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Non Technical Summary 

2011/029: ERA extension to assess cumulative effects of fishing on species 

 

PRINCIPAL 

INVESTIGATOR: 

 

Dr Shijie Zhou 

ADDRESS: CSIRO Marine and Atmospheric Research 
GPO Box 2583 
BRISBANE     QLD     4001 
Australia 
shijie.zhou@csiro.au 

OBJECTIVES: 1. Scope the range of applications and review existing methods for 

measuring cumulative effects of capture fishing on species that are 

caught across a number of different fisheries or sub-fisheries. 

2. Scope the different data sources that are currently available and 

those that may be required to include assessment of cumulative 

effects under future ERAs. 

3. Develop methods for assessing cumulative risk from multiple 

fisheries or sub-fisheries including recreational and international 

fisheries, where feasible, on each individual fish species and stock, 

especially methods that can be applied to data poor fisheries. 

4. Apply the method to selected Commonwealth fisheries that 

operate in the same area with high levels of effort and multiple 

gear types, e.g., in the southeast region, with further consultation 

with AFMA. 

5. Describe the trade-off between the costs of collecting data for ERA 
as compared to the benefit of the approach returned to the 
industry/management. 

 

Outcomes achieved to date 

 Data from various Commonwealth and State agencies were compiled and integrated. These data 

include scientific surveys, fisheries observer data, commercial and recreational fishery catch and 

effort data. 

 Statistical methods were developed to estimate catchability for multiple gears using survey and 

observer data. These methods were then applied to examples of populations with contrasting 

distribution patterns: random vs. aggregated. 

 Quantitative models of heterogeneous fish density were developed. The results facilitate the 

estimation of fishing impacts from a range of gear types (fisheries). 

 Statistical models were developed for estimating biological reference points from simple life 

mailto:shijie.zhou@csiro.au
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history parameters.  Sustainability can be gauged from a combination of growth coefficient, 

maximum length, and maximum age, or from a growth coefficient alone, enabling a quantitative 

assessment to be undertaken when time series of catch and effort data are unavailable.  

 The quantitative methods developed were then used to assess cumulative effects of fishing for 

selected bycatch species. These case studies demonstrate the utility of the methodology. 

 The analysis revealed a nonlinear relationship between cumulative fishing mortality and the 

number of fisheries that were included in the assessment.  This general pattern transforms to a 

nonlinear relationship between the costs of research (i.e., collecting data and conducting ERA) 

and the benefit returned to the industry/management (i.e., accuracy of the assessment results).  

The cost-effective approach is to focus research on key fisheries that have disproportionately 

large impacts on the species. 

 

An exploited population of a fish species may be subjected to fishing mortality from multiple fisheries or 

gear types. Previous ecological risk assessment methods assess stressors separately on a fishery by fishery 

basis.  By contrast, it is the cumulative impact from all fisheries and gears on each individual species that 

determines the species’ overall sustainability. However, assessing the cumulative risk to a species is 

technically challenging. Qualitative and semi-quantitative methods may have difficulties in fully quantifying 

the cumulative impacts across multiple fisheries. There is an urgent need to develop methods and conduct 

ecological risk assessments on the cumulative impact of fishing on fish species encountered by multiple 

fisheries. 

The Australian Fisheries Management Authority (AFMA) and the Commonwealth Fisheries Research 

Advisory Board (ComFRAB) have identified developing cumulative risk assessment methods as a priority for 

research.  In this multi-agency project, we first briefly reviewed methods for measuring cumulative fishing 

effects.  The review concluded that although qualitative and semi-quantitative methods may be used in 

assessing cumulative effects from multiple stressors, there are unique challenges, including difficulty in 

quantifying uncertainty, subjectiveness of opinions, and heavy reliance on expert input.  Sustainability 

assessment for fishing effects (SAFE) is an existing method that has the required quantitative capability, but 

improvements and extension were necessary to achieve greater accuracy and precision in assessments.  

The team explored the potential of a wide range of data sources for assessing cumulative impacts. We 

chose the Australian southeast region as a pilot study area because of the high level of overlap between 

many fisheries and gear types. Major databases include: AFMA Logbook, AFMA Observer, CSIRO historical 

scientific surveys, NSW research vessel Kapala surveys and Bioregional mapping (Bioreg data) (Last et al. 

2010), etc.  The combined survey-observer database contains over 886,000 shot by shot records covering 

both Commonwealth and State waters, which were used to estimate gear efficiency and to derive fish 

density. Data scoping revealed that over 40 fishing gears have been used in Commonwealth fisheries. 

Similarly over 40 gears have been used in New South Wales fisheries, over 30 in Victorian fisheries, and 

over 20 in Tasmanian fisheries. The scoping process also uncovered some issues in data assemblage. Many 

datasets appear to be unverified. Obvious errors were not uncommon.  Each agency collects different types 

of information, uses different codes, terms, units, formats, etc., which makes data integration difficult. 

The project achieved three major advances in methodology development. A statistical method was 

developed to estimate gear efficiency for both randomly distributed and aggregated populations.  The 
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method is referred to as cross-sampling because it uses data from multiple gears that catch individuals 

from the same population at the same location and time.  Computer simulations were carried out to 

examine a range of distribution scenarios.  A robust mixture statistical distribution model stood out as the 

best estimate of gear efficiency and abundance for the most complicated situations: non-random fish 

distributions with varying abundance for each sampling observation.  The key strength of this model is the 

ability to account for variation in efficiency between multiple gear types—the mixture of parametric 

statistical distributions between spatial grids and within spatial grids. The model uses a Bayesian approach 

to estimate relevant parameters.  

Reliable estimates of gear efficiency enable fish density to be calculated from catch data.  A general 

additive model is then developed for smoothing density across the distributional range in each year.  

Distributional ranges are stratified (by Core area, Bioreg area, eastern region, and western region) to better 

capture heterogeneous density patterns. These results, combined with actual fishing effort and distribution 

or actual catch data, allow fishing mortality to be derived for each gear type or fishery.  Consequently, 

cumulative fishing mortality is readily estimated. 

It is important to note that fishing mortality alone, even in the absence of any other impacts, is insufficient 

to determine whether mortality rates are sustainable for a particular species.  Any estimate of sustainability 

requires a comparison between the predicted fishing mortality and some type of reference point.  Here we 

provide a meta-analysis of 248 data-rich species to link fishing mortality-based reference points with simple 

life history parameters (LHPs). Although natural mortality is potentially the best predictor, measuring 

natural mortality rate directly is rarely possible for any fish species, and for hundreds of species it is simply 

not plausible. Instead natural mortality is normally derived from other LHPs using various types of methods 

that are subject to varying levels of uncertainty.    Here we develop reference points based on basic LHPs: 

growth coefficient, maximum length, and maximum age.  Three reference points based on these alternative 

methods were developed: Fmsy from stock assessment, Fproxy from per-recruit analysis, and F0.5r from 

demographic analysis.  Bayesian error-in-variable models are used to take measurement error in LHPs into 

consideration. A range of models with alternative combinations of LHPs and assumptions about the hyper 

priors are investigated. The best model with the lowest DIC involves all three LHPs.  However, a model with 

growth coefficient as a single predictor can be adequate if maximum length and age are not available.  The 

results show that the importance of a particular LHP depends on whether the fish is a chondrichthyan or a 

teleost, and the former exhibits a lower sustainability for the same LHPs values.  

Here we apply the methodology described above to two selected case study species, both of which are 

endemic temperate chondrichthyans: Bight Skate (Dipturus gudgeri) and Draughtboard Shark 

(Cephaloscyllium laticeps). Gear efficiency was estimated for three gear types (longline, trawl, and Danish 

seine) for Bight Skate. With the defined gear affected area, trawl is most efficient while longline is the least.  

Bight Skate is largely distributed in a narrow depth range along the continental shelf outside state 

jurisdictions. We included 15 gear types in Commonwealth fisheries for their cumulative effect.  Results 

indicate the greatest impact is from the otter trawl sector, followed by auto-longline. Other sub-fisheries 

have minor impacts, mainly due to their low fishing effort. The estimated cumulative F varied between 

0.057 in 2010 to 0.063 in 2007.  Comparing the cumulative fishing mortality rates with the estimated 

reference points, it is concluded that Bight Skate was at least at medium risk (F ≥ Fmsy) in 2007 to 2010. 
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 For Draughtboard Shark, gear efficiencies were estimated for four gear types (longline, Danish seine, 

gillnet, and trawl). Within the area defined by the effect of the gear, gillnet is the most efficient capture 

method while longline is the least.  We estimated fishing mortality for each of 21 gear types in both 

Commonwealth fisheries and State fisheries for their cumulative effect.  The greatest impact on fishing 

mortality is from the gillnet sector, followed by trawl and longline. Other sub-fisheries and state fisheries 

have minor impacts, mainly due to their low fishing effort. The estimated cumulative F varied between 

0.043 in 2007 to 0.050 in 2010.  Comparing these cumulative fishing mortality rates with the estimated 

reference points, it appeared that the cumulative estimates of fishing mortality rates in 2007-2010 were 

within sustainable limits for Draughtboard Shark (F ≤ Fmsy). 

Finally, we outline the trade-off between the costs of collecting data for ERA as compared to the benefit 

returned to the industry/management by the approach.  Clearly, strategic assessment requires adequate 

data to assess fishery impacts on bycatch. Simply speaking, the cost of not collecting data and performing 

assessment is potential closure of the fishery, or at least further restrictions imposed on the fishery, though 

this depends on the degree of precaution exercised by managers in the absence of information. The 

methods we have developed can utilize existing data, particularly fishery-dependent data sources.  This has 

greatly reduced the cost of collecting specific data for ecological risk assessment of fishing effects.  For the 

purpose of assessing cumulative impacts, it is necessary to scope and include as many fisheries as possible.  

The process of data gathering, understanding, validation, standardisation, comparison, and inclusion is a 

time-consuming job.  Our assessments show that cumulative impact does not increase linearly as the 

number of fisheries increases.  Typically, only a few fisheries cause the majority of the fishing mortality to 

particular species while many fisheries have very minor effects.  For example, four out of 15 sub-fisheries 

cause 98% of the total fishing mortality for Bight Skate, and five out of 21 fisheries cause 99% of the total 

fishing mortality for Draughtboard Shark.  As such, the relationship between the cost of research and the 

benefit to the fisheries and environment is nonlinear.  If we can identify major sources of impact, for 

example, by examining fishing effort and its distribution before carrying out thorough risk assessments, 

significant costs and effort could be saved.  

This research will benefit fisheries management in many ways. The initial beneficiaries of the outputs will 

be commonwealth fisheries, but other state fisheries will benefit from the project by adopting the methods 

developed herein, and/or by implementing management arrangements for overlapping species. The 

publication of the results is likely to be picked up globally as Australia is currently leading research in this 

field. The tools developed from the project will enable AFMA to finalise comprehensive and effective 

ecological risk management (ERM) for Commonwealth fisheries. It is anticipated that the project has 

potential to reduce the ecological risks to all bycatch species that are incidentally caught at unsustainable 

levels. Hence, the research will improve management practices and efficiencies and enhance resource 

sustainability. 

 

Key words: Ecological risk of fishing effect, quantitative assessment, gear efficiency, abundance, 

distribution, bycatch, fishing mortality, reference points, sustainability  
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1 Background 

The implementation of an Ecological Risk Management (ERM) framework is a major step toward 

Ecologically Sustainable Development (ESD) in Australian Commonwealth-managed fisheries 

(http://www.afma.gov.au/managing-our-fisheries/environment-and-sustainability/ecological-risk-

management). Risk assessment and management are key elements in ESD. The ERM framework includes 

hierarchical assessments for fishing effects on five aspects of the marine ecosystem: target species, 

byproduct and discard species, Threatenend, Endangered and Protected (TEP) species, habitats and 

communities (Hobday et al. 2011). The assessment methods progress from qualitative Scale Intensity and 

Consequence Analysis (SICA), to semi-quantitative Productivity and Susceptibility Analysis (PSA), to 

quantitative sustainability Assessment of Fishing Effects (SAFE). These methods focus on individual fishery 

stressors— whereas it is the cumulative effects from all sources of stressors—for fishing effects—multiple 

fisheries and sub-fisheries that determine whether a species can sustain to external impacts. However, 

assessment of such cumulative impacts is technically challenging. As currently formulated, SICA and PSA do 

not combine multiple impacts in a quantitative fashion as susceptibility attributes are scored on a relative 

scale. Implementation of ERM across multiple stressors thus requires additional development, ideally at the 

quantitative level (Level 3 in the ERAEF hierarchy). Discussions with fisheries managers on this need have 

preceded the development of this proposal and the idea of carrying this research forward has been widely 

encouraged by Commonwealth and State fisheries managers.  

This project is listed as one of the “ComFRAB and Fishery Specific Research Opportunities – 2010”. AFMA 

and ComFRAB previous indicated their support for cumulative risk assessment. The need for methods to 

undertake cumulative risk assessments in a range of fisheries has been identified by fisheries managers. 

AFMA has advised us that the objective is to develop a Commonwealth methodology which is applicable to 

a wide range of fisheries, including SESSF, SPF, and ETBF.  
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2 Need 

National and international fisheries management policies require that the exploitation of fisheries 

resources should be conducted in a manner consistent with the principles of ecologically sustainable 

development, in particular the need to consider the impact of fishing activities on non-target species and 

the long term sustainability of the marine environment. AFMA’s Ecological Risk Management (ERM) 

framework details a process for assessing and progressively addressing the impacts that fishing activities 

have on marine ecosystems based on the ecological risk assessment for the effect of fishing (ERAEF). The 

ERAEF, which assesses species-by-species impacts of fishing on all species encountering a particular fishing 

activity, is perhaps the most comprehensive assessment method supporting ecosystem-based fisheries 

management currently available. This method has been applied to the majority of Commonwealth fisheries. 

However, these assessments only take account of risk to individual species from individual Commonwealth 

fisheries or sub-fisheries. It is the cumulative impact from all fisheries/sub-fisheries on each individual 

species that determines the species’ overall sustainability. However, the cumulative risk to a species across 

all Commonwealth and state-managed fisheries in which it is captured cannot currently be quantified at 

level 2 in ERAEF, the productivity-susceptibility assessment (PSA), nor at level 3 sustainability assessment 

for fishing effect (SAFE) for most fisheries. A recent study shows potentially very high levels of geographic 

overlap with fishing effort for many species across several Commonwealth fisheries, and some state-based 

fishery assessments have also highlighted the importance of a extending the ERAEF toolbox to include 

cumulative risk assessment. There is an urgent need to develop methods and conduct ecological risk 

assessments on the cumulative impact of all fish species encountered by multiple fisheries.   
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3 Objectives 

1. Scope the range of applications and review existing methods for measuring cumulative effects of 

capture fishing on species that are caught across a number of different fisheries or sub-fisheries. 

2. Scope the different data sources that are currently available and those that may be required to 

include assessment of cumulative effects under future ERAs. 

3. Develop methods for assessing cumulative risk from multiple fisheries or sub-fisheries including 

recreational and international fisheries, where feasible, on each individual fish species and stock, 

especially methods that can be applied to data poor fisheries. 

4. Apply the method to selected Commonwealth fisheries that operate in the same area with high 

levels of effort and multiple gear types, e.g., in the southeast region, with further consultation with 

AFMA. 

5. Describe the trade-off between the costs of collecting data for ERA as compared to the benefit 

returned to the industry/management of the approach. 
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4 Methods 

4.1 Review of methods for measuring cumulative fishing effects 

We collected and reviewed risk assessment methods from three major sources. First, we reviewed and 

compared literature collected from our previous research and regular alerts reported from literature 

gathering websites. Our existing literature and articles from alerts includes general risk assessment 

methodology, particularly pertaining to fishery management. Secondly, we conducted literature searches 

from the internet, for example, in Science Direct (http://www.sciencedirect.com/), Google Scholar 

(http://scholar.google.com.au/), Web of Science (http://science.thomsonreuters.com), and EBSCO 

(http://www.ebsco.com/). The search mainly focused on research relevant to cumulative risk assessment. Both 

peer-reviewed publications and grey reports are included in our review. We examined literature for their 

suitability for assessing cumulative effects of fishing. The third source was to directly approach scientists 

working on fisheries risk assessment to obtain materials that we might have missed in literature review. A 

brief summary of the results was presented and discussed in a project workshop to help determine the 

most appropriate approach for this project.  

4.2 Data source exploration  

We explored and reviewed major Commonwealth fisheries and their data availability for possible 

cumulative impact assessment. A recent AFMA report by Bromhead and Bolton (2005) titled “Potential 

interactions between Commonwealth managed fisheries” was used as a key document. This report 

identified two key areas in Australian waters where the level of fishing effort and multiple gears use are 

high: (1) the southeast (latitudes 35-50°S and longitudes 125 -155°E) and (2) off the central and north-

eastern Australia (Coral Sea region: latitudes 15-30°S and longitudes 145 -160°E). The southeast region has 

11 fisheries and 19 different gear types operating in the area, with high effort levels associated with many 

of these gears. The percentage similarity in species catch composition (occurrence) for these fisheries is 

very high. In the project workshop, data sources and availability in these two key areas were discussed. The 

data sources included both Commonwealth and State fisheries. In the workshop and the following 

discussions among collaborators including AFMA, we determined the species and fisheries geographic 

distribution suitable for consideration in the pilot study for assessing cumulative impacts in a 

comprehensive fashion.  

Because of the large number of bycatch species and the range of fisheries and sub-fisheries that may 

potentially cause fishing mortality to them, the project focused on priority fish species (e.g. those species 

previously assessed as high risk in ERAEF projects and known to be subject to a range of cumulative 

impacts). Previous ERAEF reports and the report by Bromhead and Bolton (2005) were used as primary 

references to select these priority species. Overlaps between Commonwealth and State fisheries were 

taken into consideration. Available data in these fisheries, particularly in the State waters, were sought and 

included for assessing the total combined impact.  

http://www.ebsco.com/
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4.3 Development of methods for assessing cumulative effects 

Based on our literature review, workshop discussion, as well as previous experience, it is clear that 

qualitative and semi-quantitative approaches, such as the Productivity-Susceptibility analyses (PSA) 

undertaken to date have not fully quantified cumulative impacts from a range of fisheries. Quantitative 

methods, such as the level 3 SAFE in the ERAEF hierarchy, may have the capacity to take multiple impacts 

into consideration for each individual species. However, due to its simplicity and minimal data requirement, 

when the existing SAFE method was applied to some fisheries (e.g., SESSF), some fairly large assumptions 

had to be made. First, for many data-poor species, the method assumed that the distribution of the species 

has a random or uniform distribution with their distribution range. A method to capture their 

heterogeneous distribution patterns could be more appropriate for many species. Second, a three-level 

gear efficiency was typically assumed for data-poor species, i.e., Q = 0.33, 0.66, and 1.0. This quantity 

directly affects the estimated fishing impact. For a rigorous assessment, an estimation based on data is 

preferred over assumed values. Furthermore, other fisheries have different geographic coverages, stock 

boundaries, species compositions, and data availability. Even for the SESSF, the cumulative impacts only 

included impacts from five Commonwealth sub-fisheries and none from overlapping state, international, or 

recreational fisheries. It is necessary to extend the existing methods, and develop new methods for these 

fisheries. The goal is to apply advanced statistical and mathematical techniques to limited existing data to 

quantify cumulative fishing effects from various sources. The techniques include parametric statistical 

distributions, Bayesian theory, as well as general mathematical calculations. The Results section describes 

three major components of the method developments: gear efficiency, heterogeneous density, and 

reference points. 

4.4 Apply the method to selected Commonwealth fisheries  

Within the Commonwealth fisheries, spatial overlap and species caught by multiple gears are common. We 

applied the method developed in this report to selected Commonwealth fisheries and priority species. We 

also included impacts to the selected species by fisheries managed by State governments. Overlap between 

Commonwealth fisheries and the state fisheries were integrated into the cumulative impact assessment.  

The existing ERM framework was reviewed to determine its suitability to assess the cumulative effects of 

fishing. At the beginning of this project, AFMA undertook a project “Review of scientific & economic 

information arrangements” (AFMA 2011). The expert panel in that project identified that ecological risk 

assessments and ecological risk management as one of the key driving research requirements. The panel 

also highlighted the importance of cost-effective data collection and cost-effective research. Specifically, 

the panel considered that industry-mediated data collection was likely to be cost-effective.  We have made 

best use of existing fishery-dependent data for estimating gear efficiency, fish distribution, and fish density, 

from which cumulative estimates of fishing mortality can be derived.  
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5 Results and discussion 

 

This “Results and discussion” chapter contains five sub-sections. Each of these five sub-sections aims to 

address the five objectives described in chapter 3—Objectives. Section 5.1 provides a brief review of 

existing methods for measuring cumulative effects of capture on species that are caught across a number 

of different fisheries or sub-fisheries. Section 5.2 describes various data sources that are currently available 

and those that may be required to include assessment of cumulative effects under future ecological risk 

assessments (ERAs). Section 5.3 is the foundation of the report where we developed quantitative methods 

for assessing cumulative risk from multiple fisheries. Section 5.4 applies the methods to selected species 

that are impacted by a range of fisheries (including Commonwealth and States’ fisheries). Finally, in Section 

5.5 we discuss the cost-benefit trade-off for conducting an assessment of cumulative fishing effects. 

 

5.1 Brief review of methods for measuring cumulative fishing effects 

A range of methods have been developed and used in the assessment of fishing effects on non-target 

species. The methods can be generally categorized as qualitative, semi-quantitative, and fully quantitative 

(Scandol et al. 2009; Hobday et al. 2011). Most of the existing methods are appropriate for analysis of 

fisheries with a single fishery or gear type. The cumulative fishing effects represent multiple, often 

simultaneous, fishing pressures acting on species in a community and their habitat. The frameworks and 

techniques for cumulative risk assessment in the ecological domain are relatively new and mostly directed 

at the health risks associated with exposure to combinations of chemicals. Because of data limitation, 

cumulative risk assessment for fishing effects on bycatch species is an emerging research area, although the 

question has been raised for years. We briefly discuss major categories of methods used in fishery risk 

assessment. 

