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2 Executive Summary 

2.1  What the report is about 
In Australia many stock assessments are dependent upon catch-per-unit-effort (CPUE) 
to act as an index of relative abundance of fished stocks through time. But CPUE trends 
can be affected by many factors other than just stock size changes. Around Australia, 
and internationally, numerous and disparate approaches are used to conduct standardiza-
tions of CPUE using statistical methods to account for the effects of these other factors 
(e.g. the effect of which vessel is fishing, and where and when it is fishing). The objec-
tive in all cases is to discover trends in the CPUE that better reflect how the stock’s rela-
tive abundance is changing through time rather than reflecting changes in the fisher’s 
behaviour. In attempts to improve how such analyses are conducted and reported in 
Australia, stock assessment scientists from CSIRO and Queensland DPI explored an ar-
ray of different aspects of CPUE standardizations. The overall aim was to generate a se-
ries of recommendations to act as a guide or a set of suggestions when it becomes nec-
essary to use CPUE data in a stock assessment. 

2.2 Background 
Fishery stock assessments need some way of indexing the relative abundance of a fished 
stock through time if they are to succeed in summarizing the stock’s dynamics and gen-
erate appropriate management advice. In Australia, with a few exceptions, the only in-
dex of relative abundance available for most fished stocks is fishery dependent CPUE. 
It has been common practice internationally to standardize CPUE trends with respect to 
factors unrelated to stock abundance to ensure that any trends observed are not due to 
those other factors (such as which vessel was fishing, in what area, at what depth, and at 
what time of year). Despite the process of CPUE standardization being almost obliga-
tory although still not universally adopted, there is no single accepted method for con-
ducting such analyses. This possibly reflects the fact that there are diverse methods of 
fishing for a diverse array of different species. Not surprisingly, this has also led to a di-
verse array of different types of fishery dependent data that varies in the detail, fre-
quency of collection, and geographical scale over which it is summarized. It can vary 
from shot-by-shot information with the latitude and longitude of the start and finish to 
monthly summary data from 5° × 5° squares. Despite this diversity it is still possible to 
draw some general conclusions and make general recommendations regarding the uses 
of CPUE.   
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2.3  Aims/objectives 
There were six objectives to this work: 
1. Review the most appropriate catch rate standardisation strategies when targeting is 

well defined in multi-species fisheries. 
2. Compare alternative catch rate standardization strategies in those fisheries where 

both fishery independent and fishery dependent data are available. 
3. After modifying Atlantis SE, simulate shot-by-shot commercial catch rate data and 

use this in simulation tests for the most robust standardization strategies in mixed 
fisheries when targeting is unknown and management interventions influence catch 
rates. 

4. Use simulated catch rate data to conduct MSE testing of the influence of potential 
biased data and standardization strategies on the outcome of stock assessments that 
rely on catch rate trends and targets. [MODIFIED:  simulated catch rate data/trends 
were replaced with 'single species simulated data']. 

5. Use simulated catch rate data to test the potential influence of effort creep (tech-
nical improvements in fishing power) on stock assessments. [MODIFIED:  simu-
lated catch rate data/trends were replaced with 'single species simulated data']. 

6. Based on the results of objectives 1 to 5 write a reference manual on the applica-
tion of the most robust CPUE standardization strategies for Australian fisheries.  

 
Objective 3 and thus 4 and 5, had to be modified when it became clear that the simu-
lated data possible from Atlantis remained at too coarse a level even after significant 
modifications to the Atlantis simulation framework. Instead, single species simulated 
data was developed and used. This still enabled discussions of the issues of bias and 
standardization strategies, as well as the potential effects of effort-creep (which is where 
technical changes to fishing improve efficiency but do so invisibly to subsequent anal-
yses). 

2.4  Methodology  
Separate sections were written dealing with a) potential issues that arise with the CPUE 
data itself, b) fishery dependent CPUE and fishery independent survey estimates of 
CPUE, c) alternative methods of statistical standardization, and d) the simulation of 
shot-by-shot data.  In each case methods are described relating to data selection, data 
analysis, and other numerical methods used to solve the problems being addressed in 
each section. 

2.5  Recommendations 
2.5.1  Guidelines 
The final objective of this work was to write a reference manual on the application of 
the most robust CPUE standardization strategies for Australian fisheries. It should be 
clear that the range of fisheries in Australia (from benthic hand collected fisheries, to 
trawl fisheries, to pelagic purse-seine and lining fisheries) means that there is no single 
standard approach to CPUE standardization that will necessarily work well with every 
fishery. Nevertheless, it remains possible to write out a set of guidelines that will im-
prove the defensibility of any conclusions drawn from CPUE standardizations as well 
as improve the presentation of results from such analyses to assessment groups and 
other interested parties. Many of the points made below are included in Chapter 8 
(starting on page 145). 
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2.5.2  Documentation 
One pillar of defensibility is complete and explicit documentation of all procedures used 
in any stock assessment or analysis so that the analysis can be repeated quickly and eas-
ily. However, most people interested in the outcome of an analysis focus primarily on 
the summary or abstract of results and only desire a brief document. Nevertheless, in the 
interests of openness and defensibility, many of the suggested recommendations (be-
low) for more text, tables, and plots, should be included at least as supplementary mate-
rials in appendices. With the growth of electronic documents and reduction in the use of 
printed documents the size of the final document should not be an impediment to an im-
provement to how such analyses are presented. If a printed document is required, then 
the supplementary material need not be printed but should be referred to throughout the 
primary document. 
 
In the case of CPUE standardization it is necessary to: 
 
1. Have an explicit section in any report on a standardization that focusses solely on 

the data selection and preparation processes and choices. 
2. Describe and explain every choice in any data selection made. 
3. Ideally tabulate and plot the distributions of catch, effort, CPUE, depth of fishing, 

month of fishing, and any other factors/variables included in the analysis to illustrate 
the quality of the data being used (helps identify whether there are outliers or there 
is rounding, or whether the data has unexpected properties, or just what those prop-
erties are). 

4. Be explicit about the statistical models fitted, and how the model parameters (espe-
cially the year, or time-step, effects) are derived. 

5. Be explicit about the assumptions behind the statistical distributions used in the sta-
tistical models. 

6. Plot diagnostics relating to the statistical fit of the model to the data. 
7. Identify and plot the relative influence of the different factors included in any analy-

sis. Do not rely solely on the variance or deviance accounted for by each factor but 
also summarize the impact each factor has on the standardized CPUE trend. 

2.5.3  Ideal Sensitivity Options 
If enough time is available (albeit this is an unlikely scenario): 
1. Apply the same statistical model structures but with different underlying statistical 

distributions to describe the residual structure (e.g. log-normal vs Gamma distribu-
tions). This tests for sensitivity to the basic assumptions used. 

2. Apply different statistical model structures using the same statistical distribution for 
the residual errors structure to consider the sensitivity to model structure. 

3. Conduct a retrospective analysis through at least the last half of the available years 
of data to search for consistency and/or for major changes in the factors influencing 
any trends in CPUE. 

 

2.6   Keywords 
Southern and Eastern Scalefish and Shark Fishery, SESSF, catch-rates, CPUE, stand-
ardization, fisheries data, catch and effort data, index of relative abundance. 
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3 Introduction 

3.1  Why Use CPUE? 
Natural resource management is a cyclical, heuristic, and adaptive process involving the 
monitoring, assessment, and management of an exploited resource (Figure 1). The pri-
mary problem in the management of natural fisheries resources is the provision of work-
able and relatively consistent advice about the state of exploited stocks (Punt et al., 
2018), which can then be used as the basis for on-going defensible management actions 
into the future.  
 

 
Figure 1. The cyclic process of monitoring, assessment, and management for fished natural re-
sources, which may operate on an annual or longer time scale. The Decisions Rules constitute 
any form of translation of the stock assessment outputs into management advice. They can be a 
formal harvest control rule or some other process; they need to lead to repeatable outcomes.  
 
The natural resource management cycle should be reviewed regularly and if a change in 
any of the component processes is recognized as being required because of changed cir-
cumstances within the fishery concerned this would amount to adaptive management. 
 
Fishery stock assessments perform best when they include a valid and informative index 
of relative abundance through time; these are used to locate the stock dynamics on a real 
scale of abundance through time. In this way, the current state of depletion relative to 
hypothetical unfished levels, and many other statistics of management interest in Aus-
tralia, especially those identified within the Commonwealth Harvest Strategy Policy 
(HSP), can be determined (DAFF, 2007; Rayns, 2007; Smith et al., 2008; Smith et al., 
2014). Australian Commonwealth fisheries generally rely on commercial catch rates 
(CPUE) as an index of relative abundance and often CPUE remains the main index of 
relative abundance even after Fishery Independent Surveys have been initiated (for ex-
ample in the Northern Prawn fishery). Such fishery independent surveys are only really 
useful for assessment purposes after a sufficiently long time series to exhibit trends has 
been developed and, importantly, if their inter-annual variation is small enough to allow 
any trends through time to be clearly identified; for example, a survey optimally de-
signed for a particular target species may not provide a reliable index for a bycatch spe-
cies taken in the same fishery.  
 
The use of commercial CPUE data is always dependent upon several fundamental as-
sumptions. Chief among these assumptions is that there is some relatively direct rela-
tionship between stock size and related CPUE (Figure 2) and that this relationship re-
mains the same through time (an assumption of stationarity).  Generally, the relation-
ship is assumed to be linear, which means as stock size goes up or down, so does the 
catch-rate in a directly proportional manner; although it is generally acknowledged that 
such assumptions are only approximations. The assumption of stationarity is a major as-
sumption which is broken by such things as technological improvements to fishing gear. 

Monitoring: logbooks, 
age- and length composition

Stock Assessment: 
determine current status

Management Advice:
Catch or Effort Limit, etc

Decision Rules
Harvest Control Rules
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This is well recognized in the term “effort creep”, which is short-hand for the influence 
that improved fishing gear or methods can have on the effectiveness of a single unit of 
effort. Such ‘effort creep;’ effectively breaks the assumption of stationarity and this can 
lead to significant and misleading bias in any consideration of CPUE as an index of 
abundance. This problem will be considered in more detail later. 
 

 
Figure 2. Idealized and deterministic representation of the relationship between exploitable bio-
mass and CPUE. The general assumption is that the linear black line is what happens in nature 
whereas the other possibilities may be the case, which would distort and bias the interpretation 
of observed CPUE. It is also possible that with real fisheries the actual relationship might not be 
static nor a nice smooth curve such as those illustrated. 
 
In addition to the assumptions of linearity and stationarity, there are many factors, other 
than changes in stock size, which can affect catch rates. For example, if catch rates are 
typically higher in the winter months but prices change to become better in the summer 
months there could be a shift of effort into the summer months to maximize profit-per-
unit-effort rather than CPUE. Such changes in fishing behaviour would lead to a drop 
being perceived in the annual nominal CPUE that was actually due to the changed fleet 
behaviour and not to do with the relative abundance of the stock. In an effort to avoid 
some of these potentially spurious influences on any average trend, CPUE data are gen-
erally standardized statistically (Kimura, 1981). However, the standardizations can ob-
viously only account for those factors for which there is data readily available for inclu-
sion in the analyses. 

3.1.1   Development of CPUE Standardizations in the SESSF 
The Commonwealth Southern and Eastern Scalefish and Shark Fishery (SESSF) pro-
vides an example of the development of the use of CPUE data in Australia. The current 
fishery derives originally from the South East Trawl (SET) fishery, which became the 
South East Fishery (SEF) in the mid-1980s. Many changes to the management of the 
SEF began to be introduced from 1985 onwards. As stated in Tilzey and Klaer (1994, 
p1): 
 

Before 1985, the fishery was virtually unregulated and trawl fleet ca-
pacity expanded rapidly during the 1970s and early 1980s. Input man-
agement controls based on limiting entry into the fishery were intro-
duced in 1985. A boat replacement (unitisation) policy was introduced 
in 1986 to prevent further expansion of fleet capacity. However, the 
subsequent development of the orange roughy fishery and a failure to 
prevent entry to the SEF resulted in additional increases in fleet ca-
pacity and fishing effort. 
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An important innovation towards the end of 1985 was the introduction of a new log-
book which required trawl and Danish seine fishers to complete a shot-by-shot log-book 
rather than summary information by trip or even by month as continued to be collected 
by each State. This meant that the quality and resolution of catch and effort data began 
to improve greatly in the Commonwealth, although it took a few years before the data in 
that database became less variable between years than seemed biologically plausible 
(e.g. Figure 3). Such large changes through short periods of time imply there are large 
process errors in the data as well as the more common measurement errors. These large 
variations mostly settle down after the introduction of individual transferable quotas 
from 1992 onwards. 
 

 
Figure 3. The optimum standardizations (on y-axis) for four fisheries from Sporcic and Haddon 
(2016, p10) illustrating the greater inter-annual variation in the years immediately following the 
introduction of the new log-book in Oct 1985. RRP is Royal Red Prawn. Obviously, the x-axis 
relates to years. 
 
The advent of the high yielding short-lived fishery for orange roughy had long lasting 
effects upon the SEF. The first large catches off western Tasmania only really began in 
1986 and the whole fishery rapidly expanded to a maximum in 1990 after which catch 
limits by orange roughy zone began to be introduced (Table 1). 
 
In 1990, the on-going expansion in fleet capacity and a decline in some major fish 
stocks (especially Eastern Gemfish, but also Redfish; see Appendix 2 for species 
names) led to the development of a new fisheries management plan that introduced out-
put management controls on 1 January 1992 in the form of Total Allowable Catches 
(TACs) and individual transferable quotas (ITQs). These were set for 16 major SEF 
species groups: Blue-Eye Trevalla, Blue Grenadier, Blue Warehou, Gemfish, Jackass 
Morwong, John Dory, Mirror Dory, Ocean Perch, Orange Roughy, Pink Ling, Redfish, 
Royal Red Prawn, Silver Trevally, Spotted Warehou, and Tiger Flathead. Such a major 
shift in management meant there was a greatly increased need for stock assessment ad-
vice although information sufficient for the generation of management advice suitable 
for output-controlled fisheries was limited to only five of the 16 stocks in 1992. 
 
The use of CPUE data could only begin with the development of a time-series of suffi-
cient length to permit a useful analysis of trends through time. The early data from the 
catch and effort database was often more variable between years than biologically plau-
sible if the assumption of a relationship between CPUE and stock size was valid (Fig-
ure 3). The catch rate estimates were initially simple ratio estimates (total catch divided 
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by total effort), then a range of alternative statistical models were examined to deter-
mine whether they provided a consistent measure of the catch-rate trends for a few lim-
ited species for which more complex stock assessments were being developed. Eventu-
ally the need to standardize the CPUE of more and more species developed and a more 
generally agreed approach based around general linear models (e.g. Haddon, 1998) was 
settled upon. 
 
Table 1. Orange Roughy catches (t), as reported in the AFMA catch and effort log-
book database. Records only start in August 1985. A 700m deepwater closure was in-
troduced in 2007 and Orange Roughy was declared a conservation dependent species 
effectively shutting the Orange Roughy fishery. After demonstrating a stock rebuild 
the Eastern zone was re-opened, in a limited manner, in 2015.   

Year Eastern Southwest Southeast Western Cascade NERemote GAB South Tas Rise 
1985 5.5 57.5 0.9 128.6 0.3    
1986 32.8 604.1 26.7 3924.9  0.3   
1987 310.3 320.8 31.8 5118.0 1.8 10.4 406.2  
1988 1948.4 468.9  4722.2  2.7 2820.2 1.7 
1989 18345.2 4993.7 2626.0 1365.1 258.5 1.5 3793.2 1.0 
1990 16198.5 14898.7 9897.7 801.6 1822.3 215.7 1056.5 35.9 
1991 9727.3 3496.3 8025.1 625.4 39.5 437.7 423.1  
1992 7622.7 2412.8 5241.6 1108.2 468.5 131.9 741.8  
1993 1793.8 2484.3 4758.4 964.4 91.8 42.0 647.3  
1994 1481.2 2165.1 2307.8 800.6 478.5 128.4 82.4  
1995 1817.0 1430.5 613.5 962.4 78.3 7.9 345.1  
1996 1818.6 503.1 278.4 1180.3 868.5 54.8 359.1 3.6 
1997 1909.8 217.6 232.5 297.0 1092.6 22.4 332.0 1460.3 
1998 1858.0 80.5 215.1 316.1 1448.4 33.0 647.9 2878.4 
1999 1892.7 69.9 95.0 210.5 1534.9 29.4 819.7 1834.1 
2000 1900.0 156.5 130.7 169.3 1536.5 15.3 349.3 791.4 
2001 1783.9 142.2 198.9 200.8 1363.0 14.9 374.6 169.4 
2002 1521.5 67.2 90.5 255.7 1462.5 38.7 217.6 102.3 
2003 747.9 94.2 114.9 217.5 1563.6 66.5 226.4 11.3 
2004 719.7 42.1 97.1 283.1 1444.6 40.0 150.1 48.5 
2005 713.8 55.9 37.6 264.6 1262.5 16.7 117.1 12.0 
2006 577.4 4.3 1.2 139.3 701.7 20.5 215.2 0.2 
2007 116.1 4.9 16.9 28.6 204.0 1.7 44.4  

 
 
The early assessments in the SEF mostly revolved around a consideration of such CPUE 
data: “Most current stock assessments in the SEF rely primarily on analysis of catch and 
effort data (including information on discarded catch from the ISMP) combined with 
some information on age and length composition of the catch and limited biological in-
formation” (Tilzey, 1999, p34).  With some exceptions (Orange Roughy and Eastern 
Gemfish, for which more advanced models had been developed) performance criteria 
for each fishery were limited: 
 

AFMA has set performance criteria based on, among other things, 
trends in catch per unit effort (CPUE). The catch rate criterion seeks 
to maintain CPUE above its lowest annual average level from 1986 – 
1994. In using this criterion, AFMA recognized that there were a 
number of factors other than stock abundance that could affect catch 
rates. ….  The AFMA performance criteria do not specify how catch 
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per unit effort is to be determined. SEFAG has attempted to standard-
ize catch rates, but no satisfactory method has so far been developed. 
(Tilzey, 1999, p 34 – 35) 

 
The option of using statistical standardizations in the SESSF was recognized early on 
(Klaer, 1994) but mostly ratio mean catch rates were used for a number of years after 
the introduction of quotas in 1992. The introduction of using geometric mean CPUE 
based on shot-by-shot records rather than ratio means was a first step in the improved 
statistical treatment of CPUE data. Even in the 1998 Fishery Assessment Report (Tilzey 
1999) standardized catch rates were only used for a limited number of fisheries (Haddon 
1998; Haddon, 1998b; Haddon, 1999; Haddon and Hodgson, 2000), and then usually to 
complement the development of age-structured stock assessment models (Punt, 1998; 
Punt et al, 2001). At that time there were Fishery Assessment Groups for just a few in-
dividual species, which eventually became amalgamated into the more general South 
East Fishery Assessment Group. Up until 2006, standardizations with separate reports 
were conducted for individual species but as the number of species with more formal 
stock assessments increased so did the number of CPUE standardizations. Haddon 
(2007) was the first report which combined eight species across different combinations 
of zones and fisheries to lead to a total of 14 standardizations selected from 127 statisti-
cal models. The species included were: Blue-Eye Trevalla, Blue Grenadier, Blue Ware-
hou, Tiger Flathead, Jackass Morwong, Redfish, Silver Trevally, and Spotted Warehou. 
Since then the number of species, and stocks has greatly increased (Sporcic and Had-
don, 2016). The latest analyses included 23 species spread across 43 different combina-
tions of stocks and fisheries, not including the commercial shark species and some other 
particular analyses (e.g. Haddon, 2016b). The number of different statistical models is 
now considerable. 

3.1.2   Recent Management and Other Changes  
With the advent of the Commonwealth Harvest Strategy Policy in 2007, with its associ-
ated structural adjustment or buyback scheme occurring between Nov. 2005 and Nov. 
2006, the character of various Commonwealth fisheries has altered remarkably in a 
number of different ways. On top of these management changes there is also the poten-
tial for changes in fishery dynamics due to climate change impacts on such things as sea 
temperatures and the geographical distribution of species, and the average productivity 
of species (Pecl et al, 2017). Such changes would have their respective impacts on re-
ported commercial CPUE data. Thus, there is the potential that stock assessments that 
use these CPUE data as an index of relative abundance will become compromised if 
these changes have altered the character of the CPUE and such changes are not taken 
into account.  
 
Other major changes have been seen in the Southern and Eastern Scalefish and Shark 
Fishery (SESSF) and the Northern Prawn Fishery (NPF), for example, which have both 
seen a remarkable reduction in the number of active vessels brought about by the struc-
tural adjustment in 2006/07. Similarly, the re-organisation of the Queensland State fleet 
and demersal fisheries has seen large changes in fisher behaviour and the structure of 
the fleet. In the multi-species, multi-gear SESSF the buyout reduced the trawl fleet by 
40% and non-trawl vessels by 16%; although particular fisheries for individual species 
within the SESSF often saw greater reductions in vessels reporting the capture of those 
species (Vieira et al., 2010). The structural adjustment was able to increase the com-
bined profitability of the remaining vessels because the available quota was distributed 
among fewer vessels (Vieira et al., 2010). In addition to changes in profitability the re-
duction in the various fleets led to relatively large changes in fishing behaviour. These 
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changes were also influenced by some of the most important species caught in the 
SESSF achieving their target reference point. Many fishers are now claiming that they 
have now started to avoid catching such economic driver species as Tiger Flathead (Ne-
oplatycephalus richardsoni). Flathead are now reported as being relatively simple to 
catch and fishers also report that they are avoiding catching Flathead as fast as they 
could if they tried (in other words they avoid them) so as to enable them to catch the 
quota they hold for other species as well as their Flathead quota. If such changes in tar-
geting behaviour were in fact happening right across the remaining fleet it would clearly 
bias catch rates downwards. However, without explicit information regarding the 
changed targeting behaviour, such reductions in catch rate would be interpreted as a re-
duction in stock size. In fact, in species with fully quantitative assessments (Tier 1) such 
data would presumably become inconsistent with other data relating to age-structure 
and length-structure of the fished stocks. So such changes in the quality of the commer-
cial CPUE data can either bias subsequent stock assessments or lead to them becoming 
less certain due to conflicts among the different data streams. Because of the reliance of 
Commonwealth stock assessments on commercial catch rate data for an index of rela-
tive abundance there is an urgent need to understand the impacts on CPUE of all of the 
changes imposed on Commonwealth fisheries with the advent of the HSP and structural 
adjustment. If the time series of CPUE have been disrupted this needs to be demon-
strated so that appropriate actions can be implemented in the annual assessments. It is 
not the case that the catch rates of all species will be affected to the same amount. The 
research would need to identify those species for which changes to their stock assess-
ment would be required and those for which little or no change was needed. 
 
On top of these management influences there is also the potential for alterations in fish-
ery dynamics due to climate change impacts on such things as sea temperatures and the 
subsequent geographical distribution of species. These changes would be affecting the 
assumption of stationarity by altering the relationship between the stock size in a given 
area and its catch rate. The potential importance of this issue should not be under-esti-
mated as non-stationarity in growth rates has already been demonstrated in a number of 
species and the assessment of jackass morwong in the SESSF has already been changed 
to reflect a switch to a less productive state by the east coast stock (Wayte, 2010). As 
mentioned previously, changes in the technological aids used when catching fish has 
also had an impact on the assumption of stationarity. ‘Effort creep’, brought about by 
such things as the advent of GPS, GPS plotters, and colour bottom lock depth sounders 
has undoubtedly improved the efficiency of fishing vessels. Unfortunately, insufficient 
information was collected at the time of adopting such technology that accounting for 
such changes in relative fishing power is difficult or impossible. 
 

3.2 Indices of Relative Abundance 
Formal stock assessments require some form of index of relative abundance in order for 
them to track dynamic changes in the population size of harvested fish populations. Ab-
solute abundance indices are possible (possibly from tagging studies or egg production 
studies) but these can only be considered absolute estimates if relatively stringent as-
sumptions and conditions are met; invariably great uncertainty remains.  
 
Stock assessments that relate to stock biomass need an index of relative abundance. The 
more complicated and inclusive ‘Integrated Assessments’ (Maunder and Punt, 2013) 
can include indices of relative abundance and catches by different fishing methods, age- 
and length-composition data from different sources, tagging data, and whatever else is 
available. When there are multiple data streams in such models the question arises about 
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what relative weight to ascribe to each data series (Richards, 1991; Francis, 2011; Punt, 
2017). Francis (2011) suggested a guideline which states: “do not let other data stop the 
model from fitting abundance data well” (page 1124), and this has become a strong in-
fluence on stock assessments since. As such, gaining an understanding of whatever in-
dex of relative abundance is in use takes on a greater importance. 
 
Two common indices of relative abundance are time series of commercial CPUE data 
(as used in the stock assessments of Flathead, Pink Ling, etc) and time series of fishery 
independent survey abundance indices (as used in the eastern Orange Roughy stock as-
sessment (Haddon, 2017).  
 

3.2.1   Fishery Independent Survey Abundance Indices 
Fishery independent surveys, whether they be swept area trawl surveys, acoustic sur-
veys, or even standard long-line sets, are all considered to be able to provide the best 
view of a stock’s size available. Of course, with any fishing, and especially where a sur-
vey needs to be run within specific dates across specific areas, there are no guarantees 
that any particular survey will provide usefully accurate estimates of the stock biomass 
of a species, especially in mixed fisheries. Just as with commercial CPUE data it is not 
only the within year precision of mean estimates of relative abundance that matter in 
stock assessments but how consistent the between year estimates are. For example, if 
there appear to be large inter-annual changes in relative abundance from a survey time-
series then a long time-series is needed before any trends in the data could become in-
formative in a stock assessment.  

3.2.2  Commercial CPUE 
Commercial CPUE have been used in fishery assessments from early in the history of 
fisheries science (Garstang, 1900; Russell, 1931). CPUE data are used in very many 
fishery stock assessments in Australia as an index of relative abundance through time. 
Invariably, the assumption is made that there is a direct relationship between catch rates 
and the amount of exploitable biomass. However, many factors can influence catch 
rates, including who was fishing with what vessel and gear, in what depth, in what sea-
son, in what area, and whether it was day or night (plus other factors, although infor-
mation may not be available for all factors of importance).  
 
To use CPUE as an index of relative abundance means that it would be best to remove 
the effects of variation due to changes in these other factors on the assumption that what 
remains will provide a better estimate of the dynamics of the underlying stock biomass. 
This process of adjusting the time series of CPUE for the effects of other influential fac-
tors is known as standardization and the accepted way of doing this is to use some sta-
tistical modelling procedure that focuses attention onto the annual average catch rates 
adjusted for the variation in the averages brought about by all the other factors identi-
fied. This process is termed statistical standardization. 
 
The primary assumption behind using commercial catch rates in stock assessments is 
that they reflect the relative abundance of the exploitable biomass through time. The 
‘through time’ phrase is especially important as it implies that any relationship between 
CPUE and stock abundance remains consistent through time. This is important because 
in addition to the various factors of location, depth, gear, vessel, etc, there are other fac-
tors and events for which there may be no available data. The legitimacy behind using 
commercial CPUE can be questioned when there are factors significantly influencing 
catch rates which cannot be included in any standardization. In the Northern Prawn 
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Fishery (NPF) for example, changes in the fishing gear and how it has been deployed 
have increased the effective fishing power of individual vessels between 4 and 6 times 
between 1970 – 2002 (Dichmont et al, 2006). This sort of effect has been termed ‘effort 
creep’ as well as ‘technological interactions’, although this latter term is often restricted 
to interference between vessels affecting their CPUE. In the SESSF it is likely that the 
introduction of GPS and GPS Plotters, for example, also led to a form of effort creep 
but it has not been documented and thus not available for inclusion into CPUE standard-
izations to date. 
 
In addition to technology improvements, as mentioned earlier, over the last two decades 
there have been a number of major management interventions in the SESSF including 
the introduction of the quota management system in 1992, the introduction of the Har-
vest Strategy Policy (HSP) and associated structural adjustment in 2005 – 2007, and the 
switch from a calendar year fishing season to one from May to April starting in May 
2007. In addition, the combination of quotas that can limit catch and the HSP, is now 
controlling catches in such a way that many fishers have reported altering their fishing 
behaviour to try to take into account the availability of quota and their own access to 
quota needed to land the species taken in the mixed species SESSF. It may be coinci-
dence, but in some species the dates of those major management interventions, 1992 
and 2007, correlate strongly with major changes in CPUE (Figure 4). 
 

 
Figure 4. The standardized CPUE for Silver Warehou (Seriolella punctata) from SESSF zones 
40 and 50. The dashed line is the geometric mean CPUE and the solid line the optimum stand-
ardized CPUE with the red 95% confidence intervals around the mean estimates. Both time-se-
ries are scaled to a mean of 1.0 to ease visual comparisons. The fine blue lines occurring be-
tween 1991 and 1992, relate to the introduction of quota management, and between 2006 and 
2007, relate to the introduction of the structural adjustment and the Harvest Strategy Policy. Ob-
viously, the x-axis relates to years. 
 
 
Some stocks, such as tiger flathead (Neoplatycephalus richardsoni), are near or around 
their target stock size and catch rates are at historically high levels. As a result of this 
success, some fishers report having to avoid catching species, such as flathead, so as to 
avoid having to discard and to stay within the bounds of their own quota holdings. Such 
influences on catch rates tend to bias the catch rates downwards, or at very least add 
noise to any CPUE signal, which could lead to misinformation passing to any assess-
ment. Currently, there is no way to handle this issue, but care needs to be taken not to 
provide incorrectly conservative advice or inappropriately high catch targets. Included 
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in the management changes is the on-going introduction of numerous area closures im-
posed for a range of different reasons, which have different influences on different fish-
eries depending on their circumstances.   
 
A major on-going issue is whether or not there is a consistent relationship between 
CPUE, even standardized CPUE, and each stock’s relative abundance. Currently there is 
no way in which to demonstrate this solely on the basis of the data themselves. To make 
such a validation would require some means of reliably estimating the stock’s abun-
dance through time so as to compare with any apparent trends in the commercial CPUE 
through time. Fishery independent surveys may provide a means of calibrating or con-
firming any trends seen in commercial CPUE. In the SESSF, however, such surveys 
have only been running every two years since 2008 (and the first trial year may not have 
been comparable with following surveys). 
 

3.2.3   Using Indices of Relative Abundance in Stock Assessments 
For a stock assessment model to be able to generate valid management advice for a par-
ticular fished stock it needs to be fitted to data from that stock. What this means is that a 
fishery population dynamics model needs to be fitted to data from the fishery with that 
data consisting of the catches, discards, CPUE or survey indices (or both), and ideally 
age and length composition data plus any other information available. Both CPUE and 
survey indices can change dramatically between years whereas, except where some cat-
astrophic event has occurred (Gorfine et al, 2008), or a species is naturally highly vola-
tile, such as Arrow squid or Commercial Scallops, such large and rapid changes in pop-
ulation size are biologically implausible. What the population dynamics model implies 
in such instances is that the population size trend passed smoothly through the central 
tendency of the variation unless other more informative data drives the population dy-
namics in a different direction. Thus, if a particular data set has very large inter-annual 
variation, whether it be CPUE or a fishery independent index, then the fitting process 
will not be greatly influenced by that data series. 
 
Whatever the case, the use of CPUE in Australian fishery stock assessments is a poten-
tial source of problems and issues for those stock assessments. This present project aims 
to consider the strengths and weaknesses of CPUE data and make recommendations for 
improving how it may be used in the future. 
 

3.3 Project Objectives 
1. Review the most appropriate catch rate standardisation strategies when targeting is 

well defined in multi-species fisheries. 
2. Compare alternative catch rate standardization strategies in those fisheries where 

both fishery independent and fishery dependent data are available. 
3. After modifying Atlantis SE, simulate shot-by-shot commercial catch rate data and 

use this in simulation tests for the most robust standardization strategies in mixed 
fisheries when targeting is unknown and management interventions influence catch 
rates. [MODIFIED:  simulated catch rate data/trends were replaced with 'single 
species simulated data']. 

4. Use simulated catch rate data to conduct MSE testing of the influence of potential 
biased data and standardization strategies on the outcome of stock assessments that 
rely on catch rate trends and targets. [MODIFIED:  simulated catch rate data/trends 
were replaced with 'single species simulated data']. 
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5. Use simulated catch rate data to test the potential influence of effort creep (tech-

nical improvements in fishing power) on stock assessments. [MODIFIED:  simu-
lated catch rate data/trends were replaced with 'single species simulated data']. 

6. Based on the results of objectives 1 to 5 write a reference manual on the applica-
tion of the most robust CPUE standardization strategies for Australian fisheries. 

 

The third to fifth objectives had to be modified once it had been determined that Atlan-
tis SE was only able to generate pooled mean CPUE estimate for relatively coarse scales 
within the simulated single species fisheries. Atlantis is designed as an ecosystem and 
hence multi-species model. The attempts to generate single species data from the Atlan-
tis simulation framework will only ever achieve a limited resolution. An alternative ob-
jective adopted was: 

3. Simulate shot-by-shot commercial catch rate data and use this in simulation tests 
for the most robust standardization strategies in mixed fisheries when targeting is 
unknown and management interventions influence catch rates. 
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4 Potential Issues when using CPUE Data 

4.1 Introduction 
Commercial catch rates (CPUE) often constitute the only available index of relative 
abundance in many fisheries, including in Australia. This makes the important assump-
tion that CPUE is at least proportional to a fished stock’s biomass, which implies that if 
biomass goes up or down the expectation is that so will CPUE, although possibly with a 
time-lag. In addition to this assumption it has long been recognized that changes in 
nominal catch rates can be influenced by many factors other than changes in stock size 
(Kimura, 1981; Ye and Dennis, 2009). Statistical catch rate standardization aims to re-
duce the effects of other factors, such as vessel, month, and depth of fishing, on any 
CPUE trends through time so that the standardized index should more closely reflect the 
actual relative abundance (Maunder and Punt, 2004; Campbell, 2015). In fact, many as-
pects of the process other than the actual analytical methods used can influence the out-
come of CPUE standardization. These other aspects include the quality and amount of 
fisheries data available, and whether the data used have been filtered or censored in any 
way. It is very common to read mention of such data selections being applied but rare 
that such practices are explained, defended, or even described in detail. 

4.1.1   The Statistical Methods Used 
For a CPUE standardization to act as an index of relative abundance in a stock assess-
ment then generally the objective of the analysis is to provide a detailed description of 
any trends through time rather than attempting to make predictions of how those trends 
may develop into the future.  This objective influences the methods that might be used 
for such analyses and how their results are to be interpreted. An array of methods has 
been used for conducting statistical CPUE standardizations, including Linear Models, 
Generalized Linear Models, Generalized Additive Models, Generalized Linear Mixed 
Models, and others (Venables and Dichmont, 2004). Comparisons have been made be-
tween the various methods when applied to the same data sets but, so far, no universally 
optimum analytical strategy has been identified. Part of the reason for this is no doubt 
the diversity of the quality and quantity of data that are available from different fisher-
ies. This can vary from summary data across different physical and temporal scales 
(perhaps monthly in five-degree squares) down to shot-by-shot data that includes enor-
mous detail but also potentially a good deal of noise.  
 

4.1.2  The Data Used 
At whatever scale of fishing operation, wherever catch and effort values are estimated 
by the fisher then such CPUE data generally suffers from rounding errors. When fitting 
statistical models to such observations all the statistical methods used attempt to gener-
ate predicted CPUE values to compare with each observation. Data quality issues, espe-
cially the rounding of catch and effort values, can make the selection of an appropriate 
probability density function with which to model the data difficult. Invariably the analy-
sis and data selected in any particular case is a compromise that attempts to discover 
which data are informative with respect to observed catch rate trends within a particular 
fishery (where a fishery is for a given species in a defined region using a given gear) 
and account for any statistical properties of the catch rate data.  
 
How the available data are treated prior to analysis is an aspect of the practical imple-
mentation of catch rate standardizations that is rarely discussed, in particular how data 
to be included in the analyses are selected and what impact such selections can have on 
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the outcomes of the analysis. The primary objective of any initial data selection is usu-
ally to focus attention on data that can be considered more representative of a stock’s 
dynamics. If CPUE is related to the stock biomass (will be informative about the bio-
mass levels) then catches in the fishery are expected to affect that biomass and hence 
the CPUE; increased catches should eventually lead to decreased CPUE and decreased 
catches to higher CPUE (which is only an approximate description but a reasonable 
starting point for a developed fishery). Thus, data are selected that are intended to repre-
sent where most of the fishing occurs, the core of the fishery, by those particular vessels 
that are attempting to capture the species concerned. Such criteria would reject data 
from the periphery of a fishery and data from vessels that were not intending to capture 
the species. A problem with such criteria being used to guide data selection is that the 
core of a fishery may change and targeting of a species is generally unknown and gener-
ally has to be inferred from the data itself. 
 
Typically, commercial catch and effort data are collected from fishers in some form of 
log-book (paper or electronic). This data can include many different aspects of the fish-
ing operations and be reported at different geographical and temporal scales. Logbooks 
will commonly contain data on an array of factors relating to location, date/time, depth, 
effort, and catch, all in relation to a specific gear and vessel. Fortunate analysts also 
have data on each vessel’s characteristics relating to its relative fishing power and how 
that may have changed through time (Bishop et al., 2004; Bishop, 2006). Other, less 
fortunate, analysts may only have each vessel’s name and can only assume that the ves-
sel has had stable characteristics and skippers through time (Haddon, 2014), both of 
which assumptions being highly doubtful! 

4.1.3   Identifying the Fishery Core 
CPUE data from commercial fisheries can be copious. In the Australian South Eastern 
Scalefish and Shark Fishery (SESSF; Smith et al., 2008) detailed fisheries data has been 
collected since 1986 and for the more important target species there can be 100,000s of 
records across the years. Fitting statistical models to such data has its own array of 
problems.  
 
Ideally, when fitting statistical standardization models to data, each level of each factor 
being included will have an equal amount of data available, i.e. the data are balanced 
across the factors being investigated. In addition, each factor being examined is as-
sumed to be independent (orthogonal to other factors) although they may interact in 
their effects on the dependent variable (the CPUE). These ideal assumptions are invaria-
bly badly compromised by fisheries data. For example, if depth of fishing is included in 
the analysis then, not unexpectedly, a given species would be expected to exhibit a 
depth preference, and this can be reflected in the relative numbers of observations made 
in different depths (Figure 5). With factors like Depth it is common to eliminate rarely 
reported depths as a way of minimizing the number of empty to relatively empty cells in 
the analysis matrix. Such imbalances across levels of a factor and between factors lower 
the power of any hypothesis testing but their effect on simply describing the trend in ex-
pected mean CPUE is less well understood. 
 
Even with 100,000s of records for a given species not all of them will reflect the core of 
a fishery where the species can best be captured and possibly targeted and so some data 
selection is often made. This process usually begins by identifying the fishery to which 
the analysis is to be applied through selecting records from a fisheries database for a 
particular species from defined areas taken with a specific fishing gear. The selection of 
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the species may seem obvious although it is especially important in mixed fisheries such 
as the SESSF.  
 
The areas used need to reflect the distribution of the fishery and the stock, ideally cover-
ing an identifiable fishery both in management and biological terms. Even in the ab-
sence of evidence-based biological stocks (meaning a mostly isolated reproductive unit) 
it often remains possible to define evidence-based management units that relate primar-
ily to fishing behaviour but that exhibit a degree of homogeneity of properties sufficient 
for the region to be analysed separately (Begg and Waldman, 1999; Cope and Punt, 
2009). If major management changes have occurred in a fishery this may also suggest 
that an initial selection of a set of defined blocks of years could be made. These initial 
stages of data selection merely relate to identifying a particular fishery of interest; it is 
assumed that there would be a defensible argument available justifying the selection of 
a given species taken by a given method in particular areas and periods. None of this in-
itial selection should be controversial or in need of much discussion, although, in the in-
terests of repeatability any selection decisions should still be fully documented. That is 
simple to state but in fact very few documents describing CPUE analyses provide de-
tails concerning the criteria used in their data selection. Where data selection becomes 
more controversial and even less well discussed is in any further data selection follow-
ing this fishery identification stage. 
 

  

  
Figure 5. Using Tiger Flathead (Neoplatycephalus richardsoni) from SESSF zones 10 and 20 
from 1997 – 2015 to exemplify the highly unbalanced distribution of observations of catches by 
depth, Month, Vessel, and Year. The month factor is the best balanced of the four illustrated. 
The reduction in the number of records following the structural adjustment at the end of 2006 is 
clear in the bottom right plot. 
 

