry. 

 

 

Figure 1. Capital price index (Derived from ABARES’ Australian Commodity Statistics 2010 Table 92 

(ABARES, 2010)) 

 

Data to characterize individual vessels related to the technical characteristics of the vessels, 

including their size and whether they were equipped with on-board freezing capacity, the vessel age, 

the type of fishery in which the vessels operate, defined in terms of the main gear combinations 

used and target species, and whether access to the fishery is based on input or output controls. 
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15.5 Modelling results 

The results of the model are given in Table 3. Commonwealth (fish) trawl vessels were used as the 

base in the model. The model was able to explain around 75 per cent of the variation in the data, 

and most of the coefficients were significantly different from zero. The coefficient on the price index 

for capital is not statistically different from one (1) as would be expected. However, as the price 

index is for agricultural capital, then some divergence from the a value of one is reasonable if the 

cost of building fishing vessels has generally increased at a faster rate than capital costs in 

agriculture in general.  

Capital costs also appear to increase at an increasing rate as vessel size increases. Again, this is not 

unexpected, as length is a one dimensional measurement whereas vessels are three dimensional 

objects. Larger boats would also be able to use more crew, increasing the need for accommodation 

on board but also allowing proportionally more gear to be held on board. More and larger engines 

are also required to run the larger vessels and the larger vessels are also likely to use proportionally 

more electronics than their smaller counterparts. While it would be expected that larger vessels 

would have a freezer, this is captured separately in the model, as a factor that increases capital 

costs.  

The effort control dummy suggests that – length for length – vessels operating in effort control 

fisheries have higher capital costs than those in ITQ fisheries. Incentives exist for “capital stuffing” in 

input controlled fisheries (Townsend, 1985) whereas ITQs create incentives to reduce costs, 

including capital costs (Asche et. al., 2008) 

The coefficient on the vessel age variable represents the rate of economic depreciation. From the 

model, this is estimated to be around 2.3 per cent per annum. 

15.6 Discussion and conclusions 

The estimated economic depreciation rate for the Australian fisheries was low relative to what has 

been used in many bioeconomic analyses internationally (Table 1). Other attempts at similar 

analyses have suggested a similar low rate of economic depreciation of around 3%, with a higher 

rate in first year (Daurés et. al., 2006; Le Floc'h et. al., 2008).  

An interesting associated result from the analysis presented in this paper is the relatively higher 

capital costs encountered in fisheries in which access is regulated through input controls. As noted 
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above, this provides further evidence for capital stuffing in input regulated fisheries (Townsend, 

1985), and/or cost minimization in output controlled fisheries (Asche et. al., 2008). 

Table 3 – Estimated model for Capital costs 

Coefficients Estimate Std. Error t value  

Constant 9.584 0.187 51.376 *** 

Price index for capital 1.050 0.129 8.146 *** 

Length 1.325 0.059 22.378 *** 

Gear type dummy variables     

Danish seine -0.216 0.085 -2.530 * 

gillnets -0.320 0.073 -4.370 *** 

Longline demersal -0.400 0.142 -2.828 ** 

Longline pelagic -0.729 0.420 -1.737 . 

Longline automatic -0.457 0.449 -1.018  

Trawl deep water -0.129 0.439 -0.293  

Trawl prawns tropical -0.416 0.419 -0.993  

Trawl prawns temperate 0.488 0.115 4.256 *** 

Dropline  -1.109 0.086 -12.882 *** 

Dive 0.254 0.121 2.091 * 

Pots 0.302 0.064 4.680 *** 

Jigging (squid) -0.653 0.235 -2.774 ** 

Multiple Gear -1.174 0.101 -11.593 *** 

Purse seine 1.020 0.113 9.054 *** 

Freezer dummy 0.750 0.417 1.797 . 

Effort control dummy 0.405 0.070 5.812 *** 

Vessel age -0.023 0.002 -14.968 *** 

     

2R  0.749    

19,1941F
 309.5   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

From the fisheries economics literature, there is a tendency to either ignore capital costs (such as in 

the studies with a zero depreciation rate in Table 1) or overestimate them substantially. This has 
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obvious implications for estimates of economic performance of management, and will also results in 

distortions in estimates of MEY where these are the objective of the study. The significant non-zero 

rate also suggests that, on average, capital is quasi-malleable in practice. Hence, the assumption of 

non-malleability in fisheries analyses is not valid. This has several implications for both modeling and 

management of fisheries. If capital was perfectly malleable, then “bang-bang” management 

solutions are appropriate (e.g. complete moratoriums can be applied if the stock falls below the 

optimal level) (Clark et. al., 1979). With capital non-malleability, “optimal” capital levels are higher 

and stocks lower than in cases (with overcapitalization being optimal) where vessels depreciate. 

Conversely, with quasi-malleability, optimal capital levels are lower and stocks higher and a stable 

long run equilibrium position can be determined (i.e. maximum economic yield) (Clark et. al., 1979). 

The need for more empirical research on capital dynamics and their drivers in marine fisheries has 

increasingly been acknowledged (Munro, 2010; Nøstbakken et al., 2011). This requires the 

development of better methods for valuing capital stocks based on the available data, even if the 

limitations of available information on capital asset values also point to a need to improve the data 

collected on these in the future. Our empirical analysis provides a best estimate of capital 

depreciation schedules for Australian commercial fishing vessels, based on the data collected on the 

Australian fleets over the last decade. Determining whether this can be transposed to fleets 

elsewhere would require the replication of similar analysis on data sets relating to fisheries in other 

parts of the world. We contend that both this type of empirical analyses, and the collection of more 

systematic information on the capital costs of fishing fleets will play a key role in future efforts to 

guide fisheries towards maximum economic yield. 
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16.1 Abstract 

Bioeconomic models have been applied to a wide range of fisheries around the world. However, an 

even greater number of fisheries are relatively data poor, and development of traditional 

bioeconomic models is not feasible. Work on the biological side has resulted in techniques to 

estimate reference points such as FMSY (fishing mortality at MSY) in such fisheries. In this paper, we 

extend this work to move from FMSY to FMEY for single species fisheries. We estimate key economic 

relationships necessary for the assessment of FMEY based on fisheries characteristics. We show that 

good estimates of economic target reference points can be achieved with limited data.  