5.1.1 QUALITATIVE AND SEMI-QUANTITATIVE METHODS 

Qualitative and semi-quantitative risk assessment methods produce ordinal (e.g. high, medium, low, or 

score on a scale of 1 to 10) risk scales. They often involve the use of descriptive scales for consequence and 

likelihood in a table form which are then combined into a risk matrix where risks are assigned to priority 

classes based on their consequence and likelihood (Scandol et al. 2009, Pears et al. 2012).  Several 

qualitative or semi-quantitative methods have been developed in Australia (Fletcher et al. 2002, 2005; 

Astles et al. 2006, 2009; Stobutzki et al. 2001; Hobday et al. 2011) and have been applied to many 

individual fisheries. The two groups of methods are similar in nature so distinction between the two is 

vague (Scandol et al. 2009; Hayes et al. in review). For example, in the assessment of consequence of 

fishing on bycatch species, the qualitative risk analysis (consequence X likelihood) determines the 



RESULTS AND DISCUSSION 

 

18 

 

consequence category (Minor, Moderate, Major, and Extreme) by considering the take in one particular 

fishery and comparing this level to total take by all fisheries (Fletcher et al. 2002; Fletcher 2010; 

http://www.fao.org/fishery/eaf-net/eaftool /eaf_tool_4/en).  

Similarly, the semi-quantitative Productivity Susceptibility Assessments (PSA) determines a susceptibility 

score (1 to 3) in each fishery by considering species availability, encounterability, selectivity and post-

capture mortality. Some of these attributes can be fully quantitative but the thresholds for assigning high, 

medium and low risk can be somewhat arbitrary (e.g., whether 80% or 95% of population impacted should 

be classified as high risk).  When the consequence category or susceptibility score has been assigned to 

each species within each fishery (gear or sub-fishery), integrating them across multiple stressors (i.e. gears 

and sub-fisheries) becomes challenging. Consequence categories or susceptibility scores across multiple 

stressors cannot be simply added together.  For example, two Minor consequences do not necessary 

accumulate to a Moderate consequence, nor do three Moderate consequences necessarily accumulate to 

an Extreme one. In theory the PSA method can be used for cumulative impacts of capture fishing a given 

unit individual units (species/habitats), by adding the risk values from different fisheries for a given 

susceptibility attribute. Productivity attributes remain unchanged because they are independent of the 

fishery. The advantage of this method is that it does not require catch volumes, which are often not 

available for bycatch species in many fisheries.  

The Ranked Risk Assessment of Multiple Fisheries (RRAMF) method has made integrating qualitative risks 

possible (Evans and Molony 2010). For example, to allow an estimate of bycatch across a region to be 

determined, this method ranks the relative abundance of each species in the bycatch in each fishery from 1 

to 5. Those species that were rare in the bycatch were given a rank of 1 and those that were highly 

abundant were given a rank of 5. Because there are different levels of effort and catch in different fisheries, 

the fisheries are weighted according to their comparative catch.  Scaled-up estimates of catch demonstrate 

the relative impact of fisheries on the bycatch and are used for weighting fisheries, i.e. the weighting was 

based on the order of magnitude differences between the scaled-up data for the fisheries. However, this 

method requires catch abundance data, which may not be available for many bycatch species. 

The Consequence-Likelihood approach has been widely used in fisheries risk assessment, particularly in 

Western Australia (Fletcher et al. 2002; Fletcher 2005, 2010; Fletcher et al. 2012a). This approach has been 

used to combine individual risk values to a regional level (Fletcher et al. 2011; Fletcher et al. 2012b, 2012c).  

The process uses the branch structure of the component trees to combine multiple risk categories. Each of 

the branches represents groups of “like risks” that can be managed collectively (Fletcher et al. 2012a).  The 

method has been applied to the West Coast Bioregion of Western Australia, and the resulting priorities are 

used as the basis for annual budget preparation by the State Department of Fisheries. This type of risk 

assessment is simple to apply in fields where there is a large database of accidents or failures. In fisheries, 

the consequence-likelihood method can be prone to error and inaccuracy due to lack of data so a larger 

precautionary buffer should established in their use. From efficiency point of view, the simple qualitative 

methods can be useful as an early screening process to identify the major source of stressors before 

quantitative assessments are carried out. 

For qualitative methods, the scale (e.g. 1 to 3 or 1 to 10) and risk thresholds for attributes can be arbitrary; 

different applications may use different scales (e.g., 1 to 3, 1 to 5, or 1 to 10) and even attributes (e.g., 

http://www.fao.org/fishery/eaf-net/eaftool
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which life history traits to be used) (Scandol et al. 2009; Hayes et al. in review). Although these methods 

may use mathematical operations, such as summation and multiplication to derive individual scores, the 

relative scales for some attribute remain arbitrary (Hayes et al. in review). Qualitative and semi-

quantitative methods are flexible and suitable for screening potential risk in data-poor situations (Bulman 

et al. 2008; Daley et al. 2007; Hobday et al. 2007; Smith et al. 2007).  However, one of the main difficulties 

with these methods is the uncertainty around the risk scores/consequences. Since data uncertainty and 

threshold values (e.g., vaguely high, low risk) intermingle, it is problematic to evaluate uncertainty.  Thus 

qualitative and semi-quantitative analyses generally do not provide explicit uncertainty values (Hayes, 

2011). Importantly though, the application of the precautionary principle to missing data means that risk 

scores in the PSA method always represent the worst risk scenario. 

Qualitative and some semi-quantitative approaches often use stakeholder and expert knowledge to help 

determine risk scores. This process may lead to better outcomes (Beierle 2002) but depending on experts 

and stakeholders, it can be prone to biases, particularly when there are multiple stressors (Kynn 2008).  

This can result from overconfidence or higher weight from more influential participants in the discussion 

group (Burgman, 2005).   

5.1.2 QUANTITATIVE METHODS 

Quantitative methods use numerical data from a variety of sources in the analysis. They typically involve 

mathematical models, which assume some scientific understanding of the biological process. Quantitative 

methods span many orders of complexity, from simple linear mechanistic models to nonlinear, high 

dimensional statistical models (Sharp and Smith 2009; Fock 2011; Zhou et al. 2011). Furthermore, because 

ecological risk assessments generally involve multiple components, a specific assessment approach may 

encompass a range of models with varying degrees of complexity. Technically, traditional stock 

assessments, multispecies ecosystem modelling, and management strategy evaluation (MSE) that have the 

capability to assess cumulative fishing impact all belong with the quantitative method category. All 

numerical values used in the quantitative assessment are biologically meaningful, hence, they allow 

mathematical computation while the biological meanings are preserved and progressed in the whole 

assessment process. This is the type of method that has the capacity to straightforwardly deal with 

cumulative effects in an ecological process. In particular, we determined that the Sustainability Assessment 

for Fishing Effects (SAFE, see Zhou and Griffith 2008; Zhou et al. 2009; Zhou et al. 2011) method has the 

potential to be extended and improve the assessment of cumulative fishing impacts on species with limited 

information. In this study, cumulative fishing mortality result from multiple fishing gears, fisheries and sub-

fisheries. The risk endpoint is a stock or population of a species under a given jurisdiction. In other words, 

our aim is not to assess the entire species across its full geographic range. In this report, we focus on the 

development of quantitative methods for assessing cumulative fishing effects on case study species. 

5.2 Scope of different data sources 

After exploring data availability and reviewing literature and fisheries, the project team discussed options 

and decided to use the southeast region as our case study area. Consequently, we focussed on compiling 

data pertaining to this region. 
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Multiple sources of data were assembled during the project. Both Commonwealth government agencies 

and State governments agencies were requested to provide their data. For the purpose of estimating 

species distribution and density, we attempted to gather two major categories of data: scientific surveys 

and fishery-dependent observations. For the purpose of estimating cumulative fishing impacts, we 

collected as many fisheries as possible, including Commonwealth sectors (Table 5-1) and a range of State 

fisheries in New South Wales, Victoria, and Tasmania.  

Our major database includes: AFMA Logbook; AFMA Observer; CMAR Warehouse, including historical 

scientific surveys; and NSW Kapala surveys. We have streamlined data extracts from these databases. This 

function enables a single query to generate extracts across all databases. Queries include spatial domains 

that can change the underlying grid easily. Fishing effort details can be extracted from the CMAR 

Warehouse and observer data.  

The combined survey-observer database contains over 886,000 shot by shot records covering both 

Commonwealth and State waters (Figure 5-1). Information includes survey name, region, bottom type, 

IMCRA polygon, time, fishery, fishing method (gear type), effort, species CAAB code, species name, location 

(latitude and longitude), depth, trawling length, headrope length, catch in weight, catch in number, etc. 

However, not all these fields have data for many records. Yet, this is the most useful piece of data for 

estimating bycatch species distribution, density, and gear efficiency.    

Bioreg Database contains species spatial distribution. We used existing ERA distributions from the Bioreg 

database. A data query method has been developed to join tables in other databases, e.g., logbook. 

At least 41 fishing methods (gear types) have been used in Commonwealth fisheries (Table 5-1). Many of 

these gears are used in the southeast region fisheries. Our assessment focused on impacts of these gears 

used in Commonwealth fisheries. 
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Figure 5-1. Locations of scientific surveys and observer data in the database used for the report. 

 

New South Wales data: fishing time (year, month, and date), fishing method, effort, grid code, site code, 

species code, common name, catch weight, etc. There are over 119,000 daily shot by shot records in 

2009/10 and 2010/11, and 2011/12 years. We also examined the data before 2009. However, the reporting 

system has changed and resolution has increased since 2009. Hence, data before 2009 are not compatible 

with more recent data and are not used in the analysis.  

Forty-two fishing methods (gear types) have been used in NSW (Table 5-2). About a dozen gear types are 

applied in ocean fisheries. Impacts from these fisheries are included in the assessment. 

Tasmania: time, gear, effort, depth, location, species, estimated weight, etc., are included in the database. 

There are at least 21 gear types used in Tasmania fisheries (Table 5-3). We also compiled research data 

from gillnet fisheries, line fishing, and rock lobster trap fishing. The fisheries recorded dozens of bycatch 

species but for many observation only number or size were recorded. For many observations only 

summaries were provided without precise locations and times.  

Victoria: fishing time (year, month), area code, depth, gear code, effort, species code, catch in weight, etc. 

There are about 47,000 records from 2007 to 2011. About thirty methods (gear types) are used in Victoria 

(Table 5-4). Fisheries that have potential impact on case study species are included in the assessment. 
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South Australia: Great Australian Bight (GAB) historic survey data were obtained for the period 1965– 1989. 

A total of 61 species were recorded. The data fields include location, depth, species, catch in weight, etc.  

There were many difficulties compiling these data. Each agency has its own format, type of information, 

codes of each data field, etc. It was challenging to understand the data and standardise the fields from 

different sources to make them compatible. In addition, cleaning up errors in all data sources was time 

consuming.   

A preliminary exploration of these data indicated that the sample size was sufficient and the reporting was 

precise enough to conduct quantitative risk assessment for cumulative fishing impacts for a range of 

bycatch species. However, for some species, the quality of assessment will be limited by the amount of 

available data and the simple assumptions may have to be applied (i.e., assuming homogeneous 

distribution, and three fixed levels of catch efficiencies). For example, the method for estimating gear 

efficiency for the particular species (see below) and low-efficient gears relies on comparing catch rates 

from different fishing methods at the same location and time where effort overlaps. This may limit 

available sample size because the normal intended use of the different fishing gears is to target different 

substrates. For example, line gear can be used over the roughest ground but trawl gear cannot. It is 

important to note that while direct empirical comparisons were possible, low sample sizes limit the 

confidence in these estimates. 
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Table 5-1. Fishing methods (gears) used in Commonwealth fisheries. 

Method code Description 

 

Method code Description 

AL Automatic  longline 

   BL Demersal Longline 

 

LLP Pelagic Longline 

BS Beach Seine 

 

ML Minor Line 

CP Crab/Lobster Pot 

 

MT Midwater Trawl 

DG Dredging 

 

OP Octopus Trap 

DI Diving (General Fishing Method) 

 

OT Otter Trawl 

DIF Diving Free Dive Method 

 

PB Pole & Bait 

DIH Diving Hooker Method 

 

PL Pole 

DL Drop Line 

 

PS Purse Seine 

DN Dip Net 

 

RR Rod And Reel 

DO Dory 

 

SJ Squid Jig 

DS Danish Seine 

 

SL Setline 

FP Fish Trap 

 

SP Spear 

GA Graball 

 

TC Traps (Crab) 

GN Gillnet 

 

TF Traps (Fish) 

GND Gillnet Drift 

 

TL Trotline 

GNF Gillnet Fixed 

 

TO Traps (Octopus) 

GNP Gillnet Pelagic 

 

TR Trolling 

HL Handline 

 

TRL Traps (Lobster) 

HN Hauling Net 

 

TW Trawling 

HNT Hand Net 

 

TWDS Trawling (Danish Seine) 

J Jigging 

 

TWOB Trawling (Otter) 
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Table 5-2. Gear types and effort units in New South Wales fisheries.  

Code Method Effort unit Used in ocean in 2009-2011 

 

Nets 

 
 

BTN Bait net Total number of  shots   
 

DSF Danish seine trawl net (fish) Total trawl time (hrs)    
 

DSN Dip or scoop net (prawns) Hours fishing (hrs)     
 

DHNC Drag or hauling net (carp) Hours fishing (hrs)     
 

FHN Flathead net    Length of net  (m)   
 

GFN Garfish net (bullringing)   Total number  of shots   
 

GFC Garfish net (hauling)–beach based  Total  number of shots   
 

GBB Garfish net (hauling)–boat based  Total  number of shots   
 

GLN Gill net    Length of net  (m)   
 

HHP Hand-hauled prawn net   Hours fishing  (hrs)    
 

HHY Hand hauled yabby net  Length  of net (m)   
 

HLN Hauling net (general purpose)  Total  number of shots   
 

HLF Hoop or lift net  Number  of nets    
 

MHN Meshing net    Length of net  (m)   Yes 

OTF Otter trawl net (fish)  Total  trawl time (hrs)   
 

OTP Otter trawl net (prawns)  Total  trawl time (hrs)   Yes 

PABC Pilchard, anchovy & bait net Total number of shots    
 

 

Beach based           
 

PABB Pilchard, anchovy & bait net Total number of shots    
 

 

Boat based           
 

PNH Prawn net (hauling)   Hours fishing  (hrs)    
 

PNS Prawn net (set pocket)  Total  number of hours set (hrs) 

PRN Prawn running net   Hours fishing  (hrs)    
 

PSN Purse seine net   Total number  of shots   
 

SRN Push or scissor net (prawns) Hours fishing (hrs)     
 

SNP Seine net (prawns)   Hours fishing  (hrs)    
 

SCN Spanner crab net   Number of  nets    Yes 

TWN Trumpeter whiting net (hauling)  Total  number of shots   
 

 

    Line        
 

DTL Driftline     Number of hooks     
 

DPL Dropline     Number of hooks     Yes 

HDL Handline     Number of hooks     Yes 

JGG Jigging     Number of lures     Yes 

PLG Poling     Number of hooks     
 

STD Setline (demersal)    Number of hooks     Yes 

STL Setline     Number of hooks     
 

TLG Trolling     Number of lures     Yes 

TTL Trotline (bottom set)   Number of  hooks    Yes 
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Code Method Effort unit Used in ocean in 2009-2011 

 

    Traps        
 

CPT Carp trap    Number of traps     
 

CBT Crab trap    Number of traps     
 

ELT Eel trap    Number of traps     
 

FTD Fish trap (bottom/demersal)   Number of  traps    Yes 

YBT Yabby trapping    Number of traps     
 

 

    Other        
 

ETF Electro-fishing     Hours fishing (hrs)     
 

HDG Hand gathering    Hours hand gathering  (hrs)   Yes 

SND Skindiving     Hours diving (hrs)     
 

 

 

Table 5-3. Gear types and effort units in Tasmania fisheries.  

Code Description Effort units 

BL Bottom longlining Line lifts,  hooks 

BS Beach seining Metres, shots 

CP Cray pots Pot lifts, hrs 

DL Droplining Line lifts, hooks 

DN Dip net Fishers, hrs 

DS Danish seine Metres, shots 

FP Scalefish trapping Trap lifts, hrs 

GN Graball netting Metres, hrs 

HC Hand collection Fishers, hrs 

HL Hand lines Lines, hrs 

MN Small mesh netting Metres, hrs 

MT Midwater trawling 

 OP Octopus trapping Pot lifts, hrs 

OT Otter board trawling Shots, hrs 

PS Purse seining Metres, shots 

SJ Hand squid jigging Jigs, hrs 

SL Shark longline Line lifts, hooks 

SN Shark netting Metres, hrs 

SP Flounder spearing Fishers, hrs 

TL Trotlining Line lifts, hooks 

TR Trolling Lines, hrs 

XX Other 
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Table 5-4. Gear types and effort units in Victoria fisheries.  

Code Descript Effort units 

DL Drop Line Days, C_Shots, C_Hours, C_HookLift, C_HookHour 

DS Danish Seine Days, C_Shots, C_Hours, C_ShotMesh, C_ShotCoil 

FR Fish Trawl (sweeps attached) Days, C_Shots, C_Hours 

FT Fish Trap Days, C_TrapLift, C_TrapHour 

H2 Bait Seine (Small Mesh < 30mm) Days, C_Shots, C_M-lifts, C_Hours 

H3 Haul Seine (Medium Mesh 30-59mm) Days, C_Shots, C_M-lifts, C_Hours 

H4 Haul Seine (Large Mesh 60-100mm) Days, C_Shots, C_M-lifts, C_Hours 

H5 Garfish Seine (Floating 25-29mm) Days, C_Shots, C_M-lifts, C_Hours 

H6 Ringing Seine (Bottom Set 25-45mm) Days, C_Shots, C_M-lifts, C_Hours 

HJ Hand Squid Jig Days, C_Hours 

HL Hand Line Days, C_Shots, C_Hours, C_HookLift, C_HookHour 

M1 Multifilament Mesh < 60mm Days, C_Shots, C_M-lifts, C_M-hours, C_Hours 

M2 Multifilament Mesh 60-74mm Days, C_Shots, C_M-lifts, C_M-hours, C_Hours 

M3 Multifilament Mesh 75-94mm Days, C_Shots, C_M-lifts, C_M-hours, C_Hours 

M4 Multifilament Mesh 95-124mm Days, C_Shots, C_M-lifts, C_M-hours, C_Hours 

M5 Multifilament Mesh 125-130mm Days, C_Shots, C_M-lifts, C_M-hours, C_Hours 

M6 Multifilament Mesh > 130mm Days, C_Shots, C_M-lifts, C_M-hours, C_Hours 

N1 Non-shark Monofilament Mesh < 60mm Days, C_Shots, C_M-lifts, C_M-hours, C_SerchHrs 

N2 Non-shark Monofilament Mesh 60-74mm Days, C_Shots, C_M-lifts, C_M-hours, C_SerchHrs 

N3 Non-shark Monofilament Mesh 75-94mm Days, C_Shots, C_M-lifts, C_M-hours, C_SerchHrs 

N4 Non-shark Monofilament Mesh 95-124mm Days, C_Shots, C_M-lifts, C_M-hours, C_SerchHrs 

N5 

Non-shark Monofilament Mesh 125-

130mm Days, C_Shots, C_M-lifts, C_M-hours, C_SerchHrs 

N6 Non-shark Monofilament Mesh > 130mm Days, C_Shots, C_M-lifts, C_M-hours, C_SerchHrs 

OP Octopus Trap/Pot Days, C_PotLifts, C_PotDays 

PS Purse Seine Days, C_Shots, C_M-lifts, C_Hours, C_SerchHrs 

PT Prawn Trawl (no sweeps attached) Days, C_Shots, C_Hours 

RL Lobster Pots Days, C_Pot-lift 

SL Shark Long Line Days, C_HookLift, C_HookHour,  

SN Snapper Long Line Days, C_Shots, C_HookLift, C_HookHour 

TR Troll Line Days, C_Hours, C_HookLift, C_HookHour  
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5.3 Development of methods for assessing cumulative risk 

Our brief review indicates that quantitative methods may be more appropriate for handle cumulative risks 

for bycatch species in capture fisheries that lack catch statistics and comprehensive annual independent 

surveys, providing there are fishing effort data (when catch data are not available) and reliable observer 

data or some historical survey data. In particular, we identified specific improvements that can be made to 

the Sustainability Assessment for Fishing Effects (SAFE) method to improve its utility for this purpose. The 

general SAFE approach involves estimating fishing mortality rate and corresponding reference points. The 

basic principle is similar to that used in target species stock assessment. Because population sizes 

(abundance or biomass) are difficult to estimate for hundreds of bycatch species, SAFE focuses on the 

relative quantity—the fishing mortality rate—as the most easily obtainable indicator. Fishing mortality can 

be derived from spatial overlap between species distribution and fishing effort distribution, catchability 

resulting from probability of encountering the gear and size-dependent selectivity, and post-capture 

mortality. Cumulative impacts from multiple fishing sources on regional stocks of bycatch species are a 

linear function of each single stressor. Therefore, estimation of cumulative effects of capture fishing is 

feasible when the impact from each single fishing sector can be derived.  

In this project, we extended and improved the SAFE method in several ways. This project achieved three 

major new method developments: estimating gear efficiency by Bayesian mixed statistical distribution 

models and simulation, estimating fish density via modelling, and developing sustainability reference points 

based on simple life history traits. We present these new methods in the following sub-sections. 

5.3.1 ESTIMATING GEAR EFFICIENCY AND ABUNDANCE FROM CATCH DATA: CROSS-

SAMPLING METHOD 

5.3.1.1 Introduction 

Fishing gears typically catch only a fraction of the fish that reside within the gear affected area in each gear 

deployment.  The quantity that links the catch to the true abundance N or biomass B available to the gear 

at each gear operation (shot) is called a gear efficiency Q (alias fishing power, or probability of catching a 

fish species).  When we consider the true population size as the whole stock, this quantity is defined as 

catchability (q) in fisheries (Arreguin-Sanchez 1996).  Estimating gear efficiency is necessary when deriving 

absolute abundance estimates from catch data, as well as when refining estimates of catchability in stock 

assessment models (Somerton et al. 1999).   

