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2. Executive Summary 

This project was undertaken by a collaboration of senior fishery scientists at CSIRO and from 
New Zealand, together with a former fisheries manager now with the Commonwealth 
Department of Agriculture and Water Resources in Canberra, on the development of methods 
to construct indices of stock abundance trends from commercial catch-per-unit-effort (CPUE) 
in multispecies pelagic longline fisheries. Such indices are crucial inputs into stock assessments 
undertaken around the world and play a vital role in achieving the sustainable management of 
global fisheries. The project work was undertaken during 2015 and 2016, using the 
multispecies longline fishery for tuna and billfish on the east coast of Australia (the Eastern 
Tuna and Billfish Fishery) as the example case study. As indices of stock abundance 
constructed from CPUE data are the central inputs into the harvest strategy used in this fishery 
to inform the determination of annual Total Allowable Commercial Catch (TACC) limits, there 
was a need to identify the accuracy of current methods and develop new methods to construct 
more reliable indices of stock abundance. In this regard, the analyses undertaken during the 
project and presented here were designed to address specific issues related to this fishery. 
However, it is also hoped that the general results of this project will have broader applicability 
to other multispecies species, both domestically and internationally.  
 
Background  

Australia's two tropical tuna fisheries (the Eastern Tuna and Billfish Fishery, ETBF, and the 
Western Tuna and Billfish Fishery, WTBF) are both multispecies fisheries which target a range 
of large pelagic fish. However, it is often cited that a major constraint for assessing multispecies 
fisheries is a lack of reliable abundance indices that are a pre-requisite for the accompanying 
stock assessments, and this has flow-on impacts on identifying appropriate management 
measures (e.g. such as TACCs obtained from harvest strategies). Unlike single species fisheries 
where all effort is directed at the target species, in multispecies fisheries the effort is directed 
at a range of species. Consequently, the fishing effort needs to be standardised so that the 
‘effective’ effort directed at any single species of interest can be ascertained. If this is not 
undertaken correctly then the resulting index of resource abundance is likely to be biased and 
unreliable. Although there are methods available that are currently used to standardise effort in 
multispecies fisheries, these methods need to be evaluated and where necessary new techniques 
need to be developed so that the resulting indices of resource abundance based on standardising 
CPUE can be made more reliable.  
 
Objectives 

The project had the following five objectives:  
(1)  to identify the factors likely to influence CPUE in multispecies pelagic longline 

fisheries,  
(2)  review methods which may be used for standardising CPUE in multispecies fisheries,  
(3)  develop and compare the most appropriate methods for standardising CPUE for 

multispecies pelagic longline fisheries, ( 
4)  use simulated catch and effort data to test the potential of each method to adequately 

account for the influence of factors influencing CPUE and accurately reflect the 
underlying resource abundance, and  

(5)  investigate the sensitivity of the outcomes of the ETBF harvest strategy on the adoption 
of the candidate methods for standardising CPUE within the ETBF. 
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Methods 

Targeting Practices in the ETBF 

To adequately standardise CPUE one needs an understanding of the relationship between how 
the fishing gear is deployed and the subsequent catch. Factors influencing this relationship 
include both the availability of fish to the fishing gear and the catchability of the fishing gear. 
Availability will be influenced by the environmental and oceanographic conditions prevailing 
at the time of the fishing operation, while catchability will be influenced by the types of fishing 
gear used and the manner in which it is deployed. In a multispecies fishery there is particular 
interest in understanding the differences in fishing tactics utilised when targeting different 
species, as this information can be used to identify the ‘effective’ effort directed at any single 
species. For the ETBF the relationships between fishing practices and catch, together with 
changes in the seasonal availability and distribution of co-related species (i.e. species caught 
within the same set) in the fishery, was undertaken using the catch and effort data recorded in 
logbooks and by on-vessel observers.  
 
Development of Standardisation Models 

After a review of existing methods proposed and used in standardising multispecies CPUE, a 
number of methods were selected for further development. While most models are based on 
the Generalised Linear Model (GLM) framework developed for single species analyses, they 
included a number of extensions aimed at standardising the fishing effort to account for the 
differential targeting of species within a multispecies fishery. One set of extensions utilises a 
cluster analysis approach to group the fishing operations for a fishery into groups of different 
targeting or fishing strategies based on the species composition of the catch. The utility of 
clustering across different levels of data aggregation (i.e.at the set or trip level), as well as 
undertaking separate analyses at different temporal periods (e.g. monthly) to account for 
seasonal changes in species availability and assemblages, are also investigated. A second set 
of models uses a Principal Components Analysis approach to group fishing operations, while 
a third, and new, set of Bayesian spatial-temporal models utilising the relatively new tool 
Integrated Nested Laplace Approximation (INLA) were developed. In total, the performance 
of twenty-four different model variations were investigated. 
 
Development of the Simulation Framework 

Two simulators, which are useful for comparing the performances of different methods at 
estimating known quantities, were developed for testing the comparative performance of the 
standardising models. The first simulator utilized an empirical approach, based on a framework 
generally known as the habitat-based-standardisation method, and made direct use of 
observations of longline hook depths and fish depth profiles obtained from archival tags 
deployed on fish caught and tagged within the ETBF. The spatial-temporal distribution of 
fishing effort across the fishery was taken to be the same as that observed in the ETBF during 
the years 2000 to 2014, while the spatial-temporal density surfaces for each of the five species 
included in the simulator were modelled on the monthly distributions of nominal CPUE 
observed in the ETBF over this period. Finally, in order to simulate the stochastic characteristic 
of any catch, the simulated catch was selected from a negative binomial distribution and the 
probability of success for each species selected so that the distribution of simulated catches for 
each species was similar to that in the distribution of observed catches. For the second 
simulator, catch and effort data was modelled using a more generic, flexible and individual-
based approach and was designed to generate catch rate data that reflected species abundance, 
targeting practises, and (unlike the ETBF simulator) individual vessel efficiency, to capture the 
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fact that different vessels have their own characteristic catchability and fishing behaviour. 
There is also spatial and seasonal variation in catch rates, independently among species.  
 
Results 

Targeting Practices in the ETBF 

The information recorded in the ETBF logbooks, and by observers, indicated that there can be 
considerable variability in the manner that longline gears are deployed, both among years and 
within years (and trips) on individual vessels. A substantive change was noted in 2006 when 
vessels began deploying more than 25 hooks-per-float (HPF). Commensurate with this change 
were shifts in the bait usage (more Australian Sardine –commonly called as pilchard), light-
stick usage (fewer) and set start-time (earlier in the day). The introduction of this new ‘deep-
longline’ technique was due to a significant change in fishing strategy to incorporate the direct 
targeting of Albacore Tuna in this fishery. Fortunately, each of these gear settings are recorded 
in the ETBF logbook, and so these changes can be taken into account when standardising 
CPUE for changes in targeting and associated fishing strategies. On the other hand, there have 
also been changes in other gear settings which are not recorded in the logbook and therefore 
cannot be accounted for in the CPUE standardisation, though the results of previously 
published research can provide some guidance.  
 
Analysis of the gear setting practices within a fishing trip indicate variable degrees of 
consistency in the deployment of each gear type. For example, similar hooks-per-float settings 
are used for 60-80% of all sets during a trip, while generally similar start-times are used for 
less than 20% of sets. Observer data also indicates that the recorded primary target species is 
not always the same for all sets deployed during a trip and suggests that multiple targeting 
strategies can be utilised within individual trips. Examination of the particular gear settings 
associated with the target species recorded by the observers, also indicated that while a range 
of gear settings are utilised when targeting particular species, there are some combinations of 
gears that are more commonly used. Observer data also indicates that the proportion of fishing 
operations targeting particular species changes during the year, and suggests that the seasonal 
availability of the principal target species changes throughout the year, and the fishers are able 
to change their targeting practices to avail themselves of these changes in relative abundance. 
Changes in the temporal availability of species is likely linked with the movement of fish, 
associated with changes in the oceanographic conditions within the ETBF. Catch data was used 
to investigate the seasonal persistence of species associations and the results suggest that if 
associations between species do exist, due possibly to co-habitation within defined habitats, 
then these associations show generally weak persistence throughout the year (or across years). 
 
Finally, the catch composition of observed sets also indicates that the proportional catch of a 
given species is generally highest when that species is recorded as the primary targeted species. 
This suggests that the vessel (skipper) has some ability to target and catch a desired species. 
Nevertheless, it is also clear that each of the other principal species are also usually caught, 
indicating that it is not possible to just target and catch a single species. Indeed, the target 
species sometimes is not the dominant catch. Cluster analyses of the ETBF catch data also 
indicates strong seasonal changes in species composition of the major clusters identified, which 
is likely to be related to seasonal differences in the co-occurrence of species reported above. 
Furthermore, while the fishing operations associated with some clusters display distinct 
differences in the gear configurations, most clusters were characterised by a broad mix of gear 
configurations, indicating that the relationship between the composition of the catch and the 
configuration of the gear is not strong. This suggests that ‘targeting’, and the consequent 
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composition of the catch, is likely to depend on more factors than just the configuration of the 
fishing gear, and exploring the nature of the relationship between the catch and these other 
factors (e.g. availability effects associated with the spatial location such as water temperatures, 
sea-mounts, eddy features) is encouraged.  
 
Comparative Performance of Standardisation Models 

The main results from these trials were as follows: 
• The relative performance of each model varied considerably between the analyses 

conducted on the different species included in the two simulated data-sets. As a 
consequence, there was no one best performing model across all species.  

• The overall best performing model fitted to the deterministic catches of the ETBF-
simulated data-set was the model where the clustering was undertaken at the set level, 
while the overall best performing model fitted to the catches randomly sampled from a 
negative-binominal distribution was the model where the clustering was undertaken at 
the trip level. The higher variability in species composition at the set level with the use 
of the randomly sampled catches may be leading to a higher misallocation of sets using 
different fishing strategies and aggregating the data across trips may help to reduce this 
variability, and therefore the misallocation of sets.  

• Models which included a two-stage delta-GLM approach performed considerably better 
than models which only used a single staged approach.  

• Models which included the two gear-effects included in the simulated data also generally 
out-performed models which did not include these effects. This indicates that the 
inclusion of gear effects in the standardizing models has greater explanatory power than 
the inclusion of derived effects, such as those based on catch-composition derived 
clusters.  

• The current GLM used in the ETBF to standardise CPUE is performing reasonably well, 
no doubt due to the fact that this model incorporates several of the features (e.g. two-
stage analysis, inclusion of gear effects) that were found to perform well in the 
simulations undertaken. 
 

Despite the above results, a consistent observation from all the analyses conducted was the 
variability in the performance of each model across the species included in the simulated data-
sets. The reasons for variability remain uncertain, but further investigations found that taking 
account of substantive changes in the spatial distribution of catch rates can improve the 
performance of models used to standardise CPUE. Whether such patterns explain the 
variability in the performance of the models across all species remains unclear, though this 
result does demonstrate that there may be a wide range of factors specific to each species that 
influence the fit of any model to the data, and as such the estimation of the annual abundance 
index. No doubt further research is required to identify and improve our understanding of the 
factors used by fishers to ‘target’ the deployed effort and which control the composition of the 
catch for individual fishing operations.  
 
Implications for the ETBF Harvest Strategy 

The performance of the harvest strategy used in the ETBF in determining a ‘correct’ 
Recommended Biological Commercial Catch (RBCC) was tested using the same simulation 
framework as that used for testing the standardising models. As with the previous Index-based 
results, the size of the error in the RBCC was found to vary across the different species and 
models, such that no single model performed best across all species. The mean error was 
generally less than 4% (and often less than 2%), but for one of the species analysed the error 
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was higher at around 6-7%. Results also indicate that the direction of the error was not 
consistent, being conservative and under-estimating the true RBCC for some species, while 
over-estimating the true RBCC for other species. The best performing model was the delta-
GLM cluster-by-trip model closely followed by the base delta-GLM model currently being 
used in the ETBF.  
 
In some situations the performance of models to standardise CPUE was also found to be 
dependent on the time-series of data being analysed. This implies that analysts should give 
some consideration to the question of over what time-period of data should an analysis be 
conducted taking into consideration the end-purpose for which the results are to be used (e.g. 
abundance index for use in a stock assessment or estimation of abundance trend over last five 
years for use in a harvest control rule). This decision should be guided by investigation of both 
temporal changes in the characteristics of the data to be analysed that may influence (or bias) 
subsequent results, and the sensitivity of the constructed abundance index to changes in the 
time-series of data included in the analyses. 
 
Implications for relevant stakeholders 

Within Australia the standardised CPUE is a central input to the assessments and harvest 
strategies for the ETBF as well as other fisheries, including the multispecies South-East 
Scalefish and Shark Fishery (SESSF). The outcomes of this project will provide guidance on 
improving the methods used to standardise CPUE in these fisheries which should have follow 
on benefits to ensuring (i) more reliable and accurate stock abundance indices, (ii) improved 
inputs and to the harvest control rules dependent on standardised CPUE, (iii) improved outputs 
of harvest strategies, in particular the appropriateness of identified TACCs, and (iv) 
improvements to our ability to assess the resource status of non-target species as required to 
achieve the management objective of ecologically sustainable fisheries.  
 
The outcomes of this project will also benefit fish stock assessments associated with the pelagic 
fisheries within the Western Central Pacific Ocean and Indian Ocean, to which Australia's 
domestic tuna fisheries are connected. 
 
Recommendations  

Based on the outcomes of this project, a number of recommendations have been made including 
(i) that the results of this project should be taken into consideration by fisheries scientists 
undertaking analyses of catch and effort data and for selecting appropriate methods for 
standardizing CPUE for stock assessment purposes, and (ii) that the recording in logbooks of 
information on the characteristics of the fishing gears deployed by fishers at the set level should 
be encouraged, and where this information is available it should be incorporated into the 
models used to standardise CPUE. Some recommendations are also made for further research. 
 
Keywords 

Catch-per-unit-effort, standardised CPUE, Generalised Linear Models, INLA, abundance 
indices, harvest strategies, pelagic longline, tunas and billfish, Eastern Tuna and Billfish 
Fishery 
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3. Introduction 

For most of the past century fisheries scientists have tried to use catch and effort data collected 
from a fishery to infer trends in population abundance (Beverton and Holt 1957; Kimura 1981, 
1988; Smith 2007) and the construction of relative indices of stock abundance from commercial 
catch-per-unit-effort (CPUE) data continues to be a routine and important aspect of many stock 
assessments worldwide. In particular, CPUE is usually assumed to be proportional to 
abundance and therefore changes in CPUE between years are assumed to be informative about 
changes in population abundance. To this end, CPUE based-indices are often included in the 
stock assessment as a relative index of abundance However, many jurisdictions do not analyse 
fishery catch rates due to concerns that the relationship between nominal CPUE and abundance 
may be weak because CPUE may also reflect changes of catchability as well as population 
abundance, i.e. these data confound changes in fishing behaviour (adjustments in fishing 
location or fishing gear operation) with trends in abundance (Harley et al. 2006). As a 
consequence, many methods have been developed over the years to help “standardise” catch 
rates so that such changes in fisher behaviour (as distinct from changes in fish populations) that 
influence CPUE are removed from the index, so that changes in the standardised CPUE better 
represents changes in fish populations (see Maunder and Punt 2004 for a review; Maunder et 
al. 2006b; Bishop et al. 2008).  
 
The usefulness of CPUE as an index of resource abundance depends on many assumptions. 
Central to these assumptions is that a unit of effort is uniformly effective across all areas, seasons 
and in all environmental conditions. For single species fisheries, like that for Southern Bluefin 
Tuna, where fishers do not generally change their fishing strategies this assumption will 
generally hold. However, within a multispecies fishery fishers may alter their fishing strategy in 
order to target different species. Such changes, such as changes in gear configuration, allow the 
fisher to switch the effectiveness of the fishing operation from one species to another. 
Consequently, the effectiveness with which the unit measure of effort catches different species 
is altered by the choice of fishing strategy.  
 
The need to standardise catch rates is therefore particularly apparent in multispecies fisheries 
as research suggests that fishers can affect the assortment of species caught in a multispecies 
fishery by modifying the location, timing, and gear characteristics of their fishing activity 
(Sanchirico et al. 2006; Abbott et al. 2015). Furthermore, these operational choices, usually 
driven by commercial considerations such as profit, quota availability and market demand, 
influence how the catch is distributed across space, time, and species. So unlike single species 
fisheries where all effort is directed at the target species, in multispecies fisheries the effort is 
directed at a range of species. Consequently, the fishing effort needs to be adjusted so that the 
"effective" effort directed at any specific species of interest can be ascertained. If this is not 
undertaken appropriately then the resulting index of resource abundance is likely to be biased 
and unreliable. An example illustrating this problem is provided in the next Section. A major 
constraint for assessing multispecies fisheries, therefore, is a lack of reliable abundance indices 
that are in many instances a pre-requisite for the accompanying stock assessments and any 
applicable harvest strategy and has flow-on impacts to the results obtained (such as the. 
determination of TACCs. 
 
Although there are methods available that are currently used to standardise effort in 
multispecies fisheries (see Section 5.2 for a review), the precision and reliability of these 
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methods currently remains uncertain and it is generally believed that new techniques need to 
be developed to overcome these problems.  
 
Australia's two tropical tuna fisheries (the Eastern Tuna and Billfish Fishery, ETBF, and the 
Western Tuna and Billfish Fishery, WTBF) are both multispecies fisheries that target a range 
of large pelagic fish. A fuller description of the ETBF is provided in Section 3.1. Currently the 
assessment of the resource status for these two fisheries, together with the related harvest 
strategy used to provide advice on TACCs for the principal target species, is based on the 
standardisation of catch and effort (CPUE) data collected from these fisheries. As effective 
fisheries management is dependent on good scientific advice having the least bias, improved 
management of these fisheries would be achieved with the identification and/or development 
of better methods to analyse the related CPUE data and construct more reliable indices of 
abundance. This would also help improve the management of other multispecies fisheries that 
rely on the use of CPUE-based abundance indices (e.g. the South Eastern Scalefish and Shark 
Fishery, SESSF). 
 
In achieving the above outcome this project directly addresses the following FRDC strategic 
theme: (4) Ecologically sustainable development, which is concerned with the use and 
management of aquatic resources. In particular, by developing improved methods to 
standardise CPUE and construct more reliable indices of abundance, this project addresses the 
Theme 4 priority by assisting end-users to "develop practical tools that implement ecosystem-
based fisheries management and incorporate understandings of the cumulative impacts of 
fishing into fisheries management plans".  
 
The project developed from discussions with the Tropical Tuna Resource Assessment Group 
(TTRAG) to construct more reliable indices of resource abundance as these indices are used in 
the harvest strategy used to manage the related fisheries. It also builds on the initial review 
undertaken of changes in fishing and targeting practices in the ETBF after the introduction of 
Individual Transferrable Quotas (ITQs) in 2011 (see Preece et al. 2013). 
 
 
3.1 The Eastern Tuna and Billfish Fishery 
 
The Eastern Tuna and Billfish Fishery (ETBF) targets highly migratory tuna and billfish 
species in Australian waters and on the high seas off the east coast of Australia. The area of the 
ETBF (Figure 3.1) includes: 
• waters within the Australian Fishing Zone (that is, from the outer limit of state waters 

to the edge of the Australian exclusive economic zone), extending from Cape York 
around the eastern and southern coast of Australia to the South Australian/Victorian 
border; 

• Commonwealth waters around Norfolk Island, excluding waters adjacent to Norfolk 
Island within the ‘Norfolk Island box’ (see Figure 3.1) 

• the High Seas area of the Pacific Ocean. 
The species caught in the ETBF are considered to be part of larger stocks extending across all 
or sub-regions of the Western Central Pacific Ocean (WCPO) and which are managed by the 
Western and Central Pacific Fisheries Commission (WCPFC). The stock status of these species 
is based on regional stock assessments which are conducted for the WCPFC. 
 
There are two sectors in the ETBF, the pelagic longline sector and the minor line sector (hand 
lining, trolling and rod and reel fishing). The longline sector makes up the majority of the  
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Figure 3.1 Area of the Eastern Tuna and Billfish Fishery (source: Australian Fisheries 
Management Authority). 

 
 
 
Figure 3.2 (a) Number of longline vessels operating in the ETBF each year and the associated 
effort (number of hooks deployed), and (b) Distribution of number of sets per trip (2007 to 2013). 
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Figure 3.3: Example of completed AL06 logbook used in the ETBF indicating the catch and effort 
information collected for each longline set deployed.  
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fishery, with 39 longline vessels and 7 minor line vessels active in 2015 though both the number 
of longline vessels and associated effort has varied over time (c.f. Figure 3.2a). During this 
year 5,324 longline sets were deployed setting a total of 8.25 million hooks. The number of 
hooks per set generally ranges between 300 and 3000 and the mean during 2015 was 1550. 
Catch by species (both number of fish and processed weight of retained fish together with the 
number of discarded fish) and effort are reported on a per set basis. A number of other details 
related to how the longline gear is deployed (e.g. set-time, location, bait-type, number of hooks 
between floats, number of light-sticks used) are also recorded on the logbook (c.f. Figure 3.3). 
In general, a single longline set is deployed each day during a fishing trip, though within a 
region off northern Queensland several short sets (< 500 hooks) can sometimes be deployed. 
Trips vary in length, with the number of sets per trip generally varying between one and 20 
(c.f. Figure 3.2b). 
 
The ETBF is managed by the Australian Fisheries Management Authority (AFMA) under the 
2011 Management Plan. The five primary target species, Yellowfin Tuna (Thunnus albacares),  
Bigeye Tuna (Thunnus obesus), Albacore Tuna (Thunnus alalunga), Broadbill Swordfish 
(Xiphias gladius) and Striped Marlin (Kajikia audax), are each managed under output controls 
in the form of individual transferable quotas by setting a Total Allowable Commercial Catch 
(TACC) for each quota year (which starts on 1 March each year). TACCs were first introduced 
in the 2011/12 quota year and the ETBF harvest strategy (Davies et al. 2008) was utilised to 
determine a Recommended Biological Commercial Catch (RBCC) for each species to help 
inform the AFMA Commission in determining the respective TACCs. Since the 2014/15 quota 
year, however, the ETBF harvest strategy has been used only for the two billfish species 
(Campbell 2016b), while the TACCs for the three principal tuna species are set after taking 
into consideration current fishery indicators of stock status both within the WCPO and the 
ETBF (Campbell 2016c). This change was introduced since the majority of the catch taken for 
the three tropical tunas within the principal ‘region of interest’ to the ETBF is taken by fleets 
other than the ETBF (Campbell 2016d). This has the consequence that the successful 
management of these resources cannot be undertaken by Australia alone but will require a 
regional management approach. 
 
While the majority of effort in the fishery is directed at the five primary species, a wide range 
of other secondary species (species of fish that may be taken in the fishery and retained) are 
reported in the fishery, including Mahi Mahi (Dolphinfish, Coryphaena hippurus), Wahoo 
(Acanthocybium solandri), Opah (Moonfish, Lamprdae guttatus) and various Oilfishes. 
However, apart from the catch of Southern Bluefin Tuna (Thunnus maccoyii, which is caught 
in the southern part of the ETBF and is managed by the Commission for the Conservation of 
Southern Bluefish Tuna) the catch of species other than the five quota species generally makes 
up less than 10% of the annual retained catch. 
 
 
3.2 The Multispecies Problem 
 
3.2.1 Basic Equations 

The relation between catch rates (CPUE) and stock abundance is based on the catch equation 
which, as a first order approximation, relates the number of fish in the catch, C, fishing effort, 
E, and average fish population density, D, on the fishing grounds: 

qEDC =       (3.2.1) 
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where q is a fixed constant of proportionality known as the catchability coefficient and is 
related to the efficiency of the fishing gear. From this equation: 

A

qN
qD

E

C
CPUE ===      (3.2.2) 

where N is the number of fish on the fishing grounds and A is the spatial area of the fishing 
grounds. It follows that changes in CPUE are due either to changes in the stock density (or 
number of fish on the fishing grounds) or to changes in the catchability coefficient. If the 
changes in q can be accounted for, then the remaining changes in CPUE can be related to those 
in stock density. This is the basic idea underlying what is known as the standardisation of catch 
rates.  
 
However, the concept of abundance needs some elaboration. Of particular importance is the 
related concept of availability. The following definitions were proposed by Marr (1951): 

Abundance is the absolute number of individuals in a population. Availability 
is the degree (a percentage) to which a population is accessible to the efforts 
of a fishery. Apparent abundance is the abundance as affected by availability, 
or the absolute number of fish accessible to the fishery.  

From these definitions, if B represents the true abundance and N measures the apparent 
abundance, then 

aBN =      (3.2.3) 

where a represents the availability or proportion of the total stock available to the fishery. 
Substituting into Eqn. (3.2.2) and rearranging gives: 

aq

CPUEA

a

N
B

.==     (3.2.4a) 

and 

A

aqB
CPUE =       (3.2.4b) 

From this equation it is seen that the relationship between CPUE and the true abundance of fish 
within a given spatial region is influenced by both the availability of the fish to the fishing gear 
(a) and the efficiency of the fishing gear (q).  
 
3.2.2 Example 

The discussion above concerning the need to account for the factors which influence both the 
availability of fish to the fishing gear and the catchability of the fishing gear is just as relevant 
for standardizing CPUE in a single species fishery as for standardizing CPUE in a multispecies 
fishery. However, an additional problem arises in a multispecies fishery when amongst the 
suite of principle species caught there is a change in the specific species targeted.  
 
For example, in the EBTF there are five principle catch species, though on many individual 
fishing operations only one of these species may be the main target species with the others 
considered by-product species. Furthermore, there are usually distinct differences in the 
manner in which the longline is deployed when targeting these different species. When there 
is a change in target between any suites of species, there is also an associated change in the 
‘effective’ effort directed at these species. Such a shift in species targeting has been described 
by Carruthers et al. (2011) who noted how the blast freezer technologies adopted in the 1950s 
and 1960s improved the viability of long distance Japanese sashimi fisheries. Consequently,  
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Table 3.1: The time-series of effort, catch ,CPUE and value of catch for a hypothetical fishery described in the text. 
 
 

 
 
 

q=1

year Bio(SpA) Bio(SpB) Effort %SpA %SPB cat(SpA) cat(SpB) cat(tot)) cpe(SpA) cpe(SpB) cpe(tot) $(SpA) $(SpB) Val(SpA) Val(SpB) Val(tot)

1 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125

2 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125

3 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125

4 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125

5 100 75 100 75 25 7500 1875 9375 75 18.75 93.75 1.5 1 11250 1875 13125

6 100 75 100 65 35 6500 2625 9125 65 26.25 91.25 1.5 1.2 9750 3150 12900

7 100 75 100 55 45 5500 3375 8875 55 33.75 88.75 1.5 1.4 8250 4725 12975

8 100 75 100 45 55 4500 4125 8625 45 41.25 86.25 1.5 1.6 6750 6600 13350

9 100 75 100 35 65 3500 4875 8375 35 48.75 83.75 1.5 1.8 5250 8775 14025

10 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000

11 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000

12 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000

13 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000

14 100 75 100 25 75 2500 5625 8125 25 56.25 81.25 1.5 2 3750 11250 15000

Density Units Effort Units Catch=q*Effort*Density CPUE = Catch/Effort Price/Unit of Catch Value of Catch
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Figure 3.4: The time-series of fishery indicators for a hypothetical fishery described in the text. 

 
 
the Japanese longline tuna fleets of the Atlantic and Pacific expanded to higher latitudes to 
target species of higher market price (such as Bigeye and Bluefin Tuna) and away from tropical 
waters inhabited by species such as Yellowfin and Skipjack Tuna. 
 
A simple example helps illustrate this situation. Consider the case where there are two species 
being fished by a fishery. The abundance of each species remains constant over time and the 
total effort deployed in the fishery is also constant. At the start of the fishery the price paid per 
kilogram is greater for species A but at some period the price per kilogram paid for species B 
increases to be greater than species A. This change results in a decrease in the percentage of 
effort targeted on species A and an increase in the percentage of effort targeted on species B 
(in this instance due to changes in the manner that the fishing gear is deployed).  
 
Using the equations described in the previous Section, a time-series of effort, catch, CPUE and 
value of the catch in such a hypothetical fishery is provided in Table 3.1 and displayed in Figure 
3.4. While the total catch decreases during this period of change the total value of the catch 
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increases, resulting in a more profitable fishery (given that total effort remains unchanged). 
However, if one uses nominal CPUE as a proxy for resource abundance over time, then one 
would conclude that the abundance of species A has declined and the abundance of species B 
has increased. This is an incorrect inference due to the fact that the changes in the relative 
catchability of the fishing gear for the two species have not being taken into account.  
 
To analyse this situation further, let EA be the effort targeted at species A, EB be the effort 
targeted at species B, qA,A be the catchability of species A when targeting species A and let qA,B 
be the catchability of species A when targeting species B. Then from Eqn. (3.2.1) the total 
catch of species A is given by: �� = ���,��� + ��,	�	
��    (3.2.5) 

from which we obtain: �� = ��,	� . �����,�	���,	��    (3.2.6) 

In general, the estimate of the density of species A will be biased by the second factor shown 
in Eqn. (3.2.6), however, there will be situations where this does not pose a problem. For 
example, where qA,B ≈ 0 (i.e. species A is not caught to any extent when targeting species B) 
then the estimate of the density of species A will be relatively unbiased. Also, when the ratio 
EB/ EA is constant over time then there is no bias in the relative measure of DA over this period 
as the bias will be constant. However it is unlikely that this ratio will be invariant over long 
periods of time because many of the factors influencing the behaviour and preferences of 
fishers may change. 
 
In the above example, it is assumed that the fisher has some ability to target the different species 
in the fishery as the need or desire arises, i.e. target fishing on a species is a deliberate act that 
can be predicted by fishers in advance and controlled. Nevertheless, in many multispecies 
fisheries there are technological interactions where fishing effort directed towards one species 
will normally result in a mixed catch of fish that may include many other species, i.e. it is not 
possible to target and catch only one species to the exclusion of others. While fishers can 
usually ‘target’ effort to some degree through fishing different areas and depths, seasons, times 
of day and by modifying gear, it is the degree to which fishers can target that is the issue. In 
such situations, the allocation of effort to particular species in a multispecies fishery (i.e. 
targeting) is not trivial (Klaer and Smith 2012). 
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4. Objectives 

The project had the following five objectives: 
 

1. Identify the factors likely to influence CPUE in multispecies pelagic longline fisheries 
and review the data requirements and data availability so that these factors can be used 
for standardising CPUE in these fisheries. 

2. Review all methods (both those currently used and any other novel methods) which 
may be used for standardising CPUE in multispecies fisheries. 

3. Based on experiences in other relevant research, and the outcomes of objectives 1 and 
2 identify, develop and compare the most appropriate methods for standardising CPUE 
for pelagic longline fisheries. 

4. Use simulated catch and effort data to test the potential of each method to adequately 
account for the influence of factors influencing CPUE and accurately reflect the 
underlying resource abundance. 

5. Investigate the sensitivity of the outcomes of the ETBF harvest strategy on the adoption 
of the candidate methods for standardising CPUE within the ETBF. 
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5. Methods  

5.1 Overview (and Report Structure) 
 
An overview of the main approaches used to address each of the five project objectives is 
outline here. Where indicated additional details are outlined in the remainder of this chapter. 
 
1) To adequately standardise CPUE one needs an understanding of the relationship between 
how the fishing gear is deployed and the subsequent catch. Factors influencing this relationship 
include both the availability of fish to the fishing gear and the catchability of the fishing gear. 
Availability will be influenced by the environmental and oceanographic conditions prevailing 
at the time of the fishing operation, while catchability will be influenced by the types of fishing 
gear used and the manner in which it is deployed. In a multispecies fishery there is particular 
interest in understanding the differences in fishing tactics utilised when targeting different 
species, as this information can be used to identify the ‘effective’ effort directed at any single 
species. For the ETBF the relationships between fishing practices and catch, together with 
changes in the seasonal availability and distribution of co-related species (i.e. species caught 
within the same set) in the fishery, was undertaken using the catch and effort data recorded in 
logbooks and by on-vessel observers. Results of these investigations are outlined in Sections 
6.1 to 6.4. 
 
2) A literature review was conducted of the merits of currently available methods for 
standardising CPUE appropriate for multispecies pelagic longline fisheries, with an emphasis 
on those methods not currently used within the ETBF assessments. The data requirements, 
statistical assumptions, and pros and cons for implementing each were identified. For example, 
habitat-based methods require specific information on species habitat preferences and the 
depths of the fishing gears for which direct information within the ETBF is limited in both 
space and time. Results of these review are outlined in Section 5.2. 
 
3) Taking account of both the review of methods and the investigations into the relationships 
between fishing practices and catch in the ETBF outlined in (1) and (2) above, a number of 
novel methods for standardising CPUE in the ETBF were developed. These included 
refinements to existing methods, and where possible the development of new methods. 
Refinements of existing methods included the incorporation of additional explanatory factors 
in GLMs to better model the range of targeting strategies used in the ETBF, and the 
identification of more appropriate temporal and spatial stratification of the data (i.e. Area 
effects). Consideration was also given to segmenting the analyses on a seasonal basis (i.e. 
monthly or b-monthly) to take account of seasonal changes in the availability of co-related 
species. Finally, a novel geo-statistical model was also developed. Following a summary of the 
current method used to standardise CPUE in the ETBF (provided in Section 5.3), details of the 
alternative methods developed are outlined in Sections 5.4 and 5.5. 
 
4) To evaluate the performance of the methods identified in (3) above, two simulation models 
were developed for generating set-by-set catch and effort data within a longline fishery context. 
These models were developed to incorporate a range of hypotheses for simulating how CPUE 
can be influenced by the operational factors included in the simulation, and were used to 
generate candidate catch and effort data to test and compare the outcomes and utility of 
candidate methods for standardising CPUE. In particular, to ascertain potential biases inherent 
in the use of each method, the resulting time-series of standardised CPUE were compared with 
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the known stock trends used to generate the simulated data. The details of the simulation 
models developed are outlined in Section 5.6, while a listing of the standardising models used 
in the comparative analyses is provided in Section 5.7. The results of comparing the 
performance of each candidate method for standardising CPUE are provided in Section 6.4 and 
some additional comparison are outlined in Section 6.5. 
 
5) Using both the historically available catch and effort data for the ETBF and the simulated 
data for this fishery, annual indices of abundance for each of the main target species were 
calculated using candidate methods for standardising CPUE. The results were then input into 
the ETBF harvest strategy to determine the sensitivity of the calculated RBCCs to the range of 
standardising methods used. Results are provided in Section 6.6. Further implications for the 
ETBF harvest strategy in a stock assessment context is provided in Section 6.7. 
 
 
5.2 Review of methods to standardise CPUE in multis pecies fisheries 
 
Due to the importance of CPUE in many stock assessments and the assumption that CPUE is 
proportional to abundance, it is important that any other factors that may influence CPUE are 
accounted for and removed from the index. The process of reducing the influence of these 
factors on CPUE is commonly referred to as standardizing the CPUE. While a short review of 
methods used to standardise CPUE is provided in this Section, the emphasis is on those 
methods particularly suited to multispecies fisheries. 
 
In an attempt to standardize CPUE time series there has been a steady publication of papers on 
statistical techniques which may be considered appropriate for such purposes (see review by 
Maunder and Punt 2004; Tascheri et al. 2010; Lynch et al. 2012). Early approaches adjusted 
nominal effort to account for the differences in relative vessel efficiency (Beverton and Parrish 
1956; Gulland 1956; Robson 1966), while more recently the advent of high speed computing 
and the use of more advanced statistical methods has allowed the inclusion of more factors in 
the standardisation process and has helped to overcome some of the more obvious limitations 
of the earlier methods. These techniques cover a range of methods including Generalised 
Linear Model (GLMs), Generalised Additive Models (GAMs) and Generalised Linear Mixed 
Models (GLMMs) and Regression Trees. There has also been considerable discussion on which 
of the many error distributions to choose from (e.g. Normal, Gamma, Poisson, Negative 
Binomial and Tweedie distributions) may be the most appropriate to use with these methods.  
 
Generalised Linear Models (GLM; e.g. Allen and Punsly 1984; McCullagh and Nelder 1989) 
are the most common method used to standardize CPUE. The CPUE is predicted as a linear 
combination of explanatory variables. Variables can be either categorical or continuous. Often, 
continuous variables are grouped into intervals and included as categorical variables. This is 
done, for example, to provide indicators for intrinsically nonlinear relationships, to reduce 
problems encountered with large numbers of zero observation strata (see also delta lognormal 
method below), or to create strata which reflect combinations of continuous variables with 
certain characteristics, that taken together serve as classifications that have no meaning on an 
ordinal scale. Higher order terms and intrinsically linear terms can be included as continuous 
variables in GLM models. For example, if the relationship is assumed to be domed shaped, the 
CPUE could be related to the square of the explanatory variable. Interaction terms can also be 
added to the model to allow for interactions among explanatory variables when appropriate. 
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The main objective of the analysis is to estimate a year effect. The year effect (included in the 
GLM as a categorical variable) is used to represent the annual relative levels of abundance and 
is used as the relative index of abundance to include in the stock assessment. Interactions with 
the year effect invalidates this interpretation of the year effect as an index of abundance and 
for this reason, most analyses do not consider interaction terms for the year effect. However, 
when there is high inter-annual variability in the spatial or temporal distribution of a resource 
between years the inclusion of year-interaction terms may be appropriate and in such situations 
the annual index of abundance needs to be constructed from the parameter estimates from the 
GLM (see Campbell 2015). 
 
Many fishery data sets (especially when the analysis is undertaken at the operational level, i.e. 
not aggregated) have a large number of unsuccessful units of effort (i.e. sets or strata with 
positive effort and zero catch), and this can cause bias in the analysis. Historically, standard 
GLM analyses based on a log-transformation of the data required a non-zero CPUE and it was 
common practice to combine strata to eliminate zero catch observations or to add a constant to 
the data, so that CPUE is always greater than zero. Both of these approaches have 
disadvantages. When strata are combined, it is possible that important information contained 
in explanatory variables on levels not related to the combined strata may be compromised. This 
may reduce the performance of the GLM or require the development of alternate strata for 
certain explanatory variables in order to conduct the analysis. In the second approach, adding 
a constant may cause some bias in the estimated year effect. The delta-lognormal method 
(Pennington 1983, 1996; Lo et al. 1992) was developed to overcome these problems in a GLM 
framework. This method models the zero catches separately and then models the positive 
catches using a GLM. The model for the zeros and the GLM are then combined to generate an 
index of abundance. 
 
GLMs are convenient because they have a long history, they are well understood, and they 
have accepted methods to choose factors, or variables, in a model. Unfortunately, they are 
limited in their functional form to linear relationships. While these relationships can be made 
more complex, such as by adding higher order terms or by adding interaction terms, in many 
situations nonlinear relationships may better describe the relationships between CPUE and 
explanatory variables. A number of techniques have been explored in this regard including:  

• General Additive Models (GAMs) - see Bigelow et al. (1999) for an example of use of 
GAMs in the Pacific to standardize CPUE of Broadbill Swordfish (Xiphias gladius) 
and Blue Shark (Prionace glauca),  

• Neural Networks, which uses the data to estimate the structure of the non-linear 
relationship between CPUE and the explanatory variables – see Maunder and Hinton 
(2006), and 

•  Regression Trees, which like neural networks are suited to detecting and extracting 
important and complex interactions of the explanatory variables - see Watters and 
Deriso (2000). 

 
While nonlinear models are more general in their functional forms when compared to GLMs, 
they do not in general use analytical reasoning to define the functional form of the relationship 
between the explanatory variables and CPUE. For example, parameter estimates from fitted 
GAMs are less readily interpretable than those from fitted GLMs. An alternative to these 
statistical approaches to standardising CPUE is to use our knowledge of the distribution of the 
target species and the fishing gears more directly. The approach, known as the Habitat-Based-
Standardisation (HBS) developed by Hinton and Nakano (1996), presents a method of 
standardising CPUE which combines information on the spatial and depth distributions of the 
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target species (using information on habitat preference and mapping of this habitat provided 
by oceanographic models) with information on the depths fished by longline hooks. The basic 
premise is that if a hook is fished in an environment that is preferred by the species, then it has 
a higher probability of capturing that species. This is particularly important, for example, when 
standardizing effort of longline gear targeting tuna, because the depth of the gear has increased 
over time as fishermen targeted Bigeye Tuna, which are generally found at deeper depths in 
the water column. 
 
This method was first applied to Pacific Blue Marlin (Makaira nigricans) before being applied 
to Bigeye Tuna in the Western Central Pacific Ocean (WCPO) by Hampton et al. (1998). The 
method has subsequently been further developed within a statistical framework (and is known 
as the stat-HBS method, Maunder et al. 2006a) and for a period following 2000 was routinely 
applied to both Bigeye Tuna and Yellowfin Tuna within the context of the stock assessments 
undertaken for these species within the WCPO (see Langley et al. 2005). The HBS methods 
require detailed information on the depths fished by hooks together with the distribution of the 
habitat of the target species, and poor performance of the habitat model has been attributed to 
(i) problems in estimating hook depth, (ii) fine-scale variations in environmental conditions, 
and (iii) incomplete knowledge of habitat preferences (Ward and Meyers 2006; Lynch et al. 
2012). 
 
While most of these methods have been developed for single-species analyses, a number of 
papers have attempted to develop approaches which take into account features of multispecies 
targeting. These methods can be broadly divided into the following two categories: 

1) Sub-setting; 
2) Covariates for other species. 
3) Spatial-temporal models. 

An important consideration for the standardization of multispecies CPUE data is that the choice 
of fishing tactic allocates effort toward a particular target species or species complex and away 
from other species. The term ‘fishing tactic’ is defined as a sequence of choices of fine-scale 
fishing strategies (e.g., gear, time of day, bearing, small-scale movements) made by the skipper 
during a fishing trip. A short review of each category is given here. 
 
5.2.1 Sub-setting 

The main idea associated with these methods is to select from amongst all the catch and effort 
records for a fishery a sub-set of records which are deemed informative about the species under 
consideration.  
 
Several variations on this approach have been illustrated in the fisheries literature: 

1. Categorising and allocating shots / trips based on species compositions, (e.g. Biseau 
1998; Klaer and Smith 2012). In the latter, the rule used assumed that fishers target 
according to the value of the species in the catch rather than weight, and that targeting 
is informed by prior knowledge of where and when certain species may be caught. In 
particular, in order to assign a target to all individual trawls with a catch the following 
rule was used: The target species was deemed to be the species with the greatest portion 
of the total catch value in a 0.51 subdivision 50 m depth stratum month during the same 
time of the day. 