Keywords: Maximum economic yield, proxy reference points, data poor methods 
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16.2 Introduction 

The use of biological reference points as indicators to guide fisheries management is well established 

(Caddy 2004, Caddy and Mahon 1995). While numerous types of biological reference points exist 

(Mace 1994), the most commonly applied are target and limit reference points, usually expressed in 

terms of either the biomass of the stock or the level of fishing mortality that achieves given 

outcomes. Limit reference points indicate levels which are to  be avoided, while the target reference 

point represents the point that management is aiming to achieve (Mace 1994). While maximum 

sustainable yield (MSY) is the most commonly applied target reference point in fisheries 

management (Caddy and Mahon 1995), there is increasing interest in maximum economic yield 

(MEY) as an alternative target. Maximum economic yield represents the level of fishing effort and 

catch that maximises economic profits in the fishery over time (Dichmont et al. 2010, Grafton et al. 

2010). This is usually seen as a level of fishing activity which will maximize the welfare generated by 

fisheries, although this has been debated in the recent literature  (Bromley 2009, Christensen 2010). 

As it generally involves a lower level of fishing effort, it is more conservative in terms of biomass 

than MSY, and is often considered to be more environmentally beneficial in terms of bycatch and 

habitat damage (Dichmont et al. 2008, Grafton et al. 2007). 

The Australian Commonwealth Harvest Strategy policy (DAFF 2007) identifies the level of biomass 

that achieves MEY (BMEY) as the target reference point for Commonwealth managed fisheries. The 

estimation of MEY requires an understanding of both the key economic and biological parameters 

relevant to the fishery. Where this has been applied, the approach has relied on the development of 

detailed bio-economic models of the fishery under consideration (cite NPF references). However, 

due to the costs of systematic data collection for individual fisheries, a range of fisheries exists in 

which some or all of these parameters may be missing. This raises the issue of how to develop a set 

of reference points in the context of data poor fisheries, which has been increasingly recognized as 

an important issue for fisheries management around the world (cite references on the data poor 

work). Where economic information is missing, the Policy suggests a default value of 1.2 times the 

biomass that achieves MSY (BMSY) as a proxy for the target reference point (DAFF 2007).17 However, 

estimation of BMSY also requires information about the biology of the stock, and assumes that each 

stock in a multi species fishery can be targeted separately (i.e. there are no technical interactions). 

                                                           

17 This recognises that the biomass at MEY is greater than that at MSY, but the 1.2 is a relatively arbitrary scaling factor. 
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Further, the default proxy measure does not take into account the effects of prices and costs, as well 

as the discount rate if a dynamic MEY is the target. 

To ensure sustainable exploitation of these data-poor fisheries, there is a need to develop innovative 

methods for incorporating economic considerations into harvest strategies without the possibility of 

developing full bio-economic models, and to quantitatively define proxies for limit and target 

reference points. This aim of this paper is to present a means of deriving a less arbitrary scaling 

factor than the default 1.2, in contexts where reasonable biological information is available but 

economic information is limited. Further, although the ability to estimate BMSY  may be limited in 

most fisheries, a range of simple methods exist to estimate fishing mortality at MSY (FMSY), even with 

very limited catch and effort data, based on assumptions about some of the biological characteristics 

of the species (Garcia et al. 1989, Zhou et al. 2012)). Given this, we also derive proxy target 

reference points of FMEY based on FMSY as an addition to the BMEY/BMSY ratio.  

From bioeconomic theory, we show that the relationships BMEY/BMSY and FMEY/FMSY largely depend on 

the ratio of costs to revenue at MSY. A stochastic simulation is developed using a simple 

bioeconomic model, and the results used to develop a regression tree to determine simple “rules of 

thumb” that can be used to indicate appropriate reference points given these costs shares. 

Individual vessel data covering a wide range of fisheries are used to derive further “rules of thumb” 

to indicate what the cost share at MSY may be given the characteristics of the fishery. 

16.2.1 ESTIMATING MEY IN DATA POOR FISHERIES – A BRIEF REVIEW 

Maximum Economic Yield (MEY) in a fishery can be defined as the point at which the sustainable 

fishing effort level and catches in the fishery entail maximum profits, or the greatest difference 

between total revenues and total costs of fishing (Grafton et al. 2007, Kompas 2005). The main 

determinants of MEY in a comparative statics analysis (i.e. without taking into account the 

adjustment delays which may be required to achieve any catch/effort combination, and the 

instability which often characterizes real fisheries) are illustrated in Figure 6-1. The point will change 

with input and output prices, as will the associated level of profits, and identifying MEY in any given 

fishery requires an assessment procedure allowing to track these changes (Kompas et al. 2009b). The 

dynamic nature of the MEY objective, as well as its instability due to changes in the key economic 

drivers of a fishery such as input and output prices, should be fully accounted for in such assessment 

procedures (Dichmont et al. 2010, Grafton et al. 2010). 
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Figure 1 – Main determinants of Maximum Economic Yield (MEY) in fisheries 

 

While the concept has long been identified by fisheries economists as a target that should drive 

fisheries management (Clark 1973, Gordon 1954, Scott 1955), its identification had largely remained 

a theoretical exercise until recent years, as it had not been formally adopted as a policy objective 

internationally. With its inclusion in the Australian Commonwealth fisheries policy,18 and growing 

debates on its relevance as an operational management objective in other parts of the world 

(Bromley 2009, Christensen 2010, Dichmont et al. 2008, Norman-López and Pascoe 2011), the 

problem of estimating MEY in real fisheries has attracted growing attention. First attempts at 

identifying MEY as an actual management target have highlighted the empirical difficulties which 

need to be addressed in doing so, and relate in particular to the alternative treatments of prices and 

costs, which may result in differing estimates of MEY and associated adjustment trajectories 

(Dichmont et al. 2010). 

 

It has been possible to overcome these difficulties in the context of data rich fisheries, to which the 

analysis was first applied. However, it is increasingly proposed that MEY also be applied as a 

                                                           

18 Ministerial Direction to the AFMA under Section 91 of the Fisheries Administration Act 1991 issued by the Australian Government 
Minister for Fisheries, Forestry, and Conservation in December 2005. 
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management objective in a broader set of fisheries, including some which are less well monitored 

and researched. This requires identification of possible approaches to applying this objective in data 

poor contexts. 