The traditional way to estimate gear efficiency is by field experiments and most typically for trawls.  

Somerton et al. (1999) categorized four techniques for studying trawl efficiency: (1) gear comparison 

experiments where Q is estimated as the quotient of fish density (catch per area swept) from the trawl to 

density estimates from a gear type believed to be completely (i.e., 100%) efficient, such as visual transects 

from a ROV or minisub; (2) depletion experiments where Q is estimated by repeatedly trawling on a small 

closed population then fitting a model to the decline in cpue as a function of cumulative catch; (3) tagging 

experiments where Q is estimated by determining the fate of individual fish, identified with acoustic 

transponding tags, that were initially positioned in the trawl path; and  (4) experiments focused on vertical 
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herding, horizontal herding, and escapement.  The estimates of Q are then obtained by combining the 

three components in a mathematical model of the catching process.  As these approaches are costly, only a 

few studies have been conducted for a limited number of species and trawl types.  In addition, gear 

efficiency can be affected by many factors, including selectivity, fish behaviour, fisher skills, and 

environmental conditions (Arreguin-Sanchez 1996; Dickson 1993).  This makes the result for one species in 

one study difficult to be applied to another species or in a new region. 

 Estimating gear efficiency is even more difficult for other gear types, such as hook and lines, seine, gillnets, 

and traps.  Studies on these gear types often focus on relative selectivity rather than overall efficiency 

(Borgström and Plahte 1992; Prchalová et al. 2009).  Unlike trawl, clearly defining gear affect area is not 

easy for gears that do not physically swept a measurable area.  Absolute abundance estimation based on 

these gear types is less common.   

Recently, promising methods have been developed in ecology to estimate animal abundance and survey 

detectability.  Detectability in ecological studies is similar to gear efficiency in fisheries.  These methods 

have been applied in terrestrial populations such as birds (Martin et al. 2011; Royle 2004; Wenger and 

Freeman 2008).  It has been demonstrated that estimating detectability and abundance from repeated 

observations is possible when the animals are randomly distributed within the study area.  However, it is 

challenging to estimate Q and B for a non-random, aggregated distribution, which is generally the case for 

marine fish species. 

In this section, we develop statistical methods to estimate gear efficiency for multiple gear types catching a 

population with either random or aggregated distribution patterns.  The methods can simultaneously 

estimate population density or abundance.  We carry out simulations to test the performance of the 

methods and apply them to real fish populations. 

5.3.1.2 Methods for estimating gear efficiency 

The method developed here for estimating gear efficiency (catchability, detectability) and abundance 

involves two processes.  The first component is the distribution pattern of fish individuals over the spatial 

range where fishing or surveys have taken place.  The second component is to catch (sample) fish from 

such a population distribution pattern. 

Distribution process 

Population distributions fall into two general patterns, a random distribution and an aggregated 

distribution.  In ecology, a random distribution is typically modelled by a Poisson distribution while the 

aggregated distribution is modelled by a negative binomial distribution.  The Poisson distribution is 

relatively simple, involves only one parameter, and the mean population size equals its variance.  If the 

number of individuals in grid cell i is Ni, the probability mass function of Poisson distribution is: 
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where  is mean population size. Non-random distribution is considered more common in ecology and is 

certainly typical for fish species.  Let us assume that individuals of a particular species are independently 

distributed in an aggregated non-random pattern in the study area.  We use negative binomial distribution 

(NBD) to describe the spatial distribution of aggregated populations.  The number of individuals Ni in grid 

cell i can be described by one of the parameterizations of NB probability density function: 
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where is the mean and r is the shape parameter.  The variance of the mean is 
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The shape parameter r describes the extent of aggregation so measures overdispersion and r > 0.  As r→ ∞, 

the negative binomial converges in distribution to the Poisson so the variance approaches the mean. 

WinBUGs uses the following alternative parameterization: 
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where r (> 0) is the same as in equation (2), and p [  (0, 1)] is the success probability in each experiment.  

The mean is  = r(1 – p)/p and the variance is 2 = r(1 - p)/p2.  

The catch process 

Given an individual fish is present in cell i, there are two possible outcomes when fishing gear passes over 

it: caught or not caught.  Hence, it is natural to assume that the number of fish of a particular species 

caught in grid cell i, sample time j by gear type k, follows a binomial distribution:  

),(~ ikijk NQbinC          (5-5)    

where Qk is the probability of being caught (called gear efficiency in fishery research) by gear type k, and Ni 

is the number of fish within the gear-affected area from previous equations.  

In the marine environment, the sizes of grid cells are often large.  Abundances available for capture within 

the gear-affected area may change even when repeated samples are taken during a short time period in 

the same cell.  Hence, it may be more realistic to assume varying Nij, or even Nijk.  Alternative models are 

explored below. 
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A more complicated situation arises when scientific surveys or fishing operations take place in locations not 

occupied by a species that is of interest to the study.  This will result in zero catches in excess of the zeros 

modelled by the equations above.  When zero catch data are collected, it is logical to use zero-inflated 

distribution models, such as zero-inflated Poisson (ZIP) or zero-inflated negative binomial distribution 

(ZINB).  A zero-inflated model is a two-component mixture model combining a point mass at zero with a 

normal Poisson or negative binomial count distribution.  There are two sources of zeros: from the point 

mass and from the count component.  For the ZINB, the probability function is expressed as (Zhou et al. 

2012a):  


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where is the probability of occupancy, and Cijk is again the number of a particular fish species caught in 

grid cell i, sample j, by gear type k. 

Parameter estimation 

The distribution and catch processes are modelled in a Bayesian hierarchical framework.  For the Poisson 

distribution, the abundance in cell i is generally modelled as: 

Ni ~ pois(). 

Catch data are then modelled as a binomial distribution: 

Cij ~ binorm(Q, Ni). 

We use a lognormal distribution for the mean  to ensure non-negative abundance and use beta 

distribution for the gear efficiency parameter since Q must be limited between 0 and 1.  Weak priors are 

assumed for these two parameters: Q ~ beta(1,1), and   ~ lnorm(0, 0.01) 

For non-random distribution patterns, abundance in a cell is modelled by  

Ni ~ negbin(p, r). 

For similar reasons, we use beta distribution for probability parameter p and lognormal distribution for the 

shape parameter r: p ~ beta(1,1), and r ~ lnorm(0, 0.01). 

For the zero-inflated models, the mean abundance in a cell taking excessive zeros into account, Z

iN , is the 

product of the two components: occupancy probability and the mean from a statistical distribution (either 

Poisson or NB).  In the model, it is estimated by (Wenger and Freeman 2008): 

ii

Z

i NPreN                

where Ni is from previous equations, and the Prei is binary value for presence or absence, which is modelled 

as 
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)(~ ii BernoulliPre 
. 

Further, occupancy probability  varying between 0 and 1, and may be often affected habitat condition.  To 

facilitate predicting occupancy from environmental covariates, we estimate this parameter by  

Xα)( ilogit 
 

where X is a vector of covariates and  is parameter.  Similarly, other parameters, such as p, r, , and , can 

also link to environmental covariates, including depth, latitude, year, sample time (day or night), swept 

area, bottom type, etc. 

Simulation 

We carry out a range of simulations representing different scenarios.  We then build alternative models to 

examine their performances.  Data are generated by using the R software package, while the Bayesian 

models are implemented in WinBUGS.  The negative binomial distribution can be modelled either by the 

built-in distribution function dnegbin(p, r), or using mixture of Poisson distribution and gamma distribution:  

)(~ ii PoissonN  and ),(~ ii rgamma  . 

Here, the shape parameter r is the same as above, while  = r and its variance
22  r .  

We run three chains with varying initials.  Convergence is assessed by visual examination of chain 

trajectories and by Gelman-Rubin statistics Rhat.  The data generation and MCMC sampling are run from R 

package R2WinBUGS.  MCMC continues for sufficient iterations after convergence before additional 

iterations are kept for parameter inferences. 

5.3.1.3 Results of simulation for gear efficiency and abundance 

Scenario 1 

Data generation: This is the simplest case where fish are assumed to be randomly distributed across 100 

grid cells (Table 5-5).  The mean number of fish for this Poisson distribution is 100.  Each cell is sampled 10 

times using one type of gear that has an efficiency of Q = 0.5.  The abundance is assumed to be fixed at 

each sampling time. 

 

Table 5-5.  Summary of data simulation and modelling process for Scenario 1. 

 Data generation Modelling 

Number of grids 100  

Mean fish per grid 100  

Distribution between grids Ni ~ pois(100) Ni ~ pois() 

Distribution within grid Fixed Fixed 
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Gear type 1 1 

Gear efficiency  0.5  

Number of samples per grid 10  

Catch process Cij ~ bin(Q, Ni) Cij ~ bin(Q, Ni) 

Note: i = grid, j = shot.  Prior for gear efficiency Q ~ beta(1, 1). 

 

Table 5-6.  Input data and model results for Scenario 1. 

 Input True value Posterior median (95% CI) 

Mean of individuals per grid 100 98.95 96.23 (88.9-103.4) 

Gear efficiency 0.5 0.50 0.511 (0.48-0.55) 

 

Bayesian model: The model has the same assumptions as in data generation, i.e., Poisson distribution 

between grids and fixed abundance within each grid when each and all samples are taken.  

Model performance: We use three chains with very different starting initials, and discard the first 30k 

iterations (converged at about 15k).  The median of posterior Q is 2% higher than the true value, while the 

posterior N is about -3% lower than the true mean abundance N (Table 5-6). For this random distribution 

and fixed abundance at each sampling, the Bayesian model can estimate the abundance fairly well (Figure 

5-2). 
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Figure 5-2.  Comparison of true abundance and the posterior median abundance (and their 95% CI) for 

Scenario 1. 

 

Scenario 2 

Data generation: Fish are assumed to follow an aggregated distribution among 100 grid cells.  The mean 

number of fish for this negative binomial distribution is 100.  The shape parameter r is set to 5.  Such a 

negative binomial distribution has a variance about 46 times of its mean.  Each cell is sampled 10 times 

using one type of gear that has an efficiency of Q = 0.5.  The abundance is assumed to be fixed at each 

sampling time (Table 5-7). 

 

Table 5-7. Summary of data simulation and modelling process for Scenario 2. 

 Data generation Modelling 

Number of grids 100  

Mean fish per grid 100  
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Distribution between grids Ni ~ negbin(100, 5) Ni ~ negbin(p, r) 

Distribution within grid Fixed Fixed 

Gear type 1 1 

Gear efficiency  0.5  

Number of samples per grid 10  

Catch process Cij ~ bin(Q, Ni) Cij ~ bin(Q, Ni) 

Note: i = grid, j = shot.  Prior for gear efficiency Q ~ beta(1, 1), p ~ beta(1, 1), r ~ lnorm(0, 0.01). 

 

 

Table 5-8.  Input data and model results for Scenario 2. 

 Input True value Posterior median (95% CI) 

Shape r 5  4195 

Mean of individuals per grid 100 103.8 56.8 

Gear efficiency Q 0.5 0.50 0.861 (0.85-0.87) 

 

Bayesian model: The model has the same assumptions as in data generation, i.e., negative binomial 

distribution between grids and fixed abundance within each grid when each and all samples are taken.  

Model performance: This model performs poorly (Table 5-8).  The median of posterior Q is 72% higher than 

the true value, while the posterior N is about -45% lower than the true mean abundance N.  

The result indicates that for a population having an aggregated distribution pattern, gear efficiency and 

abundance are difficult to estimate using one single gear type. 

 

Scenario 3 

Data generation: This scenario is similar to Scenario 2.  Fish are assumed to follow an aggregated 

distribution among 100 grid cells (Table 5-9).  The mean number of fish for this negative binomial 

distribution is 100. The only difference is that three gear types are used to catch the same population.  

Their gear efficiency is 0.2, 0.5, and 0.8, respectively.  Each cell is sampled 10 times by each of the three 

gears.  The abundance is assumed to be fixed at each sampling time. 

Bayesian model: The model has the same assumptions as in data generation, i.e., negative binomial 

distribution between grids and fixed abundance within each grid when each and all samples are taken.  

Fishing operation is a binomial process for each gear type.  

Model performance: Three chains with different starting initials are used.  Convergence is good if the 

starting initials are appropriate (Figure 5-3).  It is difficult to achieve convergence when the initial N is too 

far off (e.g., 700).  When three chains are not mixing with each other for a long time, it may be necessary to 

change to a new initial.  When the three chains mix well, the posterior appears to be accurate (Figure 5-4).  
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The range of the MCMC trajectories tends to be narrow, resulting in small credible intervals.  The median of 

posterior Q and abundance N are very close to the true values (Table 5-10, Figure 5-5).  

 

Table 5-9.  Summary of data simulation and modelling process for Scenario 3. 

 Data generation Modelling 

Number of grids 100  

Mean fish per grid 100  

Distribution between grids Ni ~ negbin(100, 5) Ni ~ negbin(p, r) 

Distribution within grid Fixed Fixed 

Gear type 3 3 

Gear efficiency  0.2, 0.5, 0.8 Q1, Q2, Q3 

Number of samples per grid 10  

Catch process Cijk  ~ bin(Qk, Ni) Cijk ~ bin(Qk, Ni) 

Note: i = grid, j = shot, k = gear.  In all models, gear efficiency Q ~ beta(1, 1), p ~ beta(1, 1), r ~ lnorm(0, 

0.01). 

 

Table 5-10.  Input data and model results for Scenario 3. 

 Input Mean true value Posterior mean (sd); median (95% CI) 

Mean of individuals per grid 100 103.8 102.3 (1.56); 102.3 (99.4-105.5) 

Shape r 5  4.61 (0.66); 4.57 (3.43-6.01) 

Gear efficiency 0.2 0.20 0.20 (0.001); 0.204 (0.20-0.21) 

 0.5 0.50 0.50 (0.005); 0.503 (0.49-0.51) 

 0.8 0.80 0.81 (0.662); 0.811 (0.80-0.82) 

 

We were curious about the performance of a slightly different (incorrect) Bayesian model.  This alternative 

model assumes a Poisson distribution with each cell where the true abundance is fixed.  The result is a 

slight overestimation of Q (about 5% for the three gear types) and slight underestimation of N (-5%).  

 



RESULTS AND DISCUSSION 

 

36 

 

 

Figure 5-3.  Three MCMC trajectories for the gear efficiency parameter, Qk for Scenario 3. From the top to 

the bottom panels are Qk = 0.2, 0.5 and 0.8, respectively.  Different colours represent chains of different 

starting initials. 
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Figure 5-4.  Comparison of true abundance and the posterior median abundance (and their 95% CI) for 

Scenario 3. 
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Figure 5-5.  Density of MCMC samples for the gear efficiency parameter, Qk for Scenario 3. 

 

 

Scenario 4 

Data generation: Fish are assumed to follow an aggregated distribution among 100 grid cells.  In addition, 

abundance within each cell is assumed to vary at each sample time for each gear type.  This is close to the 

most real cases when the grid cell is sufficiently large and the available fish within the gear-affected area 

may change even when multiple samples are taken during a short time period in the same cell.  We assume 

this within-cell abundance variation follows a Poisson distribution (Table 5-11).  Again, three gear types are 

used to catch the varying population in each cell.  Gear efficiency is again 0.2, 0.5, and 0.8, respectively.  

Each cell is sampled 10 times by each of the three gears.  The fishing operation is again a binomial process 

for each gear type. We test several models which differ slightly in specification.   

 

Table 5-11.  Summary of data simulation and modelling process for Scenario 4. 

 Data generation Modelling 

Number of grids 100 100 

Mean fish per grid 100  

Distribution between grids Ni ~ negbin(100, 5) Ni ~ negbin(p, r) 

Distribution within grid N2ijk ~ pois(Ni) N2ijk ~ pois(Ni) 

Gear type 3 3 
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Gear efficiency  0.2, 0.5, 0.8 Qi1, Qi2, Qi3, 

Number of samples per grid 10 10 

Catch process Cijk ~ bin(Qk, N2ijk) Cijk ~ bin(Qik, N2ijk) 

 

Bayesian model 4.1:  

This model uses a negative binomial distribution between cells, and a Poisson distribution within a cell 

when each sample is taken but not for each gear type (that is, three gears catch the same abundance at 

each of the 10 sampling times). A fixed gear efficiency is assumed for each gear type. 

Ni ~ negbin(p, r)  

N2ij ~ pois(Ni)  

Cijk ~ bin(Qk, N2ij) 

This model does not perform well (Figure 5-6).  Random variation of abundance within each grid is difficult 

to deal with, even when three gear types are used.  Gear efficiency is generally underestimated.  In this 

example, all Qs are underestimated by about -36% (Figure 5-7).  Interestingly, the ratio between three gear 

types is the same as true values.   

When increasing the sample size from 10 shots by grid per gear to 50 shots per grid per gear type, the 

result does not improve.  Convergence was slow and difficult; even after 12000 iterations convergence was 

still not achieved.  
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Figure 5-6.  Three MCMC trajectories for the gear efficiency parameter, Qk for Scenario 4 using model 4.1. 
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Figure 5-7.  Density of MCMC samples for the gear efficiency parameter, Qk for Scenario 4 using model 

4.1. 

 

Bayesian model 4.2 

This model differs from model 4.1 by assuming that abundance is different for each shot (i.e., same as the 

data generation process).  This means abundance varies by grid i, sample time j, and gear type k:  

Ni ~ negbin(p, r)  

N2ijk ~ pois(Ni)  

Cijk ~ bin(Qk, N2ijk) 

This model produces median and mean Q = 0.25, 0.624, 1.0 (all overestimated by 25%), because the 

random variation in available abundance at each sampling time (grid, shot, and gear) allows the most 

efficient gear to catch all available fish.  Three chains are easy to converge and the variance is very small for 

all parameters.  

Bayesian model 4.3 

The main difference between this model and model 4.1 is that a Poisson distribution is assumed for each 

sample time and each gear type within a cell (same as Model 4.2).  This model differs from model 4.2 in 

that it assumes a varying gear efficiency in each cell, i.e., [Qik ~ beta(1,1)] (Table 5-12): 

Ni ~ negbin(p, r)  

N2ijk ~ pois(Ni)  

Cijk ~ bin(Qjk, N2ijk)       (5-7) 

Model 4.3 performance: three chains mix reasonably well after sufficient iterations (Figure 5-8).  The 

posterior means and medians for either Q or N are nearly identical (Table 5-13).  The model slightly over-

estimates Q by 13%, 12%, and 9%, respectively for the three gear types, and underestimates N by 9%.   

 

Table 5-12. Input data and model results for Scenario 4, model 4.3. 

 Input True value mean (range) Posterior mean (sd); median (95% 

CI) 

Mean N per grid 100 93.7 (12-248) 83.7 (3.87); 83.6 (76.5-91.69)   

Shape r 5  5.87 (0.94); 5.80 (4.22-7.90) 

Gear efficiency Q1 0.2 0.20 (0.05-0.41) 0.22 (0.003); 0.22 (0.22-0.23) 

Q2 0.5 0.50 (0.29-0.85) 0.56 (0.008); 0.57 (0.55-0.58) 

Q3 0.8 0.80 (0.53, 1.00) 0.88 (0.011); 0.88 (0.86-9.04) 
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Figure 5-8.  Three MCMC trajectories for the mean gear efficiency parameter, Q•k for Scenario 4 using 

model 4.3. 

 

 Scenario 5 

Data generation: This is perhaps the worst case where fish exhibit an aggregated distribution between cells 

and within each cell.  Again, three gear types are used to catch the varying population in each cell.  Gear 

efficiencies are again 0.2, 0.5, and 0.8, respectively.  Each cell is sampled 10 times by each of the three 

gears.  The fishing operation is again a binomial process for each gear type (Table 5-13).  

Bayesian model 5.1:  

We use the same model 4.3 as in Scenario 4 to estimate parameters, that is, the model assumes a negative 

binomial distribution between cells and a Poisson distribution within each cell.  For the catch process, we 

allow Q to vary across cells and gears, i.e., Qik ~ beta(1,1).   

Model performance: model implementation and consequent results are similar to Model 4.3 in Scenario 4 

(Table 5-14, Figure 5-9, and Figure 5-10).  This is unexpected.  The reasonably good outcomes may reflect 

that the focus of the parameters is the means (or medians) from all samples within each cell rather than for 

each specific fishing operation. 
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Table 5-13.  Summary of data simulation and modelling process for Scenario 5. 

 Data generation Modelling 

Number of grids 100 100 

Mean fish per grid 100  

Distribution between grids Ni ~ dnegbin(100, 5) Ni ~ negbin(p, r) 

Distribution within grid N2ijk ~ pois(Ni) N2ijk  ~ dpois(Ni) 

Gear type 3 3 

Gear efficiency  0.2, 0.5, 0.8 Qi1, Qi2, Qi3, 

Number of samples per 

grid 

10 10 

Catch process Cijk ~ bin(Qk, N2ijk) Cijk ~ bin(Qik, N2ijk) 

 

Table 5-14.  Input data and model results for Scenario 5, model 5.1. 

 Input True value mean (range) Posterior mean (sd); median (95% 

CI) 

Mean N per grid 100 93.7 (12-248) 85.2 (4.2); 85.0 (77.39-93.86)   

Shape r 5  5.05 (0.81); 5.00 (3.63-6.76) 

Gear efficiency Q1 0.2 0.20 (0.05-0.41) 0.23 (0.004); 0.23 (0.22-0.23) 

Q2 0.5 0.50 (0.29-0.85) 0.56 (0.009); 0.56 (0.54-0.57) 

Q3 0.8 0.80 (0.53, 1.00) 0.87 (0.012); 0.87 (0.85-0.89) 
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Figure 5-9.  Three MCMC trajectories for the mean gear efficiency parameter, Q•k for Scenario 5. 