2. Identifying ‘indicative’ vessels based on vessel characteristics and catch history. For 
example, Punt et al. (2000) applied this to School and Gummy Shark, selecting vessels 
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for inclusion in the analyses based on the number of years with a catch, median annual 
total catch, and median annual catch for the species of interest.  

3. When fishing location is included in the catch and effort records, it should be possible 
to restrict the analysis to those data for only those locations known to be habitat 
associated with the species of interest. However, when location is not included it may 
be possible to allocate shots based on the species compositions from fishing trips, to 
infer whether the fishing occurred in habitat appropriate for use in CPUE calculations 
for the species of interest. The idea is that the species composition (excluding the 
species under assessment) from a fishing trip provides information that can be used to 
make predictions as to whether the fishing trip included at least some effort expended 
in the target species’ habitat. Stephens and MacCall (2004) applied this method to 
groundfish caught by recreational fishermen on the west coast of the United States. 
They used a logistic regression that uses the presence or absence of other common 
species to estimate the probability that the target species would be encountered. 
Selection of a critical value allows the catch and effort data to be divided into the 
records in target and non-target habitat. 

4. Using auxiliary survey data to determine the percentage of a species within the logbook 
recorded catch using GLMs from which one can define a cut-off for identifying the 
appropriate sets for use in any subsequent single species CPUE analyses. Venables and 
Dichmont (2004) developed this approach for two species of tiger prawns in the fishery 
off northern Australia. 

 
While these methods are relatively easy to use and explain, and appear to work well when there 
are very different and well-defined metrics for categorising the data, there is often an ad hoc 
element (e.g. in the choice of cut-offs) in manner in which the data is subsetted. Those methods 
which make use of physical variables would appear to be preferred, as these can be used to 
infer distinct physical habitats. On the other hand, methods which are based on the use of 
species compositions means that the results may be susceptible to bias due to trends in other 
species and possibly due to changes in the species recorded over time.  
 
5.2.2 Covariate Methods 

The main idea associated with these methods is to categorise the catch and effort data using a 
number of covariates recorded on logbooks. Again, several variations on this approach have 
been proposed in the fisheries literature: 
 

1. Use of the catch rates of alternative target or bycatch species as covariates to correct 
for the effort directed away from the target species or species under consideration 
(Glazer and Butterworth 2002; Maunder and Punt 2004; Su et al. 2008). Although the 
catch rates of alternative species does not hold direct information about the magnitude 
of the catch, it is arguably of concern that the information contained in the predictor 
variables derived from these covariates is not entirely independent from the response 
CPUE and may have unpredictable impacts on the standardized CPUE trends. The 
following example illustrates this problem.  
 
Let Ct and Co be the catch of the target and another species (respectively) and let Et and 
Eo be the effort directed at each species such that total effort E= Et+Eo. The catch rate 
of the target species can be then be expressed as follows: 
 ����� =	��� = 	 ���� ∗ 	 ���� + �� ≈ �� ∗ �	1 −	����� 				"#	�� ≪ �� 
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 where It = Ct/Et is the abundance index of the target species. Similarly,  
 ����� =	��� =	 ���� ∗ 	 ���� + �� ≈ �� ∗ �		����� 				"#	�� ≪ �� 
 
 Therefore, solving for Eo/Et and substituting into the first expression gives:  
 ����� ≈ �� ∗ �	1 − ������� 	� 

   
As CPUEo/Io = Eo/E << 1 and using the approximation ln(1+x) ≈ x when x is 
small, then: ln'�����( ≈ ln	'��( − �������  

So, if we use a linear model for log catch rate of the species of interest with the 
catch rate of other species, as an explanatory variable, the associated implicit 
assumptions are: (i) the true abundance of the other species (as measured by the 
related index, Io) has no temporal trend, and (ii) the proportion of the total effort 
targeted at the other species is very small.  

 
For this reason, it is important that the alternative species should not co-occur with the 
target species. For example, if two species were to co-occur in the catches and would 
be fished down simultaneously, the use of the catch rate of the one species as a negative 
predictor of the CPUE of the other may result in an erroneous removal of the underlying 
year-effect for the species of interest. An additional challenge in situations where a 
large number of species are caught by the fishery is the objective selection of species-
specific catch rates to be included as covariates in the standardization model. 

2. Applying the assumption that distinct fishing strategies will result in distinctive suites 
of species in the catch, one can use well-known clustering techniques to categorise 
catch records into groups with similar catch compositions to identify those records 
which pertain to supposedly distinct targeting practices. The identified clusters are 
assumed to be representative of fishing tactics, which may be treated as categorical 
variables in the standardization model to adjust for differences in catchability associated 
with each cluster. This method was applied by He et al. (1997) to the Hawaii-longline 
fishery. Cluster analysis is useful in segregating dissimilar types of fishing effort 
particularly when aspects of fishing strategies remain unknown. After applying the 
cluster analysis, any CPUE index could be further improved using GLM techniques 
which incorporate additional sources of variability (e.g. gear configuration, area, time, 
and environment). He et al. (1997) recommended including data from several 
categories of set types if the CPUE trends for that species are similar when calculated 
for each type. When the CPUE time series pattern is uncorrelated among set types, it is 
not recommended that a combined data set be used to describe the dynamics of that 
resource unless a GLM analysis accounts for those differences. Clustering sets based 
on species proportions in the catch could potentially cause biases in cluster-based 
CPUE indices if, for example, fishing intensified and the abundance of a particular 
target species declined as the number of sets targeting that species increased but with a 
low catch might not be included in the cluster for that species. As a result a real decline 
in CPUE for sets targeting that species might be dampened or obscured. However, some 
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preliminary simulation testing by He et al. (1997) did not find this to be a major 
problem.  

3. The ‘Direct Principal Component’ (DPC) procedure recently proposed by Winker et al. 
(2013, 2014) uses continuous principal component scores (PCs), derived from a 
Principal Component Analysis (PCA) of the catch composition data, as nonlinear 
predictor variables in a General Additive Model to adjust for the effect of temporal 
variations in fishing tactics. The DPC procedure is based on the common assumption 
that information on the direction and extent of targeted effort can be found in the species 
composition of the catch. PCA represents one of the most commonly used approaches 
to describe patterns of variations in multivariate data-sets. The idea is that meaningful 
sources of variation are retained in the first few PC-axes (nontrivial PCs). One of the 
difficulties is to select the relevant number of nontrivial PCs, which in this case 
represent meaningful separations of fishing tactics. Nevertheless, on initial testing and 
application the DPC standardization procedure has be shown to be a reliable method 
for removing the effects of targeting on multispecies CPUE. An obstacle to its 
immediate widespread application could be the onerous data requirement, in the form 
of detailed records of catches for all or the majority of species at the trip or shot level. 

 
5.2.3 Spatial-temporal Methods 

Recently Thorson et al. (2016) have suggested a new statistical approach for constructing 
abundance indices in a multispecies fisheries. Noting that fishers can affect the assortment of 
species caught in a multispecies fishery by modifying the location, timing and gear 
characteristics of their fishery activity, they have proposed a method for simultaneously 
estimating fishing tactics and relative fish abundance when standardizing fishery dependent 
catch rate data. The proposed ‘spatial dynamic factor analysis’ (SDFA) model estimates spatial 
and temporal variation in abundance for multiple species caught in a multispecies fishery by 
decomposing covariation in multispecies catch rates into components representing spatial 
variation and fishing behaviour. This is achieved by decomposing the catch equation, C = qED, 
for each fishing operation into components representing spatiotemporal variation in fish 
density (D), small-scale tactics that allocate fishing effort (E), and measurement variables 
affecting catchability (q ), as well as residual variation. This decomposition implies that a 
spatiotemporal model of fish density can account for spatial variation in density (and therefore 
control for changes in the spatial allocation of fishing effort) while filtering out covariation in 
model residuals (as caused by fine-scale fisher tactics e.g. daily timing of fishing activity). 
Despite the promise of this new method at present, spatially stratified models remain more 
common than spatiotemporal models when analysing fishery CPUE data. 
 
The above summarises the main methods published in the literature for standardising 
multispecies CPUE data. In the following Sections we outline the main methods which were 
selected for further investigation and development, but first we outline the current method used 
to standardise CPUE within the ETBF. 
 
 
5.3 Current method used for standardising CPUE in t he ETBF 
 
Standardised CPUEs are principal inputs to the ETBF harvest strategy (used to determine 
RBCCs) and the set of fishery indicators (including outputs from the regional stock 
assessments, catch levels in the south-west Pacific, and catch, CPUE and size-based indicators 
for the ETBF) used for the three tropical tunas, both of which are used to determine TACCs. 
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The method used for standardising CPUE is fully described in Campbell (2016a) and is 
summarised here. This method will be used as a base-line against which the outcomes of 
alternative methods for standardising CPUE will be assessed. 
 
5.3.1 Standardisation Method 

The current method used to standard the catch rates in the ETBF is based on Generalised Linear 
Models (GLM) and is similar to approaches used in many fisheries around the world (Campbell 
2004, 2015). Due to the inflated number of zero catch observations it is also considered best 
practice to standardise the CPUE data following a two stage process: one stage being concerned 
with the pattern of occurrence of positive catches, and the other stage with the mean size of the 
positive catch rates. The GLM approach assumes that both the probability of a positive catch 
and the size of a positive catch rate can be modelled as linear combinations of the factors. Once 
this is done, the means from the two distributions can be combined to give an overall mean 
abundance index.  
 
A small example helps illustrate this approach. Consider a season for which there are n catch 
rate observations, Ci. The average catch rate can be expressed as follows: 
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where nS is the number of positive or successful catch rates obtained (Ci>0), nF is the number 
of zero or failed catches (Ci =0), pS is the proportion of positive catches and µS is the average 
of the positive catch rates. This result shows that the overall mean catch rate can be expressed 
as the combination of the parameters from the distributions used to model the probability of a 
successful catch, and that used to model the non-zero catch rates. This approach was used in 
the estimation of egg production based on plankton surveys (Pennington 1983; Pennington and 
Berrien 1984) and for estimating indices of fish abundance based on aerial spotter surveys (Lo 
et al. 1992) and has since become widely adopted (see Maunder and Punt 2004). 
 
Stage 1: Prob(positive catch) 

The Binominal distribution is used to model the probability of a non-zero catch where we 
model each observation as either a success (Ci >0) or a failure (Ci =0), with the probability of 
either expressed as follows: 

  Pr(Ci >0) = pS  and   Pr(Ci =0) = 1- pS 

Associated with each observation is a vector of covariates or explanatory variables Xj thought 
likely to influence the probability of a positive catch. For the ETBF analysis this includes a 
combination of both gear effects (e.g. start-time of set, bait-type, number of hooks-per-float, 
mainline–length) and environmental effects (e.g. sea-temperature, mixed-layer-depth, 
southern-oscillation index); a full list is given in Campbell (2016). Furthermore, we assume 

that the dependence of pS occurs through a linear combination ∑= jj Xβη  of the explanatory 

variables. In order to ensure that 0≤ pS≤1 we use the logit link function that takes the following 
form: 
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The inverse of this relation gives the probability of a positive sighting as a function of the 
explanatory variables: 
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The following model is then fitted to the data: 

MODEL pS = intercept + f(year, qtr, area) + ∑ jj Xβ + LogitḦ 

/ dist=binomial link=logit 

where the following forms of the function f() are fitted as two separate models: 

 Model 1: f(year, qtr, area) = year*qtr + qtr*area 

 Model 2 f(year, qtr, area) = year*qtr*area 

and * represents an interaction between the variables shown. As the probability of catching a 
fish is likely to be related to the number of hooks (H) deployed, the variable LogitḦ = log(h/(1-
h)) where h=H/M and M>maximum(H) was also fitted as an additional fitted effect (Campbell 
2015). After fitting the above model to the data the standardised probability for a positive catch, 
pS, was then calculated for each spatio-temporal strata (year, quarter and area) against a 
standard set of model factors.  
 
Stage 2: Mean Size of Positive Catch Rate 

A separate model is fitted to the distribution of positive catch rates, µS. For this purpose a log-
Gamma model is adopted, such that the µS was assumed to have a gamma distribution with a 
log link to the vector of covariates or explanatory variables Xj. The data fitted to the model are 
limited to those observations having a positive catch. As before, the following model is fitted 
to the data: 

MODEL µS = intercept + f(year,qtr,area) + ∑ jj Xβ / dist=gamma link=log 

where again the two functional forms of f() are as described previously. A standardised mean 
positive catch rate, µS, is then calculated for each spatio-temporal strata (year, quarter and area) 
against a standard set of model factors. 
 
An alternative model using the discrete negative binomial distribution, a log link and a 
log(effort) offset can be fitted to the catch. This distribution also provides a more general form 

of the assumed variance function (
2µµ k+ ). 

 
Fitted Variables 

A range of variables collected from the ETBF are used in the GLMs as explanatory variables. 
These variables, listed in Table 5.1, are divided into the following four groups: 

1) Statistical effects – these attempt to account for differences in availability of the fish due 
to differences in the spatial and temporal distribution of the resource and changes in the 
size of the resource each year. Variables include Year, Quarter and Area. 

2) Fishing Practice Effects – these attempt to account for differences in the effectiveness of 
the set due to differences in the manner that that the longline was deployed. Variables 
include Start-Time, Bait-Type, Use of Light-sticks, Length of Mainline, Distance between 
Floats, Number of Hooks-between-Floats, and Number of Hooks-per-Kilometer of 
deployed mainline. 



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

26 
 

Table 5.1. Listing of explanatory variables, and category definitions, fitted to GLM used to 
standardise CPUE in the ETBF. The number of observations within each category for the 
Swordfish analysis undertaken in 2016 is also shown 

 

No. Standardising Category Category Number of
Variable Level Definition Observations

1 Year 1 to 19 1997 to 2015 3,519 to 11,815
2 Quarter of Year 1 Jan-Mar 30,119

2 Apr-Jun 36,209
3 Jul-Sep 38,634
4 Oct-Dec 32,407

3 Region fished, Area 1 17,334
2 45,022
3 Species specific 11,347
4 Example: Refer to Figure 5.22 24,150
5 20,715
6 11,081
7 7,720

4 Start Time of Set 1 before 4am 14,318
2 4am to 8am 17,028
3 8am to noon 18,191
4 noon to 4pm 18,141
5 4pm to 8pm 51,031
6 8pm to midnight 18,660

5 Bait Type Used 1 squid, dead 70,594
2 yellowftail scad, alive 12,478
3 pilchard, dead 14,000
4 other, dead 2,309
5 other, alive 1,324
6 mixed species, dead 19,107
7 mixed species,  alive 1,594
8 mixed species, mixed life-status 13,648
9 all other categories 2,315

6 Hooks-per-Float 1 HPB <= 5 4,579
2 HPB=6 13,233
3 HPB=7 8,848
4 HPB=8 37,511
5 HPB=9 6,311
6 HPB between 10 and 11 39,300
7 HPB between 12 and 14 13,186
8 HPB between 15 and 19 5,883
9 HPB between 20 and 29 3,324
10 HPB between 30 and 40 5,194

7 1 0% 34,931
2 1 to 19 % 10,640
3 20 to 39 % 17,327
4 40 to 59 % 37,997
5 60 to 79 % 6,275
6 80 to 99 % 7,898
7 100% 22,301

8 Length of Mainline 1 <20km 4,730
2 between 20km and 30km 13,436
3 between 30km and 40km 20,746
4 between 40km and 50km 28,248
5 between 50km and 60km 35,577
6 between 60km and 70km 21,038
7 >70km 13,594

9 Distance between Floats 1 <300m 19,628
2 between 300m and 400m 36,999
3 between 400m and 500m 36,895
4 between 500m and 600m 24,913
5 between 600m and 750m 10,159
6 >750m 8,775

10 Number of Hooks per 1 <15 8,584
Kilometer of  Deployed 2 between 15 and 20 43,829
Mainline 3 between 20 and 25 40,849

4 between 25 and 30 19,778
5 between 30 and 35 15,317
6 >35 9,012

1. Statistical Effects

2. Fishing Strategy Effects

Percentage of Hooks with Light-
sticks
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Table 5.1 (cont’d). Listing of explanatory variables, and category definitions, fitted to GLM used 
to standardise CPUE in the ETBF. The number of observations within each category for the 
Swordfish analysis undertaken in 2016 is also shown 

 
 
3) Environmental/Oceanographic Effects – like the statistical effects listed above, these 

effects attempt to account for differences in the availability of the fish due to behavioral 
responses to local changes in ocean conditions and changes in their diurnal behavior. 
Variables include daily moon phase (expressed as the fraction of the whole moon visible), 
weekly mean sea-surface temperature, monthly mean Southern-Oscillation Index, mixed- 
layer-depth, wind-speed, and current strength, with both east-west and north-south 
components, current speed and current direction. 

4) Vessel Cooperative/Competitive Effects – these effects attempt to account for the 
influence of vessels cooperating or competing within a similar area of the fishery. 
Variables include the number of vessels within same 1-degree square/day) and the number 
of vessels within the same 1-degree square/month. 

To allow flexibility in the nature of the fitted relationship and to avoid spurious results which 
can be associated with a lack of data at the tails of fitted splines (for example, if one uses 
GAMs), most variables were fitted as categorical variables with a given range of values for 
each variable being associated with a discrete category (e.g. the start times were categorized 
into six 4-hourly intervals of time, c.f. Table 5.1). Only moon-phase was fitted as a continuous 
variable. Some of the environmental / oceanographic variables were normalized using the mean 

11 Sea-Surface 1 Normalised SST<-1.0 20,953
Temperature 2 Normalised SST between -1.0 and -0.43 25,774
 - Weekly mean 3 Normalised SST between -0.43 and 0.0 24,109

4 Normalised SST between 0.0 and 0.43 23,445
5 Normalised SST between  0.43 and 1 22,226
6 Normalised SST >1.0 20,862

12 Southern-Oscillation 1 to 6 As for Sea-Surface Temperature 20,325 to 25,908
Index

13 Mixed-Layer Depth 1 to 6 As for Sea-Surface Temperature 13,148 to 32,991

14 Wind Speed 1 to 6 As for Sea-Surface Temperature 19,326 to 28,325

15 Bathymetry 1 <1000m 6,832
2 between 1000 and 1500m 16,500
3 between 1500 and 2000m 21,929
4 between 2000 and 3000m 29,486
5 between 3000 and 4000m 27,357
6 >4000m 35,265

16 Moon Phase Continuous Fraction of visible moon

17 Number of other Vessels 1 >6 other vessels 4,317
in same 1-Degree Square 2 6 other vessels 2,590
and Day 3 5 other vessels 4,126

4 4 other vessels 6,743
5 3 other vessels 10,958
6 2 other vessels 18,157
7 1 other vessel 32,293
8 no other vessels 58,185

18 Number of other Vessels 1 more than 20 other vessels 7,422
in same 1-Degree Square 2 18-20 other vessels 4,365
and Month 3 15-17 other vessels 7,470

4 12-14 other vessels 10,711
5 9-11 other vessels 15,738
6 6-8 other vessels 25,600
7 3-5 other vessels 31,363
8 less than 3 other vessels 34,700

3. Environmental/Oceanographic Effects

4. Cooperative/Competitive Effects
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and standard deviation of the values across all data included in the analysis [i.e. z=(x-µ)/σ], 
then categorized into one of the six categories depending on whether the value of the 
normalized variable |z| was less than or greater than z=-1.0, -0.43, 0, 0.43 or 1.0. (Note, for the 
two current variables the transformation used was limited to z=x/σ in order to preserve the 
directional relationship between z and the corresponding current component.)  
 
5.3.2 Abundance Index 

The results from fitting the above two models are used to calculate the standardized index, S, 
in each year, quarter and area strata: 

area) qtr, (year, * area) qtr, (year,),,( S,, µSaqy pSareaqtryearS ==  

The expected value of the standardised values of both )* and +* in each year, quarter and area 
can be found by selecting a standardising reference level for each of the fitted explanatory 
effects. In practice that categorical level for which the related parameter βj is zero is selected 
(for SAS this corresponds to the last level of each fitted effect). An annual index of abundance, 
I(year), is then determined by first calculating the area-weighted sum of the standardized index 
across all NA areas and then taking the average across all NQ=4 quarters as follows: 
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where Sizearea is the spatial size of the individual areas (as measured by the number of 1-degree 
squares in each area).  
 
Given the above equation there is a need to be able to calculate a standardized CPUE for each 
combination of the year, quarter and area strata included in the standardizing model. While this 
is usually achieved for models without interaction terms, when interactions are included the 
model may not provide an estimate of the standardized CPUE for all strata. In those instances 
where strata remain unobserved, then there will be a need to impute a value of the standardized 
CPUE for these strata. While various methods have been suggested for imputing such values 
(Walters 2003; Campbell 2004; Carruthers et al. 2011; Campbell 2015), where this occurred 
the standardised CPUE value for each missing stratum was taken from the value estimated for 
this stratum based on fitting the simpler standardizing Model 1.  
 
Finally, the annual index for all years is scaled so that the mean of the annual index over the 
entire time-series was equal to 1.  
 
5.3.3 Selection of Core-Catch Area for each species 

Ideally, one would like to construct an annual abundance index based on the total size of the 
resource available to the fishery. This can be defined as the resource to be found within the 
total area fished by the fishery. However, the changing spatial extent of the ETBF (c.f. Figure 
5.1) creates a number of problems for the calculation of annual abundance indices. For 
example, since 1997 the spatial extent of the fishery has ranged between 126 (in 2011 and 
2013) and 264 (in 2003) one-degree squares. Also, different sets of squares are fished each 
year, and of the total of 387 distinct squares fished in the ETBF since 1997, less than one-fifth 
(68) have been fished in all years between 1997 and 2015. Furthermore, in the past some of the 
highest catch rates of Swordfish have been achieved in the off-shore areas of the ETBF east of 
160oE. However, in recent years there has been little or no fishing in this region. As such, it is 
not possible to estimate the values of pS and µS in these areas and include them in the annual 
abundance index defined above.   
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Figure 5.1: Total number of 1-degree squares fished each year in the ETBF and the corresponding 
number of squares in which each of the main target species were caught. 

 
 
So that changes in the index are due to changes in the abundance of available fish and not due 
to changes in the spatial extent, there is a need to define some core spatial region of the ETBF 
that remains constant over the assessment period and over which an abundance index for each 
species can be calculated each year and compared. Inferences about changes in abundance 
based on changes in the standardised CPUE will therefore be limited to the size of the resource 
available within this core region (and not the whole population of stock).  
 

In order to identify a core region for each species over which the abundance index can be 
calculated, and taking into account the need for such a region to generally coincide with the 
areas of the fishery with continuous history of being fished, the following approach was 
followed: 

1) The number of years that each 1-degree square of the ETBF had been fished over the 
period of interest (N-years) was calculated. 

2) The percentage of the total catch in each year which was caught in those squares that 
had been fished in all N-years was calculated. If this percentage exceeded 90% in all 
years then the core area for this species was taken to be the union of all these 1-degree 
squares. 

3) If the percentages calculated in the previous step were not all greater than 90% then 
the percentage of the total catch in each year caught in all squares fished for N-1 or 
more years was calculated. Again, if these percentages exceeded 90% in all years then 
the core area for this species was taken to be the union of all these 1-degree squares. 

4) This step-by-step analysis was continued until the percentage of the total catch taken 
in all 1-degee squares which has been fished at least C-years (where C≤N) exceeded 
90% in each year. The core area was then taken to be the union of all these 1-degree 
squares. 

The application of this approach to identifying the core area for each of the five principal target 
species in the ETBF is described in Campbell (2012). 
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5.3.4 Determination of GLM Areas 

Having selected a core region for each species, this region is then sub-divided into a number 
of sub-regions, or areas, (usually 6 or 7) to serve as (and test for) Area-effects within the GLM. 
For each species these areas were selected as follows: 

1) The nominal CPUE (defined as the sum of catches divided by the sum of effort) within 
each 1-degree square within the core region was calculated for each year (but only 
where the number of fishing operations was 5 or more). The mean of these nominal 
CPUEs was there calculated over all years and the distribution of these mean CPUEs 
for each 1-degree square was mapped. 

2) The core region was then subdivided into 6 or 7 spatially coherent and cohesive areas 
by grouping together 1-degree squares having similar CPUE. These areas, which are 
used as categorical Area effects in the GLM, are taken as being representative (and 
therefore explanatory) of differences in the density of the species of interest across the 
core fishery, possibly due to differences in habitat preferences. While alternative 
approaches can be adopted for identifying Area effects, such as using the distribution 
of structural habitat features across the fishery, this approach makes more direct use of 
the spatial distribution of observed CPUE to infer patterns in the spatial distribution of 
the resource. It also overcomes the limitations in just constructing Area effects simply 
based on blocks of latitude and longitude, as is often done. 

Again, the application of this approach to identifying these sub-regions for each of the five 
principal target species in the ETBF is described in Campbell (2012). 
 
 
5.4 Clustering catch as a proxy for targeting 
 
It is often assumed that in a multispecies fishery that fishes have some ability to target 
individual species (or mix of species) through spatial (and temporal) targeting and by changing 
the manner in which the fishing gear is deployed. For example, there is some evidence based 
on archival tagging that different pelagic species (such as tunas and billfish) inhabit different 
depth strata, which may vary both diurnally and seasonally (Gunn et al. 2005; Evans 2010; 
Evans et al. 2011). As such, in a pelagic longline fishery a different mix of species can 
potentially be targeted by deploying the fishing gear at different specified depths. Evidence for 
such targeting in the ETBF will be explored in detail in the next chapter.  
 
Unlike single species fisheries where all effort is directed at the target species, in multispecies 
fisheries the effort can potentially be targeted at different species (or a difference mix of 
species), i.e. the main species targeted by the fishing gear may change. Where this occurs, the 
fishing effort needs to be adjusted so that the "effective" effort directed at any specific species 
of interest can be ascertained. If this is not undertaken correctly then the resulting index of 
resource abundance is likely to be biased and unreliable. When there is a relationship between 
the targeting of different species and the manner in which the fishing gear is deployed, and 
where information is available for each fishing operation on the how the fishing gear is 
deployed, then it is desirable to include this information in the methods used to standardise the 
related CPUE. However, where such information is not available, other methods need to be 
used to segregate dissimilar types of fishing operations. it is possible that the composition of 
the catch will act as a proxy for targeting behaviour. For example, with multispecies trawl 
fisheries operations are often segregated according to the most abundant species in the catch. 
Alternately, cluster analysis can be used to categorise fishing operations by the similarity in 
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catch composition (Rogers and Pikitch 1992). In a similar manner, cluster analysis can be used 
to classify longline sets in relation to the species composition of the catches.  
 
We follow the method of He et al. (1997), who used cluster analysis to group the entire set of 
fishing operations for the Hawaiian longline fishery into groups of different fishing strategies 
based on the species composition of the catch. We illustrate this approach using the data set 
consisting of catch and effort data for 111,600 individual longline sets in the ETBF between 
2000 and 2013. Although information on up to twenty individual species is included in the 
catch for each set, in this initial exploratory analysis we limit the catch to the following five 
species: Yellowfin Tuna (YFT), Bigeye Tuna (BET), Albacore Tuna (ALB), Southern Bluefin 
Tuna (SBT) and Broadbill Swordfish (SWO). (Note, the catch was taken as a sum of retained 
and discarded catches for each of these species.). 
 
Records were deleted if the total catch of these five species was zero leaving 108,650 records 
to be included in the analysis. Catch composition for each set was then calculated as the 
proportion of each species to the total catch of the set. Data were arcsin-square-root 
transformed before analysis to normalise their distribution (Snedecor and Cochran 1980). A 
hierarchical cluster analysis (known as the Ward method, Ward 1963) was then applied to the 
108,650 records. The choice of the number of clusters was guided by the number of clusters 
identified using various statistical metrics (Cubic Clustering Criterion CCC, Pseudo-F), but to 
some extent was largely subjective. All analyses were undertaken using the SAS CLUSTER 
Procedure (SAS 1999). 
 
Two sets of analyses were undertaken: (a) for each month separately, and (b) for all data 
combined. The monthly analyses explore the possibility that, due to changes in the prevailing 
oceanographic conditions, the associations between species available to the longline gear can 
change seasonally. The evidence for this is more fully explored in Section 6.3. Based on an 
inspection of the Pseudo-F clustering criterion for each month (c.f. Figure 5.2) the number of 
clusters for each month was set to be four. 
 
Figure 5.2: Pseudo-F criteria for identifying number of clusters. Results shown for each month. 

 
 

Pictorial representation of the four clusters for each month based on plots of the first two 
canonical variables are shown in Figure 5.3a-l, while illustrative dendograms of cluster 
associations for the four months (January, February, November and December) are shown in 
Figure 5.4a-d. For most months these results clearly display a partitioning of the data in four 
semi-distinct clusters, indicating clear structure in the species composition of the catches. This 
structure may, or may not, be related to particular targeting strategies adopted by fishers.  
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Figure 5.3: Pictorial representation of monthly clusters based on plots of the first two canonical 
variables. (NB, the lines of points are assumed to be representative of the zero catches in the data.) 
a) January 

 
c) March 

 
e) May 

 
g) July 

 

b) February 

 
d) April 

 
f) June 

 
h) August 
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Figure 5.3: (cont’d). Pictorial representation of monthly clusters based on first two canonical axes. 
 

i) September 

 
k) November 

 
 
 

j) October 

 
l) December 

 
 

Figure 5.4: Dendograms of cluster associations. Results are shown for the following four months: 
(a) January, (b) February, (c) November and (d) December. 
 

a) January 

 
b) November 

 
 

c) February 

 
d) December 
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Table 5.2: Catch composition of the four clusters based on the cluster analysis for each month. 
The last column titled Target indicates the final targeting type (1-7) based on the final cluster 
analysis of the 48 clusters shown in the Table. (NOPS = Number of fishing operations.) 

 

OBS MONTH CLUSTER NOPS YFT BET ALB SBT SWO TARGET

1 1 1 557 0.00 0.00 0.00 0.00 100.00 2

2 1 2 3390 19.78 15.50 7.25 0.00 57.47 4

3 1 3 2917 82.09 6.21 6.73 0.00 4.97 1

4 1 4 924 16.21 6.63 72.23 0.43 4.50 3

5 2 1 2327 7.32 11.21 3.22 0.00 78.25 2

6 2 2 3159 83.22 3.22 5.66 0.00 7.90 1

7 2 3 2079 27.78 29.38 13.70 0.03 29.11 6

8 2 4 613 17.06 12.40 70.00 0.00 0.54 3

9 3 1 2036 11.20 7.85 7.19 0.01 73.75 2

10 3 2 3057 82.28 6.58 6.76 0.00 4.38 1

11 3 3 2790 23.02 36.72 12.90 0.15 27.21 6

12 3 4 1129 24.04 8.18 61.62 0.00 6.16 3

13 4 1 1910 88.41 1.69 6.81 0.02 3.07 1

14 4 2 1825 16.18 15.89 8.36 0.00 59.56 4

15 4 3 1846 16.92 8.67 65.33 0.03 9.05 3

16 4 4 4121 31.37 39.59 17.22 0.10 11.71 6

17 5 1 1401 7.90 8.72 80.96 0.20 2.22 3

18 5 2 2407 75.69 6.25 14.29 0.04 3.72 1

19 5 3 1843 24.29 42.13 0.93 0.03 32.62 6

20 5 4 4581 16.31 30.52 37.41 0.18 15.58 7

21 6 1 1044 30.24 53.01 2.36 0.21 14.18 6

22 6 2 2572 60.39 8.65 27.50 0.36 3.11 5

23 6 3 3483 10.58 24.03 38.90 3.62 22.87 7

24 6 4 2497 7.34 8.04 79.65 1.21 3.76 3

25 7 1 2445 72.00 4.15 20.64 0.38 2.82 1

26 7 2 976 16.40 12.27 18.29 1.09 51.96 4

27 7 3 4910 10.26 10.01 68.53 4.16 7.04 3

28 7 4 1737 23.81 44.92 24.58 0.11 6.58 6

29 8 1 1540 95.87 0.18 3.06 0.01 0.87 1

30 8 2 1407 14.23 33.43 27.86 0.13 24.34 7

31 8 3 2745 57.33 12.04 22.30 0.15 8.17 5

32 8 4 4347 13.14 6.92 64.94 2.62 12.38 3

33 9 1 3799 18.87 9.10 56.79 0.92 14.32 3

34 9 2 1503 97.84 0.77 0.72 0.00 0.67 1

35 9 3 1418 11.63 11.04 18.71 0.02 58.61 4

36 9 4 2923 60.43 13.27 16.94 0.03 9.33 5

37 10 1 4003 35.01 12.48 28.38 0.28 23.85 5

38 10 2 2219 91.14 5.88 2.59 0.01 0.38 1

39 10 3 1993 9.89 6.26 7.60 0.01 76.23 2

40 10 4 765 8.81 2.17 88.04 0.24 0.74 3

41 11 1 1599 98.43 0.88 0.69 0.00 0.00 1

42 11 2 3500 48.59 14.52 14.50 0.56 21.83 5

43 11 3 2294 9.25 5.69 7.60 0.00 77.46 2

44 11 4 938 19.07 2.18 75.71 0.60 2.44 3

45 12 1 1930 9.47 9.67 4.11 0.01 76.74 2

46 12 2 2850 81.78 5.81 3.71 0.03 8.68 1

47 12 3 1331 26.02 23.90 15.22 3.68 31.18 6

48 12 4 970 23.85 6.90 68.21 0.18 0.86 3
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The catch composition of the four clusters based on the cluster analysis for each month is shown 
in Table 5.2. As it is likely that similar cluster types may occur across the different months (e.g. 
cluster-type 4 is similar for January and February), a second cluster analysis was undertaken 
where the 48 clusters shown in the Table 5.2 were clustered based on the species composition 
of each cluster. Again, the Ward method was used. Based on the clustering criteria shown in  
Figure 5.5, the final number of cluster types selected for this second stage of the analysis was 
taken to be seven. The dendogram of cluster associations based on analysis of the 48 monthly 
clusters is shown in Figure 5.6a while the associated representation of the seven cluster types 
based on plots of the first two canonical variables is shown in Figure 5.6b. Again, these results 
appear to indicate structuring of the data into around seven cluster-types across all months.  
 
Figure 5.5: Clustering criteria used to identify the appropriate final number of clusters based on 
clustering the 48 monthly cluster types identified in the first stage of the analysis. 

 
 
Figure 5.6: (a) Dendogram of cluster associations based on analysis of the 48 monthly clusters, 
and (b) representation of the seven cluster types based on plots of the first two canonical variables 
for the 48 monthly clusters. 
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Figure 5.7: Distribution of the 48 monthly cluster types identified in stage 1 of the analysis across 
the seven cluster types identified in stage two of the analysis. 

 
 
 
Figure 5.8: Distribution of cluster types (percentage of sets) across each (a) year and (b) month. 
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Figure 5.9: Distribution of gear-settings across the seven cluster type identified in the 2-stage monthly analysis. 
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The distribution of the 48 monthly cluster types identified in stage 1 of the analysis across the 
seven cluster types identified in stage two of the analysis are shown in Figure 5.7. Based on 
the catch composition shown for each cluster type it is seen that Cluster-type 1 can be 
associated with targeting Yellowfin Tuna, Cluster 2 can be associated with targeting Swordfish, 
Cluster 3 can be associated with targeting Albacore Tuna and Cluster 6 can be associated with 
targeting Bigeye Tuna. The other three clusters are hybrids of these initial four. Interestingly, 
the months that the Swordfish cluster-type occurs corresponds to the months when this species 
is most available (c.f. Figure A.1, Appendix A), while a similar result is also seen for the Bigeye 
Tuna cluster-type.  
 
Finally, the catch composition of the seven cluster-types identified in the 48 monthly clusters 
(shown in Table 5.3a, Figure 5.10a) can be compared with the catch composition of the seven 
cluster-types identified directly by a single analysis of all 108,650 records (shown in Table 
5.3b, Figure 5.10b). A number of differences can be seen between these two results. First, while  
 
Table 5.3: Composition of cluster types based on (a) monthly analyses combined into 7 clusters, 
and (b) single analysis of all data into 7 clusters. Note, the clusters in each sub-table are ordered 
by decreasing percentage of Yellowfin Tuna. (NOPS = Number of fishing operations.) 

 

 
 
 
Figure 5.10: Catch composition by seven clusters based on (a) the analysis by month, and (b) the 
single analysis of all sets. 

 

(a) CLUSTER NOPS YFT BET ALB SBT SWO Total

1 25,606 84.68 4.27 7.00 0.05 4.00 100

5 15,743 50.79 12.38 21.97 0.29 14.58 100

6 14,945 27.00 38.11 13.56 0.42 20.91 100

4 7,609 16.96 14.35 11.07 0.14 57.48 100

3 24,139 14.09 8.10 68.40 1.66 7.75 100

7 9,471 13.90 28.57 36.54 1.44 19.56 100

2 11,137 8.89 7.75 5.63 0.01 77.73 100

108,650

(b) CLUSTER NOPS YFT BET ALB SBT SWO Total

7 10,670 100.00 0.00 0.00 0.00 0.00 100

6 17,913 74.91 13.06 3.13 0.05 8.91 100

2 13,458 51.45 4.99 40.70 0.01 2.89 100

1 11,802 23.29 11.14 22.50 4.16 38.96 100

4 13,969 17.00 50.99 12.91 0.03 19.08 100

3 25,636 11.34 12.26 67.34 0.63 8.49 100

5 15,202 11.07 5.06 6.37 0.00 77.55 100

108,650
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the catch compositions of certain cluster-types are similar for each result (e.g. cluster-type 2 
for the monthly analysis and cluster-type 5 for the single analysis can both be associated with 
Swordfish dominated catches), there are substantial differences in the composition of other 
cluster-types. For example, for the dominant Yellowfin cluster-type based on the monthly 
analysis the average composition of the catch is 85% Yellowfin Tuna, while for the dominant 
Yellowfin cluster-type based on the combined analysis the catch is 100% Yellowfin Tuna. 
Second, the distribution of fishing operations across each of the seven cluster-types is also 
substantially different. While this difference is obviously associated with the dissimilarity in 
the associated catch compositions, even for those cluster-types that are similar between the two 
results (e.g. the two dominant Swordfish clusters) the number of sets associated with each is 
quite different (11,137 versus 15,202). As explained earlier, the monthly-based analysis was 
undertaken to take into account possible changes in species associations between months that 
may not be adequately accounted for by a single analysis across all months. While differences 
in the results of the two approaches have been noted, as to which of the two approaches may 
be better in identifying targeting behaviour will be explored in the simulation testing reported 
later in this report. 
 
 

5.5 Bayesian spatial and spatial-temporal models wi th INLA 
 
Pelagic longline fishing is a multispecies fishery where many species can be caught in one gear 
deployment. However, catch rate for each species can vary over time and space. Some species 
are very common in the catch, while other species can be rarely caught and the catch rate may 
be very low. Traditionally, catch-per-unit-effort (CPUE) standardisation is carried out species 
by species (Campbell 2004, 2015; Maunder and Punt 2004) so the level of uncertainty can vary 
significantly across species due to varying quantity and quality of data.  
 
We believe that if several species are captured in the same gear deployments (shots), there must 
be some similarities among these species, e.g. distribution, behaviour, abundance. This raises 
the question as to whether there are advantages to model multispecies together in a single 
model? For example, it is well know that modelling multiple groups of subjects under a 
Bayesian hierarchical structure allows sharing and borrowing of information across these 
groups (Gelman and Pardoe 2006; Zhou et al. 2008).  
 
Recently, Bayesian modelling has been used in single species CPUE standardisation (Cao et 
al. 2011; Zhang and Holmes 2009) and such an approach has several advantages. Through the 
specification of prior distributions, the Bayesian method allows the formal inclusion of 
information from previous studies, expert opinion, or similar studies in other occasions. From 
the Bayesian posterior distribution we can easily obtain the probability of a parameter in 
relation to a certain threshold. Furthermore, the Bayesian approach allows easy construction of 
a hierarchical structure on the data and parameters, and enables borrowing strength and sharing 
information across multiple groups of subjects. Although the Bayesian approach is very 
flexible, it has a major drawback -- slow computing speed because it generally uses the Markov 
Chain Monte Carlo (MCMC) technique. With typically many thousands of data points, MCMC 
can be extremely slow and has been rarely used in CPUE standardisation. For example, in this 
project we tested Bayesian multispecies modelling using WinBUGS. It took several hours to 
reach convergence for a fraction of the ETBF data. The time for whole data-set could be 
impracticable. 
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Fishery catch data are often characterised by a spatial and temporal structure that should be 
taken into account in the modelling process. Obviously, fish abundance and availability change 
continuously over space and time. It is ideal to incorporate temporal-spatial information into 
the model as continuously connected covariates. However, existing CPUE standardisation 
methods rarely incorporate spatial and temporal effect as continuous covariates, but merely 
include them as discrete categorical variables.  
 
Recently, a new tool, Integrated Nested Laplace Approximation (INLA), has been developed 
for Bayesian inference (Rue et al. 2009). This powerful tool substitutes MCMC simulations 
with accurate, deterministic approximations to posterior marginal distributions. INLA 
possesses some main advantages over MCMC techniques. The most outstanding benefit is its 
computational strength. INLA can produce results many times faster than MCMC. The second 
advantage is that INLA allows greater automation of the inference process, particularly useful 
for spatial or temporal models (Beguin et al. 2012; Blangiardo et al. 2013; Muñoz et al. 2013).  
 
In this Section we investigate the feasibility of using INLA for CPUE standardisation. We 
compared single species and multispecies CPUE modellings using two approaches: (i) a 
generalized linear model using maximum likelihood estimation (MLE), and (ii) a Bayesian 
estimation technique using INLA.   
 
5.5.1 Model Descriptions 

Base GLM model 

We tested and compared alternative models to explore potential effect of covariate selections, 
model structure, and spatial and temporal configurations. For each species, the base model is a 
negative binomial generalized linear model (GLM) in the following form: 

∑+==
m

mimii xg ββµη 0)(  

where mean µi is the expected catch on set i and is linked to the linear predictor ηi, β0 is 
intercept, βm is coefficient for the explanatory variable xm, which is considered a fixed effect. 
Specifically, we included the following explanatory variables: 

)log(0 ihiTiHPFiiAQiiYQi hTHPFQAQY ββββββη +++++=   (Model 1) 

Where Y is year, Q is quarter, A is area (region), HPF is hook per float, T is the start-time of 
the set, and h is the number of hooks. All predictors, except h, are treated as categorical 
variables. Catch ci is modelled with a negative-binomial distribution. Note that the spatial 
predictor A is simply a categorical variable without any spatial continuity and relationship 
among them, whether between neighbouring areas or distant areas. 
 