4.1.4  Documentation and Defensibility 
The standardization of commercial CPUE has become standard practice in almost all 
fisheries of significant financial value which use CPUE data, although exceptions exist 
(Linnane et al, 2015; Mayfield et al, 2014). However, many such standardizations are 
often only reported in the so-called grey-literature and the details of the processes and 
methods are often very limited even in the better documented ones. It will be argued and 
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recommended here that standardization of available catch and effort data should become 
routine but also that reporting or documenting the assumptions of the analysis, the de-
tails and justifications of any data selections used, and of the specific methods and soft-
ware used should also become routine.  
 
The data we have from a fishery, in many cases, constitutes the only available evidence 
about the stock status of the fished species. Any manipulation of such data should there-
fore be documented in sufficient detail to defend such operations to interested stake-
holders. Problems with CPUE data are well known (errors, outliers, non-linearity be-
tween CPUE and exploitable biomass, etc) although each data set tends to have its own 
selection of issues that dominate. Each issue, depending on how it is dealt with, has im-
plications for statistical standardizations. Even if a particular issue is not important for a 
given data set, in the interests of openness and improved defensibility it would be good 
practice to document in each analysis the assumptions made and how each known issue 
has been dealt with. 
 
There are a number of routine operations that are often conducted on CPUE data, but 
which would be impossible to repeat without documentation. The best form of openness 
with respect to the analysis of data is for the analyses to be repeatable by others and this 
provides a clear benchmark for adequate documentation. There is an array of specific 
issues that should be given attention in any such documentation:       
 
• the identification and removal of outliers and mistakes (data errors),  
• data selection aimed at focussing analyses on targeted effort, 
• commercial CPUE data while often abundant is often highly unbalanced among the 

factors that influence its values,  
• the factors for which there are data are often correlated rather than independent, and 
• commercial CPUE is on estimated catch and effort and these are often rounded nu-

merically leading to unusual (non-parametric) data characteristics. 
 
Each of these aspects to CPUE standardization needs attention and each will be exam-
ined in this chapter.  
 

4.1.5   Data Errors 
Notoriously, fisheries data from commercial logbooks are often contaminated with er-
rors. Fishers may fill in log books when tired, or in rough seas, and errors can include 
transcription errors, data entry errors, missing values, and even deliberate errors. Data 
entry can require the interpretation of hand written logbooks so occasional errors are not 
surprising, for example, extra digits can accidentally be included e.g. 6000m instead of 
600m or 60m as a depth or net length. Deliberate errors can also be recorded by fishers 
e.g. in the location data where the latitude and longitude of a favourite fishing site will 
not be revealed and spurious coordinates are reported instead. 
 
Many of the more extreme such errors can be captured by reasonable range checking on 
data entry, but the practicality of having to enter a large number of records in a short 
time has sometimes seen such range checking turned off. Under quota systems, log-
books can sometimes become legally binding documents that must be entered as they 
are written and clarification of obvious errors by contacting individual fishers can be 
time consuming, especially as fishers can be expected to be at sea for significant 
amounts of time. 
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4.1.6   Data Selection Criteria 
Given the recognized issues and potential problems with fisheries data it would appear 
to be a defensible strategy to pre-select data records for inclusion in any analysis with 
the objective of eliminating potentially spurious or erroneous records and removing 
empty factor levels from consideration. Effectively, such data selection replaces range 
checking that might have occurred at the point of data entry with a process of data rejec-
tion prior to analysis.  
 
In addition to the removal of outliers, preliminary data selection is also often used when 
attempting to focus analyses on those records that are taken to be more representative of 
the fishery, perhaps where the species of interest was more likely to have been targeted 
or at least expected to be part of the catch in what is a mixed fishery. Fisheries data is 
often highly unbalanced across the many factors that might influence CPUE, such as 
year, vessel, depth, month, region, etc (Figure 5). For example, a species may very 
rarely be caught at the extreme deep end of its depth range and inclusion of such un-
common deep records may increase uncertainty more than they improve the standardi-
zation. It could thus be argued that it is defensible to select data for analysis from a par-
ticular depth range just as data for a particular species from particular areas are selected. 
This approach is sometimes taken further with the selection of particular vessels based 
on defined criteria (e.g. present for a minimum number of years in a fishery, or some 
minimum mean annual catch, etc), all with the justification of focusing on the primary 
targeted fishery for a species. 
 
While the objectives of such extended data pre-selection can appear clear and reasona-
ble the details and mechanics of the criteria used for making such selections and the im-
plications that these selections have for the analyses are rarely made clear. Nevertheless, 
the process is common and has been termed data ‘selection’, ‘cleaning’, and even 
‘grooming’, although generally very few details are given for how it was done, what cri-
teria were used, or even why it was done. Such a lack of documentation makes such 
practices less defensible and means that repeating or updating those analyses becomes 
difficult or impossible. 
 

4.1.7   Section Objectives 
There are three objectives to this present section: 
 
• identify characteristics of commercial CPUE data that may complicate statistical 

standardization analyses and often lead to data selection, 
• explore the impact of different types of preliminary data selection on the outcomes 

of catch rate standardization and, where possible, 
• identify strategies for minimizing, or at least identifying any potentially adverse ef-

fects, and improving the repeatability of the analyses. 
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4.2 Methods 
4.2.1  Species Data Used 
The SESSF is a highly mixed fishery in which specific targeting is relatively limited ex-
cept for species such as Orange Roughy (Hoplostethus atlanticus), which lives in habi-
tats that are separated from most other species (Tilzey and Klaer, 1994). Catch rate data 
from the SESSF is commonly used in stock assessments every year and the CPUE data 
are routinely standardized prior to use in these assessments (Haddon, 2014). Three rec-
ognized target species will be examined in the following analyses: Tiger Flathead (Neo-
platycephalus richardsoni), Pink Ling (Genypterus blacodes), and Jackass Morwong 
(Nemadactylus macropterus). The first two species remain two of the primary economi-
cally valuable species in the SESSF, and Jackass Morwong used to be important, alt-
hough now its productivity has declined (Wayte, 2013), its relative value to the fishery 
as a whole has also declined. In the examples considered here the focus will be on trawl 
fisheries for those three species that operate in the eastern part of the SESSF, which ex-
tends over more than 10 degrees of latitude and more than 5 degrees of longitude (Fig-
ure 6).  Log-book data is available at the time of writing from 1986 – 2015/2016.  
 

 
Figure 6. Schematic map of SESSF reporting blocks 10–30, with the fine blue lines represent-
ing block boundaries. The locations of Sydney, Melbourne, and Hobart are indicated by black 
squares from top to bottom. The main fisheries for Tiger Flathead and Jackass Morwong are in 
zones 10 and 20 while that for the eastern stock of Pink Ling is found in zones 10, 20 and 30.   
 

4.2.2  Other Data Used 
To demonstrate that the fuzzy nature of estimated catch and effort data is not found only 
in the SESSF, data for Tiger prawn catches in the Northern Prawn fishery from 2013 
were extracted from the catch and effort data base. The trawling is relatively continuous 
with the nets being hauled at relatively brief intervals and effort is recorded as total 
hours fished in the day so CPUE is recorded as catch per shot. The catches reported 
across the season that were under 100 kg were plotted as frequencies of reporting in 1 
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kg units to reflect the reporting practices. To provide a further contrasting fishery, com-
mercial catch and effort data from the Tasmanian abalone fishery was also considered 
where catches are in kgs and effort is in dive hours. 
 

4.2.3   Data Quality 
The catches and effort that go into generating CPUE data are generally estimated by the 
vessel skippers and, as estimates of weight on moving vessels, can be expected to ex-
hibit levels of uncertainty. The detailed distribution of catches and of effort will be ex-
amined along with the original ranges of such log-book data to illustrate some of the 
limitations of commercial CPUE data that lead to a need to exclude outliers. Simple tab-
ulation and plots are sufficient to perform such data checking. Catches, effort, and 
depths of fishing will be examined in detail for the effect on statistical standardizations 
of removing different, seemingly extreme, minimum and maximum amounts of effort 
for each species and fishery.  
 

4.2.4   The Effect of Depth Selection 
The selection of particular depth ranges is a common reflection of the fact that species 
generally have preferred depth ranges within which most catches of those species can be 
taken (Haddon, 2014). This is well recognized and the assessment groups responsible 
for reviewing the stock assessments for these species have identified particular depth 
ranges to be included in the data selection for the three species exemplified here (Table 
2).  In addition to the simple tabulation of the proportion of catches and records with 
and without the selection, statistical standardizations with and without these depth se-
lections will be conducted and their yearly index estimates compared. 
 
 
Table 2. Data selection analyses conducted. Years relates to the minimum number of 
years a vessel reports catches from a fishery. Mean Annual Catch determines the re-
quirement for including a vessel in the analyses. Finally, the minimum catch per rec-
ord is applied to all data rather than by vessel. In each case these data filters were ap-
plied only after the agreed depth range had been selected. A record was included in 
the available data when a minimum of 1 kg was reported. The agreed depth ranges are 
those set by the SESSF Assessment Group and Management Advisory Committee as 
best representing the expected range of the fishery for each given species. 
Common Name Flathead Pink Ling Jackass Morwong 
Minimum Years 1, 3, 5, 10, 15 1, 3, 5, 10, 15 1, 3, 5, 10, 15 
Mean annual catch (t) 0.001, 1, 5, 10, 15 0.001, 1, 5, 10, 15 0.001, 1, 5, 10, 15 
Minimum catch (kg) 
per record 1, 5, 30, 60 1, 5, 30, 60 1, 5, 30, 60 

Maximum catch (kg) 1000 750 1000 
Zones  10, 20 10, 20, 30 10, 20 
Agreed depth range 0 - 400 250 - 600 70 - 300 

 

4.2.5   Selecting Vessels on Years in Fishery and Average Annual Catch 
In the SESSF, early standardizations used forms of data selection to focus analytical at-
tention upon the more important vessels in a fishery, for example, by selecting only 
those vessels that had been in the blue grenadier fishery (Macruronus novaezelandiae) 
for at least two years with an average catch of at least 5 tonnes (Punt et al., 2001). This 
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form of selection will be explored further using the three chosen SESSF species and, in 
each case, the minimum number of years a vessel reported catches from a fishery and 
the minimum annual catch for a vessel to be included in an analysis range from using all 
available data up to requiring multiple years or high levels of catch (Table 2). Once 
again standardizations will be conducted on each version of the censored data sets and 
the outcomes compared to determine the effect of such data selections in terms of the 
final trend in standardized CPUE and the estimated variation around each trend. 

4.2.6   Selecting Records relative to Minimum or Maximum Catches 
An alternative selection strategy might be to use only those records where a defined 
minimum catch was achieved, with the argument that if less was taken in a particular 
shot then it is unlikely the shot was targeting the species. This data selection strategy 
will also be examined by comparing standardizations using all available data with those 
where the data are censored for four different minimum catches per record (Table 2).  
 
Removing seemingly large catches is more about attempting to identify and remove out-
liers, nevertheless, they do exist in the data and comparisons were made by conducting 
standardizations with and without the data selection to determine the effect of applying 
such filtering. 

4.2.7     The Statistical Models 
In each example, trawl catch rates, (kilograms per hour), were natural log-transformed 
in an attempt to normalize the data and stabilize the variation. A general linear model 
was used on this transformed data rather than using a generalized linear model with a 
log-link on the raw data; this has advantages in terms of normalizing the data while sta-
bilizing the variance, which the log-link within the generalized linear model does not al-
ways achieve appropriately (Venables and Dichmont, 2004). There is, of course, a good 
deal of debate over what statistical approach is most effective but that will not be con-
sidered here. Instead the effects of using alternative modelling approaches are examined 
directly in Chapter 6.  
 
The statistical models used here were variants on the form: LnCE = Year + Vessel + 
Month + DepthCategory + Zone + Daynight. The ‘Zone’ factor refers to the SESSF 
zones (Figure 6), of which only zones 10, 20, and 30 down Australia’s east coast were 
used. The ‘DepthCategory’ factor was a series of usually 20m or 25m depth classes 
across the depth range selected. It is possible to treat ‘Depth’ as a continuous variable 
rather than break it into categories and the choice of which approach to use can depend 
on how many data records are available and how smooth is the relationship between 
CPUE and depth. Here all analyses treated Depth as a categorical factor for both con-
sistency with usual practice and to avoid an extra complication in the analyses. Finally, 
there were interaction terms which could sometimes be fitted, such as Month:Zone or  
Month: DepthCategory. The optimum statistical model, which in the cases considered 
here generally included one of the interaction terms, was selected on the basis of the 
minimum Akaike Information Criterion (AIC).  Thus, the CPUE, conditioned on posi-
tive catches of the species of interest, was statistically modelled with a normal linear 
model on log-transformed CPUE data: 
 

  ( ) 0 1 ,1 2 ,2
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N

i i i j ij i
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= + + + +∑  (1) 
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where ln(CPUEi) is the natural logarithm of the catch rate for the i-th shot, xij are the 
values of the explanatory variables j for the i-th shot and the αj are the coefficients for 
the N factors j to be estimated (α0 is the intercept, α1 represents the coefficients for the 
different levels of the first factor, etc.). The objective of these analyses is to obtain a set 
of year effects that are used to represent the relative abundance through time. The ex-
pected back-transformed year effect involves a bias-correction to account for the log-
normality which then reflects the mean of the distribution rather than the median: 

  ( )2 2t t
tCPUE e

γ σ+
=  (2) 

 
where γt is the year coefficient for year t and σt is the standard deviation of the log trans-
formed data (obtained from the analysis). To simplify the visual comparison of catch 
rate changes the year coefficients were all divided by the arithmetic average of the year 
coefficients: 
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where CPUEt is the yearly coefficients from the standardization, n is the number of 
years of observations, and CEt is the final time series of yearly index of relative abun-
dance. If visual comparisons were wanted back on the nominal CPUE scale then the 
time series from equation (3) can be multiplied by the overall geometric mean catch rate 
across the nominal CPUE time series, which will rescale the time series to have that 
overall mean instead of a mean of 1.0; this may make such analyses more meaningful to 
Industry and Managers inspecting the results even though the multiplication by a con-
stant has no effect on the trend expressed by the time-series. 
 
Even though there are often very large numbers of observations (10s to 100s of thou-
sands) there can also be large numbers of parameters (sometimes hundreds, especially 
when interaction terms of used). Thus, model selection was on the basis of the mini-
mum Akaike Information Criterion (AICc) corrected for small sample sizes: 
 

  ( ) ( )2 2
1c
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  (4) 

and 
  2 2 / nσ ε=∑   (5) 
 
where n is the number of observation, σ2 is the estimate of the model variance, as in  
equation (5), which is included in the number of estimated parameters, k is the number 
of model parameters estimated, and the ε2 are the squared residual errors; note in equa-
tion (5) the division by n  to provide the maximum likelihood estimate of variance 
(Burnham and Anderson, 2002). When n is large the correction term becomes minor 
and the equation reduces to the AIC.  
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4.3 Results 
4.3.1   Data Quality 
The identification of outliers within fisheries datasets is complicated by the fact that 
such data tends to be intrinsically highly variable. If the reported catches are tabulated 
in any single year, individual shots can report catches ranging from a single kilogram or 
less, up to multiple tonnes (see supplementary tables S1 – S3 following this chapter’s 
Discussion). Focussing only on the upper ranges of catch-per-shot the spread of these 
catches varies through the period 1986 – 2015, which can be visualized in terms of the 
90% and 99% quantiles (Figure 7), but the variation exhibited differs markedly be-
tween the three species. Jackass Morwong, which has declined remarkably during this 
period (Wayte, 2013), is the only species of the three to have exhibited a continuous di-
rectional change. 

 

 
Figure 7. Annual variability in reported catch-per-shot as four different quantiles (50% = me-
dian, 75%, 90% and 99%) of the distribution of each year’s catches of the three species. 
 
The rounding of estimated catches to the nearest 5 kg, and more often the nearest 10kg, 
is clearer with Flathead than with Pink Ling or Jackass Morwong. A common belief that 
a standard fish-bin contains 30kg of fish is reflected by spikes of reports in both species 
at 30, 60, and 90kg. With Flathead there remain some fishers that consider a fish-bin to 
contain 32kg, evidenced by smaller spikes at 32, 64, and 96kg. Oddly, the belief with 
fishers regarding Pink Ling appears to be that a single fish-bin contains either 30kg or 
33kg, evidenced by small spikes at 33, 66, and 99kg (Figure 8). Why the two species 
should be either 32kg or 33kg seems more like tradition than fact. Minor catches with 
Pink Ling and Jackass Morwong, having peaks at 1, 2, 3, 5, 6, 10, and 11kg, are more 
common than with Flathead, which only has very few reports with 1, 2, 3, or 4 kg. 
 
Similarly, the rounding of the estimated effort is clear when the raw data are plotted at a 
fine enough scale. Peaks of numbers of records every 15 minutes are apparent from 1 
through to 5 or 6 hours (Figure 8). The very low numbers implied outside of 1 to 6 
hours suggests that omitting such records might have little effect on any standardization. 
Dominant peaks of reported effort occur at 3, 3.5, and 4 hours for all species, which re-
flects the mean effort being very similar in all three species being 3.3, 3.5, and 3.4 re-
spectively.  
 
The pattern of dominant catch-per-record in Flathead is different from that in Pink Ling 
and Jackass Morwong, who are more similar (Figure 8). This reflects the lower mean 
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trawl catch rates for Pink Ling and Jackass Morwong rather than where and in what 
depths they are caught (Figure 9). 
 

 
Figure 8. Plots of the catches, effort, and the catch against effort for Flathead, Pink Ling, and 
Jackass Morwong from the eastern SESSF; the average catch per shot was 127, 70, and 54 kg, 
the average effort was 3.3, 3.5, and 3.4 hours, and the geometric mean CPUE was 44, 29, and 
19 kg/hr, respectively. Each column heading identifies the species and the SESSF zones used. 
Records were restricted to the years 2000 – 2006, reported catches < 100kg, and <= 6 hours 
trawling effort. In the bottom plots completely black dots represent 50 or more records with the 
lightest shade representing a single shot.  
 
Whether any of the larger catch-per-shot values are actually errors or outliers is difficult 
to determine but such difficulties are less the case with effort data. Across the years 
1986 – 2015 reported effort (at least that recorded in the database) for Flathead ranged 
from -3.65 – 66 hours, for Pink Ling from -33.0 – 25.51 hours, and for Jackass Mor-
wong from -7.5 – 58.67 hours. The negative effort values are clearly errors, but, as in 
the case of the -33 hours, these can be compounded with other errors such as perhaps 
accidentally entering two 3’s instead of one. The approximate average trawling time 
tends to range between 3 – 4 hours (Figure 8) with reports from fishers saying they 
would never trawl for more than 10 hours. Of course, other fisheries may exhibit differ-
ent behaviour. 

4.3.2  The Effect of Selecting an Effort Range 
An obvious first selection for outliers is to remove any records reporting less than some 
minimum number of hours and more than some maximum number of hours, which is 
done in the Great Australian Bight (GAB) fishery but not currently in the SESSF.  An 
examination of the effect upon the standardizations of making a range of data selections 
based on different combinations of criteria relating to effort was made (Table 3). When 
selections were made with regard to effort, in terms of catches the maximum percent 
lost from the analyses was only 1.25%, 2.62%, and 1.25% respectively for Flathead, 
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Pink Ling, and Jackass Morwong. Similarly, for the number of records lost the percent-
ages were 0.697%, 1.66%, and 1.45% respectively.  
Even with the strictest selection criteria of >= 1 hour and <= 6 hours for all three spe-
cies the only differences between standardizations of all the data versus the censored 
data were extremely minor (see Figure S1 in the supplementary material). The small 
proportion of records removed only had minor effects.  
 

 
Figure 9. Total catches and total records by depth across the years 1986 – 2015 for Flathead, 
Pink Ling, and Jackass Morwong. The dashed vertical lines denote the assessment group agreed 
depth bounds for inclusion in standardizations. Note the y-axis scales differ between plots. 
 
Table 3. The effect of selecting records based on some minimum and possibly maxi-
mum amount of effort on the total catch and total records retained for analyses for the 
three species. The first row of > 0 hours effort relates to the catch and records re-
moved that had 0 or less effort while the second > 0 row relates to the catch and rec-
ords retained for analysis. The rows below this list the catch and records lost from the 
analysis by the increasingly stringent selection criteria.  

 Flathead Pink Ling Jackass Morwong 
Effort Data hrs Catch Records Catch Records Catch Records 
All 34288.659 276900 14680.084 164705 12982.832 129278 
> 0 456.963 3512 148.941 1703 182.231 1519 
> 0 33831.696 273388 14531.143 163002 12800.601 127759 
> 0.25 2.684 43 150.007 23 2.019 21 
> 0.5 32.387 254 157.311 136 8.119 127 
> 0.75 97.899 804 172.182 462 23.166 408 
<= 24 & >= 1 150.109 1423 189.736 796 36.077 606 
<=   6 & >= 1 423.025 1907 381.225 2706 159.694 1851 
 
 
When the catch-per-record is plotted against the effort-per-record then the effect of 
rounding becomes apparent in the fuzzy grid-like outcome (Figure 8). These distribu-
tions are neither continuous nor discrete and the use of any particular statistical distribu-
tion, such as the log-normal, Gamma, Negative Binomial, or Poisson distributions, to 
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act as the residual errors structure when comparing the predicted CPUE for each record 
with its observed value remains an approximation at best as the statistical model itself 
can only generate an approximation to the mixture of continuous and discrete distribu-
tions of catch and effort. 

4.3.3  The Northern Prawn Fishery 
The recording of catches in the northern prawn is in fact relatively accurate as they are 
snap frozen and packed into small cartons quickly after capture (these can vary from 
5kg upwards). Nevertheless, there is clear evidence of rounding, as with the SESSF 
fisheries) when reported catches are plotted in 1kg steps (Figure 10). 
 
 

 
Figure 10. The frequency of catches (kg) from individual trawl hauls in the Northern Prawn 
fishery from across the whole year of 2013. 
 
 
Effort is reported as total hours trawled but the fishing operation entails repeatedly haul-
ing the nets and clearing them of prawns so as to maintain quality of the frozen product, 
thus catch rates are calculated as catch-per-haul or catch-per-record. It is certainly the 
case that the distribution of CPUE cannot be considered as a smooth or continuous dis-
tribution, but neither is it strictly discrete. 
 

4.3.4  The Tasmanian Abalone Fishery 
In the Tasmanian abalone fishery the fishing is by hand collection via divers on the 
shallow rocky sea coast. The required landing dockets are also the source for the catch 
and effort data. This is an important point because the value of the fishery is so high that 
the catches are weighed accurately at the point of landing and are thus reliable rather 
than estimates. Even so they are not smoothly distributed because the abalone divers 
generally go out with the intent of catching a specific amount of the available quota but 
the vagaries of good or poor catching mean that their intentions are not always met. 
Similarly, many divers often go out for a specific period or at least record their effort as 
some rounded period of time and when combined into a catch rate these again generate 
the grid like distribution of catch rates seen in other fisheries (Figure 11). 
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Figure 11. Catch and effort data from the Tasmanian abalone fishery for a single statistical 
block in the south-west of Tasmania for the years 2012 – 2016. The catches in the top left plot 
have been truncated at 500 kg to illustrate the granular nature of catches and effort reports were 
truncated at 9 hours. 
 
 

4.3.5   Depth as a Factor 
In the SESSF, a strongly mixed species fishery, after selecting for species, zones, fish-
ing method, and years, so as to identify the fishery being standardized, it is usual to se-
lect for a particular depth range with the intention of focussing any analyses on the main 
fishery and avoid outliers. For each species the assessment groups have agreed on par-
ticular depth ranges (Figure 9; Table 4). The data for each species already has a num-
ber of records that do not have associated depth data, which exemplifies a common 
problem of missing data when using log-book catch and effort information. Here rec-
ords with missing information were omitted but the alternative of imputing values also 
exists (usually, for each record, using the mean estimated for other records within each 
combination of other factors being used in a standardization). For the three species be-
ing used here none has more than 1% of records or catch with missing depth data (Ta-
ble 4).  Flathead has the least restrictive of the agreed depth ranges followed by Jackass 
Morwong and then Pink Ling (Figure 9). The Pink Ling example highlights the notion 
of focussing on the main fishery. In depths shallower than 250m there are very many 
records which report relatively small amounts of Pink Ling. In this inshore fishery the 
Pink Ling tend to be smaller, younger, and less common and this is not an area where 
they are generally targeted by trawlers (Table 4; Figure 9); in shallower waters they 
tend to be caught as by-product when targeting other species (such as Flathead and 
Jackass Morwong). As a result, the RAG has nominated a depth range for the standardi-
zation that eliminates more than 13% of the total catches by trawl whereas the agreed 
depth ranges for Flathead and Jackass Morwong remove less than 1 and 5% respec-
tively. 
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Table 4. Listings of catch in tonnes and number of records for: all records with 
depth information, all records within the agreed depth bounds, and those records 
with missing depth data. Numbers in parentheses are the proportions of the total 
catch and total records respectively. 
Species Flathead Pink Ling Jackass Morwong 
Agreed Lower Depth 0 250 70 
Agreed Upper Depth 400 600 300 
Total Catch 33942 14595 12851 
Depth Limited Catch 33860(0.998) 12645(0.866) 12230(0.952) 
Catch no depth data 347.1(0.01) 85.4(0.006) 131.9(0.01) 
Total Records 274214 163593 128033 
Depth Limited Rec-
ords 273383(0.997) 100735(0.616) 116190(0.908) 

Records no depth data 2686(0.01) 1112(0.007) 1245(0.01) 
 

A comparison of standardized CPUE with and without the agreed depth range data re-
strictions exhibits almost no discernible effects in Flathead and extremely minor effects 
in Jackass Morwong (see Figure S2 in supplementary material). Even the reduction of 
10% of records and 5% of catches, in Jackass Morwong did not translate into any 
changes that would have an influence on any assessment based upon the standardized 
CPUE. However, with Pink Ling there were large effects that would have similarly 
large effects on any subsequent stock assessment. Given the 38% reduction in records 
and 13.4% reduction in catches (Table 4) such large alterations to the CPUE trajectory 
are not surprising. While the general trend in CPUE is retained the details and gradients 
of change are altered (Figure 12). 
 

 
Figure 12. The effect of data selection with respect to depths between 250 – 600 m on Pink 
Ling. Note the y-axis does not start at 0 so as to emphasize differences between the lines. 
 

4.3.6   Requiring a Minimum Number of Years in the Fishery 
The number of years a vessel is required to be in a fishery for it to be included in the 
analysis had surprisingly little effect upon the final standardization trends (see Supple-
mentary Figures S3 – S9) with Pink Ling exhibiting the largest effects (Figure 13), 
however, these remained essentially trivial relative to the large scale trends and would 
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not be expected to influence a formal stock assessment based upon the degree of change 
to the overall trend. This was not because there were few vessels present only for a few 
years. In fact the majority of vessels only report from each fishery for relatively short 
periods with the median duration in each fishery being 4, 5, and 4 years respectively for 
Flathead, Pink Ling, and Jackass Morwong (see supplementary Figure S3).  
 
This is a surprising result because the impact of the data selection on the proportion of 
the total catch, the proportion of the number of records and the proportion of vessels in-
cluded in the analyses were relatively marked (Table 5). For example, with Flathead se-
lecting only vessels with a minimum of 15 years in the fishery reduced the total catch 
by 27% and the total records by 29% with only 22.5% of the vessels remaining in the 
analysis. Nevertheless, the trend and even many of the details remained essentially un-
changed (supplementary figures S4 – S5). Requiring a minimum number of 3 years 
made effectively no impact on the standardization and, with Jackass Morwong, when all 
trends were scaled to a mean of 1.0, only changed the standardizations at the third deci-
mal place at most and sometimes the fourth place; requiring a minimum of five years in 
the fishery changed that to two and three decimal places. 
 
Plotting the deviations of each trend relative to the standardization that included all ves-
sels (one year) illustrates that sometimes the variations can be up to 10% (Figure 13) 
but even those events have only minor effects upon the trends exhibited by the three 
species. 
 

 
Figure 13. The effect of selecting for a minimum number of years for a vessel to be in the fish-
ery on the CPUE standardizations for Pink Ling with all trend scaled to a mean of 1.0.  The de-
viates, in this case, are ratios relative to the minimum of 1 year (all data) and illustrate the pro-
portional rather than absolute differences. A minimum of 3 years had little effect so the empha-
sis is on requirements of 5, 10, and 15 years. 
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Table 5. The effects of requiring a minimum number of years in the fishery from 1 – 
15 year on: the number of observations (Nobs), the number of vessels included 
(Nvess), the total Catch, the proportion of the number of observations (pNobs), the 
proportion of vessels included (pvess), and the proportion of total catch included 
(pCatch). 
Species Year Nobs Nvess Catch pNobs pvess pCatch 
Flathead 1 271247 187 34289 1.000 1.000 1.000 
Flathead 3 267281 118 33801 0.985 0.631 0.986 
Flathead 5 256102 92 32442 0.944 0.492 0.946 
Flathead 10 225135 58 28099 0.830 0.310 0.819 
Flathead 15 198209 42 24738 0.731 0.225 0.721 
Pink Ling 1 162110 203 14680 1.000 1.000 1.000 
Pink Ling 3 159024 131 14468 0.981 0.645 0.986 
Pink Ling 5 154050 103 14051 0.950 0.507 0.957 
Pink Ling 10 134069 65 12225 0.827 0.320 0.833 
Pink Ling 15 114715 43 10441 0.708 0.212 0.711 
Jackass Morwong 1 126721 180 12983 1.000 1.000 1.000 
Jackass Morwong 3 124103 117 12737 0.979 0.650 0.981 
Jackass Morwong 5 117998 85 11631 0.931 0.472 0.896 
Jackass Morwong 10 99714 50 9247 0.787 0.278 0.712 
Jackass Morwong 15 87966 37 8180 0.694 0.206 0.630 
 
 

4.3.7   Requiring a Minimum Average Annual Catch per Vessel 
Requiring a minimum average annual catch for a vessel to be included in a standardiza-
tion analysis is more difficult to scale in an equivalent way for different species. In 
terms of total catch and total numbers of records, Flathead dominates, followed by Pink 
Ling, and then Jackass Morwong (Table 3). When minimum annual catch-per-vessel 
values leading to similar percent reductions in catch and numbers of records are com-
pared then, as with the minimum number of years in the fishery, the effect of the mini-
mum annual catch is also minor (see supplementary figures S10 – S15; Table 6). To 
lose about 8% of catches required a minimum mean annual catch of about 10t per vessel 
in Flathead but only about 5 t per vessel for Pink Ling and Jackass Morwong. 
 
With Flathead, selecting for a 5 tonne minimum annual catch per vessel led to maxi-
mum deviations from all data trend of only about 3% (Figure 14), which visually is 
barely discernible from the all-data trend. The 10 and 15 tonne annual catch require-
ments have larger effects, especially with the other two species, which reflects the rela-
tively extreme removals that such a requirement lead to (Table 6). Such observations all 
serve to illustrate that using a data selection approach like this would need to be cali-
brated for each species to achieve the desired effect.  
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Table 6. The effects of requiring a minimum average annual catch per vessel from 
1kg – 15 tonnes on: the number of observations (Nobs), the number of vessels in-
cluded (Nvess), the total Catch, the proportion of the number of observations 
(pNobs), the proportion of vessels included (pvess), and the proportion of total catch 
included (pCatch). 
Species AvAnnC Nobs Nvess Catch pNobs pvess pCatch 
Flathead 0.001 271247 187 34289 1.000 1.000 1.000 
Flathead 1 270010 146 34258 0.995 0.781 0.999 
Flathead 5 261821 111 33850 0.965 0.594 0.987 
Flathead 10 235266 79 31594 0.867 0.422 0.921 
Flathead 15 204699 65 29175 0.755 0.348 0.851 
Pink Ling 0.001 162110 203 14680 1.000 1.000 1.000 
Pink Ling 1 159184 126 14577 0.982 0.621 0.993 
Pink Ling 5 136270 74 13274 0.841 0.365 0.904 
Pink Ling 10 109095 45 11153 0.673 0.222 0.760 
Pink Ling 15 82574 26 8468 0.509 0.128 0.577 
Jackass Morwong 0.001 126721 180 12983 1.000 1.000 1.000 
Jackass Morwong 1 119896 102 12796 0.946 0.567 0.986 
Jackass Morwong 5 99158 65 11906 0.782 0.361 0.917 
Jackass Morwong 10 84234 44 10617 0.665 0.244 0.818 
Jackass Morwong 15 71722 33 9472 0.566 0.183 0.730 
 
 
 

 
Figure 14. The effect of selecting for a minimum average annual catch per vessel on the CPUE 
standardizations for Flathead with all trend scaled to a mean of 1.0.  The deviates, in this case, 
are ratios relative to the minimum of 1 kg (all data) and illustrate the proportional rather than 
absolute differences. 
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4.3.8   Effect of a Minimum Catch per Record 
Setting a selection criterion based on a given minimum catch-per-record can have a rel-
atively large effect on the number of observations while making little impact on the pro-
portion of vessels included or the total catch included in the analysis (Table 7). This is a 
reflection of the fact that the raw CPUE data is strongly positively skewed with most 
data having lower values. The effect on the number of observations is important because 
the use of a minimum catch-per-record can have relatively large effects upon the result-
ing standardization. With each of the three species the effect was to flatten the standard-
ized trend so that it became closer to the overall average (Figure 15; also see supple-
mentary Figures S16 – S21). Such a flattening would act to obscure any measure of 
stock depletion if there were a trend in the number of smaller catches (as in Jackass 
Morwong). 
 
With Jackass Morwong, for example, the effect was progressively greater with each in-
crease in minimum catch-per-record, although selecting on 30 or 60kg per record had 
about the same effect. Selecting for 30kg per record altered the standardized CPUE 
trend from a decline from about 2.0 to below 0.5, into a decline from about 1.5 to about 
0.75, which would provide a very different interpretation of the stock status. The impact 
on the other two species is equally large but might not have equivalently misleading 
consequences. 
 
 
 
 

 
Figure 15. The effect of selecting for a minimum catch-per-record on the CPUE standardiza-
tions for Jackass Morwong with all trends scaled to a mean of 1.0.  The deviates are ratios rela-
tive to the minimum of 1 kg (all data) and illustrate the proportional rather than absolute differ-
ences. Catches are kilograms. 
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Table 7. The effect of altering the minimum catch-per-record (CPR) from 1kg – 60kg 
on the variance described by the statistical model, the number of observations (Nobs), 
the number of vessels included (Nvess), the total Catch, the proportion of the number 
of observations (pNobs), the proportion of vessels included (pvess), and the propor-
tion of total catch included (pCatch). 
Species CPR adj_r2 Nobs Nvess Catch pNobs pvess pCatch 
Flathead 1 18.307 270651 187 34288 1.000 1.000 1.000 
Flathead 5 16.637 261088 187 34246 0.965 1.000 0.999 
Flathead 30 13.498 198901 180 32911 0.735 0.963 0.960 
Flathead 60 12.916 147890 171 30344 0.546 0.914 0.885 
Pink Ling 1 50.379 159617 203 14678 1.000 1.000 1.000 
Pink Ling 5 41.170 137241 202 14597 0.860 0.995 0.994 
Pink Ling 30 22.525 88494 183 13707 0.554 0.901 0.934 
Pink Ling 60 14.817 63918 172 12552 0.400 0.847 0.855 
Jackass Morwong 1 28.061 123980 179 12980 1.000 1.000 1.000 
Jackass Morwong 5 23.923 107605 177 12916 0.868 0.989 0.995 
Jackass Morwong 30 15.332 65172 165 12076 0.526 0.922 0.930 
Jackass Morwong 60 14.452 45242 154 11096 0.365 0.860 0.855 

 
 
 

4.3.9   The Effect of a Maximum Catch per Record 
The exclusion of what were relatively large catches by species (Table 2) led to the re-
moval of about 4.5% of catches but only about 0.4% of records from Flathead and Pink 
Ling. In Jackass Morwong, even though about 15.4% of catches were removed that still 
only removed about 0.9% of records.  By conducting standardizations on data including 
the larger catches and contrasting those with data sets without the larger catches (see 
Table S4 and Figures S21 – S24 in the supplementary materials) the only influence 
these larger shots have is very minor on the general trends and were mostly not visible 
in plots. 
 
The same patterns were exhibited in the residuals between the trends with and without 
the larger shots such that in earlier years (before 1992 and the introduction of quota) 
Flathead and Jackass Morwong show slightly lower trends while after 1992 the trends 
are slightly higher. With Pink Ling, which is caught in significant amounts in the non-
trawl fishery that only began recording detailed log-book data from 1997 onwards, the 
switch from having deviates below to above the mean occurs in about 1997. 
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4.4 Discussion 
4.4.1   Initial Data Selection 
The selection of data for inclusion in any analysis of CPUE from commercial fisheries 
is a necessary first step to identify a particular fishery in a particular region using a par-
ticular method. This is especially the case when dealing with a mixed fishery in which 
the targeting behaviour is not easily identifiable, but even with a species which is al-
ways the explicit target, the area and gear still need to be specified. Any data selection 
should always be done in a manner where it is possible to defend the selection of given 
fisheries or parts of fisheries in terms of whether they constitute a coherent whole. For 
example, in Punt et al. (2001) the Australian Blue Grenadier (Macruronus novaezelan-
diae) fishery was split into a spawning fishery and a non-spawning fishery with each 
defined as operating in particular areas and months within each year and having rather 
different fleets fishing with rather different selectivity characteristics and CPUE. 
 
Explicit data selection can also be useful for the elimination of outliers and errors, alt-
hough outliers and errors are not always obvious before conducting a preliminary analy-
sis given the variable nature of fisheries data. Generally, such fundamental data selec-
tions, as region, depth, and gear, should not be a problem but designating particular data 
points as outliers is invariably more difficult to support. The most defensible approach 
before presenting a set of results involving the removal of putative outliers is to repeat 
an analysis with and without the selection so that its effects can be made explicit. In the 
examples considered of selecting only those records with different levels of what might 
be considered plausible levels of effort the omission of the less plausible records in each 
case led only to trivial changes in the overall trends of yearly coefficient from the stand-
ardizations. The decision about whether to exclude any unusually low or high levels of 
effort would then become one of what might be considered the most realistic or plausi-
ble representation of the fishery concerned (industry input on such matters is valuable). 
Even where the inclusion of a few records with ridiculous effort values (> 24 hours!) 
may have very little influence on the outcome of an analysis their removal means that 
defending the analysis should be simpler and more convincing.  But where more promi-
nent effects arise in subsequent trends of CPUE then a stronger case for exclusion might 
require further independent evidence that the records identified as exceptional really 
were unusual. In addition, while the CPUE trend derived from a standardization may 
not be materially changed after a particular data selection, the diagnostics concerning 
the analysis may be greatly improved. 
 
Potentially less easily defended selections tends to be related more with attempts to fo-
cus any analyses on to the main core of a fishery, where the stock dynamics relating to 
the majority of the stock can be expected to be exhibited. The assumption central to the 
use of CPUE as an index of relative abundance is that CPUE is directly related to the 
abundance of the exploitable biomass, with the most common assumption being that 
CPUE and exploitable biomass are linearly related. Strictly, this would only be the case 
for a developed fishery in which prior exploitation had depleted the stock down to a 
more productive state than a naïve unfished stock. In a relatively naïve, lightly fished 
stock, exceptionally high initial catch rates can be had before the stock is depleted to 
more highly productive states. MacCall (2009) expressively termed this ‘windfall’ bio-
mass that allows for unsustainable catches to be taken as a stock is fished down, poten-
tially leading to catch rates which would be unrealistically high once sustainable fishing 
begins.  
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It is possible to argue that the periphery of a fishery may be more sensitive to exploita-
tion and exhibit more pronounced changes but the periphery is not necessarily where the 
stock dynamics as a whole is best represented and so, apart from exceptions involving 
particular circumstances of spatial structuring of the stock, the focus of any analysis 
should remain in the core of the fishery. 
 
Examples were examined of selecting by acceptable depth range, selecting vessels by 
how many years they had been reporting from a fishery, selecting vessels by their aver-
age annual catch of a species, and finally of selecting records with respect to what were 
deemed or defined to be the most plausible maximum catch-per-record for targeting to 
be taking place (selecting for a minimum catch could not be considered an acceptable 
strategy because of the resulting biases introduced in the outputs). Many other potential 
factors exist that may influence CPUE and each may have their own criteria for inclu-
sion or exclusion. Whatever the case, each of these criteria can be defensible as being a 
means of focussing any analysis of the core of the fishery concerned. Here these criteria 
have been treated independently but in real situations they may be combined. There can 
be unintended effects when making data selections so even if a plausible defence for 
making a selection is clear the best argument for the success of a particular data selec-
tion strategy is to run analyses with and without the selection in question and explore its 
actual effects before the resulting time-series is adopted in a stock assessment. 