 

   

 

Figure 5-10.  Density of MCMC samples for the gear efficiency parameter, Q•k for Scenario 5. 
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Bayesian model 5.2:  

Since the data represent a non-random distribution between cells and within each cell, it would be 

interesting to see how a similar model that assumes a non-random distribution between and within grid 

cells functions. Using a negative binomial model for within-cell distribution causes wide variations in 

abundance and makes MCMC hard to continue.  We opt to use a “quasi-NB” approach where a random 

error is added to a Poisson mean: 

Nijk ~ pois(ijk), and 

ijk = Ni exp(i), where i ~ norm(0, 0.1). 

This model 5.2 does not work well, as it allows true variation in abundance to be offset by i.  The 

consequence is to pull three Qs toward the largest value of 0.8.  Hence, abundance in each cell is 

significantly underestimated.   

Scenario 6 

Data generation: They key difference between this scenario and the previous 5 scenarios is that a large 

number of zero catches is included in the data (Table 5-15).  Of the total 100 grid cells, we assume 70 of 

them are “habitable” while the other 30 are “uninhabitable”.  In the habitable grids, the number of 

individuals follow a negative binominal distribution with mean  = 10 and shape parameter r = 1.  There are 

no fish in the uninhabitable grids.  During the catch process, we assume abundance is fixed at each 

sampling time, and three samples are taken in each of the 100 grid cells with gear efficiency Q = 0.5 in all 

samples.  For simplicity, we do not assume the distribution and capture processes vary with environmental 

variables.  This data generation process results in a total abundance N = 624, Ni between 0 and 41, 

occupancy rate  = 0.65, and catch Ci between 0 and 22. 

Bayesian model: the model is parameterized in the same way as data generation: zero-inflated negative 

binomial distribution. The shape parameter r has a lognormal distribution with a mean of 1 and variance of 

0.25.  In WinBUGS, the negative binomial distribution is coded as a mixture of Poisson and gamma 

distributions:  

)(~ ii PoissonK  and ),(~ ii rgamma  . 

Here the shape parameter r is the same as in equations 2 and 4, while  = r and its variance
22  r .  

Model performance: The Bayesian abundance model performs reasonably well for the simulated data.  The 

median posterior total N is 659.6, which is 6% higher than the true value (Table 5-16).  The median 

posterior probability of occupancy is 0.67, which is 3% higher than the true value.  The posterior Ni and its 

95% credible interval for all grid cells are shown in Figure 5-11.  However, the aggregation parameter r is 

slightly overestimated, with a median of 1.8 (95% CI between 0.02 and 2.67).  

The median posterior gear efficiency is 0.47 (95% CI between 0.34 and 0.58), underestimating the true 

value of 0.5 by 5%.    
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Table 5-15.  Summary of data simulation and modelling process for Scenario 6. 

 Data generation Modelling 

Number of cells 100 100 

Number of inhabitable cells 70  

Mean fish per habitable cell 10  

Distribution between grids Ni ~ negbin(100, 1) Ni  ~ negbin(p, r) 

Distribution within grid Fixed Fixed 

Gear type 1 1 

Gear efficiency  0.5  

Number of samples per grid 3 3 

Catch process Cij ~ bin(Q, Ni) Cij ~ bin(Q, Ni) 

 

 

Table 5-16.  Input data and model results for Scenario 6. 

 Input True value Posterior median (95% CI) 

Total N 700 624 659 (622-723) 

Shape r 1 1 1.8 (0.02-2.67) 

Occupancy 0.7 0.65 0.67 

Gear efficiency 0.5 0.50 0.47 (0.34-0.58) 
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Figure 5-11.  Comparison of posterior abundance from Bayesian abundance model with true values for 

100 cells.  Among these cells, 30 are assumed to be inhabitable with abundance of zero. 

 

In the most complicated situation in the fishery, individual fish often aggregate in certain areas. At a finer 

spatial scale (e.g., a grid cell with medium size), a random distribution of fish may be more typical. At each 
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For this near-real situation, the above scenarios and simulations show that, for presence-only data where 

zero catch is not recorded, the Bayesian model 4.3 performs quite well. When this model is applied to the 
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5.3.2 ESTIMATION OF FISH DENSITY AND FISHING MORTALITY 

Fish density has been assumed to be uniform and random within their distribution range in some of the 

previous ecological risk assessments (e.g. SESSF). This assumption simplifies the assessment process in 

data-poor situations but is likely to cause bias in estimates of fishing mortality. It is possible to derive 

heterogeneous density based on limited survey or observer data, together with the gear efficiency derived 

in the previous section. 

After obtaining Q for each gear type, we can apply it to all historical data where gear efficiency can be 

reasonably assumed to be unchanged, and derive gear-independent fish density in each shot by expanding 

each catch in year y, grid cell i, shot number j, using gear k, with estimated gear efficiency above: 

     
     

       
.        (5-8) 

 

Note that gear affected area ayijk should be the same as that used in estimating Q above.  This density, 

which may be referred to as “observed density”, can be sufficient for deriving biomass in a particular year.  

However, fishing typically takes place in a limited area in a particular year and does not cover all of the 

stock distribution range.  It is desirable to “smooth” the observed density and predict potential density in 

any year based on all locations where the species has been previously caught.  Here we used a simple 

general additive model (GAM) and only data in the logbooks to model the observed density: 

                                 ,     (5-9) 

where the f1  and f2 are smoothing splines, and lon and lat are longitude and latitude.  We tested 

alternative splines, e.g., thin plate splines, cubic spline, P-splines. (Wood 2006).  The GAM model can be 

affected not only by the type of smoothing function, but also other factors, such as number of knots in the 

splines and degrees of freedom.  The model output was in turn used to predict density for any year of 

interest at each shot location (i.e., with predictors lon, lat) where the species had and had not been 

previously caught and recorded in the fishery. 

To estimate total biomass in a given year, we assumed that the stock distribution area was defined as its 

core distribution from refined Bioregional Mapping (Heap et al. 2005).  The distribution area is stratified 

into four strata: Core area, Bioreg area, eastern region (< 147 longitude degree), and western region (> 147 

longitude degree). The total fishable biomass in year y is then 

          
 
          (5-10) 

where      is the median density predicted by the GAM model above within each stratum g, Ag is the area 

size in stratum g within the distribution range, and n is the total number of strata (i.e., 4).  This method 

takes heterogeneous density into account, and should be superior to the assumption that individual fish are 

homogeneously distributed in their distribution range. 
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Estimating fishing mortality rate 

Fishing mortality F in year y by gear (or sub-fishery) k is: 

    
            

  
 

            

        
     (5-11) 

Where     is gear-affected area (e.g., swept area) in year y, stratum g by gear type k,      is the median 

density predicted by the GAM model above within each stratum g, Qk is the gear efficiency.  Note that we 

use instantaneous fishing mortality rate F here instead of exploitation rate (commonly represented by U) 

because we have used the fishing effort over the entire year so the biomass is not the peak biomass but the 

average over the year.  This Fy can then be compared with reference points such as FMSY derived from 

simple life history parameters, such as the natural mortality rate (Zhou et al. 2012b) and methods in the 

following section. 

5.3.3 DEVELOPING SUSTAINABILITY REFERENCE POINTS 

Zhou et al. (2012b) developed an empirical relationship between fishing mortality-based reference points 

and fish life-history traits.  Among a range of life-history parameters (LHPs), they focused on natural 

mortality because there have been extensive theoretical studies on the rule of thumb correlation between 

Fmsy and M. However, natural mortality is often calculated from other more easily obtainable parameters 

based on the theory of life history invariant. These life history parameters include von Bertalanffy growth 

parameters  and L∞ (Pauly 1980; Gislason et al. 2010; Charnov et al. 2012), age at maturity Amat (Jensen 

1996), maximum age Amax (Hoenig 1983) etc. This means that these more easily available parameters can 

be reliable predictors for biological reference points. Therefore, in this project, we exclude natural 

mortality as a predictor but link fishing mortality-based biological reference point FBRP with other LHPs. To 

our best knowledge, this is the first empirical study attempting to link biological reference points to life 

history parameters other than natural mortality. 

5.3.3.1 Data 

The majority of the data used in Zhou et al. (2012b) are re-used here. However, we have added and 

removed a few species because of data quality. We also re-validated data for some species. No attempt has 

been made to check natural mortality as it is not used in this analysis.   

 

Our data include both chondrichthyans and teleosts. Again, methods for estimating biological reference 

points are categorized into three types: Fmsy from formal stock assessments, Fproxy from per-recruit methods 

and F0.5r from demographic analyses of intrinsic growth rate (Table 5-17). A total of 248 species, with 324 

data points, is used in the analysis.  

 

 



RESULTS AND DISCUSSION 

 

50 

 

Table 5-17. Number of species and data points included in the analysis.  

  Chondrichthyan    Teleost  

Reference point Species Data points 

 

Species Data points 

Fmsy 10 11 
 

75 88 

Fproxy 4 4 
 

100 131 

F0.5r 52 79 
 

7 11 

Total 66 94 
 

182 230 

 

 

5.3.3.2 Methods 

The LHPs that we investigated were von Bertalanffy growth coefficient (), maximum or asymptotic length 

(Lmax), and maximum age (Amax).  These data were sourced from original literature and FishBase.  

Importantly, where FishBase data were used, stocks were treated separately and the different parameters 

obtained for each stock, were matched to the same location.  We grouped data at class [Osteichthyes 

(teleosts) and Chondrichthyes] levels to capture major life-history variability and to avoid over-

parameterization at species or stock levels.  Along with three FBRP categories (Type), we consider these six 

groups (a matrix composed of taxonomic levels and the type of methods) as multiple populations. The 

amount of data and their quality vary substantially among these six populations (Table 5-17) but 

populations share certain similarities in their life-history traits and BRPs. Hence, we again use Bayesian 

hierarchical modelling to derive robust estimates from such a multilevel structure.  

It is important to note that two of the LHPs in this analysis, maximum length Lmax, and maximum age Amax lie 

outside the range of most of the data used to generate them (Haddon 2001; Irvine et al. 2012). In addition 

the growth coefficient , is an emergent parameter that describes the rate which a population moves 

towards its maximum size and cannot be obtained from measurements of individuals. An additional source 

of model error is the effect of individual variability on the von Bertalanfy growth equation (Sainsbury 1980). 

Ignoring measurement errors in these variables would result in biased estimates of their effects on FBRP.  To 

obtain unbiased estimates, we specifically incorporated measurement errors in these variables by using an 

error-in-variable (EIV) model (Fuller 1987; Quinn and Deriso 1999). Hence, the method was referred to as 

Bayesian Hierarchical Error-in-Variable models (BHEIV).  

The scatter plots and smoothing lines show a general relationship between FBRP and LHPs. For example, FBRP 

and  exhibits a positive correlation (Figure 5-12) while FBRP and Lmax and Amax tend to be negatively 

correlated (Figure 5-13, Figure 5-14). These plots also indicate that variance may not be normally 

distributed. Accordingly, we examined the log-transformed data (Figure 5-15, Figure 5-16, and 
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Figure 5-17). This treatment appears to improve the normality of the distribution, therefore we focus on 

multiplicative error structure models in the report, although we also examined models with additive error 

structure. 

 

The general model has the form of 

ictictixctictBRP eF ,,,,,,,0,,, )]exp(log[)log(  xx 
   (5-12)

 

where xi is a matrix of covariates (composed of one or more of , Lmax, and Amax depending on the model 

evaluated), t,c,x is the parameter for variable x for method type t, and class c.  The independent normal 
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random error e●,i has a mean of 0 and variance 
2

e
 .  The symbol • indicates that the heterogeneity may 

vary between types or classes depending on model specification.  

We assumed ),(~ 2

,, ,xxx    normal where 
x,

 is the prior mean for parameter •,X, and 2

,x
 is the 

variance.  These priors have their own hyper-priors, and we assumed ),(~ 2

, xxx
normal

 


, and 

)01.0,01.0(~2

,



  rgamma

x
. The symbol • at the hyper prior level indicates it can be shared 

either across method, or both method and class depending on the models. Further, we used a normal 

distribution with a large variance for the hyper-mean, )1000,0(~ normal
x

 .  For the measurement 

error variance, we specified )01.0,01.0(~2

,    rgammax
.  These specifications provide relatively 

non-informative priors and hyper-priors, as gamma(0.01, 0.01) represents a mean 1 and variance 100.  We 

tested a range of models with alternative priors and used deviation information criteria DIC (Spiegelhalter 

et al. 2003) as primary criteria for model comparison. 

We applied the Gibbs sample implemented using the WinBUGS program to sample parameter vectors from 

the above posterior distribution.  Three Markov chains were constructed based on dispersed initial values 

and the results of the first 10,000 cycles of each chain were discarded.  The results of an additional 30,000 

cycles from the three chains were saved for further analysis.  We visually examined the chains for each 

parameter in the model as well as analysed the saved samples by using the CODA package (Best et al. 1996) 

to ensure that there was no evidence for non-convergence in the MCMC sampling chain.  
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Figure 5-12. Scatter plots and smoothing lines for FBRP and growth rate . Class 1 is chondrichthyan and 2 

teleosts; method 1 is Fmsy, 2 Fproxy, 3 F0.5r. 
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Figure 5-13. Scatter plots and smoothing lines of FBRP and maximum length Lmax. Class 1 is chondrichthyan 

and 2 teleosts; method 1 is Fmsy, 2 Fproxy, 3 F0.5r. 

 

 

Lmax

F
B

R
P

0.0

0.5

1.0

1.5

Method = 1

Class =  1

0 100 200 300 400 500

Method = 2

Class =  1

Method = 3

Class =  1

0 100 200 300 400 500

Method = 1

Class =  2

Method = 2

Class =  2

0 100 200 300 400 500

0.0

0.5

1.0

1.5

Method = 3

Class =  2



RESULTS AND DISCUSSION 

 

55 

 

 

Figure 5-14. Scatter plot of FBRP and maximum age Amax. Class 1 is chondrichthyan and 2 teleosts; method 

1 is Fmsy, 2 Fproxy, 3 F0.5r. 
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Figure 5-15. Scatter plots and smoothing lines in log scale for FBRP and growth rate k. Class 1 is 

chondrichthyan and 2 teleosts; method 1 is Fmsy, 2 Fproxy, 3 F0.5r.  
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Figure 5-16. Scatter plots and smoothing lines in log scale for FBRP and maximum length Lmax. Class 1 is 

chondrichthyan and 2 teleosts; method 1 is Fmsy, 2 Fproxy, 3 F0.5r.  
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Figure 5-17. Scatter plots and smoothing lines in log scale for FBRP and maximum age Amax. Class 1 is 

chondrichthyan and 2 teleosts; method 1 is Fmsy, 2 Fproxy, 3 F0.5r. 

  

log Amax

lo
g

F
B

R
P

-4

-3

-2

-1

0

Method = 1

Class =  1

1 2 3 4 5

Method = 2

Class =  1

Method = 3

Class =  1

1 2 3 4 5

Method = 1

Class =  2

Method = 2

Class =  2

1 2 3 4 5

-4

-3

-2

-1

0

Method = 3

Class =  2



RESULTS AND DISCUSSION 

 

59 

 

5.3.3.3 Results 

A range of models with different LHPs and hyper priors are investigated. Table 5-18 lists examples of the 

models. Most of these models converged quickly, in less than 2000 cycles of the MCMC algorithm.  There 

was no evidence of non-convergence for any model after sufficient cycles. The best model with the lowest 

DIC has all three LHPs as predictors with a hyper prior mean 
 ,c

and
max,Lc

 , separated between 

chondrichthyans and teleosts but 
maxA

 shared across both class and type of the method. Interestingly, 

using  alone as a predictor (Models 4 and 6 in Table 5-18) is better than many other more complicated 

models. Also, non-hierarchical model (Model 9 in Table 5-18) is clearly not an option.  

The detailed results of the best model are shown in (Table 5-19). The posterior distribution of the 

estimated parameters shows distinct differences in  and Lmax between chondrichthyans and teleosts 

(Figure 5-18, Figure 5-19) but less clear for the Amax (Figure 5-20). Generally, FBRP increases for faster-

growing species, but decreases for long-lived (larger Amax) species or species with a large body size (larger 

Lmax). However, some estimates are not significant. For example, the 95% confidence intervals for 1,●,k 

(growth rate for chondrichthyans) and 2,●,Lmax (Lmax for teleosts), as well as 0, cover 0. Some of the 

insignificance is clearly due to too few data points, e.g., 1,2,Amax and1,2,Lmax (only 4 data points).  

 

Table 5-18. Comparison Bayesian hierarchical error-in-variable models using deviation information 

criteria is growth rate, Lmax is maximum length, and Amax is maximum age.  

Ranked model Hyper prior Parameter and LHPs DIC 

1  ,c
,

max,Lc
 , 

maxA
  , Lmax, Amax 0.0 

2 
 ,

maxL
 , 

maxA
  , Lmax, Amax 77.4 

3  ,c
,

maxL
 , 

maxA
 ,

 ,c
 , Lmax, Amax 120.5 

4 
   158.6 

5  ,c
,

max,Lc
  , Lmax, Amax 169.0 

6  ,c
 

 177.7 

7  ,c
,

max,Lc
 , 

max,Ac
  , Lmax, Amax 201.4 

8 
 , 

maxA
  , Amax 229.5 

9 non-hierarchical , Lmax, Amax 233.6 

10  ,c
,

max,Lc
 , 

maxA
  

, Lmax, Amax 248.7 

11 maxL
 , 

maxA
  Lmax, Amax 285.1 

12 
 , 

maxA
  , Amax 348.0 
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Table 5-19. Posterior statistics of Bayesian hierarchical errors-in-variables model log(FBRP,t,c,i) = 0 + t,c, 

log[t,c,i  exp()] + t,c,Lmax log[Lmax,t,c,i exp(Lmax)] + t,c,Amax log[Amax,t,c,i exp(Amax)] + ei (t = type of method, c 

= class).  

 

Param Mean SD Low 95%CI Median Upper 95%CI 

0 0.09 0.36 -0.46 0.05 0.98 

1,1,Amax -0.39 0.16 -0.70 -0.39 -0.07 

1,2,Amax -0.29 0.15 -0.56 -0.30 0.03 

1,3,Amax -0.42 0.10 -0.64 -0.41 -0.23 

2,1,Amax -0.45 0.07 -0.58 -0.45 -0.32 

2,2,Amax -0.31 0.07 -0.47 -0.31 -0.17 

2,3,Amax -0.28 0.14 -0.53 -0.29 0.03 

1,1,k 0.10 0.17 -0.25 0.10 0.44 

1,2,k 0.06 0.23 -0.40 0.07 0.49 

1,3,k 0.13 0.12 -0.10 0.13 0.37 

2,1,k 0.40 0.10 0.19 0.41 0.60 

2,2,k 0.54 0.10 0.32 0.55 0.73 

2,3,k 0.47 0.13 0.22 0.46 0.73 

1,1,Lmax -0.22 0.07 -0.37 -0.22 -0.08 

1,2,Lmax -0.14 0.09 -0.31 -0.14 0.04 

1,3,Lmax -0.21 0.06 -0.35 -0.21 -0.11 

2,1,Lmax 0.05 0.06 -0.09 0.06 0.14 

2,2,Lmax 0.02 0.06 -0.11 0.02 0.12 

2,3,Lmax 0.02 0.07 -0.13 0.02 0.16 
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Figure 5-18. Posterior distribution of growth coefficient  from multiplicative error model.   

 

For some data-poor species, such as the bycatch species, there are no ageing studies, therefore maximum 

age may not be available. Similarly, maximum length may be poorly estimated.  Therefore, presenting the 

simplest model that requires only a single life history parameter is likely to be the most comprehensive in 

terms of species coverage. The comparison of DIC suggests that using growth coefficient  alone is one of 

the best options (Model 4 in Table 5-18). The posterior •,k are presented in Table 5-20. 
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Figure 5-19. Posterior distribution of maximum length coefficient from multiplicative error model.   
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Figure 5-20. Posterior distribution of maximum age coefficient from multiplicative error model.   

 

Table 5-20. Posterior statistics of Bayesian hierarchical errors-in-variables model log(FBRP,t,c,i) = 0 + t,c,k 

log[t,c,i  exp()] + ei (t = type of method, c = class).  

Class Type Param Mean SD Low 95%CI Median Upper 95%CI 

  

0 -0.51 0.08 -0.66 -0.50 -0.35 

Chondrichthyan Fmsy 1,1,k 1.14 0.12 0.92 1.13 1.40 

Chondrichthyan Fproxy 1,2,k 0.82 0.16 0.56 0.81 1.18 

Chondrichthyan F0.5r 1,3,k 1.16 0.06 1.05 1.16 1.27 

Teleost Fmsy 2,1,k 0.76 0.05 0.65 0.76 0.87 

Teleost Fproxy 2,2,k 0.67 0.05 0.56 0.67 0.77 

Teleost F0.5r 2,3,k 0.50 0.09 0.34 0.49 0.71 
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5.4 Application of cumulative risk assessment methods to selected 

species 

In this section, we apply the methods developed in previous sections to selected fish species in the 

southeast region.  

5.4.1 BIGHT SKATE 

5.4.1.1 Gear efficiency 

Data source 

The Bight Skate, Dipturus gudgeri, is an endemic species occurring mainly on the upper continental slope 

off the south coast of Australia where it is one of the most common skate species taken by temperate 

demersal fisheries (Daley et al. 2002). This species was chosen as one of the priority species because 

several fisheries currently impact upon it  and it was assessed to be at high risk in the ERAEF assessments 

for SESS fisheries (Wayte et al. 2006; Zhou et al. 2012c).  The key data source used in this study is the 

combined scientific surveys and fisheries observer database which commenced in1976. Three groups of 

gear have caught Bight Skate: automatic longline, Danish seine, and various trawls.  Many records, 

particularly prior to 2003 are incomplete, meaning that some information such as gear type, catch, length 

of trawling or lines, etc. (Daley et al. 2003) was missing.  These incomplete records cannot be used and 

have to be excluded.  The cross-sampling method has the capability to estimate parameters from non-

random aggregated distribution patterns and varying abundance at each sample occasion, which is 

common for marine fish.  The cost of this power is a need for more than one fishing gear being used to 

catch the same population—cross sampling with multiple gears at the same time and location. This 

requirement significantly reduces the number of records.  One way to ensure sufficient sample size is to 

use relatively large time steps and area sizes.  In this example, we assume that abundance in 1 × 1 degree 

grid cell does not significantly change within a 1 year time step.  “Not significantly change” means that 

variation in available abundance within the grid and time frame can be modelled by a Poisson distribution, 

i.e., the variance is about the same as the mean.  However, this assumption can be relaxed, because we 

show in the simulations that reasonable estimates can be obtained even when the variance is about 50 

times of the mean. 