Geostatistical models 

Logbook records from a pelagic longline fishery are made up of data measured at known 
locations, either at defined areas (regions) or latitude and longitude coordinates. The observed 
catch depends on a range of unobserved spatial and temporal variables such as fish density, 
movement, availability, schooling behaviour, fishing gear efficiency, etc. Geostatistical models 
are ideal approaches for modelling fisheries data (e.g. Thorson et al. 2015). In spatial statistics, 
geostatistical models can incorporate spatial dependency by using spatially-structured random-
effect models.  
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There are two major types of spatial data. The first one is the area data, where shot-by-shot 
catch is a random aggregate value over an area with defined boundaries within a management 
jurisdiction (e.g. ETBF). The area can be either irregular or regular shapes. The second type of 
data is point-referenced geostatistical data, where latitude and longitude coordinates are 
random locations and the spatial index of the locations can vary continuously in the fixed 
management jurisdiction. We focus on the point data because they are real locations, whereas 
dividing a management jurisdiction into areas can be subjective.  
 
We explored four geostatistical models. The first two models (referred to as Model 2 and Model 
3 hereafter as Model 1 is the GLM model described above) are spatial models that only consider 
spatial effects, but not continuous spatial-temporal interactions. In contrast, the other two 
models, referred to as Model 4 and Model 5 hereafter, are spatio-temporal models.  
 
In the spatial models, spatial catch data c(s) are the realizations of a spatial process 
characterized by a spatial index s, which varies continuously in the fixed domain D (= ETBF 
jurisdiction). The vector of catches is assumed to follow a multivariate normal distribution with 
mean , = [(s1),…, +(sn)] and spatially structured covariance matrix -. Such a multidimensional 
spatial process is called Gaussian Markov Random Fields (GMRF) (Blangiardo and Cameletti 
2015). The GMRF model can be expressed as: 

is
l

lil
m

mimi sfyfx εββη ++++= ∑∑ )()(0  

The first two terms are similar to a GLM, where x can be variables such as gear types and 
environmental variables. The {fl(·)}’s are nonlinear smooth effects of the further covariates y. 
These can take many different forms, including nonlinear effects of continuous covariates, time 
trends, seasonal effects, random intercepts or slopes, group specific random effects, etc. f(s) is 
spatially structured effects. These two terms are the major difference between a GLM and 
Gaussian random field models. The final εi is unstructured random effects. 
 
To compare with the base GLM Model (1), we use the following two GMRF spatial models 

isihiTiHPFiiYQi sfhTHPFQY εβββββη ++++++= )()log(0   (Model 2) 

isihiTiHPFiiAQiiYQi sfhTHPFQAQY εββββββη +++++++= )()log(0  (Model 3) 

Model 2 treats spatial effects as a GMRF. The difference between Models 2 and 3 is the fixed 
effect term βAQAiQi, which is the same as in GLM Model 1. We consider that the latent fields 
represent fish distribution in the real-world, whether they are caught in a given fishing location 
or uncaught (unobserved). Thus, we are not building models solely for discretely observed 
data, but for approximations of entire processes defined on continuous spatial domains. The 
GMRF models are implemented in INLA. INLA handles continuous Gaussian random fields 
by stochastic partial differential equations (SPDEs), and writes down explicit links between 
the parameters of each SPDE and the elements of precision matrices for weights in a discrete 
basis function representation (Lindgren and Rue 2014). The commonly used SPDE for 
Gaussian Markov random field model is the stationary Matern function: './ − Δ(1//'3x) = W 

where x is the latent spatial location, Δ is the Laplacian, κ is the spatial scale parameter, α 
controls the smoothness of the realisations, τ controls the variance, and W is a Gaussian spatial 
white noise process. The Matern covariance is: 
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where Γ is the gamma function, Kν is the modified Bessel function of the second kind, and ν is 
the smoothness parameter (ν >0).  
 
Spatio-temporal models 

The second geostatistical model is a spatial-temporal model that takes into account of both 
continuous dependency of spatial pattern and temporal trend. The base GLM (Model 1) and 
spatial Models (2, 3) treat temporal predictors (year and quarter) as discrete categorical 
variables. It is likely that the latent field of fish distribution and movement exhibits temporal 
correlation from one time step to the next. Modelling the spatial pattern of fish distribution 
alone cannot explain their temporal variation, which is equally important for marine animals. 
The number of fish or biomass in a given location is contingent on the number of fish or 
biomass in previous time steps at that location and surrounding locations. Hence, the spatial 
models are extended to the spatio-temporal models that include a time dimension, with the 
catch data c(s, t) = {c(s, t), (s, t) ∈ D}, where t is a time point. The spatio-temporal covariance 
function is given by Cov[c(si, tm), c(sj, tn)] = C(cim, cjn). Similar to the spatial model, the general 
representation of spatio-temporal model is: 

ist
l

lil
m

mimi tsfyfx εββη ++++= ∑∑ ),()(0  

To build temporal process into a GMRF model, we use a continuous time measurement at year-
quarter scale. There are alternative presentations of space-time interactions. As an example, we 
adopt Kronecker product models where both space and time are treated continuously. The 
Matern model above is used in space and a first order autoregressive model AR(1) is used in 
time (i.e., the current state is assumed to be affected by the state one time step earlier).  

isihiTiHPFiiYQi tsfhTHPFQY εβββββη ++++++= ),()log(0    (Model 4) 

isihiTiHPFiiAQiiYQi tsfhTHPFQAQY εββββββη +++++++= ),()log(0  (Model 5) 

Compared to Models 2 and 3, the difference here is the GMRF term fs(s, t). Model 5 is 
considered a “full model” as it uses both discrete and continuous spatial and temporal 
covariates.  
 
The Bayesian Models 2 to 5 all involve a discrete covariate Q (quarter) as fixed effect. Since 
Models 4 and 5 treat year-quarter as a continuous random variable, a simple spatio-temporal 
model can be  

isihiTiHPFiYi tsfhTHPFY εβββββη ++++++= ),()log(0    (Model 6) 

This model treats all spatial and temporal variables as random effects except year which is 
needed to derive annual abundance index.   
 
5.5.2 Implementing Gaussian Markov random field model with INLA 

Spatial model 

Preparing this GMRF model requires much more effort than a GLM. The first step to model a 
latent GMRF is to build a spatial “mesh” based on latitude and longitude coordination from all 
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Figure 5.11: Building mesh for Gaussian Markov random field model in ETBF. The mesh is based 
on unique coordinates in the simulated data for all year (between 2000 and 2014). The numbers 
in red are areas used in GLM. 

 
shots in the data (c.f. Figure 5.11). The triangulated mesh will provide a base for the GMRF 
models to build spatial representations. For example, in R codes (Version R 3.3.2) we define 
the ETBF boundary as: 

>prdomain <- inla.nonconvex.hull(cbind(coord.uniq$lon, coord.uniq$lat), -0.03, -0.05, 
resolution = c(100,100))  

where coord.uniq$lon and coord.uniq$lat are unique longitude and latitude locations 
(respectively) where gear deployments have been observed in all years included in the 
assessment. The mesh is produced by: 

>prmesh <- inla.mesh.2d(boundary=prdomain, max.edge=2)  

We then compute the sparse weight matrices needed to map between the internal representation 
of weights for basis functions and the values of the resulting functions and fields by: 

>A1 <- inla.spde.make.A(prmesh, loc=coord1) 

>spde1 <- inla.spde2.matern(prmesh, alpha=2) 

>mesh.index <- inla.spde.make.index(name="field",n.spde=spde1$n.spde) 



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

44 
 

The input data are prepared as: 

> stk.dat <- inla.stack(data = list(catch = catch), A = list(A1,1), tag = "est", effects = 
list(c(mesh.index1, list(Intercept = 0)), list(year = dat$year, area = dat[,col.area[i]], qtr = 
dat$qtr, settime = dat$settime,              hpf = dat$hpf, hooks = dat$hooks))) 

For the purpose of CPUE standardisation, we need to estimate expected catch not only in 
actually fished locations but also in locations that were not fished in a particular year. Hence, 
prediction of expected catch in all locations is constructed: 

>stk.pred = inla.stack(data = list(catch = NA), A = list(A.pred, 1), tag = 'pred', Effects = 
list(c(mesh.index1, list(Intercept = 0)), list(year = pred.dat$year, qtr = 1, area = 
pred.dat$area, settime = rep(1, npred), hpf = rep(1, npred), hooks = rep(mean(dat$hooks), 
npred) 

Both input data and prediction are combined for model use: 

>stk.all = inla.stack(stk.dat, stk.pred) 

The GMRF Model (2) is specified as  

> catch ~ factor(year) * factor(qtr) + factor(settime) + factor(hpf) + log(hooks) + f(field, 
model=spde1) 

 
Spatiol-temporal interaction model 

To implement the spatio-temporal models in INLA, the formulation of Model 4 is coded as: 

>catch ~ 
1+Intercept+factor(year)*factor(qtr)+factor(settime)+factor(hpf)+log(hooks)+f(field, 
model=spde1, group=field.group, control.group=list(model='ar1')) 

The model includes an explicit intercept, as for the spatial Models 2 and 3. The interaction 
between spatial field (named “field” here) and the temporal trend is represented by the term 
“group = field.group” and “control.group=list(model='ar1')”.  The variable “field.group” is 
composed of temporal covariate at year-quarter scale (i.e. 60 continuous time steps for a time 
series of 15 years). The last term of f() indicates that at each time step the spatial locations are 
linked by the spde model object, while the temporal pattern is modelled as an AR(1) process.  
 
For all these alternative models (GLM, spatial, and spatio-temporal models), we assume the 
catch per gear set (CPUE) follows a negative binomial distribution.  
 
INLA is a full Bayesian approach and requires specifying priors for all parameters. For 
intercept and fixed effect variables, priors are controlled by functions control.fixed() and we 
use default vague prior Normal(0, 106) for all parameters. For the random effect component in 
the GMRF model, prior is specified for the two parameters in the Matern function, τ and κ, 
with the default Normal(0, 1) set in function inla.spde2.matern().  
 
5.5.3 Illustrative model evaluation and comparison 

Data 

The ETBF database contains a large number of shot-by-shot data. There are more than 100 
thousand records for each species for the fourteen years 2000 to 2013. Multiplying by the 
number of species results in over a million records. In addition, the database has a range of 
covariates associated with each record. Even though INLA is deemed fast, running a 
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multispecies model that involves random effect terms with only a few covariates may take 
several hours. For the testing and exploring purposes, we used five species selected from the 
ETBF data-set with a wide range of catch records (i.e., YFT, BET, ALB, SWO, and STM) and 
randomly selected 10,000 records from 2000 to 2013 to reduce the computing time. Finally, as 
the seven Area effects used in the ETBF standardisation are unequal is size (c.f. Section 5.3.4), 
to derive an overall abundance index we used a weighted mean of the estimated catch in each 
location by the area size.  
 
Results from Models 1 to 5 are compared with true abundance indices used to generate the 
simulated data (see next Section). Two measurements, mean relative error (MREM) and mean 
absolute relative error (MAREM) for model M, are used  

∑∑
−=
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YAMYA

AY
M U

UU

nn
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where nY and nA are number of years and areas, MYAÛ is estimated CPUE by model M in year 
Y area A, and UYA is the true known CPUE in year Y area A.  
 
5.5.4 Results 

INLA produces a range of posterior estimates and we use the mean, including fixed and random 
effects. Spatial models that treat spatial information as random Gaussian fields do not 
outperform the generalized linear model that already includes spatial and temporal interactions 
(Year*Quarter and Quarter*Area). However, treating both spatial and temporal variables as 
continuous random effects in the spatio-temporal models (Model 4-6) clearly outperforms 
GLM and spatial models.  
 
Table 5.4: Comparison of relative error between predicted abundance index and true index across 
6 models and 5 species.  

Model ALB BET DOL SWO YFT Abs Mean 

1 0.003 -0.009 -0.027 -0.007 -0.007 0.011 

2 0.007 -0.009 -0.032 -0.010 -0.008 0.013 
3 0.000 -0.010 -0.031 -0.009 -0.008 0.012 
4 0.011 -0.010 0.003 -0.001 -0.005 0.006 
5 0.003 -0.011 0.002 -0.007 -0.004 0.005 
6 0.012 -0.006 -0.004 0.003 -0.008 0.007 

 
Compared with the true abundance index and based on the mean relative error MRE, the 
standardized indices from the spatio-temporal models (4, 5, 6) are less biased than GLM model 
(1) and spatial models (2, 3) (Table 5.4). On average, the full model 5 is least biased. 
 
Compared with the assumed true abundance index, and based on the mean absolute relative 
error MARE, the standardized indices from the spatio-temporal Models (4, 5, 6) are more 
accurate than the GLM Model (1) and spatial Models (2, 3) (Figure 5.12, Table 5.5). On 
average, the full Model 5 is most accurate (the best for 3 out of 5 species), but the simple spatio-
temporal Model 6 is similar (best for 2 out of 5 species). Overall, the simple spatio-temporal 
Model reduces GLM’s MARE by 20%.  
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Figure 5.12: Comparison between GLM Model (1), the full spatio-temporal Model (5) and the 
simple spatio-temporal Model (6).  

 
 
 
Table 5.5: Comparison of absolute relative error between predicted abundance index and true 
index across 6 models and 5 species. 

Model ALB BET DOL SWO YFT mean 
1 0.303 0.070 0.118 0.079 0.083 0.130 
2 0.277 0.075 0.141 0.104 0.082 0.136 
3 0.305 0.075 0.128 0.097 0.095 0.140 
4 0.236 0.075 0.068 0.132 0.117 0.126 
5 0.267 0.075 0.049 0.072 0.053 0.103 
6 0.194 0.056 0.056 0.112 0.105 0.104 
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Table 5.6: Comparison of absolute relative error between predicted abundance index and 
observed index across 6 models and 5 species. 

Model ALB BET DOL SWO YFT mean 

1 0.630 0.184 0.182 0.317 0.159 0.295 

2 0.601 0.191 0.192 0.278 0.159 0.284 

3 0.615 0.186 0.202 0.282 0.172 0.291 

4 0.563 0.195 0.181 0.485 0.066 0.298 

5 0.577 0.192 0.164 0.300 0.155 0.278 

6 0.531 0.181 0.117 0.480 0.064 0.275 

 
Compared with the observed abundance index and based on the mean absolute relative error 
MARE, the standardized indices from the simple spatio-temporal Model 6 is most accurate (the 
best for 4 out of 5 species) (Table 5.6). Modelling all observed point locations at continuous 
temporal scales is one of the advantage of Model 6. Also, by treating spatial and temporal 
variables as random another advantage is its shrinkage estimator, which push extreme values 
from sub-groups (e.g. at finer scales of sub-area and month) towards the annual mean. 
However, this shrinkage does not reduce inter-annual variation for the index as Year is 
modelled as a fixed effect in Model 6. 
 
 

5.6 Development of Multispecies Catch and Effort Si mulators 
 
Simulators are useful for comparing the performances of different methods at estimating 
known quantities. However, in complex multispecies fisheries it can be difficult to understand 
the factors that drive the observed dynamics, including catch rates. Different methods for 
analysing the data may be affected by different features of the real world, so simulators should 
be flexible to allow investigators to explore and model the effects of a range of real-world 
features. We have therefore developed several different simulators that address different issues.  
 
Developing a data simulator for testing analytical methods which attempt to recover trends in 
the abundance of the species used when generating the data is a highly non-trivial task. This is 
because any simulator developed for this purpose can quite easily show bias if the data 
structures incorporated into the simulator match the analytical framework of one (or more) of 
the methods to be tested. For example, if one generated data on a spatio-temporal framework 
which was the same as the spatio–temporal framework of the analyser, with additional linear 
terms to account for the influence of different gear settings, then one would be surprised if that 
analyser (such as a GLMs) could not recover the abundance trends. In order to help overcome 
this problem we have attempted to develop a generic data simulator which is based on observed 
data inputs instead of model-based assumptions. 
 
5.6.1 Empirical-Data Approach 

Outline of Approach 

Catch rates are known to be influenced by several factors other than general abundance and 
knowledge of those factors which influence CPUE underlies the statistical analysis known as 
effort standardisation. Most analyses make use of Generalised Linear Models (GLMs) or 
Generalised Additive Models (GAMs) which are well known statistical methods for estimating 
the relationship between a dependent variable (CPUE) and a number of independent variables. 
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For standardising longline CPUE a number of variables are known to influence CPUE and, 
where the information is available, the following variables can be included in such analyses: 

• Time stratum (e.g. Year-quarter) 
• Spatial stratum (e.g. Area effect) 
• Hooks-per-float (HPF) 
• Bait-type 
• Time of day  
• Use of fish attracting devices (e.g.)  
• Adoption of alternative fishing gears (e.g. hook-type, line material) 
• Use of fish finding technologies (e.g.  use of ocean temperature plots to identify fronts) 

 
In fitting these variables within a GLM (or GAM) framework, the data is used to estimate the 
nature of the relationship between each independent variable and the dependent variable after 
controlling for the effects of the other fitted variables. This is a generally a purely statistical 
exercise as no process model is invoked to connect the two variables. However, one may use 
the results of such analyses to infer the nature of the underlying processes that contribute to the 
observed relationship.  
 
For example, consider the illustrative GLM result shown in Figure 5.13, which displays the 
relative influence of the number of hooks-per-float on CPUE. From this result it is seen that 
the CPUE of Yellowfin Tuna is highest when 6 HPF are deployed and that CPUE decreases 
when a higher HPF is deployed. On the other hand, the CPUE of Bigeye Tuna is highest when 
10 HPF are deployed. In order to understand this statistical result, we need to combine this 
result with the knowledge that (all other features constant) the number of hooks-per-float (HPF) 
is an indicator of the depths fished by the longline gear, with these depths generally increasing 
with the number of HPF (Suzuki et al. 1977). Hence, the GLM result can be used to infer that 
the number of Yellowfin Tuna available to the longline gear is highest at the depths fished by 
those gears set with 6 HPF, whilst the greatest number of Bigeye Tuna are found at the 
relatively greater depths fished with 10 HPF. The conclusion that gear fishing deeper in the 
water column is more effective in targeting Bigeye Tuna has been confirmed by a number of 
studies (Hanamoto 1987; Boggs 1992) and is thought to be due to a preference by Bigeye Tuna 
for cooler 10 to 15oC water (Holland et al. 1990; Brill 1994). In this manner, one can combine 
the knowledge about the depth distributions of both the hooks deployed by a longline and the 
target species to interpret, and understand, the purely statistical results of the GLM.  
 
Figure 5.13: Hypothetical result of a GLM illustrating the relationship between the number of 
hooks-per-float and relative CPUE of both Yellowfin and Bigeye Tuna.  

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hooks-per-Float

R
el

at
iv

e 
C

P
U

E

Yellowfin

Bigeye



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

49 
 

An alternative to the above statistical approach to standardising CPUE is to instead use our 
knowledge of the distribution of the target species and the fishing gears more directly. Indeed, 
this was the approach developed by Hinton and Nakano (1996), who presented a method of 
standardising CPUE which combined information on the spatial and depth distributions of the 
target species (using information on habitat preference and mapping of this habitat provided 
by oceanographic models) with information on the depths fished by longline hooks. This 
method was first applied to Pacific Blue Marlin, before being applied to Bigeye Tuna in the 
WCPO by Hampton et al. (1998). The method was further developed in the early 2000’s and 
was applied to both Bigeye Tuna and Yellowfin Tuna within the context of the stock 
assessments undertaken for these species within the WCPO (see Langley et al. 2005). The 
approach is generally known as the habitat-based-standardisation (HBS) method.  
 
Basic Equations 

A form of the basic equation for applying the habitat model was presented by Hampton et al. 
(1998). However, as the actual derivation of this equation was poorly described in that paper, 
here we present a more complete description of the rationale behind the development of the 
required equations.  
 
Consider the volume of water fished by the longline gear during a single set. From the catch 
equation the number of fish in the catch, C, is related to the total fishing effort, E, and the 
average fish population density in this volume of water, D as follows: 

C=qED       (5.6.1) 

where q is a fixed constant of proportionality known as the catchability coefficient and is 
related to the efficiency of the fishing gear. From this equation: CPUE= CE=qD= qNV      (5.6.2) 

where N is the number of fish and V is the volume of water fished. Without loss of generality, 
we assume this volume is divisible into nd depth stratum each of depth d and cross-sectional 
area A and volume V. Let Nk be the number of fish within the depth stratum k so that the average 
density of fish within this stratum is Dk=Nk/V. If Ek is the effort (number of hooks) within 
stratum k, and qk is the corresponding catchability, then from Eqn. (5.6.1) the catch, Ck, within 
stratum k is: 
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If qk is considered to be a constant across all stratum then the total catch over all stratum is: 
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    (5.6.3) 

Finally, if Ek=hkE where E is the total effort (number of hooks) deployed and hk is the 
proportion of these hooks within stratum k, and Nk=pkN where N is the total number of fish in 
all depth stratum and pk is the proportion of these fish in stratum k, then Eqn. (5.6.3) can be 
expressed as follows: 
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When there are multiple species in the catch, the catch Cs of any single species s can be 
expressed as follows: 
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where Ns is the total number of fish of species s in all depth stratum and psk is the proportion of 
these fish in stratum k.  
 
Finally, where the density of fish (Ds=Ns/V) varies both spatially and temporally, and assuming 
that the depth profiles of fish can vary hourly (to account for diurnal behaviour) but does not 
vary spatially (possibly unrealistic but simplifies the data required for the multispecies 
simulator), the last expression can be generalised so that the catch (Csi) of species s by longline 
set i within spatial area a, month m and deployed at time-of day (hour) t can be expressed as: 

∑
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=
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k
smtkiksamissi phDEqC

1

    (5.6.4) 

where: Ei is the total number of hooks deployed by longline set i, 
 Dsam is the density of species s within area a during month m, 
 hjk is the proportion of hooks for longline set i within depth stratum k, and 

psmtk is the proportion of the fish of species s during month m and hour t within in depth 
stratum k. 

Note, Eqn. (5.6.4) assumes that the depth profile of the fish (and the hooks) does not change 
during the duration of the longline set. In practice the catch will be dependent upon an 
integration of these two profiles over the duration of the set, which could be as long as 6 to 12 
hours, but again this assumption simplifies the data simulator. Indeed, the simulator assumes 
that the catch is dependent on the depth profile of the fish at the start time of the longline set.  

 
Data Inputs 

In order to use the above equations, information on each of the inputs required in the above 
equation was ascertained as follows: 

a) Hook depth profiles, hjk.  Direct observations of hook depths using time-depth recorders 
(TDRs) were used to estimate the proportion of time spent within pre-specified depth 
stratum by all hooks within various hooks-per-float (HPF) configurations. These 
observations were based on the 2050 individual TDR recordings obtained between 
August 2004 and May 2007 from vessels deploying longlines in the ETBF during a 
previous FRDC funded research project “Determination of effective longline effort in the 
Eastern Tuna and Billfish Fishery” (Campbell and Young 2010). Time-at-depth profiles 
for each HPF configuration observed were binned into 20m depth strata and the profiles 
for the following eight HPF configurations used in the data simulation were collated: 

i) HPF=6 (combination of observed HPF=6 and HPF=7) 
ii)  HPF=8 (combination of observed HPF=8 and HPF=9) 
iii)  HPF=10 (combination of observed HPF=10 and HPF=11) 
iv) HPF=12 (combination of observed HPF=12 and HPF=13) 
v) HPF=15 (combination of observed HPF=14 and HPF=15) 
vi) HPF=20 
vii)  HPF=25 
viii)  HPF=30 

The observed profiles for each of these HPF configurations are shown in Figure 5.14. A 
LOWESS (LOcally WEighted Scatterplot Smoothing) function was fitted to each profile 
to help smooth the observed profiles (again shown in Figure 5.14 for two different 
smoothing parameters). Finally, the profiles selected for use in the multispecies data 
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simulator were the observed profiles for HPF=6, 8 and 10 and the LOWESS curves for 
HPF=12, 15, 20, 25 and 30 and are shown in Figure 5.15. 

 
b) Fish depth profiles, psmtk. Direct observations of hourly depth profiles for four species 

(YFT, BET, SBT and SWO) were obtained from archival tags deployed on fish caught 
and tagged within the ETBF. These observations were based on tag deployments made 
during several projects (Gunn et al. 2005; Evans 2010; Evans et al. 2011, Basson et al. 
2012). A hybrid profile, based on re-configuration of the profile for Yellowfin Tuna 
towards deeper depths, was also constructed in order to provide a fifth profile for use in 
the data simulator.  A comparison of indicator depth profiles for each of the five species 
used in the multispecies data simulator is shown in Figure 5.16 while an example of the 
mean observed hourly depth profile (binned by 20m strata) for Yellowfin Tuna during 
both January and August is shown in Figure 5.17. 

 
Figure 5.14: Observed hook-depth profiles for eight different hooks-per-float longline 
configurations. Fitted LOWESS curves are also shown for two different smoothing parameters. 
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Figure 5.15: Hook-depth profiles used in the multispecies data simulator. 

 
 
 
Figure 5.16: Mean observed depth profiles by month for YFT, BET, SBT and SWO based on data 
collected from archival tags. A fifth hybrid profil e used in the multispecies data simulator is also 
shown.  
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Figure 5.17: Hourly mean observed depth profiles for Yellowfin Tuna during (a) January and (b) 
August.  

 
 

c) Fish density distributions, Dsam:  As with the depth profiles adopted above, each of these 
are based on in-situ observations, the spatial-temporal density surfaces for each species 
were modelled on the monthly distributions of nominal CPUE observed in the ETBF. 
The spatial scale used was a 1x1-degree square and the fishery (for the purposes of the 
simulator) was limited to the 139 squares that had been fished for a least 9 of the 15 years 
between 2000 and 2014. The monthly distributions of nominal CPUE were then 
smoothed using the Excel based spatial smoother RegularizeData3D (setting the 
smoother stiffness parameter to 3) found at: 

https:// mathformeremortals.wordpress.com/2013/09/02/regularizedata3d-the-excel-
spread sheet-function-to-regularize-3d-data-to-a-smooth-surface/.  

An example of the density surface for Swordfish during June 2014 across the 139 1x1-
degree squares incorporated into the multispecies data simulator is shown in Figure 5.18. 
Finally, the parameter Dsam was redefined as:  

Dsam = Nsydsaym 

where Nsy is the total number of fish of species s across the fishery in year y, and dsaym is 
the proportion of fish within area a within year y and month m. The distributions dsaym 
were obtained by re-scaling the smoothed nominal CPUE such that within each month ∑ NOPQR = 1SPT� . The following five species were chosen for input to the simulator:  

i) Yellowfin Tuna (YFT) - matched with the YFT depth profile,  
ii)  Bigeye Tuna (BET) - matched with the BET depth profile,  
iii)  Albacore Tuna (ALB) - matched with the HYBRID depth profile,   
iv) Broadbill Swordfish (SWO) - matched with the SWO depth profile, and 
v) Dolphin fish (DOL) - matched with the SBT depth profile. 

 
d) Effort distribution, Ei.  Finally, the spatio-temporal distribution of fishing effort across 

the fishery was taken to be the same as that observed in the ETBF during the years 2000 
to 2014. While the logbooks for the ETBF record a number of factors relating to the 
manner in which the fishing gear is deployed (e.g. start-time, HPF, bait-type, use of light-
sticks), for the purposes of the simulator the ‘gear factors’ were limited to just start-time 
(hour of the day) and the number of HPF (grouped to the list of eight HPF levels listed 
previously). Selected sets were restricted to the 139 one-degree squares chosen 
previously and to those sets were the number of hooks was greater than 200 and the HPF 
between 4 and 40. In total 113,711 sets were selected. Across the 139 one–degree squares 
constituting the fishery, the mean number of years fished per square was 14.0 and the 
number of longline sets per square averaged 818. The number of one-degree squares 
fished per month averaged 72 and ranged between 37 and 110. This indicates that the 
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Figure 5.18: An example of the density surface for Swordfish during June 2014 across the 139 
1x1-degree squares incorporated into the multispecies data simulator.  

 
 
 
Figure 5.19: Distribution of sets used in the simulation across (a) Year, b) Month, (c) Start-time, 
(d) Hooks-per-float, and (e) 1x1-degree squares.  
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distribution of effort across the fishery was highly heterogeneous with potential for the 
spatial coverage to vary substantially between months. The distributions of the 113,711 
longline sets used in the simulation across (a) Year, (b) Month, (c) Start-time, (d) 
Hooks-per-float, and (e) 1x1-degree squares are shown in Figure 5.19. 

 
Simulated Catches 

Inserting the reparametrized variable Dsam = Nsdsam into Eqn. (5.6.4) gives the final form of the 
catch equation: 

∑
=

=
dN

k
smtkiksaymsyissi phdNEqC

1

   (5.6.5) 

With the four distributions hjk, pkj, dsaym, Ei characterised as described above, the final parameter 
values needed for calculation of the catch for each longline set is that of the catchability 
parameters qs and the assumed annual abundance of each species Nsy. Towards this end, the 
values of qs were chosen such that when Nsy=1 for all years, the mean simulated catch over all 
sets was similar to the mean observed catch. The values of Nsy for each species were then set 
to equal the annual values of the standardised CPUE for that species calculated from the 
logbook data (as described in Section 5.3) and re-scaled so that ∑ UOQ/15 = 1�WQT� . (Note, the 
approach described here means that the number of fish available to the fishery remains constant 
throughout a year, but the spatial distribution varies by month). Finally, in order to simulate 
the stochastic characteristic of any catch, the final simulated catch was selected from a negative 
binomial distribution, with the mean catch given by Eqn. (5.6.5) and the probability of success 
for each species selected so that the proportion of zeros in the distribution of simulated catches 
for each species was similar to that in the distribution of observed catches. Note, two sets of 
catches were simulated, the first set based on the deterministic mean catch given by Eqn. (5.6.5) 
(and known as the D-catches) and the second set based on those randomly selected from a 
negative binomial distribution described previously (and known as the R-catches). 
 
A comparison of the distribution of simulated catches for the 113,711 sets with the distribution 
of corresponding observed catches is shown in Figure 5.20, while a comparison of the assumed 
annual abundance and the nominal CPUE based on the simulated catch and effort data for each 
species is shown in Figure 5.21. The percentage of sets deployed each year stratified by (a) 
start-time, (b) hooks-per-float, (c) longitude, (d) latitude and (e) month is shown in Figure 5.22. 
 
Despite basing many of the parameters in the simulation model on a range of in situ 
observations made in the fishery, nevertheless the simulated catches generated are premised on 
a number of assumptions and likely simplifications about the distribution of fish within the 
fishery, the depths of the fishing gear, and the capture process. For example, it has been 
assumed that the depth profiles of the fish do not vary spatially which is unlikely, as these 
profiles will most likely vary according to changes in oceanographic conditions (e.g. the depth 
of the thermocline). The depth profiles fished by the various HPB settings of the longline is 
also assumed to be constant, though again these will be influenced by other factors such as how 
the line is deployed (e.g. line-setting speed of the vessel) and oceanographic conditions (e.g. 
current speed which will induce shoaling of the gear). The increased stochasticity introduced 
in the resulting catches by these and other factors not accounted for in the simulation model is 
assumed to be taken account of by randomly sampling the catches from the negative binomial 
distribution. To this end, the comparison of the simulated and observed catches shown in 
Figure5.20 can provide some guidance as to whether the simulator can be deemed reasonable. 
Whether or not the simulated data passes the Turing Test (i.e. is the simulated data 
indistinguishable from the real data, Turing 1950) remains unknown, but the fact that the  
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Figure 5.20: Comparison of the distribution of simulated catches, both with (Random) and 
without (Determin.) the random component added, with the distribution of observed catches. 

 
 
 
Figure 5.21: Comparison of the assumed annual abundance and the nominal CPUE based on the 
simulated catch and effort data (where both have been scaled so that the mean is one over the 
time-series). 
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Figure 5.22: Percentage of sets deployed each year stratified by: (a) Start-time, (b) Hooks-per-
float, (c) Longitude, (d) Latitude and (e) Month.  

 

 
distributions of the two sets of catches are similar provides some reassurance. 
 
Another feature of the simulated catch is that the Nsy trends chosen for each species represent 
only one hypothetical trend, with no underlying simulated population dynamics processes that 
they can be attributed to. While, these trends were chosen to simulate a distribution of catches 
and abundance trends that mimicked those observed in the fishery, nevertheless there is no 
reason to believe that these trends represent the true abundance trends of these species in reality. 
As such, in the following we will refer to the modelled abundance trends as the assumed 
relative abundances in the ETBF. While we have only modelled one assumed abundance trend 
for each of the five species used in the simulation, of course other trends could also be assumed, 
and this would allow the models used to standardise CPUE to be evaluated across a greater 
range of hypothetical conditions (assumed plausible). 
 
Finally, to model the spatial distribution of catch rates in the standardisation analyses, seven 
Area-effects were identified for each species. These Area-effects were determined according 
to the method outlined in Section 5.3 and are shown in Figure 5.23. The spatial distribution of 
the areas differ for each species and reflects the differences in the spatial distribution of the 
associated species. The distribution of the data records and fishing effort across these seven 
areas is shown in Figure 5.24, together with the distribution of the D-catches and associated 
catch rates for one realization of the simulated data sets.   
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Figure 5.23: Distribution of the 139 one-degree squares included in the simulated data sets across 
the seven Area effects used in the associated GLM analyses.  
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Figure 5.24: The distribution of the data records and fishing effort across these seven areas 
together with the distribution of the D-catches and associated catch rates for one realization of 
the simulated data sets.  

 
 
 
Illustrative Analyses 

The input parameter sets used in the above simulator are quite variable (with the density 
surfaces Dsaym varying by 1-degree square, year and month and the fish depth profiles psmtk 
varying by month, hour and depth) due to the nature of the observed data upon which the 
parameter sets are based. This variability introduces a large degree of heterogeneity into the 
simulated data, both on a spatial and temporal basis, and this variability is also likely to 
introduce a challenge to any analyser chosen to recover the assumed annual abundance trends. 
In lieu of this challenge, a series of alternative data-sets were created where a number of aspects 
in the input parameter sets were altered in order to reduce the degree of spatial and temporal 
variability in the simulated data.  
 
First, the density surfaces dsaym were altered such that the proportion of fish in each 1-degree 
square was set to the same value for all squares within the larger areas (usually seven) adopted 
as the spatial effects in the GLMs used to analyse the data. This value was the mean of the 
proportions across the 1-degree squares within each area. Furthermore, this value was also held 
constant on a quarterly basis, instead of the monthly basis in the original data. This change 
means that the proportion of fish within each spatial area varies only quarterly (i.e. by year and 
quarter). 
 
Second, the fish depth profiles psmtk.were altered such that the proportion of fish within each 
depth strata was held constant during each 4-hour period of the day. The value of this constant 
was set equal to the mean of the proportion across the four individual hours in the original data. 
Furthermore, this value was again held constant on a quarterly basis. This change means that 
the proportion of fish within each depth strata only varies each 4-hours and by quarter. 
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Four simulated data sets were generated based on a whether or not the two alternatives above 
were used or not. These four data sets are: 
 

1. Q-Q data-set  Density surface varies by quarter and area.  
Depth profile varies by quarter and 4-hourly. 

2. Q-M data-set  Density surface varies by quarter and area. 
Depth profile varies by month and hour. 

3. M-Q data-set  Density surface varies by month and one degree square. 
Depth profile varies by quarter and 4-hourly. 

4. M-M data-set  Density surface varies by month and one degree square. 
Depth profile varies by month and hour. 

 
Each of these data sets was fitted to the GLM described in Section 5.3 with the following four 
model variations fitted to the size of the positive catch: 

Model GAM-2   

CPUE= I+ Year*Qtr + Qtr*Area + ∑ jj Xβ / dist=gamma link=log 

Model GAM-3  

CPUE= I+ Year*Qtr*Area + ∑ jj Xβ / dist=gamma link=log 

Model NEG-2   

Catch= I+ Year*Qtr + Qtr*Area + ∑ jj Xβ / dist= negbin link=log offset=ln(hooks) 

Model NEG-3   

Catch = I + Year*Qtr*Area + ∑ jj Xβ / dist=negbin link=log offset=ln(hooks) 

Where I is the Intercept, dist refers to the assumed distribution of errors and negbin refers to 
the Negative-Binomial distribution.  
 
The performance of each analysing model in recovering the assumed annual abundance index, 
when fitted to each of the four simulated data-sets, was evaluated by calculating the following 
log-relative error for each result: 

XYZ'[\�O,Q( = ]4^_�O,Q/ 1̀a ∑ �O,QSQQT�bO,Q/ 1̀a ∑ bO,QSQQT� c	 
where abs(LREs,y) is the absolute value of the log-relative error for species s in year y, Is,y and 
Ts,y are the estimated and assumed abundance, respectively, for that species and year, ny=15 is 

the total number of years, such that �O,Q/ �SQ∑ �O,QSQQT�  and bO,�/ �SQ∑ bO,QSQQT�  are the estimated 

and assumed indices of abundance after rescaling each to have a mean of one (i.e. given their 
treatment as relative indices of abundance). The mean annual error (MAE) for each species was 
also calculated as follows: de�O = 1̀af XYZ'[\�O,�SQ

�T� ( 
 
The MAE for each of GLM models fitted to the above deterministic catch data set for each of 
the five species is provided in Table 5.7. The MAE for the nominal CPUE is also shown for  
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Table 5.7: Mean Annual Error (MAE) for each GLM fitted to the four versions of the simulated 
data sets. For each data-set and species, the GLM with the smallest MAE is highlighted in light 
grey. 

 
 
comparison and is seen to be appreciably larger than the corresponding MAE for most of the 
GLM results (with the ALB results being the exception). The two GLMs incorporating the 
single 3-way interaction (Y*Q*A) are found to perform better than the two GLMs incorporating 
the two 2-way interactions (Y*Q+Q*A) with the relative performance varying between the 
different species. There is also some variation between species as to whether the best fit is 
found with the Gamma or Negative-Binomial distribution. However, for four of the species the 
results when fitted to the Q-Q data set indicate that the NegBin3 model performs best, with the 
MAE being less than 1.05% for all species (varying from 1.05% for DOL to 0.17% for YFT). 
This result is not unexpected, as the structure of the data (homogeneity within GLM areas and 
quarters) closely matches the structure of the model, and this result provides a check that the 
simulator and analyzing models are working correctly. 
 
The time-series of the annual log-relative error for each species for the NEG-3 model fitted to 
each of the four data-sets are plotted in Figure 5.25a. The substantially smaller errors noted for 
the models fitted to the two data-sets, where the modelled density surface varies by quarter and 
area (instead of by month and 1-degree square), are clearly seen. This indicates that the spatial 
structure of the data has a greater impact on the ability of the model to infer the assumed annual 
abundance of a species than the depth profiles of the fish. For the model with the smallest 
degree of spatial and depth variation (the Q-Q model) there is still some residual error in the 
annual time-series, indicating that the GLM model is not capturing the full extent of the 
variation in the data. For example, the GLM assumes that the relative effect of the different 
hooks-per-float (HPF) categories on the data are constant across all spatial and temporal strata,  
  

Model GLM ALB BET DOL SWO YFT

M-M NOMINAL 5.84% 3.36% 5.35% 6.75% 4.05%

M-M GAM-2 6.44% 2.14% 2.94% 1.89% 3.20%

M-M GAM-3 3.82% 1.37% 2.14% 2.28% 1.96%

M-M NEG-2 6.39% 1.86% 2.21% 3.19% 2.29%

M-M NEG-3 3.23% 1.41% 2.25% 2.49% 1.93%

M-Q NOMINAL 5.68% 3.47% 5.32% 6.26% 4.03%

M-Q GAM-2 5.93% 2.61% 2.85% 1.54% 3.10%

M-Q GAM-3 3.20% 1.30% 2.23% 1.47% 1.88%

M-Q NEG-2 5.89% 1.83% 2.29% 2.53% 2.27%

M-Q NEG-3 2.77% 1.23% 2.31% 1.61% 1.84%

Q-M NOMINAL 5.11% 3.93% 5.74% 5.60% 3.30%

Q-M GAM-2 3.98% 1.71% 1.63% 1.20% 1.95%

Q-M GAM-3 0.80% 0.67% 0.93% 1.56% 0.20%

Q-M NEG-2 4.37% 1.63% 1.38% 2.43% 1.92%

Q-M NEG-3 0.58% 0.65% 0.88% 1.43% 0.25%

Q-Q NOMINAL 5.10% 3.97% 5.78% 5.31% 3.29%

Q-Q GAM-2 3.57% 2.25% 1.67% 0.77% 1.78%

Q-Q GAM-3 0.46% 0.54% 1.14% 0.36% 0.18%

Q-Q NEG-2 3.81% 2.09% 1.41% 2.09% 1.99%

Q-Q NEG-3 0.45% 0.34% 1.05% 0.38% 0.17%
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Figure 5.25: Annual time-series of (a) the log-relative error and (b) the relative abundance index 
for each species for the NEG-3 model fitted to each of the four data-sets.  
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whereas there may in fact be some variation in these relative effects. This could be investigated 
by fitting appropriate interaction terms but as the residual errors are small this will not be 
explored further here.  
 
The resulting time-series of annual abundance indices for each species for the NEG-3 model 
fitted to each of the four data-sets are plotted in Figure 5.25b. These indices are compared with 
both the true modelled index and the nominal catch rate for each year. Again, the indices for 
the Q-M and Q-Q models are seen to the closest to the assumed abundance index for each 
species. Furthermore, and perhaps more reassuring, the resulting indices for the GLM fitted to 
the M-M data set also are seen to be substantially closer to the true index than the nominal 
index. This is seen especially for the results for ALB and the SWO where there are large 
temporal biases in nominal indices. These results indicate that the current GLM used in the 
ETBF to standardise CPUE is performing reasonably well, and as such, the model structure is 
accounting for much of the structured variation in the CPUE within the data.  
 
Finally, the annual time-series of the log-relative error and the relative abundance index for 
each species for each of the four GLMs fitted to the M-M data-set in Figures 5.26a and 5.26b 
respectively. For each species there are a number of issues to note:  

ALB:  While the GLMs have removed the large temporal variation in the sign of the annual 
error noted in the nominal index (negative at the start of the time-series, positive in the 
middle years, then negative again at the end of the time-series), there remains a temporal 
discontinuity in the errors between the GLM-based indices and the true index (positive 
for first five years, then negative for the last nine years). While the size of the errors 
remains similar within each of these periods, taken over the entire time-series there is 
negative trend in the relative errors. This indicates that the GLM-based indices have a 
higher-than-assumed relative abundance during the early period and a lower-than- 
assumed relative abundance during the latter period. 

BET: Each of the GLM-based indices performs reasonably well and over-comes some of the 
large biases noted in the nominal index (e.g. years 10 and 15). The GAM-3 and NEG-
3 indices are seen to be similar and lack the temporal trend noted in the ALB indices. 
However, a small positive trend remains in these relative errors (0.2% per year for the 
NEG-3 index), indicating a slightly lower-than- assumed relative abundance during the 
early period and a slightly higher-than- assumed relative abundance during the latter 
period. 