4.4.2   Identifying the Core of a Fishery 
The core of a fishery is represented by where the bulk of the available stock occurs and 
this is assumed to be reflected in where the majority of fishing records derive from (be 
that in terms of depth, season, location, etc). The intent is to focus on where changes in 
the bulk of the stock dynamics (its biomass) are most likely to be observed by the fish-
ery through its CPUE. After the basic identification of the fishery of concern, identify-
ing this core of any fishery is generally the primary objective behind most data selec-
tion.  
 
If a fishery only occurs away from the major habitats of particular species, perhaps be-
cause of unfishable ground, if this is especially marked then the use of CPUE may be 
compromised as an index of relative abundance for the stock. If this was deemed to be 
the case then an argument would be required to defend the use of CPUE in an assess-
ment.  

4.4.3   The Depth of Fishing 
In terms of data selection, the depth of fishing was given particular attention because of 
its importance in the life of fished species and how that is reflected in its importance 
when targeting a given species during fishing. The notion of a species having a pre-
ferred depth range over which it can best be targeted is simply a reflection of how fish 
distribute themselves across each continental shelf and slope. Allowing for local varia-
tion, as might occur along any coastline, it becomes a sensible strategy for a fisher to 
exclude certain depth ranges when targeting a certain species (or set of species in a 
mixed fishery such as the SESSF). This line of argument is the origin of the SESSF as-
sessment group’s agreed restrictions on what depths to include in CPUE standardiza-
tions used in each assessment. With Flathead and Jackass Morwong the effect of the 
agreed depth selection, which are often different for different fishing gears, remained 
minor and made no real changes to the trends. With Pink Ling, however, the selected 
depth range attempts to split a recognized targeted trawl fishery for Pink Ling from the 
lesser non-targeted inshore fishery that only catches Pink Ling incidentally to catches of 
other more targeted species. Additionally, it is reported that the inshore Pink Ling tend 
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to be smaller and presumably younger than those more offshore and deeper. A large im-
pact on the CPUE trend resulted from this depth selection because although about 13% 
of catches are removed from consideration this also removes about 38% of the records. 
This is a case where a detailed argument and independent supporting information (e.g. 
size distribution of inshore fish; different vessels fishing at different times) are provided 
to defend making such a selection.  Even with such a large reduction in records the 
standardization retains approximately the same shape although the details concerning 
gradients of change and exactly when changes occurred would affect any stock assess-
ment model that used the outcomes. Once again, without exploring the effects of such 
data selections the implications would remain unclear, which is the case for both when 
there is a large effect and when there is in essence no effect. 

4.4.4   The Number of Years in the Fishery  
When selection criteria were developed for the numbers of years each vessel had been 
reporting from a fishery, changes to the CPUE trends only began to become visibly no-
ticeable, although still minor, when a minimum requirement of five years in the fishery 
was applied. For effects to become clearly visible, although still relatively minor, re-
quired restricting data to those vessels in the fishery for 10 or even 15 years. Once again 
the outcome came down to the total number of records remaining in the analysis. While 
the proportion of vessels remaining after selection dropped down to between 20.6% – 
22.5%, the number of records and total catches represented in the data used in the anal-
yses declined far less (losing at most 31% and 37% of records respectively). It would 
appear that vessels in the fishery for only a relatively short time consequently have 
fewer records and hence a lower influence. Even so, the trend in CPUE followed by the 
different vessels in the example fisheries must be similar for so few changes to occur on 
their removal.    
 
The median number of years for vessels reporting from each fishery was only four or 
five years in the examples used and other fisheries could, of course, be very different. 
Whether this would lead to different outcomes could only be determined by exploring 
the effects of different criteria on different species and fisheries. 

4.4.5   The Minimum Annual Catch 
Selections based on including only vessels that had more than some defined minimum 
average annual catch also led to large reductions in the proportion of vessels remaining 
in the analysis but in the case of Pink Ling could reduce the number of records by 50%. 
It is not surprising, therefore, that there were clearly visible effects on the CPUE trends 
when imposing data selection on vessels requiring some of the larger average annual 
catches (Figure 14; see supplementary Figures S10 – S15). It was not predictable how 
selecting for a minimum average annual catch by vessel would affect the CPUE. With 
the Flathead and Jackass Morwong data removing those vessels with smaller average 
annual catches led the CPUE to increase early in the fishery but decrease later. While 
with Pink Ling increasing the minimum average annual catch per vessel requirement de-
creased the CPUE in the first 10 years of the fishery but led to increases from 2005 on-
wards (supplementary Figures S12 – S13). Deciding what constitutes a sensible level of 
minimum average annual catch is not as straightforward as deciding on some minimum 
number of years to be in a fishery. The total catch of Flathead is greater than that of 
Pink Ling, which is greater than that of Jackass Morwong. Their median average annual 
catch across vessels reflects this at 6.95t, 2.44t, and 1.97t respectively. It is not surpris-
ing that requiring a minimum vessel average catch of 10 tonnes has a greater effect in 
Jackass Morwong and Pink Ling than it does in Flathead. With other factors there 
would also be a need to calibrate such selection criteria to suit a given species. 
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4.4.6   Catch per Record 
Finally, selections based upon a maximum or minimum catch-per-record are qualita-
tively different; large catches might be considered as outliers while selecting for some 
minimum catch might be attempting to focus on shots targeted at some species.  Excep-
tionally large catches do occur but by their nature they are rare, even in much smaller 
data sets than those used in this study. The inter-annual variation exhibited by the me-
dian, and even the 75th quantile, of the catch-per-record for the three species considered 
was relatively low whereas that for the 99th quantile was much greater (Figure 7). Even 
so, the identification of outlying catches will depend greatly on the fishery concerned. 
With the three species used here the effect of excluding the larger catches proved to be 
relatively minor, which is a reflection of the number of records that are excluded. In 
each case, even where a relatively large proportion of the total catch was excluded (as in 
Jackass Morwong, which lost up to >15% of all catches) less than 1% of the total rec-
ords were lost. The resulting effects on the CPUE trends were thus difficult to discern. 
 
The selection on the basis of some minimum catch-per-record differed from the other 
strategies employed in that it led to consistent and large effects on all species. In each 
case, the general effect was to flatten any observed trend towards the long term average. 
Given the positively skewed distribution of catches a strategy of excluding smaller 
shots, as being unlikely to be targeted at a species, tends to impose hyper-stability on 
the resulting CPUE time-series and will therefore generate misleading standardizations. 
The effect was especially marked in Jackass Morwong where there was a long term 
trend in the number of smaller shots which became hidden when smaller shots were ex-
cluded. Even without the presence of underlying trends, strategies involving individual 
records cannot be recommended given such a fundamental problem. 
 

4.4.7  The Effects of the Example Data sets 
Given the large number of observations in the example datasets examined it may not be 
surprising that the effects of what appear to be relatively severe selection criteria had re-
markably little effect on the resulting CPUE trends (except for selecting on a minimum 
catch-per-record). For species with far fewer records then any selection criteria that 
eliminates a substantial proportion of those records may well have a large influence on 
the final time-series of abundance indices. An obvious means of addressing the issue of 
calibrating any such data selection and defending its effects is to explore the sensitivity 
of any given data set to such selection strategies and document the findings in detail.  
This would ensure the repeatability of the analyses and provide a defence capable of 
withstanding public scrutiny. It is simple to state that this is an ‘obvious’ means of de-
fending any particular selection strategy but, in fact, that this strategy is obvious is ne-
gated by the almost total lack of documentation found in the published literature on 
CPUE standardization but especially the lack in the more informal literature common to 
stock assessments worldwide. Without such documentation, with detailed specification 
of what criteria were used and why, then such analyses become almost impossible to re-
produce and this adds an unknown degree of extra uncertainty into what are already un-
certain biological processes. 
 
Of course, exploring all these options can be time-consuming and there is a universal 
push to make stock assessments more rapid, cheaper, and more efficient. There is a risk, 
however, in forcing short-cuts through inadequate time being made available, that inap-
propriate analyses or data selection practices will go forward without sufficient testing.  
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4.5 Supplementary Results 
 
Table S1. The number of records and different quantiles for each year’s catch-per-
shot distributions in kg for Flathead from zones 10 – 20. 

Year rec-
ords 0% 1% 5% 25% 50% 75% 95% 99% 100% 

1986 10546 1 2 5 20 40 96 324 862 3488 
1987 8469 1 2 5 25 60 128 450 1024 3500 
1988 9568 1 5 10 30 64 150 450 900 9600 
1989 9364 1 4 10 30 60 150 500 1000 5000 
1990 8402 1 5 10 40 100 200 500 980 2200 
1991 8536 1 5 10 35 90 180 480 873 2050 
1992 7223 1 5 10 32 75 150 420 800 6000 
1993 8982 1 5 10 32 80 150 320 600 2000 
1994 10409 1 5 10 30 60 105 270 461 1856 
1995 10377 1 4 10 30 60 120 300 532 6000 
1996 11150 1 2 10 30 60 100 280 480 1400 
1997 10450 1 2 5 30 60 120 313 565 1400 
1998 10037 1 2 5 30 60 120 330 636 3000 
1999 10446 1 2 10 30 65 150 330 635 2250 
2000 13115 1 2 10 30 80 175 400 700 2500 
2001 11787 0.5 2 6 30 80 150 320 577 1500 
2002 12562 0.5 3 10 35 90 150 330 600 1360 
2003 13185 0.5 2 8 30 90 150 360 676 2170 
2004 12443 0.5 2 5 30 65 150 330 650 3200 
2005 10874 1 3 5 30 60 140 360 680 2500 
2006 9284 1 5 10 30 90 180 370 630 2660 
2007 6402 1 5 10 50 115 210 510 840 2310 
2008 7378 1 5 10 50 120 240 570 1000 3500 
2009 6428 0.5 5 10 50 110 200 510 990 4365 
2010 6942 1 5 11 50 110 210 500 832 1815 
2011 6849 0.3 4 10 50 105 210 496 800 1670 
2012 6966 0.6 5 10 50 100 220 525 887 2700 
2013 5827 1 5 10 40 90 160 350 550 2100 
2014 6430 0.5 5 15 50 100 200 450 700 2255 
2015 6469 1 5 20 60 120 200 400 600 1150 
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Table S2. The number of records and different quantiles for each year’s catch-per-
shot distributions in kg for Pink Ling from zones 10 – 30. 

Year rec-
ords 0% 1% 5% 25% 50% 75% 95% 99% 100% 

1986 6272 1 2 5 18 40 110 320 560 1330 
1987 5501 1 2 5 19 45 120 360 650 1700 
1988 5044 1 2 5 20 50 120 310 547 2110 
1989 5206 1 2 5 20 50 120 320 571 1500 
1990 4163 1 2 5 28 60 150 418 700 9000 
1991 4441 1 1 5 25 60 141 320 566 1800 
1992 3817 1 2 5 20 55 150 352 694 1500 
1993 5173 1 2 5 20 60 150 400 701 3474 
1994 6426 1 2 5 20 55 120 330 600 1500 
1995 7322 1 2 5 20 50 130 360 720 2000 
1996 7308 1 2 4 10 40 150 400 650 2300 
1997 8398 1 1 3 15 40 150 360 600 2176 
1998 7943 1 1 2 10 40 150 380 605 2000 
1999 9062 1 1 2 15 50 150 360 550 1800 
2000 8926 1 1 2 10 30 120 300 570 1680 
2001 7808 1 1 2 5 30 100 256 450 1100 
2002 7330 1 1 1 5 20 70 220 390 1050 
2003 7884 0.2 1 1 5 30 90 250 420 1000 
2004 6433 1 1 1 5 28 88 264 495 1254 
2005 6677 0.3 1 2 6 30 90 231 396 1200 
2006 4897 1 1 2 10 33 110 300 528 1500 
2007 3525 1 1 2 6 30 99 300 528 1980 
2008 4008 1 2 2 11 44 132 330 561 1221 
2009 3052 1 1 2 11 35 100 297 505 1320 
2010 3176 1 1 2 9 34 127 330 569 6908 
2011 3534 1 1 2 8 44 132 318 550 1452 
2012 3405 1 1 2 6 33 127 330 550 1690 
2013 2652 1 1 2 9 33 106 297 511 900 
2014 2652 1 1 2 11 44 132 363 649 1089 
2015 2670 1 1 2 11 44 120 280 429 700 
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Table S3. The number of records and different quantiles for each year’s catch-per-
shot distributions in kg for Jackass Morwong from zones 10 – 20. 

Year rec-
ords 0% 1% 5% 25% 50% 75% 95% 99% 100% 

1986 5526 1 2 5 20 50 130 500 1429 7000 
1987 4569 1 3 5 30 64 200 730 1800 7040 
1988 5508 1 4 10 30 76 200 704 1950 7680 
1989 4681 1 4 10 30 75 224 800 1700 8960 
1990 4690 1 4 10 30 64 160 500 1000 4285 
1991 5109 1 2 5 25 60 150 544 1200 7000 
1992 3581 1 2 5 20 45 140 480 1005 10000 
1993 4258 1 2 5 20 40 120 480 1219 7590 
1994 5749 1 2 5 15 40 120 330 650 4500 
1995 5239 1 2 5 20 40 100 300 600 5000 
1996 6584 1 2 5 15 35 100 300 642 3210 
1997 6286 1 1 5 20 50 130 389 780 2400 
1998 5026 1 1 3 10 30 100 352 700 3000 
1999 4821 1 1 2 10 30 100 340 900 4230 
2000 6178 1 1 2 10 30 90 301 785 6000 
2001 5255 1 1 2 5 20 60 200 450 1900 
2002 6221 1 1 2 5 20 60 210 500 2500 
2003 5221 1 1 1 5 16 60 190 418 1800 
2004 4828 1 1 2 5 20 60 210 442 1568 
2005 5113 1 1 2 10 30 65 220 450 1350 
2006 4002 1 1 2 10 30 90 300 600 2640 
2007 2724 1 1 2 10 30 100 330 600 2550 
2008 3407 1 2 4 12 35 120 350 836 3150 
2009 2685 1 1 3 12 32 110 300 600 3750 
2010 2734 1 1 2 10 30 90 273 600 2670 
2011 2684 1 1 2 10 30 90 270 483 1320 
2012 2338 1 1 2 8 30 90 303 619 1600 
2013 1513 1 1 2 6 30 90 254 472 1625 
2014 1588 1 1 1 5 25 60 180 333 900 
2015 1160 1 1 1 3 15 50 150 272 600 
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Table S4. The effect of selecting for a maximum catch-per-record on catches and 
numbers of records. The selection entailed retaining only those records with catches 
less than the maximum listed for each species. 

 Flathead Pink Ling Jackass Morwong 
Maximum catch-per-record 1000 750 1000 
Total Catch 34288.658 14680.084 12982.832 
Selected Catch 32616.955 14018.257 10982.042 
Lost Catch 1671.703 661.827 2000.790 
Proportion Kept 0.951 0.955 0.846 
Percent Lost 4.875 4.508 15.411 
Total Records 276900 164705 129278 
Selected Records 275642 164044 128083 
Records Lost 1258 661 1195 
Proportion Kept 0.995 0.996 0.991 
Percent Lost 0.454 0.401 0.924 

 
 
 
 
 
 
 
Table S5. Value ranges found in the within the catch and effort database illustrating 
the outliers and assumed errors apparent in the data. TW is trawl and DS is Danish 
seine. The Pink Ling and Jackass Morwong relate to trawl records. 

Metric Flathead TW Flathead DS Pink 
Ling 

Jackass Mor-
wong 

Effort Minimum hour -3.65 -14.66 -33 -7.5 
Effort Maximum 
hour 66 23.91 25.51 58.67 

Catch Minimum Kg 0.3 0.5 0.2 0.5 
Catch Maximum Kg 9600 6620 9000 10000 
Vessels 187 54 203 180 
Minimum depth m 2 1 4 2 
Maximum depth m 2038 1280 6581 1727 
Western Longitude 147.997 144.000 147.030 148.000 
Eastern Longitude 155.133 150.380 154.283 152.250 
Southern Latitude -40.733 -40.950 -45.650 -40.733 
Northern Latitude -33.600 -37.283 -33.600 -33.600 
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Figure S1. The effect of selecting for a minimum and maximum amount of effort on the CPUE 
standardizations for Flathead, Pink Ling, and Jackass Morwong. In each case the dotted line is 
the geometric mean unstandardized CPUE, the red line is the standardized CPUE using only 
data with >= 1.0 hour and <= 6 hours of trawl effort, and the solid black line (mostly under the 
red line) is the standardized CPUE for all records with > 0 hours effort. In each case the y-axis 
does not start at zero in an attempt to make any deviations between the two standardized lines 
clearer. 
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Figure S2. The effect of selecting for a minimum and maximum depth of fishing on the CPUE 
standardizations for Flathead, Pink Ling, and Jackass Morwong. In each case the dotted line is 
the geometric mean unstandardized CPUE, the red line is the standardized CPUE using the re-
stricted depth range for each species, and the solid black line (mostly under the red line, except 
for Pink Ling) is the standardized CPUE for all depths. In each case the y-axis does not start at 
zero in an attempt to make deviations between the two standardized lines clearer. 
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Figure S3. Histograms of the relative frequency of years in which different vessels report from 
each of the Flathead, Pink Ling, and Jackass Morwong fisheries across the 30 years from 1986 – 
2015. The total number of vessels reporting in each fishery across the 30 years is designated in 
the plot for each species. 
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Figure S4. The effect of selecting for a minimum number of years in the fishery on the CPUE 
standardizations for Flathead. The deviations here are differences between each trend and that 
for year 1 (all data included). 
 

 
Figure S5. The effect of selecting for a minimum number of years in the fishery on the CPUE 
standardizations for Flathead with all trend scaled to a mean of 1.0.  The deviates, in this case, 
are ratios relative to the minimum of 1 year (all data) and illustrate the proportional rather than 
absolute differences. 
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Figure S6. The effect of selecting for a minimum number of years in the fishery on the CPUE 
standardizations for Pink Ling. The deviations here are differences between each trend and that 
for year 1 (all data included). 
 

 
Figure S7. The effect of selecting for a minimum number of years in the fishery on the CPUE 
standardizations for Pink Ling with all trend scaled to a mean of 1.0.  The deviates, in this case, 
are ratios relative to the minimum of 1 year (all data) and illustrate the proportional rather than 
absolute differences. 
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Figure S8. The effect of selecting for a minimum number of years in the fishery on the CPUE 
standardizations for Jackass Morwong. The deviations here are differences between each trend 
and that for year 1 (all data included). 
 

 
Figure S9. The effect of selecting for a minimum number of years in the fishery on the CPUE 
standardizations for Jackass Morwong with all trend scaled to a mean of 1.0.  The deviates, in 
this case, are ratios relative to the minimum of 1 year (all data) and illustrate the proportional 
rather than absolute differences. 
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Figure S10. The effect of selecting for a minimum average annual catch per vessel on the 
CPUE standardizations for Flathead. The average annual catch-per-vessel are in tonnes. 
 

 
Figure S11. The effect of selecting for a minimum average annual catch per vessel on the 
CPUE standardizations for Flathead with all trend scaled to a mean of 1.0.  The deviates, in this 
case, are ratios relative to the minimum of 1 kg (all data) and illustrate the proportional rather 
than absolute differences. 
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Figure S12. The effect of selecting for a minimum average annual catch per vessel on the 
CPUE standardizations for Pink Ling. The average annual catch-per-vessel are in tonnes. 
 

 
Figure S13. The effect of selecting for a minimum average annual catch per vessel on the 
CPUE standardizations for Pink Ling with all trend scaled to a mean of 1.0.  The deviates, in 
this case, are ratios relative to the minimum of 1 kg (all data) and illustrate the proportional ra-
ther than absolute differences. 
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Figure S14. Effect of selecting for a minimum average annual catch per vessel on CPUE stand-
ardizations for Jackass Morwong. Average annual catch-per-vessel are in tonnes. 
 

  
Figure S15. The effect of selecting for a minimum average annual catch per vessel on the 
CPUE standardizations for Jackass Morwong with all trend scaled to a mean of 1.0.  The devi-
ates, in this case, are ratios relative to the minimum of 1 kg (all data) and illustrate the propor-
tional rather than absolute differences. 
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Figure S16. The effect of selecting for a minimum catch-per-record on the CPUE standardiza-
tions for Flathead. The deviations here are differences between each trend and that for a catch of 
1kg (all data included). 
 

 
Figure S17. The effect of selecting for a minimum catch-per-record on the CPUE standardiza-
tions for Flathead with all trend scaled to a mean of 1.0.  The deviates, in this case, are ratios 
relative to the minimum of 1kg (all data) and illustrate the proportional rather than absolute dif-
ferences. 
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Figure S18. The effect of selecting for a minimum catch-per-record on the CPUE standardiza-
tions for Pink Ling. The deviations here are differences between each trend and that for 1 kg (all 
data included). 
 

 
Figure S19. The effect of selecting for a minimum catch-per-record on the CPUE standardiza-
tions for Pink Ling with all trend scaled to a mean of 1.0.  The deviates, in this case, are ratios 
relative to the minimum of 1 kg (all data) and illustrate the proportional rather than absolute dif-
ferences. 
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Figure S20. The effect of selecting for a minimum catch-per-record on the CPUE standardiza-
tions for Jackass Morwong. The deviations here are differences between each trend and that for 
1 kg (all data included). Catches are kilograms. 
 

 
Figure S21. The effect of selecting for a minimum catch-per-record on the CPUE standardiza-
tions for Jackass Morwong with all trends scaled to a mean of 1.0.  The deviates, in this case, 
are ratios relative to the minimum of 1 kg (all data) and illustrate the proportional rather than 
absolute differences. Catches are kilograms. 
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Figure S22. The effect of selecting for a maximum catch-per-record of < 1000kg on the CPUE 
standardizations for Flathead with all trend scaled to the geometric mean of all the data.  The de-
viates, in this case, are ratios relative to the all data trend line and illustrate the proportional ra-
ther than absolute differences. 
 

 
Figure S23. The effect of selecting for a maximum catch-per-record of < 750kg on the CPUE 
standardizations for Pink Ling with all trend scaled to the geometric mean of all the data.  The 
deviates, in this case, are ratios relative to the all data trend line and illustrate the proportional 
rather than absolute differences. 
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Figure S24. The effect of selecting for a maximum catch-per-record of < 1000kg on the CPUE 
standardizations for Jackass Morwong with all trend scaled to the geometric mean of all the 
data.  The deviates, in this case, are ratios relative to the all data trend line and illustrate the pro-
portional rather than absolute differences. 
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4.5.1  Other Data Selection Criteria 
The Resource Assessment Group (RAG) tasked with reviewing the assessments for 
shelf and slope species in the mixed species and mixed gear fishery included within the 
SESSF agrees on a standard list of data selection criteria and each can be defended (Ta-
ble 8). These are generally of a qualitatively different character to the identification of 
outliers or errors. Rather, these relate directly to defining exactly what fishery is to be 
analysed. When the selection criteria for each species or sub-set of each species was be-
ing decided the reasons and defences for each section criterion was explicitly included 
in the annual reports. In one of the latest reports (Sporcic and Haddon, 2016) the selec-
tion criteria are included but not the defences. It would be better practice to include the 
defences in each case explicitly in the methods in each iteration of a document so that it 
becomes standalone and not dependent on reading an earlier version. 
 
Table 8. The basic constraints over which an initial data selection would be made to a 
species within the SESSF fishery. 
Constraint Description 
Species con-
cerned 

A mixed species, mixed fishing gear fishery, so focussing only 
on records with a particular species is important. Identifying zero 
shots is especially difficult. 

1986 - latest Year Trawl records first became shot-by-shot from 1986 in the AFMA 
database, for the Gillnet, Hook, and Trap fishery the equivalent 
date in 1997. However, some of the earlier records contain what 
appear to be extreme values and may still be monthly summaries 
as were collected prior to 1986. 

Fishing method With a mixture of paper logbooks and eLogs there are now mul-
tiple codes for the same gear in the database (e.g. TW and TDO 
for Trawl and Trawl Demersal Otter) 

Depths The depth range selected by the RAG is designed to focus on the 
major fishing depths and avoid the proliferation of empty cells 
within categorical variables. 

Zones The SESSF extends over 1000's of km of coastline across which 
spatial differences occur. The SESSF zones are relatively coarse 
but analyses are focused within specific areas to avoid too many 
empty shots. 

Fishery There are numerous fisheries operating around Australia's coast-
line. Identifying a specific fishery (e.g. SET - South-East Trawl) 
avoids spurious records from remote fisheries or High Seas fish-
eries. 
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5 Fishery Dependent versus Independent Data 

5.1 Introduction 
The primary objective of most fishery independent surveys of fish stocks is to provide 
an index (or indices) of relative abundance for at least one target species. In Australia, 
which could be characterized as having mainly mixed target fisheries (Orange Roughy, 
Hoplostethus atlanticus, is an exception), there are currently Fishery Independent trawl 
surveys (FIS) in the Great Australian Bight (GAB), in the South East Scalefish and 
Shark Fishery (SESSF), and in the Northern Prawn fishery (NPF); there are others not 
considered here, for example, in the Torres Straits, and in various scallop fisheries. 
Here, comparisons will be made between the standardized commercial CPUE and the 
FIS outcomes for an array of commercially important species in the GAB and the 
SESSF. These surveys have recently been reviewed (O’Driscoll and Doonan, 2015a, 
2015b) with generally positive outcomes and some constructive suggestions. 
 
The ‘Fishery Independent’ (FI) aspect of such surveys receives emphasis because this is 
what sets such surveys apart from Fishery Dependent (FD) data (such as CPUE) and 
carries with it the implication that data collected in a FI survey is based on a design that 
aims to obtain a representative sample from the target stock. For this reason, such sur-
veys are usually considered to set a higher standard and provide the best view of how a 
stock is doing. CPUE data can have many and varied flaws (see Chapter 4 Potential 
Issues when using CPUE Data) whereas FI surveys use standard gear and follow a 
strict sampling design. Importantly, the use of standard gear and methods (and usually 
vessels) avoids the problem of ‘effort creep’ increasing the effectiveness of the survey 
effort and changing the catchability through time. A survey approach, however, cannot 
avoid the impact of a directional change in the climate influencing catchability or other 
outside influences altering productivity. In the Commonwealth Trawl Sector (CTS) and 
the Great Australian Bight (GAB) fishery the surveys are conducted using methods sim-
ilar to how the fisheries operate and use commercial vessels (although with standard 
gear) from those fleets. The survey results are thus directly comparable with the CPUE 
from the fisheries concerned (the surveys in the NPF, on the other hand, occur at times 
of each year when commercial fishing is not occurring). Here the outcomes from each 
of the CTS and GAB surveys to date are directly compared with the standardized CPUE 
from a selection of the same species with the focus being on the most important species 
in terms of relative abundance and value. This will achieve the second objective for the 
project: 

5.1.1  Project Objective 2 
Compare alternative catch rate standardization strategies in those fisheries where both 
fishery independent and fishery dependent data are available. 
 
An index of abundance from a FIS can be used as a standardized index of abundance, so 
a direct comparison with a statistical standardization of commercial CPUE is comparing 
like with like. 
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5.2 Methods 
5.2.1  South East Australia 
In the South East Scalefish and Shark Fishery (SESSF) Australian region a fishery-inde-
pendent trawl survey has been repeated during the winters of 2008, 2010, 2012, 2014, 
and 2016 (Knuckey et al. 2017). Originally this survey occurred in both summer and 
winter but an examination of the results indicated that estimates from the winter surveys 
provided generally more precise estimates for a wider range of species. To reduce sur-
vey costs it was then agreed to carry out only winter surveys despite the analytical de-
sign requiring both. Therefore, for this report we have included only the five existing 
winter survey results for comparison with matched CPUE time series.  
 
To display the survey estimates as well as an indication of the uncertainty associated 
with each estimate, error ranges were constructed for the survey estimates by assuming 
a log-normal distribution, and indicative 95% confidence intervals around annual mean 
values as +/- 1.96 × standard deviation: 
 

  
1.96

1.96

95
95

s

s

StErr
s

StErr
s

L x e
U x e

− ×

×

= ×

= ×
  (6) 

 
where sx  is the mean abundance estimate for species s, and StErrs = s sx cv× , where cvs 
is the coefficient of variation for the species s. Species were chosen for examination 
based on whether good quality survey results were available (at least one year with a 
CV estimate < 0.3), and also whether a standardised CPUE was also available for that 
species from across at least the same area as covered by the trawl survey (although the 
survey sometimes covered more area than the fishery and CPUE; e.g. Flathead is pri-
marily caught in SESSF zones 10, 20, and 30, but the survey analysis combined 10 – 50 
and some way into the GAB). 
 
Since May 2008 the fishing year in the SESSF runs from May through to April each 
year, however, before that the fishing year ran from January through to December. To 
reflect the majority of commercial catch and effort data, standardised abundance indices 
continue to relate to calendar year for all major quota species in SE Australia; these in-
dices are provided recently by Sporcic and Haddon (2016). To compare standardised 
CPUE with FIS survey estimates, it was important to choose those indices that best 
matched in spatial coverage of the trawl survey. As the SE FIS covered both east and 
west of Tasmania for most species, the standardised CPUE covering both areas was 
chosen for comparison in most cases (Table 9). The areas (or SESSF zones) chosen in 
the CPUE analyses reflect the stock assessments applied to each species. Thus, for ex-
ample, in Flathead separate analyses are conducted for Zones 10 – 20, and for zone 30 
(eastern Tasmania) because the character of the fisheries in those different zones are 
very different (e.g. the fish are generally larger next to Tasmania; zone 30). Leaving out 
such diversity would weaken the stock assessment’s capacity to draw valid conclusions.  

5.2.2  Comparison between Indices 
For all comparisons among different abundance indices, each index was normalised by 
dividing by the arithmetic average of each series across the years which were shared be-
tween all time-series (this entailed using the years 2008, 2010, 2012, and 2014 because 
the CPUE standardization for 2016 was not then available); this leads to the average for 
each series across the years being compared being one, which places emphasis on any 
trends in each time-series rather than their absolute values. Although some series may 
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provide absolute estimates with some level of meaning, for comparative purposes here, 
all were treated as relative annual indices only. 
 
The scaling of each time series of CPUE, Iy, to produce yearly parameters, Py, involves: 
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where, in the GAB, y is the set of fishing years 2004/2005 – 2008/2009, 2010/2011, and 
2014/2015 (there was no survey in 2009/2010), and N = 7, the number of years (or N = 
4 and years are 2008, 2010, 2012, and 2014 for the SESSF/CTS). For plotting purposes 
in the trawl survey series the interpolated values inserted for any missing years is the 
average of the values immediately before and after, so as to provide a guidance line be-
tween the available data, but all comparisons are only made relative to the years in 
which each time series is represented with real data. 
 
A key property of interest to any stock assessment is not the within-year precision but 
the between-years variation and consistency. For comparison between each time series, 
S, the sum of the absolute difference (SAD) of each value from the expected mean of 1.0 
across the N years (y) 2004/2005 – 2008/2009, 2010/2011, and 2014/2015 for the GAB 
and for the years 2008, 2010, 2012, and 2014 for the SESSF species considered. 
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For each fishery these SADs were calculated for the geometric mean, the standardized 
CPUE index, and the trawl survey index. In addition, the number of the CPUE points 
that overlapped with the 95% confidence intervals around the survey points was tabu-
lated and the congruence between the two general trends assessed visually. In the 
SESSF the last FIS index was made in the 2016 calendar year but the standardized 
CPUE was not then available for comparison. In those cases, to score whether overlap 
would occur, the line from 2014 and 2015 was extended linearly and if it would then 
overlap it was scored appropriately. 
 
The two main species from the GAB fishery and 16 species from the SESSF fishery had 
their standardized CPUE compared with the mean abundance indices from their respec-
tive FIS (Table 9). 
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Table 9. Species chosen for comparison between 16 species for the SESSF FIS 
(Knuckey et al., 2017) and two species for the GAB FIS (Knuckey et al., 2015) data 
and the standardized commercial CPUE (Sporcic and Haddon, 2016) based on spatial 
area coverage. 

Fishery Species  Standardisation 
GAB Deepwater Flathead Platycephalus conatus GAB zones 
GAB Bight Redfish Centroberyx gerrardi GAB zones 
SESSF Tiger Flathead Neoplatycephalus richardsoni Zones 10-20 (main fishery) 
SESSF Pink Ling Genypterus blacoides Zones 10-30 (main fishery) 
SESSF Silver Warehou Seriolella punctata Zones 10-50 
SESSF John Dory Zeus faber Zones 10-20 (main fishery) 
SESSF Ocean Perch Helicolenus percoides Zones 10-20 
SESSF Jackass Morwong Nemadactylus macropterus Zones 10-50 
SESSF Mirror Dory Zenopsis nebulosus Zones 10-50 
SESSF Blue Grenadier Macruronus novaezelandiae Zones 10-50 (Non-Spawning) 
SESSF Redfish Centroberyx affinis Zone 10 (main fishery) 
SESSF Western Gemfish Rexea solandri Zones 50-40 (north of -42° S) 
SESSF Blue Warehou Seriolella brama Zones 10-50 
SESSF Royal Red Prawn Haliporoides sibogae Zone  10 
SESSF Ribaldo Mora moro Zones 10-50 
SESSF Blue-Eye Trevalla Hyperoglyphe antarctica Zones 20-50 
SESSF Eastern Gemfish Rexea solandri Zones 10-30 (Non-Spawning) 
SESSF Silver Trevally Pseudocaranx dentax Zones 10-20 
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5.3 Results 
5.3.1  Great Australian Bight 
The CPUE standardization for Deepwater Flathead does not change the inter-annual 
trends in the nominal CPUE in any major way, although for Bight Redfish, since 
2010/2011, while the nominal trend has been increasing slightly the standardized trend 
has been declining slightly, so the two trends are beginning to diverge (Figure 16). 
 
The trawl survey indices for Deepwater Flathead are flatter than those for the commer-
cial CPUE as evidenced by the lower SAD value exhibited by the survey trend relative 
to the CPUE trends (Table 10). Even so, the general trends in the two main time series 
(standardized CPUE and trawl survey) for Deepwater Flathead confirm each other, with 
the survey exhibiting about the same degree of variation across all values as does the 
CPUE (Figure 16). 
 
The opposite is the case for Bight Redfish where the inter-annual differences across the 
survey trend are much larger than those exhibited by either CPUE series (Figure 16).  
 

 
Figure 16. A comparison of the indices from the standardized commercial CPUE and the trawl 
survey indices for Deepwater Flathead (Platycephalus conatus) and Bight Redfish (Centroberyx 
gerrardi) from the GAB. The red lines represent ± 1.96 × StDev in each year for the FIS mean 
estimates (see Table 15 and Table 16). GeomCE is the scaled geometric mean CPUE; each 
time series has been scaled to have a mean of 1.0 across years 2004/2005 – 2008/2009, 
2010/2011, and 2014/2015. The horizontal black dotted line at 1.0 is the reference against which 
the sum of absolute differences were calculated. 
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The differences in the Bight Redfish’s time series have been exacerbated by the 2015 
survey, the efficacy of which may have been adversely affected by a coincident seismic 
survey. Over the general period of the survey the commercial CPUE also exhibited a re-
markable reduction (Table 11; Figure 17). To balance the very low latest value to gen-
erate an average of 1.0 for the series, the earlier estimates are thus elevated slightly 
higher above the average of 1.0. The standardized Bight Redfish time-series suggests a 
recent minor downturn but not as great as suggested by the upper 95% confidence inter-
val of the latest survey. Even before the 2015 survey, however, the indices for Bight 
Redfish were already more variable inter-annually than the CPUE time series (Figure 
16; Table 10, Table 15, and Table 16), which is why they succeed in overlapping the 
CPUE series as often as they do.  Even though the number of shared points for Deep-
water Flathead and Bight Redfish are the same this is only because variation around the 
Bight Redfish estimates is so large. 
 
 
Table 10. The sum of absolute difference (SAD) scores for each time series consid-
ered; see equation (2). For the trends to be similar it is necessary, but not sufficient, for 
their SAD scores to be similar. The lowest SAD score is bolded in each case implying 
that series deviates least from the expected average of 1.0; the geometric mean is least 
in 6 instances, the standardized CPUE in 9 instances and the Survey in 2 instances.  
‘Mostly Similar’ means that the mean estimates match up in places but important dif-
ferences remain. ‘Similar but Noisy’ means the general trends are similar but the sur-
vey results are so variable the actual trend is poorly defined. Shared implies the num-
ber of shared years between the CPUE series and the survey years. 
Species Geomean CPUE Survey Trend Shared 
Deepwater Flathead 1.271 1.362 1.181 Similar 4/7 
Bight Redfish 0.828 0.909 2.730 Dissimilar 4/7 
Tiger Flathead 0.308 0.239 0.810 Some matches 4/5 
Pink Ling 0.253 0.154 0.239 Similar 4/5 
Silver Warehou 0.787 0.804 2.363 Dissimilar 2/5 
John Dory 1.005 0.997 0.914 Similar but Noisy 5/5 
Ocean Perch 0.224 0.187 2.738 Dissimilar 2/5 
Jackass Morwong 0.998 1.023 1.517 Similar 3/5 
Mirror Dory 0.505 0.816 2.782 Dissimilar 2/5 
Blue Grenadier 0.952 0.812 1.721 Similar but Noisy 4/5 
Redfish 0.769 0.882 1.937 Similar but Noisy 3/5 
Western Gemfish 0.714 0.438 1.955 Similar but Noisy 4/5 
Blue Warehou 1.224 1.110 2.988 Dissimilar 2/5 
Royal Red Prawn 0.510 0.502 4.244 Dissimilar 2/5 
Ribaldo 0.601 0.418 1.430 Similar but Noisy 5/5 
Blue-Eye Trevalla 1.143 0.973 2.036 Some matches 4/5 
Eastern Gemfish 1.008 0.953 2.315 Dissimilar 4/5 
Silver Trevally 0.492 0.739 3.290 Dissimilar 3/5 
 
 
The outcome of the comparison in the GAB between the FIS and the commercial CPUE 
is thus mixed with the survey closely following the Deepwater Flathead CPUE except in 
the last year, which appears to have been exceptional for external reasons.  
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Figure 17. The distribution of log-transformed CPUE for Deepwater Flathead in the years 2013 
– 2016 in the months of February to May. The most recent GAB FIS occurred in Mar – Apr 
2015 which exhibited the lowest mean catch rates. While this is only an association with the 
seismic survey, which occurred during this period it is suggestive of a link (see Table 11). 
 
 
Table 11. The geometric mean CPUE for Deepwater Flathead in the GAB across the 
years 2012 – 2016 in the months from Feb – May. The upper set of numbers are log-
transformed mean CPUE, while the lower rows are the back-transformed nominal 
CPUE (with no bias-correction). The most recent GAB FIS occurred in Mar – Apr 
2015 which exhibited the lowest mean catch rates and was associated in time with a 
seismic survey. The survey periods are highlighted. 

Month 2013 2014 2015 2016 
2 3.677 3.387 3.470 3.460 
3 3.359 3.354 2.983 3.485 
4 3.531 3.310 2.981 3.214 
5 3.509 3.694 3.622  
     

2 39.54 29.57 32.15 31.82 
3 28.77 28.62 19.75 32.62 
4 34.17 27.39 19.71 24.87 
5 33.40 40.22 37.42  

 
 

Even with this most recent exceptional year the between-year variation is of the same 
order as that exhibited by the CPUE. The Bight Redfish series, however, might be con-
sidered to have three exceptional years (07/08, 10/11, and 14/15), which, if omitted 
would lead to the series lining up more effectively. This gives the appearance of good 
years and bad years to survey Bight Redfish, which may imply there is some other fac-
tor involved which is currently not understood.  Whatever the case the between year 
variation in the FIS is much greater than in the commercial CPUE. 
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5.3.2   SESSF Mixed Species 
Trends in relative abundance across all zones for Jackass Morwong, Flathead and Pink 
Ling exhibit similarities between the SESSF FIS and the commercial CPUE (Figure 
18). However, in all sixteen species considered in the SESSF, the FIS exhibited greater 
inter-annual variation in annual mean estimates than the commercial CPUE (Figure 18, 
Figure 19 and Figure 20). In seven out of the 16 species considered the trawl survey in-
dex exhibited a significantly different trend in relative abundance index to that exhibited 
by the standardized or geometric mean CPUE (Silver Warehou, Ocean Perch, Mirror 
Dory, Blue Warehou, Royal Red Prawn, Eastern Gemfish, and Silver Trevally; Table 
10). Others, such as John Dory, and Blue-Eye Trevalla, have some similarities between 
the three time-series but the FIS estimates are so noisy inter-annually that it is difficult 
to draw a firm conclusion. In 12 out of 16 species the SAD score for the trawl survey 
was two or three times larger than for either of the two CPUE series (Table 10).  
 