 

Data preparation 

First, it is necessary to define and estimate the gear-affected area for each gear deployment (shot).  For 

actively moving gears, such as trawl and seine, this is relative straightforward.  We use the follow equations 

to estimate swept area for trawl and seine: 

 

Trawl:  a = 0.7Lh  

Seine:  a = π(L/2π)2  
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Where a is swept area, L is the trawling length or length of the seine net, h is the headrope length, and 0.7 

is the adjustment factor when the trawl is towed under the water.  

 

For longline, we define the gear-affected area as a band of the length of the longline with 1 km width, i.e., a 

= 1L. 

 

Catch per unit of effort (CPUE), expressed as c/a, where c is the catch in number of fish, may exhibit a large 

variability within each grid-year unit.  This over-dispersion may violate the Poisson distribution assumption 

(see below).  We test the model sensitivity by including grid-years at three levels of variability: variance (of 

CPUE) equals or less than the mean, variance is equal or less than 10 times of the mean, and variance is 

equal or less than 50 times the mean.  Incomplete data, the requirement of cross sampling and too large a 

variance reduce the usable grid-year to less than 25 for the Bight Skate (Figure 5-21). 

 

Most data collected were for trawl gear, while Danish seine was used on only 2 grid-years in 4 shots.  There 

are many overlaps between auto longline and trawl, but Danish seine did not occur in any grid-year where 

either auto longline or trawl has fished.  Hence, we analysed the data in two ways: the first includes only 

longline and trawl, and the second includes data from all three gear types, even though Danish seine did 

not overlap with other gears. 

Bayesian cross-sampling model 

The abundance of Bight Skate in the SESSF region is assumed to have a non-random aggregated 

distribution.  As in the previous method section, the number of fish between unique grid-year units is 

modelled as 

 

Ni ~ negbin(p, r), 

 

where unit i can be an unique grid cell or the same grid cell but in a different year.  Within each grid-year 

unit, the local abundance available to each shot is assumed to following a Poisson distribution: 

 

N2ijk ~ pois(Ni). 

 

Catch data are then modelled as a binomial distribution: 

 

Cijk ~ binom(Qik, N2ijk).  

 

Weak informative priors are given to p, r, and Qik as: 

 

P ~ beta(1, 1) 

r ~ lognorm(0, 0.01) 

Qik ~ beta(1, 1). 

 

Although covariates can be incorporated into the model to reduce random effects on parameters, there are 

insufficient data for Bight Skate because of many pieces of missing  information such as depth, bottom 
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type, etc.  Hence, the models presented here are generic and in the same configuration as in the simulation 

studies.  

  

Estimation of gear efficiency 

A total of four alternative datasets and their corresponding models are used in this study.  All models 

converge well after only a few thousand iterations.  There is no abnormal behaviour of the MCMC process. 

The posterior of the scale parameter r is generally less than 2, indicating the distribution of Bight Skate 

between grid cells is highly aggregated.  However, the four models produce similar results (Table 5-21).  

Auto longline has an efficiency of about 0.1, while that of trawl is about 0.6.  When grid-years with high 

CPUE variance are included, i.e., V[CPUE] <= 50 E[CPUE], gear efficiencies tend to be underestimated.  

Consequently, fish density is overestimated.  

 

Interestingly, after including the Danish seine, even though it does not overlap with other gears, the model 

still can produce acceptable results (Figure 5-22).  The restraints imposed by a negative binomial 

distribution between grid-years and a Poisson distribution within a grid-year allow the model to “borrow 

strength” from auto longline and trawl and “deduce” sensible parameter spaces.  However, Danish seine’s 

intermediate efficiency pulls the QAL and QTW towards their mean, which is considered common in mixed 

models (Gelman and Pardoe 2006; Lockwood et al. 2001).    

  

Table 5-21.  Summary of Bayesian posteriors for key parameters of Bight Skate from surveys and 

observer data.      

Var to mean Para mean sd 2.50% median 97.50% 

Var=Mean QAL 0.12 0.02 0.08 0.11 0.17 

 

QTW 0.60 0.06 0.47 0.60 0.72 

 

 18.60 6.73 9.47 17.39 34.86 

 

P 0.07 0.03 0.02 0.06 0.15 

 

r 1.26 0.57 0.47 1.15 2.65 

Var=10Mmean QAL 0.09 0.02 0.06 0.09 0.13 

 

QTW 0.61 0.05 0.51 0.61 0.71 

 

 20.38 5.35 12.25 19.60 32.88 

 

P 0.08 0.03 0.03 0.07 0.15 

 

r 1.61 0.66 0.67 1.50 3.21 

Var=50Mean QAL 0.07 0.01 0.05 0.07 0.09 

 

QTW 0.46 0.04 0.39 0.46 0.54 

 

 41.07 9.50 26.19 39.87 63.27 

 

P 0.03 0.01 0.01 0.03 0.06 

 

r 1.27 0.40 0.66 1.21 2.21 

Var=Mean QAL 0.18 0.04 0.10 0.17 0.25 

3 gears QDS 0.47 0.08 0.32 0.47 0.62 

 

QTW 0.58 0.06 0.46 0.58 0.70 

 

 20.78 7.10 11.22 19.45 38.52 
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Var to mean Para mean sd 2.50% median 97.50% 

 

P 0.07 0.03 0.02 0.06 0.15 

  r 1.39 0.62 0.54 1.28 2.84 

Note: var to mean is the ratio between the CPUE variance and mean CPUE within each grid-year unit.  is 

the mean fish density per km2 for all grid-years.   

 

  

 

 

 
 

Figure 5-21.  Locations of grid cells in SESSF region where data meet the requirements for applying the 

cross-sampling method for estimating gear efficiency.  
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Figure 5-22.  Posterior density of gear efficiency parameter for three types of gear.  From left to right: 

Auto Longline, Danish Seine, and Trawl. 

 

5.4.1.2 Distribution and density 

Bight Skate has a narrow distribution along the continental slope (Figure 5-23). There are a total of 1485 

catch records of Bight Skate from 1984 to 2012 in the survey-observer data. The estimated density (kg/km2) 

from observed catch and gear efficiency Q ranges from 0.8 to 1663 kg/km2 (Figure 5-24, Figure 5-25). The 

data appear to be noisy but the GAM captures the distribution pattern of the data fairly well (Figure 5-26, 

Figure 5-27). 
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Figure 5-23. Bight Skate distribution range.  
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Figure 5-24. Bight Skate density (kg/km2) in log scale. 
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Figure 5-25.  Bight Skate relative density from survey-observer data. 
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Figure 5-26. Model check for the Bight Skate density GAM model.  
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Figure 5-27. Estimated smooth year term for the Bight Skate density GAM model.  

 

 

The mean densities in Bioreg or Core areas do not vary significantly (Table 5-22). This is also the case for the 

east and west regions and across the four years examined. The GAM model may have smoothed out the 

variability in density over space and time, however, the variation for the mean is relatively large. 
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Table 5-22. Bight Skate density (log scale kg/km2) in Bioreg area/Core zones and east/west 147o regions 

from survey and observer database. 

    2007     2008     2009     2010   

Zone Region Mean sd   Mean sd   Mean sd   Mean sd 

Bioreg West 147 3.01 0.75 

 

3.20 0.75 

 

3.14 0.75 

 

2.74 0.75 

Core West 147 2.84 0.50 

 

3.03 0.50 

 

2.97 0.50 

 

2.57 0.50 

Bioreg East 147 2.96 0.37 

 

3.16 0.37 

 

3.10 0.37 

 

2.69 0.37 

core East 147 2.97 0.38   3.16 0.38   3.11 0.38   2.70 0.38 

 

 

5.4.1.3 Fishing mortality 

Commonwealth fisheries 

The distribution of Bight Skate overlaps with the effort in the SESS trawl sector, GAB trawl sector, and SESS 

auto longline sector. There are no catches recorded in AFMA logbooks but this species is recorded in 

observer data which show an increase in catch per unit effort attributable to improved reporting (Daley et 

al. 2003, Walker and Gason 2007). It was assessed to be at high risk from these sub-fisheries (Wayte et al. 

2006; Zhou et al. 2012b). There are other gear types operating in the SESS area, which may potentially 

capture Bight Skate (Table 5-23), however, the fishing effort was relatively low for them. To estimate the 

potential total fishing mortality from Commonwealth fisheries, we applied fishing effort and gear efficiency 

to modelled density and species distribution area. We assumed gear efficiency QAL to be the same for all 

line gears, QDS same for Danish seine, purse seine, and gillnet, and QTW same for trawl and dredge. Gear-

affected area for each shot was estimated as follows: 

Longline: a = wL, where w = 1 km and L is the length of the line; Seine: π(L/2π)2 = 0.32 km2 (Zhou et al. 

2012c); Gillnet: wL, where w = 1 km and L is the length of the net; Trawl:  0.7Lh, where h is the headrope 

length and L is the total towed length; Dredge: wL, where w = 2 m and L is the total towed length; Handline:  

wL, where w = 1 km and L is the length of the line; Jigger, pole, rod and reel: /4 L ≈ 0.8 km2, where L = 1 

km; Trotline and trolling: wL, where w = 1 km and L is the length of the line.  

For gears that use baits to attract fish, it is difficult to define the distance from the gear within which a fish 

may likely be caught. For these gears, gear- affected area depends on various factors, including type of bait, 

soak time, physiological state of the fish (duration of food deprivation), current speed and direction, fish 

swimming speed, body size, etc. (Løkkeborg et al. 1989, 1995).  The active space where the odour 

concentration is present in over-threshold quantities shrinks with soak time.  Within the first hour, the 

maximum length of the active space for sablefish is 925 m, in 2 h it is 793 m, and in 6 h it is 654 m 

(Løkkeborg et al. 1995).  In a field study using baited gillnets, cod were observed to move directly towards 

the gear from distances up to 400 m (Kallayil et al. 2003).  Nearly 90% of sablefish were hooked within 3 

hours of soak time, which corresponds to the leading edge of the plume of about 800 m from the bait 

(Sigler 2000).  In a baited video experiment, the greatest distance of fish attraction was 48-90 m for a 



RESULTS AND DISCUSSION 

 

75 

 

200 mm fish in a current velocity of 0.1- 0.2 m s-1 (Ellis and DeMartini 1995).  If the current speed is about 

0.2 m s-1, bait soaked for 1 hour may have an effective range of attraction of about 480 m for fish of 200-

300 mm length (Cappo et al. 2004).  Based on these studies, for baited gears we assumed that the gear-

affected area was w = 1 km from the gear.  Similarly, for minor gears, including handline (HL), dropline (DL), 

trolling (TL), and fish trap (FP), we assumed that a for each shot was 1 km2.  Within a reasonable range, the 

delineation of the gear-affected area a is relatively robust in estimating fishing impact, because gear 

efficiency Q is a relative scaling parameter negatively correlated to a so the effect is mitigated in density or 

biomass estimation as long as the same a is used in estimating Q and in estimating density or biomass. 

Furthermore, because effort is very low for many minor gear types (e.g., dredging, handline, jigging, pole, 

rod and reel, trotline, trolling etc.), fishing mortality caused by them would be small anyway. 

 

Table 5-23. Gear types and effort (number of shots) in Commonwealth fisheries that potentially intersect 

with Bight Skate distribution area in 2007 to 2011.  

Code Gear 2007 2008 2009 2010 2011 Sum 

AL Auto Longline 1,533 1,467 1,452 1,281 1,405 7,138 

BL Demersal Longline 70 63 60 51 92 336 

DG Dredging 

  

18 

  

18 

DL Drop Line 173 117 119 301 326 1,036 

DS Danish Seine 37 31 43 44 37 192 

GN Gillnet 98 31 118 136 29 412 

HL Handline 5 

 

1 

 

15 21 

J Jigging 6 

 

1 

  

7 

LLP Pelagic Longline 522 668 578 289 349 2,406 

PL Pole 

 

4 2 

 

3 9 

PS Purse Seine 

 

19 7 

 

7 33 

RR Rod And Reel 9 7 

 

3 12 31 

TL Trotline 

 

6 

  

47 53 

TR Trolling 51 21 3 5 

 

80 

TW Trawling 19,849 19,624 18,975 18,966 21,205 98,619 

Total 

 

22,353 22,058 21,377 21,076 23,527 110,391 

 

The biggest impact is the otter trawl sector, followed by auto longline (Table 5-24). Other sub-fisheries have 

minor impacts, mainly due to their low fishing effort. The estimated cumulative F varied between 0.057 in 

2010 to 0.063 in 2007.  
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Table 5-24. Estimated Bight Skate fishing mortality F for Commonwealth sub-fisheries (gear type). 

Gear 2007 2008 2009 2010 

AL 0.010 0.011 0.009 0.008 

BL <0.001 <0.001 <0.001 <0.001 

DG 

  

<0.001 

 DL 0.001 <0.001 <0.001 0.001 

DS <0.001 <0.001 <0.001 <0.001 

GN 0.003 0.001 0.003 0.004 

HL <0.001 

 

<0.001 

 J <0.001 

 

<0.001 

 LLP 0.004 0.005 0.005 0.002 

PL 

 

<0.001 <0.001 

 PS 

 

<0.001 <0.001 

 RR <0.001 <0.001 

 

<0.001 

TL 

 

<0.001 

  TR <0.001 <0.001 <0.001 <0.001 

TW 0.046 0.042 0.041 0.040 

Sum 0.063 0.060 0.059 0.057 

 

 

State fisheries 

The States’ jurisdiction extends from coast line to three nautical miles. Bight skate only occurs 160 m and 

deeper, and mostly deeper than 400 m. The distribution range is generally outside the state waters. 

Therefore, the impact from state fisheries is minimal.  

5.4.1.4 Reference points and sustainability 

Bight Skate is a large, slow growing, and long-lived chondrichthyan species.  We used three methods to 

derive sustainability reference points: the first is based on , Lmax, Amax as described in section 5.3.1.3, the 

second is based on alone, and the third is based on M (Zhou et al. 2012a). The life history parameters 

used are growth rate   0.1, maximum length Lmax 245 cm, maximum life span Amax 25 years, and annual 

natural mortality M 0.09. The first method may have over-estimated the Fmsy, particularly the upper 

confidence limit (Table 5-25). 

Assuming the population dynamics can be described with a logistic surplus population model, we may 

define limit fishing mortality rate as Flim = 1.5 Fmsy. Using the mean value in Table 5-25, we obtain a medium 

Flim = 0.08 with lower and upper 95% confidence limits at 0.03 and 0.31. Similarly, Fcrash = 2 Fmsy, i.e., 

medium 0.10, with lower and upper 95% confidence limits at 0.04 and 0.41.  
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Table 5-25. Estimated Fmsy for Bight Skate based on three methods. 

  Lower 95% CI Medium Upper 95% CI 

Based on , Lmax, Amax 0.02 0.07 0.50 

Based on  0.03 0.04 0.06 

Based M 0.02 0.04 0.05 

Mean 0.02 0.05 0.20 

 

Comparing the cumulative fishing mortality rates in Table 5-24 with the estimated reference points, we 

conclude that Bight Skate were at least at medium risk (F ≥ Fmsy) in 2007 to 2010.  

5.4.2 DRAUGHTBOARD SHARK 

The Draughtboard Shark, Cephaloscyllium laticeps, is endemic to southern Australia, found from the 

Recherche Archipelago in Western Australia to Jervis Bay in New South Wales (Last and Stevens 1994). It is 

the most common member of the catshark family (Scyliorhinidae) in the region and occurs inshore on the 

continental shelf to at least 60 m in depth (Daley et al. 2002). The Draughtboard Shark reaches at least 

100 cm total length (TL) (possibly 150 cm) with males maturing at about 82 cm. Throughout the year,  

females lay egg cases of about 13 cm by 5 cm  which are attached to seaweed and bottom-dwelling 

invertebrates by long tendrils (Awruch et al. 2009). The young hatch at about 14 cm TL (Last and Stevens 

1994). Tagging studies show this species has high site fidelity for isolated high profile reefs, although 

movements of up to 300 km have been recorded over long periods (Awruch et al. 2012). This species is a 

high trophic level predator and spends periods of up to five days sheltering from predators among the reefs 

after ingesting large prey (Awruch et al. 2012). The main dietary items are reef-associated species including 

octopus, rock lobster and hermit crabs (Awruch et al. 2012). 

This species forms a significant bycatch of the demersal trawl, line and gillnet methods in both 

Commonwealth and State fisheries and was previously assessed to be not at risk (Zhou et al. 2012b.   

Analysis of catch per unit effort for this species indicates a decline in abundance by 54% in Bass Strait over 

approximately 25 years between the mid 1970’s and 2000 (Walker et al. 2005). The cause of this decline is 

unclear but possibly due to changes in fishing practices. In Tasmania, output controls have been 

implemented to constrain future catches as a precautionary measure (DPIWE 2011).  

5.4.2.1 Gear efficiency 

From the combined scientific survey and fisheries observer database, we determined that four groups of 

gear have caught Draughtboard Shark: automatic longline, Danish seine, gillnets, and various trawls.  The 

database contains many incomplete records, which cannot be used and have to be excluded.  Again, we 

used the cross-sampling method to estimate gear efficiency.  The spatial resolution is 1 × 1 degree grid cell 

and the time step is one year. Similar to the Bight Skate, we defined and estimated gear-affected area a for 

each gear type in one deployment (shot) as follows: 

 

Longline: a = wL 
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Seine:  a = π(L/2π)2  

Gillnet: a = wL 

Trawl:  a = 0.7Lh  

The assumption and procedures for estimating Q is similar to that used for Bight Skate. That is, aggregated 

distribution (negative binomial) is assumed for fish between unique grid-year units and random distribution 

(Poisson) is assumed for fish within each grid-year unit.  Catch is modelled as a binomial process.  Weak 

informative priors are given to p, r, and Qik. 

 

The Bayesian model converged after only a few thousand iterations and there was no abnormal behaviour 

of the MCMC process.  The posterior of the scale parameter r is smaller than 2, indicating the distribution 

of Draughtboard Shark between grid cells is highly aggregated.  For the defined gear-affected area, longline 

has the lowest efficiency while gillnet has the highest one (Table 5-26).  

 

Table 5-26. Bayesian posteriors gear efficiency Q for Draughtboard Shark from surveys and observer 

data.  

Gear mean sd 2.50% median 97.50% 

Longline 0.25 0.02 0.22 0.25 0.30 

Danish seine 0.47 0.05 0.36 0.47 0.57 

Gillnet 0.77 0.04 0.69 0.77 0.84 

Trawl 0.46 0.05 0.35 0.46 0.55 

 

5.4.2.2 Density and distribution  

Draughtboard Shark lives in relatively shallow water (Figure 5-28).  There are a total of 3200 catch records 

of Draughtboard Shark from 1978 to 2012 in the survey-observer data. The estimated density (kg/km2) 

from observed catch and gear efficiency Q ranges from 0.3 to 1756 kg/km2 (Figure 5-29, Figure 5-30). The 

data appear to be noisy but the GAM captures the distribution pattern fairly well (Figure 5-31, Figure 5-32). 
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Figure 5-28. Draughtboard Shark distribution range. 
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Figure 5-29. Estimated Draughtboard Shark density (kg/km2) in log scale from survey-observer data. 
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Figure 5-30. Draughtboard Shark relative density from survey-observer data. 
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Figure 5-31. Model check for the Draughtboard Shark density GAM model.  
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Figure 5-32. Estimated smooth year term for the Bight Skate density GAM model. 

 

5.4.2.3 Fishing mortality of Draughtboard Shark 

Commonwealth fisheries 

The distribution of Draughtboard Shark is potentially overlapped by the SESS trawl sector, GAB trawl sector, 

gillnet, and SESS auto longline sector. It was assessed not to be at risk from these sub-fisheries (Zhou et al. 

2012b). There are other gear types operating in the SESSF area which may also catch Draughtboard Shark 

(Table 5-27). The AFMA logbook contains incomplete records of catch. For example, the total catches of 

Draughtboard Shark in Commonwealth fisheries were 4.0, 13.0, 22.0, and 21.9 tonnes in 2007 to 2010, 

respectively. In all likelihood these records only represent catches that were retained and sold whereas 

discards are not normally recorded. To estimate the potential total fishing mortality from Commonwealth 

fisheries, we applied fishing effort and gear efficiency to modelled density and species distribution area. We 

assumed gear efficiency QAL to be the same for all line gears, QDS for both Danish seine and purse seine, and 

QTW for both trawl and dredge. Similar to the Bight Skate, gear-affected area for each shot was estimated 

as: Longline: a = wL, where w = 1 km and L is the length of the line; Seine: π(L/2π)2 = 0.32 km2 (Zhou et al. 

2012c); Gillnet: wL, where w = 1 km and L is the length of the net; Trawl:  0.7Lh, where h is the headrope 

length and L is the total towed length; Dredge: wL, where w = 2 m and L is the total towed length; Handline:  

wL, where w = 1 km and L is the length of the line; Jigger, pole, rod and reel: /4 L ≈ 0.8 km2, where L = 1 

km; Trotline and trolling: wL, where w = 1 km and L is the length of the line.  
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Table 5-27. Gear types and effort (number of shots) in Commonwealth fisheries that potentially overlap 

with Draughtboard Shark distribution area in 2007 to 2010.  