DOL: Again, each of the GLM-based indices performs reasonably well and removes much of 
the temporal bias noted in the nominal index. For most years the relative error is less 
than 3% thought as for BET there remains a small positive trend (0.13% per year) over 
the time-series. 

SWO: Apart from the first year, there is a large temporal trend (1.6% per year) in the bias 
between the nominal and true indices, implying that the nominal index infers a higher-
than- assumed relative abundance during the early period and lower-than- assumed 
relative abundance during the latter period. While this temporal bias remains in each of 
the GLM-based indices, it is substantially reduced, being 0.5% for the NEG-3 index.  

YFT: As for the results for BET, the GLM-based indices perform reasonably well and over-
comes some of the large biases noted in the nominal index (e.g. years 1 and 8). The 
small negative trend in the relative errors (-0.5% per year) noted in the nominal index 
is also substantially reduced (being 0.07% for the NEG-3 index). The index 
nevertheless, still displays some short-term biases, particularly for the years before and 
after year 8.  

While the standardised CPUE indices displayed in these illustrative analyses are seen to  
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Figure 5.26: Annual time-series of (a) the log-relative error and (b) the relative abundance index 
for each species for each of the four GLMs fitted to the M-M data-set. 

 

-15%

-10%

-5%

0%

5%

10%

15%

0 2 4 6 8 10 12 14 16

E
rr

o
r

Year

(a) Relative Error- ALB : M-M data

Nominal
GAM-2
GAM-3
NEG-2
NEG-3
Assumed

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16

A
b

u
n

d
an

ce
 In

d
ex

Year

(b) Abundance Indices - ALB : M-M data

Nominal

GAM-2

GAM-3
NEG-2

NEG-3

Assumed

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 2 4 6 8 10 12 14 16

E
rr

o
r

Year

(a) Relative Error- BET : M-M data

Nominal
GAM-2
GAM-3
NEG-2
NEG-3
Assumed

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16

A
b

u
n

d
an

ce
 In

d
ex

Year

(b)Abundance Indices - BET : M-M data

Nominal

GAM-2

GAM-3
NEG-2

NEG-3

Assumed

-15%

-10%

-5%

0%

5%

10%

15%

0 2 4 6 8 10 12 14 16

Er
ro

r

Year

(a) Relative Error- DOL : M-M data

Nominal
GAM-2
GAM-3
NEG-2
NEG-3
Assumed

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16

A
b

u
n

d
an

ce
 In

d
ex

Year

(b) Abundance Indices - DOL : M-M data

Nominal

GAM-2

GAM-3
NEG-2

NEG-3

Assumed

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 2 4 6 8 10 12 14 16

Er
ro

r

Year

(a) Relative Error- SWO : M-M data

Nominal
GAM-2
GAM-3
NEG-2
NEG-3
TRUE

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16

A
b

u
n

d
an

ce
 In

d
ex

Year

(b) Abundance Indices - SWO : M-M data

Nominal

GAM-2
GAM-3

NEG-2

NEG-3
TRUE

y = 0.0007x - 0.0084

-15%

-10%

-5%

0%

5%

10%

15%

0 2 4 6 8 10 12 14 16

Er
ro

r

Year

(a) Relative Error- YFT : M-M data

Nominal
GAM-2
GAM-3
NEG-2
NEG-3
Assumed

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16

A
b

u
n

d
an

ce
 In

d
ex

Year

(b) Abundance Indices - YFT : M-M data

Nominal
GAM-2

GAM-3

NEG-2
NEG-3

Assumed



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

65 
 

Figure 5.27: (a) Distribution of the annual abundance index for each year based on 100 random 
analyses with the mean indicated by the solid black line (and assumed index shown by the red 
line). The mean of the nominal CPUE for each simulated data set is shown by the dashed grey 
line. (b) Distribution of the error for each year with the mean indicated by the solid black line. 
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perform reasonably well (i.e. remove some of the more substantive biases seen in the nominal 
indices), as noted above, there are still a number of annual and temporal biases remaining in 
these indices. The reasons for these biases and attempts to identify improved methods to 
standardise the CPUE will be the focus of the results outlined in the next chapter. 

Further Testing of GLM Models 

Further testing of the GLM methods was undertaken by replicating 100 simulated data-sets 
from the M-M data-set, where the catches were randomly sampled from the negative binomial 
distribution. Again, the performance of each estimator was calculated using the log-relative 
error for each year and replicate. The distributions of the annual abundance indices calculated 
for each year and data replicate using the NEG-3 method are shown in Figure 5.27a, together 
with the assumed annual abundance and the mean nominal CPUE and the GLM-based index 
across each of the data replicates. The distributions of the log-relative error (LRE) between the 
estimated and true annual index for each year and data replicate are shown in Figure 5.26b, 
together with the mean across all data replicates. 
 
The main trends in the results are similar to those previously discussed for the deterministic 
catches, and again vary to some extent across the five species shown. For ALB, the mean of 
the estimated annual indices (c.f. Figure 5.27a) is higher in the earlier years (before 2004) than 
the true index, but closely follows the trend of the true index after this time. This result indicates 
that the estimator, to a large extent, is able to account for the large shift in fishing practices in 
2006 when there was a shift to deeper sets (using more HPF, c.f. Figure 5.22b) and concomitant 
higher catch rates of Albacore Tuna (as indicated by the high nominal CPUE indices after this 
time). The reasons for the poorer performance of the estimator before 2004 (when the LRE is 
as high as 10%) remains uncertain and warrants further investigation.  
 
The results for BET are encouraging. Across all replicates, the mean annual abs(LRE) for each 
estimator is generally small (4%, c.f. Figure 5.27a), while for all estimators the mean across all 
years is less than 2.2% (Figure 5.27b). The mean annual index over all replicates also closely 
matches the true annual index and generally performs well in those years when there are large 
discrepancies between the nominal CPUE and the true index (e.g. 2009 and 2014, c.f. Figure 
5.27a).  On the other hand, the results for DOL are generally poorer, with the error between the 
estimated and true index for individual years being as high as 20% in 2000 and averages around 
5% across all years and replicates. Nevertheless, the mean annual index over all replicates is 
similar to the true annual index and again accounts for discrepancies between the nominal 
CPUE and the true index. 
 
The results achieved for SWO are the best of the five species, where the error between the 
estimated and true index for all but one years is less than 3% and averaging around 1.5% across 
all years and replicates (comparted to the average of around 7% for the nominal CPUE). The 
estimated annual index closely matches the true index, and it is quite encouraging to see that 
the estimated index does not follow the increasing trend seen in the nominal CPUE, especially 
during the last few years. 
 
Finally, the results for YFT are similar to that for BET. Again, the estimated annual index 
closely follows the true index and generally performs well for those years where the nominal 
CPUE shows a greater discrepancy, though the relative performance is slightly poorer given 
that the mean error across all years and replicates is closer to 3.2% than the 2.0% achieved for 
BET.  
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5.6.2 Second Simulator: Use of Random Distributions 

We developed a second simulator that modelled catch and effort data with a generic, flexible 
and individual vessel based approach. The simulator was designed to generate catch rate data 
that reflected species abundance, targeting practises, and (unlike the ETBF simulator) 
individual vessel efficiency to capture the fact that different vessels have their own 
characteristic catchability and fishing behaviour. There is also spatial and seasonal variation in 
catch rates, in a species specific manner.  
 
The methods often used to investigate fishing strategies, such as cluster analysis and principal 
components analysis, assume that fishing strategies can be inferred from the proportions of 
each species in the catch. This simulator is designed to explore the reliability of this assumption 
when independent factors, such as location and fishing strategy, also affect species-specific 
catch rates.  
 
This simulator may also be used to evaluate management strategies, if adapted to include 
feedback from fishing mortality to abundance.  
 
General approach 

The simulator has multiple components: the spatial domain, the fish population dynamics, and 
the fishing process. The spatial domain is modelled as a grid locx,y of nx by ny cells, with nx 
and ny initially set to 10. The model covers a period of nt years, with nt initially set to 20 and 
each year made up of 12 months.  
 
Fish population 

The fish population is modelled as ns species, with ns initially set to 10. The biomass Bs,t of 
species s at time t is modelled very simply as an exponential trend through time:  gO,� = g0O. ijk� 
Initial biomass B0s is created by sampling from a lognormal distribution with median Ms of 
either 50 or 200, such that: g0O = dOilm? 

where dev is a normally distributed random number with mean 0 and standard deviation 0.5. 
Population growth rate rs.is sampled from a uniform distribution between -0.1 and 0.1. Note, 
as with the ETBF simulated data there is no need to model how the catches (or any other 
processes) impact on the fished population of any species, as all we need to know is the 
assumed size of each population at any time from which the simulated catches are sampled. 
The known size of each population over time is also used to calculate the assumed abundance 
index for each species.  
 
Each species is distributed across space with a constant proportion ps,x,y of the population in 
each cell. The spatial distribution ps,x,y has three options. Firstly, the random approach samples 
density by cell from a uniform distribution between 0 and 1. Secondly, the ew-trend approach 
samples the densities of the westernmost and easternmost longitudes from a uniform 
distribution between 0 and 1. Density at intermediate longitudes follows a uniform linear trend. 
Densities are the same at each latitude. Thirdly, the ew-random approach generates densities 
from the ew-trend and random approaches, then takes the inverse logit of logit(ew-trend) + 
logit(random)/5. For each of the three approaches, density is normalized so that ps,x,y sums to 
1 for each s, giving density in each location locx,y as: 
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Ni`Z"naOomp8mO,q�p,� = gOomp8mO,�. ri]Ni`Z"naOomp8mO,q�p 
The species are labelled for convenience as ALB, BET, YFT, SWO, MLS, SBT, DOL, BLM, 
BUM, and SHK.  
 
The catchability of each species qmonsp,mon varies seasonally by month within each year. The 
monthly catchability variation of each species is based on the relative monthly catch rates for 
the equivalent species in the ETBF (c.f. Figure 6.1).  
 
Fishing Effort 

The unit of effort is the set. Fishing effort is distributed among ntac=4 sets of fishing tactics. 
Tactics may differ in a number of ways, such as the spatial distribution of effort and the relative 
catchability of each species. Initially the only feature implemented is relative catchability by 
species, qtactactic,species. Tactics are allocated predetermined relative catchabilities (see Figure 
5.28).   
 
Figure 5.28: Relative catchability by species and fishing tactic (qtacspecies,tactic), as assumed in the 
simulation model. 

 
Fishing effort is associated with nvess=15 vessels. Each vessel is assigned a catchability deviate 
qvessvessel that applies to all species. Vessel catchability deviates are sampled from a lognormal 
distribution with mean 1 and standard deviation 0.3. 
 
Each vessel is assigned a preferred tactic. Each trip by that vessel is allocated a main tactic, 
and each set within the trip is assigned a tactic. In the initial implementation of the simulator 
there is no tactic variation or switching, with each trip and each set using the same tactic. 
Preferred tactics are allocated randomly to vessels by equal probability sampling with 
replacement.  
 
Each vessel carries out ntripvess,t trips in a year, with each trip comprising nsettrip sets. Sets 
within a trip occur on consecutive days. Initially each vessel has 8 to 12 trips per year, with the 
number for each vessel-year sampled from a uniform distribution, and each trip comprising 5 
to 13 sets, with the number for each trip also sampled from a uniform distribution. Trips in 
each vessel-year occur at random non-overlapping times through the year.  



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

69 
 

Each trip begins in a randomly selected cell, and subsequent sets on a trip may move to an 
adjacent cell. Movement probabilities on the x axis are modelled as pmovex=(0.05, 0.9, 0.05) 
of respectively moving 1 cell left, not moving, or moving one cell to the right. The same 
probabilities apply on the y axis, sampled independently. For cells against a boundary, 
probabilities of moving outside the area are set to 0 such that pmovex=(0,0.95,0.05).  
 
Catch 

The catchability for each species associated with each set is a function of the fishing tactic, the 
vessel, and the season:  �O,?mOOmq,R�S�s,�Pp�8p = �nXtOomp8mO,�Pp�8p . �5iZZ?mOOmq. �u4`Oomp8mO,R�S�s 

Expected catch by species per set is equal to: i7)tXntℎOomp8mO,q�p,Qj = Ni`Z"naOomp8mO,q�p,Qj . �Oomp8mO,?mOOmq,R�S�s,�Pp�8p 
Observed catches by species per set are sampled from a Tweedie distribution with parameters 
mu=expected catch, p=1.3, and phi=10. Deviates have variance equal to phi.mup, so that the 
data are very overdispersed compared to the Poisson distribution. Deviates are generated using 
the function rTweedie from the R package mgcv (Wood 2006). As the set is taken as the unit 
of effort, the CPUE (catch per set) associated with each set is equivalent to the catch. 
Alternatively, one can set the number of hooks deployed per set to be the same for all sets (e.g. 
1000) and then calculate an associated CPUE based on the catch-per-hook as done for the 
simulated ETBF data.   
 
Datasets 

One-hundred data sets were generated each sampling from the random distributions described 
above. Each data-set contained between 28,000 and 30,000 records and for the remainder of 
this report these will be known as the DIST (for distributions) data-sets to distinguish them 
from the simulated ETBF data-sets described in the previous Section. 
 
 
5.7 Models Selected for Comparative Analysis 
 
5.7.1 Listing of Models 

Based on: 
1). the review of CPUE standardising methods outlined in Section 5.2,  
2) further investigation of the cluster approach in Section 5.4, 
3) development of the new spatio-temporal Bayesian models in Section 5.5, and 
4) consideration of some of the pertinent features of the data relating to the ETBF,  

the following standardising models were selected for comparative performance using the two 
simulated data-sets developed in the previous Section. The models selected were broken down 
into the following three groups with the analysis of all models within each group undertaken 
by separate analysers (R.C., S.H. and S.Z. respectively).   
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Group-A Models 
 
Model: A-1 (Base Model) 

This is the same as the NEG-2 model currently used for standardising CPUE in the ETBF and 
described in Sections 5.3 and 5.6. Specifically, the GLM fitted to the probability of obtaining 
a positive catch is: 

Prob(catch>0) = I + Year*Qtr + Qtr*Area +HPF +STIME + logit(Ḧ) 

/ dist= binomial link=logit  

while the GLM fitted to the size of the positive catch is: 

Catch = I + Year*Qtr + Qtr*Area + HPF +STIME  

/ dist= negbin link=log offset=ln(hooks) 

where for both models I is the Intercept, HPF and STIME are the number of hooks-per-float 
and the start-time for each fishing operation (set) respectively and logit(Ḧ) is the function as 
described in Section 5.3. Following the protocol used in the CPUE standardisations currently 
undertaken in the ETBF (as outlined in Section 5.3) all effects were fitted as categorical 
variables (corresponding to the related categories defined in Table 5.1) and the model was fitted 
to the data using the SAS GENMOD procedure (SAS 2008).  
 
Model: A-2 (Total Cluster by Set) 

A cluster analysis was undertaken across all sets based on the species composition of the catch 
using the Ward clustering method (SAS 1999) outlined in Section 5.4. The untransformed catch 
composition based on all species included in the simulated data sets was used for the cluster 
analysis and the number of clusters selected was set to five (to correspond to the five principal 
target species in the ETBF). A cluster effect was then added to the linear models described in 
the Base Model (A-1). 
 
Model: A-3 (Total Cluster by Trip) 

This is similar to model A-2, except the cluster analysis was undertaken based on the species 
composition of the catch for each fishing trip (instead of set). Set level data is likely to contain 
high variability in species composition due to the randomness of chance encounters between 
fishing gear and schools of fish. This variability is likely to lead to some misallocation of sets 
using different fishing strategies. Aggregating the data tends to reduce the variability, and 
therefore reduce misallocation of sets.  
 
Model: A-4 (Month Cluster by Set) 

This is similar to model A-2 except the cluster analysis was undertaken in two stages. First, 
separate cluster analyses were undertaken for the data for each month of the year with each set 
assigned to one of four clusters. This gave a total of 48 clusters across all months. In a second 
cluster analysis, these 48 clusters were then clustered into five final clusters based on the 
species composition of each cluster. This approach (as illustrated in Section 5.4) was used to 
investigate the possibility that species associations may change (and as a result the manner that 
the sets will clustered based on their catch compositions) during the different months of the 
year. These changes, more fully explored in Section 6.3, may be due to seasonal changes in 
availability and distribution of the different species due to prevailing oceanographic conditions. 
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Model: A-5 (Bi-Month Analysis) 

This model is an extension of the approach used in model A-4 (and uses the same as model A-
2) except separate (cluster and GLMs) analyses are undertaken on the data for each the six 2-
month periods in the data. The resulting annual indices obtained for each bi-monthly period 
are then averaged to give a final annual index across all the data. Again, this approach was used 
to investigate the possibility that the species association may change during the seasons of the 
year due to changes in both the availability of the different species and the prevailing 
oceanographic conditions (c.f. Section 6.3).  
 
As the GLMs are fitted to the bi-monthly data, there is no need to include the Quarter-effect 
(and in particular the two associated interactions) in the linear models fitted to the data. Indeed, 
this reduces the linear model fitted to each stage just the sum of the following main effects:  

y = I + Year + Area + HPF +STIME  

While this may appear as a ‘simplification’ this approach has the further advantage that the 
gear effects (HPF and STIME), which are constrained in Models A-1 to A-4 to have the same 
relative effects across all spatio-temporal strata, are now free to have different relative effects 
within each of the bi-monthly periods. This is similar to including a QTR*GEAR interaction 
effect in the previous models. It is important to note, however, in taking the mean of the six 
indices corresponding to the six bi-monthly periods it is important to keep the scale of the 
standardised CPUE the same for each period. This can be achieved by ensuring that the same 
set of standardizing reference levels for the fitted HPF and STIME effects are used for each 
period, i.e. the annual index constructed for each bi-monthly period will need to be standardised 
against the same specific reference level for each of the main effects (e.g. using SAS this is the 
last categorical level defined for each effect).  
 
Group-B Models 
 
Model: B-1 (Base Model) 

This is the same as model A-1 but without fitting the delta (Binomial) component, i.e. all sets 
(including those with a zero catch) are fitted to the following single GLM.  

Catch = I + Year*Qtr + Qtr*Area + HPF +STIME  

/ dist= negbin link=log offset=ln(hooks) 

The model was fitted using the function glm() in the R statistical package (R Core Team 2014). 
 
Model: B-2 (PCA-ns Model) 

This model is based on the Principal Components Analysis (PCA) model initially developed 
by Winker et al. (2013, 2014) to identify groups in the data. In this method, the proportional 
species compositions are first transformed by taking the fourth root, in order to reduce the 
dominance of individual species. Principal components are estimated using the function 
prcomp() in the R statistical package which transforms the data by centering and scaling, so as 
to reduce the dominance of species with higher average catches. Centering is performed by 
subtracting the column mean from each column, and scaling is performed by dividing the 
centered columns by their standard deviations. The fitted model (a GAM) has the form: 

Catch = I + Year*Qtr + Qtr*Area + HPF +STIME + ns(PC1,3) + ns(PC2,3) + ns(PC3,3) 
/ dist= negbin link=log offset=ln(hooks) 
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where PC1-PC3 are the first three principal components of the variation in the catch 
composition and ns(,3) is a cubic spline with 3 degrees of freedom.  
 
Model: B-3 (PCA-linear Model) 

This is a variation on the Model B-2 where the principal component variables are fitted with 
linear effects rather than cubic splines.  
 
Model: B-4 (PCA-binomial- Model) 

This is variation on the Model B-3 where the values of the principal component variables are 
transformed from continuous space to zeroes and ones. Values less than zero are set to 0, and 
values greater than zero are set to 1. 
 
Model: B-5 (kmeans-untransformed Cluster by Set Model) 

This model uses the base model B-1 and adds a cluster effect, where clusters are identified 
using the kmeans method applied to untransformed species proportions. The kmeans method 
minimises the sum of squares from points to the cluster centers, using the algorithm of Hartigan 
and Wong (1979). It was implemented using function kmeans() in the R stats package (R Core 
Team 2014). The number of clusters was determined after applying the function nScree from 
the R package nFactors (Raiche 2010), and taking the minimum of the numbers selected 
according to the Kaiser rule and the optimal coordinates test. At least three clusters were always 
used. The same number of clusters was used for all cluster-based methods.  
 
Model: B-6 (clara Cluster by Set Model) 

This is the same as model B-5 but the clara method is used to undertake the clustering, and 
data for each species are transformed by scaling and centring before clustering. The clara 
method is an efficient clustering approach for working with large data-sets (Kaufman and 
Rousseeuw 2009). It was implemented with the function clara in package cluster (Maechler et 
al. 2014), with samples equal to 100 and sample size equal to 250. 
 
Model: B-7 (kmeans-transformed Cluster by Set Model) 

This is the same as model B-5 but the data for each species are transformed by scaling and 
centring before clustering.  
 
Model: B-8 (Ward Cluster by Set Model) 

This is the same as model B-5 but the Ward method is used to undertake the clustering. The 
hierarchical clustering method Ward hclust was implemented with function hclust() in R, 
option ‘Ward.D’, after generating a Euclidean dissimilarity structure with function dist(). This 
approach differs from the standard Ward D method, which can be implemented by either taking 
the square of the dissimilarity matrix or using method ‘ward.D2’ (Murtagh and Legendre 
2014). However, in practice the method gave similar patterns of clusters to the other methods, 
more reliably than ward.D2 in the cases we examined. Note, this model was generally not used 
because it takes too long to run in R. 

For the next set of models (B-9 to B-12) we aggregated the data by vessel-month, and refer to 
this level of aggregation as a trip, assuming that individual vessels tended to follow a consistent 
fishing strategy during a month. One trade-off with this approach is that vessels may change 
their fishing strategy within a month, which would result in misallocation of sets. 
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Model: B-9 (kmeans Cluster by Trip Model) 

This is the same as model B-5 but the data aggregated at the ‘trip’- level was used to undertake 
the clustering.  
 
Model: B-10 (clara Cluster by Trip Model) 

This is the same as model B-6 but the data aggregated at the ‘trip’-level was used to undertake 
the clustering.  
 
Model: B-11 (Ward Cluster by Trip Model) 

This is the same as model B-8 but the data aggregated at the ‘trip’- level was used to undertake 
the clustering.  
 
Model: B-12 (Ward Cluster by Trip + Vessel Model) 

This is the same as model B-11 but the vessel identifier was added as another categorical effect 
to the linear predictor. Note, an individual vessel effect was not used to generate the simulated 
ETBF data and as such a Vessel variable could not be included in the models fitted to these 
data. 
 
Group-C Models 
 
Model: C-1 (Base Model) 

This is the same as model B-1 but with the ln(hooks) term fitted as a linear effect instead of an 
offset. The fitted GLM has the form: 
 

Catch = I + Year*Qtr + Qtr*Area + HPF +STIME + ln(hooks) 

/ dist= negbin link=log 

The model was fitted using the function glm() in the R statistical package (R Core Team 2014). 
 
Note, use of the offset term is equivalent to setting the coefficient to 1 for ln(hooks) term and 
is equivalent to fitting to CPUE on the left hand side of the equation (which is not possible with 
a negative binomial distribution which requires a discrete response). The use of the offset 
preserves the assumed 1-to-1 relationship between catch and effort (i.e. doubling hooks doubles 
the catch per set) and uncertainty in the relationship between catch and effort goes into the 
residual error, rather than the effort error. If the true relationship is not 1 to 1 then one can 
explore the nature of the true relationship by adding f(effort) as an effect in the linear predictor. 
While the relation between catch and effort (and therefore the definition of CPUE) using this 
approach become more nuanced, this does not impact on the calculation of the abundance 
index, as the f(effort) will only be a scaling factor that will be cancelled out when the relative 
index is determined. However, there may be problems with this approach. For example, there 
may not be enough data to estimate the effort relationship. Also, when the data-sets are 
unbalanced, e.g. when cluster X consistently uses more hooks than cluster Y, the effort effect 
would be confounded with the cluster effect. The effort effect may also be confounded with 
the year effect, if hooks per set has increased through time (as has been observed in the ETBF). 
 
Model: C-2 (INLA Model) 

This model is the same as Model C-1 except that it is implemented in INLA (see Section 5.5). 
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Model: C-3 (INLA continuous spatial Model) 

This is a Bayesian spatial model implemented in INLA. The fitted model has the form: 

Catch = I + Year*Qtr + HPF +STIME + ln(hooks) + f(s) 

where f(s) is spatially structured effects based on continuous latitude-longitude point locations 
where longlines were deployed. Note that the discrete area (region) is not used in this Gaussian 
Markov Random Field Model that uses the stationary Matern function for the spatial effect. 
 
Model: C-4 (INLA discrete and continuous spatial Model) 

This model is the same as Model C-4 except that it also includes an interaction term Qtr*Area 
as in the Base Model. 

Catch = I + Year*Qtr + Qtr*Area + HPF +STIME + ln(hooks) + f(s) 

 
Model: C-5 (INLA continuous spatio-temporal Model) 

The difference between this model and Model C-2 is that it not only includes a random spatial 
effect but also a random temporal effect. The random spatial effect is modelled by the Matern 
function while the temporal effect is modelled as a first order autoregressive process AR(1). 
The fitted model has the form: 

Catch = I + Year*Qtr + HPF +STIME + ln(hooks) + f(s,t) 

Model: C-6 (INLA discrete and continuous spatio-temporal Model) 

This model is the same as Model C-5 except that it also includes an interaction term Qtr*Area 
as in the Base Model. The fitted model has the form: 

Catch = I + Year*Qtr + Qtr*Area + HPF +STIME + ln(hooks) + f(s,t) 
Model: C-7 (INLA simple and spatio-temporal Model)  

This model is the same as Model C-6 except that it does not include the discrete Qtr or Area 
effects. The fitted model has the form and is the simplest of the models in Group-C: 

Catch = I + Year + HPF +STIME + ln(hooks) + f(s,t) 
 
Note: The performance of one further model was also investigated by this project. This model, 
known as Spatial Dynamic Factor Analysis (SDFA, Thorson et al. 2016), was described in 
Section 5.2.3. However, as it was only recently published (available online since April 2016), 
and as the initial version of the model required considerable lead- and run-time to get the model 
working on the large ETBF data set, it was not possible to include it in the above list of models 
to be analysed. Nevertheless, some analyses using the SDFA model have since been completed 
and the results are reported in Appendix D.  
 
5.7.2 Model Analyses and Comparisons 
 
The following sets of analyses using the models listed above and the two simulated data-sets 
were undertaken to compare the relative performance of each model.  
 

1D-Trial Group-A and Group-B models were fitted to the ETBF simulated data-set using 
the deterministic D-catches.  
This trial involved fitting each model once, as there is only one set of D-catches. 
Furthermore, in order to investigate the influence of the inclusion of the two gear 
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effects (HPF and STIM) on the performance of each model, two sets of analyses 
were completed. First, for each of the five Group A models and seven Group B 
models the analysis was undertaken with the gear effects included in all models. 
Second, a similar set of analyses were then undertaken with the two gear effects 
(HPF and STIME) removed from all models. These models are denoted G-Na 
where G and N are the model Group and model Number respectively. 

 
1R-Trial Group A and Group B models were fitted to the ETBF simulated data-set using 

the randomly generated R-catches.  
This trial involved fitting each model to 100 replicates of the data sets, each 
generating a different set of R-catches. As with the first set of analyses, two sets 
of analyses were completed with and without the gear effects included in the 
models. 

 
2R-Trial Group A and Group B models were fitted to the DIST simulated data-set using 

the randomly generated R-catches.  
This trial involved fitting each model to 100 replicates of the data sets each 
generating a different set of R-catches. As with the first set of analyses, two sets 
of analyses were completed with and without the gear effects included in the 
models. 

 
3D-Trial Group A and Group C models were fitted to a subset of the ETBF simulated data-

set using the deterministic D-catches.  
As noted in Section 5.5, even though INLA is deemed faster than the more 
traditional MCMC approach, running a multispecies model that involves random 
effect terms with only a few covariates is still time-consuming. Indeed, fitting the 
Group-C INLA based models to the full simulated ETBF data-set proved 
impractical even with the use of CSIRO’s High-Performance computers. To 
reduce the computing time and overcome this difficulty a subset of the ETBF 
simulated data was selected. This was achieved by limiting the number of data 
records to being three or less in all year, month and one-degree cells. This resulted 
in a data-set with 31,959 records and for the remainder of this report is known as 
the ETBF-N3 data-set.  
 
As with the first set of analyses, two sets of analyses were completed with and 
without the gear effects included in the models. 

 
5.7.3 Model Area Effects 

For all models fitted to the ETBF simulated data-sets that included a categorical Area effect, 
the areas correspond to the seven GLM-areas shown in Figure 5.23. As noted previously, these 
Area effects were determined externally from the model by visual inspection of the 
distributions of nominal CPUE in the data. Furthermore, the same Area effects could be used 
in each analysis of the ETBF simulated data-sets, as the spatial-distribution of the fishing effort 
and the fished resource remained the same across all data-sets. Such an approach, however, 
was not possible with the DIST simulated data-sets, as the distributions of effort and the 
resource varied between simulations, and it would have been too time consuming to visually 
inspect the distributions across all 100 data-sets. Consequently, the following two different 
approaches were used to model spatial effects in the models fitted to these data-sets. 
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Group-A models 

For each data-set, ten Area effects were identified using the following algorithm. First, for each 
year the nominal CPUE (total catch divided by total effort) was calculated within each of the 
100 cells in the simulated data-set. Second, for each cell the mean annual nominal CPUE across 
all years was then calculated. Third, the distribution of the mean annual nominal CPUE across 
all 100 cells was ranked from highest (rank=1) to lowest (rank=100). Each cell was then 
allocated to one of ten Area effects using the following formula: 

eriX = 1 + #]44r wrX`x8 − 110 y 
where ranki is the ranking of the nominal CPUE of cell i. as determined in the third step above. 
This approach makes each Area a composite of ten individual cells (so each Area is the same 
size), though this approach does not guarantee that each Area is composed of ten cells that are 
contiguous. While this may be seen as unusual, and perhaps an undesirable feature of this 
approach, at the same time one can argue that all this is doing is aggregating together spatial 
cells which have similar characteristics, and which therefore may behave in a similar and 
coherent fashion over time – which one can also argue is exactly what a well-chosen Area 
effect is supposed to do. 
 
Group-B models 

A simpler approach was adopted for this group of models, where the Area effects were simply 
taken to be equivalent to the 100 individual spatial cells used in the simulation. However, due 
to the large number of Area effects using this approach no interactions with this effect were 
included in the linear predictor. The base model therefore took the following simple form:  

Catch = I + Year + Qtr + Cell  
 
5.7.4 Model Comparisons 

After constructing the estimated abundance index, Is,t, for species s in year t based on the model 
parameters, the performance of each model in recovering the assumed annual abundance index, 
Ts,t, when fitted to each simulated data-set was evaluated by first calculating the following four 
annual errors: 
 
Error-1: Absolute Log-Relative Error  

e[\�O,� = XYZ z]4^ {�|O,�b}O,�~�	 
Error-2: Squared Relative-Error 

�\�O,� = {�|O,� − b}O,�b}O,� ~/	 
Error-3: Absolute Error e�O,� = XYZ��|O,� − b}O,�
	 
Error-4: Absolute Relative-Error 

e\�O,� = XYZ {�|O,� − b}O,�b}O,� ~	 
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where �|O,� =	 �O,�/'∑ �k,������SQ (	 and b}O,� = 	bO,�/'∑ �k,������SQ ) are the estimated and assumed 

abundance, respectively for species s and year t after rescaling to have a mean of one (i.e., 
given their treatment as relative indices of abundance) and where ny is the number of years in 
the analysis. The mean annual error (MAE) across all years for each error i and species s was 
then calculated as follows: 

de�O,8 = 1̀af �rr4r'"(O,�SQ
�T�  

 
For those trials based on fitted to the R-catches and for which 100 replicate analyses were 
completed, the MAE for each model was taken to be the mean across all replicate analyses, i.e. 

de�O,8 = 1100f w 1̀af �rr4r'"(O,j,�SQ
�T� y���

jT�  

where r is the replicate number (r=1,…,100). 
 
For each species s and error i, the MAEm,s,i for each model m was tabulated then ranked in order 
with the best performing model (i.e. that with the smallest MAE) given a ranked score (RS) of 
1 and the worst performing model (i.e. that with the largest MAE) given a ranked score of N 
where N is the number of models being compared. A total ranked score for each species 
(Species Ranked Score, SRS) was then calculated by summing the individual scores across all 
four errors: 

�\�R,O = f \�R,O,8Sm
8T�  

where ne is the number of error types (4). Finally, a total ranked score for each model (Model 
Ranked Score, MRS) was calculated by summing across all species: 

d\�R =f �\�R,OSO
OT�  

The relative performance of each model was then determined based on the MRS value for each 
model (smallest = best model, largest = worst model). 
 
Each of the above errors is reported where deemed appropriate.  
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6. Results  

6.1 Review of Factors Influencing CPUE 
 
From the discussion provided in Section 3.1, the relationship between CPUE and the true 
abundance of fish (B) within a given spatial region (A) is influenced by both the availability of 
the fish to the fishing gear (a) and the efficiency, or catchability, of the fishing gear (q): 

A

aqB
CPUE =  

In this section we review some of the factors that influence either availability or catchability.  
 
6.1.1 Availability 

The availability of fish to the fishing gear will be influenced by a number of factors – 
principally the abundance of fish in the area being fished. This in turn will be influenced by a 
range of factors (apart from overall stock abundance), such as seasonal migration patterns of 
the fish and prevailing oceanographic conditions (e.g. currents and the characteristics of the 
surrounding water masses) that influence the spatial distribution of the habitats preferred by 
the targeted fish (and therefore the spatial distribution of the fish themselves). These influences 
are obviously beyond the control of the fisher. Given that fish are available in the area being 
fished, availability will also be influenced by the relationship between the depth distribution of 
the species being targeted and the depth distribution of the fishing gear.  
 
For example, demersal fishing gears target fish species which live on or near the seafloor, and 
while the distribution of the depth above the seafloor for some of the target species caught by 
such gears may vary from time to time (possibly based on prevailing oceanographic 
conditions), the distribution of the depths fished by the fishing gears remains relatively 
constant. Consequently, the fish available to the fishing gear of a demersal trawl will be 
generally limited to those fish which are located between the seafloor and the head-height of 
the trawl net. On the other hand, for fishing gears which target pelagic species (such as pelagic 
trawl or pelagic longline), both the depth distribution of the target species and the depth 
distribution of the fishing gear can vary. Consequently, the nature of the catch will be 
dependent on the relationship at the time of the fishing operation between these two depth 
distributions. Indeed, an understanding of such relations based on observations made in the 
ETBF was used in generating the simulated ETBF data (c.f. Section 5.6.1).  
 
Again, the depth distribution of the fish caught will be influenced by a number of factors, 
including the prevailing oceanographic conditions, which may influence the vertical 
distribution of the habitats preferred by the target species (e.g. depth of the thermocline), and 
possible behavioural characteristics of these species, such as diurnal vertical migrations (e.g. 
Bigeye Tuna prefer deeper depths during the day and shallower depths during the night). These 
factors again remain outside the influence of the fisher but various variables related to 
prevailing environmental and oceanographic conditions can be included in any GLM to model 
the influence of such factors on fish availability (c.f. Table 5.1). On the other hand, the depth 
distribution of the pelagic fishing gear is under the influence of the fisher, as it will be largely 
dependent upon the manner in which the fishing gear is deployed (though it will also be under 
the influence of prevailing currents). Apart from luck, an understanding of the factors which 
influence the vertical distributions of both the target species and the fishing gears is therefore 
required to achieve ongoing success in fishing operations.  
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6.1.2 Catchability 

The ability (or effectiveness) of a given fishing gear to catch the available fish being targeted 
will also be dependent upon a range of factors. For example, the range of species and the size 
of fish caught are dependent upon the size of the mesh used by a trawl and the size of the hook 
used by a longline. The effectiveness of a fishing gear is, to a large extent, under the influence 
of the fisher, but will also be dependent to some extent upon their understanding of the size 
and behavioural preferences of the species being targeted. For example, the catch of Broadbill 
Swordfish increases with the use of light-sticks and squid bait on shallow sets deployed in the 
afternoon while the catch of Albacore Tuna shows a preference for pilchard baits on deep sets 
deployed in the morning.  
 
Like most businesses, individual fishers will strive to improve the effectiveness of the fishing 
operations over time to increase the catch per unit of deployed effort (commonly known as 
effort creep). Towards this end, and based on their knowledge of the behavioural characteristics 
of the species being targeted, fishers will ‘experiment’ with the manner in which the fishing 
gear is deployed in order to maximize the overall effectiveness of the gear. To this end, the 
manner in which fishing gears such as a pelagic longline are deployed can vary considerably 
between vessels and will be dependent on the objectives of the fisher. In order to understand 
this variability, and attempt to standardise the resulting CPUE for these differences, it is 
important that the details pertaining to the manner in which the fishing gear is deployed is fully 
recorded in the vessel logbook. Unfortunately, for many fisheries much of this information is 
not captured in the logbooks, though for the Eastern Tuna and Billfish Fishery (ETBF) a range 
of such information has been recorded since 1997. This information includes: (i) start time of 
set, (ii) the length of the longline deployed, (iii) number of hooks deployed, (iv) the number of 
hooks-between-floats, (v) number of light-sticks deployed, and (vi) bait type (both species and 
life-status). Each of these factors (and several other derived factors, e.g. number of hooks per 
kilometer) is currently included in the analyses used to standardise CPUE in this fishery. 
 
 
6.2 Targeting and Gear-Setting Practices in the ETB F 
 
A short description of the ETBF together with level of longline effort deployed each year has 
been provided in Section 3.1 Due to changes in the level of operational data recorded in 
logbooks used in the fishery, all catch data for the ETBF was summarised by year and species 
to ascertain continuity of recording of catch by species on logbooks – see Appendix A. This 
information was discussed at the meeting of Tropical Tuna Resource Assessment Group held 
1-2 October 2015 which concluded that the recording of several species in the logbook is 
unreliable (mainly for species which are predominately discarded). It was also considered best 
to combine the catch of shark species into several major groups.  
 
6.2.1 Gear Configurations  

Fishers can target different species in a number of different ways. If there are seasonal 
differences in the availability of different species, then fishers can target these different species 
by fishing at different times of the year. While each of the main species targeted in the ETBF 
are generally available all year around, there is some evidence that the level of availability for 
some of these species may change on a seasonal basis. For example, the monthly nominal 
CPUE for each of the primary target species in the ETBF (aggregated over the years 2006 to  
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Figure 6.1: Index of availability of the five primary target species in the ETBF as measured by 
nominal CPUE. 

 
 
2013 and scaled such that the mean over all months is one for each species) is shown in Figure 
6.1. From this Figure it appears that the availability of Bigeye Tuna is higher in autumn and 
lower over summer, the availability of Yellowfin Tuna is generally highest during spring, while 
the availability of Swordfish is highest during spring and summer.  
 
Difference in availability can also be noted on a spatial basis, as evidenced by the spatial 
distribution of aggregate nominal CPUE across the ETBF. For example, the availability of 
Yellowfin Tuna is generally higher along the continental shelf off eastern Australia (c.f. Figure 
B.2a, Appendix B), possibly due to these fish being entrained in the Eastern Australian Current.  
 
On the other hand, when all species are generally available during the same season and region, 
fishers can attempt to target the different species by alternating the manner in which they 
deploy their fishing gears. In order to understand and identify such practices, it is instructive to 
examine the gear settings deployed in the ETBF. For this purpose, we make use of the deployed 
gear information recorded in logbooks and by observers on vessels. While some gear setting 
information is available on logbooks completed by fishers, we make use of the observer data 
here as these data incorporate a greater range of information. 
 
Information on longline gear settings deployed by vessels in the ETBF is recorded in the 
logbooks completed by skippers for each fishing operation. While very limited information 
was recorded on logbooks before 1997, the introduction of the AL04 logbook in 1997 resulted 
in a greater number of gear-setting information being collected. Since 1997 the number of 
vessels operating in the ETBF each year has varied between 173 in 1999 and 39 in 2015 (c.f. 
Figure 3.2a) while the number of longline sets deployed each year has varied between 13,227 
in 2003 and 4,593 in 2013. AFMA observers have also been recording data on longline fishing 
operations in the ETBF since 2001, and data for 4990 observed sets and 1659 fishing trips were 
extracted from in the ETBF Observer database managed by CSIRO in Hobart.  
 
Recorded fields for each fishing operation (FOP) include: 

1. Vessel 
2. Date of fishing operation 
3. Location of FOP 
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4. Start-Time of FOP 
5. Number of hooks deployed 
6. Number of buoys deployed (observer only) 
7. Number of hooks observed hauled (observer only) 
8. Catch by species (retained, discarded) 
9. Number of hooks-per-float 
10. Number of light-sticks used 
11. Use of line-shooter (observer only) 
12. Line-setting speed (observer only) 
13. Timer setting for attaching branch-lines (observer only) 
14. Distance between branch-lines (observer only) 
15. Bait species 
16. Bait life-status 
17. Primary target species (observer only) 
18. Secondary target species (observer only) 
19. Line configuration (observer only) 

 
A number of additional fields are also recorded on a per-trip basis. These include: 

20. Length of mainline 
21. Length of buoy-line (observer only, up to 2 lengths)  
22. Length of branch-line (observer only, up to 2 lengths)  
23. Hook-type (observer only, up to 3 types) 
24. Hook-size (observer only) 
25. Hook-weights (observer only, up to 3 weights) 
26. Presence of line-shooter on vessel (observer only) 

 
The percent of longline sets deployed in the ETBF each year since 1997 deploying different 
categories of gear-types based on information recorded in ETBF logbooks is shown in Figure 
6.2. For each gear-type varying degrees of change in usage are seen across the years. In 
particular, there was a significant change in the number of hooks-per-float (HPF) used in 2006 
when vessels began deploying more than 25 HPF. Commensurate with this change, one can 
also see shifts in the bait usage (more pilchard), light-stick usage (fewer) and set start-time 
(earlier in the day). The introduction of this new ‘deep-longline’ technique, and other 
associated gear changes, was due to a significant change in fishing strategy to incorporate the 
direct targeting of Albacore Tuna in this fishery. Additional information on the distribution of 
the length of the mainline deployed across sets each year is shown in Figure 6.3, together with 
the mean number of hooks deployed per set. One can use this information to derive additional 
features relating to the deployed fishing gear, such as the distance between floats and the 
number of hooks deployed per kilometer of longline. Again varying degrees of change in usage 
are seen across the years, together with a substantial change in 2006.  
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Figure 6.2: Percent of longline sets deployed in the ETBF each year using different categories of gear-settings. Information based on ETBF logbooks. 
(NR denotes Not Recorded, Mack=mackerel, Pilch=pilchard, D=dead bait, A=live bait, M=mixed dead and live bait). 
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Figure 6.3: Percent of longline sets deployed in the ETBF each year using different categories of gear-settings. Information based on ETBF logbooks. 
(UNK denotes Unknown). 
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Figure 6.4: Average setting (and standard deviation) of individual gear-types during each year 
based on observer data collected from longline vessels operating in the ETBF (solid blue line). 
The number of observer voyages from which data was available is also shown (green columns).  
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Figure 6.5: Time-series of branch-line lengths deployed on five different vessels operating in the 
ETBF. Each dot represents an individual fishing trips and the length recorded by an observer for 
that trip. 
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Figure 6.6: Annual distribution of hook-types deployed on observed longline vessel operating in the ETBF.  
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The average (and standard deviation) characteristic for several gear-settings only recorded by 
observers during each year is shown in Figure 6.4. The number of observer voyages from which 
data was available is also shown. There appears to have been an increase in the mean length of 
the buoy-line deployed from around 10m to 15m during the 2000s, while the mean length of 
the branch-lines has decreased. The weights placed on the branch-lines (to assist in sinking the 
hooks to the fishing depth) have also increased over time. It is also possible to investigate the 
use of different gear settings at the individual vessel level, and an example is shown in Figure 
6.5 where the time-series of branch-line lengths deployed on five different vessels are shown. 
Finally, the annual distribution of hook-types deployed on observed longline vessels operating 
in the ETBF is shown in Figure 6.6 indicating a substantial shift to circle hooks after 2007.  
 