16.2.2 EMPIRICAL APPROACHES 

Empirical analysis of MEY in fisheries has largely focused on the development of bioeconomic 

models. These have been developed for a wide variety of fisheries and for fisheries in most regions 

of the world (Armstrong and Sumaila 2001, Doole 2005, Kar and Chakraborty 2011, Kompas et al. 

2010a, Ulrich et al. 2002). Such models require, at a minimum, some underlying stock dynamics 

models as well as information on costs of different fishing activities and prices of the main species. 

Models range in type from static equilibrium based models assuming a single homogenous fleet 

(Chae and Pascoe 2005, Kompas et al. 2010b) to complete ecosystem based approaches (Fulton et 

al. 2007) or multi-species and multi-fleet models (Pelletier et al. 2009, Punt et al. 2011, Ulrich et al. 

2007). These models are case specific, such that general rules cannot readily be derived that could 

be applied in data poor contexts. While the models themselves could be adapted to other fisheries, 

these would require sufficient appropriate data to populate the model parameters. For management 

purposes, the reliability of these models is intrinsically linked to the data on which they were based, 

and acceptance of these models by industry and managers is also greatly influenced by data quality 

(and quantity) (Dichmont et al. 2010). 

Non-model based approaches to estimate optimal fleet size in fisheries have largely focused on the 

estimation of fishing capacity and capacity utilisation (Felthoven and Morrison Paul 2004, Hoff and 

Frost 2007, Szakiel et al. 2006, Tingley and Pascoe 2005, Tingley et al. 2003). These can be derived 

using vessel level catch and effort data, but require assumptions as to what catch levels may be 

appropriate at MEY. At best, they can identify how much excess capacity may exist in the fishery, but 

do not provide an indication as to what may be an optimal level of either effort or catch . 

Several attempts at developing indicators of economic performance exist that can be used to assess 

whether or not fisheries are improving or deteriorating. These include information on licence values 

(Arnason 1990), although most approaches require more detailed cost and earnings information 

(Whitmarsh et al. 2000). As with the capacity measures, these indicators alone do not provide 

information on where an optimal level of fishing effort or catch may be. 

Harvest Control Rules (HCR) (Smith et al. 2009) have been applied across a broad range of fisheries, 

including data poor fisheries. One such approach is based on the definition of trigger levels 
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associated with the biological status of the resources that also reflect economic performance 

(Dowling et al. 2008). Several examples of trigger-based management systems exist that have an 

implicit economic consideration but no explicit economic analysis. These include the data poor and 

low value spanner crab fishery in Queensland, Australia (Dichmont and Brown 2010, O'Neill et al. 

2010), and the banana prawn fishery component of the Northern prawn fishery – a relatively data 

rich fishery but one in which modelling approaches have proven unreliable. In both cases, 

appropriate triggers are determined through a co-management arrangement involving industry, 

scientists and managers. Similar approaches have been proposed for definition of Harvest Control 

Rules for North Atlantic fisheries management for fisheries in which data are unreliable or 

unavailable, and complex analytical models cannot be applied (Kelly and Codling 2006). 

16.3 Methodology 

The aim of this paper is to determine some general “rules of thumb” that may assist managers in 

identifying appropriate target reference points in data poor fisheries, and in particular refine the 

existing “1.2BMSY” default target reference point. To this end, a simple bioeconomic model is 

developed from which the relationship between economic and biological reference points is 

estimated for varying combinations of biological and economic parameters. The output from the 

model is summarised using a regression tree approach to determine simple “rules-of-thumb” that 

could be applied for different fisheries. Finally, simple econometric models of the information 

required for the “rules of thumb” as a function of fishery characteristics are derived. 

16.3.1 A SIMPLE THEORETICAL BIOECONOMIC MODEL  

The approach is developed based on a basic bioeconomic model incorporating a logistic biological 

growth model for a single species fishery (Schaefer 1954, Schaefer 1957) of the form 

 1
(1 )

t t t t t
B B rB B K C


   

 (1) 

where Bt is the biomass in time period t, r is the instantaneous growth rate, K is the environmental 

carrying capacity and Ct is the catch in time period t. Catch is assumed to be a linear function of 

fishing effort and the level of biomass, given by  

 t t t
C qE B

 (2) 
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where q is a proportionality constant known as the catchability coefficient and Et is the level of 

fishing effort in time t. 

At equilibrium, 
1e t t

B B B


   and hence (1 )
e e e

C rB B K   where the right hand side represents 

the annual growth in the population, also referred to as the surplus production as it is surplus to 

what is required to keep the population at a stable level of biomass (in the absence of fishing). The 

maximum equilibrium level of catch (the maximum sustainable yield) is hence given by  

 

2 0e

e

e

dC
r rB K

dB
  

 (3) 

and hence 

 
2

MSY
B K

 (4) 

That is, MSY is achieved when the level of biomass is half the carrying capacity. 

Equating catch to the surplus production in the population also allows the sustainable catch to be 

expressed as a function of fishing effort, given by  

 

2
2q K

C qEK E
r

 
 (5) 

From this  

 

 

2

2 0
dC q K

qK E
dE r

  
 (6) 

And hence 

 
2MSYE r q

 (7) 

The simple model assumes prices are independent of the quantity landed and are hence constant. 

Similarly, the cost per unit of fishing effort is also assumed constant, such that the average cost 

equals the marginal cost. Costs in the model are economic costs, and represent full opportunity cost 

of all inputs in the production process (including unpriced labour and a normal return to capital). 

Given this, the level of economic profits in the fishery can be given by 
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 pC cE    

The level of fishing effort that maximises profits is hence given by  
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2 0
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From which  
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Given 
2MSYE r q

, then  
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MSY

c qK
E qK

p E

 
  
   (10) 

and hence 

 

 1MEY
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E
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 (11) 

Given that fishing mortality is given by f qE , then  

 

 1MEY MEY

MSY MSY

f qE
c pqK

f qE
  

 (12) 

 

That is, the ratio of fishing mortality at MEY to fishing mortality at MSY is a function of prices, costs, 

catchability and the carrying capacity of the stock. This value will always be less than 1 for any value 

of 0c  . By definition, the proportional target reference point expressed in terms of fishing 

mortality is the same as that expressed in terms of fishing effort. 