Code Gear 2007 2008 2009 2010 Sum 

AL Automatic longline 124 104 114 83 425 

BL Demersal Longline 695 671 892 793 3,051 

DG Dredging 

  

343 407 750 

DL Drop Line 32 36 53 49 170 

DS Danish Seine 6,825 7,462 6,752 7,323 28,362 

GN Gillnet 9,021 9,369 10,020 10,598 39,008 

HL Handline 14 13 3 

 

30 

J Jigging 387 108 146 76 717 

LLP Pelagic Longline 38 21 61 10 130 

PL Pole 

  

1 

 

1 

PS Purse Seine 366 304 442 215 1,327 

RR Rod And Reel 16 5 

 

6 27 

TL Trotline 

 

3 

  

3 

TR Trolling 61 14 4 4 83 

TW Trawling 11,274 11,436 10,307 10,389 43,406 

Total 

 

28,853 29,546 29,138 29,953 117,490 

 

The biggest impact is from the gillnet sector, followed by auto longline (Table 5-28). Other sub-fisheries 
have minor impacts. The estimated cumulative F varied between 0.057 in 2010 to 0.063 in 2007.  
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Table 5-28. Estimated Draughtboard Shark fishing mortality F for Commonwealth sub-fisheries (gear 

type).  

Gear 2007 2008 2009 2010 

AL 0.001 0.001 

 

<0.001 

BL 0.002 0.002 0.003 0.003 

DL <0.001 <0.001 

 

<0.001 

DS 0.001 0.001 0.001 0.001 

GN 0.035 0.037 0.039 0.042 

HL 

 

<0.001 

  J <0.001 <0.001 <0.001 <0.001 

LLP <0.001 <0.001 <0.001 <0.001 

PS <0.001 <0.001 <0.001 <0.001 

RR <0.001 <0.001 <0.001 <0.001 

TL 

 

<0.001 

  TR 

 

<0.001 

 

<0.001 

TW 0.003 0.003 0.003 0.003 

Total 0.043 0.044 0.047 0.050 

 

Note: blank cell means no effort for that gear type in that year. 

 

New South Wales ocean fisheries 

The NSW has been using a new logbook reporting system since 2009/10 financial year. We obtained data 

for two financial years: 2009/10 and 2010/11, hence, the data only cover one full calendar year, i.e., 2010. 

The ocean fisheries extend from about latitude 28oS to 38oS (Figure 5-33). We included fishing effort from 

Map A to Map J in Figure 5-33 (detailed maps for grid codes were not shown). 
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Figure 5-33. New South Wales reference map for fishing report.  
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In 2010, only three fishing methods were recorded in NSW ocean fishery data: fish trap (FTD), hand 

gathering (HDG), and jigging (JGG) (Figure 5-34). The numbers of gear deployments were 26, 502, and 106, 

respectively for the three methods. Hand gathering does not catch Bight Skate. Assuming gear efficiency of 

QFTD = 0.47 (similar to QDS), and QJGG = 0.09 (similar to QAL), the estimated total fishing mortality F in 2010 is 

less than 0.0003. In fact, New South Wales fisheries data provided detailed catch in weight for 

Draughtboard Shark.  The total catch in 2010 was 3280 kg, which represents a fishing morality rate of less 

than 0.0001.  

 

Figure 5-34. Fishing effort (number of shots) in NSW ocean fisheries in 2010. FTD = Fish trap; HDG = Hand 

gathering; JGG = Jigging (See Table 5-2 for gear codes and effort units).  
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Victoria ocean fisheries 

The Victoria fisheries data contain catches of many individual species or group of species.  Five gear types 

have recorded the catch of Draughtboard Shark (Table 5-29). Of these gear types, prawn trawl has caught 

the highest number of Draughtboard Shark, and in 2007 had the highest catch.  Nevertheless, the catch was 

small and the estimated fishing mortality rate was less than 0.001 in any year or for any gear type. 

 

Table 5-29. Catch in kilogram of Draughtboard Shark by gear types in Victoria ocean fisheries from 2007 

to 2010. 

Code Gear 2007 2008 2009 2010 Sum 

N5 Non-shark Monofilament Mesh 125-130mm 

 

14 

  

14 

N6 Non-shark Monofilament Mesh > 130mm 

 

37 

  

37 

PT Prawn Trawl (no sweeps attached) 752 305 448 220 1725 

RL Lobster Pots 392 7 5 51 455 

SN Snapper Long Line 15       15 

Total 

 

1159 363 453 271 2246 

 

Tasmania fisheries 

Tasmania fisheries data also contain catch of many individual species or group of species.  Two gear types 

have recorded the catch of Draughtboard Shark: graball netting and hand line (Table 5-30). However, the 

catch was small smaller and the estimated fishing mortality rate was less than 0.001 in any year or for any 

gear type. 

 

Table 5-30. Catch in kilogram of Draughtboard Shark by gear types in Tasmania fisheries from 2007 to 

2010. 

Code Gear 2007 2008 2009 2010 Sum 

GN Graball netting 170 267 318.5 173 928 

HL Hand line 12 15 11.8 75 114 

Total   182 282 330 248 1042 

 

Cumulative fishing impacts 

Jurisdiction 2007 2008 2009 2010 

Commonwealth  0.043 0.044 0.047 0.050 

States <0.001 <0.001 <0.001 <0.001 

Total 0.043 0.044 0.047 0.050 
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5.4.2.4 Reference points and sustainability 

Draughtboard Shark is a relative fast-growing species of a medium body size.  Because the maximum age is 

not available, we used two methods to derive sustainability reference points: one based on  as described 

in section 5.3.1.3 and the other one based on M (Zhou et al. 2012a). The life history parameters used are 

growth rate  = 0.36 and annual natural mortality M = 0.22. The growth coefficient  may be too high, 

which may have resulted in an over-estimate of the Fmsy (Table 5-31).   

 

Table 5-31. Estimated Fmsy for Draughtboard Shark based on two methods. 

  Lower 95% CI Medium Upper 95% CI 

Based on  0.17 0.19 0.20 

Based M 0.05 0.09 0.13 

 

Comparing the cumulative fishing mortality rate and the reference point Fmsy, it appears that the total 

impacts in 2007-2010 were within sustainable level for this species. 

5.5 Trade-off between cost and benefit 

Unquestionably, conducting ecological risk assessments for effects of fishing and implementing ecosystem-

based fishery management will incur some costs.  However, it is expected that the long-term benefit will 

outweigh the costs when using low-cost methods such as those developed in this report.  Unfortunately, 

rigorously analysing the trade-off between cost and benefit is challenging because the process involves 

explicitly or implicitly weighing the total expected costs against the total expected benefits resulting from 

the assessment and management and both are very difficult to quantify. For general cost-benefit analysis in 

other fields, both the benefits and costs are expressed in monetary terms, and are also adjusted for the 

‘time value’ of money in the form of so called “discount rate” (http://www.fao.org/fishery/eaf-

net/eaftool/eaf_tool_9/en).  

Specifically, when we discuss the assessment of cumulative effects of fishing on species, the potential costs 

may include: collecting additional data on fisheries operations, biological and fishery information on each 

bycatch species, and analysing these data qualitatively or quantitatively to infer total impacts from multiple 

fishing activities.  It is possible to estimate the monetary costs for carrying out the entire assessment. 

On the other hand, the potential benefits from the assessment can be extensive and difficult to quantify in 

economic terms alone. For example, FAO lists three major groups of benefits of EAF implementation: 

ecological benefits, management benefits, and economic benefits (De Young et al. 2008). Benefits related 

to the assessment of and implementation of cumulative fishing effect may include: healthier marine 

ecosystems, increased fisheries production, improved fish abundance, reduced impact on threatened, 

endangered, and protected species, less habitat damage, better integration of management across a range 

of fisheries, greater societal benefits, better balancing of multiple objectives from multiple users, increased 
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economic return per fish caught, reduced fishing costs and increased net economic returns, positive 

impacts on food supply in long term, and greater resilience of ecosystem and fisheries. For the resource 

user, there is one clear benefit from Ecological Risk Assessment: greater security of access to the resource 

given the increased application of the precautionary principle in Ecosystem-based Fishery Management.  

Certainly, there should be a balance between the costs of collecting data for ERA and the benefit returned 

to the industry and management.  The benefit goes beyond industry and management – the Australian 

community wants information on the impacts on bycatch.  Obviously, managing bycatch effectively allows 

the fishery to meet its obligations under environmental laws. There are various cases where not doing so 

has resulted in additional conditions imposed on the fishery, e.g. closed areas Such as those for gulper 

sharks and sea-lions. Therefore demonstrating sustainability can save millions in potential losses that would 

result from further fishery restrictions.  Moreover, managing bycatch species to ensure the maintenance of 

ecosystem structure and biodiversity is beneficial to sustainable production of target species (Zhou et al. 

2011; Garcia et al. 2012).   

We have aimed to develop methods that can utilize established data sets, particularly fishery-dependent 

ones.  This has greatly reduced the cost of collecting specific data for ecological risk assessment of fishing 

effects.  For the purpose of assessing cumulative impacts, it is necessary to scope and include as many 

fisheries as possible.  The process of data gathering, understanding, validation, standardisation, 

comparison, and inclusion in the cumulative assessment has been a challenging task.  The data we obtained 

are typically raw data which might not have been validated; many people hold different types of 

information; each agency has different formats and purposes.  As such, assessing cumulative effects from 

all fishing activities is time consuming even where sound methods are available for such a job.  However, 

the cumulative impact does not increase linearly when more fisheries are included.  Typically, only a few 

fisheries make up the vast bulk of the mortality to a specific species while the numerous remaining fisheries 

have only very minor effects.  For example, from 2007 to 2010, on average four out of 15 sub-fisheries 

(gear types) yielded  98% of the total fishing mortality for Bight Skate (Figure 5-35), and five out of 21 

fisheries yielded 99% total fishing mortality for Draughtboard Shark (Figure 5-36).  

Hence, it is clear that the relationship between cost of research and benefit to the fisheries and 

environment is not linear.  If we can identify major sources of impact, for example, by examine fishing 

effort and its distribution, before carrying out thorough risk assessment, significant cost and effort could be 

saved. 
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Figure 5-35. Mean cumulative fishing mortality for Bight Skate from 15 sub-fisheries in 2007-2010.  

 

 

Figure 5-36. Mean cumulative fishing mortality for Draughtboard Shark from 21 sub-fisheries in 2007-

2010.  
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6 Benefits 

This project focused on Commonwealth fisheries and used the species in the southeast region as case 

studies. Hence, the initial beneficiaries of the outputs are Commonwealth fisheries. Other fisheries, such as 

state fisheries, can benefit from this project as their potential impacts have also been taken into account.  

Further, any organisation, including State fisheries management agencies, should benefit from the results if 

they adopt the methods developed in the project, or by adopting the outcomes when implementing 

management arrangements for overlapping species. Further uptake and benefits require more consistent 

data collection. The publication of the results is likely to be adopted globally as Australia is currently leading 

research in this field.  

The tools developed from this project will help AFMA to develop more comprehensive and effective 

ecological risk management for fish species in Commonwealth fisheries. The methods will also be 

applicable to state-managed fisheries. The project has identified information gaps and data needs, which 

will contribute to strategic planning for future research and monitoring.  

Since this project has been technically successful, the potential impact of the research will improve 

management practices and efficiency and enhance resource sustainability. Adoption of the outputs may 

reduce the ecological risks to all fish bycatch species that may be incidentally caught at unsustainable 

levels.  
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7 Further Development  

In this report, we develop new methods as integrated components of the quantitative methodology for 

assessing cumulative ecological risk of fishing effects.  We apply the methods to selected species, mainly to 

test their performance and as case studies.  We recommend that relevant fishery managers (AFMA and its 

RAGs and MACs.) critically review these approaches and assess whether they could be applied to a wide 

range of species and fisheries.  If so, these methods are basically ready to be applied to other 

Commonwealth fisheries and stocks. 

Gear efficiency is one of the keys variables that affect fisheries profitability when catching target species; it 

is also a major factor determining fishing impact when catching non-target species.  The cross-sampling 

method can be applied to many target and non-target species when fishery-dependent or fishery-

independent data are available.  If a random distribution can be reasonably assumed, there should be 

sufficient data to allow estimating gear efficiencies for the majority of fish species.  For non-randomly 

distributed populations, observations on gear overlap are essential for such analysis.  One of the gaps we 

identified is insufficient utilizable data to estimate gear efficiency when distribution is non-random. Partial-

experiments may be conducted where fishermen using different gears are encouraged to fish in the same 

location and at the same time.  

Determination of gear-affected area will have some effect on estimated fishing density and subsequent 

population size. While determination of gear-affected area for gear that physically sweeps through the 

water column seems straightforward, determining the width of swept by the gear may vary from species to 

species.  For example, herding behaviour by bridles and otter boards of demersal trawls are important for 

some species but less significant for other species (Ramm and Xiao 1995; Fraser et al. 2007; Somerton et al. 

2007).  It is even more difficult for gear that passively catches fish, such as gillnet, traps, and hook and line.  

The cross-sampling may have some capability to accommodate bias in the definition of gear- affected area, 

because efficiency Q is a relative scale that negatively correlates with the size of defined gear-affected area.  

However, we have not investigated how robust this relationship is.  Further research may elucidate these 

concerns. 

We stratified the area of fish distribution into presumably heterogeneous density strata to improve the 

estimation of population size.  One of the decisive factors is the Bioregional mapping data where a higher 

density of Core range is defined.  However, at least for some species (e.g., Bight Skate), survey and observer 

data do not show significant differences between Core area and Bioreg area.  It would be useful to refine 

the distribution range by incorporating all observed data. 

The majority of the data used in this research came from existing databases maintained by CSIRO, including 

historical scientific surveys, logbook records, observer data, species distribution, habitats, life-history 

information, etc. These data will continue to be kept in the existing databases. We obtained some 

additional data from State agencies during the project. These States’ data are gear codes and descriptions, 
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limited fishing effort and catch in recent years and confidential information will be erased after the 

completion of the research.    
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8 Planned Outcomes 

We have presented results of reviewing methods for measuring cumulative fishing effects, scoping a range 

of data sources that have the potential for utilisation in the assessment, developing innovative methods for 

assessing cumulative risk, and applying the methods to selected species impacted by many fisheries.  We 

developed quantitative methods that use largely existing data.  The main outcomes of the project are 

quantitative methods for assessing cumulative effects of fishing on species from multiple fisheries and sub-

fisheries.  More specifically, the key achievements are the development of:  innovative methods to 

estimate multiple gear catchability even when fish have an aggregated distribution pattern; a method to 

estimate heterogeneous fish density; and models that describe the relationship between sustainability 

reference points and simple life history parameters other than natural mortality.  These methods take data-

poor situations and research cost into account where existing data from various sources are integrated for 

enhanced utilisation, and fishing mortality can be estimated with no time series of catch data.  This project 

also identified data requirements for the estimation of cumulative effects by using the developed methods.  

The methods developed in this project can be applied to other species and fisheries beyond those assessed 

in our case studies.  Such an extension of the outcomes can be beneficial to researchers who may carry out 

similar studies on cumulative effects of fishing for other fisheries. 

This research will be useful in fisheries management for both Commonwealth and State fisheries by 

adopting the methods developed in the project, and/or by adopting its outcomes when implementing 

management arrangements for overlapping species. The publication of the results is likely to be picked up 

globally as the outcomes contain several innovative developments. The tools developed from this project 

will enable AFMA to finalise effective ecological risk management for Commonwealth fisheries. It is 

anticipated that adoption of the outputs will reduce the ecological risks to all bycatch species that are 

incidentally caught at unsustainable level. Hence, the research will improve management practices and 

efficiency and enhance resource sustainability. 

Some of the project results have been disseminated through seminars, workshops, and international 

conferences. For example, a seminar was delivered to multiple management agencies in Canberra in March 

2013, presentations were made in CSIRO meetings, in an international workshop in Indonesia, and in an 

international conference in New Zealand.  A manuscript on estimating gear efficiency and fish density has 

been submitted to a scientific journal for publication. Additional papers are in preparation. Further 

communications of the results to Australian audiences will be made in the coming years.   
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9 Conclusion 

This project aimed to: review existing methods for measuring cumulative effects of fishing on species; 

scope data sources available to be included for assessment; develop methods for assessing cumulative risk 

from multiple fisheries; apply the method to selected Commonwealth fisheries and species; describe the 

trade-off between research costs and the benefit to the industry.  

The project has successfully achieved all these objectives, explained as follows.  

We reviewed and discuss a range of methods for the assessment of fishing effects on species. The methods 

can be generally categorized as qualitative, semi-quantitative, and fully quantitative. Existing qualitative 

and semi-quantitative methods are appropriate for analysis of single non-cumulative pressure. Some of the 

qualitative methods have also been applied to cumulative risk assessment. Because these risk assessment 

methods produce ordinal risk predictions that express ranked order (e.g., low, medium, and high risk 

score), assessment methods in these categories may encounter unique challenges handling cumulative 

risks, such as uncertainty analysis. In contrast, quantitative methods use numerical data and mathematical 

models.  They allow mathematical calculation of fishing mortality in the whole assessment process.  Hence, 

it is straightforward to apply quantitative methods in dealing with cumulative effects in an ecological 

process.  The SAFE method has the potential to be extended and improve assessments involving cumulative 

fishing impacts on species. SAFE involves two major components: estimating fishing mortality based on a 

specie’s distribution and fishing effort distribution as well as gear efficiency, and sustainability reference 

points based on simple life history traits.  Improvement and extension in these areas have been achieved in 

this report.  

We scoped the different data sources and found that a large volume of useful data had been collected by 

both Commonwealth and State agencies. The resulting historical scientific survey and fishery observer 

database contains over 886,000 records covering both Commonwealth and State waters.  These data are 

particularly valuable for estimating bycatch species distribution, density, and gear efficiency.  Most species, 

but not all, may have enough data for quantitative risk assessment of cumulative fishing effects.  

Furthermore, some data contain obvious errors, indicating that they are raw and unverified data.  

Continuous data collection and validation are essential. 

The Bioreg Database contains spatial distribution ranges for the majority of fish species in Australian 

oceans.  The distribution ranges have been stratified into Core areas and Bioreg areas of different densities.  

It is possible to refine this information by additional observed catch and to further stratify into geographic 

regions.  

More than 130 fisheries or gear types have been used in Commonwealth fisheries and the State fisheries in 

New South Wales, Tasmania, and Victoria.  It is a challenging task to understand, check, standardise, and 

integrate data from various sources, because each agency collects different types of information, uses 

different codes, terms, units, formats, etc., in addition to many obvious errors.  Nevertheless, these fishery 
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data allow assessment of cumulative fishing effects on each species.  Analyses on many other species 

besides those in this case study can be carried out in the future. 

 The level of risk imposed on each species by each fishery (i.e., type of gear) largely depends on spatial 

overlap between species distribution and fishing effort distribution, as well as efficiencies of particular gear 

types catching the species.  In the previous SAFE studies, it was often assumed that individuals of the 

studied population are homogeneously distributed within their distribution range.  Further, three levels of 

catchability Q (0.33, 0.67, and 1.0) were typically assumed for each species based on their size and 

behaviour (Walker 2005; Zhou et al. 2011). Sustainable reference points were typically derived from natural 

mortality rate which in turn was estimated from other life history parameters. 

In this project, we developed new methods to improve these three areas.  We developed statistical models 

to estimate fishing gear efficiency and abundance.  The models can be applied to situations where fish have 

either a random or aggregated distribution pattern and where local abundance may be fixed or changing.  

When fish are non-randomly distributed, it is necessary to apply the cross-sampling method that requires 

multiple gears fishing at the same location and time.  The new cross-sampling method has the capability of 

estimating catchability of multiple gears on non-randomly distributed population.  To estimate 

heterogeneous density, we utilized all available data, including both scientific surveys and fishery 

observations.  The estimated gear efficiency enables abundance estimation and modelling by using a 

general additive model.  Consequently, fishing mortality for each fishery, sub-fishery, or gear type can be 

derived and cumulative impact from multiple stressors on each species can be summarized.  

A species’ capacity to withstand fishing pressure directly depends on its life history traits.  Using data from 

248 species worldwide, we built a Bayesian error-in-variable model to link fishing mortality-based reference 

point, FBRP, to one to three simple life history parameters: growth coefficient, maximum length, and 

maximum age.  The best model is to include all of these three parameters, but when not all data are 

available, using growth coefficient alone can reasonably predict sustainable reference point.  

Chondrichthyes and teleosts exhibit different levels of sustainability, which should be considered in 

ecological risk management. This appears to be the first study that links fishing mortality-based reference 

points to life history parameters other than natural mortality.  This analysis eliminates the step of 

estimating natural mortality from other life history parameters and should reduce the uncertainty and 

increase the applicability to data-poor species. 

We identified data needs during the process of data collection, method development, and modelling.  For 

example, improving species distribution range is important. Bioregional mapping data (e.g., Heap et al. 

2005) is currently used to define species distribution range.  It is possible to incorporate observed catch 

locations to improve Bioregional mapping data.  

Although catch data are not essential for applying quantitative method for assessing cumulative fishing 

impacts, information on catch of bycatch species can be very useful.  This includes catch (both weight and 

number), gear type, effort unit, location, time, etc.  Other information, such as habitat type, depth, could 

be useful to enhance the modelling.  Of course, scientific surveys may provide the best fishery-independent 

data.  Observer data from fishing vessels can be a more cost-effective approach.   



REFERENCES 

 

98 

 

Field experiments have been the traditional way to study gear efficiency.  Although we have developed the 

cross-sampling method to estimate gear efficiency using fishery data, not all gears and species have the 

necessary gear-overlap data (i.e., different gears fish at the same location and time).  It would be very 

valuable to conduct a collaborative research experiment in which fishermen using different gears are 

encouraged to target the same populations and record the catch of each species.  

Our methods avoid the stock assessment approaches that require time series of catch and effort data, as 

well as other auxiliary information. Nevertheless, accurate life history data is important for estimating 

sustainability reference points.  In particular, growth coefficient, maximum length, and maximum age are 

the basic parameters, besides natural mortality rate. This highlights a need for more basic biological 

research, particularly ageing studies for bycatch fish species.  

The costs of cumulative ecological risk assessment involve data collection and integration from a range of 

sources.  However, cumulative impact does not increase linearly with the number of fisheries included.  A 

handful of fisheries often result in a large fraction of mortality to specific species while many other fisheries 

have very minor effect.  This means that the relationship between cost of research and benefit to the 

fisheries and environment is nonlinear.  Considering the trade-off between costs and benefits, we suggest 

identifying major sources of impact before carrying out thorough risk assessment.  
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12.1 Abstract 

1. Fish and wildlife often exhibit an aggregated distribution pattern while local abundance changes 

constantly due to movement. Estimating population density or size and survey detectability (i.e., 

gear efficiency in a fishery) for such elusive species is technically challenging.  