The above results indicate that there can be considerable variability in the manner that longline 
gears are deployed in the ETBF, both between years and within years on individual vessels. 
 
6.2.2. Gear Usage during Trips 

In the absence of knowledge about the fish species being targeted in each fishing operation, 
one can attempt to use information recorded in the logbook on the manner in which the fishing 
gear is deployed, and the species composition of the catch, to infer what the targeting intention 
of the skipper may have been. Set level data contains variability in species composition due to 
the randomness of chance encounters between fishing gear and schools of fish. This variability 
can lead to possible misallocation of sets using different fishing strategies. Aggregating the 
data tends to reduce the variability, and therefore reduce misallocation of sets. The next level 
of aggregation above the individual set is the vessel-trip. We therefore investigated the 
variability in fishing strategies (i.e. gear setting practices) per fishing trip. 
 
For ordinal variables (i.e. those which can be naturally ordered) such as ‘Number of hooks 
deployed per Set’, which can range from 100 to 3000, it is unlikely that exactly the same 
number of hooks will be deployed each set during a trip. What we seek to identify are sets that 
deploy a similar number of hooks (e.g. 1000 and 1050 may be considered similar). For this 
purpose the mean, M, and range, R, of hooks deployed across all sets during a trip were 
calculated and all sets within a trip were categorized as being similar if the range was within 
10% of the mean (i.e. R ≤ 0.1M). This approach was used for the following ordinal data-types: 

1) Hooks-deployed 
2) Number of Hooks-per-float 
3) Start-time of set 
4) Percentage of hooks with light-sticks  
5) Speed of line-shooter 
6) Timer speed (timing between attachment of branch-lines) 
7) Distance between branch-lines 

 
For categorical variables such as ‘Bait-species’, ‘Bait-life-status’ and ‘Primary target species’, 
sets were identified as being similar when the same category was used for a given gear type on 
all sets during a trip. A similar approach can also be used for each of the ordinal variables listed 
above by first binning these variables into categories. An example is categorizing Start-Time 
into six 4-hourly bins (e.g. 0-4am, 4-8am,…, 8pm-12pm).  
 
The number of observed trips extracted from the database was 1661 and the number of sets 
deployed per observed trip is shown in the Figure 6.7 below. The results of the above analyses, 
shown in Figures 6.8 and 6.9, indicate variable degrees of consistency in the deployment of 
each gear type during a trip. For example, similar hooks-per-float setting are used for 60-80% 
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of all sets during a trip, while generally similar start-times are used for less than 20% of sets. 
Note that the analysis was only undertaken for those trips where the data on the given gear type 
was available for all sets.  
 

Figure 6.7: Histogram of the number of sets per observed trip. 

 
 
6.2.3. Gear Usage by Primary Target Species 

The observer data is particularly useful for investigating targeting practices as the Primary and 
Secondary target species are recorded for each set. In this Section we investigate the types of 
gear settings associated with each recorded primary target species. 
 
The previous Section indicated that for many trips the primary target species is not always the 
same for all sets deployed during that trip (c.f. Figure 6.9). There may be a range of reasons for 
this outcome. This indicates that any grouping of fishing strategies into target clusters may 
need to be undertaken at the level of the individual fishing operations. As such, in order to 
investigate whether there are particular gear settings associated with particular target species, 
the distribution of settings for each gear-type at the set level against the identified primary 
target species was calculated. The results are shown in Figures 6.10 and 6.11.  
 
The results indicate that there is a broad range of settings for each gear-type associated with 
each recorded primary target species. Furthermore, several characteristics of how the gears are 
deployed (e.g. buoy-line length and line-setting speed) do not display any appreciable variation 
between the different target species. However, on closer inspection one can discern particular 
groups of gear settings which have a higher usage when targeting particular species. For 
example, Figures 6.10 indicate that more hooks and hooks-per-float are deployed when 
targeting Albacore Tuna in comparison to the other species. Albacore targeting also generally 
uses fewer light-sticks, a shorter distance between branch-lines and longer buoy-lines, early 
morning sets, circle hooks and dead pilchard bait. On the other hand, when targeting Swordfish 
there is a preference to deploy the gear during late afternoon, use a high percentage of light-
sticks, a greater distance between branch-lines and dead squid bait. When targeting Striped 
Marlin there is a preference for shallow sets (i.e. few hooks-per-float), minimum use of light-
sticks, live mackerel bait and the use of a line-shooter.  
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Figure 6.8: Percentage of trips where the setting for each gear type was similar for all FOPS 
during a trip. The solid line displays the total number of trips for which data on the given gear 
type was available for all sets while the dashed line displays the number of trips for which the 
gear-settings were similar for all sets within a trip. Trips are stratified by the number of sets 
deployed per trip. 
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Figure 6.9: Percentage of trips where the setting for each gear type was similar (i.e. the same category level was used) for all FOPS during a trip. The 
solid line displays the total number of trips for which data on the given gear type was available for all sets while the dashed line displays the number 
of trips for which the gear-settings were similar for all sets within a trip. Trips are stratified by the number of sets deployed per trip. For those trips 
deploying the same gear type for all sets the percentage of trips using each gear-type category is also displayed. 
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The monthly time-series of the percent of observed fishing operations by primary target species 
is displayed in Figure 6.12a. The targeting of Yellowfin Tuna clearly dominates the time-series, 
though there are periods when the other tuna species (Bigeye and Albacore) and Broadbill 
Swordfish are the dominant target species. Note, however, that the observer data is not 
considered to be a random survey across the entire fleet as Sections of the fleet are targeted for 
increased observer coverage at certain times, e.g. vessels catching Southern Bluefin Tuna 
during winter. Aggregated over all years, the monthly distribution of targeting practices shown 
in Figure 6.12b indicates substantial change in targeting practices across each month. The 
targeting of Southern Bluefin Tuna over winter, together with the increased targeting of Bigeye 
Tuna in late autumn, of Yellowfin Tuna in spring and Swordfish over summer, are clearly seen 
and mimic the changes in relative availability of these species throughout the year (c.f. Figure 
6.1). 
 
The catch composition of all observed sets by month is shown in Figure 6.13a and again 
displays the substantial changes throughout the year, no doubt based on the changing relative 
availability of individual species and related changes in targeting practices. Note, that targeting 
practices, whilst influenced by relative availability of given species, will also be influenced by 
other preferences such as characteristics of the vessel (e.g. how far off-shore it can venture), 
region location of the fishing operations and market conditions (e.g. prices). Of the 29 species 
shown in the catch composition (comprising the most dominant species caught), the majority 
of the catch (>90%) each month is comprised of the following sub-set of twelve species 
(YFT=Yellowfin Tuna, BET=Bigeye Tuna, ALB=Albacore Tuna, SWO=Broadbill Swordfish, 
STM=Striped Marlin, SBT=Southern Bluefin Tuna, LEC=Escolar/Oilfish, ALX=Lancetfish, 
DOL=Dolphin fish, POA=Promfrets/Ray’s Bream, and BSH=Blue Shark). 
 
The catch composition of all observed sets stratified by primary target species is shown in 
Figure 6.13b. It is reassuring to note that for each of the main target species, the proportional 
catch of that species is highest when that species is recorded as the primary targeted species. 
This demonstrates that the vessel (skipper) has some ability to target and catch a desired 
species. Nevertheless, it is also clear that the other species are also usually caught, indicating 
that it is not possible to just target and catch a single species. Indeed, the target species 
sometimes is not the dominant catch. For example, on average more Yellowfin Tuna are caught 
than Striped Marlin when targeting the latter.  
 
Finally, the cumulative percent of sets catching less than or equal to the indicated number of 
fish stratified by primary target species is shown in Figure 6.14. For example, when targeting 
Albacore Tuna around 30% of sets catch 25 Albacore or less (with 70% of sets catching more 
than 25 Albacore), but when targeting Bigeye Tuna around 90% of sets catch 25 Albacore or 
less (with 10% of sets catching more than 25 Albacore), and when targeting Striped Marlin 
100% of sets catch less than 25 Albacore. For the species shown, the highest number of fish 
are caught when that species is the target species, again indicating that fishers have the ability 
to target particular species in the fishery. 
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Figure 6.10: Distribution of various gear-setting stratified by primary target species recorded by 
observer– ordinal variables. 
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Figure 6.11: Distribution of various gear-setting stratified by primary target species recorded by 
observer – categorical variables. 
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Figure 6.12: Percent of observed fishing operations by primary target species (a) by month and (b) aggregated by month across years. 
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Figure 6.13: (Catch composition of all observed sets by (a) month and (b) primary target species. 
(YFT=Yellowfin Tuna, BET=Bigeye Tuna, ALB=Albacore Tuna, SWO=Broadbill Swordfish, 
STM=Striped Marlin, SBT=Southern Bluefin Tuna, LEC=Escolar/Oilfish, ALX=Long-nosed 
Lancetfish, DOL=Dolphinfish, POA=Ray’s Bream/Promfrets, BSH=Blue Shark, SKJ=Skipjack 
Tuna, WAH=Wahoo, MAK=Mako Shark, GES=Snake Mackerel, ALO= short-nosed lancetfish, 
MOP=Sunfish, SBS=Short-bill Spearfish, BAM=Black Marlin, BUM=Blue Marlin, OPA=Opah, 
RAY=Stingrays, TIG=Tiger Shark, BRO=Bronze Whaler, DSK=Dusky Shark, OCS=Oceanic 
Whitetip Shark, CSH=Crocodile Shark, SKS=Silky Shark and SPN=Hammerhead Sharks). 
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Figure 6.14: Cumulative percent of sets catching less than or equal to the indicated number of 
fish stratified by primary target species. 

 
 
 
6.3 Species Coexistence 
 
Fish are not randomly distributed across the fishing grounds but tend to have distinct species-
specific habitat preferences, which cause catch rates to vary according to the habitat that is 
targeted. These habitats are also likely to change their spatial size and location in response to 
prevailing currents and seasonal changes in oceanographic conditions. As a consequence, there 
is likely to be a strong seasonal component in both the distributions of fish species and related 
fishing and targeting strategies across any fishery.  
 
6.3.1 Correlations between spatial distributions 

In order to investigate these changing spatial distributions for the ETBF, spatial plots (on a 
1x1-degree basis) of aggregate nominal CPUE over the years 2000 to 2013 for each quarter 
were produced for 17 species caught in the ETBF and these are shown in Appendix B. The 
persistence of these spatial distributions for each species was then investigated by calculating 
the Pearson correlation, R, between quarters and the results are displayed in Figure 6.15. 
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Figure 6.15: Pearson correlation between quarters of the spatial distributions of CPUE for each 
species.  
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Figure 6.16: Pearson correlation, by quarter, between the spatial distributions of CPUE for a 
given specie and all other species.  
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Figure 6.16: (cont’d) Pearson correlation, by quarter, between the spatial distributions of CPUE 
for a given specie and all other species.  
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Figure 6.16: (cont’d) Pearson correlation, by quarter, between the spatial distributions of CPUE 
for a given specie and all other species.  
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Fig 6.16: (cont’d) Pearson correlation, by quarter, between the spatial distributions of CPUE for 
a given specie and all other species.  
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6.3.2 Cluster Analysis 

To further explore the coexistence of species available to the ETBF longline fishery, we again 
use the cluster analysis previously described in Section 5.4 to categorise individual fishing sets 
using based on similarities in the catch composition. We use the logbook data within the ETBF 
which provides catch information for a total of 29 individual species (c.f. Appendix A). 
Furthermore, to investigate possible seasonal differences in cluster types, two sets of analyses 
were undertaken. The first analysis was limited to the months of January and February (called 
Summer), while the second analysis was limited to the two June and July (called Winter). Each 
analysis was also limited to the main central region of the ETBF (i.e. latitudes between 20-
35oS). A summary of these constraints is provided below, together with the number of longline 
sets included in each analysis: 

Analysis 1: Summer     Analysis 2: Winter 

Spatial area: 20 ≤ latitude ≤ 35   Spatial area: 20 ≤ latitude ≤ 35 
Months: January and February only   Months: June and July only 
Number of records = 12,345    Number of records = 15,947 

Finally, based on the number of key target species in the ETBF, and results of a number of 
preliminary trials, the number of clusters to be produced from each analysis was set at six. 
After production of the clusters, the mean catch compositions of the sets within each cluster 
were calculated and compared, while other operational characteristics were also compared 
between the clusters. Each longline set was also given a ‘set-type’ label corresponding to the 
dominant species caught (by number). For sets where more than one species was dominant, the 
set was classified as Mixed (MIX). The percentage of set-types within each cluster were 
calculated and compared. 
 
Results 

A comparison of the catch composition, set-types and operational characteristics comprising 
each of the six clusters corresponding to each analysis is shown in Figure 6.17. There are clear 
differences in the catch compositions between the clusters identified, and for most clusters a 
single species comprises a dominant proportion of the catch (> 40% for 8 of the 12 clusters). 
For example, Albacore and Yellowfin Tuna comprise 66% and 77% of the catch for clusters 1 
and 6 respectively in the winter analysis, and 60% and 68% of the catch for clusters 6 and 5 
respectively in the summer analysis. However, apart from the two respective ‘Albacore Tuna’ 
and ‘Yellowfin Tuna’ clusters which was seen to occur in each season, the composition of the 
other clusters are quite different. For example, the clusters for which Swordfish, Dolphinfish 
and Oilfish are dominant during the summer months, but are not seen in the winter months. 
Instead there is a cluster dominated by pomfrets and several generally mixed-species clusters 
(Albacore and Yellowfin, Oilfish and Albacore, and Bigeye, Albacore and Yellowfin). This 
dissimilarity again illustrates the seasonal differences in the co-occurrence of species. 
 
Some clusters display distinct differences in the gear configurations. For example, for summer 
cluster 1 (the ‘Swordfish’ cluster) the sets are shallow (<11 hooks-per-float), deployed mainly 
in the afternoon (4-8pm), and predominantly use squid bait. On the other hand, summer cluster 
6 (the ‘Albacore’ cluster) is associated with a high use of deep setting (30-40 hooks-per basket), 
deployment in the morning (4-8am) and the use of pilchard baits, though a different and broader 
range of gear configurations are associated with the ‘Albacore’ winter cluster. There are also 
differences in the mix of gears between the summer and winter clusters comprised primarily of 
Yellowfin Tuna. For most clusters, nevertheless, there is a relatively wide use of gears 
configurations, indicating that ‘targeting’ may depend on more factors (e.g. oceanographic 



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

103 
 

Figure 6.17:  Comparison of results of cluster analysis for summer and winter data 
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conditions such as water temperatures, eddy features) than just the configuration of the fishing 
gear. The influence of such factors in helping to delineate ‘cluster’ types will need to be 
investigated separately.  
 
6.3.3 Further Considerations 

While the logbook data provided by the ETBF logbook provides catch information for a total 
of 29 species (including 12 shark species), it is likely that some of the less frequently caught 
by-product and predominantly discarded species (c.f. Appendix A) have not been accurately 
recorded throughout the times-series of available data. Hence, there may be some merit in 
limiting the analysis of the data to the catch of the principal catch species only. Whilst limiting 
the analysis to these species may help to simplify the analyses, on the other hand the analysis 
may be compromised by including species where the catch statistics may not be as reliable. Of 
the 29 species included in the data, only ten species (YFT, ALB, SWO, OIL, BET, DOL, STM, 
BSH, POA, MAK) individually comprise more than one percent of the mean total catch across 
the 87,106 longline sets included in the above analyses. These ten species together comprise 
96.5 percent of the mean total catch. Furthermore, apart from these ten species only one other 
species (SBT) comprises more than one percent of the mean total catch in any month (c.f. 
Figures 6.18a&b). 
 
Figure. 6.18: (a) Composition of the mean monthly catch recorded in ETBF logbooks, and (b) 
Percentage of each species recorded in the ETBF logbook comprising the mean monthly catch. 
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In order to investigate how the configuration of the clusters identified in the data are dependent 
upon which species are included in the cluster analysis, separate analyses were undertaken 
using different numbers of species comprising the total catch (B), and different numbers of 
species upon which the clusters were defined (A). Six analyses were undertaken based on the 
winter data set defined previously using the following definitions: 

1) Catch comprised of B=5 species (YFT, BET, ALB, SWO, STM),  
Cluster on A=5 species (YFT, BET, ALB, SWO, STM) 

2) Catch comprised of B=17 species (no sharks),  
Cluster on A=5 species (YFT, BET, ALB, SWO, STM) 

3) Catch comprised of all B=29 species,  
Cluster on A=5 species (YFT, BET, ALB, SWO, STM) 

4) Catch comprised of B=17 species (no sharks)  
Cluster on A=17 species (no sharks) 

5) Catch comprised of all B=29 species, 
Cluster on A=17 species (no sharks) 

6) Catch comprised of all B=29 species,  
Cluster on all A=29 species 

 
The results are shown in Figure 6.19. For each of the six analyses one can identify a ‘Yellowfin’ 
and ‘Albacore’ dominant catch cluster and to a lesser extent a ‘Bigeye cluster’. Furthermore,  

Figure 6.19: Catch comparison of clusters based on analyses using different number of species 
(B) comprising the total catch and a subset of different species (A) upon which the clusters were 
defined. Individual results are labelled (AxB). 
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when the 12 sharks species are not included in the analysis (i.e. B=5 or 17), one can also 
identify a ‘Swordfish’ dominant cluster. However, the catch composition of the other clusters 
(not unexpectedly) varies dependent upon the suite of species included in the analyses. This 
indicates that some thought needs to be given to how best to cluster the catch data for 
classifying sets, and how to identify suites of species associated with different targeting 
practices. For example, should the cluster analyses used to identify ‘targeting’ practices be 
based only on the main target species in a fishery, or should such analyses also include by-
product and by-catch species (even though these species are not targeted). The sensitivity of 
abundance indices on using the different cluster-types identified by these different types of 
analyses in procedures to standardise CPUE should also be investigated. 
 
Note, in the simulation analyses undertaken for this project, the results reported in the next 
section are based on the 5x5 cluster analysis defined above. This was due to the fact that the 
simulated multispecies data for the ETBF used for these analyses only included five species 
(called ALB, BET, YFT, SWO and DOL). 
 
 

6.4 Comparative Performance of Standardisation Mode ls 
 
The comparative performance of each the models listed in Section 5.7.1 using each of the four 
sets of trials listed in Section 5.7.2 is presented here. 
 
6.4.1 1D-Trial and 1R-Trial: Group A and B models fitted to the ETBF simulated data-
sets.  

The Mean Annual Error (MAE) based on Type-1 and Type-2 errors for the Group A and B 
models fitted to the ETBF simulated data-set are shown for all 24 models compared in Figures 
6.20a&b. Results are shown for each species and for the two sets of analyses fitted to the D-
catches and the R-catches (note, the corresponding results for another Trial discussed in Section 
6.5 are also displayed). The corresponding results for the Type-3 and Type-4 errors are not 
displayed, as the MAE for each of the four error types are highly correlated as shown in Table 
6.1. A summary of range of errors across all 24 models for each species and error type for the  
 
Table 6.1: Pearson correlation coefficient between the MAE for each error type for the (a) 1D-
Trial and (b) 1R-Trial analyses.  

(a) 1D-Trial 

 
(b) 1R-Trial 

 
 
  

Group A E-1 E-2 E-3 E-4 Group B E-1 E-2 E-3 E-4

E-1 100.0% 98.7% 99.3% 99.8% E-1 100.0% 92.1% 98.9% 99.5%

E-2 100.0% 97.8% 98.6% E-2 100.0% 90.5% 94.0%

E-3 100.0% 99.7% E-3 100.0% 99.3%

E-4 100.0% E-4 100.0%

Group A E-1 E-2 E-3 E-4 Group B E-1 E-2 E-3 E-4

E-1 100.0% 83.8% 99.4% 99.5% E-1 100.0% 93.7% 98.4% 99.2%

E-2 100.0% 80.9% 88.0% E-2 100.0% 91.4% 94.5%

E-3 100.0% 98.9% E-3 100.0% 99.3%

E-4 100.0% E-4 100.0%
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Figure 6.20: (a) Error-1 results for the Group A and B models fitted to the ETBF simulated data-
set. Results are shown for each species and for three sets of Trials described in the text. 
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Figure 6.20: (b) Error-2 results for the Group A and B models fitted to the ETBF simulated data-
set. Results are shown for each species and for three sets of Trials described in the text. 
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Figure 6.21: Minimum and maximum MAEs for each the four Error-types and species for the 
1D-Trials and 1R-Trials. 

 
 
two sets of 1D-Trial and 1R-Trial analyses is shown in Figure 6.21. For each error-type, the 
minimum error is seen to be similar for each species for the D-catches but displays some 
variation for the R-catches (which are larger than the corresponding D-catch errors), with the 
smallest errors found for the BET analyses and the largest errors for the ALB analyses. This 
pattern of variation is also seen for the maximum for each error-type and these maximum errors 
are similar for both the D- and R-catches. Unlike the minimum errors, the smallest errors are 
found for the YFT analyses and the largest errors for the DOL analyses. 
 
For the analyses fitted to the D-catches the Species Ranked Score (SRS) for each species and 
model is shown in Table 6.2 together with the total Model Ranked Score (MRS) across all 
species, while the SRS for each species and the mean across all species is displayed in Figure 
6.22. Several results are worth noting.  
 
First, the performance of each model varies considerably between the analyses conducted over 
the five species. For example, Model A-1a is seen to the be the best performing model based 
on the ALB analyses but is ranked 13th, 15th, 20th and 15th in comparative performance based 
on the BET, DOL, SWO and YFT analyses, respectively. Across all five species it is ranked 
13th in performance (as measured by the MRS). The reasons for differential performance across 
the five species remains uncertain but is likely linked to differences in the spatio-temporal 
distribution of the different fish resources across the ETBF.  
 
Second, the variability in the performance of the 24 models across the five species is relatively 
consistent (as measured by the standard deviation shown in Figure 6.22). The model with the 
lowest variation (Model B-3a, the PCA-linear model with no gear effects) is also the worst 
performing model, so there is no consistently best performing model across all species. The 
best performing model across all species (Model A-2, the Annual cluster by set model) is only 
the best model for two of the individual species analyses (BET and YFT), being 3rd and 5th best 
for the DOL and SWO analysis and only 13th best for the ALB analysis. Of the PCA-based 
models, the B-4 model (PCA-Binomial) was the best performing of the B-Group models while 
the two other PCA-based models (B-2 and B-3) were the two worst performing models. Of the 
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Table 6.2: Species Ranked Scores (SRS) for each species and model and the total Model Ranked 
Score (MRS) for the 1D-Trial analyses. All results are ordered from lowest to highest rank. 
Shading indicates models with the same SRS.  

 
 
 
Figure 6.22: Comparison of the Species Ranked Scores (SRS) for each species and model for the 
1D-Trial analyses. The mean and standard deviation of the SRS across all five species is also 
shown. 

 
 
cluster-based B-Group models, the kmeans-untransformed cluster by set model (B-5) was the 
best, followed closely by the kmeans-transformed cluster by set model (B-7). 
 
Third, for the ALB analyses, and except for Model B-3a, all the models without the gear effects 
included in the linear predictor (the ‘a’ models) performed better than those with the gear 
effects included (c.f. Table 6.2). Indeed, the two Base models without gear effects (Models A-
1a and B-1a) are the best performing models for this species. This is unlike the results for the 
other species, where the performance of these two sets of models is more mixed with the 
models with gear effects included in most instances outperforming those without gear effects 
(c.f. Figure 6.23). The out-performance of the models with gear effects included is seen to be  

RANK SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model

1 4 A-1a 4 A-2 5 A-4 4 B-6 4 A-2 94 A-2

2 8 B-1a 10 A-3 7 A-5 8 B-7 8 A-3 133 A-5

3 13 A-2a 11 A-4 14 A-2 12 A-5a 12 A-4 141 A-3

4 16 B-7a 15 A-1 16 A-1 18 B-4 17 A-3a 146 A-3a

5 19 B-6a 20 A-5 19 A-5a 20 A-2 21 A-5 147 A-5a

6 24 A-4a 26 B-1 25 A-3 23 A-5 22 A-1 152 A-4

7 28 B-5a 28 B-4 26 A-3a 27 B-2 30 A-4a 184 A-1

8 32 A-3a 31 B-5 32 A-4a 32 A-3a 31 A-5a 200 A-2a

9 39 B-2a 37 B-1a 36 B-7a 36 A-2a 39 A-2a 205 A-4a

10 41 B-4a 39 A-3a 42 A-2a 41 A-3 42 B-5 228 B-4

11 42 A-5a 43 A-5a 42 B-4 43 B-5 42 B-5a 248 B-5

12 46 B-2 49 A-4a 48 B-7 48 B-2a 47 B-6 259 B-7

13 52 A-2 55 A-1a 52 B-4a 53 B-1 50 B-7 261 A-1a

14 57 A-3 57 B-2 56 B-6a 56 A-4 55 B-1 263 B-6

15 61 B-5 57 B-6 62 A-1a 59 A-1 60 A-1a 276 B-1a

16 62 A-5 63 B-5a 66 B-1a 65 B-4a 64 B-4 292 B-1

17 68 A-4 69 B-7 67 B-6 70 A-4a 70 B-4a 297 B-7a

18 72 A-1 70 A-2a 71 B-5 71 B-3 71 B-7a 303 B-2

19 76 B-4 77 B-4a 76 B-5a 74 B-6a 75 B-1a 305 B-4a

20 80 B-1 79 B-2a 78 B-1 80 A-1a 82 B-2a 305 B-5a

21 84 B-7 84 B-6a 86 B-3 84 B-7a 84 B-2 319 B-6a

22 88 B-6 90 B-3 89 B-2 90 B-1a 86 B-6a 338 B-2a

23 92 B-3 90 B-7a 90 B-2a 90 B-3a 92 B-3 431 B-3

24 96 B-3a 96 B-3a 95 B-3a 96 B-5a 96 B-3a 473 B-3a
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Figure 6.23: Comparison of the rank of models which include the two gear effects in the fitted 
GLM with those models which do not include these effects. The comparison is shown for both the 
1-D and 1-R analyses for (a) all species and (b) the four species other than ALB. 

 
 
most pronounced for the analyses conducted on the SWO catches, where for example, the 
Error-2 results are less than 0.5% for when the gear effects are included, but greater than 3% 
when they are not included (Figure 6.20b). The reason for the poorer performance of the models 
with gear effects for the ALB-catches remains uncertain, but is somewhat surprising as it was 
the introduction of the ‘deep’ longlining technique (associated with the use of HPF settings 
greater than 20) in 2006 that is usually associated with the shift to targeting the deeper species 
such as Albacore Tuna that the simulated ALB was supposed to mimic (c.f. Figure 6.2). 
 
Finally, it is interesting to compare only the relative performance of the models without the 
gear effects included. This is because the gear effects are likely to have the larger influence on 
identifying the targeting strategy associated with a particular set, than that identified by the 
other (secondary and assumed) targeting effect included in the model based on clustering the 
catch. Secondly, many fisheries do not collect information on the particular gear configuration 
associated with any given set, with the consequence that the available data is generally limited 
to information on the catch alone. In these situations the only models available for standardising 
the CPUE would be the models without the gear effects.  
 
Of the Group-A models which did not include gear effects, Model A-3a (Total cluster by trip 
model) was the best performing model, closely followed by Model A-5a (Bi-monthly cluster 
by set model), while Model A-1a (which is the only model which does not include a targeting 
effect) was the worst performing model (c.f. Table 6.2). This last result indicates that each of 
the models that includes a targeting effect performs better than models that exclude targeting 
effects, and that the use of catch-based clusters to identify ‘targeting’ has merit. It is also note-
worthy that the cluster by trip model out-performs the cluster by set model when the gear effects 
are not included. This may indicate that without direct information on the targeting strategy 
associated with each set (as provided by gear information), the variability in species 
composition at the set level (due to the likely random nature of encounters between fishing gear 
and fish) may result in a misallocation of sets to specific fishing strategies, and that aggregating 
the data across trip reduces both this variability and the potential for misallocation. Of the 
Group-B models, and excluding the anomalous results for ALB, the B-4a model (PCA-
Binomial) was the best performing, with the other models having a similar performance except 
for the B-3a model which was the worst performing.  
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Table 6.3: Species Ranked Scores (SRS) for each species and model and the total Model Ranked 
Score (MRS) for the 1R-Trial analyses. All results are ordered from lowest to highest rank. 
Shading indicates models with the same SRS. 

 
 
 
Figure 6.24: Comparison of the Species Ranked Scores (SRS) for each species and model for the 
1R-Trial analyses. The mean SRS across all five species is also shown. 

 
 
For the analyses fitted to the R-catches the Species Ranked Score (SRS) for each species and 
model is shown in Table 6.3, together with the total Model Ranked Score (MRS) across all 
species. The SRS for each species and the mean across all species is displayed in Figure 6.24. 
Again, several results are worth noting. First, a comparison how accurately the standardised 
indices match the assumed relative abundances, as measured by the mean of the Type 1 and 2 
errors across all species, for both the D-catch and R-catch analyses is shown in Figure 6.26, 
indicating that in general the model fits are better for the D-catch analyses (both sets with and 
without the gear effects included). This relative out-performance is greater for the Group-A 
models but is quite small for the three PCA-based models (B-2, B-3 and B-4). Given the 
random element added to the R-catches, these differences are not unexpected and likely linked 
to the higher proportion of zeroes in the R-catches (c.f. Figure 5.20).  

RANK SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model

1 4 B-1a 6 A-1 4 A-1 4 B-6 4 A-1 119 A-3

2 10 B-6a 8 A-5 8 A-3a 12 B-7 8 A-3 133 A-1

3 13 A-1a 10 A-4 13 B-4 13 A-3 15 A-4 152 A-4

4 13 A-4a 16 A-3 18 A-3 13 A-5a 17 A-3a 166 A-4a

5 21 B-7a 20 A-2 19 B-4a 22 A-2 17 B-5a 174 A-3a

6 24 A-2a 30 B-1 24 A-1a 22 A-5 29 B-7 185 A-2

7 27 B-5a 30 B-4 34 A-4a 26 A-2a 30 A-4a 193 A-5

8 33 A-5a 33 A-1a 34 B-7a 33 A-4 31 B-5 200 A-5a

9 36 B-2a 38 B-5 38 A-4 35 A-4a 31 B-6 210 A-1a

10 41 A-3a 40 A-5a 43 B-6a 40 B-4 40 A-2 221 B-4

11 43 B-4a 40 B-1a 51 A-2 45 B-2 44 B-1 229 B-6

12 47 B-2 48 B-6 53 B-7 47 A-1 46 A-5 232 A-2a

13 52 A-2 53 A-3a 55 A-2a 53 B-2a 53 A-5a 250 B-7

14 56 A-4 54 A-4a 57 A-5 55 A-3a 57 A-2a 266 B-1a

15 60 A-5 56 B-2 58 B-1a 60 B-5 60 A-1a 266 B-5

16 64 A-3 64 B-5a 61 A-5a 64 B-1 62 B-4 267 B-5a

17 68 B-5 68 B-7 62 B-6 68 B-4a 69 B-4a 278 B-4a

18 72 A-1 70 A-2a 63 B-5a 72 B-3 72 B-1a 295 B-6a

19 76 B-4 77 B-2a 69 B-5 76 B-6a 77 B-2a 300 B-1

20 80 B-1 79 B-4a 79 B-3 80 A-1a 82 B-2 313 B-7a

21 84 B-6 84 B-6a 82 B-1 84 B-7a 82 B-6a 317 B-2

22 88 B-7 88 B-7a 87 B-2 88 B-3a 86 B-7a 336 B-2a

23 92 B-3 92 B-3 93 B-2a 92 B-1a 92 B-3 427 B-3

24 96 B-3a 96 B-3a 95 B-3a 96 B-5a 96 B-3a 471 B-3a
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Figure 6.25: Comparison of the model ranks (1-24) between the 1-D and 1-R analyses by species. 
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Figure 6.26: Comparison of the mean Error-1 and Error-2 results across all species for models 
fitted to the D-catches and the R-catches. The comparison is also shown for both sets of analyses 
which include the two gear effects in the fitted GLM with those models which do not include these 
effects. 

 
 
Table 6.4: Pearson correlation, R, between the model ranks (1-24) for the 1-D and 1-R analyses. 

 
 
Second, the high variability in the performance of each model across the five species is similar 
to that noted for the D-catch results, again indicating that no single model is seen as being the 
best performer across all species. Also, the out-performance of the models without the gear 
effects included for the ALB analyses is retained. Third, a comparison of the overall Rank of 
each model fitted to both the D- and R-catches for each species and across all species is shown 
in Figure 6.25, and despite some differences indicates a relatively high degree of similarity 
between the two sets of analyses for most species. This similarity is highest for the ALB and 
BET analyses and lowest for the DOL analyses (c.f. Table 6.4).  
 
While the A-1 (Base delta model) is the best performing across three species for the R-catch 
analyses (and is ranked 2nd across all species), the best performance of this model was 4th for 
the D-catch analyses (where is was ranked 7th across all species). The higher performance of 
the A-1 model fitted to the R-catches is most likely due to the fact that the influence of the 
cluster-based targeting effects has been reduced, due to the higher variability in the catches 
(with the random component added) and the greater influence of the gear effects alone. The 
best performing model overall for the R-catch analyses (model A-3: Total cluster by trip) ) was 
not the best model for any of the individual species, being 2nd, 3rd, 4th and 4th best for the YFT, 
SWO, DOL and BET analyses (respectively) and only 16th best for the ALB analysis. It was 
ranked 3rd overall for the D-based analyses but was the best performing model based on the 
sum of the MRS for both sets of analyses. On the other hand, the best performing model overall 
for the D-catch analyses (model A-2: annual cluster by set) was ranked 6th overall for the R-
based analyses, but was the 2nd best performing model across both sets of analyses. The third 
best performing model across both catch types was model A-4 (Monthly cluster by set), but 
was ranked 6th and 3rd for the D- and R-based analyses respectively. Of the Group-B models, 
the B-4 model (PCA-Binomial) was again the best performing while the two other PCA-based 
models (B-2 and B-3) were the two worst performing models. Of the Group-B cluster-based 
models, model B-6 (clara clustering) was the best performing, unlike that for the D-catch 
analyses where the kmeans-based cluster models were better performing. Interestingly, the B-
6 model was the best performing for the SWO analyses across both sets of analyses. Finally, 
of the models that did not include the gear effects, and again excluding the anomalous result 
seen for ALB, the A-3a model was the best performer. 
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Table 6.5: Species Ranked Scores (SRS) for each species and model and the total Model Ranked Score (MRS) for the 2R-Trial analyses. All results are 
ordered from lowest to highest rank. Shading indicates models with the same SRS. 

 
 
Figure 6.27: Comparison of the Species Ranked Scores (SRS) for each species and model for the 2R-Trial analyses. The mean SRS across all ten species 
is also shown. 

 
 

RANK SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model

1 4 A-3 4 B-2 4 A-1 4 B-12 4 A-3 4 A-5 4 A-5 4 A-3 4 B-2 4 A-1 80 A-3

2 9 B-8 8 A-1 11 B-2 8 A-3 10 A-5 8 A-3 8 A-3 8 A-2 9 A-3 8 A-3 161 A-2

3 11 B-12 12 A-3 12 B-12 14 B-8 14 A-1 12 A-2 17 B-8 13 A-5 11 A-1 12 A-2 165 A-5

4 19 A-5 17 A-2 15 A-3 14 A-5 14 A-2 16 B-8 18 B-3 15 B-11 16 A-2 16 A-4 261 A-4

5 20 A-2 21 B-11 19 A-2 23 B-9 18 B-2 20 A-4 18 A-2 22 A-4 21 A-5 20 B-2 302 A-1

6 22 B-9 22 B-6 25 A-4 24 B-5 25 A-4 25 B-9 22 B-9 23 B-2 23 B-11 24 A-5 329 B-2

7 29 A-4 30 A-5 26 A-5 25 A-2 31 B-7 27 B-12 29 A-4 27 A-1 28 A-4 28 B-11 334 B-8

8 30 B-10 31 A-4 32 B-10 32 B-10 31 B-10 34 B-10 31 B-10 32 B-7 32 B-7 32 B-7 366 B-9

9 38 B-7 36 B-7 38 B-3 36 A-4 37 B-6 38 B-4 38 B-6 36 B-6 36 B-6 36 B-6 385 B-10

10 43 B-3 39 B-5 38 B-6 44 B-7 38 B-9 42 B-6 40 B-4 41 B-10 43 B-5 43 B-5 391 B-7

11 43 B-8 44 B-12 46 B-5 46 B-3 47 B-5 45 B-3 43 B-7 46 B-5 43 B-10 43 B-10 398 B-6

12 52 B-5 48 B-9 48 B-9 46 B-4 47 B-9 47 B-5 50 B-5 46 B-7 47 B-9 47 B-9 399 B-12

13 52 B-11 52 B-10 52 B-7 50 B-11 48 B-3 51 B-7 52 B-12 51 B-8 51 B-8 51 B-8 410 B-11

14 55 A-1 56 B-8 54 B-6 54 B-6 56 B-11 52 B-11 53 B-11 57 B-3 57 B-3 57 B-3 437 B-5

15 57 B-4 61 B-3 60 B-11 61 B-2 60 B-4 59 A-1 57 A-1 61 B-12 61 B-4 61 B-4 470 B-3

16 60 B-2 63 B-4 64 B-4 63 A-1 64 B-12 64 B-2 64 B-2 62 B-4 62 B-12 62 B-12 552 B-4
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6.4.2. 2R-Trial: Group A and B models fitted to the DIST simulated data-set using the 
random R-catches.  

For the analyses fitted to the R-catches, the Species Ranked Score (SRS) for each species and 
model is shown in Table 6.5, together with the total Model Ranked Score (MRS) across all 
species, while the SRS for each species and the mean across all species is displayed in Figure 
6.27. Several results can be noted. First, similar to the 1D-Trial and 1R-Trial results there is 
high variability among model performance across the species, with no model performing best 
across all species. While model A-3 is the best performing for three of the ten species, and best 
performing overall, model B-12 is the best performing for YFT but is ranked only 12th overall. 
The variability in performance can be highly bi-modal across species for some models, for 
example models A-1 and B -12.  
 
Second, similar to the 1D-Trial and 1R-Trial results, across all species each of the Group-A 
models out-perform all of the Group-B models (c.f. Figure 6.28). Of the Group-A models, 
model A-3 is the best performing and model A-2 is the second best performing. This result is 
consistent with the 1R-Trial results, as these two models were also the best performing for 
these analyses. Of the Group-B models, model B-2 (the PCA-ns model) is the best performing, 
but this result is different from that found for the 1R-Trial analyses where of the Group-B 
models the B-4 (PCA-binomial) model performed best. Interestingly, of the cluster-based 
models within Group-B, the Ward-cluster model (B-8) was the second best performing in the 
2R-Trial and this cluster method is the same as that used in the Group-A models.  
 
Figure 6.28: Comparison of the overall rank of the eleven models used in both the 1R-Trial 
(ETBF) and 2R-Trial (DIST) analyses. 

 
 
 
6.4.3 3D-Trial: Group A and C models fitted to the N3-version of the ETBF simulated 
data-set using the deterministic D-catches.  

Finally, for the analyses fitted to the D-catches pertaining to the smaller set (N3) of the ETBF-
simulated data, the Error-1 and Error-2 results are shown in Figure 6.29. Species Ranked Score 
(SRS) for each species and model is shown in Table 6.6, together with the total Model Ranked 
Score (MRS) across all species. Finally, the SRS for each species and the mean across all species 
is displayed in Figure 6.30.  
 
These results, which can be compared with the 1D-Trial results (c.f. Table 6.1), show similar 
variability in model performance across species. Furthermore, as noted previously, the models 
including gear effects generally out-perform those without gear effect. However, while this  
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Figure 6.29: Error-1 and Error-2 results for the Group A (blue) and C models (green) fitted to 
the streamlined (N3) ETBF simulated data-set. Results are shown for each species. Note, y-axis 
values differ between panels. 
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difference in performance is seen for all the A-Group models, this relative out-performance is 
only apparent for several of the C-Group models (e.g. C-5, C-6 and C-7). For three of the five 
species the best performing model is the same as that observed in the 1D-Trial analyses, with 
model A-2 relacing model A-4 for DOL and model A-5 replacing model B-6 for SWO. Over 
all species, the best performing model was model A-2, while the second best performing model 
was model A-5 – these are the same results as for the 1D-Trial analyses. The best performing 
of the C-Group was model C-6, which is the INLA discrete and continuous spatio-temporal 
model, and the most complex model within this group. While this model only out-performed 
one of the A-Group models (model A-1a) its performance was substantially better than most 
of the other models in the C-Group.  
 
Table 6.6: Species Ranked Scores (SRS) for each species and model and the total Model Ranked 
Score (MRS) for the 3D-Trial analyses. All results are ordered from lowest to highest rank. 
Shading indicates models with the same SRS. 

 
 
 
Figure 6.30: Comparison of the Species Ranked Scores (SRS) for each species and model for the 
3D-Trial analyses. The mean SRS across all five species is also shown. 