Similarly, the biomass at MEY is given by  

 
( 2)(1 ) (1 )

MEY MSY
B K c pqK B c pqK   

 (13) 

and hence 
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(1 )MEY

MSY

B
c pqK

B
 

 (14) 

As with the ratio of fishing effort and fishing mortality at MEY and MSY, the ratio of biomass at MEY 

and MSY is a function of prices, costs, catchability and the carrying capacity of the stock. This value 

will always be greater than 1 for any value of 0c  .  

 

16.3.2 INTRODUCING DYNAMICS 

The basic model presented above indicates the optimum level of fishing effort and biomass 

assuming it can be attained instantaneously. Usually, the process of reaching MEY will involve 

adjustment delays for stock biomass as well as fishing capacity. In particular, in cases where excess 

fishing effort is being applied to the stock, adjusting to MEY may involve short term costs in terms of 

effort reduction (Dichmont et al. 2010, Martinet et al. 2007), and hence the long term benefits need 

to be balanced against the short term costs. Accounting for this, the functional definition of MEY in 

the Australian fisheries context is the level of biomass and fishing effort that maximises the net 

present value of economic profits over time (DAFF 2007). The dynamic version of MEY incorporates 

a discount rate to allow the trade-off between future benefits and short term costs to be factored 

into the analysis. Following Clark (Clark 1990), the level of biomass that produces the dynamic MEY (

DMEY
B ) is given by  

 

2

8
1 1

4
DMEY

K c d c d cd
B

pqK r pqK r pqKr

    
          
       (15) 

where d is the discount rate. When d = 0, the value of BDMEY is equivalent to that given in equation 

(12). 

Where the discount rate is positive, estimating the sustainable level of fishing effort that produces 

the dynamic MEY (
DMEY

E ) is less straightforward than in the case where the discount rate was zero. 

Instead, EDMEY needs to be estimated from the value of BDMEY, and the sustainable level of catch at 

BDMEY. The associated level of catch at MEY is given by    1-
DMEY DMEY DMEY

C rB B K  and the level of 

fishing effort by 
DMEY DMEY DMEY

E C qB . Consequently, the relationship between EDMEY and EMSY needs 

to be determined numerically rather than algebraically.  



APPENDIX 5 

281 

 

The target reference point, however, needs to be distinguished from the path to achieve it over 

time. In practice, the pathway to building the biomass to the target level is often subject to a 

number of constraints (Dichmont et al. 2010, Martinet et al. 2007), which affects the speed of 

recovery, and, depending on the extent of the constraints, may influence the target reference point 

also (Dichmont et al. 2010). For data poor fisheries, factoring these considerations into the definition 

of dynamic target reference points is not possible due to the lack of the detailed dynamic models 

needed to estimate these reference points taking into account the constraints.  

16.3.3  DATA INPUTS INTO THE ANALYSIS 

A numerical version of the simple model was developed to assess the relationship between EMEY and 

EMSY, and to allow the derivation of a simple framework for determining appropriate target reference 

points in the case where data are limited. Values of the key parameters were varied stochastically 

and a range of possible relative target reference points (i.e. EDMEY/EMSY and BDMEY/BMSY) were 

estimated. 

The values used in the stochastic analysis and the distributions of the final “acceptable” values are 

given in Table 1. Ten thousand random values were generated for each of the parameters in Table 1. 

However, a set of criteria was established to ensure that the set used for the analysis was relatively 

realistic. First, any set of parameters containing a negative value was discarded (removing some 250 

sets). Second, any set of observations that would have result in negative economic profits at MSY 

was removed. While it is theoretically possible that MSY is not economically feasible, it is rarely 

observed. This resulted in only 5897 of the 10000 random sets of parameter values being used in the 

analysis.  
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Table 1 - Key parameters used in the stochastic analysis 

 

Values used in 
stochastic analysis Distribution of “acceptable” values 

Mean Standard 
deviation Min. 1st Qu. Median Mean 3rd Qu. Max. 

r 1.4 0.4 0.065 1.140 1.396 1.400 1.661 3.122 

q 0.004 0.001 0.001 0.004 0.004 0.004 0.005 0.008 

K 1000 400 138.8 901.0 1126.0 1142.0 1365.0 2639.0 

c 15 6 0.021 9.517 13.150 13.320 17.030 33.640 

p 10 4 0.575 9.017 11.400 11.510 13.860 25.460 

d 0.1 0.04 0.000 0.074 0.101 0.101 0.128 0.251 

 

The choice of the initial mean values of the parameters and their standard deviations was aimed at 

producing sets of widely varying parameter values that were representative of a wide range of 

fisheries. The instantaneous growth rate (r) ranges from relatively slow growing species (such as 

shark (Cortés 1998)) to fast growing species (such as prawns). The mean price of all wild caught 

Australian produce in 2008-09 was $8.10 (Figure Figure 2 - Average prices for Australian fish species 

2008-09.2), although prices varied widely between (and within) different types of species groups 

(ABARES 2010). A mean of $10/kg was chosen as the basis for the model. This is higher than the 

current average but, with a standard deviation of $4/kg, the distribution largely captured the range 

of prices observed for Australian wild caught fisheries. Catchability and the carrying capacity are 

inversely related in terms of scale, as the derivation of the target reference points relies on the value 

of their product (qK). Values of these parameters were chosen along with the mean value for costs in 

order to give an estimated cost per unit catch at MSY of approximately $7.50/kg (i.e. 75 per cent of 

the average price). This implies that economic profits are assumed to be at approximately 25 per 

cent of the revenue at MSY, on average.19 Cost per unit catch at MSY is given by  0.5c qK . The 

model was also run with the discount rate fixed at various levels (0%, 5% and 50%) to test the 

sensitivity of the relationships to discount rate.  