 
Figure 18.  A comparison between the commercial CPUE (both the nominal geometric and op-
timal standardized means) and the FIS mean estimates for Tiger Flathead, Pink Ling, Silver 
Warehou, John Dory, Ocean Perch, and Jackass Morwong. The points indicate available mean 
estimates while the lines are only to aid visual comparison. The vertical red lines on the FIS es-
timates are approximate 95% confidence intervals derived from the CVs of individual surveys. 
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For all species considered the geometric mean CPUE over the period from 2007 - 2015 
was similar to the standardized CPUE, in some cases very similar; there were differ-
ences seen with Blue Warehou and slight differences elsewhere, but in all cases the gen-
eral trend was essentially the same (Figure 18 to Figure 20; Table 12 to Table 16). 
 
 

 
Figure 19. A comparison between the commercial CPUE (both the nominal geometric and opti-
mal standardized means) and the FIS mean estimates for Mirror Dory, Blue Grenadier, Redfish, 
Western Gemfish, Blue Warehou, and Royal Red Prawn. The points indicate available mean es-
timates while the lines are only to aid visual comparison. The vertical red lines on the FIS esti-
mates are approximate 95% confidence intervals derived from the CVs of individual surveys. 
 
There was a close correlation between trends of trawl survey indices and CPUE indices 
for Jackass Morwong (Figure 18), and a similar trend in the shared years was also ap-
parent for Pink Ling. The CPUE trends for Flathead were essentially flat in the overlap 
years whereas the trawl surveys in 2012 and 2016 exhibited relatively large rises, alt-
hough with increased uncertainly.  
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Figure 20.  A comparison between the commercial CPUE (both the nominal geometric and op-
timal standardized means) and the FIS mean estimates for Ribaldo, Blue-Eye Trevalla, Eastern 
Gemfish, and Silver Trevally. The points indicate available mean estimates while the lines are 
only to aid visual comparison. The vertical red lines on the FIS estimates are approximate 95% 
confidence intervals derived from the CVs of individual surveys. 
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Figure 21. A comparison between the commercial CPUE (both the nominal geometric and opti-
mal standardized CPUE) and the FIS mean estimates for Tiger Flathead1020 and Tiger Flat-
head30, Pink Ling1030 and 4050, and Silver Warehou1030 and 4050. This differs from Figure 
18 by the zones used in analyses i.e., the FIS indices and logbook CPUE pertain to the east or 
west zones.  
 
Splitting the survey data into the different eastern and western zones for tiger flathead, 
pink ling, and silver warehou (Figure 21) improved the coincidence between the stand-
ardized CPUE series for flathead. For pink ling the eastern zones (10 – 30) exhibited 
strong similarity with the FIS while in the west (40 – 50) the slight upward trend in the 
CPUE was more exaggerated in the FIS. The eastern silver warehou FIS results contin-
ued to exhibit very large inter-annual variations, and the trend in the FIS on the west 
differed from the trend in the CPUE. 
 
Despite the continued differences the approach of redesigning the analysis for the FIS 
may be able to improve the connection between the various trends apparent in the data. 
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Figure 22. A comparison between the commercial CPUE (both the nominal geometric and opti-
mal standardized means) and the FIS mean estimates for JackassMorwong1020 and Jackass-
Morwong30, and finally JackassMorwong4050 (Figure 18). In addition, the Blue Grenadier 
non-spawning fishery was compared with that from the FIS (Figure 19).  
 
 
When the data for Jackass Morwong is subdivided into the same zones as are used in 
the stock assessments the FIS remains noisy but consistently following the downward 
trend in the CPUE data in each region (Figure 22). Focussing only on the Blue Grena-
dier non-spawning fishery, however, led to the FIS results becoming much more varia-
ble and less informative as an index of relative abundance since 2007. 
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5.4 Discussion 
Relative abundance indices derived from fishery-dependent catch per unit effort 
(CPUE) data can be influenced by error or bias from four major sources: (1) measure-
ment error due to the fishing fleet changing its spatial behaviour and fishing by different 
amounts in important strata between years, (2) susceptibility changes of the species to 
the fishing gear among strata (3) availability changes of the species among strata, and 
(4) improvements, or otherwise, in the gear used when fishing leading to changes in be-
haviour or the effectiveness of fishing.  
 
The strata may include time periods (season, month), depth, fishing fleet and area (zone 
or block). Sampling and sub-sampling effects due to fishing behaviour are those that are 
intended to be accounted for in CPUE standardisation procedures, although it is well 
recognised that many such effects may not be well modelled, and some not measured 
(e.g. changing skippers or fishing gear through time when using ‘Vessel’ as a factor). In 
terms of changing susceptibility of the fish to the gear it can be argued for the SESSF 
that the introduction of quotas artificially changed the targeting behaviour of fishing 
vessels. Similar arguments can be made with respect to the structural adjustment made 
to Commonwealth fisheries between Nov 2005 – Nov 2006. In recent years, for exam-
ple, it has been proposed that fishers are more likely to target “mixed bags” of species to 
better balance individual quota holdings. Availability changes due to, for example, spe-
cies moving in and out of an area of the fishery among years is not specifically dealt 
with and can only be examined as a process error within a stock assessment framework. 
The issue of availability or susceptibility would only be exacerbated by spatial closures, 
of which there are now a large and complex array in the SESSF. In short and in general, 
CPUE as an index of relative abundance does not have a particularly robust reputation. 
 
Fishery independent surveys, on the other hand, are designed particularly to minimise 
errors from sources (1; sampling errors) and (2; susceptibility) above – i.e. a stratified 
design is employed to standardise and minimise measurement errors among years and 
the fishing procedure (vessels, gear, operators, gear operation procedures) is also stand-
ardised. It is not possible to account for availability changes in a fishery independent 
survey and closures can affect the ability to sample in some regions although special li-
cences to survey in closures are possible in principle. 
 
For stock assessments globally, because a FIS is supposed to minimize a number of 
sources of bias or error that may remain in standardised fishery-dependent CPUE data, 
an abundance index derived from a FIS is generally considered to set a better standard 
to one obtained from CPUE. Exceptions to this generality would be: 
 
1. when the measurement error of the FIS is known to be very large. Knuckey et al. 

(2015, 2017) use a rule of thumb to reject estimates where the CV > 0.3, although 
that measure of variation relates only to the within year variation,  

2. the number of available index points is very small (the SESSF now have five while 
in the GAB there are seven), or  

3. the implied process error of FIS index is very large (e.g. the FIS index changes 
greatly from one year to the next compared to an assessed biomass that can only 
change gradually due to the species biology).     
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5.4.1   Great Australian Bight 
In the GAB there have been six comparable points between the CPUE and the FIS with 
the trends for Deepwater Flathead exhibiting relatively close agreement. Stock assess-
ments have therefore shown that whether the FIS series is included or not in an assess-
ment that also has standardised CPUE shows relatively small differences. However, the 
seventh FIS in the GAB, that ran during March/April 2015, deviated from the general 
CPUE trends quite markedly, even for Deepwater Flathead. It can be argued that the FIS 
in the GAB has provided a validation that trends in the CPUE appear to provide an ade-
quate representation of relative abundance. There have not been strong reasons pro-
posed by fishers in the GAB trawl fishery for why fishery CPUE should not generally 
reflect abundance, or at least available biomass. It has been a disappointment to industry 
and the RAG that the inclusion of otherwise of the survey results into the GAB stock as-
sessments has had little influence on their outcomes. It has also been argued however, 
that if good reasons become apparent in future for fishery CPUE to not reflect abun-
dance in ways not accounted for in the standardisation, that the FIS results would then 
become more influential in stock assessment outcomes.  
 
The 2014/2015 survey in the GAB appears to have been negatively influenced by a co-
incident seismic survey (further comparisons between commercial CPUE and coinci-
dent seismic surveys should be analysed to determine whether this is a singular event or 
a repeatable effect). The recent stock assessment of Deepwater Flathead (Haddon, 2016) 
included a sensitivity that excluded all data from the FIS to see the influence this data 
had on the assessment outcome. The data from the FIS included the index of relative 
abundance but also the size-composition of the catch, and the conditional age-at-length 
data. Despite the most recent index of relative abundance being markedly lower, remov-
ing all the FIS data altered the predicted depletion level from the final base-case level of 
45% up to 51%. This increase was a reflection of the length and age-composition data 
rather than the FIS index of relative abundance. The recent assessment was the second 
to include FIS length and age composition data rather than just the index of relative 
abundance (the first was Bight Redfish in 2015; Haddon 2015), which is simply a re-
flection of the limited number of years of observation in the SESSF making inclusion of 
the FIS data problematical. Sufficient data is needed to permit the estimation of a new 
selectivity for the FIS data. It is not sufficient to only discuss the effect of the FIS index 
of relative abundance as the selectivity of the FIS in both the GAB and the SESSF leads 
to smaller fish being taken. Thus, the length and age-composition data can also be in-
formative about the state of the stock and thus needs to be included in any assessment. 

5.4.2  South East Australia 
The time series of the South East FIS results is still short, with only 5 available points. 
Only in 2016 (when four points were available) did Tier 1 stock assessments begin to 
include the full range of data from the FIS. For example, the Flathead stock assessment 
(Day, 2016) included both the index of relative abundance from the FIS as well as 
length-composition data (ageing data is still to be generated). An important complica-
tion, however, is that the SESSF FIS is designed with the complete coastline included 
(Peel et al., 2012). What this means is that observations from all around the coastline 
are included in the mean estimates, which fails to recognize that some species, such as 
Flathead, are much more limited in their distribution. The recent assessment (Day, 
2016) tried separating the Flathead FIS analysis into the same SESSF zones as have pre-
viously been used in the assessment. These complications precluded any simple clarifi-
cation about the effect of including the FIS data. Future assessments should be able to 
improve on these analyses as agreement is reached in the RAGs about how best to pro-
ceed. 
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The measurement error distributions for many of the FIS points across species are rather 
wide when compared to, for example, Deepwater Flathead in the GAB. Of all of the 
species results, the best alignment of standardised CPUE and FIS was for Jackass Mor-
wong and Pink Ling. In general, the trend from standardised CPUE is less variable than 
that from the FIS, which suggests that the SE FIS probably also includes a compara-
tively large process error component for many of the species. This will only become 
better characterised if the number of sample points increases.   
 
In the RAGs there has been discussion of perhaps using fishery indicators (e.g. FIS) as a 
method for tactically setting TACs using a simple harvest control rule, at least during 
periods between more formal stock assessments. But, given what appears to be rela-
tively large measurement and process errors of the current SE FIS, its usefulness for 
abundance indices that might be used for tactical TAC setting purposes is yet to be 
demonstrated and currently would be so variable that it may not be practical. 
 
Most FIS data only become useful for stock assessment purposes after a time-series has 
become established so that the longer-term trends become apparent. Hence with only 
five observations in the SESSF and seven observations in the GAB (with different inter-
annual spacing) these time-series are only now becoming long enough to become poten-
tially influential in stock assessments. The inter-annual variation between the mean 
abundance indices in the SESSF is currently too great in most species for the time-series 
to have much value or validity in describing longer term trends. Exceptions might be 
Flathead, Pink Ling, and Jackass Morwong, with the first two being major financial 
drivers for the SESSF. More years of data will be required before a conclusion concern-
ing the full benefit of operating the FIS becomes more apparent. Currently, for some 
key stocks (e.g. Gummy shark – not shown, Blue-Eye Trevalla, Silver Warehou, Mirror 
Dory), its inter-annual variability is so great that it is not sufficiently informative about 
trends to be used to replace the CPUE as an index of relative abundance into the future. 
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Table 12. The trawl survey indices (FIS), the geometric mean CPUE (Geom) and the 
standardized CPUE (CPUE) for four species. CV is the FIS Coefficient of Variation, 
and a prefix of ‘rs’ indicates rescaled to a mean of 1.0 over the years for which they 
are compared (2008, 2010, 2012, and 2014). Empty cells imply no available data. 
Data derived from Sporcic and Haddon (2016) and Knuckey et al, (2017) 
Species Year FIS CV Geom CPUE rsFIS FStErr rsGeom rsCPUE 
Ocean Perch 2007   9.918 1.078    1.143 
Ocean Perch 2008 6.90 0.14 9.192 0.991 0.437 0.14 0.061 1.051 
Ocean Perch 2009   9.036 0.982    1.042 
Ocean Perch 2010 14.34 0.13 9.865 0.984 0.909 0.13 0.118 1.043 
Ocean Perch 2011   9.100 0.875    0.927 
Ocean Perch 2012 37.38 0.16 9.967 0.932 2.369 0.16 0.379 0.988 
Ocean Perch 2013   12.012 0.969    1.027 
Ocean Perch 2014 4.49 0.30 11.174 0.866 0.285 0.30 0.085 0.918 
Ocean Perch 2015   9.300 0.715    0.758 
Ocean Perch 2016 7.82 0.33   0.496 0.33 0.164  
Blue Grenadier 2007   86.472 0.792    0.946 
Blue Grenadier 2008 15.83 0.30 110.980 0.874 1.276 0.30 0.383 1.045 
Blue Grenadier 2009   89.099 0.812    0.971 
Blue Grenadier 2010 3.38 0.28 81.869 0.810 0.273 0.28 0.076 0.968 
Blue Grenadier 2011   49.221 0.647    0.774 
Blue Grenadier 2012 10.75 0.23 40.803 0.523 0.867 0.23 0.199 0.626 
Blue Grenadier 2013   58.218 0.926    1.107 
Blue Grenadier 2014 19.65 0.21 77.969 1.138 1.584 0.21 0.333 1.361 
Blue Grenadier 2015   106.437 1.238    1.480 
Blue Grenadier 2016 58.20 0.23   4.693 0.23 1.079  
Jackass Morwong  2007   12.250 0.688    1.299 
Jackass Morwong 2008 41.51 0.20 13.789 0.800 1.671 0.20 0.334 1.511 
Jackass Morwong 2009   11.469 0.705    1.331 
Jackass Morwong 2010 23.97 0.21 8.553 0.516 0.965 0.21 0.203 0.975 
Jackass Morwong 2011   8.541 0.495    0.935 
Jackass Morwong 2012 27.00 0.21 8.943 0.497 1.087 0.21 0.228 0.938 
Jackass Morwong 2013   8.713 0.434    0.820 
Jackass Morwong 2014 6.87 0.24 5.507 0.305 0.277 0.24 0.066 0.576 
Jackass Morwong 2015   4.408 0.242    0.457 
Jackass Morwong 2016 4.41 0.33   0.178 0.33 0.059  
Mirror Dory 2007   26.000 0.946    0.978 
Mirror Dory 2008 36.56 0.19 37.524 1.135 0.827 0.19 0.157 1.174 
Mirror Dory 2009   38.878 1.246    1.289 
Mirror Dory 2010 29.21 0.18 46.711 1.194 0.660 0.18 0.119 1.234 
Mirror Dory 2011   41.228 1.103    1.141 
Mirror Dory 2012 5.39 0.24 41.967 0.796 0.122 0.24 0.029 0.823 
Mirror Dory 2013   45.703 0.906    0.937 
Mirror Dory 2014 105.77 0.40 31.256 0.744 2.391 0.40 0.956 0.769 
Mirror Dory 2015   39.918 0.787    0.813 
Mirror Dory 2016 45.81 0.22   1.036 0.22 0.228  
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Table 13. The trawl survey indices (FIS), the geometric mean CPUE (Geom) and the 
standardized CPUE (CPUE) for four species. CV is the FIS Coefficient of Variation, 
and a prefix of ‘rs’ indicates rescaled to a mean of 1.0 over the years for which they are 
compared (2008, 2010, 2012, and 2014). Empty cells imply no available data. Data de-
rived from Sporcic and Haddon (2016) and Knuckey et al, (2017) 
Species Year FIS CV Geom CPUE rsFIS FStErr rsGeom rsCPUE 
Redfish 2007   10.772 0.529    1.506 
Redfish 2008 14.37 0.23 10.006 0.463 1.034 0.23 0.238 1.316 
Redfish 2009   9.019 0.407    1.157 
Redfish 2010 26.89 0.23 7.824 0.395 1.935 0.23 0.445 1.125 
Redfish 2011   5.479 0.288    0.820 
Redfish 2012 1.14 0.31 4.607 0.203 0.082 0.31 0.025 0.578 
Redfish 2013   5.558 0.262    0.746 
Redfish 2014 13.20 0.26 7.497 0.345 0.950 0.26 0.247 0.981 
Redfish 2015   4.807 0.210    0.598 
Redfish 2016 12.02 0.53   0.865 0.53 0.458  
Western Gemfish 2007   11.017 0.637    0.812 
Western Gemfish 2008 1.26 0.44 6.736 0.646 0.437 0.44 0.192 0.824 
Western Gemfish 2009   5.884 0.700    0.893 
Western Gemfish 2010 2.72 0.35 6.126 0.751 0.944 0.35 0.330 0.957 
Western Gemfish 2011   5.705 0.742    0.946 
Western Gemfish 2012 1.85 0.40 6.483 0.805 0.642 0.40 0.257 1.027 
Western Gemfish 2013   6.481 0.695    0.886 
Western Gemfish 2014 5.70 0.30 9.935 0.935 1.977 0.30 0.593 1.192 
Western Gemfish 2015   6.345 0.746    0.951 
Western Gemfish 2016 5.32 0.31   1.846 0.31 0.572  
Blue Warehou 2007   5.668 0.260    1.255 
Blue Warehou 2008 38.10 0.49 5.090 0.294 2.342 0.49 1.148 1.422 
Blue Warehou 2009   6.912 0.294    1.421 
Blue Warehou 2010 7.84 0.23 6.306 0.234 0.482 0.23 0.111 1.133 
Blue Warehou 2011   5.525 0.221    1.066 
Blue Warehou 2012 18.74 0.42 3.266 0.158 1.152 0.42 0.484 0.763 
Blue Warehou 2013   6.028 0.187    0.905 
Blue Warehou 2014 0.39 0.47 2.791 0.141 0.024 0.47 0.011 0.682 
Blue Warehou 2015   2.260 0.133    0.641 
Blue Warehou 2016 1.42 0.37   0.087 0.37 0.032  
Royal Red Prawn 2007   252.814 0.800    0.900 
Royal Red Prawn 2008 0.12 0.44 221.099 0.695 0.390 0.44 0.172 0.783 
Royal Red Prawn 2009   158.960 0.890    1.002 
Royal Red Prawn 2010 0.06 0.35 138.310 0.858 0.195 0.35 0.068 0.966 
Royal Red Prawn 2011   206.357 1.308    1.473 
Royal Red Prawn 2012 0.96 0.44 169.276 0.995 3.122 0.44 1.374 1.120 
Royal Red Prawn 2013   286.917 1.264    1.423 
Royal Red Prawn 2014 0.09 0.44 176.369 1.005 0.293 0.44 0.129 1.131 
Royal Red Prawn 2015   219.912 1.030    1.159 
Royal Red Prawn 2016 0.45 0.36   1.463 0.36 0.527  
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Table 14. The trawl survey indices (FIS), the geometric mean CPUE (Geom) and the 
standardized CPUE (CPUE) for four species. CV is the FIS Coefficient of Variation, 
and a prefix of ‘rs’ indicates rescaled to a mean of 1.0 over the years for which they 
are compared (2008, 2010, 2012, and 2014). Empty cells imply no available data. 
Data derived from Sporcic and Haddon (2016) and Knuckey et al, (2017) 
Species Year FIS CV Geom CPUE rsFIS FStErr rsGeom rsCPUE 
Ribaldo 2007   3.249 0.439    0.609 
Ribaldo 2008 2.62 0.52 4.733 0.598 0.578 0.52 0.301 0.830 
Ribaldo 2009   5.698 0.669    0.927 
Ribaldo 2010 3.28 0.46 5.596 0.701 0.724 0.46 0.333 0.972 
Ribaldo 2011   5.829 0.706    0.979 
Ribaldo 2012 7.77 0.57 6.163 0.713 1.715 0.57 0.978 0.989 
Ribaldo 2013   8.581 0.861    1.194 
Ribaldo 2014 4.45 0.39 7.816 0.872 0.982 0.39 0.383 1.209 
Ribaldo 2015   7.538 0.857    1.189 
Ribaldo 2016 7.42 0.54   1.638 0.54 0.885  
Blueeye Trevalla 2007   1.627 1.222    1.374 
Blueeye Trevalla 2008 1.26 0.39 1.215 1.001 1.302 0.39 0.508 1.126 
Blueeye Trevalla 2009   1.448 1.003    1.128 
Blueeye Trevalla 2010 1.66 0.36 0.912 0.668 1.716 0.36 0.618 0.751 
Blueeye Trevalla 2011   1.041 0.755    0.850 
Blueeye Trevalla 2012 0.65 0.50 0.856 0.678 0.672 0.50 0.336 0.762 
Blueeye Trevalla 2013   1.207 0.832    0.936 
Blueeye Trevalla 2014 0.30 0.85 1.931 1.210 0.310 0.85 0.264 1.361 
Blueeye Trevalla 2015   1.464 0.973    1.094 
Blueeye Trevalla 2016 1.35 0.48   1.395 0.48 0.670  
Eastern Gemfish 2007   4.243 0.650    1.065 
Eastern Gemfish 2008 0.30 0.69 5.707 0.866 0.337 0.69 0.233 1.419 
Eastern Gemfish 2009   6.645 0.898    1.472 
Eastern Gemfish 2010 0.92 0.66 4.193 0.646 1.034 0.66 0.682 1.058 
Eastern Gemfish 2011   3.840 0.581    0.951 
Eastern Gemfish 2012 0.45 0.76 3.511 0.556 0.506 0.76 0.384 0.910 
Eastern Gemfish 2013   4.597 0.637    1.043 
Eastern Gemfish 2014 1.89 0.58 2.404 0.374 2.124 0.58 1.232 0.613 
Eastern Gemfish 2015   2.888 0.427    0.700 
Eastern Gemfish 2016 1.59 0.61   1.787 0.61 1.090  
Silver Trevally 2007   11.809 0.769    0.901 
Silver Trevally 2008 0.24 1.09 9.108 0.885 0.097 1.09 0.106 1.036 
Silver Trevally 2009   10.519 0.882    1.033 
Silver Trevally 2010 6.53 0.51 13.777 1.139 2.636 0.51 1.344 1.334 
Silver Trevally 2011   12.567 0.975    1.142 
Silver Trevally 2012 2.50 1.30 11.092 0.768 1.009 1.30 1.312 0.899 
Silver Trevally 2013   16.102 0.823    0.963 
Silver Trevally 2014 0.64 0.62 12.088 0.624 0.258 0.62 0.160 0.731 
Silver Trevally 2015   11.620 0.598    0.700 
Silver Trevally 2016 1.55 3.40   0.626 3.40 2.127  
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Table 15. The trawl survey indices (FIS), the geometric mean CPUE (Geom) and the 
standardized CPUE (CPUE) for Deepwater Flathead  (Platycephalus conatus) from 
the GAB. Empty cells imply no available data. Data derived from Sporcic and Had-
don (2016) and Knuckey et al, (2015) 

 Standardized Commercial CPUE Trawl Survey Indices 
Fish Year N Catch Geomean CPUE StDev Index StDev Year Abund CV 

1987/1988 453 76.84 27.6907 0.4627 0.0479   1988   
1988/1989 815 314.074 56.0806 0.9285 0.0502   1989   
1989/1990 1126 397.497 53.0361 0.9525 0.0507   1990   
1990/1991 1501 423.226 49.0776 1.0288 0.0497   1991   
1991/1992 1781 611.214 54.5388 0.9416 0.0481   1992   
1992/1993 984 509.217 76.9248 1.1969 0.0500   1993   
1993/1994 900 585.645 91.4997 1.5357 0.0504   1994   
1994/1995 1745 1258.893 106.3058 1.9451 0.0478   1995   
1995/1996 1862 1559.439 125.2137 1.8880 0.0477   1996   
1996/1997 2784 1466.636 79.3934 1.2512 0.0469   1997   
1997/1998 2908 1012.471 50.9703 0.8871 0.0467   1998   
1998/1999 2558 682.171 34.6696 0.6603 0.0471   1999   
1999/2000 2102 545.837 39.1315 0.8030 0.0482   2000   
2000/2001 2413 775.52 43.0405 0.8683 0.0477   2001   
2001/2002 2448 912.971 51.5431 1.0343 0.0477   2002   
2002/2003 3144 1632.131 73.4099 1.5005 0.0472   2003   
2003/2004 4536 2188.227 68.4174 1.4128 0.0470   2004   
2004/2005 5551 2100.187 55.0520 1.1384 0.0467 1.3930 0.0696 2005 12152 0.05 
2005/2006 5349 1358.407 37.5227 0.7409 0.0468 0.9646 0.0579 2006 8415 0.06 
2006/2007 4254 969.179 32.9286 0.6358 0.0467 0.9789 0.0489 2007 8540 0.05 
2007/2008 4003 971.174 35.9047 0.7155 0.0472 0.8855 0.0531 2008 7725 0.06 
2008/2009 3118 775.737 40.6974 0.8421 0.0475 1.1397 0.0570 2009 9942 0.05 
2009/2010 3205 829.729 39.1349 0.7922 0.0474   2010   
2010/2011 2805 930.288 50.8864 1.0177 0.0477 1.0577 0.0529 2011 9227 0.05 
2011/2012 3270 788.742 38.5448 0.7800 0.0475   2012   
2012/2013 3611 876.182 37.9414 0.7666 0.0473   2013   
2013/2014 3304 672.62 31.9933 0.6620 0.0474   2014   
2014/2015 2572 484.746 29.3345 0.6114 0.0480 0.5806 0.0523 2015 5065 0.09 
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Table 16.  The trawl survey indices (FIS), the geometric mean CPUE (Geom) and the 
standardized CPUE (CPUE) for Bight Redfish (Centroberyx gerrardi) from the GAB. 
Empty cells imply no available data. Data derived from Sporcic and Haddon (2016) 
and Knuckey et al, (2015) 

 Standardized Commercial CPUE Trawl Survey Indices 
Fish Year N Catch Geomean CPUE StDev Index StDev Year Abund CV 

1987/1988 184 32.753 29.2533 2.3613 0.0952   1988   
1988/1989 492 85.88 32.9965 2.2877 0.1015   1989   
1989/1990 827 171.577 31.8857 1.5603 0.0996   1990   
1990/1991 1023 250.2255 36.6457 1.3858 0.0980   1991   
1991/1992 1101 240.443 27.4447 1.2674 0.0962   1992   
1992/1993 718 120.188 18.3377 0.9355 0.0985   1993   
1993/1994 695 107.418 16.2182 0.9267 0.0990   1994   
1994/1995 1282 159.907 11.9237 0.6480 0.0946   1995   
1995/1996 1395 175.277 11.8016 0.7837 0.0947   1996   
1996/1997 2036 329.777 15.3383 0.9467 0.0930   1997   
1997/1998 1930 365.931 16.0229 0.9572 0.0933   1998   
1998/1999 1812 440.296 20.2349 1.0999 0.0933   1999   
1999/2000 1478 324.421 17.1853 0.9572 0.0955   2000   
2000/2001 1697 387.531 15.6494 0.8446 0.0947   2001   
2001/2002 1637 225.642 10.8567 0.6621 0.0949   2002   
2002/2003 2118 364.3121 13.4661 0.7043 0.0937   2003   
2003/2004 3154 841.725 20.1099 0.9685 0.0933   2004   
2004/2005 3808 758.0925 18.3742 0.9395 0.0929 1.1252 0.1279 2005 20887 0.13 
2005/2006 3553 722.8482 17.4248 0.8977 0.0930 1.3672 0.1913 2006 25380 0.16 
2006/2007 3293 873.7396 21.7750 0.9310 0.0927 1.3852 0.1938 2007 25713 0.16 
2007/2008 2743 683.535 20.0988 0.8911 0.0935 0.7860 0.0756 2008 14591 0.11 
2008/2009 2443 648.786 21.9054 0.9565 0.0941 1.4873 0.2341 2009 27610 0.18 
2009/2010 2298 445.717 17.3788 0.8760 0.0941   2010   
2010/2011 1851 277.889 14.2664 0.7049 0.0948 0.7105 0.0808 2011 13189 0.13 
2011/2012 2188 322.865 14.4195 0.7075 0.0945   2012   
2012/2013 1873 255.705 15.2641 0.6208 0.0950   2013   
2013/2014 1494 187.558 14.6071 0.5750 0.0959   2014   
2014/2015 1396 233.371 16.9298 0.6031 0.0966 0.1386 0.2000 2015 2573 0.28 
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6 Alternative Methods of Statistical Standardization 

6.1 Introduction 
There are already a number of reviews and summaries in the published literature con-
cerning alternative approaches that can be used to conduct statistical standardizations of 
catch-rate data (Bishop et al., 2004; Maunder and Punt, 2004; Venables and Dichmont, 
2004; Campbell, 2015; Table 17). 
 
Table 17. A list of the methods found in a rapid review of standardization analyses of 
CPUE data found in the formal published and so-called ‘grey’ literature. The LM and 
GLM still appear to be the most common although the reason for using a particular 
method in any particular fishery is rarely documented. This is not an exhaustive list. 
Acronym Comments 
LM Linear Models – essentially linear regression (or if only categorical fac-

tors then ≡ anova) – only normal residual errors (confusingly general lin-
ear models, which also require normal response variables, can be re-
ferred to as GLM), and can include non-linear terms as polynomials (see 
Neter et al., 1996) 

GLM Generalized Linear Models – Need not assume normally distributed re-
sponse variables, can use Normal, Gamma, Poisson, Binomial, Exponen-
tial, Negative Binomial, etc; uses a link function to relate the mean of the 
response variable (CPUE) to the equation used as the linear predictor of 
CPUE; can include non-linear terms as polynomials (McCullagh and 
Nelder, 1989) 

GLMM the same as GLM except the linear predictor can include fixed and ran-
dom effects (factors). There remains a good deal of debate over how best 
to interpret the meaning of the terms ‘fixed’ and ‘random’ when applied 
to model effects. This on-going (never-ending) debate appears to stem 
from there being a Bayesian and a Frequentist difference of interpreta-
tion. In practice, if one can present a defensible and reasonable argument 
for using a random effect then one should be used, if not then don’t 
(McCulloch and Searle, 2001). 

GAM Generalized Additive Models – no need to assume linear or any particu-
lar functional form relating the response variable to the predictor. GAMs 
extend GLMs by allowing the inclusion of non-parametric smoothers in 
addition to the usual parametric equations (Hastie and Tibshirani, 1990) 

GAMM Once again akin to the relationship between GLM and GLMM, GAMMs 
extend GLMMs through allowing the inclusion of random effects factors 
into GAMs (Chen, 2000). 

GEE Generalized Estimating Equations are, as their name suggests, very gen-
eral in that they provide a means of modelling the catch rate trends and 
the variation around that trend, with any correlation structure between 
variables, separately (Hardin and Hilbe, 2003). These have not yet been 
used extensively in a CPUE standardization sense. 

 
Bishop et al (2004) compared four different modelling approaches with the same data 
set from the Northern Prawn Fishery (NPF) in the Gulf of Carpentaria; the methodolo-
gies compared were linear models, generalized linear models, mixed-models (those that 
include both fixed and random effects), and generalized estimating equations. This NPF 
data set is exceptional in having a large amount of information about the fleet and 
changes in fishing gear through time, which was obtained in attempts to manage high 
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levels of increases in fishing power (effort creep) through time. The summary conclu-
sions were that the more complex models and the inclusion of either the correlation 
structure between variates or the use of random effects models all yielded similar results 
to those from the simpler models. Such detailed catch-per-unit-effort data is exceptional 
in Australia, while in other data sets the only accurately rendered information about 
fishing gear through the years of a fishery is often limited to the vessel doing the fish-
ing. In addition, the NPF CPUE data is a very large data set made up of many 100,000s 
of records through the years of the fishery (about 1970 to the present). In the SESSF, for 
example, Flathead taken by trawl in SESSF zones 10 and 20 have just over 270,000 rec-
ords but many have 10’s of thousands rather than 100’s of thousands. Even so, with so 
many data points in each year the apparent statistical precision can be unrealistically 
high. This is apparent when fitting a stock assessment model to such CPUE data. It is 
necessary to adjust the implied variation about each data point (by lowering the effec-
tive sample size) to match that predicted by the assessment model. This is primarily 
necessary to allow for inter-annual variation in CPUE and if it is not done the model can 
be forced to fit to noise rather than a signal about the stock size through time. 
 
It is still possible to use an array of alternative methods (Table 17) with less compre-
hensive data although some of the issues with data quality illustrated in the earlier sec-
tion (Chapter 4. Potential Issues when using CPUE Data), such as the rounding of 
catch and of effort details, could compromise methods that might be sensitive to non-
standard forms of variation.  Of potentially more importance, the less data one has 
across the years of a fishery the greater the uncertainty around any year’s mean esti-
mate, irrespective of what method is used to make it, so that identifying change through 
time (generally the intent of the study) can become more difficult.  With Blue-Eye taken 
by auto-line, for example, if one includes classical 95% confidence intervals and com-
pare those with a similar analysis conducted on Flathead over the same period, the ef-
fect of the much larger number of records each year for Flathead is marked (Table 18; 
Figure 23) 
 
Table 18. A contrast between the number of CPUE records and total catch (Catch) by 
method for Flathead by trawl and Blue-Eye by Auto-Line across the years 2002 - 
2015. Flathead has between 12.4 – 54.8 times as many records as Blue-Eye but only 
about 3.5 – 11 times as much catch. A large amount of Flathead is also taken by Dan-
ish Seine. 

 Flathead Trawl Blue-Eye Auto-Line 
Year Records Catch (t) Records Catch (t) 
2002 12377 1449.200 226 131.366 
2003 12885 1587.068 432 156.966 
2004 12236 1338.284 956 227.589 
2005 10613 1144.064 859 237.854 
2006 9069 1138.895 604 237.218 
2007 6294 1068.883 459 308.245 
2008 7213 1309.623 414 205.017 
2009 6222 1037.656 465 279.887 
2010 6694 1086.889 416 202.140 
2011 6618 1070.668 384 151.689 
2012 6798 1149.380 365 158.120 
2013 5597 683.369 301 156.342 
2014 6343 943.858 225 176.813 
2015 6368 984.696 224 155.946 
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As previously noted the documentation regarding how data are selected for inclusion in 
a CPUE standardization is usually poor. Generally, the reasons for selecting a particular 
statistical technique with which to conduct a standardization are equally poorly docu-
mented or defended. As a result, it is possible to get the impression, when reading ex-
amples from the formal and the grey literature, that the methods selected are more re-
lated to what has generally been used before in a particular fishery or relates to the ex-
pertise or previous experience of the analysts involved.  
 
 

 

 
Figure 23. A comparison of the 95% confidence intervals of Blue-Eye taken by auto-
line (top plot) and Flathead taken by trawl (bottom plot) where Blue-Eye has between 
220 and 900 records per years while Flathead has between 6200 and 12800 (see Table 
18), and yet both have many factors included in their standardizations. The dashed lines 
are the geometric mean CPUE, the black lines are the optimum standardized CPUE, and 
the red bars are the log-normal 95% confidence bounds around the mean estimates. The 
horizontal grey line = 1.0, the overall average of all trends, and the vertical grey lines at 
1991.5 and 2006.5 relate to the introduction of ITQs and the Harvest Strategy Policy 
and associated structural adjustment. 
 
 
A direct comparison of different methods using identical data and structurally identical 
statistical models (as far as possible) would enable an examination of the idea that some 
methods are preferable to others. Additionally, it would generate specific examples to 
assist with the production of guidelines for standardizations in a later chapter. Such a 
comparison would include a consideration of classical and other diagnostics for quanti-
fying and include presenting the relative quality of model fit to the available data. Here 
we will examine a trawl fishery for flathead (Neoplatycephalus richardsoni) that has 
over 270,000 records over 30 years from 1986 – 2015, as well as an auto-line fishery for 
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Blue-Eye Trevalla (Hyperoglyphe antarctica) that has only about a 20th the number of 
records (6330 over 14 years, 2002 – 2015). These species and fisheries were selected as 
being markedly different although both constitute significant economic drivers in the 
SESSF. Flathead is the primary shelf trawl fishery and the Blue-Eye fishery is an iconic 
deeper water slope fishery taken mainly by line methods.  
 
The objectives of this section are therefore to: 
 
1) Compare an array of alternative statistical methods using the same data and statisti-

cal models. 
2) Illustrate different diagnostic plots and tables and how they are used to compare sta-

tistical models of CPUE.  
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6.2 Methods 
Here comparisons were made between Linear Models (LM), Generalized Linear Models 
(GLM), and Generalized Additive Models (GAM), with two variants of the LM, three 
variants of the GLM, and four variants of the GAM. With Flathead (Neoplatycephalus 
richardsoni) the analyses were conducted on catches taken by trawl in depths between 0 
– 400 m from SESSF zones 10 and 20 across the years 1986 – 2015. For Blue-Eye Tre-
valla (Hyperoglyphe antarctica) the analyses were conducted on catches taken by auto-
line in depths between 200 – 600 m from SESSF zones 20, 30, 40, and 50 (see Figure 
24) across the years 2002 – 2015. The initial analysis using the linear model (or the 
GLM with the identity link function) is identical to that analysis used in the stock as-
sessment in the SESSF. Hence its use as a standard reference provides a direct commen-
tary on the current CPUE assessment. 

6.2.1  Statistical Models Used 
After preliminary analyses of available data, different optimal models were used for 
Flathead and Blue-Eye (Table 19).   
 
 
Table 19. The optimum statistical models compared within each of Flathead and Blue-
Eye. All rows, except for CELog, and CEGam, through log-transforming the CPUE or 
catch and effort, are effectively assuming normally distributed residuals and are using 
the equivalent of the identity link between the mean estimates and data. 

Blue-Eye Trevalla 
Class Model Used Name 
LM LnCE ~ Year+Vessel+Month+Zone+DepCat+Month:Zone LnCE 
LM LnC ~   Year+Vessel+Month+Zone+DepCat+Month:Zone+LnE   LnC 
GLM LnCE ~ Year+Vessel+Month+Zone+DepCat+Month:Zone      glmLnCE 
GLM CE ~ Year+Vessel+Month+Zone+DepCat+Month:Zone          CELog 
GLM CE ~ Year+Vessel+Month+Zone+DepCat+Month:Zone          CEGam 
GAM LnCE ~ s(Long)+Year+Vessel+Month+Zone+DepCat+Month:Zone gamLon 
GAM LnCE ~ s(Lat) +Year+Vessel+Month+Zone+DepCat+Month:Zone gamLat 
GAM LnCE ~ s(Long, Lat) + Year + Vessel + Month + DepCat gamLL 
GAM LnCE ~ s(Long, Lat) + Year + Vessel + Month + DepCat gamTrim 

Flathead 

LM LnCE ~ Year+Vessel+DepCat+Zone+Month+DayNight+Month:Zone LnCE 
LM LnC ~   Year+Vessel+DepCat+Zone+Month+DayNight+Month:Zone+LnE  LnC 
GLM LnCE ~ Year+Vessel+DepCat+Zone+Month+DayNight+Month:Zone  glmLnCE 
GLM CE ~ Year+Vessel+DepCat+Zone+Month+DayNight+Month:Zone            CELog 
GLM CE ~ Year+Vessel+DepCat+Zone+Month+DayNight+Month:Zone         CEGam 
GAM LnCE ~ s(Long)+Year+Vessel+DepCat+Zone+Month+DayNight+Month:Zone gamLon 
GAM LnCE ~ s(Lat) +Year+Vessel+DepCat+Zone+Month+DayNight+Month:Zone gamLat 
GAM LnCE ~ s(Long, Lat) +Year + Vessel + DepCat + Month gamLL 
GAM LnCE ~ s(Long, Lat) +Year + Vessel + DepCat + Month gamTrim 
 

6.2.2   Back-Transforming the Year Parameters  
Where the residual error structure was assumed to be distributed following a Gamma 
distribution, obtaining the annual parameters entails a back transformation of the log-
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space parameters using the exponential function to put them back into the linear space. 
Thus, if the model used was: 
 
 glm(usemod, family=Gamma(link="log"), data=sps2) 
 
and ‘usemod’ was CE ~ Year+Vessel+Month+Zone+DepCat+Month:Zone  (as it was for 
Blue-Eye), and sps2 was the selected fisheries data used in the analysis. The model output 
would include an array of year parameters Yi. The back transformed year effects would be: 
 
  ( )iY

tCPUE e=   (9) 
 
The Gamma function requires all values to be positive (> 0) and so it is not possible to 
use a log-transformation on CPUE with Gamma distributed residual errors (unless they 
all happened to be positive, which would mean all catch rates would need to be greater 
than 1.0 kg/hr, which is not the case in Flathead and many other species.  
 