 
 

RANK SRS Model SRS Model SRS Model SRS Model SRS Model MRS Model

1 4 A-1a 4 A-2 4 A-2 6 A-5 4 A-2 47 A-2

2 8 A-2a 9 A-1 9 A-4 8 A-5a 8 A-4 84 A-5

3 12 A-4a 11 A-5 15 A-1 10 A-4a 13 A-5 94 A-4

4 17 A-3a 16 A-4 19 A-5 16 A-2 15 A-3 113 A-5a

5 19 A-2 20 A-3 20 A-3 20 A-3a 20 A-1 122 A-1

6 24 A-5a 24 A-5a 20 C-6 24 A-4 25 C-6 122 A-3

7 32 C-5a 28 C-7 26 A-5a 28 A-2a 30 C-1a 141 A-4a

8 34 A-3 34 C-2 31 C-7 33 A-3 31 A-5a 166 A-3a

9 35 A-5 36 C-7a 37 A-4a 35 A-1 34 C-6a 216 A-2a

10 37 A-4 39 A-4a 39 A-3a 40 C-6 41 A-3a 217 C-6

11 43 A-1 43 C-1 44 C-5 44 C-1 43 A-4a 259 C-7

12 47 C-7a 49 A-3a 48 C-6a 48 C-2 48 A-2a 290 A-1a

13 52 C-7 54 C-3 52 C-1a 53 C-4 52 C-2a 297 C-2

14 58 C-1a 58 C-4 56 A-2a 55 A-1a 57 C-2 308 C-1a

15 60 C-5 60 C-5 60 C-5a 60 C-3 60 C-3a 310 C-6a

16 62 C-6a 60 C-6 64 C-2a 64 C-7 65 C-3 318 C-1

17 68 C-3a 70 C-3a 70 C-2 68 C-5 66 C-1 320 C-5

18 72 C-6 74 C-4a 73 C-1 74 C-7a 72 A-1a 344 C-7a

19 77 C-2a 76 A-2a 78 A-1a 75 C-6a 76 C-4a 353 C-3

20 81 C-3 78 C-2a 80 C-4a 79 C-1a 80 C-4 355 C-2a

21 82 C-4a 81 A-1a 81 C-3a 84 C-2a 84 C-7 371 C-3a

22 88 C-2 89 C-1a 86 C-4 90 C-4a 88 C-5 373 C-4

23 92 C-1 91 C-6a 93 C-3 92 C-3a 92 C-7a 378 C-5a

24 96 C-4 96 C-5a 95 C-7a 94 C-5a 96 C-7 402 C-4a
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6.5 Further Analyses 
 
The results presented in the previous Section raise a number of questions as to the reason behind 
the relative performance of each model. While a full investigation of these differences is 
beyond the scope of this project, in this Section we focus on the following three issues: 

1) the relative out-performance of the Group-A of models,  
2) the out-performance of the models without gear-effects for the ALB analyses, and 
3) the selection of the GLM Area effects. 

 
6.5. 1 Group-A Models Out-Performance 

Apart from differences on how the ‘target’ effect was added to the linear predictor in both the 
Group-A and Group-B models, the other main difference was that the Group-A models utilised 
a two-stage analysis, with the first stage analysing the distribution of zero catches in the data 
and the second stage analysing the distribution of non-zero catches. As noted previously, this 
approach is often used because the number of zeroes in the catch data is usually ‘inflated’, and 
is assumed to result in a distribution of errors used in a single-stage analysis that will not be 
appropriate (i.e. it will be unable to adequately explain the large proportion of zero catches).  
 
To explore the implications using a two-stage versus a single-stage analysis, the following set 
of analyses were undertaken. First, the A-1 model was fitted to the 100 sets of R-catches for 
the ETBF simulated data set as previously undertaken in the 1R-Trial. Second, the first stage 
Binomial model was dropped and instead all the data were fitted just to the Negative-Binomial 
model. These will be called the Delta-2 and NoDelta-2 analyses respectively. The analysis was 
also extended to investigate the relative performance of using a 3-way interaction between the 
Year, Quarter and Area effects, instead of just the two 2-way interactions used in all previous 
analyses. For this purpose, the above two analyses were repeated using the following linear-
effects model: 

I + Year*Qtr*Area +HPF +STIME 

Following the notation used above, these will be called the Delta-3 and NoDelta-3 analyses 
respectively Finally, the annual index of abundance was calculated for all four fitted models 
together with the corresponding deviations (Errors 1-4) from the true underlying index. A 
comparison of these errors for the four models is shown in Figure 6.31. 
 
Figure 6.31: Comparison of the four index-based errors after fitting the following four variates 
of the A-1 GLM to the 100 sets of R-catches for the ETBF simulated data set: (i) a two-stage delta-
(Bin-NegBin) model with either the two Year*Qtr and Qtr*Area 2-way interactions (Delta-2) or 
the single 3-way Year*Qtr*Area interaction (Delta-3) and (ii) a single-stage-NegBin-only model 
with either the two Year*Qtr and Qtr*Area 2-way interactions (NoDelta-2) or the single 3-way 
Year*Qtr*Area interaction (NoDelta-3). 
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Several results can be noted. First, for both error types and for all species, the Delta-2 model 
out-performs the NoDelta-2 model. The improvement in performance between these two 
models can be relatively substantial. For example, the type-1 error for DOL decreases by 61% 
(from around 15% to 6%), and by 38% averaged across all species. Similarly, the Delta-3 model 
out-performs the NoDelta-3 model for all species. The out-performance of the two-stage Delta 
models, compared to the single-stage non-Delta approach, helps to explain the out-performance 
observed in the previous Trials by the Group-A set of models in comparison to the Group-B 
and Group-C models. However, what proportion of the out-performance is explained by this 
single factor remains uncertain but it could be substantive, especially for some species. 
 
Second, comparison of the results for those models including the two 2-way interactions with 
those models which include the single 3-way interaction, indicates in most instances the latter 
model out-performs the former. Indeed, for both error types and for all species the NoDelta-3 
model out-performs the NoDelta-2 model, while for only three of the five species (ALB, SWO 
and YFT) does the Delta-3 model out-perform the Delta-2 model. The reasons for this 
differential relative performance across the different species remains unknown (perhaps based 
on temporal changes in the spatial distribution of the zero catches) but should be investigated.  
 
6.5.2 Anomalous ALB Result 

As noted in the previous Section, and unlike the results for the other species, the results of the 
1-Trial analyses for ALB indicated that all models (except one) without the gear effects 
included in the linear predictor out-performed the models with the gear effects included (c.f. 
Tables 6.2 & 6.3). This result was seen as surprising, as it was the introduction of the ‘deep’ 
longlining technique that is usually associated with the pronounced shift to targeting of ALB 
that was undertaken in 2006 (c.f. Figure 6.2). 
 
Interactions with gear effects 

The cluster analyses of the ETBF catch data undertaken in Section 6.3 indicated strong seasonal 
changes in species composition of the major clusters identified, but for most clusters there was 
a relatively wide use of gears configurations. Furthermore, for similar cluster types there was 
a difference in the mix of gears between the seasonal clusters. For example, the mix of gear 
types associated with the fishing operations included with the summer and winter YFT and 
ALB clusters identified in Section 6.3 is shown in Figure 6.32. The large differences in the mix 
of gears associated with different clusters indicates that there is a strong gear-by-cluster 
interaction and the differences in the mix of gears associated with similar clusters at different 
seasons indicates that for some clusters there may also be a gear-by-season (e.g. gear-by-
quarter) interaction. 
 
In order to investigate whether the inclusion of either of these two interactions improves the 
performance of the GLMs used to standardise the CPUE of the simulated catch and effort data, 
especially for ALB, two alternative sets of analyses were undertaken where for both the A-3 
and A-5 models described in Section 5.7 the linear predictor was updated to become: 

I + Year*Qtr + Qtr*Area +HPF*CLUSTER +STIME*CLUSTER 

The updated A-3 model investigates the inclusion of only the gear-by-cluster interaction, while 
the updated A-5 model also allows the gear-by-cluster effects to have different relative effects 
within each of the bi-monthly periods (as explained previously). Both models were fitted to the 
100 simulated ETBF data-sets with the R-catches and again the Mean Annual Error (MAE) was  
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Figure 6.32: Gear types associated with fishing operations included in the summer and winter 
YFT and ALB clusters identified in Section 6.3 (c.f. Figure 6.17) 

 
 
Figure 6.33: (a) Comparison of the MAE associated with the fitting the A-3 model to the ETBF 
data-set where the linear predictor includes; (i) no gear effects, i.e. cluster effects only, (ii) both 
gear and cluster effects, or (iii) the gear-by-cluster interactions.   

 
 
Figure 6.33: (b) Comparison of the MAE associated with the fitting the A-5 model to the ETBF 
data-set where the linear predictor includes; (i) no gear effects, i.e. cluster effects only, (ii) both 
gear and cluster effects, or (iii) the gear-by-cluster interactions.   
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calculated for each species. The results are shown in Figures 6.33a&b for both the Type-1 and 
Type-2 errors where they are also compared with the results from the previously fitted models 
where there was either (i) no gear effects included (i.e. only a cluster effect), or (ii) only the 
gear and cluster effects alone (i.e. no interaction). 
 
Both sets of results indicate that the inclusion of the gear*cluster interaction terms in the fitted 
models makes little overall difference, if any, to the performance of the models. Whether the 
simulated ETBF data contains gear*cluster interaction effects like those observed in the real 
ETBF data remains uncertain. However, a more likely explanation for these results is that there 
is a substantial random element in the relationship between the deployment of the fishing gears 
and the resulting catch and its composition so that the relationship between these two is weak. 
Indeed, this is consistent with the results of the analyses presented in Section 6.3 which did not 
find particularly strong relationships between the catch-composition of the clusters identified 
in the ETBF data and the gear settings. Furthermore, relationships that do exist may not be 
consistent over time (implying an interaction with year). 
 
The factors that influence the size and composition of the catch of any fishing operation are 
likely to be complex and subject to a reasonable degree of natural variability due to the random 
nature of fish interacting with longline hooks. No doubt further research is required to identify 
and improve our understanding of the factors used by fishers to ‘target’ the effort deployed at 
specific species and how this is reflected in the composition of the catch for individual fishing 
operations, in particular those factors that account for the variability seen in the composition 
of the catch given similar gear settings. These factors are likely to include spatial features in 
the ocean such as temperature fronts and eddies that are likely to influence the distribution of 
fish in the oceans and which are taken as cues by fishers for setting their gears.  
 
Spatio-temporal changes 

In lieu of the gear effects not providing the necessary explanatory power for improving the 
estimation of the ALB index, we explored possible spatio-temporal changes in the distribution 
of the catch rates in the simulated data. For this purpose, we calculated the Pearson correlation, 
R, between the annual distributions of nominal CPUE between years. The analysis was 
undertaken at two spatial scales: (i) at the 1x1-degree level, and (ii) at the GLM-area level. 
Furthermore, in order to identify any distinct pattern in the ALB data that is different from that 
associated with the other species, the analysis was undertaken across all five species. The 
results are displayed in Figure 6.34. 
 
The pattern of annual correlations for ALB based on the distribution of 1-dgree spatial CPUE 
shows a distinct change after 2005. The correlation between any year up to 2005 and any other 
year is generally low, with R mainly between 0.25 and 0.40. However, the correlation between 
any year after 2005 and any other year is generally high, with R mainly between 0.7 and 0.9. 
This pattern indicates a shift in the spatial distribution of catch rates after 2005 and is apparent 
in the annual distributions of CPUE displayed in Figure 6.35. Up until 2005 the location of 
squares with high CPUE was spread around the periphery of the fishery, but from 2006, and 
persisting across all remaining years, there is a distinct area of high CPUE (>12) located in the 
north-east of the fishery. The pattern of annual correlations for ALB based on the distribution 
of GLM-area CPUE also displays a distinct change after 2005, but also indicates another 
change after 2010. These changes in the distribution of the ALB resource between years infers 
a large Year*Area interaction between these two effects.  
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Figure 6.34: Pearson correlation between the annual distributions of nominal CPUE between 
years at: (a) the 1x1-degree level, and (b) the GLM-area level. 
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Figure 6.35: Annual distributions of nominal ALB CPUE for the simulation ETBF data-set. The 
colours indicate the following range of CPU: (i) yellow, <2.0, (ii) orange, <4.0, (iii) green, <6.0, (iv) 
light blue, <8.0, (v) dark blue, <10.0, (vi) red, <12.0, and (vii) purple, >12.   
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Table 6.7: Species Ranked Scores (SRS) for each model for the D9-Trial analyses. Models having 
equal rank scores are shaded. 

 
 
 
Figure 6.36: Comparison of (a) the standardised CPUE indices and (b) the index errors based on 
the A-1a model for all years and the A-3 model for the last 9 years. The nominal CPUE and the 
assumed abundance indices are also shown.  

 
 
The pattern of annual correlations for the other four species, shown in Figure 6.34, display 
differing levels of inter-annual variability (e.g. high for BET and low for DOL), but do not 
display the substantive shifts noted in the results for ALB. This suggests that the distinctive 
changes noted in the distribution of ALB CPUE may be having an impact on the performance 
of the models fitted to this species. 
 
To investigate this possibility, a further set of analyses (known as the D9-Trial) were 
undertaken similar to the 1D-Trial, but limited to the A-Group of models fitted to the ALB data 
for the last nine years of data only (i.e. it excludes the data before the substantive changes noted 
in the spatial correlations for ALB). The errors and species-ranked-scores were calculated as 
before for each model and the results are shown in Table 6.7. Unlike the previous 1D-Trial 
result for ALB, where the models without the gear effects out-performed the models including 
gear effects and the A-1a model was ranked first, when applied to the data for the last 9 years 
the models with gear effects perform best, and the A-3 model is ranked first. This last result is 
consistent with the previous results for the 1R-Trial and 2R-Trial analyses.  
 
A further comparison of the D9-Trial and 1D-Trial results is shown in Figure 6.36. First, the 
annual abundance index for each Trial is displayed and compared with both the nominal index 
and the assumed annual index. All indices have been scaled such that the average of the last 9 
years is equal to 1. In general, the D9 index better tracks the true index, and corrects the 
negative trend over the last 9 years seen in the 1D-Trial index. Second, a comparison of the 
Mean Annual Error (MAE) for the four errors calculated over the last 9 years, but with each 
index retaining its original scale, is shown in Figure 6.36b. Again, a substantive improvement 
in each of the four errors is seen, with around a 70% reduction in the Type-2 error and a 50% 
reduction in the other errors. 
 
In order to investigate whether the shift noted in the fishing patterns for Albacore Tuna may 
have influenced the model fits to the other species, the above analysis of fitting the Group-A  
  

Rank 1 2 3 4 5 6 7 8 9 10

SRS 4 8 14 14 20 25 27 32 36 40

Model A-3 A-1 A-2 A-4 A-3a A-4a A-1a A-5 A-2a A-5a

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
d

e
x

Year

(a) Indices

All Years 9 Years

Assumed Nominal
0%

1%

2%

3%

4%

5%

6%

7%

Error-1 Error-2 Error-3 Error-4

P
e

rc
e

n
t 

(%
)

Error Type

(b) Errors

All Years

9 Years



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

126 
 

Figure 6.37: Comparison of the overall model rank for the five Group-A models based in the D9-
Trial analyses with and without the two gear effects included in the linear predictor. 

 
 
models to the last nine years of data only was also undertaken for the other four species. The 
following average relative change in the MAE for each error i was calculated for each model m 
and species s: 

∆de�R,O = 14f'de�R,O,8,�Q −de�R,O,8,Pqq(de�R,O,8,Pqq
�

8T�  

where the subscripts all and 9y refer to the analyses over all years and the last 9 years 
respectively. The results are shown in Figure 6.37, where positive and negative changes 
indicate a larger and smaller MAE respectively (by the percentage shown) for the analysis over 
the last 9 years compared to all years. Consistent with the previous results above for ALB, the 
∆MAE is negative for all models, indicating a generally substantial improvement in the 
estimation of the abundance index. However, this result is not consistent across all species, 
with some improvement in the estimation of the index over the last 9 years seen for both BET 
and SWO, little if any change seen for YFT, and a poorer estimation of the index seen for DOL. 
The reasons for these differences remain unclear, but are a further indication that there are 
factors specific to each species that influence the fit of any model to the data and as such the 
estimation of the annual abundance index. 
 
6.5.3 Construction of GLM Area effects 

For all models fitted to the ETBF simulated data-sets the Area effects correspond to the seven 
GLM-Areas shown in Figure 5.23. As previously noted, these Areas effects were determined 
externally from the model by visual inspection of the distributions of nominal CPUE across the 
1-degree cells in the data. However, a disadvantage of this approach is that the construction of 
the Area effects has to be undertaken manually (or empirically) and separately for each species. 
This can be time-consuming if there are a large number of analyses (or species) to be 
completed. Furthermore, there is no guarantee that this rather ad hoc process, or the number of 
Area effects selected, is optimal. It would be preferable if the selection of Area effects could 
be based on some algorithm which can be incorporated into the analysing model. In this Section 
we compare the performance of the A-1 model using a suite of different Area effects while 
keeping all other model inputs constant. 
 
The following six criteria were used for selecting the Area effects used in the model fitted to 
the data for each of the five species: 
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Type-1 These are the seven GLM-Areas shown in Figure 5.23, and used in all previous 
analyses –where the number of Area effects for each species is seven; 

Type -2 These are based on the same empirical approach as Type-1 except the number 
of GLM-Areas for each species was increased to be between 9 and 11; 

Type -3 These are based on the same empirical approach as Type-1 except the number 
of GLM-Areas for each species was increased to be between 13 and 14; 

Type 4 The Type-1 GLM- Areas for YFT were used for all species. 

Type -5 The total area of the fishery was divided into seven GLM-Areas based on the 
following latitudinal strips <18S, <22S, <25S, <28, <31S, <34S, and ≥34S; 

Type 6 For each data-set seven GLM-Areas were identified using the algorithm used 
for analysis of the DIST data-sets and previously described in Section 5.7.2. 
First, for each year the nominal CPUE was calculated across all one-degree cells 
in the simulated data-set. Second, for each cell the mean nominal CPUE across 
all years was calculated. Third, the distribution of nominal CPUE across all cells 
was ranked from highest (rank=1) to lowest (rank=139). Each cell was then 
allocated to one of seven GLM-Areas using the following formula: 

eriX = 1 + #]44r wrX`x8 − 120 y 
where ranki is the ranking of the nominal CPUE of cell i. as determined in the 
third step above. This approach makes each GLM-Area a composite of 20 
individual cells (so each Area is the same size), though the approach does not 
guarantee that each Area is composed of 20 cells that are contiguous.  

The A-1 model was fitted to the 100 simulated ETBF data-sets using the random R-catches and 
the Mean Annual Errors (MAE) calculated as described previously. The model was also fitted 
using either the two 2-way interactions between the Year, Quarter and Area effects (the NEG-
2 model) or the single 3-way interaction (the NEG-3 model). For each species and error type, 
the performance of the model was ranked across the six types of Area effects (1=Best, 
6=Worst) and the mean rank was then taken across the four model-error combinations. For 
each species, and for each type of Area effects, the Type-1 and Type-2 MAEs for each model 
are shown in Figure 6.38, while the mean ranks are shown in Table 6.8. Except for ALB, the 
size of the errors for the NEG-2 and NEG-3 models were similar for each species, indicating 
that there was little benefit in fitting the more parameter intense 3-way interaction.  
 
The results for the three species-specific empirical Area effects (Types 1 to 3) indicate that 
varying the number of areas from 7 to 14 does not always improve the model fit, with the Type 
1 model with only 7 Areas effects performing best for all species. On the other hand, the relative 
performance of the Type 2 and Type 3 models was mixed across the five species. Of these three 
Area effects, Type-1 is found to have the best overall fit (mean rank of 2.45, c.f. Table 6.8) and 
this result supports the initial decision to limit the number of GLM-Area effects to seven. 
Interestingly, use of the Type-4 Area effects (equivalent to theType-1 GLM-Areas for YFT) 
has a better performance for BET than using the species-specific Type-1 Area effects, and are 
slightly better for SWO. However, the Type-4 model performs poorly for ALB. This implies 
that identification of appropriate Area effects is not a simple task and most likely needs to take 
account of temporal variations in the distributions of CPUE across the years as observed for 
ALB. 
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Table 6.8: Mean rank (1=Best, 6=Worst) of the performance of the A-1 model fitted to the 100 
simulated ETBF data-sets using the R-catches and the six types of Area effects described in the 
text. 

 
 
 
Figure 6.38: The Mean Annual Error (MAE) for the A-1 model fitted to the 100 simulated ETBF 
data-sets using the R-catches and the six types of Area effects described in the text. Note: NB-2 
refers to the NEG-2 model, NB-3 refers to the NEG-3 model while ERR-1 refers to Type-1 Error 
and ERR_2 refers to the Type-2 Error. 
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Type-2 Empirical 4 3.625 6 4.25 4.5 4.475

Type-3 Empirical 2.5 4 3.25 6 4 3.95

Type-4 YFT Area-1 4.25 1 2.75 2.5 1.5 2.4

Type-5 Strips of Longitude 5.5 5 1.25 1.25 5.5 3.7

Type-6 Ranked 1-degree CPUE 2.5 4.5 5 4.125 4 4.025
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Of the two algorithmic-based Area effects, the simple latitudinal stratification of the fishery 
(Type-5) performs best for both DOL and SWO, while ranking the nominal 1-degree cells 
(Type-6) outperforms the Type-5 model for the other three species. While the Type-1 models 
out-perform the Type-6 models for all species, the Type-5 models out-performs the Type-1 
models for both DOL and SWO, but performs poorly for the other three species relative to the  
respective Type-1 model results. This result may be influenced by any specific cline in the 
north-south distribution for a given species.   
 
These results indicate that, of the six approaches tested, there is no specific (or simple) 
approach to specifying the Area effects that performs best across all species. Analysts are 
therefore encouraged to investigate various approaches for identifying appropriate Area effects 
were necessary, especially where the data indicates that there are substantial shifts in the spatio-
temporal distributions of CPUE over time (as observed in the ALB data). Auxiliary 
information, such as that which may help identify differences in preferred habitat types or 
demarcate management zones, is likely to be useful in this regard. 
 
 
6.6 Implications for the ETBF Harvest Strategy 
 
The management framework for the ETBF is predicated on setting an annual Total Allowable 
Commercial Catch (TACC) for each of the five principal target species. The TACC for 
Broadbill Swordfish and Striped Marlin is informed by the Recommended Biological 
Commercial Catch (RBCC) as determined by the harvest strategy adopted for this fishery 
(Campbell et al. 2007; Davies et al. 2008).  
 
The harvest strategy is based on a decision-tree which utilises a number of empirical based 
indicators - the standardised CPUE of small, prime and large-sized fish (where small, prime 
and large fish are those within the lower 25th, middle 50th and upper-25th -percentile of the total 
size distribution of fish retained and landed in the fishery, respectively) and the proportion of 
these size classes in the total catch. The primary control rule for determining the RBCC in any 
year involves using the formula: 

 RBCCt+1 = TACCt*(1+ β.STARG) (6.6.1) 

where STARG is the slope based on the angle subtended by the standardised prime-sized CPUE 
trend line and the line joining the present CPUE value and a target CPUE value a specified 
number of years, NTARGET, in the future. Such a situation is shown in Figure 6.39 where it is 
assumed NTARGET=5 years. The control parameter β is referred to as the feedback gain factor 
and defines how responsive the RBCC change is to changes in CPUE. MSE testing of the ETBF 
harvest strategy (Kolody et al. 2010) noted that the parameters β and NTARGET were confounded 
and recommended a value of β =1 for the ETBF harvest strategy. Furthermore, in order to 
smooth out the high inter-annual variability seen in the CPUE indices for some species the 
standardised CPUE indices are first smoothed using a LOWESS (locally-weighted scatterplot 
smoother) algorithm (Cleveland 1979; Cleveland and Devlin 1988). This is done to ascertain 
the underlying trend (the signal) in the abundance / availability of a species to the fishery (using 
the CPUE time-series as a proxy), but which can be hidden to some extent by shorter-term 
trends (noise) due to the imprecision in which the CPUE is measured and standardised and is 
a true index of underlying abundance. 
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Figure 6.39: Conceptual example of how the slope-to-target parameter used in the primary 
control rule is derived. 

 
If an index is available that accurately tracks the annual size of the resource being managed 
then a measure of the error in the RBCC based on using the standardised CPUE can be 
calculated. For example, if STRUE is the slope-to-target of the true index over the last 5 years 
then the difference in the RBCC based on this true index and the RBCC based on the 
standardised CPUE is as follows: 

∆RBCC = RBCCCPUE – RBCCTRUE 

 =TACC*(1+ SCPUE) – TACC*(1+ STRUE) 

    = TACC*(SCPUE - STRUE) 

This can be stated as a percentage of the true RBCC: ∆�	���	������ = *����@*����'��*����( *100                               (6.6.2) 

As noted in Figure 6.39, the value of SCPUE (and STRUE) depend on both the angle subtended by 
the standardised CPUE (the true resource abundance) trend line and the line joining the present 
CPUE value and a target CPUE. If A=tan(α) is the slope of the linear regression of CPUE over 
the past 5 years, and B=tan(θ) is the slope to the target CPUE, then SCPUE=tan(α+θ) and after 
accounting for the different configurations of A and B it can be shown that: 
 

����� =
���
��
�� tan�nX`@�'e( − nX`@�'g(� 																			e > 0, g ≥ 0, e ≥ g										−tan�nX`@�'g( − nX`@�'e(� 																			e > 0, g ≥ 0, e < g													tan�nX`@�'e( + nX`@�'−g(� 															e > 0, g < 0																			− tan�nX`@�'−e( + nX`@�'g(� 															e < 0, g ≥ 0																								tan�nX`@�'−g( − nX`@�'−e(� 												e ≤ 0, g < 0,−e < −g−tan�nX`@�'−e( − nX`@�'−g(� 												e ≤ 0, g < 0, −e ≥ −g			 				

 

 
In order to simplify the calculation of both SCPUE and STRUE in the following analysis it is 
assumed that that B=0 (i.e. θ=0) so that STARG=A=tan(α) is simply the slope of the standardised 
CPUE (true abundance) trend line. Also, the LOWESS smoothing of the standardised CPUE 
index is not used. 
 
Based on the assumed abundance trend for each species used to generate the simulated ETBF 
data (c.f. Figure 5.21), and the annual standardised CPUE indices based on each of the models 
used to analyse these data, the absolute value of the percentage error in the RBCC given by  
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Figure 6.40: For the four simulation trials undertaken based on the ETBF data, comparison of 
the Mean Annual Error in the RBCC by species and model. 
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Figure 6.41: For each species and model, comparison of the Mean Annual Error in the RBCC 
across the three simulation trials undertaken based on the ETBF data. 
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Eqn. (6.6.2) above was calculated for each of the trials previously described. For the D-catch 
analyses the results are based on the single standardised CPUE index generated, while for the 
R-based analyses the results were the mean error over all 100 simulations. As with the four 
previous Index-based errors, the Mean Annual Error (MAE) based on the RBCC-Error was 
calculated for each species and model and the results are shown in Figures 6.40 and 6.41.  
 
Several features are note-worthy. First, as with the previous Index-based errors, the size of the 
error in the RBCC varies across the different species and models such that no single model 
minimises this error. Second, apart from the results for DOL the mean error is generally less 
than 4% (and often less than 2%) and is similar for a number of models (c.f. Figure 6.42). 
Third, again the models not including the gear effects (the ‘a’ models) generally perform less 
well than those including the gear effects. This is particularly noticeable for the Group-C 
models for DOL and YFT, though the ‘a’ models in this Group generally perform better for 
YFT and ALB. The reasons for the higher errors observed for DOL remains unknown and 
should be investigated further. Fourth, across the three model Groups, the Group-A models 
perform best while the two PCA-based models (B-2 and B-3) perform worst. Fifth, across all 
species the mean error is generally higher for the analyses based on the R-catches compared to 
the analyses based on the D-catches, though this difference is largely due to the variation seen 
in the DOL results (and to a smaller degree in the YFT results). The analyses based on the last 
9-years of data also generally align with the results based on the analyses across all years (c.f. 
Figure 6.41).  
 
Figure 6.42: Distribution of the mean RBCC-Error (rounded to the nearest percent) across the 
24 models for the two 1D-Trial and 1R-Trial analyses. Results are shown for both the mean across 
all five species and across the four species excluding DOL.  

 
 
Finally, the Model Ranked Score (MRS) was tabulated for each model using the approach 
adopted previously and the over-all rank of each model from best–to-worst performing is 
shown in Table 6.9 where results are shown for the two 1-Trial analyses. For the D-catch 
analyses, the A-5 model was the best performer followed by a group of six models each having 
a similar MRS. Given that these results are based on only a single analysis, and noting that the 
slope of the standardised index can vary based on small differences in the index in a single year 
(which would be minimised to some extent had the LOWESS smoother been used), it remains 
uncertain as to how robust this result would be for other simulations using the D-catch 
approach. On the other hand, for the R-catch analyses based on 100 random-based simulations, 
the two models A-3 and A-1 were the best performers (MRS of 38 and 39 respectively), 
followed by their ‘a’ model counter-parts with a slightly higher MRS (43 and 44 respectively). 
The A-3 model was also the best-performing model for estimating the abundance index based 
on the R-catches.  
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Table 6.9: Over-all ranking and Model Rank Score (MRS) for each model based on ranking the 
mean RBCC-Error across all species for the two 1-Trial analyses. Best=1, Worst=24. 

 
 
While the above results give estimates of the size of the errors in the RBCC calculations using 
the different models, in order to understand the direction of the error, the nominal values (i.e. 
non absolute values) of the RBCC-error need to be investigated. For this exercise, we used the 
best-performing A-3 model identified above, and calculated the mean and standard deviation 
of the distribution of the nominal RBCC-error values across the 100 simulations conducted 
using the R-catches. The results for each species are shown in Figure 6.43. Results are also 
shown when the slope-to-target trend is based on using either the nominal CPUE or the 
standardised CPUE based on a GLM incorporating either the two 2-way interactions (NEG-2) 
or a single 3-way interaction (NEG-3) between the Year, Quarter and Area effects. For both 
ALB, BET and YFT the mean errors(based on the NEG-2 and NEG-3 models) are negative, 
indicating that the RBCC is conservative in that it under-estimates the true RBCC, while for 
the other two species the mean errors are positive and the RBCC is over-estimated. Apart from 
the results for DOL, the RBCCs based on the standardised CPUE indices are substantially more 
accurate than that based on the nominal CPUE. This is particularly noted for SWO where the 
error is reduced from around 12% to less than 1%. The standard deviations of the related 
distributions are also relatively small indicating that for four of the simulated species the 
estimated RBCCs are most likely (i.e. with 95% confidence) within 3% of the true RBCC. 
Finally, the RBCC-errors based on the NEG-2 or NEG-3 models are seen to be similar, with 
no particular model consistently performing better than the other.  
 
Figure 6.43: For each species, comparison of the mean and standard deviation of the distribution 
of the nominal values of the RBCC-error across the 100 simulations. 

 
 
 
Finally, in order to investigate the utility of the LOWESS smoother on the calculation of the 
RBCC, the previous analysis was repeated but the standardised CPUE index was smoothed 
before calculation of the corresponding trend over the past 5 years. A user-specified input to 
the procedure called the "bandwidth" or "smoothing parameter, S" determines what proportion 
of the data is used to fit each local polynomial incorporated into the smoothing function. Large 
values of S produce the smoothest functions that wiggle the least in response to fluctuations in  
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Figure 6.44: For each species (a) example comparison of assumed abundance index, standardised 
CPUE index and three LOWESS smoothed indices for a single analysis and (b) the distribution 
of the errors in the RBCCs calculated using either the standardised CPUE or the LOWESS 
smoothed indices across 100 simulations. 
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the data. The smaller S is the closer the regression function will conform to the data. Using too 
small a value of the smoothing parameter is not desirable, however, since the regression 
function will eventually start to capture the random error in the data. Useful values of the 
smoothing parameter typically lie in the range 0.25 to 0.5 for most LOWESS applications. In 
the following we used values of S of 0.27, 0.33 and 0.40, being equivalent to using 4, 5 and 6 
of the 15 annual data points. 
 
For each species, comparison of the assumed annual abundance index, the standardised CPUE 
index calculated using the A-3 NEG-3 model, and the corresponding three LOWESS smoothed 
indices for a single simulation analysis is shown in Figure 6.44a. Variations in the trajectories 
of the LOWESS smoothed indices can be seen, based on both the value of the smoothing 
parameter used, and the inherent inter-annual variability in the standardised CPUE being 
smoothed. The corresponding distribution of the error in the RBCC based on use of each index 
in the primary control rule across all the 100 simulated data-sets analysed is shown in Figure 
6.44b. The four distributions shown for SWO are very similar and this is likely linked with the 
fact that the annual standardised CPUE for this species is relatively stable over the last 5 years 
over which the CPUE trend is calculated. A high degree of similarity between the four error 
distributions is also seen for ALB. On the other hand, there is a large divergence seen in the 
results for DOL and YFT. Again, the annual standardised CPUE for these two species are quite 
variable overt the last 5 years. Using the CV of the values of the annual standardised CPUE 
over the last 5 years as a measure of the level of ‘smoothness’ or variability in the index, the 
values of ALB, BET, DOL, SWO and YFT are 6.6%, 11.8%, 19.8%, 2.3% and 25.2% 
respectively. Indeed, there appears to be a relationship between the CV of the last 5 data points 
of the standardised CPUE and the standard deviation of the mean of the four RBCC-errors 
calculated above (c.f. Figure 6.45). This implies that the higher the CV of the last 5 data points 
in the standardised CPUE, there is likely to be a commensurate higher variability in the 
calculated RBCC given the use of different smoothing parameters used with the LOWESS. 
Indeed, some care should be taken in selecting which parameter to use and the criteria for 
identifying the most appropriate parameter requires further investigation. 
 

Figure 6.45: For each species plot of the standard deviation of the mean of the four RBCC-errors 
shown in Figure 6.44a versus the CV of the last 5 data points of the standardised CPUE. 
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RBCC-errors across the 100 simulations discussed above is shown in Figure 6.46. The errors 
for the LOWESS-based RBCCs for DOL are substantially greater than those associated with 
the RBCC based on the non-smoothed CPUE. As discussed above, this is likely to be due to 
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Figure 6.46: Comparison of the mean and standard-deviation of the distribution of the RBCC-
error across the 100 simulations discussed in the text. 

 
 
based RBCCs for BET are around half that associated with the RBCC based on the non-
smoothed CPUE. The error for the LOWESS-based index is also smaller for at least one of the 
indices used for SWO and YFT, though the smoothing parameter associated with the best 
performing index is not always the same. While the variation in the errors between the results 
based on the different smoothing parameters is usually small, again some care should be taken 
in selecting the value of this parameter if the CPUE index is to be smoothed before being used 
in the harvest strategy. 
 
 
6.7  Further Implications for the ETBF Harvest Stra tegy in a Stock 

Assessment Context 
 
This final Section focusses on two important, but essentially flow-on issues of the multispecies 
standardisation work: (i) how do alternate series affect the running of the current harvest 
strategy (HS) in the ETBF; and (ii) what are the stock assessment implications of producing 
overtly multispecies CPUE series. The first issue is obviously directly linked to the actual 
management implications of alternate methods of standardising CPUE, given these indices 
drive the current HS. The second issue is both a more subtle and wide-ranging one. Current 
single-species assessments, by construction and assumption, treat the series independently with 
the only commonality the effort series. However, the series themselves may well contain 
correlation structures in both observation and process errors that would have to be dealt with if 
one wanted to explore a truly more multispecies assessment approach - especially in terms of 
concepts like multispecies 'optimal' effort and yield (be it MSY or MEY in nature). 
 
6.7.1 Harvest Strategy Implications 

The current ETBF harvest strategy is only implemented for the two billfish species: Swordfish 
and Striped Marlin. The main reason for this is an apparent lack of feedback for the two tropical 
tuna species Bigeye Tuna and Yellowfin Tuna, stemming from the potentially minimal impact 
of the current ETBF catches on those stocks (Hillary et al. 2016). The four GLM approaches 
(GAM-2, GAM-3, NEG-2, NEG-3) outlined in Section 5.6 were run for the Swordfish example 
(100 simulations for 15 years of data) and it is on these simulated series that we focus the HS 
implications work on. There are six series in total: the `true' (simulated) series; the nominal 
(unstandardised) series, two types of Gamma GLM-derived series; and finally two types of 
Negative-Binomial GLM-derived series. Figure 6.47 summarises all six series in a boxplot for 
all the three size classes (small, prime, and large). 
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Figure 6.47: Boxplot summary of the Swordfish CPUE for all size classes (small, prime, large) 
and for each of the six series (true, nominal, the two Gamma and two Negative-Binomial models). 

 
The ETBF HS adjusts the most recent agreed TACC by a certain amount each year, driven by 
a hierarchical decision tree rule (Kolody et al. 2010). The primary level is the trend in prime 
CPUE, with subsequent levels in the tree making adjustments given inferred trends in 
recruitment and likely spawners from the CPUE of the other size classes small and large. A 
recent development was the use of a LOWESS smoother applied to the series for each size 
class to reduce the often quite high levels of variability in the indices over time.  
 
To analyse the impact of the suite of alternative standardisation models we consider two main 
summary statistics: 

1. Relative error: what are the bias properties (if any) relative to the true final-year 
predicted TACC for each of the other four indices 

2. Average annual variation (AAV): for a quasi-retrospective analysis (removing 
increasing numbers of years and calculating resultant TACCs) what are the levels of 
percent-age variation from year to year for all the indices (including the true index) 

 
In lieu of a full reworking of the previous MSE work (Hillary et al. 2016; Kolody et al. 2010), 
with the CPUE simulation and standardisation models embedded within augmented Operating 
Models (OMs), it is difficult to assess the wider impact of alternative CPUE series. The two 
simple approaches we explore here can, however, quickly indicate whether key features (i.e. 
are we tracking the 'true' dynamics in terms of TACCs and the inter-annual variability in 
TACCs?) are being unduly affected by the alternative CPUE approaches. 
 
The relative error statistic is a very simple but useful bias indication. We have the true TACC 
predicted using the full 15 years of CPUE data, for each of the 100 simulations. We also have 
the TACCs as predicted by the HS when using the nominal and four candidate standardised  
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Figure 6.48: Relative errors (median and 80% CI) in the TACC predicted using the whole data 
series (15 years) for each of the 100 simulations. The percentage error is expressed relative to the 
true TACC for each of the other candidate series. 

 
indices: be�Q8 , were i denotes the TACC arising from using the nominal, GAM or NB-GLM 
indices as inputs to the HS. The relative error, ΔQ8 , is simply given by the following: 

ΔQ8 = �1 − ������ ¡¢�����£ � × 100    (6.71) 

with positive/negative values indicative of the type of bias (i.e. over/under estimation, 
respectively). 
 
Figure 6.48 summarises the relative error properties of the four series and there are a number 
of inferences that can be made from it. Focussing on the nominal series versus all the other 
standardised series, it is notably more biased than all four standardised series, with a positive 
bias (over estimation) of ca. 16-17%. For the four standardised series they all display very 
similar relative error properties: small positive bias for all (ca. 3-5%) and with no obvious bias 
trend across standardisation method (GAM or NEG). 
 
The AAV statistic is very common in MSE work that succinctly summarises how much the 
TACC (or effort in input control strategies) is changing from year to year (Rademeyer et al. 
2007). The base statistic for each year is calculated as follows: 
 ee¥Q8 = ¦�����§�£ @�����£�����£ ¦ × 100    (6.72) 

 
with the median over years being used as the final summary statistic for each series denoted by 
the index i. 
 
Figure 6.49 shows a boxplot summary of the AAV statistics for each of the CPUE series for a 
5-year quasi-retrospective analysis. We use the phrase ‘quasi-retrospective’ because it is a not 
a true retrospective analysis, where data are successively removed and the standardisation 
models re-fitted. It is quasi in the sense that we simply remove a year of the index at a time (for 
five years) and estimate the TACC that would have been predicted by the HS given those 
increasingly truncated data.  
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Figure 6.49: Boxplot summaries of the AAV statistics for each of the six CPUE series, for a five 
year quasi-retrospective, and across all 100 simulations. 

 
The results are interesting, and in some cases might not have been expected. Firstly, the true 
index has the highest AAV across all the series - including the nominal series - but more 
predictably, shows the least variability around its central tendency. At first this might seem 
somewhat counter-intuitive, as the true index has no innate observation error or structural 
uncertainty issues like any model would have. Also, process error affects the other indices as 
much as the true index. The primary reason why the true index has a higher AAV than all others 
is that over the five year retrospective period the trend in the true index is downwards, whereas 
it is up for the nominal and very mixed for the other indices. This downwards trend in the true 
index drives successive decreases in TACC over this period, whereas it generally goes up 
slowly for the nominal series, and slightly down for the other series. This also adds to the 
increased AAV for the true index, as it is acting faster to decrease the TACC than any of the 
other series. So, in this sense, the lower AAV for the other indices is not necessarily a good 
thing - particularly for the nominal series - given the true exploitable abundance is going down 
slightly. 
 
6.7.2 Multispecies assessment implications 

At the most general level there is a fundamental linkage between all the species in the ETBF 
fishery: effort. At the annual level, the effort series that one might expect to have some kind of 
a relationship with fishing mortality (as is assumed in the WCPO assessments) is the same for 
all species. This is a common issue across all 'true' multispecies fisheries (i.e. multiple target 
species of direct economic importance caught by a common gear type). In the single-species 
stock assessment context this is not necessarily an issue, but it is an issue when it comes to 
setting reference points or management measures that relate in any way to fishing mortality - 
with Fmsy being the most obvious example. If there is some kind of relationship between effort, 
Ey, and annual fishing mortality, Fy - and for argument's sake make it the simplest: Fs,y = qsEy 
for species s in year y - then Fmsy only makes sense at the fishery level (i.e. across all species) 
for qs = q for all species with identical life-histories and selectivities,. Alternatively, and less 
likely, they might all be different but still result in a single effort level that could produce Fmsy 
for each species simultaneously. If the catchability parameters, qs, and/or life-history and 
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selectivites are different, then what might be Emsy for one species will surely not be for another. 
The outcome being in cases such as these that there is no uniquely definable level of Fmsy than 
can be attained for all species concurrently. There is no a priori reason as to why catchability 
would be the same across species - especially for say a tropical tuna and a billfish with very 
different life-history dynamics and feeding strategies. Also, while we tend to treat catchability 
parameters as nuisance scaling parameters that are rarely reported, they are indeed often very 
different across even similar species caught in the same gear and that includes the WCPO 
assessments. 
 