 

                                                           

19 Studies elsewhere suggest that economic profits at MEY may be a substantially higher proportion of revenue than the baseline included 
in this analysis (Asche et al. 2008a, Dupont 1990, Eggert and Tveteras 2007, Munro 2010). However, empirical analyses of Australian 
fisheries suggest that a more conservative assumption may be appropriate (Kompas et al. 2010a, Kompas et al. 2009a, Punt et al. 2011). 
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Figure 2 - Average prices for Australian fish species 2008-09. Source: (ABARES 2010) 

 

16.3.4 ESTIMATING COST SHARES 

From equations (11) and (14), both BDMEY/BMSY and EDMEY/EMSY are dependent upon the ratio 

 c pqK  where  c qK  effectively represents the cost per unit catch given an unexploited 

biomass, which is unknown. However, given that the catch per unit of effort at MSY is given by 

0.5qK  (as 0.5
MSY

B K ), then the cost per unit of catch at MSY is equivalent to  0.5c qK  which is 

directly proportional to the cost per unit catch given an unexploited biomass.20 Consequently, at 

MSY, the cost share of revenue, defined as the cost per unit catch divided by the price, is a feasible 

proxy measure by which the optimal ratio of biomass and effort can be derived in a comparative 

statics context. Multiplying both numerator and denominator by the catch at MSY gives the cost 

share as the ratio of the total fishing cost to the total revenue. 

Cost and revenue information is currently available at the individual vessel level for a limited number 

of fisheries at the Commonwealth (e.g. ABARES) and State level (e.g. SA), although within this set of 

fisheries a substantial panel of data is being developed. ABARES (formerly ABARE) has been 

conducting economic surveys of Commonwealth fisheries since the early 1980s and has maintained 

                                                           

20 The value 0.5qK is equivalent to the catch per unit effort (CPUE) at MSY. Given these relationships, the cost per unit catch at MSY is 
twice that at the unexploited biomass. 
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a regular survey program for selected fisheries since 1992. The aggregated financial and economic 

performance results generated from each survey are made publicly available through the annual 

Australian Fisheries Surveys Report series (Perks and Vieira 2010).. For South Australian commercial 

fisheries, EconSearch has been undertaking similar surveys since 1999 (EconSearch 2010a, b, c, d), 

using consistent definitions as those used by ABARES. Data from the two surveys over the period 

1998 to 2010 were pooled, giving a total of 1961 observations across 14 different fishing methods.21  

Over most of the period of the data, the management target for most fisheries was maximum 

sustainable yield, although several Commonwealth fisheries were transitioning to a target of MEY 

from 2008. About 20 per cent of stocks in Commonwealth fisheries were considered overfished in 

1999 (Caton and McLoughlin 2000), although this declined to less than 10 per cent in 2010 

(Woodhams et al. 2012). For South Australian fisheries, around 20 per cent of stocks were 

considered over fished during the middle period of the data (2002-2005) (PIRSA 2007). Given this, it 

can be assumed that most fisheries were at or around MSY for most of the period of the data, and 

hence the empirical cost shares of revenue are representative of the theoretical shares required for 

the analysis. 

16.4 Results 

16.4.1 RELATIONSHIPS BETWEEN TARGET REFERENCE POINTS AND COST SHARES 

The distributions of the target reference points for 5 and 10 per cent discount rates are illustrated in 

Figure 3.In most cases, BDMEY/BMSY >1, while EDMEY/EMSY < 1, with the former ranging between 0.95 

and 1.5 and the latter ranging between 0.5 and 1.05 given a 5 per cent discount rate. At higher 

discount rates, the distribution of BDMEY/BDMSY shifts to the left while EDMEY/EMSY moves to the right. 

 

                                                           

21 Ideally, the subsequent analyses would have been run as panel data models to capture any vessel-specific characteristic not captured by 
the general characteristics considered. However, vessel identifiers had been removed for the South Australian data and it was not possible 
to track individual vessels over time in the data. As a result, all observations are considered to be independently distributed. 
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Figure 3 - Distribution of dynamic target reference point ratios 

 

A regression tree analysis was undertaken with cost share and the ratio of the discount rate to the 

stock growth as the explanatory variables, based on equations 12, 14 and 15. These were 

undertaken for a given discount rate as this is generally determined exogenously for most fisheries 

(and public policy) analyses. For all levels of standard discount rates tested (0, 0.05, 0.1 and 0.5), the 

tree was split only in terms of the cost share component. This is illustrated for the 5 per cent 

discount rate case in Figure 4. The residual mean deviance of both models was extremely low 

(0.0004726 for the 5 per cent discount rate model) indicating that the regression tree provided a 

good representation of the characteristics of the data. The distribution of the error terms (Figure 5) 

also suggests that the model captures most of the variation in the ratios. 

The current proxy value for BMEY/BMSY adopted in Australian fisheries management is 1.2 (DAFF 

2007), and the commonly adopted discount rate for MEY estimation is 5 per cent (Punt et al. 2010). 

From the tree in Figure 6-10, this figure is appropriate for fisheries where the cost share is expected 
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to fall between (roughly) 45 and 55 percent. That is, expected economic profits at MSY are also 

between 45 and 55 percent of revenue.  

 

 

Figure 4 - Regression tree for a 5 per cent discount rate.  Branches to the left relate to cases where the 

inequation is respected. 
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Figure 5 - Distribution of residuals from the regression tree analysis 

 

16.4.2 RELATIONSHIP BETWEEN COST SHARES AND FISHERY CHARACTERISTICS 

The theoretically derived model results above require some estimate of the cost share of revenue at 

MSY in order to derive an appropriate proxy for EMEY/EMSY. While these cost shares are unknown, a 

reasonable estimate of them may be made based on the economic data used in the previous 

analysis. The objective of MEY has only been implemented since 2007, and only one fishery (the 

Northern Prawn Fishery) has had an active policy of moving to MEY (Dichmont et al. 2010), although 

to date this has not been realised. For the other fisheries, and prior to 2007, the main management 

objective remains linked to maximising sustainable yields. While these were not necessarily achieved 

each year and in each fishery (Woodhams et al. 2012), on balance it could be assumed that the 

observed cost share of revenue was roughly equivalent to the costs shares at or near MSY for most 

of the period of the data. 