2. We extend abundance and detectability (N-mixture) methods to deal with this difficult situation, 

particularly for application to fish populations where gear efficiency is almost never equal to one. 

The method involves a mixture of statistical models (negative binomial, Poisson, and binomial 

functions) at two spatial scales: between-cell and within-cell. The innovative approach is to use more 

than one fishing gear to simultaneously catch (sample) the same population in each cell at the same 

time step. We carried out computer simulations on a range of scenarios and estimated the relevant 

parameters using a Bayesian technique. We then applied the method to a demersal fish species, 

Tiger Flathead, to demonstrate its utility.  

3. Simulation results indicated that the models can disentangle the confounding parameters in gear 

efficiency and abundance and the accuracy generally increases as sample size increases. A joint 

negative binomial-Poisson model using multiple gears gives the best fit to Tiger Flathead catch data, 

while a single gear yields unrealistic results.   

4. This cross-sampling method can evaluate gear efficiency cost effectively using existing fishery 

catch data or survey data. More importantly, it provides a means for estimating gear efficiency for 
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gear types (e.g., gillnets, traps, hook and line, etc.) that are extremely difficult to study by field 

experiments. 

 

Keywords: catchability, catch efficiency, detection, biomass, fishing gear, negative binomial, 

aggregated distribution 

12.2 Introduction 

Estimating abundance is essential for sound management of wildlife and fisheries. For species that 

cannot be sampled easily, measurements of abundance are highly dependent on reliable estimates 

of detectability. In a fishery, detectability is always a difficult issue, because fishing gears typically 

catch only a fraction of the fish that reside within the affected area in each gear deployment.  The 

quantity that links the catch to the true abundance N (or biomass) available to the gear at each gear 

operation (shot) is called gear efficiency Q (also referred to as fishing power, catch efficiency, or 

probability of catching fish). Gear efficiency is essentially the same as detectability in ecology, which 

is so-called imperfect detection (Archaux et al. 2012; Bailey et al. 2007; Conn and Cooch 2009; Zhou 

and Griffith 2007a).  When we consider the true population size of the whole fish stock, this quantity 

is referred to as the catchability coefficient or simply catchability (q).  Catchability is a combination 

of both gear efficiency (Q) and stock availability, where fish availability for a fishing operation is 

affected by the distribution of the entire fish stock by time, area and depth.  Estimating gear 

efficiency is necessary when deriving absolute abundance estimates from catch data, refining 

estimates of catchability in stock assessment models, or estimating relative fishing impact on 

bycatch species (Somerton et al. 1999; Zhou et al. 2011a).   

The traditional approach used to estimate gear efficiency is by field experiments and is typically 

applied to the fishing method known as trawling.  Somerton et al. (1999) categorized four 

techniques for studying trawl efficiency: (1) gear comparison experiments where Q is estimated as 

the quotient of fish density (catch per area swept) from the trawl to density estimates from a gear 

type believed to be completely efficient, such as visual transects from a ROV or minisub. (2) 

Depletion experiments where Q is estimated by repeatedly trawling on a small closed population 

then fitting a model to the decline in catch per unit effort (CPUE) as a function of cumulative catch. 

(3) Tagging experiments where Q is estimated by determining the fate of individual fish, identified 

with acoustic transponding tags, which were initially positioned in the trawl path. (4) Experiments 

focused on vertical herding, horizontal herding, and escapement.  The estimates of Q are then 

obtained by combining the three components in a mathematical model of the catching process 

(Dickson 1993).  As these approaches are costly, only a few studies have been conducted for a 

limited number of species and trawl types.  In addition, gear efficiency can be affected by many 

factors, including selectivity, fish behaviour, fisher skills, and environmental conditions (Arreguin-

Sanchez 1996).  This makes the result for one species in one study difficult to apply to another 

species or in a new region. 
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Estimating gear efficiency is even more difficult for other gear types, such as hook and lines, seine, 

gillnets, and traps.  Studies on these gear types often focus on relative selectivity rather than 

efficiency (Borgström and Plahte 1992; Prchalová et al. 2009).  Selectivity is a relative scale and a 

component of overall gear efficiency. Absolute abundance estimates using these gear types are rare.   

Mathematical methods for estimation of catchability and abundance have also been developed.  A 

widely adopted traditional method is the so-called depletion method (Hilborn and Walters 1992; Bez 

et al. 2010; Zhou et al. 2011b).  Converting catchability q to gear efficiency Q requires known stock 

distribution range and the size of gear-affected area, under the assumption of homogeneous 

density.  In addition to many other assumptions, this method can only be applied when the 

population is experiencing a “depletion” process due to fishing, i.e., the catch rate (catch per unit of 

effort) significantly declines over time.  This method can be ideally applied to fisheries with a high 

fishing intensity, short fishing season, or small distribution area.  However, this method does not suit 

for many fisheries where catch rates lacks a depletion trend.  

Recently, statistical methods have been developed to estimate gear efficiency and abundance from 

repeated catch data by assuming a random spatial distribution pattern and random catch process 

(Trenkel and Skaug 2005). A randomly distributed population is typically modelled using a Poisson 

distribution, and is a special case in ecology, which may be appropriate when the studied area is 

reasonably small. Because the Poisson distribution has only one parameter, estimation is 

straightforward. A common and more difficult situation in ecology is aggregated distribution which 

leads to over-dispersed count data. Quasi-likelihood or conditional negative binomial models have 

been proposed to handle spatial heterogeneity in animal densities (Ver Hoef and Boveng 2007).  In 

fisheries research, these models have been applied to well-designed paired survey data to analyse 

the ratio between two catchabilities resulting from change in survey protocols (e.g., change in vessel 

or gear) (Pelletier 1998; Cadigan and Dowden 2010; Cadigan and Bataineh 2012; Miller 2013). The 

parameter of interest in these studies is the ratio of pair means, reducing the number of parameters 

from multiple individual efficiencies. Because in the designed surveys trawls are fished close 

together it is reasonable to assume that each trawl encounters the same density of fish and 

differences in catches are primarily related to differences in gear selectivity or vessel fishing 

efficiency (Gardner et al. 2010; Cadigan  and Bataineh 2012).  These studies used maximum 

likelihood estimate, which rely on asymptotic arguments and has been recognized to result in badly 

biased and inconsistent estimates, particularly for variances and when sample size is small (Cadigan 

and Bataineh 2012). 

Outside fisheries science, there have been recent advances in ecology to estimate animal abundance 

and survey detectability.  These methods (so called N-mixture models) have been applied in 

terrestrial populations such as birds (Royle 2004; Wenger and Freeman 2008; Dail and Madsen 2011; 

Martin et al. 2011).  It has been demonstrated that estimating detectability and abundance from 

repeated observations is possible when the animals are randomly distributed (i.e., modelled by a 

Poisson distribution) within the study area and the abundance does not change randomly at each 

observation.  Both detectability and over-dispersion in aggregated populations have been 
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considered in some studies.  However, for studies that use both Poisson and negative binomial 

models, the latter is often not supported and its results unrealistic (Royle 2004; Joseph et al. 2009; 

Dail and Madsen 2011). Also, most studies that use negative binomial models have focused on 

datasets that are not highly overdispersed (see Lloyd-Smith 2007).  Furthermore, animals often 

move within a studied area, causing local abundance to change even in a relatively short time.  

However, constant abundance at each site is assumed in many studies, or more complicated models 

are built that include additional parameters such as probabilities of migration, recruitment and 

survival (Dail and Madsen 2010; Gardner et al. 2010).   

This paper arises from a research project on data poor species where we needed to estimate gear 

efficiency for a range of gear types while we had no funding to carry out field experiments 

specifically designed for such a purpose. However, we have plentiful historical data from fishery 

logbook and from fishery-independent surveys that were designed for other purposes.  

Unfortunately, recorded catch in each shot exhibits huge variations, indicating a highly patchy 

distribution pattern.  We applied various methods from the literature including those cited in this 

paper.  Either the model failed to converge or produced unrealistic results (e.g., very low or very 

high gear efficiency and similar across gear types). Clearly, it is challenging to estimate Q and N for 

an aggregated population with a varying local abundance at each sampling occasion, which is 

generally the case for fish species. In the end, we combined data from multiple fishing gears within a 

single model and used Bayesian technique to simultaneously estimate several parameters, including 

gear efficiency for multiple gear types, population size at each location, mean density, and the over-

dispersion parameter. Encouraged by the realistic results, we carried out a range of simulations to 

validate and fine tune this method. We further found that only models that take over-dispersion into 

account (e.g., negative binomial) can handle data of high variance, and using more than one gear 

type has an advantage over single gear in the complicated situation where population exhibits a 

highly aggregated distribution and local abundance constantly changes over time.   

 

12.3 Materials and methods 

The method for estimating gear efficiency (detectability in ecology, or catchability in some literature) 

and abundance (or density) involves two modules (Royle 2004; Wenger and Freeman 2008; Martin 

et al. 2011).  The first component describes the distribution pattern of fish over the spatial range 

where fishing or surveys have taken place.  The second component is to catch (sample) fish from 

such a population distribution pattern. 

Distribution process 

Population distribution falls into two general patterns, a random distribution and an aggregated 

distribution.  In ecology, random distribution is typically modelled by a Poisson distribution (PS) 

while the aggregated distribution is modelled by a negative binomial distribution (NB).  The Poisson 
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distribution is relatively simple, only involves one parameter, and the mean population size equals 

its variance.  First, a stock area is divided into multiple, equal-sized cells.  If the number of individuals 

in cell i is Ni, the probability density mass function of the Poisson distribution is: 
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       (eqn 1)    

where  is mean population size. However, an aggregated distribution is considered more common 

in ecology and is certainly typical for fish species.  Let us assume that individuals of a particular 

species are distributed in an aggregated pattern in the study area.  We used a negative binomial 

distribution to describe the spatial distribution of aggregated populations.  The number of 

individuals Ni in cell i can be described by one of the parameterizations of the NB probability density 

function, for example (Pollard 1977): 
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where the shape parameter r describes the extent of aggregation (overdispersion) and r > 0.  As r→ 

∞, the negative binomial converges in distribution to the Poisson so the variance approaches the 

mean. Parameter p is between 0 and 1.  The mean is  = r(1 – p)/p and the variance is 2 = r(1 - p)/p2. 

When the cell size is relatively large, fish may also exhibit different distribution patterns, either 

random or aggregated with a lower level of overdispersion than the between-cell pattern.  

The catch process 

Given an individual fish present in cell i, there are two outcomes when fishing gear encounters it: 

caught or not caught.  Hence, it is natural to assume that the number of fish of a particular species 

caught, Cijk, in cell i, at sample time j by gear type k, follows a binomial distribution:  

),(~ ijkkijk nQBinC ,       (eqn 3)    

where Qk is the probability of being caught (i.e., gear efficiency or detectability) by gear type k, and 

nijk is the available fish within gear-affected area in sampling time j by gear type k: 


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where ak is gear-affected (swept) area by gear type k, Dijk =Ni/A is the density, A is the area size of 

each cell, and Ni is the number of fish in cell i from previous equations. Note here we assume local 

abundance nijk  is a random variable that may change at every time step j and by gear type k. Gear 

efficiency Qk may depend on many factors, such as fish size, vessel characters, time of fishing, 

weather, habitat, etc. If data for some of these variables are available and including them is desired, 
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it is trivial to incorporate them in the model, e.g., by using a logistic function (MacKenzie et al. 2002; 

Zhou et al. 2011b): 

1)](exp[

1




bXa
Qk       (eqn 5) 

where vector X could be fish length, water depth, habitat type, etc., and a and b are the model 

parameters. In this paper, we did not include fish length because it is not our interest and we do not 

have the data for most species. We exploited water depth and habitat types for some species, but 

opted not to report it because our interest is the overall gear efficiency for each species and because 

the result from eqn 5 would not be applied to other locations where only catch data are available.   

Equations (3) and (4) indicate that Qk and ak are negatively correlated within a reasonable spatial 

range, as observed catch Cijk is fixed.  Assuming a larger ak will result in a relatively smaller Qk. 

Because in aquatic environments the size of cells is often large, abundance available to be caught 

within a gear affected area may change even when repeated samples are taken during a short time 

period in the same cell.  Hence, Equation (4) allows varying nijk at each sampling time j. If the catch is 

relatively large, after each time step j (which is generally short within a fishing season) the number 

of fish in each cell is reduced due to catch removal: 



k

ijkjiji CNN ,1,
       (eqn 6) 

Again, because our major focus was gear efficiency and not population dynamics, it was unnecessary 

to consider how population changes from month to month through birth and death.  Instead, we 

directly estimated abundance Ni at each cell and each month and there was no assumption about 

the continuity of the population beyond a monthly time step.  

In real fishery data, catch is recorded either as weight or counts, or both.  Discrete statistical 

distributions, such as Poison and binomial, are typically applied to count data.  If weight is used in 

the analysis, the unit chosen may have a dispersion issue which will affect the variance estimate but 

not the point estimate (Zhou et al. 2007b).  For serious application, it may be worth correcting the 

dispersion parameter when weight is used (Zhou et al. 2007b). Alternatively, weight can be 

converted to numbers before modelling.  

Simulation 

Unlike many terrestrial studies where animals (e.g. birds) are observed at point locations, fishing 

operations stretch over a varying extent of water (gear-affected area).  Practically, we divided a 

studied area into multiple cells with the same size and shape.  Several scenarios regarding fish 

distribution pattern, movement, and catch process were tested.  Two types of distributions were 

considered: random and aggregated. Further, the two types of distributions were applied at both 

between-cell level and within-cell level.  We also considered two types of fish movements: no 

movement (fixed local abundance) and random movement within a cell between each sampling 
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occasion.  The catch process involved either a single fishing gear or two different gear types. We 

tested two removal processes: no reduction in abundance (similar to sampling-with-replacement) 

and reduction in abundance (sampling-without-replacement). In the former case, the abundance in 

each cell was assumed to remain the same after catch removal. This is the case when the catch in 

each shot is relatively small compared to the total abundance in the cell. In the latter case, the total 

number of fish in each cell was reduced by each capture.  

In this paper, we only report scenarios involving aggregated distributions across cells, which is more 

common in fish and wildlife distribution.  Parameter estimation for random distributions across cells 

is relatively simple and easy and we did not include the results in this paper. Because our main 

interest was gear efficiency and abundance at the time of fishing, we assumed no birth, natural 

mortality, immigration or emigration during the short monthly study period. The following three 

scenarios were included in the paper. 

Scenario 1: Fish were assumed to follow an aggregated distribution across cells.  In addition, fish 

were assumed to move randomly within each cell so the abundance at the sampling location (which 

is smaller than the cell size) varied at each sampling time for each gear type.  The total abundance 

did not change with catch removal (sampling-with-replacement).  One or two gear types were used 

and the number of samples per cell per gear were 1, 2, or 4.  

Scenario 2: in addition to Scenario 1, fish were assumed to aggregate within each cell. This is what 

we consider more common in the real world when the cell is sufficiently large. 

Scenario 3: in addition to Scenario 2, the total abundance declined with each catch removal 

(sampling-without-replacement). 

Data generation: The studied area was divided into 100 cells with a mean abundance of 1000 fish 

per cell (Table 1). We used a negative binomial distribution and Poisson distribution with known 

parameters to generate both between-cell and within-cell abundance.  In addition, the Poisson 

distribution was used to generate random movement within each cell so the local abundance at 

sampling site varied at each sample time for each gear type.  There were two types of gears, gear A 

and gear B, with efficiency QA = 0.3 and QB = 0.7.  In principle, this could also be two different vessels 

with the same gear type but different gear efficiencies. One or two gear types were used to catch 

the varying population in each cell.  We assumed gear-affected area ak = 0.1 A for both gear types 

(i.e., each shot swept 10% of the area).  Each cell was sampled 1, 2, or 4 times by each of the two 

gears.   

 

Application to Tiger Flathead  

Tiger Flathead (Neoplatycephalus richardsoni) are caught in the Australian Southern and Eastern 

Scalefish and Shark Fishery (SESSF). We used fishery logbook data from 2000 to 2012. Since our main 



APPENDIX 2 

 

114 

 

interest here was about average gear efficiency, to demonstrate the approach of using multiple 

gears (cross-sampling), we excluded some cells where catches were extremely variable within a 

monthly time scale.  Three gear types overlap in some grids and have caught Tiger Flathead: 

longline, gillnet, and trawls.  Another gear, Danish seine, is also used to catch Tiger Flathead. 

However, in our data there is no grid where Danish seine overlaps with any other gear types.  For the 

purpose of demonstrating the cross-sampling method, we opted to exclude this gear type in the 

analysis.  The spatial grid has a 1 degree latitude by 1 degree longitude resolution and the time step 

is a month.  We included a total of 218 unique spatial-temporal grid-month cells and 699 data points 

in the analysis. Out of these grid-month cells, 31 have more than one gear types. The number of 

samples (shots) used in for the analysis were 176, 451, and 72 taken by longline, gillnet, and trawl, 

respectively. The mean catch per shot is 8.5 with a variance of 264.8, i.e., a variance to mean ratio of 

31.2.   

We defined and estimated the gear-affected area a for each gear type in one deployment (shot) as 

follows: 

Longline and gillnet: a = wL 

Trawl:  a = 0.7Lh  

where a is the gear-affected area (swept area), L is the length of longline, gillnet, or trawling length 

in km, w is the width in km along the length of the gear within that range fish can be affected (i.e., 

width of the swept area for trawl), h is the headrope length, and 0.7 is the spread factor when the 

trawl is towed under the water (Milton et al. 2007; Pezzuto et al. 2008).  For longline and gillnet, it is 

difficult to define the range of the gear (i.e., 0.5w) within which a fish may be likely to be caught.  

Based on the literature (see Discussion), we assumed that the gear-affected area was w = 1 km for 

these gears.   

 

Parameter estimation 

Fish distribution was modelled at between-cell and within-cell levels. Hence, the models involved 

two layers. In this paper we report the following model combinations: 

NB-OM: a negative binomial function (eqn 1) for between-cell distribution but no model (omitted) 

for within-cell variation; 

NB-PS: a negative binomial function for between-cell distribution and a Poisson function for within-

cell distribution; 

PS-PS: a Poisson function for both between- and within-cell distributions.  
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Fish distribution and catch processes were modelled using a Bayesian framework.  Because NB 

parameter p and gear efficiency Q can only take values between 0 and 1, a non-informative beta 

function Beta(1,1) was used as a prior distribution, which is a flat line between 0 and 1. For the NB 

shape parameter which is positive, we assume a log-normal prior distribution, i.e.,

)10,0(log~)(  SDmeannormalrf . Similarly, )10,1(log~)(  SDmeannormalf 

was used for the Poisson mean prior. 

WinBUGS software was used to estimate parameters in the high dimensional models. For both 

simulation and application to real fish data, we ran three Markov Chain Monte Carlo (MCMC) 

simulations with varying initial values.  Convergence was assessed by visual examination of chain 

trajectories and by the Gelman-Rubin statistic Rhat.  MCMC was allowed to continue for sufficient 

iterations after convergence before an additional 30,000 iterations were kept for parameter 

inferences.  The joint posteriors were evaluated by relative error (RE, or mean relative error MRE 

when there are multiple parameters such as predicted catch) and mean absolute relative error 

(MARE): 
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where n is the number of cells.  A similar formula was used for evaluating predicted catch for the 

real Tiger Flathead data because true parameters regarding Q, ,  r, and fish density are unknown.  

 

12.4 Results 

Simulations 

The data generation process produced a “true abundance” in each of the 100 cells. The mean 

number of fish was 938 (ranging from 42 to 2,694), and the variance was 389,628. The shape 

parameter r was 2.26. Hence, the population was over-dispersed with a variance to mean ratio of 

415. 

Scenario 1: We focused on the NB-OM model in this scenario because an aggregated distribution 

occurs between-cells but not within-cell. In all cases, using two gears results in smaller biases than 

using a single gear. With only one sample per gear per cell, bias can be very high, particularly when 

only one low efficiency gear is used (e.g., QA = 0.3). Bias in parameters Q, , and Ni decreases as the 
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number of sample increases (Table 2).  Low bias can be achieved with as few as 2 samples per gear 

and per cell per time step (e.g., RE[Q] = 0.03 and ER[] = 0.04). Sample size has little effect on the 

bias of the shape parameter, which is typically underestimated by 10% (population is more 

aggregated than the true pattern).  Correlation between the two primary parameters of interest, Q 

and , is moderately low (between 0.11 and 0.37).  The model not only has the capability of 

estimating mean population size  but can also estimate abundance in each cell (Figure 1). However, 

using one gear with low efficiency may result in large bias.  

We also tested NB-PS and PS-PS models in this scenario (see the bottom of Table 2). Including a 

Poisson function for within-cell distribution does not improve the results. In fact, it produces slightly 

higher biases in RE[Q] and ER[].  For the PS-PS model, the three MCMC chains did not mix well even 

after one million iterations. What is more problematic is that the Q values continue to decline to 

close to zero.  However, a Poisson model can produce accurate results when the between-cell 

distribution is assumed to be random (result not included).  

Many studies have attempted to calibrate gear efficiency by estimating the ratio between two gear 

types. Our study shows an interesting result: the posterior QB/QA ratio is very stable and accurate 

across all models when both gears are used. This high accuracy is true even for the PS-PS model (the 

numbers in Table 2 were rounded to 0.01) and the NB-OM models where individual Q is extremely 

biased. 

Scenario 2: This is a difficult situation where fish are assumed to have an aggregated distribution 

pattern both between and within cells and are allowed to move randomly between each sampling. 

The NB-PS model is used in this case to allow extra flexibility of capturing variation within cells.  

Again, in all cases, using two gears results in smaller biases than using a single gear, especially when 

that gear has a low efficiency (gear A). Although bias decreases as sample size increases, it appears 

that 4 samples per gear per cell are required to achieve a good accuracy in Q, , and Ni (Table 3, 

Figure 2). Again, the ratio between QB/QA is accurate even when other parameters are very biased. 