The concept of multispecies maximum sustainable yield (MS-MSY) has been explored in a 
number of settings (ICES, multiple-species RFMOs), particularly where the single-species idea 
of MSY is the driving force behind the implemented management approach. At the fishery 
level, across all target species, the idea is to estimate the optimal effort level that maximises 
total yield, or some weighted sum of total species yield with a weighting given for various 
factors, such as economic importance for example. The most basic link between all such 
approaches is this: we need some kind of understanding of the across-species relationship 
between effort, catchability and F.  
 
In this Section, we explore some simple state-space models that outline some of the things that 
could be explored in the multispecies CPUE context when considering inter-species correlative 
effects, differing catchabilities and so on, in the stock assessment paradigm. The current WCPO 
stock assessment models are very complex, spatially explicit integrated assessment models that 
do not lend themselves easily to these kinds of augmentations or explorations. Indeed, a number 
of the examples we explore here are, while very simple, actual multispecies models that would 
- at present - require significant development work to include in the MULTIFAN-CL 
assessment package favoured by the WCPFC. There are many reasons for the level of 
complexity required in the current WCPO assessments, so this is not a criticism; it just means 
that alternative approaches are often easier to do in much simpler models initially. 
 
Single and multispecies state-space models 

State-space models are ideal for the kind of explorations given they require an explicit 
treatment of the observation and process models separately. Issues common to multispecies 
fisheries occur in both the observation and process models and so this separation simply makes 
the process clearer. This first model is very simple: a random walk state-space model for the 
log-scale relative abundance of the LL exploitable population. We have the annual index we 
actually model: �Q = log ����Q, and the following probability model is assumed: `Q�� ∼ U�`Q, ;S/
, �Q~U�`Q, ;�/
,      (6.73) 

with initial state n0. Estimated parameters are the hidden states/random variables ny, and the 
variance hyper-parameter σn. We will call this model M0 for brevity. The next level model, ME, 
includes an additional effort covariate model and is different to M0 only in the population model `Q�� ∼ U�`Q − ��Q, ;S/
.    (6.7.4) 

where the additional estimated parameter is q > 0. Given we model log-scale relative 
abundance, and use the traditional rate-based interpretation of fishing mortality - i.e. proportion 
of actual abundance lost to fishing is exp(qEy), then it is qEy that is the term which appears in 
the process model for ny in Eqn. (6.7.4). An interesting mathematical aside of this is model is 
that if E is mean-standardised, then q becomes the de facto mean F). 
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The first truly multispecies step (model M0s) would then include the across-species observation 
and process error covariance structure into the simplest model. Now ny is a vector, with each 
element the relative abundance of the particular species. As before, we have the initial states, 
n0, with the following process model: ¬Q�� ∼ d¥U�¬Q, ΣS
,    (6.7.5) 
and observation model: ®Q ∼ d¥U�¬Q, Σ�
,     (6.7.6) 

where MVN( ) is the multivariate normal distribution, and Σn and ΣI are the process and 
observation covariance matrices, respectively. The effort covariate extension to M0s, model 
MEs, would have the following process model: ¬Q�� ∼ d¥U�¬Q − ¯�Q, ΣS
,   (6.7.7) 

and q is the vector of species-specific catchability parameters, with the important feature that 
annual effort is shared across species. In all the multispecies extensions, the estimated hyper-
parameters include not just the species-specific variance parameters (diagonal elements of Σn) 
but also the correlation parameters that help define the off-diagonal elements of Σn.  
 
These four putative models (M0, ME, M0s, and MEs) cover a lot of possibilities and, at least at 
the multispecies end, require some sophisticated software and statistical concepts to sensibly 
estimate and choose between. What is worth covering off on first is what some of these 
somewhat abstract parameters may mean in the real world. Without effort data, these models 
lump together in one random component basically all factors that could change the relative 
abundance index from year to year: recruitment, mortality, catchability changes etc. With the 
effort covariate, it is then covering off on everything not linked to the specific fishery effort 
level Ey. One can increasingly add more covariates and/or model augmentations to account for 
these various factors explicitly, but in the models we explore here they cover a number of 
possible drivers. In the multispecies context the correlation parameters also have an ambiguous 
interpretation. For example: correlation in process errors could mean either catchability 
changes over time are correlated across species and/or actual changes in abundance in species 
are correlated. In the catchability space, a positive correlation might mean that you generally 
tend to get better catches of both species concurrently in the absence of actual abundance 
changes. In the abundance space, a negative correlation might indicate some kind of 
competitive effect, where higher abundances of one species tend to occur with lower 
abundances of another. 
 
The main point is this: when dealing with the multispecies side of the problem in the generation 
of the abundance indices, there are flow-on model augmentations we can consider to the 
standard single-species assessment framework that might be of real interest. At the very least, 
a model that attempted a rigorous estimate of MS-MSY would, at some level, have to consider 
an observation and process model similar to those outlined in Eqns. (6.7.5) and (6.7.6), 
respectively. The whole point of the indices in the end is to estimate the trend in the exploitable 
abundance and, in the ETBF case, actually base TACC recommendations on those trends. 
Models that can accommodate the correlative side of both the observation and process sides of 
the problem are, generally speaking, in a better position to estimate real trends rather than 
spurious ones. 
 
Choosing between these models is a little more complex than in the GLM space. These class 
of models fall into the random effect classification (the hidden/unobserved states ny with 
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estimated variance/correlation parameters). This makes standard model-selection tools like the 
Akaike (AIC) or Schwartz (BIC) information criteria unusable. This is because the concept of 
the number of degrees-of-freedom (DOF) in these models is quite fluid. The effective DOF will 
be strongly linked to the actual values of the variance parameters (σn/Σn), so one cannot define 
a simple integer value of the additional DOF of a more complex model (like ME in comparison 
with M0) and use either the AIC/BIC or likelihood ratio test to choose between them. 
 
To get around this, we use a fairly straightforward model-selection tool: leave-one-out cross-
validation (LOOCV). What LOOCV does is to randomly remove a single point in the data 
series, in year y* say, and fit the model to the remaining data. If we denote �Q∗°  as the fitted index 
when considering all the data, we are interested in developing a useful statistic that summarises 
how well the model (with one less data point) predicts the removed data point, �Q∗± , relative to 
the model with all the data included, �Q∗° . The root mean squared error (RMSE) for the assumed 
model M● is a good option in this case: 

\d��'d∗( = ²³´6�Q∗° − �Q∗±:/µ    (6.7.8) 

where the expectation is taken over the randomly removed data points y*. The main idea is that, 
averaged over all the removed data points, the ``best'' model will produce predictions with 
lower values of the RMSE, relative to the comparison model(s). Models with too little freedom 
will tend to predict more poorly relative to ones with more flexibility (under-fitting), but as we 
increase their flexibility there tends to be some point where the predictions become poorer 
again (over-fitting). Models which minimise the RMSE are usually judged to be the most 
parsimonious, although we still have to be satisfied that they are actually fitting to the data well 
enough. The useful thing about using LOOCV is that we don't need to know about actual or 
even effective DOF to make it work, which is very useful in random effect models such as 
these. In all cases 500 iterations of the algorithm are used to compute the RMSE for each model. 
 
6.6.3 Application to ETBF CPUE series 

Figure 6.50 shows the (mean standardised) CPUE indices from 1997 to 2014 for each of the 
five main target species in the EBTF: Bigeye Tuna, Yellowfin Tuna, Swordfish, Striped Marlin, 
and Albacore Tuna. There are, given the number of species and models, a large number of 
potential species-model combinations we can explore. For example: some species show 
correlations with one another, whereas others do not; some species show an effort effect, 
whereas others do not. The LOOCV approach is applicable to all the various model 
combinations, with the only caveat being that we are comparing models with the same 
underlying observations inside them, so we can use this to get to what seem the ‘best’ overall 
species-model groupings. Detailing all the various steps, selections, and actual LOOCV 
statistics required in making this selection would take a lot of text and tables, and given we are 
trying to convey a more general message from the results, we focus on the outcomes not the 
intermediate steps. 
 
The results are, perhaps, not surprising. Yellowfin Tuna and Bigeye Tuna group together in 
model Ms, inferring that there is no effort effect (it is estimated very close to zero and is 
deselected by the LOOCV process) but with process correlation between the two species. 
Swordfish and Striped Marlin group together in model ME, so an apparent effort effect but with 
no apparent process correlation between them. Albacore Tuna sits alone in model M0 with no 
apparent effort effect and showing no process correlation with any of the other species. We 
detail the results more thoroughly below, going by model-species grouping. 
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Figure 6.50: CPUE indices (mean standardised) from 1997 to 2014 for each of the five main target 
species in the ETBF. 

 
 

Bigeye Tuna and Yellowfin Tuna model: Ms 

To parameterise the process S x S covariance matrix, Σn, in the most general sense we need a 
total of S variance parameters, ;O/, and S(S-1)/2 correlation parameters, ρs,t. To maintain 
positiveness the log-scale variance parameters are estimated, and we use the following 
transformation to model the correlation parameters 

 ¶∗ = /��m·¸∗ − 1,    (6.7.9) 

where η* is the estimated parameter, and by construction ensures that ¶∗ ∈ '−1,1(. For the 
observation error matrix we do not have annual covariance estimates (in terms of total variation 
or correlation), so a time-independent diagonal observation error matrix with a CV of 0.15 in 
both cases was assumed.  
 
The models were all estimated using the Template Model Builder (TMB ) package in R, the 
latest and most efficient to date software for estimating the parameters of random-effect models 
such as the general class of models we consider here. The TMB package uses the Laplace 
approximation method and the expectation-maximisation algorithm to estimate the parameters, 
random effects and associated hyper-parameters. The random effects (herein, the unobserved 
relative abundance parameters ny) are estimated first at putative values of the parameters (like 
q) and hyper-parameters (variance and correlation parameters). The Laplace approximation is 
used to obtain the marginal likelihood of the parameters/hyper-parameters which is then 
maximised to obtain their MLEs (the expectation-maximisation algorithm part). Standard 
asymptotic approaches and the delta method are used to obtain the standard errors of the 
parameters and random effects. 
 
In terms of parameters values, the estimates of the standard deviation of the covariance matrix 
were 0.66 and 0.19 for the Bigeye and Yellowfin Tuna, respectively. The correlation MLE (and 
approximate 80%CI) was ρ = -0.31 (-0.71-0.15). Figure 6.51 summarises the fits to the data  
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Figure 6.51: Predicted log-scale CPUE (left) for the Bigeye and Yellowfin Tuna data (magenta 
circles) in terms of the MLE (thick blue line) and approximate 95% CI (dashed blue lines). On 
the right the predicted relative abundance, again in terms of the MLE and approximate 95% CI. 
 

 

and the actual real-space abundance trends for both species. The model fits very well to the 
Bigeye Tuna data (interpreting the high variability as essentially process error), and less closely 
though relatively well to the Yellowfin Tuna data, just smoothing out the variability while 
maintaining the same marginal downward trend. The correlation estimates are not extremely 
precise given the length of the series (18 years in total), but they are coming out as negative, 
suggesting that higher/lower CPUE of one species tends to be somewhat weakly associated 
with lower/higher CPUE of the other. We cannot ascribe this to something specific, but obvious 
candidates would be a relationship in catchability or a population dynamic effect, where more 
of one species tends to result in less of the other (competition for resources/space). 
 
Swordfish and Striped Marlin model: ME 

When treated separately, both these species exhibited a relationship between effort and relative 
abundance trend (as opposed to both Bigeye and Yellowfin Tuna). They also showed no 
process correlation linkage with either each other, or the other three tuna species. As a result, 
the model structure that best explained the Swordfish and Striped Marlin data was the ME 
model. On closer inspection, both species had very similar estimated catchability parameters 
(Swordfish was higher by around 8%), but given their respective standard errors, were not in 
any way statistically significantly different. When compared (again via LOOCV) with a model 
where the two species share the same catchability (i.e. q = q), the model with a single 
catchability was actually preferred. 
 
Figure 6.52 summarises the fits, relative abundance trends, and the ETBF-only annual F 
estimates for Swordfish and Striped Marlin. Both data sets are fitted well. In terms of parameter 
estimates, the process variance MLEs were more similar than for the tropical tuna example: 
0.13 for Swordfish and 0.18 for Striped Marlin. The correlation parameter was estimated to be 
zero, with a confidence interval evenly spread across the interval (-1, 1), hence the model 
selection process removing this factor from the final model. Estimates of the ETBF-only F 
term were quite low but also very variable given the uncertainty in the estimates of q: peaking 
at around 0.02-0.08 in the early 2000s, decreasing towards the 0.015-0.04 more recently. 



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

146 
 

Figure 6.52: Predicted log-scale CPUE (top left) for the Swordfish and Striped Marlin data 
(magenta circles) in terms of the MLE (thick blue line) and approximate 95% CI (dashed blue 
lines). On the top right is the predicted relative abundance, again in terms of the MLE and 
approximate 95% CI. On the bottom left is the MLE and approximate 95% CI of the inferred Fy 
terms, given the effort time-series and the species-shared catchability term. 
 

 
 

Albacore Tuna model: M0 

As mentioned at the start of this particular subSection, the Albacore Tuna stood alone in the 
sense that they showed neither an apparent effort effect, nor do they correlate in a process error 
sense with the other target species. As such, the simplest model (M0) was selected by the 
LOOCV process. Figure 6.53 details the fits to the data and the relative abundance trend 
estimated in this case. The process error SD estimate was 0.13, with the data generally well 
fitted apart from the extremes in the series (both highs and lows) and an abundance trend 
showing an initial dip in the late 1990s, followed by an increase in the early 2000s and 
plateauing at the current level for the last decade almost. 
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Figure 6.53: Predicted log-scale CPUE (left) for the Albacore data (magenta circles) in terms of 
the MLE (thick blue line) and approximate 95% CI (dashed blue lines). On the right is the 
predicted relative abundance, again in terms of the MLE and approximate 95% CI.  
 

  
6.7.4 Final Remarks 

No obvious performance issues have been identified with respect to the harvest strategy for the 
Swordfish case. For all of the species considered in this Section the standardised models 
perform demonstrably better than just using the nominal series (which is always a comforting 
result). Additionally they don't seem to be increasing the noise relative to the true index and 
suggesting different TACC levels (5% +ve bias tops), resulting in AAV statistics that appear 
acceptable relative to other previous work. For example, Radermeyer et al. (2007) mentions 
10-20% as something of a desirable range after lots of examples around the world especially 
in South Africa. These findings are consistent with the management plan for Southern Bluefin 
Tuna.  
 
Some simple multispecies assessment explorations were undertaken for all the five major target 
species using statistically rigorous state-space models of relative abundance. Correlative and 
effort-related relationships were explored in terms of drivers of changes in relative abundance 
across the species. Bigeye Tuna and Yellowfin Tuna grouped together showing little to no 
relationship of abundance with changing fishing effort but showed a clear negative correlation 
– this could be abundance or catchability related. Swordfish and Striped Marlin grouped 
together both showing no process correlation but a clear relationship between abundance and 
fishing effort, and with (statistically speaking) the same overall catchability coefficient. 
Albacore formed a group on its own showing neither correlation with any of the other species 
nor any apparent effort-abundance relationship either. These kinds of analyses and statistical 
methods can serve to outline the complexity involved in implementing a general management 
framework like the Commonwealth Harvest Strategy Policy in the multispecies context. 
Clearly a single MSY/MEY type approach is not likely to be workable in the ETBF context, 
providing additional support to the more MSE-driven approach that the ETBF is currently 
being managed under which can take account of the various species-specific issues and trade-
offs encountered.  
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7. Discussion and Conclusions 

Australia's two tropical tuna fisheries (the Eastern Tuna and Billfish Fishery, ETBF, and the 
Western Tuna and Billfish Fishery, WTBF) are both multispecies fisheries that target a range 
of large pelagic fish. A major constraint for assessing multispecies fisheries, however, is a lack 
of reliable abundance indices that are a pre-requisite for the accompanying stock assessments, 
which have flow-on impacts to the results (i.e. TACCs) obtained from harvest strategies. 
Unlike single species fisheries where all effort is directed at the target species, in multispecies 
fisheries the effort is directed at a range of species. Consequently, the fishing effort needs to 
be standardised so that the ‘effective’ effort directed at any single species of interest can be 
ascertained. If this is not undertaken correctly then the resulting index of resource abundance 
is likely to be biased and unreliable. Although there are methods available that are currently 
used to standardise effort in multispecies fisheries, it is believed that new techniques need to 
be developed so that the resulting indices of resource abundance can be made more reliable.  
 
In this project we have reviewed existing methods for standardising multispecies CPUE and a 
number of methods were selected for further development. While most models are based on 
the GLM framework developed for single species analyses, they included a number of 
extensions aimed at standardising the fishing effort to account for the differential targeting of 
species within a multispecies fishery. One set of extensions follows the method of He et al. 
(1997), who used cluster analysis to identify different fishing strategies based on the species 
composition of the catches from all fishing operations within a fishery. The utility of various 
clustering techniques (Ward, clara, kmeans) was investigated, together with clustering across 
different levels of data aggregation (i.e.at the set or trip level), as well as undertaking separate 
analyses at different temporal periods (e.g. monthly) to account for seasonal changes in species 
availability and assemblages. A second set of models followed the Principal Components 
Analysis initially developed by Winker et al. (2013, 2014) to identify targeted species groups 
in the data. Finally, a third, and new, set of Bayesian spatial-temporal models utilising the 
relatively new tool Integrated Nested Laplace Approximation (INLA) were developed. In total, 
the performance of twenty-four different model variations were investigated. 
 
Two simulators, which are useful for comparing the performances of different methods at 
estimating known quantities, were also developed for testing the comparative performance of 
the standardising models. To help limit potential bias if the data structures incorporated into 
the simulator to match the analytical framework of one (or more) of the methods to be tested. 
The first simulator utilised an empirical approach, based on a framework generally known as 
the habitat-based-standardisation method. Data requirements include: the total number of 
hooks deployed by each longline set, the density of each species within each simulated spatial 
area during each month, the proportion of hooks for each longline set within each simulated 
depth stratum, and the proportion of fish for each species during each month and hour within 
in each simulated depth stratum. These were all based on direct observations made in the ETBF. 
For example, observations of hook depths were based on the 2050 individual time-depth 
recordings obtained from vessels deploying longlines in the ETBF during a previous FRDC 
funded project (Campbell and Young, 2010), while fish depth profiles were obtained from 
archival tags deployed on fish caught and tagged within the ETBF during several projects. On 
the other hand, the spatial-temporal density surfaces for each of the five species included in the 
simulator were modelled on the monthly distributions of nominal CPUE observed in the ETBF, 
while the spatial-temporal distribution of fishing effort across the fishery was taken to be the 
same as that observed in the ETBF during the years 2000 to 2014. Finally, in order to simulate 



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

149 
 

the stochastic characteristic of any catch, the final simulated catch was selected from a negative 
binomial distribution, and the probability of success for each species was selected so that the 
proportion of zeros in the distribution of simulated catches for each species was similar to that 
in the distribution of observed catches. To the extent that the simulator has made use of direct 
observations from the fishery, and has been tuned to replicate the distributions of catches in the 
fishery, it is hoped that the modelled catch and effort data generated by the simulator for 
analysis has many of the same characteristics of the data coming from the real fishery.  
 
For the second simulator, catch and effort data were modelled using a more generic, flexible 
and individual vessel-based approach and was designed to generate catch rate data that 
reflected species abundance, targeting practises, and (unlike the ETBF simulator) individual 
vessel efficiency to capture the fact that different vessels have their own characteristic 
catchability and fishing behaviour. There is also spatial and seasonal variation in catch rates, 
which differed among species. While the first simulator was designed to generate data that 
mimics a specific fishery, the second simulator was designed to generate data for a more 
generic fishery. This allowed the standardising models to be tested across a wider range of 
fishery types than just that for the ETBF.  
 
Targeting Practices in the ETBF 

Before testing the ability of the selected standardising model to estimate the assumed annual 
abundance indices used to generate the simulated catch and effort data, it is important to 
understand the factors that influence the variability observed in the catch and effort data from 
the fishery being assessed. In particular, in a multispecies fishery such as the ETBF, it is 
important to understand and identify how fishers attempt to target the different species by 
alternating the manner in which they deploy their fishing gears. For this purpose, the 
information on the gear settings recorded in both logbooks and by observers in the ETBF were 
examined. Results indicate that there can be considerable variability in the manner that longline 
gears are deployed, both between years and within years on individual vessels. A substantive 
change was noted in 2006 when vessels began deploying more than 25 hooks-per-float (HPF). 
Commensurate with this change were shifts in the bait usage (more pilchard), light-stick usage 
(fewer) and set start-time (earlier in the day). The introduction of this new ‘deep-longline’ 
technique was due to a significant change in fishing strategy to incorporate the direct targeting 
of Albacore Tuna in this fishery.  
 
Fortunately, each of these gear settings are recorded in the ETBF logbook and so these changes 
can be taken into account when standardising CPUE for changes in targeting and associated 
fishing strategies. On the other hand, there have also been changes in other gear settings which 
are not recorded in the logbook and which therefore cannot be accounted for in the CPUE 
standardisation. For example, there has been an increase in the mean length of the buoy-line 
deployed from around 10m to 15m during the 2000s, while the mean length of the branch-lines 
has decreased. The weights placed on the branch-lines (to assist in sinking the hooks to the 
fishing depth) have also increased over time. There was also a significant increase in the use 
of circle hooks after 2007 (and a corresponding decrease of J-hooks) due to management 
measures introduced to reduce turtle bycatch. Due to the lack of information on these gear types 
it is difficult to estimate how changes in the use of these gears impacts on catches, though the 
results of previously published research can provide some guidance. For example, Watson et 
al. (2005) found that Blue Shark catch rates were 8–9% higher on circle hooks compared to J 
hooks, while Ward et al. (2008) found that catch rates of Bigeye Tuna were higher on nylon 
than on wire leaders, after the latter were banned in ETBF in 2005. Whether or not there is 
sufficient information in the observer data for assessing how these and other changes in gear 
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usage not recorded in the logbook impacts on catches remains uncertain, but perhaps some 
consideration should be given to expanding the range of information on gear usage recorded in 
the logbook used in the ETBF (and other multispecies fisheries).  
 
Analysis of the gear setting practices within a fishing trip indicate variable degrees of 
consistency in the deployment of each gear type. For example, similar hooks-per-float settings 
are used for 60-80% of all sets during a trip, while generally similar start-times are used for 
less than 20% of sets. Observer data also indicates that the recorded primary target species is 
not always the same for all sets deployed during a trip and suggests that multiple targeting 
strategies can be utilised within individual trips.  
 
Examination of the particular gear settings associated with particular target species recorded 
by observers indicates a broad range of settings for each gear-type. While several 
characteristics of how the gears are deployed (e.g. buoy-line length and line-setting speed) do 
not display any appreciable variation between the different recorded target species, one can 
nevertheless discern particular groups of gear settings that have a higher usage when targeting 
particular species. For example, more hooks and hooks-per-float are deployed when targeting 
Albacore Tuna in comparison to the other species. Albacore targeting also generally uses fewer 
light-sticks, a shorter distance between branch-lines and longer buoy-lines, early morning sets, 
circle hooks and dead pilchard bait. On the other hand, when targeting Swordfish there is a 
preference to deploy the gear during late afternoon, use a high percentage of light-stick, a 
greater distance between branch-lines and dead squid bait. When targeting Striped Marlin, 
there is a preference for shallow sets (i.e. few hooks-per-float) with fewer hooks, minimum use 
of light-sticks, live mackerel bait and the use of a line-shooter. These observations indicate that 
while a range of gear settings are utilised when targeting particular species, there are 
combinations of gears that are more commonly used. The reasons for the wide-range of settings 
associated with targeted species remains uncertain, but may be due to differences in the costs 
(and ready availability) associated with different baits and the use of light-sticks, as well as 
differences in the depth range of species given differences in oceanographic characteristics at 
different times and locations. The weather is also likely to be an important factor influencing 
gear selection and deployment methods. 
 
Examination of the catch composition of observed sets also found that for each of the main 
target species, the proportional catch of that species is highest when that species is recorded as 
the primary targeted species. This demonstrates that the vessel (skipper) has some ability to 
target and catch a desired species, and no is doubt correlated with the groups of gear settings 
associated with respective targeted species note above. Nevertheless, it is also clear that many 
other species are also usually caught, indicating that it is not possible to just target and catch a 
single species. Indeed, the target species sometimes is not the dominant catch. For example, on 
average more Yellowfin Tuna are caught than Striped Marlin when targeting the latter.  
 
Based on these results it would seem obvious to simply recommend that the target species be 
recorded on the logbook by the vessel skipper. This would negate the need to use indirect 
methods (i.e. cluster analysis) to infer the fishing tactic or target species for use in the model 
used to standardise CPUPE. However, such a recommendation is not needed as there is already 
a field in the logbook for the skipper to record the target species. While this field is usually 
completed, nevertheless, what seems simple in theory does not always translate to simplicity 
in practice. Indeed, comments from industry members on the Tropical Tuna Resource 
Assessment Group (TTRAG) indicate that the information recorded as the target species on the 
logbooks is likely to be unreliable, as the logbook is completed after the catch is landed on the 
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vessel on very often the recorded target species is just taken to be the species making up the 
largest proportion of the catch. A further complication is that often more than one species is 
recorded. As a consequence, TTRAG has recommended against using this information in the 
models used to standardise CPUE.  
 
Analysis of the observer data also indicates that the proportion of fishing operations targeting 
particular species changes during the year. While Yellowfin Tuna is the dominant species 
targeted overall, there are periods during the year when the other species are the dominant 
target species. The targeting of Southern Bluefin Tuna over winter, together with the increased 
targeting of Bigeye Tuna in late autumn, of Yellowfin Tuna in spring and Swordfish over 
summer also correlate the changes in relative availability of these species throughout the year 
(as inferred from the changes in CPUE throughout the year). This suggests that the seasonal 
availability of the principal target species changes throughout the year and the fishers are able 
to change their targeting practices to avail themselves of these changes in relative abundance. 
Changes in the temporal availability of species is likely linked with the movement of fish 
associated with changes in the oceanographic conditions within the ETBF. Fish are not 
randomly distributed across the fishing grounds but tend to have distinct species-specific 
habitat preferences, which cause catch rates to vary according to the habitat that is targeted. 
These habitats are also likely to change their spatial size and location in response to prevailing 
currents and seasonal changes in oceanographic conditions. As a consequence, there is likely 
to be a strong seasonal component in both the distributions of fish species and related fishing 
and targeting strategies across any fishery. 
 
The persistence of the spatial distributions for each species was investigated by calculating the 
Pearson correlation, R, between the four quarterly distributions of nominal CPUE. The spatial 
distribution of CPUE (assumed to be a proxy for biomass) was found to be most consistent for 
Broadbill Swordfish, where for the six quarterly comparisons R was between 0.84 and 0.95, 
and reasonable high for Yellowfin Tuna (R between 0.62 and 0.95). However, correlation 
between the quarterly distributions was much smaller for both Bigeye and Albacore Tuna (R 
generally less than 0.4). The same method was used to investigate the seasonal persistence of 
species associations and the results suggest that if associations between species do exist, due 
possibly to co-habitation within defined habitats, then these associations show generally weak 
persistence throughout the year (or across years). This has possible consequences for the ability 
to categorise the targeting practices of individual fishing sets using cluster analysis based on 
similarities in the catch composition.  
 
Finally, the catch composition of observed sets also indicates that the proportional catch of a 
given species is generally highest when that species is recorded as the primary targeted species. 
This suggests that the vessel (skipper) has some ability to target and catch a desired species. 
Nevertheless, it is also clear that each of the other principal species are also usually caught, 
indicating that it is not possible to just target and catch a single species. Indeed, the target 
species sometimes is not the dominant catch. For example, on average more Yellowfin Tuna 
are caught than Striped Marlin when targeting the latter. Cluster analyses of the ETBF catch 
data indicate strong seasonal changes in species composition of the major clusters identified, 
which is likely to be related to seasonal differences in the co-occurrence of species reported 
above. Furthermore, while the fishing operations associated with some clusters display distinct 
differences in the gear configurations, most clusters were characterised by a broad mix of gear 
configurations, indicating that the relationship between the composition of the catch and the 
configuration of the gear is not strong. It was also noted that the mix of gear types associated 
with similar cluster types can vary on a seasonal basis (.i.e. the dominant Yellowfin Tuna 



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

152 
 

cluster in summer and winter). These results indicate that there are substantial cluster by gear 
interactions and season-by-gear-by-cluster interactions. This suggests that ‘targeting’ and the 
consequent composition of the catch is likely to depend on more factors than just the 
configuration of the fishing gear, and exploring the nature of the relationship between the catch 
and these other factors (e.g. availability effects associated with the spatial location such as 
water temperatures, sea-mounts, eddy features) is encouraged.  
 
The results of the cluster analysis also indicated that there can be substantive differences in the 
characteristics of each identified cluster, dependent upon which species are included in the 
analysis. This indicates that some thought needs to be given to how best to cluster the catch 
data for classifying sets and possibly identifying suites of species associated with different 
targeting practices. For example, should cluster analyses used to identify ‘targeting’ practices 
be based only on the main target species in a fishery or should such analyses also include by-
product and by-catch species (even though these species are not targeted). The sensitivity of 
abundance indices on using the different cluster-types identified by these different types of 
analyses in procedures to standardise CPUE should also be investigated. 
 
Comparative Performance of Standardisation Models 

Due to practical reasons associated with the analyses being undertaken by three analysts 
independently (with each at a different location), the comparative analyses of the performance 
of the twenty-four different standardisation models selected for testing were broken into a 
number of different trials. The main results from these trials were as follows: 

• The relative performance of each model varied considerably between the analyses 
conducted on the different species included in the two simulated data-sets. As a 
consequence, there was no one best performing model across all species. For example, 
the overall best performing model across all species in one set of trials was not the best 
model for any of the individual species analysed. 

• Based on the analyses conducted on the ETBF simulated data, the mean Absolute 
Relative-Error (e\� = 	XYZ6��|O,� − b}O,�
/b}O,�:,	where �|O,�and b}O,� are the estimated and 
assumed abundance, respectively, for species s and year t after rescaling to have a mean 
of one) across all years and species for each of the 24 models ranged between 3.3% and 
20% and averaged 9.5% over all models. This indicates that the difference between the 
estimated and assumed abundance index averages around 3% for the best performing 
model, and around 20% for the worst performing model, demonstrating that there were 
substantial differences in overall model performance.  

• The overall best performing model fitted to the deterministic catches of the ETBF-
simulated data-set was the model where the clustering was undertaken at the set level. 
The mean ARE for this model varied between 3.1% and 11.3% across the five species 
include in this data-set. On the other hand, the overall best performing model fitted to the 
catches randomly sampled from a negative-binominal distribution was the model where 
the clustering was undertaken at the trip level. For this model the mean ARE varied 
between 3.6% and 12.6% across the five species. The higher variability in species 
composition at the set level with the use of the randomly sampled catches, may be leading 
to a higher misallocation of sets using different fishing strategies, and aggregating the 
data across trips may help to reduce this variability, and therefore the misallocation of 
sets.  

• Models which included a two-stage delta-GLM approach performed considerably better 
than models which only used a single staged approach. Analyses based on the current 
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model used to standardise CPUE in the ETBF indicate that the two-stage delta-GLM 
approach reduces the ARE of the estimated abundance indices by around 36% on average. 

• Models which included the two gear-effects included in the simulated data also generally 
out-performed models which did not include these effects, i.e. the inclusion of gear 
effects in the standardising models improved the ability of such models to recover the 
assumed relative abundance indices than the inclusion of derived effects such as those 
based on catch-composition derived clusters. This result should not be unexpected, as it 
is the actual configuration of the fishing gear that is under the control of the fisher and 
which can be directly modified to ‘target’ different species. On the other hand, the use of 
a method such as a cluster analysis of the catch composition of a set to infer the target 
species is not only in-direct, but based on a result realized at the end of the set, and which 
is highly likely to be influenced by a number of other factors. 

• For the subset of analyses with tested models which did not include the gear effects, but 
which were based on the two-stage delta-GLM approach, the model where the derived 
targeting effect was based on clustering undertaken at the trip level again displayed the 
best overall performance (with the mean ARE across the five species ranging between 
6.3% and 12.2%). On the other hand, the model which did not include any targeting effect 
was the worst performing model. This last result indicates that the use of catch-based 
clusters to identify ‘targeting’ has merit, and inclusion of such derived effects, in general, 
improves the performance of the standardising model. 

• Of the three PCA-based models tested, the model where the values of the principal 
components variables were transformed to zeroes and ones was the best performing, 
while the two other PCA-based models generally performed poorly. 

• The results of fitting the models to the second simulated data-set were consistent with 
the results for the ETBF-based data-set, with the cluster-by-trip model being the best 
overall performer, followed by the cluster-by-set model. However, of the three PCA 
models tested, the model where the three principal components are fitted as cubic splines 
generally performed best.  

• The best performing of the INLA-based models was also the most complex, which 
included both discrete and continuous spatio-continuous effects. Unfortunately, due to 
the computational demands of this model it could only be tested on a sub-set of the ETBF-
data-set (and using the CSIRO high-performance computer), and this limited our ability 
to fully compare its performance with the other sets of the models. While the 
computational demands of this model may reduce its utility, nevertheless, this model 
displays considerable merit and warrants further comparative testing in the future. 

• The current GLM used in the ETBF to standardise CPUE is performing reasonably well, 
no doubt due to the fact that this model incorporates several of the features (e.g. two-
stage analysis, inclusion of gear effects) that were found to perform well in the 
simulations undertaken. 

 
Despite the above results, a consistent observation from all the trials conducted was the 
variability in the performance of each model across the species included in the simulated data-
sets. An example of this variability was demonstrated by the result that for one of the species 
analysed in the ETBF simulated data-set (ALB), models that did not include the gear effects 
out-performed the models that included these effects. This was clearly a different outcome than 
for the other four species analysed. The reasons for anomalous result remain uncertain, but 
provide an indication that there are factors specific to each species that influence the fit of any 
model to the data and as such the estimation of the annual abundance index.  
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One possible explanation may be the manner in which the ALB catch data was simulated, as 
the depth-profile for ALB used in the simulation model was not based on archival tag data (as 
was the done for the other four species) but was based on a created hybrid profile. Furthermore, 
in making this hybrid profile substantially different (i.e. deeper) than the observation-based 
depth-profiles for the other species (c.f. Figure 5.16), perhaps it is unrepresentative of the main 
species caught in the ETBF (and, in particular, the depth profile of ALB that it was supposed 
to represent). This may have resulted in a degree of mismatch between the depth profile 
simulated for ALB and the depths simulated for the fishing gears. For example, while the 
majority (85%) of hooks in the simulated data occur at depths less than 100m, only 23% of 
ALB, on average, are found within this depth range (c.f. Figure 5.16), with the consequence 
that the relation between gear settings and the subsequent catch of ALB is not as strong as for 
the other species.   
 
Putting this possibility aside, some further analyses were undertaken to explore some of the 
other factors that may be influencing the anomalous outcome for ALB. First, analysis of the 
ETBF logbook data demonstrated that for catch-composition based clusters, the gear 
configurations varied across the different cluster-types and also varied seasonally within a year 
for similar cluster-types. However, the inclusion of gear-related interaction terms in the 
standardising models, ostensibly to account for such effects, did not improve the estimation of 
the abundance indices. However, this result could just be an indication that the relationship 
between catch-composition cluster types identified in the data and associated gear 
configurations is weak. Indeed, such a conclusion is consistent with the analysis of the ETBF 
logbook data that did not find particularly strong relationships between the catch-composition 
of the clusters identified and the gear settings (c.f. Figure 6.17). The analysis of the observer 
data for the ETBF, mentioned in Section 6.2, found that the highest proportion of the catch of 
any species generally occurred in those sets where that species had been specified as the 
primary target species. Unfortunately it is not possible to investigate whether such a 
relationship exists between the catch composition of the main cluster types and the species 
targeted, as this latter information is not reliably recorded in the logbooks. As such, how 
differences in targeting practices (partially expressed by differences in how the fishing gear is 
deployed) are expressed as differences in the resulting composition of the catch, and how these 
are related to the cluster-types identified in the overall catch data for the fishery, remains 
difficult to explore. An alternative method for investigating such relationships, based on 
clustering the fishing operations by gear configurations (instead of catch composition), is 
provided in Appendix C.  
 
Second, in lieu of the gear-related interaction terms alone not providing the necessary 
explanatory power for improving the estimation of the abundance index for the anomalous 
results for the simulated ALB catches mentioned above, further investigations indicated that 
there had been a substantive change in the spatial distribution of catch rates for this species 
after 2005. Re-fitting the models to the simulated ETBF data-set, but limiting the analysis to 
the years after 2005, gave a result consistent with the results for the other four species: the 
models with gear effects out-performing the models without gear effects and the cluster-by-
trip model performing best. There was also a substantive improvement in the estimation of the 
abundance index with around 50% reduction in the Absolute Relative Error. This result is 
consistent with some preliminary analyses undertaken using the simulated data for the ETBF 
which indicated that the spatial structure of the data has a greater impact on the ability of the 
model to infer the true annual abundance of a species than gear related factors such as the depth 
profiles of the fish. 
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This last analysis suggests that temporal changes in the spatial patterns of fishing and 
associated catch rates observed across a fishery are likely to have a substantive impact on the 
performance of models used to standardise CPUE, and fishery scientists undertaking such 
analyses should investigate whether such changes have occurred in fisheries they are assessing. 
Whether such patterns explain some of the variability in the performance of the models across 
the other species remains unclear, though this result does demonstrate that there may be a wide 
range of factors specific to each species that influence the fit of any model to the data, and as 
such the estimation of the annual abundance index. Indeed, the factors that influence the size 
and composition of the catch of any fishing operation are likely to be complex, and subject to 
a reasonable degree of stochastic variation due to the random nature of fish interacting with a 
given set of fishing gear, especially gear such as pelagic longline hooks. No doubt further 
research is required to identify and improve our understanding of the factors used by fishers to 
‘target’ the deployed effort, and which control the composition of the catch for individual 
fishing operations, in particular those factors that account for the variability seen in the 
composition of the catch given similar gear settings. These factors are likely to include spatial 
features in the ocean such as temperature fronts and eddies that fishers often take cues from for 
setting their gears.  
 
Implications for the ETBF Harvest Strategy 

The harvest strategy for the ETBF is based on a decision-tree which utilises a number of 
empirical based indicators - the standardised CPUE of small, prime and large-sized fish and 
the proportion of these size classes in the total catch. The primary control rule for determining 
the RBCC in any year involves using the formula: 

RBCCt+1 = TACCt*(1+ β.STARG) 

where STARG is the slope based on the angle subtended by the standardised prime-sized CPUE 
trend line over the previous five years and the line joining the present value of the CPUE and 
a target CPUE value a specified number of years, NTARGET=5, in the future. The control 
parameter β is referred to as the feedback gain factor and for the ETBF harvest strategy β=1. 
Once the initial RBCC has been determined by the primary control rule it is then subject to 
review, and possible modification, based on the rules specified in the higher levels of the 
decision tree.  
 
The performance of the harvest strategy in determining a ‘correct’ RBCC was tested using the 
same simulation framework for the ETBF as that used for testing the standardising models. 
Using the assumed abundance trend for each species used to generate the simulated ETBF data-
set and the estimated standardised CPUE indices generated by each of the models used to 
analyse these data, the mean value of the Absolute Relative Error in the RBCC [ARE = 
(RBCCSTD-CPUE – RBCCTRUE)/RBCCTRUE] was calculated across 100 data-sets where the catches 
were sampled from a random negative binomial distribution. As with the previous Index-based 
results, the size of the error in the RBCC was found to vary across the different species and 
models, such that no single model performed best across all species. For four of the species 
analysed, the mean error was generally less than 4% (and often less than 2%), but for one of 
the species the error was higher at around 6-7%. Results also indicate that the direction of the 
error was not consistent, being conservative and under-estimating the true RBCC for some 
species, while over-estimating the true RBCC for other species. 
 
The best performing model was the delta-GLM cluster-by-trip model, closely followed by the 
base delta-GLM model currently being used in the ETBF. While the cluster-by-trip model was 
also the best-performing model for estimating the abundance index based on the same set of 
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analyses, it should be noted that the results are actually based on different time-intervals of the 
estimated abundance index. First, the results comparing the relative performance of each 
standardising model for estimating the assumed annual abundance time-series were based on 
the mean annual error over all 15 years in this time-series. On the other hand, the results 
comparing the relative performance of the each model for estimating the true RBCC were based 
on the errors in the trend of the estimated abundance index over only the last five years. Given 
these differences, and the similarity in the performance of several standardising models, it 
would not have been surprising to see different models perform differently across the two sets 
of results. However, in general there was a reasonable level of correlation between the 
performances of each model across the two sets of analyses (c.f. Figure 7.1). This is reassuring 
as it indicates that the same standardising model can be used for both sets of analyses.  
 
Figure 7.1: Comparison of the overall rank achieved by each model (1=Best, 24=Worst) when 
used to estimate either the abundance index over all years or the RBCC. The analyses are based 
on the average errors calculated across 100 ETBF data-sets where the catches were sampled from 
a random negative binomial distribution. 

 
 
The potential for the different performance of models dependent on the time-series of data 
being analysed, as noted above, also has implications for the question of over what time-period 
of data should an analysis be conducted taking into consideration the end-purpose for which 
the results are to be used. For example, if one is conducting a stock assessment then it is 
probably appropriate that the constructed abundance index be estimated over a time-period as 
long as possible (i.e. over the entire available data-set). On the other hand, if there is a need to 
use only a shorter time-period in the subsequent analysis (such as only using the temporal trend 
of the estimated abundance index over the last five years, as required for the EBF harvest 
strategy), then some consideration should be given as to whether the abundance index needs to 
be estimated over all the years that the data is available or some shorter period. This decision 
should be guided by investigation of both temporal changes in the characteristics of the data to 
be analysed that may influence (or bias) subsequent results, and the sensitivity of the 
constructed abundance index to changes in the time-series of data included in the analyses.  
 
Finally, investigation of applying a LOWESS smoother to the annual abundance index before 
calculating the slope-to-target used in the ETBF harvest strategy, found that for some species 
the calculated RBCC varied to some extent, dependent on the smoothing parameter used. It 
was also found that the variability in the calculated RBCC increased as the variability of 
standardised CPUE over the last five years (used for calculating the slope used in the primary 
control rule) increased. This suggests that some care should be taken in selecting which 
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smoothing parameter to use and the criteria for identifying the most appropriate parameter 
requires further investigation. 
 