The distribution of cost share of revenue in each of the fisheries for which economic data were 

available is given in Figure 6. Median cost shares for the SA fisheries appeared lower than those of 

the Commonwealth fisheries, although they were subjective to considerably greater variability.  
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A priori there is an expectation that cost shares in ITQ fisheries would be lower than those in input 

control fisheries due to the different incentives faced (Asche et al. 2008a). This is supported to some 

extent by the data, although there is not a clear significant difference between the cost shares solely 

on the basis of management type (Figure 7). 

 

Figure 6: Distribution of cost share of revenue in fisheries with economic survey data 
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Figure 7: Cost share by management type 

 

The relationship between cost share of revenue and fishery characteristics was examined through 

simple regression analysis. A priori, it was expected that boat size, fishing method (expressed as 

dummy variables with trawl as the base), management method (i.e. ITQ or effort controls), and 

potentially average price would affect the cost share of revenue. A log linear form of the model was 

assumed.  

The results of the initial model are given in Table 2. The explanatory power was relatively low (33%), 

although this is as expected given the considerable variability between individuals in the data. 

However, most of the signs on the coefficients were as expected: fisheries with higher prices are 

likely to have a lower cost share (as revenues are higher, ceteris paribus); larger boats are likely to be 

higher cost than smaller boats relative to revenue, and cost share differed by main fishing method. 

The coefficient on the effort control was negative, although this was not significantly different from 

zero suggesting that effort control fisheries do not have a significantly higher cost share than output 

control fisheries (consistent with the distribution in Figure 7). 
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Table 2. Regression results for lnCostShare 

 

Estimate Std. Error t value 

 Constant -0.365 0.059 -6.149 *** 

lnPrice -0.045 0.010 -4.450 *** 

lnLength 0.078 0.018 4.245 *** 

Method dummy variables 

    Dropline -0.083 0.027 -3.049 *** 

Trawl prawn 0.029 0.026 1.122 

 Gillnet -0.125 0.023 -5.437 *** 

Pots -0.101 0.027 -3.725 *** 

Dive -0.369 0.042 -8.824 *** 

Longline 0.061 0.020 3.067 *** 

Danish seine -0.091 0.028 -3.197 *** 

Purse seine -0.166 0.043 -3.868 *** 

Effort control dummy -0.001 0.017 -0.047 

 2R  0.338    

F 61.38   *** 

Note: Significance levels: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

The coefficients on dropline, gillnets, pots and Danish seine were not significantly different from 

each other. While Danish seine is a trawl based method, it is very different to other trawl methods 

so a cost share similar to other static gears is not surprising. For the subsequent analyses, these four 

gear types were amalgamated into an “other static gear” variable. Prawn trawl was not significantly 

different than other (fish) trawls.  

As the aim of the study is to develop proxy estimates of MEY from limited data, a regression tree 

analysis was run with cost share as the dependent variable and price, length, and gear types (trawl, 

dive, long line, purse seine and other static gear) as the explanatory variables. The resultant tree is 

illustrated in Figure 8, and the distribution of residuals given in Figure 9. The residual mean deviance 

was 0.014, and in most cases the residuals were less than 0.1. Given individual variability in the 

fisheries between vessels and between years then this degree of “error” is relatively low, as factors 

such as individual skipper/crew efficiency and random variations (“luck”) in catch also affect the 

output and hence cost share of revenue. 
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Figure 8: Regression tree describing cost share as a proportion of revenue 

 

Figure 9. Distribution of cost share residuals 
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Combining Figures 8 and 4 allows an estimate of the ratio BMEY/BMSY or EMEY/EMSY to be derived based 

on limited information on the fishery – effectively some indication of the average price, average boat 

size and the main fishing methods. From Figure 8, larger boats tend to have higher cost shares than 

smaller boats, although this is not always the case. For example, small longline vessels and small 

vessels targeting low valued fish species tend to have comparable cost shares to the larger trawl 

vessels. From the two figures, for example, a trawl vessel targeting relative high valued species (i.e. > 

$15.50/kg) would have an average cost share of around 0.77 (Figure 8), which would imply a 

BMEY/BMSY ratio of around 1.38.  

16.5 Discussion  

In data poor fisheries, it is unlikely that the values of the key biological and economic parameters will 

be known in any detailed quantitative way. Garcia et al (Garcia et al. 1989) demonstrated that 

reasonable estimates of BMSY and EMSY can be made with very limited data, based on a few 

assumptions about the characteristics of the fishery. 

Relatively few studies have attempted to quantity the revenue share of economic profits at MSY 

although several studies have looked at the potential share of profits in the fishery at MEY. Dupont 

(Dupont 1990) found that in the Canadian Pacific salmon fishery, potential economic profits were 

about 42 per cent of total revenue. Potential economic profits were estimated to be between 20-30 

per cent of revenue for Denmark, Sweden and the UK, and even higher for Iceland and Norway 

(Asche et al. 2008b, Pascoe and Mardle 2001). 

This relationship between economic profits at MEY and economic profits at MSY varies substantially 

depending on the relative costs and prices of fishing, across fisheries. For some fisheries, economic 

profits at MSY may be small relative to those at MEY, whereas in other fisheries the difference in 

economic profits may be large. Assuming that economic profit at MSY is around half that at MEY 

such that the ratio of economic profits to revenue at MSY ranges between 10-20 per cent, then more 

appropriate “default” proxy values for BMEY may be 1.3-1.4 times BMSY. Similarly, it might be expected 

that optimal effort levels are most likely to fall between 55 and 65 per cent of those at MSY. 

MEY has been assessed for the Northern Prawn fishery (Punt et al. 2011). This is a relatively high cost 

per unit effort fishery, and with a low catch is also a relatively high cost per unit catch fishery. Based 

on the most recent published economic survey estimates, total costs were roughly 84 per cent of 

revenue for the fishery as a whole in 2008-09 (Vieira et al. 2010). Estimates of SMEY/SMSY for the three 

primary species in the fishery were 1.15, 1.255 and 1.38, with the stocks of two of the latter species 
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believed to be close to, but above, MSY in 2009 (the reference year for the analysis)  (Punt et al. 

2011). From the regression tree, a proxy value of 1.396 would have been selected for this fishery (i.e. 