However, if the model used lognormal residual errors with, for example a model such 
as: 
 glm(usemod, family=gaussian(link="identity"), data=sps2) 
 
with ‘usemod’ as LnCE ~ Year+Vessel+Month+Zone+DepCat+Month:Zone  (as it was for 
Blue-Eye), then, for the log-normal models the expected back-transformed year effect 
involves a bias-correction to account for the log-normality: 
 

 ( )2 2t tY
tCPUE e

σ+
=  (10) 

 
where Yt is the modelled Year coefficient for year t and σt is the standard deviation of 
the log transformed data (obtained from the analysis). This returns the mean rather than 
the median of the nominal scale standardized CPUE. Generally, this has little effect but 
sometimes (when sample sizes are relatively small) it can be very influential. 
 
With the GAM analyses the parameters relating to the different factors outside of the 
smoother terms, are back-transformed as for the log-normal based analysis; that is they 
include a bias-correction to account for the log-normality; equation (10).  

6.2.3   Data Selection Criteria  
Data selections were made on years, fishery, method, depths, and SESSF zone (Figure 
24; Table 20). 
 

6.2.4  Comparison of Standardization Outputs 
Not all standardizations will be directly comparable statistically because they have dif-
ferent assumptions about the distribution of CPUE and the residuals used when estimat-
ing the optimal year effects. In addition, there will be very different numbers of parame-
ters when comparing methods like the GAMs (with the local empirical smoothers). 
Nevertheless, within standardization type it is possible to make some comparisons of 
such things as the Akaike’s Information Criterion. Less formally, however, graphical 
comparisons will be used to illustrate the differences between outcomes with both sim-
ple plots of the different trends, and plots of the differences between the reference 
standardization and the alternatives. 
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Figure 24. A schematic diagram depicting the statistical reporting zones in the SESSF, as used 
in this document. The GAB fishery is to the west of zone 50. The main SESSF trawl zones are 
zones 10 – 50. Each zone extends out to the boundary of the EEZ, except for zones 50 and 60, 
and for zones 92 and 91, which are bounded by zone 70. 
 
 
Table 20. The data selection criteria used for the two species considered. 
Species Criteria Values 
Flathead Years 1986 – 2015  
 Fishery SET 
 Method Demersal trawl (TW and TDO) 
 Depth 0 – 400  
 Zone 10 and 20 (see Figure 24) 

 Comment 

One vessel that only fished in one year, that had 
catch rates over 10 times that of anyone else in 
any years, was removed as having made some 
fundamental error in how they reported their ef-
fort.  

Blue-Eye Years 2002 – 2015  
 Fishery GHT, SEN 
 Method Auto-Line 
 Depth 200 – 600  
 Zone 20, 30, 40, and 50 (see Figure 24) 
 Years in Fishery > 1 

 Single Line Drops 

Single Line Drops were identified as an anomaly 
in the auto-line data by Haddon (2016b); as with 
the now standard analysis these were removed 
from consideration. 

 Comment 

The auto-line fishery has been operational since 
1997 but catches were low and the number of 
vessels very limited until 2002 (Haddon, 2016b). 
The requirement to have > 1 year in the fishery 
was used to remove some exceptional outliers 
(see text). 
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6.3 Results 
6.3.1  The Standardization of Flathead 
To prepare a CPUE standardization of Flathead (Neoplatycephalus richardsoni) taken 
by trawl in the SESSF, for inclusion in the Integrated Stock Assessment, the usual pro-
cedure is to treat all included factors as categorical and fit a linear model to the log-
transformed CPUE data (Haddon, 2014). In effect, this is a highly unbalanced ANOVA 
where the primary interest is in the year terms. Here, using the CPUE data from 1986 – 
2015 the optimal model was (see Equation (11); Table 19; Figure 25):  
 
LnCE ~ Year + Vessel + DepCat + Zone + Month + DayNight + Month:Zone (11) 
 

 
Figure 25. The reference standardization for Flathead from zones 10 and 20. The geometric 
mean CPUE (dashed line) and the optimal standardized CPUE (solid line; from equation (11)), 
with red coloured 95% confidence intervals around the mean estimates. The standardized curve 
deviates from the standardized curve in the years prior to the introduction of quota (1992) and in 
the years from 2007 onwards following the completion of the structural adjustment at the end of 
2006. The lower plot is total reported catches for flathead by all methods and areas. 
 
While there is no guarantee that this is the best representation of the ‘true’ underlying 
CPUE (Figure 25; Table 21) it can validly be used as a reference against which to com-
pare all the other analyses. It is possible to apply standard diagnostic tests and plots to 
the quality of the model fit to the available data, although with approximately 270,000 
data points the sheer weight of data operates to counter-balance the presence of an occa-
sional outlying point (Figure 26). The Q-Q plot that compares the distribution of resid-
uals to a normal distribution (Figure 26) exhibits an apparent shift away from normality 
when negative residuals extend beyond about -2 and positive residuals above about 3.5. 
However, out of 270,410 observations there were only 8913 from -2 downwards and 
only 101 from 3.5 up, which are equivalent to about 3.29% and 0.037% of all observa-
tions respectively (if the lower bound is taken as -1.75 the proportion of low valued 
non-normal data increases to about 4.9%.  
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In the case of Flathead, there is great interest in whether the large changes identified in 
the CPUE trend following the introduction of quota in 1992 and the structural adjust-
ment at the end of 2006 constitute breaks in the time-series. However, here we are con-
cerned with whether the application of different statistical methods of standardization 
lead to different outcomes of sufficient scale to affect a stock assessment. 
 
Using statistical techniques to compare such different approaches as linear models, gen-
eralized linear models, and generalized additive models is not always possible given 
their different assumptions and the different numbers of parameters (especially with the 
GAMs) and different likelihood structures. Nevertheless, graphical comparisons are al-
ways possible and statistical comparisons, at least within methods, remain valid (Figure 
26).  
 

 
Figure 26. Classical diagnostic plots for a linear model, although such standard tests were not 
designed to be used with the approximately 270,000 data points available for Flathead taken by 
trawl in SESSF zones 10 and 20 between 1986 – 2015.  
 

 
Figure 27. The distribution of all residuals from the LM on LnCE. It has a longer left-hand tail 
than a properly normal distribution would expect, which is why the QQplot in Figure 26, devi-
ates from the line denoting a normal distribution at about -1.75. Above +3.5 there were only 
about 0.037% of records although below -1.75 there were almost 5% of records. Again, the 
enormous number of observations dominates the analysis. 
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6.3.2  Comparing the CPUE Trends Predicted by the Different Models 
The optimum models from each standardization procedure generate yearly indices that 
would be used as indices of relative abundance in suitable stock assessment models 
(Table 21).  In the case of Flathead (Neoplatycephalus richardsoni) the assessment 
would use Stock Synthesis 3 (Methot and Wetzel, 2013) while with Blue-Eye Trevalla 
(Hyperoglyphe antarctica) the assessment method is an empirical harvest control rule 
designated the Tier 4 analyses in the SESSF (Wayte, 2009, Little et al, 2011a).  
 
Table 21. Year parameters from nine standardization procedures applied to Flathead 
CPUE taken by trawl between 1986 – 2015 in SESSF zones 10 and 20. The geometric 
mean CPUE (Geom) is unstandardized. LnCE is the simple linear model (with identi-
cal results under LnCE under GLM). LnC standardizes the log of catches using log(ef-
fort) as an offset. CELog uses normal residuals with a log link-function. CEGam uses 
Gamma distributed residuals with a log link. In the GAMs ‘Long’ only smooths on 
Longitude, ‘Lat’ smooths on Latitude, ‘LongLat’ smooths on both, and LLtrim repeats 
the LongLat analysis after removing data reported from peripheral locations as a start 
on reducing edge effects on the GAM smoother. 

 Linear Models Generalized Linear Models General Additive Models 
Year Geom LnCE LnC LnCE CELog CEGam Long Lat LongLat LLtrim 
1986 0.6894 0.7890 0.7646 0.7890 1.0415 0.8875 0.8243 0.8472 0.8330 0.8276 
1987 0.8315 1.0549 1.0289 1.0549 1.3962 1.1907 1.0790 1.0899 1.0725 1.0699 
1988 0.9694 1.1327 1.1100 1.1327 1.2367 1.2011 1.1535 1.1510 1.1329 1.1305 
1989 0.9716 1.1537 1.1302 1.1537 1.3702 1.2415 1.1268 1.1377 1.1172 1.1130 
1990 1.2559 1.3954 1.3892 1.3954 1.3402 1.4087 1.3320 1.3204 1.3174 1.3227 
1991 1.1841 1.2867 1.2764 1.2867 1.3916 1.4048 1.2273 1.1964 1.2074 1.2082 
1992 1.0168 1.0435 1.0375 1.0435 1.0937 1.1532 1.0189 1.0156 1.0062 1.0063 
1993 0.9963 1.0347 1.0306 1.0347 0.9030 1.0458 1.0397 1.0368 1.0443 1.0425 
1994 0.7633 0.7537 0.7492 0.7537 0.6008 0.7573 0.7545 0.7535 0.7579 0.7563 
1995 0.7655 0.7840 0.7834 0.7840 0.8431 0.8187 0.7656 0.7716 0.7836 0.7828 
1996 0.7004 0.7079 0.7063 0.7079 0.6690 0.7301 0.7020 0.7077 0.7178 0.7156 
1997 0.7164 0.7143 0.7136 0.7143 0.5896 0.7351 0.6975 0.7074 0.7166 0.7178 
1998 0.7526 0.7550 0.7494 0.7550 0.7991 0.7784 0.7366 0.7321 0.7460 0.7448 
1999 0.8657 0.9067 0.9019 0.9067 0.8702 0.9072 0.8782 0.8797 0.8928 0.8908 
2000 0.9453 0.9959 0.9887 0.9959 1.0199 1.0461 0.9949 0.9833 0.9996 0.9969 
2001 0.9027 0.9559 0.9517 0.9559 0.9200 0.9326 0.9401 0.9360 0.9490 0.9518 
2002 0.9687 1.0358 1.0321 1.0358 0.9728 0.9720 1.0232 1.0099 1.0335 1.0313 
2003 0.9515 1.0235 1.0242 1.0235 1.0205 1.0082 1.0180 1.0082 1.0177 1.0169 
2004 0.8326 0.8976 0.8998 0.8976 0.9516 0.9092 0.8882 0.8799 0.8759 0.8759 
2005 0.7504 0.7720 0.7801 0.7720 0.8657 0.8109 0.7587 0.7541 0.7520 0.7507 
2006 0.9447 0.9512 0.9631 0.9512 0.9180 0.9165 0.9497 0.9431 0.9318 0.9327 
2007 1.3309 1.1570 1.1699 1.1570 1.0997 1.0926 1.1748 1.1674 1.1683 1.1696 
2008 1.3410 1.2094 1.2220 1.2094 1.1956 1.1815 1.2536 1.2533 1.2617 1.2637 
2009 1.2669 1.1180 1.1354 1.1180 1.0720 1.0675 1.1697 1.1648 1.1666 1.1672 
2010 1.2449 1.0740 1.0888 1.0740 1.0214 0.9945 1.1184 1.1217 1.1084 1.1104 
2011 1.2087 1.0563 1.0682 1.0563 1.0323 1.0187 1.0745 1.0735 1.0735 1.0750 
2012 1.2965 1.1639 1.1762 1.1639 1.1351 1.0974 1.1839 1.1994 1.1878 1.1902 
2013 0.9949 0.8775 0.8915 0.8775 0.7741 0.7510 0.8914 0.9055 0.9012 0.9058 
2014 1.1955 1.0336 1.0484 1.0336 0.9285 0.9308 1.0466 1.0686 1.0495 1.0528 
2015 1.3460 1.1661 1.1887 1.1661 0.9280 1.0103 1.1785 1.1843 1.1779 1.1804 
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6.3.3  Comparing LMs with GLMs: Flathead  
As they should be, because they are mathematically equivalent, the year parameters 
from the linear model of the log-transformed CPUE data and from the generalized linear 
model of the log-transformed CPUE using the identity link function are identical 
(LM:LnCE vs GLM:LnCE; Table 21), and thus are not compared in any plots. The 
GLM analysis of untransformed CPUE data using a log link function, CELog, does, 
however, differ markedly in places from the analyses of log-transformed data, LnCE. 
The other GLM model explored, which used Gamma residual errors, CEGam, also dif-
fers from the LM but not so markedly (Figure 28).  
 

 
Figure 28. The geometric mean (black dashed), the reference standard LM on LnCE (red), rela-
tive to the two GLMs, the first being with untransformed CE using a log-link (green) and the 
second using Gamma residual errors (blue). Obviously, the x-axis relates to years. 
 
The general trend of all three analyses (LnCE, CELog, and CE_Gam) is similar in that 
prior to 1992 they are all above the unstandardized annual mean CPUE, between 1992 – 
2006 they are closer to the unstandardized trend, and after 2006 they are all below the 
geometric mean. Among the three trends the CELog analysis is more variable and ex-
hibits a few larger deviations in 1994, 1997 and 2005. The CELog analysis exhibits 
more inter-annual variation than any of the other trend, including the geometric mean 
CPUE (Figure 28).  
 
A clearer perception of the differences between the trends can be obtained by a consid-
eration of how much they deviate from the reference CPUE trend (that is, LnCE), by 
subtracting the year parameters (in each case scaled to an overall mean of 1.0) from 
those generated in the LnCE analysis how the different trajectories differ becomes more 
apparent (Figure 29).  While it is possible to use a GLM to analyse the untransformed 
data merely by using a log-link function this leads to a more variable, less stable results, 
which is expressed through the more jagged appearance of the CELog line. This reflects 
the fact that the log transformation normalizes the data and stabilizes the variance of the 
CPUE whereas the distribution of the catch and the effort may not provide a reasonable 
approximation to log-normality (this may especially be a problem if there is marked 
rounding of catch and or effort values as illustrated in Chapter 4).  
 
When the 95% confidence intervals around the mean estimates are compared to deter-
mine any overlap the CELog analysis (using untransformed CPUE with a log-link) only 
overlaps with the reference LnCE trend in 18 years out of 29 (the first years cannot be 
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compared, although they are clearly different in this case (Figure 37). The CEgam anal-
ysis, on the other hand, overlaps in 22 years out of 29.   
 

 
Figure 29. The differences between the reference linear model on the log-transformed data 
(LnCE; the flat dashed line along zero), and the two GLM models, one in untransformed data 
using a log-link (blue), and the other using the Gamma distribution instead of log-normal (red). 
Obviously, the x-axis relates to years. 

6.3.4  Comparing LMs with GAMs: Flathead 
Much better agreement between standardized trends occurs when the Linear Model us-
ing log-transformed CPUE data (LnCE) is compared with the analyses using GAMs. 
The GAM which put a smoothing function onto Latitude overlapped the reference anal-
ysis in 28 out of 29 years (and the year without overlap was just barely different), with 
the remaining three GAMs overlapping in all 29 years (Figure 30, Figure 31, Figure 
32, and Figure 37; Table 21) . 
 

 
Figure 30. A comparison of the year indices from the usual standardization, the geometric 
mean, and the two GAMs involving longitude and latitude, and the GAM using both Latitude 
and Longitude. The GAMs are almost exactly on top of each other with slight deviations at the 
second and third decimal place being apparent in Table 21. Obviously, the x-axis relates to 
years. 
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Figure 31. A comparison of the year indices from the usual standardization, the geometric 
mean, and the two GAMs involving both longitude and latitude together, one with the data 
trimmed to reduce edge effects. The two GAMs are almost exactly on top of each other with 
very slight deviations at the second and third decimal place being apparent in Table 21. Obvi-
ously, the x-axis relates to years. 
 

 
Figure 32. A comparison of the deviations of each standardization using a GAM relative to the 
reference analysis of LnCE. The pale blue line is the unstandardized geometric mean CPUE. 
The slight differences between the gamLL and the gamLLTrim are more apparent in this format. 
Obviously, the x-axis relates to years. 
 
The GAMs operate by fitting a locally smooth relationship between the effect of the 
variable being smoothed and the CPUE (or, in this case log-transformed CPUE). Plot-
ting these smooth curves provides information on the relative expected effect on pre-
dicted mean CPUE (Figure 33and Figure 34). When working with location data that 
has this resolution then it would be most appropriate to use both Longitude and Latitude 
even though their influence on CPUE is, in this case, correlated. 
 
The contour plot for the GAM using all available data has some implausible features off 
the coast in areas of sparse, possibly erroneous data points. Removing many of those 
outlying points has improved the patterns apparent in the contour plots so that they are 
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far fewer implausible features (Figure 34). Even so, the effect on the year parameters, 
which are the point of the analysis, remains very minor (Figure 30 and Figure 31).  
 

 
Figure 33. The smoothing trends from the GAMs using Latitude and Longitude separately. A 
very strong correlation is apparent between the two. 
 

 
Figure 34.  On the left, the GAM smoother from all longitude and latitude data for Flathead 
taken by trawl in zones 10 – 20 from 1986 – 2015, the horseshoe of points south of -38° reflect-
ing the ‘Horseshoe’ fishing region to the east of Bass Strait. The dark mass of fine points the 
270,000+ reported locations for the start of each trawl and the contours relate to the smoothing 
parameters with positive values around the Horseshoe with negative values into NSW and down 
along the Tasmanian east coast. The plot on the right is a repeat except all data points to the 
west of the red line have been deleted as being implausibly deep or too far offshore.  
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6.3.5  Standardizing CPUE or Catch: Flathead 
Structurally the LM and GLM models compared are very similar although how they 
handled the CPUE’s variance structure certainly differed. Most approaches used a log-
transformation in an attempt at normalizing the distribution of the data, or of the mean 
estimates for each factor. However, the LnC model, standardized the log of catches in-
stead of catch over effort, and included the log of effort as an offset on the right hand 
side of the model’s equation. Mathematically this may appear to be the same, but in re-
ality, the form of variation for catch and effort separately tends to be very different to 
that of CPUE (Figure 35). These differences are primarily a reflection of the rounding 
of the continuous values of catch and effort discussed in sections 4.3.1, 4.3.3, 4.3.4 in 
the Results section of Chapter 4. Making a ratio of even rounded data can improve the 
ability of a standard statistical distributions to describe the data. Even with the rather 
different variance structures between the LnCE and LnC approaches the predicted mean 
trajectories are very similar (Figure 36). 
 
 

 
Figure 35. A comparison of the observed distributions of the natural log of catch-rates, the nat-
ural log of effort (total hooks), and the natural log of catches from Blue-Eye Trevalla taken by 
the auto-line fishing method in the SESSF.  
 

 
Figure 36. A comparison of the year parameter trajectories for the LnCE reference against the 
unstandardized geometric mean (lm_geo) and the standardized Catch trajectory (LnC). Only 
very slight differences are apparent before 1990 and after 2006. 
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As a further confirmation of the effective equivalence of the LnCE and LnC lines they 
overlap relatively tightly over all 29 comparable years (Figure 37). 
 
 
 

 

Figure 37. A comparison of each alternative analytical strategy with the reference analysis 
based upon the simple linear model of the log-transformed CPUE data (LnCE). In each case the 
year parameters are plotted alongside each other with LnCE trajectory always depicted in black 
and the comparison in red. The comparison trend is offset by 0.3 of a year to make comparison 
of the 95% confidence intervals easier. The number at the end of each plot’s name is the number 
of years out of 29 where there is overlap of the confidence intervals. The y-axis, in each case is 
the standardized CPUE and, obviously, the x-axis relates to years. 
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6.3.6   The Standardization of Blue-Eye 
Blue-Eye Trevalla (Hyperoglyphe antarctica) has always been fished primarily using 
line-catching methods (drop-line and now auto-line). Trawling has also invariably 
landed Blue-Eye when taken but reported catches never attained the degree of the line 
methods (Table 22). As shown by Haddon (2016b), the records for auto-line only begin 
to become representative of the wider area of the fishery from 2002 onwards. For this 
reason, all analyses will be restricted to that period. 
 
Table 22. The number of records and catches per year for auto-line, drop-line, and 
trawl vessels reporting catches of Blue-Eye Trevalla from 1997 – 2015. Data filters 
were to restrict the fisheries included to SET, GAB, SEN, GHT, SSF, SSG, and SSH. 
Methods were limited to AL, DL, TW, and TDO. Finally, only CAAB code = 
37445001 that identifies Hyperoglyphe antarctica were included. This table is a direct 
copy of Table 1 from Haddon (2016b). The grey cells indicate the years used. 

Year AL Catch AL Record DL Catch DL Record TW Catch TW Record 
1997 0.267 3 271.942 575 104.567 1500 
1998 27.253 50 343.505 738 82.074 1398 
1999 61.590 77 377.032 971 100.329 1712 
2000 90.932 93 384.409 1075 95.042 1893 
2001 47.884 76 335.873 797 90.218 1809 
2002 134.067 234 223.074 619 67.998 1548 
2003 219.676 487 221.649 587 28.918 1210 
2004 329.608 1338 158.491 515 48.767 1558 
2005 301.303 1142 93.779 363 42.969 1169 
2006 354.582 1087 114.639 327 66.105 924 
2007 455.097 667 46.011 127 38.321 834 
2008 281.384 612 15.549 76 36.046 806 
2009 325.893 578 30.158 105 39.386 618 
2010 236.620 488 42.023 225 43.480 647 
2011 267.318 562 59.381 230 23.268 624 
2012 217.816 465 34.107 119 10.792 424 
2013 190.515 360 7.762 47 22.893 358 
2014 227.041 305 10.242 68 29.381 340 
2015 198.232 282 46.711 92 25.128 301 

 
The current approach to the stock assessment of Blue-Eye is to use a SESSF Tier 4 har-
vest strategy, which uses an empirical harvest control rule, based around catches and 
standardized CPUE (Little et al, 2011; Haddon, 2016c). The standardized catch rate is 
therefore an important component. Once again the usual procedure is to treat all in-
cluded factors as categorical and fit a linear model to the log-transformed CPUE data 
(Haddon, 2014). Here, the CPUE data (as kg-per-hook) from auto-line vessels was used 
by selecting years, 2002 – 2015, depths between 200 – 600 m, but restricting the analy-
sis to SESSF zones 20 – 50, where the fishery was relatively well developed early on. 
Development of the fishery into the GAB came a few years later. Using these data the 
optimal model was (see equation (12); Figure 38):  
 
  LnCE ~ Year + Vessel + Month + Zone + DepCat + Month:Zone (12) 
 
With only 8308 records (relative to 270,000+ records for Flathead only in zones 10 and 
20) the confidence limits around the mean CPUE estimates are much wider than those 
apparent in Flathead (compare Figure 25 with Figure 38). For Blue-Eye the standardi-
zation has the effect of flattening the geometric mean CPUE with the outcome having 
the appearance of a noisy but relatively flat line. 
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Figure 38. The reference standardization for Blue-Eye Trevalla caught by the auto-line method 
from the years 2002 – 2015 for SESSF zones 20, 30, 40 and 50. The dashed black line is the un-
standardized geometric mean CPUE while the solid black line is the optimum standardized 
model with red coloured 95% confidence intervals around the mean estimates (see Table 26). 
 
 
The diagnostic plot for the LnCE model exhibits standardized residuals that deviate 
away from that expected from a fully normal distribution (Figure 39, Figure 40). 
 
 

 
Figure 39. Classical diagnostic plots for a linear model, here the model is LnCE ~ Year + Ves-
sel + Month + Zone + DepCat + Month:Zone applied to Blue-Eye taken by auto-line from zones 
20, 30, 40, and 50 over the years 2002 – 2015. 
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Figure 40. The distribution of log(CPUE) and of the residuals from the LnCE model with a fit-
ted normal distribution (blue line) having a mean = 0.0, and a standard deviation of 1.35.  The 
green lines are the 95% quantiles of the residuals and the thin green line denotes zero. 
 
 
The qqplot in Figure 39 appears to suggest a normal distribution extending from the 
right-hand side of the histogram down to residual values around 1.5 – 1.75, after which 
the model fit deviates from normal. The histogram of Log(CPUE) and of the simple 
model residuals (Figure 40) certainly indicates the data used are not completely nor-
mally distributed. Industry members regularly suggest that they are either targeting 
Blue-Eye or Pink Ling and it may be that the lower CPUE values (left-hand of the 
Log(CPUE) values) are from the mixed catches where Pink Ling might dominate the 
catches. There is evidence that the lowest CPUE values are associated with those shots 
having the least proportion of Blue-Eye (Figure 41), indicating that further exploration 
of the interaction between the two targeted fisheries is needed (Figure 42). 
 
 

 
Figure 41.  The distribution of natural-log of Blue-Eye CPUE as kg/hook, from auto-line in 
zones 20 – 50 from 2002 – 2015, as influenced by the proportion of Blue-Eye to Pink Ling in 
each shot. The colour intensity ranges from 1 observation to 10+ for the most intense red.  
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Figure 42. The distribution of Log(CPUE) for Blue-Eye including all data, compared with the 
same plot except only using those shots where the proportion of Blue-Eye is greater than 10%. 
The data selection on Blue-Eye proportion increases the naïve geometric mean CPUE, from the 
fitted normal distributions, from 0.023kg/hook to 0.043kg/hook, an 86% increase and the nor-
mality of the log-transformed data improves greatly despite the simplicity of the data selection, 
which loses some higher catch rates as well as the lower levels (Figure 41). 
 
 
A sensitivity on the reference standardization (LnCE) was conducted where the only 
records used were those where the proportion of Blue-Eye in the combined Blue-Eye 
and Pink Ling catch was > 10% (Figure 42, Figure 43). This is an overly crude selec-
tion criterion (especially as the average proportion of Blue-Eye in the first few years is 
lower than in the later years) but suffices to illustrate that the two trajectories effectively 
overlap; even in 2006 their confidence intervals around their respective means would 
strongly overlap. Even the reduction from ~6300 records to ~4400 records after the data 
selection was not enough to significantly alter the standardized trajectory. 
 

 
Figure 43. A comparison of the trajectory (black line, red 95% confidence intervals) obtained 
by selecting only those records containing >10% Blue-Eye (relative to Pink Ling), with the ref-
erence CPUE trajectory (LnCE; blue line).  
 

2002 2004 2006 2008 2010 2012 2014

0.
0

0.
5

1.
0

1.
5

Bl
ue

_E
ye

 A
L 

C
PU

E

Trimmed CPUE
LnCE



100   | Improving Catch Rate Standardizations 

Most of the effect of trimming those records containing less than 10% Blue-Eye (when 
considering the total catch of Blue-Eye and Pink Ling) occur in the years from 2002 – 
2005. This reflects a large change in the average proportion of Blue-Eye in shots con-
taining both over the same period (Figure 44). This was also a period of large changes 
in the Pink Ling fishery with the significant catches by an array of methods over the pe-
riod 1997 – 2003 (Table 25); including significant catches using fish traps. How these 
catches interact with Blue-Eye catches by auto-line is open to further exploration. 
 

 
Figure 44. The proportion of Blue-Eye by weight in individual auto-line shots when the total 
catch of Blue-Eye and Pink Ling are considered. The mean proportion between 2002 – 2005 
was 32.4% while the mean proportion from 2006 – 2015 was 50%. 
 
One aspect of trimming data in this way, by selecting only those records with greater 
than a given proportion of the catches being the species of interest is that if there is a 
strong trend in the other species, this might influence the outcome of the standardization 
of the CPUE for the species of interest. Thus, it is a sensible strategy at least to plot how 
the proportion of records eliminated changes through time (Figure 45). The correlation 
between the standardization and the proportion of records eliminated through time was 
nowhere near significant and any potential influence of trends in that proportion through 
on the standardization would appear to be negligible. 
 

 
Figure 45.  The standardization of the trimmed Blue-Eye by auto-line CPUE data (see Figure 
43) compared with the proportion of records which contain < 10% of Blue-Eye by combined 
weight of Blue-Eye and Pink Ling. The correlation between the standardization line and the pro-
portion of records = -0.0198, which is not significant.  
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6.3.7   Including the Ratio of Blue-Eye:Pink Ling 
A second sensitivity was conducted whereby the proportion of Blue-Eye relative to Pink 
Ling in each catch was categorized into 10 levels (0 = 0 – <10%, 1 = 10 – <20%, 2 = 20 
– <30% …., 10 = 100%) and that factor included in the standardization either using all 
records or after excluding records with <= 10% Blue-Eye (pBlue = 0). The outcome was 
a greatly improved model fit with much more of the variation in the data accounted for 
and much tighter residuals (Table 23). 
 
Table 23. Statistics from four statistical models for Blue-Eye auto-line CPUE stand-
ardization With pBlue means the proportion of Blue-Eye was included. All means 
that records with < 10% Blue-Eye were included.  df = degrees of freedom.  

 Residual Degrees Multiple Adjusted   
 Standard Error of Freedom R-squared R-squared F-statistic F df 

All No pBlue 1.337 8090 0.3053 0.2952 30.13 118 
All with pBlue 0.8389 8080 0.7270 0.7227 168.1 128 
No pBlue 1.051 6268 0.3072 0.2941 23.55 118 
With pBlue 0.7856 6259 0.6134 0.6055 78.18 127 

 
Despite the greatly improved statistical model fit from including the proportion of Blue-
Eye in each record, the overall trend in CPUE through time was not greatly changed 
(Figure 46) except the first two years of the series when the proportions of Blue-Eye in 
the catches were relatively lower and, given the highest coefficients are for the top five 
proportions (Table 24) the implied CPUE is increased. 
 

 
Figure 46. The auto-line CPUE standardizations. All includes all auto-line records between 
2002 – 2016, lines without ‘All’ imply that records with <= 10% Blue-Eye were excluded. 
+pBlue means that the proportion of Blue-Eye is included as a factor (see Table 23).  
 
The trends including the effects of pBlue are similar and somewhat flatter, although this 
is influenced by the higher values in the first two years. In those years the proportion of 
shots with proportions 90% - <100% was reduced. 
 
Table 24. The standardized coefficients for the pBlue factor. The lowest value occurs 
when pBlue = 0, where the coefficient is only about that for pBlue = 1, divided by 3. 
pBlue 1 2 3 4 5 6 7 8 9 10 
Coefficient 0.225 0.325 0.487 0.637 0.705 1.007 1.319 1.682 2.655 0.958 
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Table 25. The reported catch of Pink Ling (Genypterus blacodes) taken in the GHT 
fishery within the SESSF. AL – auto-line, BL – bottom-line, DL – drop-line, FP – 
fish trap, GN – gillnet, RR – rod and reel, and TL – trot-line. Detailed data is unavail-
able prior to 1997 when a new log-book and database was introduced for the GHT 
fishery, or the South-East Non-trawl fishery (SEN) as it then was. 

Year Unknown AL BL DL FP GN RR TL 
1997 0.030 95.910 9.165 10.309 79.146 48.803  0.529 
1998  78.967 5.165 11.718 69.956 21.411   
1999  105.611 2.264 16.909 115.622 25.622   
2000  54.720 25.025 13.749 108.525 27.714   
2001  176.418 38.408 6.945 75.045 20.872  0.104 
2002  379.349 3.967 10.928 64.560 14.502  0.275 
2003  382.861 0.097 7.382 16.660 23.759  0.216 
2004 0.012 730.746 1.174 10.897  0.695  0.195 
2005 0.015 524.530 0.441 0.988  0.459   
2006  419.957  1.625  0.397   
2007  294.700 3.610 0.215  0.394   
2008  365.753 4.212 0.466  0.276   
2009  253.500 2.605 0.331  0.088   
2010  318.296 0.584 0.685  0.088   
2011  373.726 1.474 0.788  0.281   
2012  363.861 1.990 0.472  0.257   
2013  242.633 2.350 0.169  0.079   
2014  274.408 5.428 0.338  0.051 0.050  
2015  223.613 2.449 0.099  0.040 0.002 3.789 

 
 
Table 26. The optimum model predicted year parameters for each model compared for 
Blue-Eye. All columns are scaled to a mean of 1.0. Geom is the unstandardized geo-
metric mean CPUE, the other column names are listed in Table 19. 

 Linear Generalized Linear Generalized Additive 
Year Geom LnCE LnC glmLnCE CELog CEGam gamLon gamLat gamLL gamTrim 
2002 0.5807 0.7678 0.9385 0.7678 0.8735 0.8838 0.7585 0.8451 0.9016 0.9018 
2003 0.8283 0.9817 1.2945 0.9817 0.7664 0.8807 1.0145 1.1099 1.2213 1.2404 
2004 0.5387 1.0614 1.2052 1.0614 0.6938 0.9398 1.0464 1.0046 1.1178 1.1236 
2005 0.4769 0.9165 1.0932 0.9165 0.5968 0.9745 0.9289 0.8984 0.8702 0.8708 
2006 0.6755 1.0275 1.2148 1.0275 0.7395 0.8673 1.0224 0.9522 0.9510 0.9517 
2007 1.5221 1.3541 1.3264 1.3541 1.2753 1.3119 1.3662 1.3481 1.3428 1.3392 
2008 1.1371 1.1092 1.0901 1.1092 0.9834 0.9547 1.0583 1.0600 1.0234 1.0189 
2009 1.3548 1.1108 1.1196 1.1108 0.9156 0.9992 1.0420 0.9762 0.9670 0.9603 
2010 0.8536 0.7403 0.6919 0.7403 1.0220 0.8176 0.7212 0.7129 0.6976 0.6954 
2011 0.9739 0.8371 0.7203 0.8371 0.9470 0.8658 0.8526 0.8654 0.8939 0.8929 
2012 0.8005 0.7511 0.6825 0.7511 1.0373 0.9129 0.7130 0.7826 0.7599 0.7647 
2013 1.1292 0.9235 0.7602 0.9235 1.1694 1.0151 0.9183 0.9668 0.9212 0.9172 
2014 1.8064 1.3409 1.0320 1.3409 1.5446 1.3013 1.4477 1.3608 1.3221 1.3106 
2015 1.3224 1.0781 0.8308 1.0781 1.4355 1.2755 1.1100 1.1169 1.0103 1.0124 
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6.3.8   Comparing LM on LnCE and LnC 
Some analysts prefer to standardize the log transformed catch, putting log transformed 
effort as an offset within the body of the independent side of the model (e.g. Bishop et 
al, 2004); i.e.  
  LnC ~ Year + Vessel + Month + Zone + DepCat + Month:Zone + LnE  (13) 
 
As long as the LnE is treated as an offset (Venables and Ripley, 2002) the outcome of 
this analysis is identical to the linear model on LnCE using a log-normal residual error 
structure. This makes sense as the offset LnE term relates to the amount of effort used 
when calculating catch-per-unit-effort. However, if LnE is treated as just an ordinary 
variable then the outcome is very different (Figure 47). 
 
 

 
Figure 47.  A comparison of the reference standardization LnCE with the LnC.  
 
 
The LnC standardization (without offset) predicts a mean estimate for each year which 
departs further from the geometric mean CPUE than the reference standardization 
(LnCE; Figure 47), although the two series almost overlap from 2007 – 2010. An ex-
amination of the standard diagnostic plots, however, indicates some major differences 
(compare Figure 39 with Figure 48), primarily because of the use of catch vs cpue. 
 
The rounding of estimated catches of Blue-Eye in the catch and effort logbook database 
is clearly apparent in the plot of the residuals against the fitted values and direct plots of 
the log(catch) and log(effort) (Figure 48 and Figure 49). While the qqplot appears to 
match that from the LnCE analysis how data being distributed in such a fashion might 
affect a standardization whose residuals are based on some smooth probability distribu-
tion is unknown. 
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Figure 48. Diagnostic plots for the standardization based on log transformed catches (LnC). The 
rounding of both catches and of the number of hooks leads to the common occurrence of identi-
fiable runs of values through the residuals in the left hand plots.  
 
 
 

 
Figure 49. The distributions of reported catches and reported numbers of hooks from the auto-
line fishery for Blue-Eye in zones 20, 30, 40, and 50, from the years 2002 – 2015. The rounding 
of values is apparent by the peaks at particular values. This is even more apparent when looking 
at the untransformed data.  
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6.3.9   Comparing LMs with GLMs: Blue-Eye 
Once again the GLM on LnCE with an identity link is, naturally, identical to the simpler 
linear model (Table 26). The comparison of the reference standardization with the 
GLM of untransformed CPUE using a log-link (CELog) and with the GLM of CPUE 
with Gamma residual errors (CEGam) for Flathead found some differences with the 
CELog scenario. With Blue-Eye there were also differences between the reference 
standardization (LnCE) and the CELog but, once again, only relatively minor differ-
ences with the CEGam analysis (Figure 50). The CELog analysis more closely follows 
the unstandardized geometric mean CPUE rather than flattening the 2002 – 2015 trajec-
tory.  

 
Figure 50. A comparison of the standardized CPUE for the reference LnCE standardization 
with the CELog and the CEGam scenarios. 
 
 
The variability of CPUE invariably increases with the mean CPUE (the variances are 
heterogeneous) and the Linear Model on the log-transformed CPUE (LnCE) has ad-
vantages over the use of a GLM on the untransformed CPUE using a log-link (CELog) 
in that it normalizes the data while stabilizing the variance. The CELog analysis as-
sumes the variance of the original data is stable across different levels of CPUE (Vena-
bles & Dichmont, 2004). Using the LnCE approach also has the benefit that it is less 
sensitive to outlying data points (Figure 51). 
 
 

 
Figure 51. Two diagnostic plots for the CELog analysis. The presence of outliers is important 
and all records with CPUE > 0.5 kg/hook are influential, which is far less the case with the 
LnCE analysis. 
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If some of the diagnostic plots for the CELog analysis are examined some points stand 
out as outliers and each of these has very high CPUE values relative to the rest (Figure 
52). There are only three records with CE > 0.8 and 13 records between 0.7 and 0.8. 
 

 
Figure 52. The distribution of CPUE data for Blue-Eye taken by auto-line. 
 
 

6.3.10   Comparing LMs with GAMs 
From 2004 – 2015 the three GAMs (gamLat, gamLong, and gamLatLon) follow approx-
imately the same trajectory, which is generally similar to the LnCE analysis overlapping 
in places (Figure 53). The GAM that placed a smoothing function on Longitude (gam-
Long) most closely follows LnCE, although with deviations, all trajectories, however, 
remain close to the reference standardization (Figure 53).  
 
 

 
Figure 53. A comparison of the reference standardization with the three main GAM models.  
 
 
In each case the smoother had a highly significant influence on the standardization (Ta-
ble 27, Table 28; Figure 54). The large changes in the smoothing term with longitude 
and with latitude illustrate that in the gamLong and gamLat standardizations these 
smoothers added to the spatial information over and above the inclusion of the ‘Zone’ 
factor. Using the Akaike Information Criteria (AIC) to aid in model selection, the gam-
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Lat standardization provides a better description of the data than the gamLong. How-
ever, there is an almost equal improvement (reduction) in the AIC when both longitude 
and latitude are combined in the non-parametric smoothing term (Table 28). 
 
 
 
Table 27. The parametric terms from the GAMs. ‘df’ is degrees of freedom, ‘F’ is the 
F-statistic, and ‘p’ is the probability. When both longitude and latitude are included in 
the model the ‘Zone’ factor, and its interaction, was omitted as redundant. 

  gamLong gamLat gamLatLon gamLLtrim 
 df F p F p F p F p 

Year 13 8.33 < 2e-16 7.28 2.36E-14 8.76 <2e-16 8.77 <2e-16 
Vessel 11 62.75 < 2e-16 81.37 < 2e-16 64.55 <2e-16 65.50 <2e-16 
Month 11 19.75 < 2e-16 12.77 < 2e-16 37.90 <2e-16 37.63 <2e-16 
DepCat 15 1.56 0.0756 1.28 0.208 1.23 0.238 1.26 0.218 
Zone 3 10.48 7.16E-07 8.78 8.29E-06     
Month:Zone 33 5.09 < 2e-16 4.39 9.22E-16     

 
 
Table 28. The non-parametric terms from the GAMs, with ‘edf’ being the effective 
degrees of freedom, ‘Ref.df’ being the reference degrees of freedom, dfAIC being the 
effective degrees of freedom for the AIC statistic, and ‘AIC’ being the Akaike’s In-
formation Criteria (smaller is better). 
Model edf Ref.df F p dfAIC AIC 
gamLong 8.89 9.00 49.32 < 2e-16 96.89 21449.2 
gamLat 8.74 8.98 108.89 < 2e-16 96.74 20962.1 
gamLatLon 27.32 28.79 63.15 < 2e-16 79.32 20574.3 
gamLLtrim 26.89 28.68 63.73 < 2e-16 78.89 20529.2 

 
 
 

  
Figure 54. The smoothers from gamLong (left-hand) and gamLat (right-hand) exhibiting 
marked contrast in influence across the range of the fishery. The ‘rug’ along the bottom of each 
graph illustrates the density of data points. 
 