Using only one gear may result in large bias in Q, , and Ni when the efficiency is low (i.e., gear A). 

The NB-OM model performs poorly in this case, resulting in very large biases in Q, , and Ni (bottom 

of Table 3). 

Scenario 3: Recall that this scenario assumes that the cell size is relatively small so catch removal 

reduces the total abundance within each cell. The NB-PS model produces lower biases than in 

Scenario 2 (Table 4, Figure 3).  Removing fish at each sampling may provide additional contrast in the 

catch data. With 4 samples per gear, the posterior Q, , and Ni can be highly accurate. The simplified 

NB-OM model also yields realistic results, although not as good as the NB-PS model (Table 4 

bottom). 

 

Application to Tiger Flathead  
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We tested a number of models, including NB-PS, NB-OM, PS-PS, with multi-gear data or single-gear 

data. Models using multiple gears converged quickly (often less than 3000 iterations) and there was 

no abnormal behaviour of the MCMC (estimation) process.  

The NB-PS model fitted to multi-gear catch data quite well (Figure 4). The NB-OM model over- or 

under-predicted many catches. Visually, the PS-PS model also predicted the catch well. However, 

mean relative error MRE[C] and mean absolute relative error MARE[C] in catch increase from the 

NB-PS model to the PS-PS one: 0.08 and 0.38 for NB-PS, 0.12 and 0.46 for NB-OM, and 0.31 and 0.59 

for PS-PS, respectively. The positive MRE[C] indicates that all models tend to over-predict the catch. 

Clearly, among the three models, PS-PS has the highest bias.  More problematically, the posterior 

density from the PS-PS model shrunk toward the middle of the range (Figure 5), in contrast to the 

heavily skewed catch distribution (Figure 4). This was expected and also observed in simulated data 

(not shown). Because the Poisson distribution cannot account for over-dispersion, it over-estimates 

low true values and under-estimates high true values. 

All three models showed that significant differences in gear efficiency Q exist among gear types 

(Table 5).  Trawl was the most effective gear, while gillnet was the least effective. The low values for 

longline and gillnet may reflect the large gear-affected area assumed in calculating catch per swept 

area and possible low efficiency of using bait to attract Tiger Flathead. The posterior of the scale 

parameter r was about 2, indicating the distribution of Flathead between grid cells was highly 

aggregated.  

Single gear catch data resulted in unrealistic estimates, particularly for the parameters of most 

interest: Q and  (Table 5). This further supports the simulation results on the advantage of the 

cross-sampling approach using multiple gears.  

 

12.5 Discussion 

We extended the class of abundance and detectability models (N-mixture models) to fishery data by 

simultaneously modelling between-cell and within-cell distributions of an aggregated population. 

Through simulations and real fishery data, we compared alternative models using single or multiple 

fishing gears to sample the population. The results show that it is possible to estimate gear efficiency 

and fish abundance using fishery-dependent catch data where distribution can be highly patchy and 

local abundance can change from sampling to sampling (we also analysed other species using 

fishery-independent survey data but did not include in this paper to save space).  When the 

population has an aggregated distribution between- and within-cells, a two layers model involving a 

negative binomial and a Poisson function can produce accurate estimates with sufficient sample 

sizes. More importantly, we demonstrated that a cross-sampling approach that uses multiple gears 

has an advantage over single gear and can yield lower biases in key parameters than single gear. 

Individual component of our approach, such as the use of a mixture of the Poisson (or negative 
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binomial) distribution with a binomial catch process, and a Bayesian approach, are not new. It is the 

cross-sampling approach – using multiple gears to sample the same population, modelling the 

population at two levels (between- and within-cell), and analysing the data with a Bayesian approach 

–  which provides the original element of this paper for estimating abundance and detectability for 

situations typical of aquatic environments.  

 Wildlife may exhibit various distribution patterns and the local population size may frequently 

change over time.  There are extensive studies on randomly distributed populations with constant 

local population sizes (e.g., breeding birds), and statistical methods have been developed to 

estimate both abundance and detectability (MacKenzie and Kendall 2002; Royle et al. 2005; Martin 

et al. 2011; Wenger and Freeman 2008).  Similar studies in fisheries generally focus on gear research 

in relatively small areas or surveys using two types of gears together to compare their relative 

efficiencies (Trenkel and Skaug 2005; Gardner et al. 2010; Cadigan and Bataineh 2012; Miller 2013). 

Data collected from carefully designed surveys may have a lower variability than fishery-dependent 

data.  However, random distribution patterns are the exception for most groups of animals, while 

aggregated distributions are typical. In the aquatic environment, aggregated distributions may result 

from habitat variations and animal behaviour.  Further, individuals in the population frequently 

migrate and disperse.  As such, local abundance at sampling sites may change even within relatively 

short time frames.  It is difficult to sample and estimate population size for such an elusive 

population with an aggregated spatial distribution and varying local abundance.  The difficulty has 

been observed in species we analysed, including Tiger Flathead in this paper.   

By contrast, when more than one gear type with different fishing efficiencies was used, the cross-

sampling method performed rather well.   The power of the cross-sampling method benefits from a 

combination of applying two or more contrasting gears, parametric statistical models (i.e., the 

negative binomial distribution for across-cell abundance, the Poisson distribution for within-cell 

abundance, and the binomial distribution to represent the catch process), combined with a Bayesian 

approach.  Contrasting catch patterns from multiple gear types may provide the key in separating 

the confounding parameters.  A similar effect was found in estimating parameters for aggregated 

elusive populations using detection and non-detection data (Zhou and Griffiths 2007a).  

A more complicated situation than the Scenarios we examined is when scientific surveys or fishing 

operations take place in locations not occupied by a species.  This situation results in more zero 

catch events than are modelled by the Poison or negative binomial distributions (Equations 1 and 2).  

When zero catch data are collected, it is logical to use zero-inflated distribution models, such as the 

zero-inflated Poisson (ZIP) or the zero-inflated negative binomial distribution (ZINB).  We also 

conducted simulations using ZIP and ZINB and achieved similar results. However, we opted not to 

include this scenario as the main purpose of this paper is to introduce the cross-sampling method. 

We presented empirical results for Tiger Flathead captured by three gear types.  There is no 

reference for direct comparison of gear efficiency for this species, as this is a difficult parameter to 

estimate and is traditionally obtained from field experiments. Estimated trawl efficiency varies 
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greatly among different studies and species.  For example, Hoffman et al. (2009) used hydro-acoustic 

and trawl data to estimate the catch efficiency of a demersal trawl catching Atlantic croakers 

Micropogonias undulatus and White perch Morone Americana. They found that the gear efficiency 

estimates ranged from 0.18 to 1.26 for Atlantic croakers and from 0.11 to 0.60 for white perch. 

Doray et al. (2010) used the ratio of trawl catches and acoustic densities to estimate gear efficiency 

for hake and other species, and derived very low Qs ranging from 0.022 to 0.18. Trenkel and Skaug 

(2005) applied statistical models to estimate trawl efficiency for several groundfish species based on 

small-scale repetitive hauls. Their results vary between 0.05 and 0.42. Dickson (1993) compared 

trawl gear efficiency for catching cod (Gadus morhua) and haddock (Melanogramrnus aeglefinus) 

and found that gear efficiency typically ranged from 0.1 to 0.8 for different size groups.  When no 

information is available for gear efficiency, it is often assumed that Q = 1 or Q = 0.5 (Pauly 1979; 

Somerton et al. 1999; Pope et al. 2000).  Similarly, Q = 0.33, 0.67, and 1.0 has been used in 

assessment of bycatch species (Zhou etal. 2011a). We believe that the method described here 

provides more realistic estimates than the default assumptions. There is essentially no study on gear 

efficiency for other gear types, including longline and gillnet. 

Defining gear-affected area can be a difficult issue for gears that do not physically sweep an area, 

e.g., using baits to attract fish.  For these gear types, gear-affected area depends on various factors, 

including type of bait, soak time, physiological state of the fish (duration of food deprivation), 

current speed, fish swimming speed, body size, etc. (Løkkeborg et al. 1989, 1995).  The active space 

where the odour concentration is present in super-threshold quantities shrinks with soak time.  

Within the first hour, the maximum length of the active space for sablefish is 925 m, in 2 h is 793 m, 

and in 6 h is 654 m (Løkkeborg et al. 1995).  In a field study using baited gillnet, cod were observed 

to move directly towards the gear from distances up to 400 m (Kallayil et al. 2003).  Near 90% of 

sablefish were hooked within 3 hours of soak time, which corresponds to the leading edge of the 

plume of about 800 m from the bait (Sigler 2000).  In a baited video experiment, the greatest 

distance of fish attraction was 48-90 m for a 200 mm fish in a current velocity of 0.1- 0.2 m s-1 (Ellis 

and DeMartini 1995).  If the current speed is about 0.2 m s-1, 1 hour soaks of baits may have an 

effective range of attraction of about 480 m for fish of 200-300 mm length (Cappo et al. 2004).  

Based on these studies, for baited gears we assumed that the gear-affected area was w = 1 km from 

the gear.  Within a reasonable range, the delineation of gear-affected area a is relatively robust in 

estimating fish density, because gear efficiency Q is a relative scaling parameter negatively 

correlated to the defined dimension of a so the effect is mitigated in density or biomass estimation 

as long as the same a is used in estimating Q and the total abundance. It would be very helpful to 

test sensitivity of gear-affected area in future studies. 

Gear efficiency is not only essential in converting survey or commercial catch to abundance, but it 

can also be useful in stock assessment for estimating catchability.  When individuals are assumed to 

be randomly or evenly distributed in stock area A, the relationship between gear efficiency Q and 

common catchability q in stock assessment is (Somerton et al. 1999): 

 q = Q a/A 
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where a is the average swept area in each tow (for trawl).  When the data needed in a stock 

assessment model are insufficient, or when there is large uncertainty in the stock assessment, gear 

efficiency based on the cross-sampling method can improve the assessment and reduce the 

likelihood of large biases in the biomass estimates. 

One of the major applications of the method is to derive average gear efficiency for each gear type 

and each species.  This method uses readily available commercial logbook data or observer data and 

historical surveys, which avoids costly field experimental approaches.  We have not explored the 

effects of many factors that possibly influence gear efficiency, including fish size, fishing season and 

time, habitat, and other environmental conditions (Arreguin-Sanchez 1996). However, these 

variables can be incorporated into the model as covariates if data are available and inclusion is 

deemed appropriate.  
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Table 1. Summary of the simulation and modelling process for Scenarios 1 to 3 (S1, S2, S3). NB = 

negative binomial, OM = omitted, PS = Poisson, Bin = binomial, C = catch, a = gear-affected area, A = 

area size of a cell. 

 Data generation Modelling 

Number of cells 100 100 

Mean fish per 

cell 

 = 1000 
p

pr

ˆ

)ˆ1(
ˆ


  

Distribution 

between cells 

)2,1000NB(~iN  NB: )ˆ,ˆNB(~ˆ rpN i  

Distribution 

within cell 

S1: NA 

S2: )50,(~ rNNBN iij  

S3: 

)50,(~ 11   rCNNBN ijijij   

OM: NA 

PS: )ˆ(~ˆ
iij NPoisN  

PS: )ˆˆ(~ˆ
11   ijijij CNPoisN   

Gear type 2 2 

Gear efficiency  0.3, 0.7    ,     

Samples per gear 

per cell 

1,2,4 1,2,4 

Catch process ]/)(,[~ AaNPoisnQBinC kijijkkijk   ]/)ˆ(ˆ,ˆ[~ AaNPoisnQBinC kijijkkijk   
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Table 2. Posterior gear efficiency, bias in key parameters, and correlation between gear efficiency and mean abundance from Scenario 1. LCI and UCI are 

the lower and upper 95% CI. RE: relative error, MARE: mean absolute relative error. The true values are: QA = 0.30, QB = 0.71,  = 938, and r = 2.26. 

  Sample Gear        Efficiency Q             

Model  per gear number Gear  Mean SD LCI Median UCI RE[Q] RE[] RE[r] MARE[N] Corr[Q,] 

NB-OM 1 1 A 0.90 0.02 0.85 0.90 0.93 1.95 -0.67 -0.13 0.66 -0.21 

 
1 1 B 0.93 0.01 0.90 0.93 0.96 0.31 -0.25 -0.09 0.24 -0.11 

 
1 2 A 0.39 0.01 0.37 0.39 0.41 0.29 -0.24 -0.10 0.24 -0.23 

  1 2 B 0.92 0.02 0.87 0.93 0.96 0.30 -0.24 -0.10 0.24 -0.26 

NB-OM 2 1 A 0.67 0.02 0.61 0.67 0.71 1.22 -0.55 -0.13 0.55 -0.34 

 
2 1 B 0.74 0.02 0.70 0.74 0.77 0.04 -0.05 -0.11 0.13 -0.32 

 
2 2 A 0.31 0.01 0.30 0.31 0.34 0.03 -0.04 -0.11 0.13 -0.31 

  2 2 B 0.74 0.02 0.70 0.73 0.79 0.03 -0.04 -0.11 0.13 -0.33 

NB-OM 4 1 A 0.52 0.02 0.49 0.52 0.57 0.73 -0.43 -0.14 0.42 -0.37 

 
4 1 B 0.70 0.01 0.68 0.70 0.73 -0.02 0.01 -0.10 0.13 -0.33 

 
4 2 A 0.30 0.01 0.29 0.30 0.32 <0.01 -0.01 -0.10 0.14 -0.22 

  4 2 B 0.71 0.02 0.68 0.71 0.75 -0.01 -0.01 -0.10 0.14 -0.23 

NB-PS 4 2 A 0.33 0.01 0.31 0.33 0.35 0.08 -0.09 -0.10 0.14 -0.24 

  4 2 B 0.78 0.02 0.74 0.78 0.81 0.08 -0.09 -0.10 0.14 -0.25 

PS-PS 4 2 A 0.01 <0.01 <0.01 0.01 0.01 -0.98 54.96 
 

108.88 -0.97 

  4 2 B 0.01 <0.01 0.01 0.01 0.01 -0.98 54.96   108.88 -0.97 
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Table 3. Posterior gear efficiency, bias in key parameters, and correlation between gear efficiency and mean abundance from Scenario 2.  

 

  Sample Gear       Efficiency Q             

Model  per gear number Gear  Mean SD LCI Median UCI RE[Q] RE[] RE[r] MARE[N] Corr[Q,] 

NB-PS 1 1 A 0.87 0.03 0.81 0.88 0.92 1.92 2.40 -0.23 0.66 -0.30 

 
1 1 B 0.93 0.02 0.88 0.93 0.96 0.34 6.46 -0.15 0.27 -0.19 

 
1 2 A 0.38 0.01 0.35 0.38 0.40 0.25 -0.21 -0.14 0.23 -0.29 

 
1 2 B 0.88 0.03 0.83 0.88 0.93 0.25 -0.21 -0.14 0.23 -0.31 

NB-PS 2 1 A 0.53 0.03 0.48 0.53 0.58 0.76 -0.51 -0.16 0.50 -0.45 

 
2 1 B 0.47 0.02 0.45 0.47 0.51 -0.33 0.29 -0.12 0.31 -0.43 

 
2 2 A 0.24 0.01 0.22 0.24 0.26 -0.21 -0.20 -0.09 0.21 -0.50 

 
2 2 B 0.55 0.03 0.50 0.54 0.59 -0.22 -0.20 -0.09 0.21 -0.52 

NB-PS 4 1 A 0.82 0.02 0.77 0.82 0.86 1.73 -0.67 0.00 0.66 -0.31 

 
4 1 B 0.88 0.02 0.85 0.88 0.91 0.26 -0.28 -0.04 0.27 -0.18 

 
4 2 A 0.29 0.01 0.27 0.29 0.31 -0.04 -0.05 -0.05 0.09 -0.38 

 
4 2 B 0.67 0.02 0.63 0.67 0.72 -0.04 -0.05 -0.05 0.09 -0.39 

NB-OM 4 2 A 0.10 <0.01 0.10 0.10 0.10 -0.67 26.69 -0.09 1.80 -0.07 

 
4 2 B 0.23 <0.01 0.23 0.23 0.24 -0.67 26.69 -0.09 1.80 -0.08 
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Table 4. Posterior gear efficiency, bias in key parameters, and correlation between gear efficiency and mean abundance from Scenario 3.  

 

  Sample Gear       Efficiency Q             

Model  per gear number Gear  Mean SD LCI Median UCI RE[Q] RE[] RE[r] MARE[N] Corr[Q,] 

NB-PS 1 1 A 0.89 0.02 0.84 0.89 0.93 1.98 -0.67 -0.15 0.67 -0.25 

 
1 1 B 0.94 0.01 0.91 0.94 0.96 0.35 -0.26 -0.07 0.25 -0.07 

 
1 2 A 0.39 0.01 0.37 0.39 0.41 0.31 -0.25 -0.07 0.24 -0.14 

  
  

B 0.93 0.02 0.89 0.93 0.96 0.33 
   

-0.16 

NB-PS 2 1 A 0.53 0.01 0.51 0.53 0.56 0.76 -0.41 -0.10 0.41 -0.19 

 
2 1 B 0.80 0.02 0.75 0.80 0.84 0.14 -0.12 -0.09 0.12 -0.23 

 
2 2 A 0.34 0.01 0.32 0.34 0.36 0.14 -0.12 -0.09 0.12 -0.21 

  
  

B 0.79 0.02 0.75 0.79 0.83 0.13 
   

-0.22 

NB-PS 4 1 A 0.36 0.02 0.33 0.36 0.39 0.20 -0.14 -0.10 0.15 -0.47 

 
4 1 B 0.71 0.02 0.68 0.71 0.74 0.01 -0.02 -0.09 0.03 -0.19 

 
4 2 A 0.30 0.01 0.29 0.30 0.31 <0.01 <0.01 -0.09 0.03 -0.12 

  
  

B 0.70 0.01 0.68 0.70 0.72 <0.01 
   

-0.13 

NB-OM 4 2 A 0.29 0.01 0.27 0.29 0.30 -0.04 0.04 -0.09 0.05 -0.19 

  
  

B 0.67 0.02 0.64 0.67 0.70 -0.04 
   

-0.20 
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Table 5. Posterior gear efficiency, mean density, and negative binomial parameters p and r for six models 

fitted to Tiger Flathead catch data. The subscripts for gear type are: LL = longline, GN = gillnet, and TW = 

trawl. 

 

Model Param Mean SD LCI Median UCI Corr[Q,] 

NB-PS QLL 0.032 0.002 0.028 0.032 0.036 -0.45 

3 gears QGN 0.010 0.001 0.009 0.010 0.011 -0.51 

 

QTW 0.840 0.026 0.786 0.842 0.888 -0.25 

 

 63 4 55 62 72 

 

 

r 2.0 0.2 1.6 2.0 2.5 

   p 0.032 0.004 0.025 0.032 0.039   

NB-OM QLL 0.017 0.001 0.014 0.017 0.020 -0.63 

3 gears QGN 0.006 <0.001 0.005 0.006 0.006 -0.67 

 

QTW 0.505 0.020 0.463 0.506 0.542 -0.44 

 

 110 9 93 109 129 

 

 

r 2.1 0.2 1.7 2.1 2.5 

   p 0.019 0.002 0.014 0.019 0.024   

PS-PS QLL 0.014 0.001 0.012 0.014 0.015 -0.79 

3 gears QGN 0.005 <0.001 0.004 0.005 0.005 -0.76 

 

QTW 0.69 0.03 0.63 0.69 0.75 -0.77 

   141 7 128 141 154   

NB-PS QLL 0.828 0.030 0.760 0.831 0.879 -0.61 

Longline  1.4 0.3 1.0 1.4 2.1 

 

 

r 49.4 130.4 4.1 18.8 333.9 

   p 0.906 0.084 0.688 0.930 0.997   

NB-PS QGN 0.564 0.022 0.518 0.565 0.606 -0.20 

Gillnet  0.7 0.1 0.6 0.7 0.9 

 

 

r 217.0 733.1 9.1 45.1 1550.0 

   p 0.979 0.020 0.924 0.985 1.000   

NB-PS QTW 0.345 0.043 0.272 0.339 0.433 -0.59 

Trawl  301 60 203 295 433 

 

 

r 1.6 0.4 0.9 1.5 2.5 

   p 0.005 0.002 0.003 0.005 0.009   

 

 



APPENDIX 

 

130 

 

 

Figure 1. Posterior abundance (with 95% CI) and the true abundance in each cell from simulated Scenario 1. 

The straight line is where posterior abundance equals the true abundance. Fish are assumed to follow a 

negative binomial distribution between cells but not within cells. Random movement is assumed within 

each cell between each sampling. GA and GB are gear A and B, sampl  is the number of samples per gear 

per grid.  
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Figure 2. Posterior abundance (with 95% CI) and the true abundance in each cell from simulated Scenario 2. 

Fish are assumed to follow a negative binomial distribution both between and within cells. Further, random 

movement is assumed within each cell between each sampling. GA and GB are gear A and B, sampl  is the 

number of samples per gear per grid.  
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Figure 3. Posterior abundance (with 95% CI) and the true abundance in each cell from simulated Scenario 3. 

Fish are assumed to follow a negative binomial distribution both between- and within-cells. Further, 

random movement is assumed within each cell at each sampling and the total abundance declines by 

removal of each catch (sampling without replacement). GA and GB are gear A and B, sampl  is the number 

of samples per gear per grid.  
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Figure 4. Comparing three models performance for Tiger Flathead catch data. The error bar is the 95%CI. 

NB-PS: negative binomial for modelling between-grid distribution and Poisson for modelling within-grid 

distribution; NB-OM: negative binomial for modelling between-grid distribution while within-grid 

distribution is not modelled (omitted); PS-PS: Poisson for modelling both between- and within-grid 

distributions. The straight line is where posterior catch equals observed catch.  
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Figure 5. Frequency distribution of posterior Tiger Flathead density in 218 grids from three models. NB-PS: 

negative binomial for modelling between-grid distribution and Poisson for modelling within-grid 

distribution; NB-OM: negative binomial only for modelling between-grid distribution; PS-PS: Poisson for 

modelling both between- and within-grid distributions. 
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