0.773< cost share < 0.877) as appropriate for the fishery, reasonably consistent with at least one of 

the key target species and not substantially greater than the bioeconomic model estimates for the 

other two species.22 

Estimates of the ratio BMEY/BMSY have also been undertaken for several species in the South East 

Trawl fishery, with values ranging from 1.06 for flathead (taken primarily by Danish seiners) to 1.53 

or orange roughy (taken primarily by large trawlers), with an average of 1.26 for the set of species 

considered (Kompas et al. 2009b). Published economic survey results for the fishery as a whole 

suggest that, in 2009-10, economic profits and total costs were roughly 21 per cent and 79 per cent 

of the total revenue respectively (Perks and Vieira 2010). Based on our cost share regression tree 

model, the optimal ratio of BMEY to BMSY would again be 1.396, substantially higher than the existing 

estimates of optimal values for some species and underestimating them for others. However, 

several of the species are overfished or are subject to overfishing, and hence lower costs per unit of 

catch would be expected at higher stock levels (such as BMSY). Adjusting for this would result in a 

lower optimal biomass ratio (or higher effort ratio) using the regression tree model. 

The example fisheries above are all multispecies fisheries, which add an extra complexity to the 

analysis. The models used in this analysis were based on a single species fishery. In multispecies 

fisheries, the optimal harvest rate of any individual species in a fishery subject to joint production 

may differ from the optimal harvest rate of the species if it was a single species fishery. 

Nevertheless, the proxy values for the relative target reference points based on the single species 

model were closer to that estimated using a multispecies bioeconomic model than the base 

assumption of BMEY=1.2BMSY. 

From the more detailed models, the optimal ratio of BDMEY/BMSY varies by species. However, in 

multispecies fisheries where the species are caught jointly, there will be only one measure of effort 

that maximises profits across the fishery (EMEY), and one measure of effort that maximises overall 

sustainable catch (EMSY), so effort based target reference points may be of more value as a fisheries 

management tool than biomass based measures in multispecies fisheries. 

 

                                                           

22 The issue of join production adds a further complication into the definition of MEY. The optimal yield in a multispecies fisheries is rarely 
the same as the individual optimal yield if it could be perfectly targeted (Anderson 1975). 
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16.6 Conclusion 

For many fisheries, the cost of data collection and analysis to estimate MEY targets accurately may 

be high relative to the economic benefits that may result from improved definition of target 

reference points. Potentially zero, negative or at best small improvement over their existing 

profitability may be realised if the costs of obtaining “better’ information are taken into account. 

Scientists are working on data poor methods for assessing FMSY and other proxy measures in such 

fisheries (Zhou et al. 2012). Given this, and the “rules of thumb” developed through the regression 

tree analysis, it is possible to extend this to proxy measures of FMEY (through the relative effort at 

MEY compared with MSY), and hence can help improve the economic performance of such fisheries 

even in the absence of robust data. 
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17 Appendix 6. Glossary. 

Abundance: The total number of a kind of fish in a population; this is rarely known, and usually 

estimated from the relative abundance. 

Allowable Biological Catch (ABC): A term that refers to the range of estimated allowable catch for a 

species of species group.  

Availability:  The fraction of a fish population susceptible to fishing.  

Bayesian: A formal statistical approach in which expert or existing knowledge or beliefs are analysed 

together with data. Bayesian methods make explicit use of probability for quantifying uncertainty. 

Bias: A systematic difference between the expected value of a statistical estimate, and the quantity 

it estimates. 

Bioeconomic modelling: Mathematical formulae that simulate the interaction between biological 

behaviour of fish stocks and human behaviour of users of the resource as it is shaped by economic 

factors. 

Biological reference points (BRP): A biological benchmark against which the abundance of the stock 

or the fishing mortality rate can be measured in order to determine its status. These reference 

points can be used as limits or targets.  

Biomass (B): The total weight of a group (or stock) of living organisms at a given time. 

Biomass limit reference point (BLIM): the point beyond which the risk to the stock is regarded as 

unacceptably high. 

Biomass at maximum economic yield (BMEY): average biomass corresponding to maximum economic 

yield as estimated from the assessment model. 

Biomass at maximum sustainable yield (BMSY): average biomass corresponding to maximum 

sustainable yield. 

Capacity: The potential output from a fishing vessel given its level of capital under normal operating 

conditions. 
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Capacity utilisation: The degree to which the vessel capacity is being achieved. 

Fishing mortality limit reference point (FLIM): the point above which the removal rate from the stock 

is regarded as unacceptably high. 

Fishing mortality at maximum economic yield (FMEY): fishing mortality rate corresponding to 

maximum economic yield. 

Fishing mortality at maximum sustainable yield (FMSY): fishing mortality rate which corresponding to 

maximum sustainable yield. 

Fixed costs: Costs that are constant irrespective of the actual level of fishing activity or catch. These 

include administration costs, management fees, and user costs of capital (opportunity cost and 

economic depreciation). These are a short term concept only as in the longer term owners may vary 

their fishing scale which may change these costs. 

Bycatch: Fish other than the primary target species that are caught incidental to the harvest of the 

primary species. Bycatch may be retained or discarded.  

Capital: The level of investment in the fishing industry by individuals or collectively in the form of 

fishing vessels, gear and technology. 

Carrying Capacity: The maximum population of a species that an area or specific ecosystem can 

support indefinitely without deterioration of the character and quality of the resource. 

Catch per unit (of) effort (CPUE): The quantity of fish caught (in number or in weight) with one 

standard unit of fishing effort. 

Catch rate: Means sometimes the amount of catch per unit time and sometimes the catch per unit 

effort. 

Catchability Coefficient (q): The fraction of a fish stock which is caught by a defined unit of the 

fishing effort.  

Catchability: The extent to which a stock is susceptible to fishing. 

Coefficient of variation (CV): The standard error of a statistic, divided by its point estimate. The CV 

gives an idea of the precision of an estimate, independent of its magnitude. 
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Data poor: A fishery that lacks sufficient information to conduct a conventional stock assessment, 

including fisheries with few available data and with low data quality. 

Density-dependence: The dependence of a factor influencing population dynamics (such as survival 

rate or reproductive success) on population density.  

Discard: To release or return fish to the sea, dead or alive, whether or not such fish are brought fully 

on board a fishing vessel. 

Discount rate: The rate at which future earnings need to be adjusted (downwards) to give their 

present value. The discount rate is equivalent in value to the opportunity cost of capital. 