 
When a smoothing term was placed onto both longitude and latitude at the same time 
the smoother produces a two-dimensional plot of the relative influence of the smoother 
on the log transformed CPUE (Figure 55). While the details of the surface can be af-
fected by even a few outlying points, which the log-book location data invariably has, 
these outliers tend to have little influence on the final CPUE trend (Figure 56).  
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Figure 55. Two versions of the gamLatLon GAM standardization. The left-hand side is the 
analysis using all data, some of which is obviously out over the abyssal plain and some has been 
reported to have been caught on land. The right-hand plot illustrates the effect of removing the 
few points that have been reported to the right and below the red lines (however, the few points 
on land remain). The removal of just a few points helps linearize the trend along the coastline. 
 

 
Figure 56. A comparison of the gamLonLat with the gamLLtrim illustrating that while the ap-
pearance of the smoother has altered (Figure 55) the effect on the standardization trend in Blue-
Eye by auto-line is minimal with just slight differences apparent in 2003. 
 
 
It remains difficult to determine which of the approaches could be characterized as the 
‘best’. A further consideration that could be used in such a decision is the spread and 
distribution of the residuals after an optimal statistical model has been fitted (Figure 
57). The distributions of residuals from the standardizations that rely on untransformed 
CPUE (CELog and CEGam) have a wider spread than those that use log-transformed 
CPUE and, at the same time, are skewed more to the left away from the zero point.  
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Figure 57. A comparison of the distribution of the residuals from the reference LnCE, the 
CELog, the CEGam, the gamLonLat, and the LnC standardizations. The thick vertical lines are 
approximations to the 95% quantiles from the distributions as described by each histogram. The 
fine central green line merely denotes zero. The approximate 95% quantiles for LnCE was -3 – 
2.25, for CELog and CEGam was -4 _ 1.5, and for gamLonLat and LnC was -3 – 2.0. 
 
 

 
Figure 58. The reference standardization relative to the CEGam, the gamLLtrim, and the LnC 
models. The vertical black lines are the 95% confidence intervals around the LnCE model. Only 
the LnC model falls outside the 95% intervals, and that only in 2003. The gamLLtrim follows 
the reference model most closely, except in the first two years and in 2008 and 2009. 
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6.4 Discussion 
6.4.1   Introduction 
The number of CPUE standardization approaches considered in this chapter was only a 
sub-set of those available but encompassed those that get used most often. The two 
main species examples considered, Flathead (Neoplatycephalus richardsoni) and Blue-
Eye (Hyperoglyphe antarcticus), cover the spectrum of extremely data-rich, with 
100,000s of records and relatively data-limited with only 8308 records across 2002 – 
2015. When the number of records is very large (270,000+ for Flathead) every factor 
used becomes statistically significant and the apparent precision of the mean estimated 
CPUE each year is very tight. However, the statistical models being used assume that 
each year’s sample is independent of every other year, which, when working on the 
same population through time, is obviously invalid. The analyses involving such large 
numbers of records become very robust and stable but there can be inter-annual varia-
tion much greater than is biologically plausible if the CPUE is considered to linearly re-
flect relative abundance. For example, with Flathead from 1986 – 1990 the standardized 
CPUE, based on the simplest linear model changes from about 0.8 – 1.4 (about a 60% 
increase) and was followed by a decline from 1990 – 1994 down to 0.75. Such large ups 
may possibly be due to above average recruitment occurring multiple times, but the fol-
lowing decline, which occurred in a period of relatively low catches (Figure 25; page 
87), does not seem plausible given the biology of the species and the very high recruit-
ment suggested by the large rise. This suggests there are other inter-annual factors at 
play of which we remain ignorant. The true variability of CPUE needs to take account 
of this inter-annual variation as well as the estimation uncertainty that derives from the 
sample size.  
 
The confidence intervals around the mean CPUE estimates become intuitively more 
plausible when considering the data-limited case of Blue-Eye Trevalla. Examination of 
Figure 38 and Figure 43 (pages 97 and 99) suggest that despite the apparent ups and 
downs of the Blue-Eye CPUE trajectory in each case, the only years that differ signifi-
cantly from the long term mean of 1.0 are 2007 in both cases, and 2014 and 2015 in 
each year respectively. 
 
An important conclusion drawn for all CPUE standardizations is that the use and dis-
play of diagnostic plots and statistics should become routine. This may appear to be an 
obvious statement but it needs to be made as the dearth of such diagnostics in the grey 
literature should emphasize that such documentation is not yet as routine as it should be.  
 
Prior to standardization the characterization of the available data is a necessity so as to 
clarify the coherency of the data through time and qualitatively identify any particular 
changes in the data quality. The interactions between Blue-Eye and Pink Ling provide 
many examples where understanding the character of the original data helps in the inter-
pretation and in making decisions on how best to analyse each fishery. 
 

6.4.2   The Assumptions of LM and GLM 
The application of generalized linear models and related methods to the standardization 
of fisheries catch-effort data breaks a number of the basic assumptions of such linear 
models. Venables and Ripley (2002) list the following assumptions for GLM: 
 

• There is a response y observed independently at fixed values of stimulus variables 
x1, …, xp, 
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• the stimulus variables may only influence the distribution of y through a single 
linear function called the linear predictor η = β1x1 + … + βpxp   

 
where the predictor variables are expected to be mutually independent or orthogonal to 
each other.  
 
In real world fisheries one would never expect the stimulus or explanatory variables to 
be at fixed or controlled values and in fisheries it is also rare for those explanatory vari-
ables to be fully independent of each other. Fortunately, these classical statistical meth-
ods are not always affected unduly by deviations from these assumptions, although 
some of the deviations in fisheries are very marked. The potential for unknown and un-
intended bias should not be ignored. This in itself should be encouragement to attempt 
such analyses using multiple analytical strategies to determine the sensitivity of each 
particular data set to alternative statistical treatments. The breaking of underlying as-
sumptions is another line of argument that confirms statistical CPUE standardization 
have many issues of which analysts need to be aware and wary.  
 

6.4.3   The Choice of Statistical Approach 
When designing a model to conduct a stock assessment of a fished species the decisions 
made about the model form and its components have important implications from what 
it is possible to conclude from the analysis. In addition, there is the contribution made to 
the overall uncertainty of any conclusions that derives from the model structure. This 
‘model uncertainty’ is often a major contributor to the total uncertainty as different 
model structures can lead to very different conclusions concerning such fundamental 
outcomes as what constitutes a sustainable catch.  
 
Similar things about structural decisions can be stated about the statistical models used 
in CPUE standardization. Even though the primary aim may be to describe the trends in 
CPUE there is an upper limit to the complexity of a statistical model as the inclusion of 
numerous factors can lead to later, less influential factors attempting to account for spu-
rious patterns in the remaining noise. So, some attempt to constrain the number of fac-
tors from inclusion is a reasonable strategy to adopt. Decisions on the number of param-
eters (with associated variables or factors) can be made statistically (e.g. each factor 
needs to account for some, usually arbitrary, level of variation in the data) or by using 
some other rule of thumb, such as the influence on the mean trend of CPUE through 
time needs to indicate more than just noise. 
 
Even in the relatively data-limited case of Blue-Eye the uncertainty in the analysis 
meant that in almost all cases, even where two different approaches (e.g. log-normal vs 
Gamma) differed, they did not differ significantly in many years. Often the difference 
between the unstandardized CPUE and the standardized trends was greater than the dif-
ference between the standardized trends by different approaches. Once again before fi-
nal decisions are made it is a reasonable strategy to trial different approaches and if 
large differences in trend are found discover why the difference arises under the differ-
ent circumstances of analysis rather than simply selecting a single approach. 
 
Given the structural issues arising from, for example, the rounding of the components of 
CPUE, it is not reasonable to make hard and fast decisions regarding the selection of the 
probability distributions of the residuals between the observed CPUE (or catch) and that 
predicted by some approximate statistical model of the process giving rise to those 
CPUE (or catches). While the residuals can be better behaved statistically than the 
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catches or effort values, meaning a probability density function can provide a plausible 
description of them, the statistical models that give rise to the predicted values (from 
which the residuals are derived) will be at best an approximation. If one statistical distri-
bution does a consistently better job of describing the residuals in the CPUE standardi-
zation for a fishery then it is obviously a reasonable strategy to adopt that distribution 
rather than sticking to another out of tradition. But the optimum statistical distribution 
can vary between species, and even within a species between years as new data are in-
cluded. It is difficult to know which approach is best until more than one approach is 
tried. Empirically, when a CPUE standardization is first being developed for a fishery, it 
is best to trial alternative approaches and adopt that which generates the most stable out-
come through time (in a retrospective analysis). Once established, however, in an ideal 
world it would be best to test alternatives every few years to ensure nothing has 
changed. 
 

6.4.4  Using LnC ~ … LnE 
It is clear that if an analyst wishes to work with LnC rather than LnCE then the effort 
term used needs to be treated as an offset, otherwise some serious bias can be intro-
duced and the response becomes unreliable, especially in cases where there are large 
trends or changes in effort through time.  
 
As long as an analyst is consistent through time with how they conduct their analyses, 
then using either catch or catch-effort as the dependent variable is suitable (provides 
identical results; at least when using a log-normal residual error structure). Treating ef-
fort as an offset is necessary to scale the predicted values relative to the effort expended 
and some find it more natural to treat it separately than to include effort directly in a cal-
culation of CPUE. Given the weakness of the assumptions when applying GLM to fish-
eries CPUE data this issue of separating catch and effort has complications of its own. 
Relative to CPUE, the underlying distributions of catch and of effort are generally more 
severely affected by the rounding of estimates of catch and effort (see Figure 35). It is 
possible that data-sets that exhibit more extreme degrees of aggregation in the separated 
data than was seen in the example data-sets used here, may constitute such a fracture of 
the statistical assumptions that the outputs become unstable. Rather than simply adopt-
ing one method over another it is best to compare both when first exploring a new of 
unknown data-set. 
 
An examination of the classical diagnostic plots from a standardization based on the log 
transformed catches (Figure 48, on page 104) indicates that there is a failure to correct 
for the expanding variation in the residuals as catches increases. One of the assumptions 
of the analysis is that the variances are constant, which is certainly less compromised 
when using log-transformed CPUE (Figure 39, on page 97). Similar things can be said 
about using the GLM and Gamma errors with a log-link (Figure 51, on page 105).  
 
Generally, making a selection of approaches entails balancing any trade-offs between 
which assumptions are being stretched by which approach.  

6.4.5  The Influence of Mixed Fisheries 
The auto-line fishery for Blue-Eye Trevalla and Pink Ling provides a relatively simple 
example of a mixed fishery that has two economically important species known to be 
targeted at different times (though when each is targeted is not reported with sufficient 
accuracy to usefully separate the two). How best to approach the analysis for each of the 
species is a problem that has yet to be solved. It remains a serious problem as many 
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fisheries, especially in Australia, are mixed fisheries where the specific target for any 
particular shot is not necessarily known. Indeed, in such circumstances fishers often re-
port having an expectation of catching an array of species rather than one single target. 
What is presented here is a potential direction for further work to provide one approach 
at clarifying this issue. 
 
The procedure adopted for standardizing Blue-Eye Trevalla is conditioned on positive 
catches of Blue-Eye, meaning that any records containing Blue-Eye taken by a particu-
lar fishing gear are identified and included (as long as they meet other selection criteria 
relating to fishing zone and depth of fishing. This means that included in those shots 
that may have been directly targeting Blue-Eye there will be shots that were in fact tar-
geting Pink Ling and only caught Blue-Eye as a by-product. This is very plain when 
considering the catch-rates of Blue-Eye relative to the proportion of Blue-Eye relative to 
Pink Ling in a shot (Figure 41, on page 98).  
 
A simple option is to remove those records containing the lowest proportions of Blue-
Eye, which directly improves the distribution of the log(CPUE) for the Blue-Eye (Fig-
ure 42, on page 99). An additional action would be to categorize the proportion of Blue-
Eye in each shot and included those categories as a factor in the standardizations.  
 
The act of removing records containing low proportions of Blue-Eye has the risk that if 
there is a strong correlation beyond between the proportion of Blue-Eye and the amount 
of Blue-Eye caught then if there is a trend in the proportion of records containing less 
than the selected minimum proportion of Blue-Eye in each shot then such removals 
could mask an influential trend. Fortunately, with Blue-Eye taken by auto-line, no such 
clear trend is present in the available data (Figure 45, on page 100), but it is important 
to check for such trends if such a strategy of removing records is pursued.  
 
Removing the records with low proportions of Blue-Eye but not including the propor-
tion of Blue-Eye as a factor in the standardization altered the trend relative to the trend 
that included all data. The two trends that included the proportion of Blue-Eye as a fac-
tor in the standardization were more similar to each other than the two standardizations 
that did not include pBlue as a factor.  
 
Further exploration of the strategy of including the proportion of each species into 
standardizations should be made across other species. Such a strategy may lose effec-
tiveness if the number of mixed species begins to increase. But if it is pursued it is es-
sential to include the diagnostic plots of whether trends exist in the proportions of the 
mixed species changes through time in a trend like manner.  
 

6.4.6  The treatment of Spatial Information 
Generally, an important factor relating to CPUE is the geographical distribution of the 
species concerned. Within a species’ distribution range it is expected that CPUE will 
vary with location (all other things being equal). Some differences in trends were pro-
duced when comparing the use of simple, relatively large geographical zones as a proxy 
for spatial differences, and using precise longitude and latitude values for the centre of 
each shot (Figure 56, on page 108). The mapped surface fitted to the longitude and lati-
tude data can be greatly influenced by outlying, clearly incorrect data points, and while 
removing those points from consideration improved the surface representation it did al-
most nothing to the implied CPUE trend. While the effect of using a GAM instead of 
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the LnCE classical standardization was only minor with the Flathead example (Figure 
31, on page 92), the effect was much greater with the Blue-Eye example (Figure 56, on 
page 108). Before deciding it would be worthwhile comparing the two approaches (and 
adding more surface fits to the GAM model, perhaps on depth of each shot) to deter-
mine the overall effect.  
 
Generally, if enough precise location data is available then a statistical model that uses 
it should be more informative. However, this would be partly determined by just how 
precise such data was and what proportion of erroneous data was present. Typically, 
with such data it is not uncommon to find some records on land, or some in port, or in 
other implausible locations. An alternative to these extremes of crude geographical 
zones and the use of longitude and latitude data is to use smaller geographical areas, as 
perhaps 1 × 1 degree blocks, or possibly smaller. As with all such analyses before set-
tling on a standard approach it is necessary to explore the alternatives to determine the 
trade-offs between accounting for variation in the available data and including numer-
ous possibly meaningless parameters. 
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6.5 Appendix: R code used to Conduct Standardizations 
6.5.1   Standard Data-Base Extract 
 
Table 29. Variables extracted from the catch and effort database within CSIRO prior 
to any analyses, plus derived variables denoted by a *. 
Variable Comment 
Year  calendar year of fishing 
Month month of fishing 
Day day of fishing 
Vessel a unique identifier for each vessel through time 
catch_kg reported catch in kg (does not include discards) 
Long reported longitude of start of shot 
Lat reported latitude of start of shot 
LongE reported longitude of end of shot 
LatE reported latitude of end of shot 
Depth average depth of fishing 
DayNight day, night, mixed, unknown 
Zone SESSF zones 
SEF_ZONES old SESSF zones 
Effort trawl effort (hours); other methods (auto-line)  require other fields 
Method fishing method 
CE* the catch/effort (where catch and effort > 0) 
LnCE* the natural log of CE 
DepCat* the depth grouped into 20 metre classes 
count* the number of years in the fishery for each vessel 
avC* the average annual catch for each vessel in the fishery 

 
 

6.5.2  Software Used 
In all analyses the statistical and programming language R was used. Here all functions 
and routines are listed as used in the nine Flathead examples. The functions form the ba-
sis of an r4sessf R package developed to facilitate running CPUE standardizations. 
Some of these functions are now also included in the cede R package produced to com-
plement the primary objectives in FRDC project 2017/102. 
 
#  Get and select Data --------------------------------------------------------------- 
load(paste0(datadir,"spsF.RData"))  
   
# spsF is the tiger flathead dataset for the trawl method only 

 
pickrec <- which((spsF$Year > 1985) & (spsF$Year < 2016) & 
                 (spsF$DepCat >= 0) & (spsF$DepCat <= 400) & 
                 (spsF$Zone %in% c(10,20))) 
sps1 <- droplevels(spsF[pickrec,]) 
dim(sps1) 
pickV <- which(sps1$Vessel == 529)   # a major outlier  
if (length(pickV) > 0) sps1 <- droplevels(sps1[-pickV,]) 
pickD <- which(is.na(sps1$CE))       # remove records with no CE 
if (length(pickD) > 0) sps1 <- droplevels(sps1[-pickD,]) 
dim(sps1) 

 
# utility functions 
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makecategorical <- function (labelModel, indat) { 
    Interact <- grep(":", labelModel) 
    nInteract <- length(Interact) 
    numvars <- length(labelModel) - nInteract 
    for (fac in 1:numvars) { 
        if (length(indat[, labelModel[fac]]) > 0) { 
            indat[, labelModel[fac]] <- factor(indat[, labelModel[fac]]) 
        } 
        else { 
            warning(paste0("Factor name ", labelModel[fac], "does not appear in data.frame")) 
        } 
    } 
    return(indat) 
} 

 
makemodels <- function (labelModel, dependent = "LnCE") { 
    numvars <- length(labelModel) 
    interterms <- grep(":", labelModel) 
    ninter <- length(interterms) 
    mods <- vector("list", (numvars + 1)) 
    form <- paste0(dependent, " ~ ", labelModel[1]) 
    mods[[1]] <- assign(paste0("ff", 1), as.formula(form)) 
    if (numvars > 1) { 
        if (ninter > 0) { 
            for (i in 2:(numvars - ninter)) { 
                form <- paste0(form, " + ", labelModel[i]) 
                mods[[i]] <- assign(paste0("ff", i), as.formula(form)) 
            } 
            for (i in interterms) { 
                interform <- paste0(form, " + ", labelModel[i]) 
                mods[[i]] <- assign(paste0("ff", i), as.formula(interform)) 
            } 
        } 
        else { 
            for (i in 2:numvars) { 
                form <- paste0(form, " + ", labelModel[i]) 
                mods[[i]] <- assign(paste0("ff", i), as.formula(form)) 
            } 
        } 
    } 
    mods[[(numvars + 1)]] <- labelModel 
    return(mods) 
} 

 
standLM <- function (inmods, indat, inlab = "", console = TRUE) { 
    NModels <- length(inmods) 
    labelM <- inmods[[NModels]] 
    NModels <- NModels - 1 
    ans <- vector("list", NModels) 
    names(ans) <- labelM 
    Yearnames <- levels(as.factor(indat[, labelM[1]])) 
    Nyrs <- length(Yearnames) 
    rows <- c("AIC", "AICc", "RSS", "MSS", "Nobs", "Npars", "adj_r2", "%Change") 
    WhichM <- matrix(nrow = length(rows), ncol = NModels, dimnames = list(rows,labelM)) 
    rows <- Yearnames 
    Results <- matrix(nrow = Nyrs, ncol = NModels, dimnames = list(rows,labelM)) 
    ResStErr <- matrix(nrow = Nyrs, ncol = NModels, dimnames = list(rows,labelM)) 
    modellist <- vector("list", NModels) 
    names(modellist) <- inlab 
    geomod <- inmods[[1]] 
    model <- lm(geomod, data = indat) 
    totalssq <- sum(anova(model)[2]) 
    for (index in 1:NModels) { 
        if (console)  
            cat(as.character(inmods[[index]]), "\n") 
        model <- lm(inmods[[index]], data = indat) 
        modellist[[index]] <- model 
        modelsum <- summary(model) 
        mat <- modelsum$coefficients 
        ans <- getlmfact(mat, labelM[1]) 
        Results[, index] <- scaleCE(ans[, "Coeff"]) 
        ResStErr[, index] <- ans[, "SE"] 
        anv <- anova(model) 
        RSS <- tail(anv$"Sum Sq", 1) 
        WhichM["RSS", index] <- RSS 
        WhichM["MSS", index] <- totalssq - RSS 
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        df <- unlist(anv[1]) 
        ndf <- length(df) 
        nobs <- sum(df) + 1 
        npars <- sum(df[1:(ndf - 1)]) + 1 
        WhichM["AIC", index] <- nobs * log(RSS/nobs) + (2 * npars) 
        WhichM["AICc", index] <- nobs * log(RSS/nobs) + ((2 * npars)*(nobs/(nobs - npars - 1))) 
        WhichM["Nobs", index] <- nobs 
        WhichM["Npars", index] <- npars 
        WhichM["adj_r2", index] <- 100 * modelsum$adj.r.squared 
    } 
    for (index in 2:NModels) { 
        WhichM["%Change", index] <- WhichM["adj_r2", index] - WhichM["adj_r2", index - 1] 
    } 
    WhichM["%Change", 1] <- 0 
    pickinter <- grep(":", labelM) 
    if (length(pickinter) > 0) { 
        lastsimple <- pickinter[1] - 1 
        WhichM["%Change", pickinter] <- WhichM["adj_r2",pickinter]-WhichM["adj_r2", lastsimple] 
    } 
    optimum <- which.max(WhichM["adj_r2", ]) 
    msg <- paste("Optimum model ", inmods[optimum], sep = "") 
    if (console) print(msg, quote = F) 
    if (NModels >= 3) { 
        count <- 0 
        for (i in 3:NModels) { 
            if (WhichM["%Change", i] > WhichM["%Change", (i - 1)])  
                count <- count + 1 
        } 
    } 
    out <- list(Results, ResStErr, WhichM, optimum, Nyrs, inlab,  
        summary(modellist[[optimum]]), modellist[[optimum]],modellist) 
    names(out) <- c("Results", "StErr", "WhichM", "Optimum", "Nyrs", "Label", "Parameters", 
                    "optModel", "Models") 
    class(out) <- "CEout" 
    return(out) 
} 

 
# The main code; most plotting and tabulating details omitted for clarity and brevity 
 
cat("\n\n Model 1: Linear Model based on LnCE and normal random errors \n\n") 
 
labelM <- c("Year","Vessel","DepCat","Zone","Month","DayNight","Month:Zone") 
 
sps2 <- makecategorical(labelM[1:6],sps1) # convert variables to factors 
mods <- makemodels(labelM) 
 
out1 <- standLM(mods,sps2,"FlatheadLM") 
cat("Optimum Model: ",mods[[out1$Optimum]],"\n\n") 
cat("Summary of Optimum Model  \n") 
summary(out1) 
cat("\n\n Anova of Optimum Model  \n\n") 
anova(out1$optModel) 
model1 <- out1$optModel 
lmgeo <- out1$Results[,1]             # lm standardized geometric mean 
 
answer1 <- getfact(out1,"Year") 
cat("Year parameter Estimates from Model 1  \n") 
answer1 
 
# 2. glm on LnCE ------------------------------------------------------------- 
# source("C:/A_CSIRO/Rcode/CPUEExplore/utils/extra_utils.R") 
 
cat("\n\n Model 1: Linear Model based on LnCE and normal random errors  \n\n") 
 
usemod <-  as.formula(LnCE ~ Year + Vessel + DepCat + Zone + Month + DayNight + Month:Zone) 
model2 <- glm(usemod,family=gaussian(link="identity"),data=sps2) 
#anova(model2) 
summary(model2) 
 
answer2 <- getfact(model2,"Year") 
answer2 
back2 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"]) 
colnames(back2) <- c("lm_geo","lm_LnCE","glm_LnCE") 
back2                  # should be identical 
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# 3. glm on CE log-link ------------------------------------------------------ 
cat("\n\n Model 3:GLM based on CE and a log link \n\n") 
 
usemod <- as.formula(CE ~ Year + Vessel + DepCat + Zone + Month + DayNight + Month:Zone) 
model3 <- glm(usemod,family=gaussian(link="log"),data=sps2) 
answer3 <- getfact(model3,"Year") 
back3 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"],answer3[,"Scaled"]) 
colnames(back3) <- c("lm_geo","lm_LnCE","glm_LnCE","glm_CE") 
back3   # 
 
# 4. glm on CE gamma errors -------------------------------------------------------- 
cat("\n\n Model 4: GLM based on CE and Gamma errors with a log link \n\n") 
 
usemod <- as.formula(CE ~ Year + Vessel + DepCat + Zone + Month + DayNight + Month:Zone) 
 
model4 <- glm(usemod,family=Gamma(link="log"),data=sps2) 
m4 <- summary(model4)$coefficients 
m4yr <- m4[1:30,] 
m4yr[1,] <- c(0,0,0,0) 
m4pars <- exp(m4yr[,"Estimate"])  # no bias correction necessary 
answer4 <- cbind(m4pars,m4pars/mean(m4pars)) 
colnames(answer4) <- c("m4pars","Scaled") 
back4 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"],answer3[,"Scaled"], 
               answer4[,"Scaled"]) 
colnames(back4) <- c("lm_geo","lm_LnCE","glm_LnCE","glm_CE_Log","glm_CE_Gamma") 
back4 
 
AIC(model1, model2, model3, model4) 
 
# 5. gam LnCE wth Long ---------------------------------------------------- 
 
cat("\n\n Model 5: GAM on Long, based on LnCE and normal random errors \n\n") 
 
library(mgcv) 
library(nlme) 
library(gamm4) 
 
pick <- which(sps2$Long > 152.25) 
if (length(pick) > 0) sps2 <- sps2[-pick,] 
 
model5 <- gam(LnCE ~ s(Long) + Year + Vessel + DepCat + Zone + Month + DayNight + Month:Zone,  
              data = sps2) 
 
answer5 <- getfact(model5,"Year") 
back5 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"],answer3[,"Scaled"], 
               answer4[,"Scaled"],answer5[,"Scaled"]) 
colnames(back5) <- c("lm_geo","lm_LnCE","glm_LnCE","glm_CE_Log","glm_CE_Gamma","gam_LnCE_Long") 
back5 

 
# 6. gam LnCE with Lat ---------------------------------------------------- 
cat("\n\n Model 6: GAM on Lat, based on LnCE and normal random errors \n\n") 
 
model6 <- gam(LnCE ~ s(Lat) + Year + Vessel + DepCat + Zone + Month + 
                 DayNight + Month:Zone, data = sps2) 
print(Sys.time()-startime) 
answer6 <- getfact(model6,"Year") 
back6 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"],answer3[,"Scaled"], 
                        answer4[,"Scaled"],answer5[,"Scaled"],answer6[,"Scaled"]) 
colnames(back6) <- c("lm_geo","lm_LnCE","glm_LnCE","glm_CE_Log","glm_CE_Gamma", 
                    "gam_LnCE_Long","gam_LnCE_Lat") 
back6 
 
if (saveall) dev.off() 
 
# 7. gam LnCE LoLa ------------------------------------------------- 
cat("\n\n Model 7: GAM on Longand Lat, based on LnCE and normal random errors \n\n") 
 
model7 <- gam(LnCE ~ s(Long,Lat) + Vessel + DepCat + Month + Year, data = sps2) 
print(Sys.time()-startime) 
 
answer7 <- getfact(model7,"Year") 
back7 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"],answer3[,"Scaled"], 
               answer4[,"Scaled"],answer5[,"Scaled"],answer6[,"Scaled"],answer7[,"Scaled"]) 
colnames(back7) <- c("lm_geo","lm_LnCE","glm_LnCE","glm_CE_Log","glm_CE_Gamma", 
                    "gam_LnCE_Long","gam_LnCE_Lat","gam_LnCE_LongLat") 
back7 
#anova(model7) 
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# 8. gam LnCE LLtrim ------------------------------------------------------ 
 cat("\n\n Model 8: GAM on Long and Lat with trimmed data \n\n") 
  
labelM <- c("Year","Vessel","DepCat","Zone","Month","DayNight") 
sps3 <- makecategorical(labelM[1:6],sps1) # convert variables to factors 
 
ypts <- c(-41,-33.5); xpts <- c(148.9,152.20) 
mod8 <- lm(ypts ~ xpts) 
coef(mod8) 
sps3$LR <- NA 
sps3$LR <- coef(mod8)[2] * sps3$Long  + coef(mod8)[1] 
pick <- which(sps3$LR > sps3$Lat) 
if (length(pick) > 0) sps3 <- sps3[-pick,] 
 
model8 <- gam(LnCE ~ s(Long,Lat) + Vessel + DepCat + Zone + Month + Year, data = sps3) 
print(Sys.time()-startime) 
 
answer8 <- getfact(model8,"Year") 
back8 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"],answer3[,"Scaled"], 
               answer4[,"Scaled"],answer5[,"Scaled"],answer6[,"Scaled"], 
               answer7[,"Scaled"],answer8[,"Scaled"]) 
colnames(back8) <- c("lm_geo","lm_LnCE","glm_LnCE","glm_CE_Log","glm_CE_Gamma", 
                     "gam_LnCE_Long","gam_LnCE_Lat","gam_LnCE_LongLat","gam_LnCE_LLtrim") 
back8 
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7 Simulate Shot-by-Shot CPUE Data 

7.1 Introduction 
If it were possible to simulate CPUE data then before any further analyses were applied 
it would be possible to set or at least to know what the correct or actual mean values 
ought to be obtained from estimates derived from subsequent analyses. It should then be 
possible to determine, within the limits of precision for a particular analytical strategy, 
whether a given analytical strategy gives rise to a consistent bias, or other distortion, 
and whether different strategies give significantly different answers.  So, the ability to 
simulate CPUE data would be of value for exploring the relative effectiveness of differ-
ent methodologies.   
 
The original intention within this project was to attempt to use the Atlantis ecosystem 
simulation framework (Fulton et al, 2005; Fulton, 2010) to generate multi-species 
CPUE at a shot-by-shot level. The Atlantis code was extensively modified to provide 
more details of simulated output data in terms of location, time, and vessels, but, in the 
end, it became clear that the CPUE data that it was possible to generate, without need-
ing to alter the Atlantis software far more than was plausible in the time available, was 
still too coarse in terms of being aggregated over vessels and regions. To convert that 
into more typical shot-by-shot data would have entailed conditioning a separate model 
of single species data onto the coarser scale output from the modified Atlantis and then 
back-translate that into shot-by-shot data. The initial trials failed to produce plausible 
data and already slowed the operational running time of the Atlantis model signifi-
cantly. The inevitable progress of time (for both people and this project) meant that the 
backup/fall-back position of simulating single species CPUE data was picked up and at-
tempts to modify the Atlantis software further along these lines were stopped. 

7.2   Simulating Single Species CPUE Data 
7.2.1  Simulate the Stock and Fishery 
The simulation of realistic single species CPUE data can be approached in more than 
one way. It might be possible, for example, to simulate the population dynamics of a 
fished stock including the variation in abundance through years combined with variation 
in how the fish are distributed geographically within years. In addition, one would need 
to simulate the dynamics of fishing (the number of vessels, where they fished, and with 
what relative efficiency) and how that changes through time. One difficulty with this ap-
proach relates to determining whether the simulated data is realistic or not. This whole-
of-system approach to simulating CPUE data relies on making numerous assumptions 
regarding the movement of fish and how that might relate to spatial structuring within a 
given fishery, but also assumptions relating to how the vessels relate to the fishery. 
These both remain active areas of research with, currently, no single or clear answer. 
Using such an approach it would be possible to compare the outcomes from alternative 
statistical approaches used to analyse CPUE data and which was able to recover the true 
underlying relative abundance through time. However, it would not then be possible to 
conclude that the outcomes represented what would occur with real CPUE data.  
 
Unfortunately, there would be no way to determine whether the CPUE data generated 
by such a system was realistic; meaning whether or not it represented the real world in a 
representative manner. The usual argument made when applying management strategy 
evaluation, which is, at heart, a simulation framework that attempts to simulate a com-
plete system, is that it enables a comparison of methods and enables those methods or 



 

Improving Catch Rate Standardizations |  121 

strategies that would fail to be rejected. Even if the simulation cannot be guaranteed to 
represent the system being simulated perfectly, the argument is made that if some ap-
proaches fail in a simulation while others succeed, then those that succeed should be 
more likely to succeed than those that fail. For example, if a given approach led to bi-
ased or otherwise distorted outcomes, while others did not, then it would be valid to be 
warier of the approach that led to biased outcomes than the one that did not. Hence pur-
suing this strategy of simulating CPUE should be worthwhile. Nevertheless, here, given 
the limitations of CPUE data as detailed in earlier chapters, and the very many un-
knowns for which information would be required or need to be assumed to generate a 
plausible approximation to a real fishery an alternative simpler approach was used to 
simulate realistic CPUE data.   

7.2.2  The Single Species Simulation Used 
The alternative approach used here essentially uses the inverse of a statistical standardi-
zation to condition a simulation to be like a given fishery. A standardization of CPUE 
data from a given fishery estimates parameters for each level of each factor within the 
standardization equation used. Those parameters effectively condition that statistical 
model onto that fishery with its history and scale. In other words, it is possible to use the 
statistical model, with all its parameters to predict new values of CPUE for each record, 
and multiple options are available. It is possible to replicate the original values if the pa-
rameters are left unaltered, or, by altering some or all of the yearly parameter values it is 
possible to change the apparent trends in the predicted CPUE data through time. 
 
The trends and patterns of the yearly CPUE parameters can thus be left the same as ob-
tained from the conditioning data or altered to suit the requirements of particular tests. 
For example, if testing how great a change in a CPUE trend is required to be effectively 
detected then the expected mean CPUE trend through time can be adjusted up or down 
by the necessary amount (the year parameters are adjusted to the desired levels), then 
the parameter set can be used to simulate shot-by-shot CPUE data by using the parame-
ters and statistical model to generate predicted CPUE values (the fitted values) for each 
original record. Thus, simulated data can be obtained by populating a new set of records 
each with their own plausible combination of Year, Vessel, Depth, Month, and other 
factors included in the standardization.  
 
One limitation is that situations where there are significant year × ‘factor’ interactions 
cannot be simulated easily, at least not without including such an interaction with their 
more complex correlations. Here Year × ‘factor’ interactions are not considered further 
but it is likely to be an avenue for productive future work, especially with regard to spa-
tial heterogeneity of biological properties across stocks.  
 
Using a particular standardization to condition a statistical model will automatically 
mean that the assumptions of the standardization used will be propagated through to the 
simulated data. If, for example, log-normally distributed errors are included in the simu-
lation then it would not be surprising if an approach using log-normal errors recovered 
the underlying trends more accurately more often than, say, using Gamma distributed 
errors. What this means is that such simulated data is unsuitable for answering some 
classes of questions, especially those relating to identifying whether there is an optimum 
underlying residual error structure for standardizing CPUE data. Nevertheless, cross-
comparisons where data generated using log-normal and using Gamma distributed er-
rors can each be fitted using both approaches to determine whether each approach can 
recover the trend generated by the other approach. 
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Even within a single approach, some questions should be directly answerable, such as, 
for example, how small a change in the annual mean CPUE is detectable given the vari-
ation inherent in the available data? Also, does it matter which residual error structure is 
used when conducting a standardization? Thus, the exploration of the limits and limita-
tions of classical methods remains open to the use of such simulated CPUE data. 
 
In practice, using a standardization to condition a statistical model and using that to gen-
erate predicted values for each record in a simulated data set has its own issues. Simply 
generating the predicted CPUE values for each record from a standardization would not 
be sufficient as these would be, as expected, less variable than the observed data to 
which the statistical model was fitted (Figure 59). This is simply a reflection that in 
each record the predicted log(CPUE) or the fitted values, will be mean estimates for 
each combination of level and factors expressed in each record.  
 
 

 
Figure 59. A comparison of the observed log-transformed CPUE for Blue-Eye taken by auto-
line (using only those records with > 10% Blue-Eye by weight relative to the combined weight 
of Blue-Eye and Pink Ling - see Chapter 6) and the fitted values taken from the optimal stand-
ardization from among those considered. The blue curves are normal distributions fitted to the 
histogram counts. The mean of both distributions was -3.116 but the standard deviation of the 
upper plot was 1.1671 and of the bottom plot was only 0.629. The total number of records was 
4,448. 
 

7.2.3   Objectives 
In this chapter we will be using simulated CPUE data in attempts to achieve three objec-
tives:  
 
1. Develop a methodology for reliably simulating single species CPUE data. 
2. Use such simulated data to test whether classical standardization methodologies can 

estimate true annual mean estimates with acceptable precision and without apprecia-
ble bias. 

3. Use such simulated data to test whether alternative analytical strategies generate sig-
nificantly different standardized outcomes. 
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7.3 Methods 
7.3.1  The Standardization used to Condition the Model 
Assuming only records with a complete set of fields will be used in a CPUE standardi-
zation, then each record will have an entry for the catch taken by a given amount of ef-
fort by a particular vessel, in a particular location, depth, month, and year (and any other 
factors included). One way of representing such CPUE data, in terms of catch, C, catch-
ability, q, effort, E, and biomass, Bt, derived from a particular year (t), vessel (V), depth 
(d) category, month (m), and area (A), (and any other factors) would be: 
 

  (0, )
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V A d m t
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σα= ×   (14) 

And in a log-space: 
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α σ= + + + + + +  (15) 

 
For example, a useful model for the Blue-Eye auto-line CPUE data has the form: 
 
  LnCE ~ Year + Vessel + Month + Zone + DepCat + Month:Zone (16) 
 
with the final Month:Zone term being an interaction term which, if significant, would 
suggest that the effect of each Zone on CPUE altered through the seasons. As each new 
factor is included in the standardization the amount of the total variation accounted for 
increases although the changes to the final trend become less and less, with most of the 
final trend becoming established with only the first three factors: Year + Vessel + 
Month (Figure 60). The Vessel factor obviously has a major effect, although the clear 
switch coincides with the end of the Commonwealth Structural Adjustment (Vieira et al, 
2010). Then Month of fishing also has some influence on the trend with its effect 
changing two years after the structural adjustment. The remaining factors appear to only 
have minor and possibly random influences on the trend through time. While the final 
annual trend may be captured by the first three factors (Figure 60 and Figure 61) the 
character of the variation of the fitted values (the predicted Log(CPUE) for each record) 
only stabilizes when more factors are included in the standardization (Figure 62), alt-
hough the residual distribution stabilizes relatively early in the fitting of sequential fac-
tors. 
 
The quality of the model fit using log-normal random residual errors is reasonable. The 
diagnostic qqplot indicates that the residuals are approximately normally distributed 
(fall on the expected transformed line) at least down to residuals of about -1.75. How-
ever, a histogram of the residuals indicates that only about 5% of observations have re-
siduals less than -1.75 (Figure 63). 
 
The form of the equation matters to its interpretation. Equations (14) and (15) imply that 
the observed CPUE for a particular vessel, month, zone, and depth, in a given year will 
be related to the stock wide exploitable biomass (Bt) but modified by the particular 
catchability modifier for each particular vessel, month, zone, and depth (and any other 
factors included along with interaction terms; any factor not included, even potentially 
influential ones, will contribute to the error or random noise component). In each case 
the modifiers, the q values, are distributions of proportions with an expectation of 1.0. 
At heart, the standardization process involves estimating each of these many different q 
values. 
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Figure 60. The top plot illustrates the final model (black) relative to the geometric mean (grey = 
Year alone) and the number in each case represents the sum of the squared differences between 
the two lines. Hence the Vessel factor accounts for much of the final difference between the un-
standardized (grey) and standardized lines (black). The Month plot illustrates the difference be-
tween the LnCE ~ Year + Vessel model (grey) and the Year + Vessel + Month model (black) 
(and so on down the plot). The vertical lines illustrate the scale of difference by year with blue 
indicating the predicted line is above the previous line and red that it is below. 
 
 

 
Figure 61. The % cumulative variance as factors are added to an array of standardizations for 
those fisheries significantly pursued in more than one fishing zone (see Sporcic and Haddon, 
2016); that is, not School Whiting, Royal Red Prawns, or Redfish. 
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Figure 62. The effect on variation in the predicted Log(CPUE) and related residual values as 
more factors are added to the standardization. The top plot illustrates the distribution of the ob-
servations used. The model sequentially increases in complexity from ‘Year’ to ‘Month:Zone’; 
see equation (16). Blue lines are normal distributions fitted to histogram counts. The observa-
tions have a mean of -3.146 and all the fitted models have means of -3.159. Their labels are the 
number of parameters, the factor name, and the standard deviation. As model complexity in-
creases so does the variation accounted for, while the standard deviation of both the fitted values 
and residuals decreases. 
 

 
Figure 63. The distribution of the residuals from the optimum fit. The qqplot on the left-hand 
side indicates a reasonable fit to normality down to residuals of about -1.75. The histogram of 
residuals illustrates the 90% quantiles and so indicates that < 5% of records deviate from nor-
mality at the bottom end.  
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There is assumed to be a recognizable biomass in a given year which implies this is a 
discussion about a recognizable and repeatable stock structure. It also refers only to ex-
ploitable biomass as we are referring to CPUE, which, by definition applies only to the 
biomass available to exploitation rather than, for example, the mature or spawning bio-
mass (which is more often associated with management reference points).  
 

7.3.2  Increasing the Variability of Simulated Data 
The reduction in variability of the residuals and of the predicted CPUE by record (Fig-
ure 62) as more factors are included reflects the fact that the standardization is attempt-
ing to track average effects of the various factors, especially the effects over years (over 
time). The more parameters fitted the more flexibility there will be for predicted values 
and hence residual values, which in turn should allow the variability of the residuals to 
decline as they should be able to match of the observed values more closely. As an 
aside, as more and more factors are added to the model then obviously the number of 
parameters fitted also increases. The extreme end-point would be to estimate a parame-
ter for each observation, which would provide a perfect model fit but no summary con-
cerning trends. One objective in such model fitting is to find the trade-off between the 
minimum number of parameters needed to be fitted that still provides a sufficiently 
good model fit to the data. This is where statistical criteria such as the Akaike’s Infor-
mation Criteria, or the adjusted-r2 are used; each of these balances the number of param-
eters against a measure of the quality of model fit (Burnham and Anderson, 2002; Neter 
et al, 1996). This trade-off is especially important with such models when they are to be 
used for prediction but less so if they are merely to be used to describe the trends in 
CPUE. In the case of using the standardization to generate new simulated sets of CPUE 
records then factors should continue to be added until both the residuals and the pre-
dicted values exhibit relatively well-formed distributions (Figure 62).  
 
For the approach of conditioning a simulation on data from a real fishery to provide re-
alistic simulated CPUE data then a method of increasing the spread of the simulated 
data is needed following the initial standardization (compare the spread of observed 
log(CPUE) with the spread of the final fitted values in Figure 59 and Figure 62). 
 
The simplest approach to increasing the variation of the predicted log(CPUE) values 
would be to add normal random error to the predicted log(CPUE) values in each record 
from equation (15). The standardization outputs are already in log-transformed space so 
adding normal random error is equivalent to including log-normal errors on the back-
transformed values. The mean of the added variation (noise) should be 0, and one needs 
to search for the standard deviation value used to produce the normal random values 
that generates a spread of predicted log(CPUE) that approximates the observed spread 
(Figure 64). If the CPUE values are required these can be obtained by back-transform-
ing the log(CPUE) values using the exponential function. 
 
For a simulation to be useful, after conditioning a statistical model of CPUE for an hy-
pothetical fishery, there is also a need to know the biomass trajectory through time so 
that subsequent explorations of the simulated data can be related back to a known trajec-
tory with known variation. In the examples used here the assumption is made that there 
is a linear relationship between CPUE and exploitable biomass. This assumption could 
be relaxed to examine the effect on analyses of hyper-stability (stable CPUE with de-
clining biomass) or even hyper-sensitivity (CPUE changing more rapidly than biomass). 
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An iterative search can be used to find the optimum standard deviation value to give an 
average difference between the observed log(CE) and the simulated log(CE) that is as 
small as possible. This will involve numerous replicate trials with the final selection be-
ing dependent upon average behaviour. 
 
 
 

 
Figure 64. The top plot is of the log transformed CPUE for all Blue-Eye data from the auto-line 
fishery in the SESSF. The second plot is the same distribution but limited to records containing 
more than 10% Blue-Eye when considering both Blue-Eye and Pink Ling. This is the data used 
in the following analyses. The third plot is the fitted or predicted Log(CPUE) from the typical 
standardization, and the bottom plot is simulated by adding normal random variation (mean = 0, 
standard deviation = 0.984) to the fitted values. 
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7.4 Algorithm for Simulation of CPUE Data 
7.4.1  Pseudocode 
To condition a simulation on a real fishery (the specific example is given in italics): 
1. load the data related to the specific fishery;  

a. in the example take all Blue-Eye records 
2. select the particular data records to be used;  

a. select for auto-line method, in SESSF zones 20, 30, 40, and 50, in depths >= 200m and <= 
600m, between the years 2002 – 2016, with the proportion of the combined Blue-Eye and 
Pink Ling catch that is Blue-Eye being > 0.1, and finally, where each vessel reports from 
the fishery in > 1 year. 

3. conduct the full standardization using the optimum model: Model1;  
a. use equation (16) LnCE ~ Year + Vessel + Month + Zone + DepCat + Month:Zone 

4. Extract the fitted values from the standardization; 
5. Search for the standard deviation of the normal random errors to be added to the fit-

ted values until it matches the observed standard deviation to at least 3 decimals 
places.  

6. Alter the year parameters in the manner required to change the observed trend so as 
to be able to test for the sensitivity to such changes. 

7. Before making any changes run the addition of random variation to the fitted values 
1000 times and determine how often in each year predicted mean values exceed the 
90th percentile prediction intervals (in a one sided test no more than 50% of itera-
tions should exceed these intervals. 

8. Devise the scenarios to be tested and run each test at least 1000 times. 
 

7.4.2  Scenarios Tested 
In all cases the intention is to run each scenario 1000 times and determine whether the 
error rate (deviations above or below the expected prediction intervals) change relative 
to the natural error rate when no changes to the mean year parameters are made. 
 
 
• Adding an upward trend to the last five years 
• Adding a downward trend to the last five years 
• Adding a year of exceptional lowered and increased CPUE in the middle of the 

time-series 
• Generating log-normal fitted values but fitting standardization models using Gamma 

errors. 
 
There does not appear to be an obvious means of simulating effort creep using an ap-
proach akin to that described here. What would be required is a way to increase the 
catchability rather than the parameter values for the year levels. In other words, use 
equation (14) or (15) to generate the same CPUE values even when the biomass values 
were reduced. Currently we have no algorithm for doing this. 
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7.5 Results 
7.5.1   Increasing the Variance of Fitted Values 
The optimum model fit to the available data involves using standard R functions as de-
scribed in 6.5 Appendix: R code used to Conduct Standardizations. 
 
 

 
Figure 65. The optimum model fit using 4858 observations of Blue-Eye taken by auto-line in 
SESSF zones 20, 30, 40, and 50 in depths between 200 – 600 m from 2002 – 2016 (Table 30). 
 
 
Table 30. The summary results for the sequence of models fitted to the Blue-Eye 
auto-line data.  Even though Zone, DepCat, and the interaction term Month:Zone 
have very little influence on the final trend of yearly CPUE indices (Figure 60) they 
each improve the model fit markedly, especially the interaction term. The RSS is re-
sidual sum of squared, MSS is Model sum of squares, Nobs is number of observa-
tions, and adj_r2 is the adjusted r2. 

 Year Vessel Month Zone DepCat Month:Zone 
AIC 1734.392 1004.630 742.005 731.157 725.318 604.592 
RSS 6899.640 5908.017 5571.818 5552.528 5527.622 5319.190 
MSS 650.739 1642.362 1978.561 1997.851 2022.757 2231.189 
Nobs 4858 4858 4858 4858 4858 4858 
Npars 15 27 38 41 49 82 
adj_r2 8.354 21.331 25.638 25.850 26.059 28.356 
%Change 0 12.976 4.307 0.211 0.210 2.296 

 
  
The fitted values of the log(CPUE) form a relatively clean normal distribution (Figure 
64). The variation of these values can be increased appropriately, so as to condition the 
model onto the Blue-Eye auto-line fishery, by iteratively searching for a standard devia-
tion that leads to the closest match between the standard deviation of the simulated 
log(CPUE) and that of the observed log(CPUE) values (Figure 66). The R-code used is 
provided in 7.7 Appendix: R-code used in Simulations. 
 
 
The fitted values are the basis of subsequent simulations. Each iteration of a simulation 
will entail adding normal random errors to the fitted values and then proceeding to any 
analysis. 
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Figure 66.  5000 differences between simulated record by record log(CE) data and the original 
observed log(CE) data used to condition a statistical model. The mean difference of the overall 
means across 5000 replicates was approximately 0.0, and was very small between the spread of 
the differences, when the standard deviation of the normal random errors added to each record 
was set to 1.04726 
 

7.5.2   Bias and Precision  
Only including records where Blue-Eye constitute >10% of the combined Blue-Eye and 
Pink Ling catch is an approximate way of focussing the analysis on the targeted fishery 
for Blue-Eye. Thus, as an example, we will use the trimmed Blue-Eye data taken by 
auto-line described in 6.3.6 The Standardization of Blue-Eye on page 96 and already 
used in the Introduction and Methods sections in this chapter (e.g. Figure 43, Figure 59 
and Figure 62).  
 
Using the fitted values from the standardization of the trimmed data a comparison was 
made between the outcome when using the addition of random normal errors to the rec-
ord-by-record fitted values in a Monte Carlo analysis and the outcome when using boot-
strap samples from the residuals which were then added to the fitted values. In each case 
the same statistical model was then fitted, and the whole process repeated 1000 times. 
In all cases the bootstrap samples were the same size as the number of residuals (Figure 
67). The outcomes in both cases were very similar and only slight differences were ex-
hibited by just a few replicates.  
 
When the quantiles from each set of 1000 replicates were compared only slight differ-
ences were found between them of generally less than 1% of the Monte Carlo value 
(Table 31). In subsequent analyses only the addition of random normal errors was used 
to generate simulated observed values. 
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Figure 67.  1000 replicates of adding normal random error to the fitted record-by-record 
values from the standardization depicted in Figure 65 to generate a simulated data set. 
Each of those data sets is then standardized and each replicate standardization is de-
picted by a grey line (top panel). The optimum model is a black line beneath the blue 
line, which is the 50% quantile of the 1000 standardizations. The red lines are the 95% 
quantiles. The lower panel is almost identical to the upper panel but the simulated data 
was obtained using a bootstrap process on the model residuals. 
 
 
Table 31. The percentage difference obtained by subtracting the Monte Carlo quan-
tiles from the bootstrap quantile and dividing by the bootstrap quantile for each of the 
quantiles estimated: 100 * (B – M)/B. The quantiles are listed in the top row at 2.5%, 
5%, 50%, 95%, and 97.5%. 

Year 0.025 0.05 0.5 0.95 0.975 
2002 0.654 0.367 0.337 -0.727 0.796 
2003 -0.223 0.189 0.412 0.318 -0.491 
2004 0.256 0.023 0.094 0.134 0.020 
2005 0.190 -0.113 0.332 0.028 -0.560 
2006 -0.422 -0.827 -0.390 -0.840 -0.968 
2007 -1.046 -1.534 -0.010 -0.612 -1.330 
2008 -1.019 -0.719 -0.171 -0.345 -0.368 
2009 -0.089 0.422 0.048 0.301 0.298 
2010 -0.032 -0.049 -0.450 0.089 -0.178 
2011 -1.115 -1.070 -0.235 0.358 1.707 
2012 -0.010 -0.018 0.216 -0.631 -0.649 
2013 0.111 0.295 0.375 -0.535 -1.024 
2014 1.021 0.053 0.233 1.392 1.595 
2015 -0.122 0.732 0.071 -1.281 0.078 
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7.5.3   Repeatability of Simulated CPUE Data 
The original statistical model was copied and the variance of the fitted values was in-
creased in the copy so as to maintain the original for on-going use (Figure 66). Then, to 
test for the natural error-rate the year parameters were multiplied by 1.0 (so as to make 
no change). The simulated data was then generated 1000 times and a new standardiza-
tion fitted to that simulated-observed CPUE data. The proportion of replicates that ex-
ceeded the prediction interval was tabulated (Table 32) and the 90th percentile bounds 
of the 1000 replicate analyses plotted to determine the overlap with the original stand-
ardization (Figure 68). 
 

 
Figure 68.  1000 replicate standardization trajectories estimated from 1000 time-series of simu-
lated-observed CPUE data which have had no changes made to the annual parameters. The den-
sity of blue reflects the density of lines. The black line is the original standardization. The red 
lines are the median of the 1000 replicates (thicker, on top of the black line) along with the 90th 
prediction intervals (5% - 95% quantiles; expected range given the variation in the data). 
 

Table 32. The proportion of 1000 replicate standardizations that lie above or be-
low the 90th percentile prediction intervals of the original standardization. The var-
iance of the fitted values from which the simulated data was formed was randomly 
inflated by a normal random value with StDev 1.04726 (Figure 66). Mean of Low 
= 0.04657, mean of High = 0.44857 

Year Error Rate Low Error Rate High Multiplier log(mult) 
2002 0 0 1 0 
2003 0.043 0.045 1 0 
2004 0.048 0.039 1 0 
2005 0.041 0.045 1 0 
2006 0.044 0.044 1 0 
2007 0.047 0.046 1 0 
2008 0.045 0.055 1 0 
2009 0.055 0.040 1 0 
2010 0.046 0.043 1 0 
2011 0.039 0.043 1 0 
2012 0.045 0.038 1 0 
2013 0.042 0.036 1 0 
2014 0.042 0.049 1 0 
2015 0.060 0.055 1 0 
2016 0.055 0.050 1 0 
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The expected error rate when using the 90th prediction intervals is 5% above and 5% 
below (Table 32), so the statistical models are behaving as they should. The mean error 
rates vary depending on the pseudo random numbers used. But repeated trials vary with 
typical values between 0.044 – 0.053. As expected the median of the 1000 replicate stand-
ardizations essentially lays on top of the expected original mean trend (Figure 68). 
 

7.5.4   Add a trend in Last Five Years 
In the time-series from 2002 – 2016 an increasing trend was applied from 2012 – 2016 
(Table 33). 
 
Table 33. Empirical error rate from 1000 replicate samples where a model’s fitted 
values have been randomly inflated by a normal random value with StDev = 
1.04726. Mean values are no longer meaningful. The values refer to Figure 69. 

Year Lower Error Rate Upper Error Rate Multiplier log(Multiplier) 
2002 0 0 1 0 
2003 0.057 0.057 1 0 
2004 0.051 0.056 1 0 
2005 0.039 0.045 1 0 
2006 0.053 0.054 1 0 
2007 0.052 0.058 1 0 
2008 0.047 0.046 1 0 
2009 0.046 0.046 1 0 
2010 0.038 0.051 1 0 
2011 0.043 0.042 1 0 
2012 0.008 0.145 1.08 0.0770 
2013 0.001 0.310 1.16 0.1484 
2014 0.001 0.483 1.24 0.2151 
2015 0 0.660 1.32 0.2776 
2016 0 0.745 1.40 0.3365 

 
 

 
Figure 69. The effect on error rate of including an upward trend on the year parameters (see Ta-
ble 33). The black line represents the original un-altered standardized means, which lie outside 
the 90th percentiles in 2015 and 2016.. 
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The change in the general CPUE trend becomes apparent immediately in 2012 but only 
becomes significant (at P = 0.9) after 2014 (Figure 69) after which the 90th prediction 
interval lies above the original mean trajectory. 
 

7.5.5   Add a Downward Trend to the Last Five Years. 
In the time-series from 2002 – 2016 a decreasing trend of a smaller scale than the previ-
ous increasing trend was applied from 2012 – 2016 (Table 34Table 33). 

 
Table 34. Empirical error rate from 1000 replicate samples where a model’s fit-
ted values have been randomly inflated by a normal random value with StDev = 
1.04726. Mean values are no longer meaningful. The values refer to Figure 
70Figure 69. 

Year Lower Error Rate Upper Error Rate Multiplier log(Multiplier) 
2002 0 0 1 0 
2003 0.062 0.055 1 0 
2004 0.056 0.054 1 0 
2005 0.061 0.056 1 0 
2006 0.062 0.055 1 0 
2007 0.062 0.049 1 0 
2008 0.052 0.056 1 0 
2009 0.050 0.053 1 0 
2010 0.054 0.054 1 0 
2011 0.043 0.051 1 0 
2012 0.124 0.013 0.94 -0.0619 
2013 0.282 0.004 0.88 -0.1278 
2014 0.473 0.003 0.82 -0.1985 
2015 0.677 0 0.76 -0.2744 
2016 0.776 0 0.7 -0.3567 

 

 
Figure 70. The effect on error rate of including a downward trend on the year parameters (see 
Table 34). 
 
The effect of the downward trend on the year parameters is much more marked than the 
upward trend. To gain essentially the same impact the absolute change in the multiplier 



 

Improving Catch Rate Standardizations |  135 

in the downward direction must be less. Note the maximum change of 1.4 upwards led 
to an upper error rate of about 0.745, whereas a change down to 0.7 led to an lower er-
ror rate of about 0.776 (compare Table 33 with Table 34). This is simply a reflection of 
the log-transformation. The same pattern in the significant deviation from the original 
trend is also observed, only this time bellow the trend rather than above (Figure 70). 

7.5.6   The Effect of Single Exceptional CPUEs 
 
By placing exceptional annual CPUE values in the 2008 and 2012 positions within the 
time-series, with both reduced and increased values, the impact of single unusual events 
can be examined (Table 35; Figure 71). 
 
Table 35. Empirical error rate from 1000 replicate samples where a model’s fit-
ted values have been randomly inflated by a normal random value with StDev = 
1.04726. Mean values are no longer meaningful. The values refer to Figure 71. 

Year Lower Error Rate Upper Error Rate Multiplier log(Multiplier) 
2002 0 0 1 0 
2003 0.047 0.045 1 0 
2004 0.048 0.048 1 0 
2005 0.048 0.044 1 0 
2006 0.044 0.041 1 0 
2007 0.049 0.046 1 0 
2008 0.783 0.000 0.75 -0.2877 
2009 0.054 0.044 1 0 
2010 0.043 0.035 1 0 
2011 0.047 0.045 1 0 
2012 0.001 0.574 1.25 0.2231 
2013 0.055 0.043 1 0 
2014 0.051 0.051 1 0 
2015 0.048 0.043 1 0 
2016 0.037 0.052 1 0 

 

 
Figure 71. The effect on error rate of including a downward change in 2008 and an upward 
change in 2012 on the year parameters (see Table 35).  
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The effect of the singular events only influences the years with modified parameters, 
there is no lagged effects in subsequent years (Table 35). While it is possible to see the 
effect of the 25% deviation of the median line from the original standardization in the 
years altered, when considering 1000 replicates, the difference is large enough in both 
cases to push the 90% prediction interval of the simulated estimates beyond the original 
mean estimate (Figure 71).   

7.5.7  Standardize using Gamma Errors 
Randomized log-normal errors are included but with the multipliers all set to the one. 
The standardization, however, is conducted on the back transformed CPUE using 
Gamma errors in a GLM, using a log-link. 1000 replicates generated lower and upper 
error rates almost double that of the unadjusted log-normal standardizations (Table 36). 
 
Table 36. Empirical error rate from 1000 replicate samples where the log-normal 
error structured data were standardized using Gamma errors on the CE data with 
a  log-link. The mean estimates were 0.0982 and 0.09779 for the lower and upper 
error rates respectively. The values refer to Figure 72. 

Year Lower Error Rate Upper Error Rate Multiplier log(Multiplier) 
2002 0.000 0.000 1 0 
2003 0.088 0.101 1 0 
2004 0.092 0.099 1 0 
2005 0.095 0.102 1 0 
2006 0.084 0.106 1 0 
2007 0.096 0.098 1 0 
2008 0.104 0.111 1 0 
2009 0.098 0.098 1 0 
2010 0.099 0.106 1 0 
2011 0.104 0.093 1 0 
2012 0.106 0.093 1 0 
2013 0.094 0.090 1 0 
2014 0.103 0.094 1 0 
2015 0.100 0.092 1 0 
2016 0.113 0.085 1 0 

 

 
Figure 72. The effect on error rate of using Gamma errors on CE data with a log-link for the 
standardization (see Table 36). The Gamma fitted models are compared to the 90% prediction 
intervals for the original log-normal linear model (the red bars). The yellow lines are the 5%, 
50% and 95% quantile of the simulated standardizations.  
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The general trend obtained from using the Gamma error model on the back-transformed 
CPUE data (using the log-link in the GLM) generates CPUE trajectories of the same 
overall general trend with trivial within year deviations. However, the Gamma error ap-
proach appears to be noisier when given log-normally distributed data with wider pre-
diction intervals.  
 

7.5.8   The Comparison of the Original with the Gamma Fitted Model 
 
When the original log-normal standardization of Blue-Eye was compared with the 
Gamma error Generalized Linear Model on CPUE with a log-link there were large dif-
ferences exhibited (Figure 50, on page 105). Once the data are trimmed of the lower 
proportion Blue-Eye shots (that mostly contain Pink Ling) the log-transformed CPUE 
data become rather more normally distributed and this has a marked effect on both 
standardizations. 
 

 
Figure 73. A comparison of the log-normal standard (black line with red confidence intervals) 
with the Gamma Error GLM fit on CPUE (blue line), illustrating the increased similarity be-
tween these two approaches when using more log-normally distributed log(CPUE). 
 
 
There remain some differences in particular years, for example, 2013, 2015, and 2016. 
While the removal of records containing less than 10% of Blue-Eye relative to Pink 
Ling did have a normalizing effect on the combined data when the log(CPUE) is in-
spected by year (Figure 74) there are obvious deviations from normality especially in 
some years. Not all years with relatively low numbers of records and not particularly 
normal distributions (e.g. 2002) lead to discrepancies between the two trajectories. But 
those strongly affected by the rounding of catches or effort leading to strong spikes in 
the CPUE relatively often exhibit discrepancies between the Gamma Error model and 
the log-normal model.  
 
Despite such deviations, the general trend remains the same. Where differences do arise 
is with the implied variability of the Gamma Errors simulation models, which is ex-
pressed as being more variable that the log-normally distributed model (which behaved 
appropriately under simulation (section 7.5.3 on page 132). 
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Figure 74. A histogram of each year’s log(CPUE) distribution. Each plot is labelled 
with the year and the number of observations. 
 
Table 37. Comparison of the original Gamma error and log-normal standardiza-
tions with the median of the simulated standardizations. 

Year OrigGamma OrigLogN medianSim GammvsLog LogvsSim 
2002 1.2435 1.1522 1.1539 -7.93 -0.147 
2003 1.0536 1.0086 1.0108 -4.46 -0.215 
2004 0.9368 0.8875 0.8889 -5.55 -0.156 
2005 0.8429 0.8296 0.8377 -1.61 -0.978 
2006 0.8075 0.7881 0.7924 -2.46 -0.539 
2007 1.3317 1.2993 1.3021 -2.49 -0.211 
2008 0.9501 0.9493 0.9492 -0.08 0.009 
2009 0.7330 0.8886 0.8922 17.51 -0.409 
2010 0.7678 0.8561 0.8518 10.31 0.513 
2011 0.8310 0.8271 0.8271 -0.47 0.004 
2012 0.9397 0.9128 0.9122 -2.95 0.060 
2013 0.9556 0.9266 0.9211 -3.13 0.597 
2014 1.2946 1.2547 1.2548 -3.18 -0.007 
2015 1.2469 1.3834 1.3742 9.87 0.667 
2016 1.0653 1.0360 1.0317 -2.83 0.410 

 
While there were relatively large deviations between the original log-normal and the 
Gamma error standardizations from a minimum of about -0.5% up to 17.5%, with the 
median simulated standardizations using Gamma errors the range was only from 
0.004% up to -0.978%. 
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The simulated data from the log-normal standardization appears to be better behaved in 
terms of normality than the original (compare Figure 75  with Figure 74). The inclu-
sion of normal random errors onto the fitted values has retained some of the spikiness 
resulting from the rounding of the original data but has still smoothed the distributions 
in each year and improved their log-normality. 
 

 
Figure 75. A histogram of a single simulation’s log(CPUE) distribution for each year. 
Each plot is labelled with the year and the number of observations. The number of ob-
servations will always be the same as in the original data. 
 
 
 

7.6 Discussion 
The simulation of realistic CPUE data is more difficult that hoped but by modifying fit-
ted yearly parameters and increasing the variation of the fitted values it is possible to 
generate plausible simulated CPUE data that follows a predetermined annual trajectory.  
 
When the variability of the annual mean estimates is not shrunk by having 100,000s of 
records, as with Flathead, then relatively large deviations from the median trends are re-
quired to detect significant differences from the overall trend.  
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7.6.1   Repeatability of Simulated CPUE Data 
When no changes are made to the data but the variation of the simulated (predicted) log-
transformed CPUE values is expanded to match the variation in the original observa-
tions, when 1000 replicates are run the simulated data generated behaves as it is ex-
pected to with, on average, 90% of the replicates falling between the 90% prediction in-
tervals. This implies that the simulation process does not introduce bias to the outcome 
and the precision of the annual mean estimates remains the approximately the same. 
This result is reflected in the comparison of the simulated data with bootstrap samples 
from the residuals of the original standardization.  
 
This implies that when deviations from the original standardized trajectory, or the 90% 
prediction intervals, are observed following some treatment of the statistical model’s 
annual parameters this is a reflection of that interference. 
 

7.6.2   A Cumulative Change in Last Five Years 
Both an increasing and a decreasing trend were applied to the estimated annual year pa-
rameters to determine the relative sensitivity to such trends. That the downward trend 
was more influential or sensitive than the upward trend is not surprising given that when 
dealing with log-transformed CPUE such changes are proportional (hence a 40% in-
crease is smaller than a 40% decrease). This is why a 30% downward trend was able to 
generate about the same absolute change in error rate and lead to the median simulated 
mean exceeding the 90% prediction interval of the original CPUE trend as a 40% in-
creasing trend. The change needed to be significantly different (in terms of breaching 
the 90% prediction intervals) was about an 18 - 20% change. But this would be idiosyn-
cratic to the particular analysis being used in the illustration, being reflective of the orig-
inal variation in the observed data.  
 
This raises the issue of what it means to be significantly different. The classical notion 
of using the confidence with which the annual mean estimates are made when compar-
ing mean trends becomes questionable when the precision of such estimates is a direct 
function of the number of observations and, as seen with flathead. When there are 
270,000+ records across 30 years (an average of 9000 records a year) the classical con-
fidence intervals are often so tight that they can be difficult to distinguish from the mean 
plotted point. This is why here we have been considering the spread of values observed 
and finding the 90th percentile interval (the prediction interval).  
 
It means that what constitutes a significant difference between two CPUE trends is diffi-
cult to determine when an appropriate measure of variation around the mean estimates 
is unavailable. This issue stems in part from the serially correlated nature of CPUE data. 
The statistical analyses used assume each year’s data is an independent sample and that 
the factors used in the standardization are independent. Both of these assumptions are 
incorrect. For CPUE to be useful as an index of relative abundance then it needs to re-
flect stock abundance in some way. As a stock’s abundance is serially correlated 
through time this implies that any CPUE will also be serially correlated (in fact, this 
may not be the case with species having very short life-spans such as some squid and 
other small rapidly living species). It is also very common for correlations between fac-
tors in any standardization to sometimes be very high, which sometimes can be ac-
counted for by interaction terms, but oft-times, when correlations are strongly non-lin-
ear, interaction terms are insufficient. 
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The independence of individual years is also illustrated by the lack of any lag effects 
following interventions on single year parameters. Unless such changes are due to exter-
nal events that are not accounted for in the standardization, one would expect a surge in 
abundance to trail into subsequent years. On the other hand, it is possible to oceano-
graphic events to influence the availability to some species and this can lead to a surge 
or a decline in CPUE in a particular year. In effect those simulations demonstrated that 
the years are indeed treated separately, and singular events, which affect availability ra-
ther than abundance, can be confusing when interpreting CPUE trends through time. 

7.6.3   The Use of Gamma Errors on CPUE 
When log-normally distributed simulated data was modelled using a Generalized Linear 
Model on CPUE with Gamma Errors and a log-link the median trend of the 1000 repli-
cates was essentially the same as the original standardized trend when using the log-nor-
mal errors. This was despite the original Gamma Error model differing from the log-
normal statistical model in minor ways (Figure 73). Importantly, when approximately 
log-normally distributed CPUE data is analysed using Gamma errors the overall vari-
ance exhibited by the outcome tends to be rather higher than if log-normal errors are 
used.  
 
This increased variability may be a reflection of using the CPUE without log-transfor-
mation. While it is true that the Gamma Error statistical model uses a log-link to relate 
the mean or the predicted values with the mean of the observed values. The log-trans-
formation acts directly to stabilize the variance of the CPUE as well as connecting the 
mean of the observations with the predicted values (Venables and Dichmont, 2004).  
Venables and Dichmont (2004) provide a detailed discussion of the differences, nega-
tives, and positives of using either the “transformation approach” (log-normal errors) 
relative to using Gamma errors. As they conclude: 
 
“In our experience, the transformation approach is often more realistic for catch rate 
data, particularly since the gamma distribution has a much thinner upper tail than the 
lognormal. Very fat upper tails are often a feature of catch rate distributions. Another 
way of looking at this is to note that the error term also acts multiplicatively on the re-
sponse for the transformation model. For the gamma model, the fixed factors do so, but 
the error term, which is not simply added to the linear predictor in this case, does not. 
On the transformed scale, diagnostics are certainly simpler and easier to appreciate.” 
(Venables and Dichmont, 2004, p 324). 
 
The Blue-Eye data, before the removal of the records containing less than 10% Blue-
Eye relative to Pink Ling, illustrates well that as the observed data used strays further 
from the assumption of log-normality then the two approaches compared differ more 
and more. Even though differences between the two approaches remained when analys-
ing the trimmed data the trends were closer to coincident than when using the un-
trimmed data. Close attention to the diagnostics for any analysis remains important.  
 
With CPUE standardization, usual fisheries data has many features that compromise the 
assumptions behind any analysis. This is especially the case in mixed fisheries where 
the CPUE for a particular target species may be compromised by the fishers setting their 
gear in such a way as to capture a mixture of species rather than targeting a single spe-
cies. When that factor is added to the many other sources of variation it becomes clear 
that how best to handle the CPUE standardization of mixed fisheries remains one of the 
major problems in CPUE standardization.   
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7.7 Appendix: R-code used in Simulations 
See 6.5 Appendix: R code used to Conduct Standardizations for the R-functions 
called in the following 
 
wkdir <- getwd() 
resdir <- paste0(wkdir,"/results/") 
options("show.signif.stars"=FALSE,"stringsAsFactors"=FALSE, 
        "max.print"=50000,"width"=240) 
library(codeutils) 
library(r4cpue) 
library(r4maps) 
source("C:/A_CSIRO/Rcode/CPUEExplore/utils/extra_utils.R") 
source(paste0(wkdir,"/final_simulation_utils.R")) 
 
# Use BluePink data ---------------------------------------  
spsB <- read.csv("bluepink.csv",header=TRUE) 
dim(spsB) 
head(spsB) 
properties(spsB) 
dim(spsB) 
pickrec <- which((spsB$Year > 2001) & (spsB$Year < 2017) & 
                    (spsB$Zone %in% c(20,30,40,50)) & 
                    (spsB$propB > 0.1)) 
spsA <- droplevels(spsB[pickrec,]) 
dim(spsA) 
# Count the number of years in the fishery 
spsA <- addcount(spsA,"Vessel") 
pickV <- which(spsA$count > 1) 
sps1 <- droplevels(spsA[pickV,]) 
dim(sps1) 
properties(sps1) 
# Model1 Standardization ---------------------------------------------------- 
splabel <- "BlueEyeAL" 
savefile <- FALSE 
labelM <- c("Year","Vessel","Month","Zone","DepCat","Month:Zone") 
 
years <- 2002:2016 
table(sps1$Year) 
 
sps2 <- makecategorical(labelM,sps1) # convert variables to factors 
mods <- makemodels(labelM) 
out1 <- standLM(mods,sps2,splabel) 
out1$WhichM 
model1 <- out1$optModel 
lmgeo <- out1$Results[,1] # lm standardized geometric mean 
answer1 <- getfact(out1,"Year") 
rownames(answer1) <- years 
 
plotprep() 
plotstand(out1,bars=TRUE) 
 
plotprep(height=7) 
impactplot(out1,mult=4) 

 
plotprep(width=7,newdev=FALSE) 
qqdiag(model1) 

 
# FIND BEST STDEV ---------------------------------------- 
# prepare simulation ------------------------------------------------- 
columns <- c(labelM[1:5],"Depth","Long","Lat","CE","LnCE") 
sps0 <- sps1[,columns] 
nsim <- length(sps0$LnCE) 
sps0$sim <- NA 
set.seed(12345) 
 
# Find required sd --------------------------------------------------- 
# Diff Obs vs Predicted  
plotprep(height=4.5,newdev = FALSE) 
stdev <- 1.047   # alter this by trial and error to find the closest matching sd 
sps0$sim <- model1$fitted.values + rnorm(nsim,mean=0,sd=stdev) 
 
par(mfrow=c(2,1),mai=c(0.25,0.45,0.05,0.05),oma=c(1.0,0,0.0,0.0))  
par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)  
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bins <- seq(-9.0,2,0.125) 
outh <- hist(sps0$LnCE,breaks=bins,col=2,border=1,main="") 
ans1 <- addnorm(outh,sps0$LnCE,inc=0.1) 
lines(ans1$x,ans1$y,lwd=2,col=5) 
text(-9,150,"Observations",cex=1.1,font=7,pos=4) 
text(-9,100,paste0("Mean  = ",round(ans1$stats[1],3)),cex=1.1,font=7,pos=4) 
text(-9,50,paste0("StDev = ",round(ans1$stats[2],3)),cex=1.1,font=7,pos=4) 
outf <- hist(sps0$sim,breaks=bins,col=2,border=1,main="") 
ans2 <- addnorm(outf,sps0$sim,inc=0.1) 
lines(ans2$x,ans2$y,lwd=2,col=4) 
lines(ans1$x,ans1$y,lwd=2,col=5) 
text(-9,150,"Fitted Values",cex=1.1,font=7,pos=4) 
text(-9,100,paste0("Mean  = ",round(ans2$stats[1],3)),cex=1.1,font=7,pos=4) 
text(-9,50,paste0("StDev = ",round(ans2$stats[2],3)),cex=1.1,font=7,pos=4) 
mtext("Log(kg/hook)",side=1,outer=T,line=-0.1,font=7,cex=1.0)  
 
cat(ans1$stats,range(sps0$LnCE),"\n") 
cat(ans2$stats,range(sps0$sim),"\n") 

 
# PLOT THE OPTIMUM STDEV ------ 
reps <- 5000 
resultM <- numeric(reps)   
resultSD <- numeric(reps) 
origM <- ans2$stats[1] 
origsd <- ans2$stats[2] 
stdev <- 1.04726 
for (i in 1:reps) { 
   sim <- model1$fitted.values + rnorm(length(model1$fitted.values),mean=0,sd=stdev) 
   outh4 <- hist(sim,breaks=seq(-12,4.0,0.1),plot=FALSE) 
   ans4 <- addnorm(outh4,sim) 
   resultM[i] <- origM - ans4$stats[1] 
   resultSD[i] <- origsd - ans4$stats[2] 
} 
 
plotprep(height=5.0,newdev=FALSE) 
par(mfrow=c(2,1),mai=c(0.45,0.45,0.05,0.05),oma=c(0.0,0,0.0,0.0))  
par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)   
outhM <- hist(resultM,main="",col=2,breaks=40, ylab="Frequency", 
              xlab="Difference between Means") 
ans <- addnorm(outhM,resultM,inc=0.0005) 
lines(ans$x,ans$y,lwd=2,col=4) 
out <- ans$stats 
round(out,10) 
abline(v=ans$stats[1],col=3,lwd=2) 
ymax <- max(outhM$counts,na.rm=TRUE) 
xmin <- min(outhM$breaks) 
text(xmin,0.9*ymax,paste0("Avdiff = ",round(mean(resultM,na.rm=TRUE),5)), 
     cex=1.1,font=7,pos=4) 
text(xmin,0.7*ymax,paste0("stdev = ",stdev),cex=1.1,font=7,pos=4) 
 
outhS <- hist(resultSD,main="",col=2,breaks=40, ylab="Frequency", 
              xlab="Difference between StDevs") 
ansS <- addnorm(outhS,resultSD,inc=0.0005) 
lines(ansS$x,ansS$y,lwd=2,col=4) 
outS <- ansS$stats 
round(outS,10) 
abline(v=ansS$stats[1],col=3,lwd=2) 
ymax <- max(outhS$counts,na.rm=TRUE) 
xmin <- min(outhS$breaks) 
text(xmin,0.9*ymax,paste0("meandiff = ",round(mean(resultSD,na.rm=TRUE),5)), 
     cex=1.1,font=7,pos=4) 
text(xmin,0.7*ymax,paste0("stdev = ",stdev),cex=1.1,font=7,pos=4) 
 
# DO SIMULATION --------------------------------------------------------- 
#modify model coeff ----- 
inmod <- model1 
 
loccoeff <- grep("Year",names(inmod$coefficients)) 
ncoef <- length(loccoeff) 
mult <- rep(1,14) 
if (length(mult) != 14) stop(cat(length(mult)," mult is wrong length")) 
inmod$coefficients[loccoeff] <- (inmod$coefficients[loccoeff] + log(mult)) 
mult <- c(1,mult) 
 
stddev <- 1.04726 
years <- 2002:2016 
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nyrs <- length(years) 
 
# loop the simulation -------------- 
labelM <- c("Year","Vessel","Month","Zone","DepCat","Month:Zone") 
splabel <- ("Blue_Eye_Sim") 
yearfact <- getfact(model1,"Year") 
original <- yearfact[,"Coeff"] 
origse <- yearfact[,"SE"] 
reps <- 1000 
 
columns <- c("residSE","MultR2","AdjR2","Fval","df1","df2") 
statout <- matrix(0,nrow=reps,ncol=length(columns),dimnames=list(1:reps,columns)) 
results1 <- matrix(0,nrow=reps,ncol=nyrs,dimnames=list(1:reps,years)) 
scaleres <- matrix(0,nrow=reps,ncol=nyrs,dimnames=list(1:reps,years)) 
 
for (i in 1:reps) { 
   spsS <- sps1 
   spsS$LnCE <- predict(inmod) + rnorm(length(spsS$LnCE),mean=0,sd=stddev) 
   sps3 <- makecategorical(labelM,spsS) # convert variables to factors 
   mods <- makemodels(labelM) 
   outS <- standLM(mods,sps3,splabel,console=FALSE) 
   modelS <- outS$optModel 
   smod <- summary(modelS) 
   statout[i,] <- c(smod$sigma,smod$r.squared,smod$adj.r.squared, 
                    smod$fstatistic) 
   outcoef <- getfact(modelS,"Year") 
   results1[i,] <- outcoef[,"Coeff"] 
   scaleres[i,] <- outcoef[,"Scaled"]   
   if ((i %% 25) == 0) cat(i,"\n") 
} 
 
plotprep(width=7,height=5,newdev=FALSE) 
plot(years,original,type="l",lwd=2,ylim=c(0,2.2),panel.first=grid(), 
     xlab="",ylab="Original and Simulated Standardized CPUE") 
Zmult <- -qnorm((1-(90/100))/2.0) 
lower <- original * exp(-Zmult*origse) 
upper <- original * exp(Zmult*origse) 
for (i in 1:reps) lines(years,results1[i,],lwd=1,col=rgb(0,0.5,1,1/5)) 
lines(years,original,lwd=3,col=1) 
qs <- apply(results1,2,quants) 
lines(years,qs["50%",],lwd=2,col=2) 
lines(years,qs["5%",],lwd=1,col=2) 
lines(years,qs["95%",],lwd=1,col=2) 
# arrows(x0=years[-1],y0=lower[-1],x1=years[-1],y1=upper[-1], 
#        length=0.035,angle=90,col=2,lwd=2,code=3) 
# abline(v=c(2007.8,2011.8),col=3) 
 
pgtupper <- numeric(nyrs) 
pltlower <- numeric(nyrs) 
for (i in 2:nyrs) { 
   pgtupper[i] <- length(which(results1[,i] > upper[i])) 
   pltlower[i] <- length(which(results1[,i] < lower[i])) 
}   
proplower <- (pltlower/reps); mean(proplower[2:15]) 
prophigher <- (pgtupper/reps); mean(prophigher[2:15]) 
toXL(cbind(years,proplower,prophigher,mult,log(mult))) 
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8 Guidelines for using CPUE data in Assessments 

8.1   Introduction 
Much of the material in this concluding chapter should appear to be extremely obvious 
to any practitioner of statistical standardization. Nevertheless, it bears writing because 
very often in reports on CPUE standardization clear statements of tasks undertaken, data 
selection criteria used, assumptions made, diagnostics reviewed, and analyses con-
ducted are not all explicitly included. It is possible that because these analyses eventu-
ally become treated as routine such requirements for details become relaxed. This is, of 
course, an error and not merely on the part of the analyst. It is a mistake because in all 
cases the analyses should always be defensible and the best way of defending an analy-
sis is to allow it to be repeated. There is a growing move towards automated document 
generation (Xie et al., 2018) which can include the analytical code used to conduct anal-
yses. For example, Haddon and Sporcic (2017) was generated using such an Rmark-
down file (sessf-cpue.Rmd). Anyone with access to the data files and that .Rmd file 
should be able to completely repeat the whole document. Despite this automation each 
species/fishery in Haddon and Sporcic (2017) is given individual treatment and custom-
ization as reflects the idiosyncrasies of each fishery. Such documents can be repeated 
and improved through constructive criticism each time the standardizations are needed 
to be repeated or updated with new data. The emphasis with such an approach is on the 
repeatability, it is important to understand that there remains a need to provide individ-
ual attention to each fishery to account for the very many differences and individualistic 
properties of each situation. 
 