Dynamic maximum economic yield: The level of catch and effort that maximises the flow of 

economic profits over time. 

Economic depreciation: The rate at which capital is consumed in the production process, measured 

as the real change in capital values after regular repairs and maintenance are taken into account. 

Economic profit: This is the level of profit over and above what is considered a normal profit. It is 

estimated as the total amount of profit that could be earned from a fishery owned by an individual 

after subtracting all input costs (including non-cash costs such as economic depreciation and the 

opportunity cost of capital, as well as an allowance for unpaid (e.g. owner-operator) labour) from 

revenue. It is effectively profit in excess to that required to keep the operator active in the fishery. 

Exploitation rate: The proportion of a population at the beginning of a given time period that is 

caught during that time period (usually expressed on a yearly basis).  

F0.1: The fishing mortality rate which the increase in yield per recruit in weight for an increase in a 

unit of effort is only 10 percent of the yield per recruit produced by the first unit of effort on the 

unexploited stock (i.e. the slope of the yield-per-recruit curve for the F0.1 rate is only one tenth the 

slope of the curve at its origin. 

Fishing mortality (F): A measurement of the rate of removal from a population by fishing. Fishing 

mortality can be reported as either annual or instantaneous. Annual mortality is the percentage of 

fish dying in one year. Instantaneous mortality is that percentage of fish dying at any one time. 

Fishing Power: The catch which a particular gear or vessel takes from a given density of fish during a 

certain time interval. 
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FMSY: The fishing mortality rate that, if applied constantly, would result in maximum sustainable yield 

(MSY). 

Harvest control rule: Describes how harvest is intended to be controlled by management in relation 

to the state of some indicator of stock status.  

Intrinsic growth rate (r): A value that quantifies how much a population can grow between 

successive time periods.  

Limit reference points: Benchmarks used to indicate when harvests should be constrained 

substantially so that the stock remains within safe biological limits.  

Management strategy: The strategy adopted by the management authority to reach established 

management goals.  

Maximum economic yield (MEY): The level of catch and associated fishing effort and stock biomass 

that results in the maximum amount of economic profit that could be earned from a fishery. MEY is 

a static long run concept. See also Dynamic MEY. 

Maximum sustainable yield (MSY): The largest average catch or yield that can continuously be taken 

from a stock under existing environmental conditions.  

Meta analysis: A suite of quantitative techniques to statistically analyse combined information 

across related but independent studies. 

Monte Carlo: Monte Carlo simulation is a statistical approach whereby the inputs that are used for a 

calculation are resampled many times assuming that the inputs follow known statistical  

distributions.  

Natural mortality (M): the rate of deaths of fish from all causes except fishing. 

Non-target species: Species not specifically targeted as a component of the catch; may be 

incidentally captured as part of the targeted catch. 

Normal profits: The level of profits that would be expected to be earned given the capital investment 

if the capital had been invested elsewhere in the fishery. This is the minimum level of profits 

required to keep the fishing vessel in the fishery (i.e. if earning below normal profits then the fisher 

may seek to exit the fishery and invest their capital elsewhere). 
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Normal return to capital: The product of the opportunity cost of capital (a rate) and the total value 

of capital reflecting the use cost of capital in the fishery. This corresponds to the level of normal 

profits when all other inputs are valued at their opportunity cost. 

Opportunity cost: A measure of the true economic cost of inputs that relates to the value of their 

use in their next best alternative use. For most inputs, the market price is a reasonable guide to their 

opportunity cost. Opportunity cost is mostly applied in the case of unpriced inputs (e.g. the use of 

capital and owner-operator labour). 

Opportunity cost of capital: This is the rate of return the owners of the capital could expect to earn if 

they had invested their capital into another industry with equivalent risk. This is also equivalent in 

value to the discount rate. 

Quasi-fixed costs: A short term concept that relates to input use that has both fixed and variable 

attributes. In fisheries, repairs and maintenance is the main quasi-fixed cost as some costs are 

incurred irrespective of effort levels (e.g. a refit every three years), while other costs are directly 

related to effort levels (e.g. wear and tear on fishing gear). 

Reference point: A reference point indicates a particular state of a fishery indicator corresponding to 

a situation considered as desirable (target reference point) or undesirable (limit reference point). 

Resource rent: The return to the resource, and is effectively the unpriced value of the stock input 

used in the production process. Resource rent is generally captured within economic profits. With a 

perfectly homogeneous fishing fleet, resource rent and economic profits would be equivalent. 

Resource rent charge: A payment to the owners of the resource for use of the resource, usually 

collected by government on behalf of society (the owners of the resource). This may take the form 

of a tax or levy. 

Schaefer model: The basic form of production model in which the relation between yield and effort 

takes the form of a symmetric parabola. In the Schaefer model, BMSY is at one-half of the carrying 

capacity. 

Sensitivity analysis: In stock assessment modelling, the process of testing the sensitivity of model 

results in relation to errors and uncertainties in the input parameters.  

Stochastic: Where system components are affected by random variability.  
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Stock reduction analysis (SRA): a stock assessment method by using historical catch data for a 

species and an assumed population dynamics model to reconstruct possible trajectories of stock 

decline over time.  

Target biomass (BTARG): the desired condition of the stock. 

Target fishing mortality (FTARG): the desired fishing mortality rate for the stock. 

Target reference point (TRP): Benchmarks used to guide management objectives for achieving a 

desirable outcome. In Australian Commonwealth fisheries, the target reference point relates to 

biomass and fishing mortality rates that result in dynamic maximum economic yield. 

Target species: Those species primarily sought by the fishermen in a particular fishery.  

Total Allowable Catch (TAC): The annual recommended or specified regulated catch for a species or 

species group.  

Variable costs: Costs that vary depending on the level of fishing activity. In the short term these 

include costs such as fuel costs, crew costs, freight, food, and ice. In the longer term, all costs are 

considered variable. 

Virgin or unfished biomass (B0). It is generally calculated as the long-term average biomass value 

expected in the absence of fishing mortality. In production models, B0 is also known as carrying 

capacity K.  

Yield per recruit (YPR): The average expected yield in weight from a single recruit. 

 

 