An important point that needs emphasis is that an appropriate analysis of CPUE data 
can take a great deal of time. The initial data exploration, the trialling of alternative sta-
tistical models, alternative error structures and the many different options available can 
involve many days of effort or longer. Often such time is not made available and this 
constitutes a threat to any such analysis. The trade-offs between the value of the fishery 
concerned and any risks an invalid analysis may lead to should be considered when con-
ducting an analysis in a time-constrained situation. 
 

8.1.1   First Step: Data Exploration 
Attempting to write guidelines for using CPUE data in stock assessments is an ambi-
tious and potentially condescending undertaking. Each fishery of substance invariably 
has idiosyncrasies that ideally require individual attention and special treatment. To 
generate guidelines to cover all eventualities may not even be possible. Nevertheless, an 
attempt will be made here which, it is hoped, could form the basis for others to improve 
upon, with the final aim of improving the standard of practice with regard to CPUE 
standardization. From what has been illustrated in previous chapters it seems clear that 
no single approach to conducting CPUE standardization is the “best” way, and perhaps 
the best guideline is to assert that any statement that claims that approach “XYZ” is al-
ways the best way is very likely wrong. A more congenial manner of stating that is to 
claim that generalities are difficult to make when discussing CPUE standardization. 
 
Despite such difficulties if catch and effort data are available for a fishery then before 
their use for anything, the stock assessment scientist has a need to understand their 
strengths, weaknesses, and as much about their properties as time permits. Initially each 
data-set of fisheries catch and effort data needs to be treated in an exploratory and adap-
tive manner. Until its characteristics are better known decisions concerning about how 
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best to use such data should not be made. It may be found that the data previously 
thought to form a coherent and consistent whole is, in fact, so poorly representative of 
the total fishery that its use needs to be restricted to only a sub-set of the fishery (which 
may not be useful for management). But, as always, it is better to know the limitations 
of one’s data than to assume, perhaps rashly, that the available data will be informative 
about the fishery of interest. 
 
It is already clear that very many factors other than relative abundance through time can 
influence observed CPUE therefore it is reasonable to state that before their use in a 
stock assessment a statistical standardization of the expected average catch rate per year 
is required. In many cases a standardization has little effect, but in others it has an enor-
mous influence (Figure 76). 
 

 
Figure 76. A plot comparing the unstandardized geometric mean CPUE with the stand-
ardized CPUE for western gemfish (Rexea solandri) in the Great Australian Bight (cop-
ied from Haddon and Sporcic, 2017). Note the massive increase in unstandardized 
CPUE between 2004 – 2007, the effect of which was removed by the standardization. 
 
Prior to such an analysis however, it is also always best to know the assumptions inher-
ent in the available data regarding coverage across the fishery, the representativeness of 
the reporting (is discarding an important factor). An important aspect of the process is 
simple data characterization. 
 

8.1.2  Breaks in Time-Series 
One advantage of using a repeatable document generating process is that it simplifies 
the inclusion of additional data analyses and characterizations. A strong assumption 
made in any time-series of data is that it is in fact a single time-series without any 
breaks. This can be examined by plotting different aspects of the data by year to identify 
any major changes in fisher behaviour. An example might be the distribution of the 
log(CPUE) in each year (see Figure 74 on page 138). But this principle can be extended 
to every major factor in the fishery (see Figure 77 for a similar plot of depth distribu-
tion by year). The catch by vessel by year can also be highly informative, although con-
fidentiality constraints can often prevent such diagrams being made public they can still 
be generated for use by the analyst to aid in understanding the dynamics of a given fish-
ery. The Blue-Eye auto-line fishery, for example, is dominated by just a few vessels and 
unless that is known some of the changes that occur through time cannot be understood. 
 
CPUE is primarily a reflection of fishing behaviour so important properties to look for 
in a data exploration include: 
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• unexpected breaks in time-series, meaning large, biologically implausible or un-
explained changes in CPUE, 

• the influence of any large management changes (introduction of quotas, large clo-
sures, introduction of harvest strategies) on vessels or fishing behaviour, 

• large changes in operating vessels or fishers 
• consistent trends in depth, season, or location of fishing, 
• large changes in associated species commonly taken with the primary species of 

interest, 
• other factors of particular concern to particular fisheries. 

 

 
Figure 77. A histogram of the reported depth for each record in each year. Each plot is 
labelled with the year and the number of observations. 
 
 
One idea behind such a data exploration is to understand the history of each fishery so 
as to identify and, ideally, understand, periods of change. It is only once the analyst has 
some understanding of a fishery that it becomes sensible to attempt to conduct a stand-
ardization that accounts for the more important factors affecting that fishery.  
 

8.1.3  Try Alternative Approaches 
As mentioned in Chapter 7, there are very many alternative approaches that can be used 
when standardizing CPUE data. When examining the literature (published and grey) it 
can appear that selecting which approach to use is at least partially dependent upon 
where the analysis is to take place (the approach taken appears to be influenced by 
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whether there is a ‘tradition’ in the jurisdiction concerned), and who is doing the analy-
sis (individuals tend to stick to methods they are familiar with).  These are not neces-
sarily bad reasons for picking an approach as the ability to communicate any results 
successfully can depend upon what the assessment groups have experienced in the past. 
However, before committing to any particular analytical direction it is best to attempt 
more than one approach so as to be able to examine the consequences of applying the 
different assumptions of each different approach. Ideally, if they all generate essentially 
the same result then the simplest to implement can be adopted. If they generate signifi-
cantly different results then this can be considered an opportunity to learn more about 
how informative the data is about underlying changes in the stock. Alternatively, the 
different standardized trajectories can be used as alternative scenarios in the stock as-
sessment of which they are a part. Fishery stock assessment invariably have many 
sources of uncertainty. The idea that there is a single standardized CPUE time-series 
that captures all of the uncertainty in the CPUE data is a simplification.  
 
In practice, however, there is always limited time available for conducting standardiza-
tions and subsequent stock assessments. Fortunately, for most species that are suffi-
ciently valuable to lead to a formal stock assessment, any standardization is likely to be 
repeated at regular intervals. This means that initially there may be sufficient data ex-
ploration to discover the standardization approach that leads to efficient, repeatable, and 
consistently interpretable results. Thus, in practice, with a fishery being assessed in de-
tail for the first time, a full data exploration phase should occur and lead to the selection 
of a standardization strategy that can be applied consistently into the future (hence the 
value in a repeatable standardization and assessment document). Even though it is effi-
cient to make such a selection, it remains a sensible strategy to review the selection of 
methods every few years (perhaps every five years) as the advent of new data may alter 
what constitutes the most effective method to use in standardizing the CPUE. 

8.1.4  Standardization Diagnostics 
Standardizations should include diagnostics and those should include but also go be-
yond the classical statistical diagnostics. The statistical diagnostics should at least be ap-
plied to the optimal statistical model selected to describe the available data. These in-
clude the classical plots (see Figure 39 on page 97) and enhanced versions of these 
plots (see Figure 63 on page 125). But, in addition, the plots of how the variation in the 
data is accounted for as factors are added (see Figure 63 on page 125) and how any 
trend in the CPUE is altered by the addition of each new factor (see Figure 60 on page 
124; see also Bentley et al., 2012) 
 
The factors available and those that are used are rarely independent of each other, which 
means that the order in which they are added to the statistical model can influence the 
proportion of the variance described by the total model that is accounted for by each 
factor. Automated step-wise algorithms that search for combinations of factors have 
some form of criterion associated with their use; often relating to variance accounted 
for. Unfortunately, the variance accounted for in the statistics does not always reflect 
the influence that a factor can have on the final trend in the standardized CPUE, though 
often they are correlated.  
 
If the analyst is fortunate enough to have so many factors they do not know where to 
start, then some automated method of adding or subtracting factors to a model is a rea-
sonable place to begin. However, in the final run the factors that have most influence on 
the trends, not necessarily the variance accounted for, should be entered into the model 
first followed by those with less influence. In many fisheries it turns out that most of the 
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difference between the unstandardized and the standardized trends is accounted for by 
the first three or four factors after which little change tends to occur. Interaction terms 
can often account for a relatively high proportion of variation but their effect on the 
CPUE trend is what is important and often their influence is greatly lessened once the 
singular factors are included. Only be exploring these options can these insights become 
clear.  
 
The optimal CPUE trend from the latest analysis should always be compared with the 
trend from at least the previous analysis (if there was one) to determine whether there 
have been any systematic changes occurring through time (a form of retrospective plot). 
In addition, this provides a double check that the database of CPUE data is giving the 
same observed data each year. Graphically, it is easier to make visual comparisons 
among trends by setting each time-series (of the same length) to a mean of 1.0 by divid-
ing through the values in the time-series by the mean of the time-series: 
 

  yI
CE

I
=   

where CE is the scaled time-series of CPUE, Iy is the standardized CPUE for each year 
y, and I  is the mean of the time-series. This places the emphasis on any trend in the 
time-series rather than the absolute values. When comparing a new standardization with 
an older one then both need to be scaled to the mean across the same series of years. 
 
A retrospective analysis on a given dataset will illustrate the effect of vessels coming 
and going from the fishery as well as other changes that might be more difficult to iden-
tify. This is especially informative when some of those vessels are major players in the 
fishery (Figure 78).  
 

 
Figure 78. A comparison of the standardization for Mirror Dory in SESSF zones 10 – 
30 for data to 2015 (blue line) and to 2017 (black line). The dashed line is the geometric 
mean or unstandardized trend.  
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In the SESSF the data generally becomes relatively stable after three or four years have 
passed. Differences are often due to extra data being entered into the catch effort data 
base.  
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8.2 Appendix: R-code used in Standardizations 
#' @title histyear plots a histogram of a given variable for each year available 
#' 
#' @description histyear plots a histogram of a given variable for each year 
#'     available 
#' 
#' @param x the data.frame of data with at least a 'Year' and pickvar present 
#' @param Lbound leftbound on all histograms, defaults to -3.5 
#' @param Rbound right bound on all histograms, defaults to 12.25 
#' @param inc  the class width of the histogram, defaults to 0.25 
#' @param pickvar which variable to plot each year default = 'LnCE' 
#' @param years which variable name identifies the yaer column, default='Year' 
#' @param varlabel what label to use on x-axis, default = 'log(CPUE)' 
#' @param vline an optional vertical line to aid interpretation. If it is 
#'     numeric it will be added to each plot 
#' @param plots how many plots to generate, default = c(3,3) 
#' 
#' @return a matrix of the year, mean value, stdev, and N number of 
#'     observations. It also plots a histogram for each year and fits a 
#'     normal distribution to each one. 
#' @export 
#' 
histyear <- function(x,Lbound=-3.5,Rbound=12.25,inc=0.25, 
                     pickvar="LnCE",years="Year",varlabel="log(CPUE)", 
                     vline=NA,plots=c(3,3)) { 
   yrs <- sort(unique(x[,years])) 
   nyr <- length(yrs) 
   columns <- c("Year","maxcount","Mean","StDev","N","Min","Max") 
   results <- matrix(0,nrow=nyr,ncol=length(columns),dimnames=list(yrs,columns)) 
   par(mfcol=plots,mai=c(0.25,0.25,0.05,0.05),oma=c(1.2,1.0,0.0,0.0)) 
   par(cex=0.75, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7) 
   for (yr in 1:nyr) { 
      pick <- which(x[,years] == yrs[yr]) 
      outh <- hist(x[pick,pickvar],breaks=seq(Lbound,Rbound,inc),col=2,main="",xlab="",ylab="") 
      mtext(paste0("  ",yrs[yr]),side=3,outer=F,line=-2,font=7,cex=0.9,adj=0) 
      mtext(paste0("  ",length(pick)),side=3,outer=F,line=-3,font=7,cex=0.9,adj=0) 
      if (is.numeric(vline)) abline(v=vline,col=4,lwd=2) 
      if (pickvar != "catch_kg") { 
         pickmax <- which.max(outh$counts) 
         ans <- addnorm(outh,x[pick,pickvar]) 
         lines(ans$x,ans$y,col=3,lwd=2) 
         results[yr,] <- c(yrs[yr],outh$mids[pickmax],ans$stats, 
                           range(x[pick,pickvar],na.rm=TRUE)) 
      } 
   } 
   mtext("Frequency",side=2,outer=T,line=0.0,font=7,cex=1.0) 
   mtext(varlabel,side=1,outer=T,line=0.0,font=7,cex=1.0) 
   return(results) 
} # end of histyear 
 
#' @title qqplotout plots up a single qqplot for a lm model 
#' 
#' @description qqplotout generates a single qqplot in isolation from the 
#'     plot of a model's diagnostics. It is used with lefthist to 
#'     illustrate how well a model matches a normal distribution 
#' 
#' @param inmodel the optimum model from standLM or dosingle 
#' @param title a title for the plot, defaults to 'Normal Q-Q Plot' 
#' @param cex the size of the font used, defaults to 0.9 
#' @param ylow the lower limit of the residuals 
#' @param yhigh he upper limit of the residuals 
#' @param plotrug a logical value determinning whether a rug is included 
#' 
#' @return currently nothing, but it does generate a qqplot to the current 
#'     device 
#' @export 
#' 
#' @examples 
#' y <- rep(1:100,2) 
#' x <- rnorm(200,mean=10,sd=1) 
#' model <- lm(y ~ x) 
#' dev.new(width=6,height=3.5,noRStudioGD = TRUE) 
#' par(mai=c(0.45,0.45,0.15,0.05),font.axis=7) 
#' qqplotout(model,ylow=-50,yhigh=50) 
qqplotout <- function(inmodel, title="Normal Q-Q Plot", cex=0.9, 
                      ylow=-5,yhigh=5,plotrug=FALSE)  { 
   resids <- inmodel$residuals 
   labs <- cex 
   qqnorm(resids, ylab=list("Standardized Residuals", cex=labs, font=7), 
          xlab=list("Theoretical Quantiles", cex=labs, font=7), 
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          main=list(title,cex=labs,font=7),ylim=c(ylow,yhigh)) 
   qqline(resids, col=2,lwd=2) 
   grid() 
   if (plotrug) rug(resids) 
   abline(v=c(-2.0,2.0),col="grey") 
}  # end of qqplotout 
 
#' @title qqdiag generates a qqplot with a histogram of residuals 
#' 
#' @description qqdiag generates a qqplot with a complementary histogram of 
#'     the residuals to illustrate the proportion of all residuals along the 
#'     qqline. If the qqline deviates from the expected straigt line, which 
#'     is red i colour to make for simpler comparisons, then the histogram 
#'     enables one to estiamte what proportion of records deviate from 
#'     normality. The zero point is identified with a line, as are the 
#'     approximate 5% and 95% percentiles. In both cases > 5% is above or 
#'     below the blue lines, with < 90% in between depending on the 
#'     proportions in each class. To get a more precise estimate use the 
#'     invisibly returned histogram values. 
#' 
#' @param inmodel the optimum model being considered 
#' @param plotrug a logical term determining whether a rug is plotted on the 
#'     qqplot. 
#' @param bins defaults to NA, but can be set to a given series 
#' @param hline Include some horizontal lines on the histogram. defaults to 0. 
#' @param xinc the increment for tick marks on the xaxis of the histogram 
#' @param yinc the increment for tick marks on the y-axis of the histogram 
#' @param ylab the y-axis label for the histogram, defaults to 'residuals' 
#' 
#' @return plots a graph and invisibly returns the output from the histogram 
#' @export 
#' 
#' @examples 
#' 
#' y <- rep(1:100,2) 
#' x <- rnorm(200,mean=10,sd=1) 
#' model <- lm(y ~ x) 
#' dev.new(width=6,height=3.5,noRStudioGD = TRUE) 
#' par(mai=c(0.45,0.45,0.15,0.05),font.axis=7) 
#' qqdiag(model,xinc=1,yinc=10,bins=seq(-55,50,2.5)) 
qqdiag <- function(inmodel,plotrug=FALSE,bins=NA,hline=0.0, 
                   xinc=100,yinc=1,ylab="residuals") { 
   layout(matrix(c(1,2),ncol=2),widths=c(5,2.5)) 
   par(mai=c(0.45,0.45,0.15,0.05),oma=c(0.0,0,0.0,0.0)) 
   par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7) 
   resids <- inmodel$residuals 
   qs <- quantile(resids,probs=c(0.025,0.05,0.95,0.975)) 
   if (!is.numeric(bins)) { 
      loy <- min(resids); hiy <- max(resids) 
      scale <- trunc(100*(hiy - loy)/35) / 100 
      loy <- round(loy - (scale/2),2); hiy <- round(hiy + scale,2) 
      bins <- seq(loy,hiy,scale) 
   } else { 
      loy <- min(bins); hiy <- max(bins) 
   } 
   qqplotout(inmodel,plotrug=plotrug,ylow=loy,yhigh=hiy) 
   abline(h=qs,lwd=c(1,2,2,1),col=4) 
   outL <- lefthist(resids,bins=bins,hline=0.0,yinc=yinc,xinc=xinc, 
                    ylabel=ylab,width=0.9,border=1) 
   abline(h=qs,lwd=c(1,2,2,1),col=4) 
   ans <- addnorm(outL,resids) 
   lines(ans$y,ans$x,lwd=2,col=3) 
   return(invisible(outL)) 
}  # end of qqdiag 
 
#' @title addnorm - adds a normal distribution to a histogram of a data set. 
#' 
#' @description  addnorm - adds a normal distribution to a histogram of a data 
#'    set. This is generally to be used to illustrate whether log-transformation 
#'    normalizes a set of catch or cpue data. 
#' @param inhist - is the output from a call to 'hist' (see examples) 
#' @param xdata -  is the data that is being plotted in the histogram. 
#' @param inc - defaults to a value of 0.01; is the fine grain increment used to 
#'    define the normal curve. The histogram will be coarse grained relative to 
#'    this. 
#' @return a list with a vector of 'x' values and a vector of 'y' values (to be 
#'    used to plot the fitted normal probability density function), and a vector 
#'    used two called 'stats' containing the mean and sandard deviation of the 
#'    input data 
#' @export addnorm 
#' @examples 
#' x <- rnorm(1000,mean=5,sd=1) 
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#' dev.new(height=6,width=4,noRStudioGD = TRUE) 
#' par(mfrow= c(1,1),mai=c(0.5,0.5,0.3,0.05)) 
#' par(cex=0.85, mgp=c(1.5,0.35,0), font.axis=7) 
#' outH <- hist(x,breaks=25,col=3,main="") 
#' nline <- addnorm(outH,x) 
#' lines(nline$x,nline$y,lwd=3,col=2) 
#' print(nline$stats) 
addnorm <- function(inhist,xdata,inc=0.01) { 
   lower <- inhist$breaks[1] 
   upper <- tail(inhist$breaks,1) 
   cw <- inhist$breaks[2]-inhist$breaks[1] 
   x <- seq(lower,upper, inc) #+ (cw/2) 
   avCE <- mean(xdata,na.rm=TRUE) 
   sdCE <- sd(xdata,na.rm=TRUE) 
   N <- length(xdata) 
   ans <- list(x=x,y=(N*cw)*dnorm(x,avCE,sdCE),stats=c(avCE,sdCE,N)) 
   return(ans) 
} # end of addnorm  
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9 Implications 
The limitations of commercial CPUE data should become better appreciated as the find-
ings in this report become better known. The remarkable fact remains that it is possible 
to obtain consistent and informative trends from such, at times, questionable data. 

10 Recommendations 
The final objective of this work was to write a reference manual on the application of 
the most robust CPUE standardization strategies for Australian fisheries. It should be 
clear that the range of fisheries in Australia (from benthic hand collected fisheries, to 
trawl fisheries, to pelagic purse-seine and lining fisheries) means that there is no single 
standard approach to CPUE standardization that will necessarily work well with every 
fishery. Nevertheless, it remains possible to write out a set of guidelines that will im-
prove the defensibility of any conclusions drawn from CPUE standardizations as well 
as improve the presentation of results from such analyses to assessment groups and 
other interested parties. Many of the points to be made are included in Chapter 8 (start-
ing on page 145). 
 

10.1 Documentation 
One pillar of defensibility is complete and explicit documentation of all procedures used 
in any stock assessment or analysis so that the analysis can be repeated quickly and eas-
ily. However, most people interested in the results of an analysis focus primarily on the 
summary or abstract of results and only desire a brief document. Nevertheless, in the in-
terests of openness and defensibility many of the recommendations below for more text, 
tables, and plots, should be included at least as supplementary materials in appendices. 
With the growth of electronic documents and reduction in the use of printed documents 
the size of the final document should not be an impediment to an improvement to how 
such analyses are presented. If a printed document is required, then the supplementary 
material need not be printed but should be referred to throughout the primary document. 
 
In the case of CPUE standardization it is necessary: 
 
1. Have an explicit section in any report on a standardization that focusses solely on 

the data selection and preparation processes and choices. 
2. Describe and explain every choice in any data selection made. 
3. Ideally tabulate and plot the distributions of catch, effort, CPUE, depth of fishing, 

month of fishing, and any other factors/variables included in the analysis to illustrate 
the quality of the data being used (helps identify whether there are outliers or there 
is rounding, or whether the data has unexpected properties, or just what those prop-
erties are). 

4. Be explicit about the statistical models fitted, and how the model parameters (espe-
cially the year, or time-step, effects) are derived. 

5. Be explicit about the assumptions behind the statistical distributions used in the sta-
tistical models. 

6. Plot diagnostics relating to the statistical fit of the model to the data. 
7. Identify and plot the relative influence of the different factors included in any analy-

sis. Do not rely solely on the variance or deviance accounted for by each factor but 
also summarize the impact each factor has on the standardized CPUE trend. 
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Ideal Sensitivity Options 
If enough time is available (albeit this is an unlikely scenario). 
1. Apply the same statistical model structures but with different underlying statistical 

distributions to describe the residual structure (e.g. log-normal vs Gamma distribu-
tions). This tests for sensitivity to the basic assumptions used. 

2. Apply different statistical model structures using the same statistical distribution for 
the residual errors structure to consider the sensitivity to model structure. 

3. Conduct a retrospective analysis through at least the last half of the available years 
of data to search for consistency and/or for major changes in influences. 

 

10.2  Further Development 
How best to handle the analysis of CPUE from mixed fisheries is an issue that still re-
quires further work. The possible solution explored when considering the auto-line fish-
ery for Blue-Eye and Pink Ling appears to hold considerable promise. Such an initial 
exploration could form the basis of a fuller investigation involving different fisheries 
under different conditions. The analyses attempted appeared to solve some of the prob-
lems, but more attention is required to examine how such analyses might generate mis-
leading results. 
 
Further comparisons between GLMs and GAMs where more factors are treated as sur-
faces described by GAMs. Almost any analysis where there are multiple factors availa-
ble, the number of alternative arrangements possible are great. The influence of fitting 
smooth surfaces rather than sub-dividing a continuous variable into different levels or 
categories should be explored further. Intuitively there would be a trade-off between the 
potential improvement possible and the proportion of erroneous or noisy data. How to 
make a decision as to when a data set is too noisy would require an empirical study of a 
number of available fisheries. The sensitivity of any analysis to mistakes in the data is 
also in need of further exploration. Nevertheless, the use of GAMs instead of categori-
zation to facilitate the inclusion of non-linearities, especially in relatively data poor fish-
eries is a direction that may be beneficial. 
 
It would be beneficial if Rmarkdown templates (or similar templates in other document 
generating systems) could be generated for general distribution so that individuals could 
adapt and modify them to suit the needs of each fishery/species, or jurisdiction. Even 
with modification this would nevertheless provide an opportunity to have a minimum 
specification for such analyses and simplify the application of many of the recommen-
dations from this report. 

11 Extension and Adoption 
Many of the findings in this report have already been presented to the Resource Assess-
ment Groups within the SESSF, and at other fishery meetings and various reviews 
around Australia. Some of the findings were built into an auxiliary R package used in a 
recent series of data-poor stock assessment workshops.   
 
Other aspects of the material in this report has already been used to influence manage-
ment and fishery monitoring in the SESSF. Chapter 5, for example, that makes a com-
parison between the fishery standardization results and the equivalent analyses from the 
biennial Fishery Independent Survey has been used in discussions regarding the utility 
of the SESSF FIS.  
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The SESSF standardization routines have also directly benefited from the work in this 
report. The analyses in the annual round of standardization analyses are now automated, 
even though each analysis is customized to suit the idiosyncrasies of each fishery. This 
facilitates and accelerated the production of the report (writing the interpretative text 
cannot be automated). 

12 Project Material Developed 
The primary output from this project is this current report. 
 
 

13 Appendix 1: Staff 
Rik Buckworth: CSIRO Oceans and Atmosphere, Brisbane 
Natalie Dowling: CSIRO Oceans and Atmosphere, Hobart 
George Leigh: Queensland Department of Primary Industries, Brisbane 
Malcolm Haddon: CSIRO Oceans and Atmosphere, Hobart 
David C. Smith: CSIRO Oceans and Atmosphere, Hobart 
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14 Appendix 2: Species Names 
Name CAAB Code Scientific 
Bight Redfish 37258004 REB Centroberyx gerrardi 
Blue Grenadier 37227001 GRE Macruronus novaezelandiae 
Blue Warehou 37445005 TRT Seriolella brama 
Blue-Eye 37445001 TBE Hyperoglyphe antarctica 
Deepwater Flathead 37296002 FLD Platycephalus conatus 
Eastern Gemfish 37439002 GEM Rexea solandri 
Elephant Fish 37043000/1 ELE Callorhinchus milii 
Flathead 37296001 FLT Neoplatycephalus richardsoni 
Gummy Shark 37017001 SHG Mustelus antarcticus 
Jackass Morwong 37377003 MOR Nemadactylus macropterus 
John Dory 37264004 DOJ Zeus faber 
Mirror Dory 37264003 DOM Zenopsis nebulosus 
Ocean Jackets 37465006 LTC Nelusetta ayraudi 
Ocean Perch 37287001 REG Helicolenus percoides 
Orange Roughy 37255009 ORE Hoplostethus atlanticus 
Pink Ling 37228002 LIG Genypterus blacodes 
Redfish 37258003 RED Centroberyx affinis 
Ribaldo 37224002 RBD Mora moro 
Royal Red Prawn 28714005 PRR Haliporoides sibogae 
Saw Sharks 37023001/2 SAW Pristiophorus cirratus & nudipinnis 
School Shark 37017008 SHS Galeorhinus galeus 
School Whiting 37330014 WHS Sillago flindersi 
Silver Trevally 37337062 TRE Pseudocaranx dentex 
Silver Warehou 37445006 TRS Seriolella punctata 
Western Gemfish 37439002 GEM Rexea solandri 
    
Arrow Squid   Nototodarus gouldi 
Commercial Scallops 
 
 

  Pecten fumatus 
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	model8 <- gam(LnCE ~ s(Long,Lat) + Vessel + DepCat + Zone + Month + Year, data = sps3)
	print(Sys.time()-startime)
	answer8 <- getfact(model8,"Year")
	back8 <- cbind(lmgeo,answer1[,"Scaled"],answer2[,"Scaled"],answer3[,"Scaled"],
	answer4[,"Scaled"],answer5[,"Scaled"],answer6[,"Scaled"],
	answer7[,"Scaled"],answer8[,"Scaled"])
	colnames(back8) <- c("lm_geo","lm_LnCE","glm_LnCE","glm_CE_Log","glm_CE_Gamma",
	"gam_LnCE_Long","gam_LnCE_Lat","gam_LnCE_LongLat","gam_LnCE_LLtrim")
	back8
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	wkdir <- getwd()
	resdir <- paste0(wkdir,"/results/")
	options("show.signif.stars"=FALSE,"stringsAsFactors"=FALSE,
	"max.print"=50000,"width"=240)
	library(codeutils)
	library(r4cpue)
	library(r4maps)
	source("C:/A_CSIRO/Rcode/CPUEExplore/utils/extra_utils.R")
	source(paste0(wkdir,"/final_simulation_utils.R"))
	# Use BluePink data ---------------------------------------
	spsB <- read.csv("bluepink.csv",header=TRUE)
	dim(spsB)
	head(spsB)
	properties(spsB)
	dim(spsB)
	pickrec <- which((spsB$Year > 2001) & (spsB$Year < 2017) &
	(spsB$Zone %in% c(20,30,40,50)) &
	(spsB$propB > 0.1))
	spsA <- droplevels(spsB[pickrec,])
	dim(spsA)
	# Count the number of years in the fishery
	spsA <- addcount(spsA,"Vessel")
	pickV <- which(spsA$count > 1)
	sps1 <- droplevels(spsA[pickV,])
	dim(sps1)
	properties(sps1)
	# Model1 Standardization ----------------------------------------------------
	splabel <- "BlueEyeAL"
	savefile <- FALSE
	labelM <- c("Year","Vessel","Month","Zone","DepCat","Month:Zone")
	years <- 2002:2016
	table(sps1$Year)
	sps2 <- makecategorical(labelM,sps1) # convert variables to factors
	mods <- makemodels(labelM)
	out1 <- standLM(mods,sps2,splabel)
	out1$WhichM
	model1 <- out1$optModel
	lmgeo <- out1$Results[,1] # lm standardized geometric mean
	answer1 <- getfact(out1,"Year")
	rownames(answer1) <- years
	plotprep()
	plotstand(out1,bars=TRUE)
	plotprep(height=7)
	impactplot(out1,mult=4)
	plotprep(width=7,newdev=FALSE)
	qqdiag(model1)
	# FIND BEST STDEV ----------------------------------------
	# prepare simulation -------------------------------------------------
	columns <- c(labelM[1:5],"Depth","Long","Lat","CE","LnCE")
	sps0 <- sps1[,columns]
	nsim <- length(sps0$LnCE)
	sps0$sim <- NA
	set.seed(12345)
	# Find required sd ---------------------------------------------------
	# Diff Obs vs Predicted
	plotprep(height=4.5,newdev = FALSE)
	stdev <- 1.047   # alter this by trial and error to find the closest matching sd
	sps0$sim <- model1$fitted.values + rnorm(nsim,mean=0,sd=stdev)
	par(mfrow=c(2,1),mai=c(0.25,0.45,0.05,0.05),oma=c(1.0,0,0.0,0.0))
	par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
	bins <- seq(-9.0,2,0.125)
	outh <- hist(sps0$LnCE,breaks=bins,col=2,border=1,main="")
	ans1 <- addnorm(outh,sps0$LnCE,inc=0.1)
	lines(ans1$x,ans1$y,lwd=2,col=5)
	text(-9,150,"Observations",cex=1.1,font=7,pos=4)
	text(-9,100,paste0("Mean  = ",round(ans1$stats[1],3)),cex=1.1,font=7,pos=4)
	text(-9,50,paste0("StDev = ",round(ans1$stats[2],3)),cex=1.1,font=7,pos=4)
	outf <- hist(sps0$sim,breaks=bins,col=2,border=1,main="")
	ans2 <- addnorm(outf,sps0$sim,inc=0.1)
	lines(ans2$x,ans2$y,lwd=2,col=4)
	lines(ans1$x,ans1$y,lwd=2,col=5)
	text(-9,150,"Fitted Values",cex=1.1,font=7,pos=4)
	text(-9,100,paste0("Mean  = ",round(ans2$stats[1],3)),cex=1.1,font=7,pos=4)
	text(-9,50,paste0("StDev = ",round(ans2$stats[2],3)),cex=1.1,font=7,pos=4)
	mtext("Log(kg/hook)",side=1,outer=T,line=-0.1,font=7,cex=1.0)
	cat(ans1$stats,range(sps0$LnCE),"\n")
	cat(ans2$stats,range(sps0$sim),"\n")
	# PLOT THE OPTIMUM STDEV ------
	# DO SIMULATION ---------------------------------------------------------
	#modify model coeff -----
	inmod <- model1
	loccoeff <- grep("Year",names(inmod$coefficients))
	ncoef <- length(loccoeff)
	mult <- rep(1,14)
	if (length(mult) != 14) stop(cat(length(mult)," mult is wrong length"))
	inmod$coefficients[loccoeff] <- (inmod$coefficients[loccoeff] + log(mult))
	mult <- c(1,mult)
	stddev <- 1.04726
	years <- 2002:2016
	nyrs <- length(years)
	# loop the simulation --------------
	labelM <- c("Year","Vessel","Month","Zone","DepCat","Month:Zone")
	splabel <- ("Blue_Eye_Sim")
	yearfact <- getfact(model1,"Year")
	original <- yearfact[,"Coeff"]
	origse <- yearfact[,"SE"]
	reps <- 1000
	columns <- c("residSE","MultR2","AdjR2","Fval","df1","df2")
	statout <- matrix(0,nrow=reps,ncol=length(columns),dimnames=list(1:reps,columns))
	results1 <- matrix(0,nrow=reps,ncol=nyrs,dimnames=list(1:reps,years))
	scaleres <- matrix(0,nrow=reps,ncol=nyrs,dimnames=list(1:reps,years))
	for (i in 1:reps) {
	spsS <- sps1
	spsS$LnCE <- predict(inmod) + rnorm(length(spsS$LnCE),mean=0,sd=stddev)
	sps3 <- makecategorical(labelM,spsS) # convert variables to factors
	mods <- makemodels(labelM)
	outS <- standLM(mods,sps3,splabel,console=FALSE)
	modelS <- outS$optModel
	smod <- summary(modelS)
	statout[i,] <- c(smod$sigma,smod$r.squared,smod$adj.r.squared,
	smod$fstatistic)
	outcoef <- getfact(modelS,"Year")
	results1[i,] <- outcoef[,"Coeff"]
	scaleres[i,] <- outcoef[,"Scaled"]
	if ((i %% 25) == 0) cat(i,"\n")
	}
	plotprep(width=7,height=5,newdev=FALSE)
	plot(years,original,type="l",lwd=2,ylim=c(0,2.2),panel.first=grid(),
	xlab="",ylab="Original and Simulated Standardized CPUE")
	Zmult <- -qnorm((1-(90/100))/2.0)
	lower <- original * exp(-Zmult*origse)
	upper <- original * exp(Zmult*origse)
	for (i in 1:reps) lines(years,results1[i,],lwd=1,col=rgb(0,0.5,1,1/5))
	lines(years,original,lwd=3,col=1)
	qs <- apply(results1,2,quants)
	lines(years,qs["50%",],lwd=2,col=2)
	lines(years,qs["5%",],lwd=1,col=2)
	lines(years,qs["95%",],lwd=1,col=2)
	# arrows(x0=years[-1],y0=lower[-1],x1=years[-1],y1=upper[-1],
	#        length=0.035,angle=90,col=2,lwd=2,code=3)
	# abline(v=c(2007.8,2011.8),col=3)
	pgtupper <- numeric(nyrs)
	pltlower <- numeric(nyrs)
	for (i in 2:nyrs) {
	pgtupper[i] <- length(which(results1[,i] > upper[i]))
	pltlower[i] <- length(which(results1[,i] < lower[i]))
	}
	proplower <- (pltlower/reps); mean(proplower[2:15])
	prophigher <- (pgtupper/reps); mean(prophigher[2:15])
	toXL(cbind(years,proplower,prophigher,mult,log(mult)))
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	histyear <- function(x,Lbound=-3.5,Rbound=12.25,inc=0.25,
	pickvar="LnCE",years="Year",varlabel="log(CPUE)",
	vline=NA,plots=c(3,3)) {
	yrs <- sort(unique(x[,years]))
	nyr <- length(yrs)
	columns <- c("Year","maxcount","Mean","StDev","N","Min","Max")
	results <- matrix(0,nrow=nyr,ncol=length(columns),dimnames=list(yrs,columns))
	par(mfcol=plots,mai=c(0.25,0.25,0.05,0.05),oma=c(1.2,1.0,0.0,0.0))
	par(cex=0.75, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
	for (yr in 1:nyr) {
	pick <- which(x[,years] == yrs[yr])
	outh <- hist(x[pick,pickvar],breaks=seq(Lbound,Rbound,inc),col=2,main="",xlab="",ylab="")
	mtext(paste0("  ",yrs[yr]),side=3,outer=F,line=-2,font=7,cex=0.9,adj=0)
	mtext(paste0("  ",length(pick)),side=3,outer=F,line=-3,font=7,cex=0.9,adj=0)
	if (is.numeric(vline)) abline(v=vline,col=4,lwd=2)
	if (pickvar != "catch_kg") {
	pickmax <- which.max(outh$counts)
	ans <- addnorm(outh,x[pick,pickvar])
	lines(ans$x,ans$y,col=3,lwd=2)
	results[yr,] <- c(yrs[yr],outh$mids[pickmax],ans$stats,
	range(x[pick,pickvar],na.rm=TRUE))
	}
	}
	mtext("Frequency",side=2,outer=T,line=0.0,font=7,cex=1.0)
	mtext(varlabel,side=1,outer=T,line=0.0,font=7,cex=1.0)
	return(results)
	} # end of histyear
	qqplotout <- function(inmodel, title="Normal Q-Q Plot", cex=0.9,
	ylow=-5,yhigh=5,plotrug=FALSE)  {
	resids <- inmodel$residuals
	labs <- cex
	qqnorm(resids, ylab=list("Standardized Residuals", cex=labs, font=7),
	xlab=list("Theoretical Quantiles", cex=labs, font=7),
	main=list(title,cex=labs,font=7),ylim=c(ylow,yhigh))
	qqline(resids, col=2,lwd=2)
	grid()
	if (plotrug) rug(resids)
	abline(v=c(-2.0,2.0),col="grey")
	qqdiag <- function(inmodel,plotrug=FALSE,bins=NA,hline=0.0,
	xinc=100,yinc=1,ylab="residuals") {
	layout(matrix(c(1,2),ncol=2),widths=c(5,2.5))
	par(mai=c(0.45,0.45,0.15,0.05),oma=c(0.0,0,0.0,0.0))
	par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
	resids <- inmodel$residuals
	qs <- quantile(resids,probs=c(0.025,0.05,0.95,0.975))
	if (!is.numeric(bins)) {
	loy <- min(resids); hiy <- max(resids)
	scale <- trunc(100*(hiy - loy)/35) / 100
	loy <- round(loy - (scale/2),2); hiy <- round(hiy + scale,2)
	bins <- seq(loy,hiy,scale)
	} else {
	loy <- min(bins); hiy <- max(bins)
	}
	qqplotout(inmodel,plotrug=plotrug,ylow=loy,yhigh=hiy)
	abline(h=qs,lwd=c(1,2,2,1),col=4)
	outL <- lefthist(resids,bins=bins,hline=0.0,yinc=yinc,xinc=xinc,
	ylabel=ylab,width=0.9,border=1)
	abline(h=qs,lwd=c(1,2,2,1),col=4)
	ans <- addnorm(outL,resids)
	lines(ans$y,ans$x,lwd=2,col=3)
	return(invisible(outL))
	addnorm <- function(inhist,xdata,inc=0.01) {
	lower <- inhist$breaks[1]
	upper <- tail(inhist$breaks,1)
	cw <- inhist$breaks[2]-inhist$breaks[1]
	x <- seq(lower,upper, inc) #+ (cw/2)
	avCE <- mean(xdata,na.rm=TRUE)
	sdCE <- sd(xdata,na.rm=TRUE)
	N <- length(xdata)
	ans <- list(x=x,y=(N*cw)*dnorm(x,avCE,sdCE),stats=c(avCE,sdCE,N))
	return(ans)
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