Concluding Remark 

Given the multitude of factors which are known to influence the catch of any fishing operation, 
the relationship between catch-rates and underlying stock abundance has long been a vexed 
one. This is especially the case with multispecies fisheries, where the issue of targeting is 
central to the relationship between the effectiveness of the fishing effort and the catch of any 
specific species. While there has been a long history of research directed at understanding the 
nature of these relationships, together with the development of methods aimed at standardising 
fishing effort so that the time-series of underlying stock abundance can be recovered, the 
complexity of the issue raises a number of challenges that prevent easy solutions. In this project 
we have investigated the nature of the relationship between the manner in which the fishing 
gears are deployed in the pelagic longline sector of the ETBF and the resulting species 
composition of the catch, and results indicate that such relations are often elusive. We have 
also selected, developed and tested using simulated data-sets, a suite of models to standardise 
catch rates and construct indices of relative stock abundance. While the results found that 
performance varied widely across the models tested, no single model was found to perform 
best across all the trials undertaken. Indeed, the variability of the performance of the models 
across the different species simulated was one of the most consistent characteristics of these 
results. While this project has investigated a number of factors likely to influence the 
composition of the catch and the ability of any model to reconstruct the true time-series of 
abundance from catch and effort data, these results do demonstrate that there may be a wide 
range of factors that influence the fit of any model to the data. Indeed, the factors that influence 
the size and composition of the catch of any fishing operation are likely to be complex, and 
subject to a reasonable degree of stochastic variation due to the random nature of fish 
interacting with a given set of fishing gear, especially gear such as pelagic longline hooks. No 
doubt continuing research is required to further identify and improve our understanding of the 
factors used by fishers to ‘target’ the deployed effort and which influence the composition of 
the catch for individual fishing operations, in particular those factors that account for the 
variability seen in the composition of the catch given similar gear settings. These factors are 
likely to include spatial features in the ocean such as temperature fronts and eddies that fishers 
often take cues from for setting their gears. 
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8. Implications  

Standardised CPUE is a central input to stock assessments undertaken for many fisheries 
around the world. Within Australia, standardised CPUE is used in the assessments and harvest 
strategies for the two tropical pelagic fisheries (ETBF and WBTF) as well as many other 
fisheries, including the multispecies South-East Scalefish and Shark Fishery (SESSF). While 
the results of this project found there to be no single method which was best for standardising 
CPUE due to differences in the spatio-temporal distributions in the data for each species, the 
outcomes and associated recommendations (see Section 9) of this project will provide guidance 
on improving the methods used to standardise CPUE in these and other fisheries. In turn, this 
will ensure (i) more reliable and accurate stock abundance indices, (ii) improved inputs and to 
the harvest control rules dependent on standardised CPUE, (iii) improved outputs of harvest 
strategies, in particular the appropriateness of identified TACCs, and (iv) improvements to our 
ability to assess the resource status of non-target species, as required to achieve the 
management objective of ecologically sustainable fisheries. 
 
The main end users of this research will be the assessment scientists developing indices of 
abundance based on the standardisation of CPUE, especially those within multispecies 
fisheries. As improvements in assessment results will have flow on effects for improved 
scientific advice and harvest strategy outcomes (e.g. improved TACCs), the managers of 
Australia's multispecies fisheries will also be direct beneficiaries. Improvements in 
management outcomes will lead to a reduction in the risk of over-or-under exploitation of the 
associated resources, benefiting the long-term sustainable management of these fisheries, the 
related fishery resources and related industries. 
 
For fisheries such as the ETBF (valued at $35m in 2014/15, ABARES 2015) and the SESSF 
(valued at $67m in 2014/15, ABARES 2015), this reduction in risk will increase efficiencies 
(i.e. improve returns per vessel) and enhance the potential to achieve optimal exploitation 
levels, improving total value of these fisheries (potentially by many millions - far greater than 
the cost of the research). In this manner permit holders, the fishing industries, and more broadly 
the Australian community will be beneficiaries, through increased and sustained profits. 
 
The outcomes of this project will also benefit fish stock assessments associated with the pelagic 
fisheries within the Western Central Pacific Ocean and Indian Ocean to which Australia's 
domestic tuna fisheries are connected. 
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9. Recommendations 

Based on the outcomes of this project, the following recommendations are made: 
 

1. The results of this project should be taken into consideration by fisheries scientists 
undertaking analyses of catch and effort data, and for selecting appropriate methods for 
standardising CPUE for stock assessment purposes. 

2. The recording in logbooks of information on the characteristics of the fishing gears 
deployed by fishers at the set level should be encouraged and where this information is 
available it should be incorporated into the models used to standardise CPUE. 

3. Logbooks should also record the target species for each set or shot. Where such a data 
field already exists in the logbook, effort should be made to improve both the reliability 
of this information and our understanding of exactly to what this data relates (e.g. is it 
just the most common species in the catch?).   

4. The logbooks for Australia’s two tropical tuna and billfish fisheries should be reviewed, 
to ensure that the appropriate information related to how the longline fishing gear is 
deployed can be recorded. Information considered for inclusion in the logbooks 
includes: hook-type, the length of the float and branch lines, and information related to 
the sag-ratio of the line.  

5. Where gear information is not available, derived targeting effects should be considered 
for inclusion in models used to standardise CPUE. Based on the results of this study, 
the approach using a Cluster Analysis based on catch-composition to categorise sets is 
recommended over the use of the Principal Component Analysis approach. Where the 
appropriate information is available, and dependent on the nature of the fishing 
operations undertaken within a trip, consideration should be given to undertaking the 
cluster analysis at the trip level of data aggregation.  

6. Before selecting a model to standardise CPUE for constructing an annual abundance 
index for a fishery, it is important that analysts attempt to understand the factors that 
influence the variability observed in the catch and effort data from the fishery being 
assessed. In particular, analysts should investigate changes in the spatio-temporal 
distribution of CPUE across a fishery and the factors that influence these changes.  

7. Given the potential for the different performance of models dependent on the time-
series of data being analysed, analysts should consider the appropriateness of the time-
period of data analysed relative the end-purpose for which the results are to be used. 
This decision should be guided by investigation of both temporal changes in the 
characteristics of the data to be analysed that may influence (or bias) subsequent results, 
and the sensitivity of the constructed abundance index to changes in the time-series of 
data included in the analyses.  

8. The investigation of temporal changes should also be guided by information that may 
not available within the dataset, such as technology creep. For instance, if it is known 
that a fleet-wide adoption of a new technology resulted in a large suspected change in 
effective effort (e.g., GPS, colour sounders) during a defined period of time, then there 
is good reason to incorporate that temporal feature into the CPUE standardisation 
(especially if one has month of adoption data for each vessel). 

9. Further work should be undertaken to continue the review, development and 
comparison of the performance of approaches to standardise catch rates for Australia's 
multispecies fisheries. For example, the simulation framework presented in this report 
could be extended to model other assumed abundance trends so that models used to 
standardise CPUE could be evaluated across a greater range of hypothetical (but 
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plausible) conditions. Also, further work is required to investigate of the performance 
of the INLA based spatio-temporal model developed by this project, as well as the 
performance of the spatial dynamic factor analysis model recently published by 
Thorson et al. (2016).  

10. Finally, further research is required to identify and improve our understanding of the 
factors used by fishers to ‘target’ the deployed fishing effort to control the composition 
of the catch for individual fishing operations, in particular those factors that account for 
the variability seen in the composition of the catch given similar gear settings. These 
factors are likely to include spatial features in the ocean such as temperature fronts and 
eddies that fishers often take cues from for setting their gears. 
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10. Extension and Adoption 

The outcomes of this project will be extended and communicated to a range of end-users in the 
following ways.  
 
Resource Assessment Groups 

Through their membership on a number of Resource Assessment Groups (RAGs) a number of 
the project team will able to use the outputs of this project to inform the adoption of new and 
improved methods for future assessments. This will have direct benefits on improving the 
accuracy and reliability of the indices of resource abundance based on the standardised CPUE 
as well as the assessments of the related fish resources. This will have flow on benefits for the 
utility of the harvest strategies used to manage these fisheries, in particular the ETBF and 
WTBF and other multispecies fisheries such as the SESSF, which are highly dependent on the 
accuracy of the standardised CPUE. 
 
The Principal Investigator (R.C.) is the principal assessment scientist for the ETBF (currently 
undertaking both the CPUE standardisation and the harvest strategy calculations for this 
fishery) and together with R.H. is a scientific representative on the Tropical Tuna Resource 
Assessment Group (TTRAG). Another member of the project team (M.H.) is a principal 
assessment scientist for the Southern and Eastern Scalefish and Shark Fishery (SESSF), which 
is a multi-sector, multispecies fishery that covers almost half of the Australian Fishing Zone, 
and a scientific representative on the associated Resource Assessment Group. Finally, S.Z. is a 
member of the Squid Fishery Resource Assessment Group. Through these multiple roles these 
team members will be able to consult widely with the relevant RAGs, AFMA, the fishing 
industry, and other scientists about the outcomes of this project and implement the results to 
improve the CPUE standardisations used in the stock assessments and the related inputs into 
the associated harvest strategies. In particular, the outcomes of this project will inform the 
review of the ETBF harvest strategy, and the associated methods to standardise CPUE, to be 
undertaken during 2017 and as part of this process the results of this project were presented to 
the meeting of TTRAG held 28-30 March 2017. 
 
Regional Fisheries Management Organisations 

This project will have direct input into scientific work and programs undertaken by, and on 
behalf of, the Western Central Pacific Fisheries Commission (WCPFC) and the Indian Ocean 
Tuna Commission (IOTC).  
 
The Principal Investigator (R.C.) has attended the annual meetings of the Scientific Committee 
(and its predecessor) for WCPFC since the mid-1990s, and more recently the Pre-Assessment 
Workshops convened by the Scientific Service Provider (Secretariat of the Pacific Community, 
SPC) in April each year. He also contributes standardised CPUE indices to several assessments 
undertaken by SPC (e.g. southwest Pacific Swordfish and Striped Marlin) and has consulted 
widely with other scientists in this region on the need for improving CPUE standardisation for 
the associated assessments (e.g. Hoyle et al. 2014). As part of these ongoing contributions the 
results of this project were presented to the Workshop on the Analysis of CPUE for Stock 
Assessments, held 20-21 April at SPC in Noumea. This meeting was held as part of the 
Preparatory Workshop for the 2017 Stock Assessments for the Western Central Pacific 
Fisheries Commission.  
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Another member of the project team (S.H.) regularly undertakes stock assessments for tuna 
and billfish stocks in the Indian Ocean and attends the annual meetings of the Scientific 
Committee for the IOTC while S.Z. has consulted with IOTC on a project to undertake CPUE 
studies for neritic tunas. The outputs of this project will inform the adoption of new and 
improved methods for future assessments on the fish stocks in this region. A third member of 
the project team (R.H.) is a member of Scientific Committee for the Convention of the 
Conservation of Southern Bluefin Tuna (CCSBT) and will be able to convey the results of this 
project to this forum. 
 
Broader Dissemination 

Finally, the results of the project will be published in relevant peer-review journals to help 
disseminate the results to the broader scientific community. 
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Appendix A. Annual longline catch by species in the  ETBF 

1. Introduction 

The ETBF has undergone several periods of development and associated changes in targeting 
practices since the advent of the logbook program in the mid-1980s. For example, the fishery 
largely targeted only Yellowfin Tuna, and to some extent Bigeye Tuna, until the mid-1990s at 
which time a component of the fleet switched to targeting Broadbill Swordfish. The catches of 
Striped Marlin also increased considerably through the 1990s, such that by the year 2000 there 
were four principal target species in the fishery. The size of the fishery also changed 
significantly throughout the 1990s, with the effort increasing from 1.1 million hooks in 1990 
to 9.6 million hooks in 2000 and the spatial extent of the fishery increasing by more than 2.5 
times over this period. Effort peaked in 2003 when 12.75 million hooks were deployed and the 
spatial extent of the fishery reached 273 1x1-degree squares.  
 
With the advent of lower catch rates and poor economic returns throughout the early to mid-
2000s a number of vessels left the fishery and both effort and catches declined. The targeting 
of Albacore Tuna, and its subsequent addition as a primary target species, provided some 
financial assistance to the fishery with the catch of Albacore Tuna in 2006 and 2007 being the 
largest of the now five principal target species. With net economic returns to the fishery 
remaining low a government-based restructuring of the fishery in 2007 saw the number of 
active vessels remaining in the fishery decline to around 50 during 2008 when around 8 million 
hooks were deployed. Effort increased to around 8.9 million hooks in 2009 but has again 
declined in more recent years with around 6.8 million hooks being deployed between 2011 and 
2013. The number of vessels active in the fishery (some only briefly) during 2013 was 41 
(down from 49 in 2011). Total allowable catch quotas (based on individual transferrable 
quotas) for the five principal target species were introduced into the fishery in March 2011. 
 
This brief history indicates that there have been a number of significant changes in the 
operation of the ETBF including changes in the range of species targeted. Commensurate with 
these changes has been the changes in the logbook used in the fishery. Since the introduction 
of the AL02 logbook in the mid-1980s there has been a series of four updates since this time 
(Figure A.1). With each new logbook there have been changes in the number of the species  
 
Figure A.1: Annual logbook coverage (as a percentage of sets) in the ETBF. Note: ELINE refers 
to an electronic logbook. 
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reported in logbooks and this in turn has resulted in changes in the ability to report the catch 
by species in the fishery. 
 
In this document the annual reported catch by species is provided for the main species caught 
by longline vessels operating in the ETBF over the periods 1985 to 2013. These species cover 
72 of the 136 species reported caught during that period and account for 99% of all fish caught. 
A complete listing of the catch of all species reported in logbooks for the ETBF is provided in 
Appendix A.  
 
The catches reported by species are listed by the following groups:  
 Tunas    (6 species),  
 Billfish   (6 species),  
 Sharks   (10 individual species, 2 species groups, 1 group of 17 species,  

  and a single group of unidentified sharks),  
 Byproduct   (6 species), 
  Bycatch   (6 species),  
 Other Mackerels  (5 species in a single group), and  
 Skates and Rays (1 group of stingrays, 1 group of manta rays, and a combined  
     group).  
 
Catch is reported by both the retained catch and the discarded catch reported in logbooks. 
Whilst the accuracy of the each catch component remains to be verified, it can perhaps be 
assumed that the retained catch is more accurately reported than the discarded catch.  
 
It is important to note that not all species have been reported in each logbook and a listing of 
the number of fish caught by species in each logbook is provided in Appendix B. There have 
also been some changes in the identifying code used on logbooks for several species. For 
example, the code SPC_ID=146 was used to identify Spearfish on the AL02 logbook, while 
the code SPC_ID=53 has been used to identify Short-billed Spearfish on all other logbooks. 
Also, Mako Sharks were identified by the single code SPC_ID=138 on the AL02 logbook, 
while the codes SPC_ID=3 and 63 have been used to identify Short-fined Makos and Long-
finned Makos respectively on all other logbooks. Similarly, the code SPC_ID=184 was used 
to identify Smoothed Hammerheads only on the AL05 logbook, the code SPC_ID=15 was used 
to identify Scalloped Hammerheads on the logbooks AL02-AL05, while the code SPC_ID=360 
has been used to identified undifferentiated Hammerhead Sharks on the AL05, ALO06 and 
ELINE logbooks. 
 
Finally, there may also have been changes in the manner that several species have been reported 
on logbooks. For example, large quantities of Mackerel (Scomber scombrus) have only been 
reported on the AL05 logbook (as SPC_ID=47) while large quantities of Snake Mackerel 
(Gempylus serpens) have only been reported on the AL06 logbook (as SPC_ID=362).  
 
Given the above comments, some care is required in assuming that the reporting of any 
particular species (other than the principal catch species) has been continuous across the period 
reported here. Given this situation, some species may need to be grouped to more accurately 
reflect the nature of the species groups caught on particular longline sets. 
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2. SPECIES CODES 
 

 

TUNAS BILLFISH

CODE SPC_COMMON_NAME CODE SPC_COMMON_NAME

YFT Yellowfin Tuna BBL Broad Billed Swordfish

SKJ Skipjack Tuna STM Striped Marlin

SBT Southern Bluefin Tuna BUM Blue Marlin

ALB Albacore Tuna SAF Indo-Pacific Sailfish

BET Bigeye Tuna BAM Black Marlin

NBT Northern Bluefin Tuna SBS Shortbilled Spearfish

SHARKS - Individual species SHARKS - Grouped identified species

CODE SPC_COMMON_NAME CODE SPC_COMMON_NAME

CSH Crocodile Shark SHK White Shark

POR Porbeagle SHK School Shark

TSR Thresher Shark SHK Cookie-cutter Shark

BRO Bronze Whaler SHK Roughskin Shark

DSK Dusky Shark SHK Saw Shark

BSH Blue Shark SHK Broadnose Sevengill Shark

SKS Silky Shark SHK Sandbar Shark

TIG Tiger Shark SHK Bull Shark

OCS Oceanic Whitetip Shark SHK Australian Black Shark

TIP Blacktip sharks SHK Australian Angel Shark

SHK Ogilbys Ghost Shark

SHARKS - Grouped by species type SHK Australian blacktip shark

CODE SPC_COMMON_NAME SHK Sorrah shark

MAK Shortfin Mako SHK Whaler and weasel sharks

MAK Longfin Mako SHK Platypus shark

MAK Mako shark species SHK whiskery shark

SPN Scalloped Hammerhead SHK Grey reef shark

SPN Smoothed hammerhead

SPN Hammerhead sharks

SHARKS - Unidentified group

CODE SPC_COMMON_NAME

SHO Shark "Other"

SHO other sharks (AL02)

SHO Sharks (other)

BYPRODUCT - Individual species BYCATCH - Individual species

CODE SPC_COMMON_NAME CODE SPC_COMMON_NAME

OPA Moonfish LAN Lancet fish

DOL Dolphinfish BAR Barracouta

POA Ray's Bream MAC Mackerel

OIL Oilfish SUN Ocean Sunfish

WAH Wahoo MOP Short Sunfish

BOF Black Oilfish GES Snake Mackerel

BYPRODUCT - Grouped mackerel species BYCATCH - Skates and rays

CODE SPC_COMMON_NAME CODE SPC_COMMON_NAME

MCK Butterfly Mackerel STR Stingray

MCK Jack Mackerel RAY Manta Ray

MCK Blue Mackerel RAI Skates & rays, unspecified

MCK Spanish Mackerel

MCK Frigate mackerel
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3. TUNAS 
 
 

 
 Note: N_FOPS = Number of fishing operations this species caught 
 
Figure A.2: Logbook recorded annual catch (number of fish retained and discarded) of tuna 
species in the ETBF. 

 
 
 
 
  

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

38 YFT Yellowfin Tuna Thunnus albacares 146151

39 SKJ Skipjack Tuna Katsuwonus pelamis 7725

40 SBT Southern Bluefin Tuna Thunnus maccoyii 8314

41 ALB Albacore Tuna Thunnus alalunga 102852

42 BET Bigeye Tuna Thunnus obesus 90059

46 NBT Northern Bluefin Tuna Thunnus thynnus 476
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4. BILLFISH 
 
 

 
 Note: N_FOPS = Number of fishing operations this species caught 
 
Figure A.3: Logbook recorded annual catch (number of fish retained and discarded) of billfish 
species in the ETBF. 

 
 
  

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

48 BBL Broad Billed Swordfish Xiphias gladius 92432

49 STM Striped Marlin Tetrapturus audax 50996

50 BUM Blue Marlin Makaira mazara 5620

51 SAF Indo-Pacific Sailfish Istiophorus platypterus 1827

52 BAM Black Marlin Makaira indica 3613

53 SBS Shortbilled Spearfish Tetrapturus angustirostris 7666

146 SBS Spearfish (AL02 only) Tetrapturus angustirostris 587
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5. SHARKS 
 
 

 
 
Figure A.4: Logbook recorded annual catch (number of fish retained and discarded) of shark 
species in the ETBF. 

 
  

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

2 CSH Crocodile Shark Pseudocarcharias kamoharai 280

5 POR Porbeagle Lamna nasus 653

6 TSR Thresher Shark Alopias vulpinus 1719

8 BRO Bronze Whaler Carcharhinus brachyurus 8973

9 DSK Dusky Shark Carcharhinus obscurus 1815

10 BSH Blue Shark Prionace glauca 24189

11 SKS Silky Shark Carcharhinus falciformis 347

12 TIG Tiger Shark Galeocerdo cuvier 3950

13 OCS Oceanic Whitetip Shark Carcharhinus longimanus 5982

14 TIP Blacktip sharks Carcharhinus species 1479
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5. SHARKS (cont’d) 
 
Figure A.4 (cont’d): Logbook recorded annual catch (number of fish retained and discarded) of 
shark species in the ETBF. 

 
 
 

 
 Note:  SPC_ID=3, 63, 138 grouped as Mako Sharks 
 Note:  SPC_ID=15, 184, 360 grouped as Hammerhead Sharks 
 

Figure A.4 (cont’d): Logbook recorded annual catch (number of fish retained and discarded) of 
shark species in the ETBF. 
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SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

3 MAK Shortfin Mako Isurus oxyrinchus 28858

63 MAK Longfin Mako Isurus paucus 51

138 MAK Mako shark species Lamnidae spp 3275

15 SPN Scalloped Hammerhead Sphyrna lewini 2477

184 SPN Smoothed hammerhead Sphyrna zygaena 78

360 SPN Hammerhead sharks Sphyrnidae - undifferentiated 730
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5. SHARKS (cont’d) 
 
 
SHK: Identified Sharks (grouped) includes the following species: 

 
 
SHO:  Unidentified Sharks includes the following: 

 
 
Figure A.4 (cont’d): Logbook recorded annual catch (number of fish retained and discarded) of 
shark species in the ETBF. 

 
 
 
  

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

4 SHK White Shark Carcharodon carcharias 4

7 SHK School Shark Galeorhinus galeus 480

17 SHK Cookie-cutter Shark Isistius brasiliensis 9

18 SHK Roughskin Shark Centroscymnus and   Deania. 4

19 SHK Saw Shark Pristiophorus 33

62 SHK Broadnose Sevengill Shark Notorynchus cepedianus 206

64 SHK Sandbar Shark Carcharhinus plumbeus 11

65 SHK Bull Shark Carcharhinus leucas 19

67 SHK Australian Black Shark Dalatias Licha 144

70 SHK Australian Angel Shark Squatina australis 96

71 SHK Ogilbys Ghost Shark Hydrolagus ogilbyi 453

93 SHK Australian blacktip shark Carcharhinus tilstoni 6

94 SHK Sorrah shark Carcharhinus sorrah 36

95 SHK Whaler and weasel sharks Caracharhinidae 1764

96 SHK Platypus shark Deania calcea 283

178 SHK whiskery shark Furgaleus macki 89

182 SHK Grey reef shark Carcharhinus amblyrhynchos 2

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

58 SHO Shark "Other" Family "Shark" other 248

134 SHO other sharks (AL02) Carcharhinidae, Hemigaleidae 2989

358 SHO Sharks (other) sharks - other 105
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6. BYPRODUCT SPECIES  
 
 

 
 Note: Rudderfish are grouped with Black Oilfish (due to misidentification on logbook) 
 
Figure A.5: Logbook recorded annual catch (number of fish retained and discarded) of byproduct 
species in the ETBF. 

 
 
  

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

23 OPA Moonfish Lampris guttatus 6640

29 DOL Dolphinfish Coryphaena hippurus 60560

30 POA Ray's Bream Brama brama 8559

35 OIL Oilfish Ruvettus pretiosus 1922

45 WAH Wahoo Acanthocybium solandri 13789

36 BOF Black Oilfish Lepidocybium flavobrunneum 12053

55 BOF Rudderfish Centrolophus niger 50831
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7. BYCATCH SPECIES  
 
 

 
 
Figure A.6: Logbook recorded annual catch (number of fish retained and discarded) of bycatch 
species in the ETBF. 

 
 
  

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

22 LAN Lancet fish Alepisauridae 22427

34 BAR Barracouta Thyrsites atun 689

47 MAC Mackerel Scomber scombrus 726

56 SUN Ocean Sunfish Mola mola 3481

361 MOP Short Sunfish Mola ramsayi 119

362 GES Snake Mackerel Gempylus serpens 341
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8. OTHER MACKERELS (Grouped) 
 

 
 

 
 
 
9. SKATES & RAYS 
 

 
 
Figure A.7: Logbook recorded annual catch (number of fish retained and discarded) of skate and 
ray species in the ETBF. 

 

SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

43 MCK Butterfly Mackerel Gasterochisma melampus 165

75 MCK Jack Mackerel Trachurus declivis 6

83 MCK Blue Mackerel Scomber australasicus 7

84 MCK Spanish Mackerel Scomberomorus Commerson 11

115 MCK Frigate mackerel Auxis thazard 2
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SPC_ID CODE SPC_COMMON_NAME SPC_NAME N_FOPS

21 STR Stingray Dasyatididae "family" 306

91 RAY Manta Ray Manta birostris 504

359 RAI Skates & rays, unspecifie Skates & rays, unspecified 697
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Table A.1: Complete listing of the logbook reported catch of all species reported by longline 
vessels operating in the ETBF. (Note, the last column indicates whether the species is reported in 
main document) 

 

No. SPC_ID SPC SPC_COMMON_NAME SETS RETAINED DISCARDED TOTAL Report

1 38 YFT Yellowfin Tuna 175569 1300099 51873 1351972 1

2 41 ALB Albacore Tuna 114333 1315727 26802 1342529 1

3 48 SWO Broad Billed Swordfish 95800 467613 10701 478314 1

4 42 BET Bigeye Tuna 93493 388339 19085 407424 1

5 29 DOL Dolphinfish 60475 289843 9549 299392 1

6 22 LAN Lancet fish 22424 1847 296256 298103 1

7 55 CEO Rudderfish 50698 272338 8928 281266 1

8 30 POA Ray's Bream 8549 149978 3688 153666 1

9 10 BSH Blue Shark 24199 18633 88694 107327 1

10 49 MLS Striped Marlin 53687 99056 3087 102143 1

11 40 SBF Southern Bluefin Tuna 11025 92247 8775 101022 1

12 36 BOF Black Oilfish 12053 82121 2413 84534 1

13 3 SMA Shortfin Mako 28822 40427 6608 47035 1

14 59 MIX OTHER 12640 36642 2070 38712 1

15 39 SKJ Skipjack Tuna 9612 35725 1896 37621 1

16 45 WAH Wahoo 13706 24515 919 25434 1

17 8 BRO Bronze Whaler 8915 10595 12201 22796 1

18 23 OPA Moonfish 6640 16503 265 16768 1

19 134 other sharks (AL02) 5573 11823 3356 15179 1

20 53 SBS Shortbilled Spearfish 7666 11557 1030 12587 1

21 50 BLM Blue Marlin 6886 1362 9361 10723 1

22 13 OCS Oceanic Whitetip Shark 5980 3907 6002 9909 1

23 95 whaler and weasel sharks 3245 6912 2421 9333 1

24 52 BKM Black Marlin 4292 13 8087 8100 1

25 56 SUN Ocean Sunfish 3481 130 7852 7982 1

26 47 MAC Mackerel 723 140 6468 6608 1

27 138 Mako shark species 6352 6010 568 6578 1

28 35 OIL Oilfish 1900 5741 707 6448 1

29 12 TSH Tiger Shark 3937 2414 3431 5845 1

30 15 SPL Scalloped Hammerhead 2751 3534 2226 5760 1

31 9 DSK Dusky Shark 1812 1370 3270 4640 1

32 14 TIP Blacktip sharks 1479 2266 1386 3652 1

33 51 SAF Indo-Pacific Sailfish 2037 1838 1693 3531 1

34 362 GES Snake Mackerel 341 1 3495 3496 1

35 6 TSR Thresher Shark 1717 559 2365 2924 1

36 5 POR Porbeagle 645 1722 806 2528 1

37 34 BAR Barracouta 689 179 2300 2479 1

38 359 RAI Skates & rays 697 0 1732 1732 1

39 360 SPN hammerhead sharks 730 1059 643 1702 1

40 146 Spearfish 1143 1097 125 1222 1

41 2 CSH Crocodile Shark 280 15 1191 1206 1

42 91 RAY Manta Ray 504 42 1026 1068 1

43 11 SKS Silky Shark 347 274 516 790 1

44 21 STR Stingray 306 0 659 659 1

45 71 SHT Ogilbys Ghost Shark 448 439 190 629 1

46 96 platypus shark 276 564 64 628 1

47 46 NBF Northern Bluefin Tuna 478 496 22 518 1

48 73 GRE Blue Grenadier 98 228 151 379 0

49 58 SHO Shark "Other" 215 161 213 374 1

50 61 MAR Marlin/Sailfish 115 2 367 369 0

51 43 MAB Butterfly Mackerel 165 235 99 334 1



Developing approaches to improve CPUE standardisation for Australia’s multispecies longline fisheries 
____________________________________________________________________________________________ 

 

182 
 

Table A.1:  (cont’d) 
 

 
 
  

No. SPC_ID SPC SPC_COMMON_NAME SETS RETAINED DISCARDED TOTAL In Report

52 67 SLH Australian Black Shark 144 170 158 328 1

53 26 BKF Black Kingfish 149 290 6 296 0

54 361 MOP Short Sunfish 119 0 266 266 1

55 184 Smoothed hammerhead shark 78 86 179 265 1

56 102 Moonfish 181 236 3 239 1

57 7 SHS School Shark 83 209 10 219 1

58 353 pufferfish 93 0 214 214 0

59 182 grey reef shark 2 193 0 193 1

60 358 SHO Sharks (other) 105 68 114 182 1

61 44 ABO Australian Bonito 35 163 3 166 0

62 70 SHA Australian Angel Shark 65 68 97 165 1

63 25 OAR Oarfish 80 75 48 123 0

64 37 SFF Southern Frostfish 98 37 80 117 0

65 83 MAS Blue Mackerel 7 105 2 107 1

66 178 whiskery shark 8 1 98 99 1

67 31 SNA Snapper 21 93 2 95 0

68 27 YEK Yellowtail Kingfish 35 79 8 87 0

69 80 BRE Black Bream 19 83 0 83 0

70 63 LFM Longfin Mako 51 36 16 52 1

71 28 RRR Rainbow Runner 29 48 3 51 0

72 24 RIB Dealfish 42 2 47 49 0

73 94 Sorrah shark 29 34 14 48 1

74 54 TBE Blue Eye Trevalla 16 47 1 48 0

75 65 BUL Bull Shark 19 16 27 43 1

76 78 BSP Big-scale Pomfret 7 32 0 32 0

77 85 MKT Eastern Little Tuna 5 27 0 27 0

78 64 SBH Sandbar Shark 11 18 4 22 1

79 157 CAR Cardinal Fish 20 12 8 20 0

80 114 Gemfish 57 2 17 19 0

81 87 DTT Dogtooth Tuna 9 17 0 17 0

82 1 SHY Grey Nurse 13 0 15 15 0

83 317 yellow-spotted boarfish 15 13 0 13 0

84 75 MAJ Jack Mackerel 6 12 1 13 1

85 367 tunas 5 9 4 13 0

86 79 JOB Jobfish 3 12 1 13 0

87 84 SNM Spanish Mackerel 11 11 0 11 1

88 159 JOR Rosy Jobfish / King Snapper 2 11 0 11 0

89 17 CCS Cookie-cutter Shark 9 4 6 10 1

90 227 "true" dories 1 10 0 10 1

91 18 SRH Roughskin Shark 4 9 0 9 1

92 62 SHL Broadnose Sevengill Shark 6 6 2 8 1

93 93 Australian blacktip shark 6 8 0 8 1

94 115 Frigate mackerel 2 8 0 8 1

95 16 SHD Dogfish 21 2 5 7 0

96 103 Reef ocean perch 75 6 0 6 0

97 111 jackass morwong 53 6 0 6 0

98 354 porcupine fish 5 0 6 6 0

99 32 MOO Moonlighter 3 6 0 6 0

100 60 TUN Tuna/Mackerel 1 6 0 6 0

101 155 trevallies and jacks 3 4 1 5 0

102 4 JAW White Shark 4 0 4 4 1
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Table A.1:  (cont’d) 
 

 
 
  

No. SPC_ID SPC SPC_COMMON_NAME SETS RETAINED DISCARDED TOTAL In Report

103 82 TRU Bastard Trumpeter 4 4 0 4 0

104 88 LUV Luvaru 4 4 0 4 0

105 250 eastern orange perch 3 4 0 4 0

106 156 MUL Jewfish/Mulloway 1 0 4 4 0

107 264 coral trout 1 4 0 4 0

108 86 LTT Long Tailed Tuna 3 3 0 3 0

109 363 BRA pomfrets 3 3 0 3 0

110 290 green jobfish 2 3 0 3 0

111 209 cod 1 3 0 3 0

112 90 SQO Squid 103 2 0 2 0

113 170 cow shark 2 1 1 2 0

114 216 garfishes 1 0 2 2 0

115 343 large-headed hairtail 1 2 0 2 0

116 368 tonquefish & soleidae 1 0 2 2 0

117 89 TRS Spotted Warehou 55 0 1 1 0

118 351 triggerfishes and leatherjackets 25 1 0 1 0

119 33 BOA Boarfish 9 1 0 1 0

120 265 bar rock cod 4 0 1 1 0

121 81 REM Red Mullet/Blue- lined Goatfish 3 1 0 1 0

122 312 silver bream 2 0 1 1 0

123 68 DFS White-Spotted Dogfish 1 1 0 1 0

124 72 PIK Common Pike Eel 1 1 0 1 0

125 74 GRB Hapuku and Bass Groper-NSW 1 1 0 1 0

126 76 SAM Samsonfish 1 1 0 1 0

127 137 perches, basses, rock cods 1 1 0 1 0

128 158 RAE Southern Eagle Ray 1 0 1 1 0

129 277 bigeye trevally 1 1 0 1 0

130 280 black pomfret 1 1 0 1 0

131 310 sea breams 1 1 0 1 0

132 345 medusa fish 1 0 1 1 0

133 356 squid 1 1 0 1 0

134 380 wedgefishes 1 1 0 1 0

135 399 Saddleback Snapper 1 1 0 1 0

136 425 WHO whales 1 0 1 1 0

Toral 4710775 629117 5339892 136

In Report 4709416 628115 5337531 72

99.97% 99.84% 99.96% 52.94%
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Table A.2: Listing by logbook of the reported catch of all species by longline vessels operating in 
the ETBF (Note, the last column indicates whether the species is reported in main document) 

 
 
  

No. SPC_ID SPC SPC_COMMON_NAME N_FISH ALO2 ALO3 ALO4 ALO5 ALO6 ELINE Report

1 38 YFT Yellowfin Tuna 1351972 276810 84041 184616 527284 273399 5822 1

2 41 ALB Albacore Tuna 1342529 145909 38435 138753 587110 429508 2814 1

3 48 SWO Broad Billed Swordfish 478314 6213 14083 124253 205137 126643 1985 1

4 42 BET Bigeye Tuna 407424 12200 12366 89959 194340 97589 970 1

5 29 DOL Dolphinfish 299392 0 4206 37732 163036 92180 2238 1

6 22 LAN Lancet fish 298103 0 0 952 195997 100145 1009 1

7 55 CEO Rudderfish 281266 0 9283 56007 149769 65754 453 1

8 30 POA Ray's Bream 153666 0 2645 14379 65604 70590 448 1

9 10 BSH Blue Shark 107327 0 9461 35222 37436 24738 470 1

10 49 MLS Striped Marlin 102143 5819 2943 24459 48591 20063 268 1

11 40 SBF Southern Bluefin Tuna 101022 36596 8225 30473 5732 19996 0 1

12 36 BOF Black Oilfish 84534 0 0 0 56331 28203 0 1

13 3 SMA Shortfin Mako 47035 0 1714 12515 18802 13871 133 1

14 59 MIX OTHER 38712 36841 887 454 380 150 0 1

15 39 SKJ Skipjack Tuna 37621 10198 1784 3906 14161 7548 24 1

16 45 WAH Wahoo 25434 0 1420 3676 11589 8648 101 1

17 8 BRO Bronze Whaler 22796 0 2596 4429 11244 4527 0 1

18 23 OPA Moonfish 16768 0 0 934 7151 8671 12 1

19 134 other sharks (AL02) 15179 14472 550 0 8 149 0 1

20 53 SBS Shortbilled Spearfish 12587 0 122 734 7618 4082 31 1

21 50 BLM Blue Marlin 10723 1610 220 3 6908 1908 74 1

22 13 OCS Oceanic Whitetip Shark 9909 0 0 720 7117 1974 98 1

23 95 whaler and weasel sharks 9333 9333 0 0 0 0 0 1

24 52 BKM Black Marlin 8100 0 0 26 5538 2448 88 1

25 56 SUN Ocean Sunfish 7982 0 0 817 4922 2243 0 1

26 47 MAC Mackerel 6608 0 0 67 6481 60 0 1

27 138 Mako shark species 6578 6578 0 0 0 0 0 1

28 35 OIL Oilfish 6448 0 464 1278 4681 15 10 1

29 12 TSH Tiger Shark 5845 0 0 679 3528 1617 21 1

30 15 SPL Scalloped Hammerhead 5760 837 214 1401 3308 0 0 1

31 9 DSK Dusky Shark 4640 0 0 5 1568 2890 177 1

32 14 TIP Blacktip sharks 3652 0 0 908 2328 412 4 1

33 51 SAF Indo-Pacific Sailfish 3531 695 107 375 2090 263 1 1

34 362 GES Snake Mackerel 3496 0 0 0 6 3330 160 1

35 6 TSR Thresher Shark 2924 0 163 619 1329 732 81 1

36 5 POR Porbeagle 2528 0 0 1866 625 37 0 1

37 34 BAR Barracouta 2479 0 194 109 1663 462 51 1

38 359 RAI Skates and rays 1732 0 0 0 1450 282 0 1

39 360 SPN hammerhead sharks 1702 0 0 0 500 1081 121 1

40 146 Spearfish 1222 1222 0 0 0 0 0 1

41 2 CSH Crocodile Shark 1206 0 0 4 622 425 155 1

42 91 RAY Manta Ray 1068 0 0 560 304 177 27 1

43 11 SKS Silky Shark 790 0 0 0 403 265 122 1

44 21 STR Stingray 659 0 0 0 157 474 28 1

45 71 SHT Ogilbys Ghost Shark 629 0 398 231 0 0 0 1

46 96 platypus shark 628 0 628 0 0 0 0 1

47 46 NBF Northern Bluefin Tuna 518 3 0 101 368 46 0 1

48 73 GRE Blue Grenadier 379 0 16 363 0 0 0 0

49 58 SHO Shark "Other" 374 0 0 374 0 0 0 1

50 61 MAR Marlin/Sailfish 369 2 0 0 0 367 0 0

51 43 MAB Butterfly Mackerel 334 0 0 326 8 0 0 1
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Table A.2: (cont’d) 
 

 
 
  

No. SPC_ID SPC SPC_COMMON_NAME N_FISH ALO2 ALO3 ALO4 ALO5 ALO6 ELINE In Report

52 67 SLH Australian Black Shark 328 0 0 328 0 0 0 1

53 26 BKF Black Kingfish 296 0 30 61 188 16 1 0

54 361 MOP Short Sunfish 266 0 0 0 50 0 216 1

55 184 Smoothed hammerhead 265 0 0 0 265 0 0 1

56 102 Moonfish 239 0 239 0 0 0 0 1

57 7 SHS School Shark 219 0 88 125 3 3 0 1

58 353 pufferfish 214 0 0 0 17 186 11 0

59 182 grey reef shark 193 0 0 0 0 193 0 1

60 358 SHO Sharks (other) 182 0 0 0 65 117 0 1

61 44 ABO Australian Bonito 166 0 0 4 104 58 0 0

62 70 SHA Australian Angel Shark 165 0 0 161 4 0 0 1

63 25 OAR Oarfish 123 0 0 50 38 27 8 0

64 37 SFF Southern Frostfish 117 0 1 31 71 14 0 0

65 83 MAS Blue Mackerel 107 0 0 1 5 101 0 1

66 178 whiskery shark 99 0 0 0 0 99 0 1

67 31 SNA Snapper 95 0 0 7 71 17 0 0

68 27 YEK Yellowtail Kingfish 87 0 0 15 33 39 0 0

69 80 BRE Black Bream 83 0 0 83 0 0 0 0

70 63 LFM Longfin Mako 52 0 0 2 16 34 0 1

71 28 RRR Rainbow Runner 51 0 0 21 20 6 4 0

72 24 RIB Dealfish 49 0 0 4 32 6 7 0

73 94 Sorrah shark 48 0 48 0 0 0 0 1

74 54 TBE Blue Eye Trevalla 48 0 3 0 1 44 0 0

75 65 BUL Bull Shark 43 0 0 28 12 3 0 1

76 78 BSP Big-scale Pomfret 32 0 0 32 0 0 0 0

77 85 MKT Eastern Little Tuna 27 0 0 27 0 0 0 0

78 64 SBH Sandbar Shark 22 0 0 0 4 18 0 1

79 157 CAR Cardinal Fish 20 0 0 0 15 5 0 0

80 114 Gemfish 19 0 0 0 12 7 0 0

81 87 DTT Dogtooth Tuna 17 0 0 8 7 2 0 0

82 1 SHY Grey Nurse 15 0 0 0 15 0 0 0

83 317 yelllow-spotted boarfish 13 0 0 0 13 0 0 0

84 75 MAJ Jack Mackerel 13 0 0 0 13 0 0 1

85 367 tunas 13 0 0 0 0 9 4 0

86 79 JOB Jobfish 13 0 0 2 11 0 0 0

87 84 SNM Spanish Mackerel 11 0 0 0 11 0 0 1

88 159 JOR Rosy Jobfish / King Snapper 11 0 0 0 3 8 0 0

89 17 CCS Cookie-cutter Shark 10 0 0 1 8 1 0 1

90 227 "true" dories 10 0 0 0 0 10 0 1

91 18 SRH Roughskin Shark 9 0 0 0 0 9 0 1

92 62 SHL Broadnose Sevengill Shark 8 0 0 8 0 0 0 1

93 93 Australian blacktip shark 8 0 8 0 0 0 0 1

94 115 Frigate mackerel 8 0 0 0 8 0 0 1

95 16 SHD Dogfish 7 0 0 7 0 0 0 0

96 103 Reef ocean perch 6 0 0 0 6 0 0 0

97 111 jackass morwong 6 0 6 0 0 0 0 0

98 354 porcupine fish 6 0 0 0 6 0 0 0

99 32 MOO Moonlighter 6 0 0 2 4 0 0 0

100 60 TUN Tuna/Mackerel 6 0 6 0 0 0 0 0

101 155 trevallies and jacks 5 0 0 0 1 4 0 0

102 4 JAW White Shark 4 0 0 0 4 0 0 1
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Table A.2: (cont’d) 
 

 
 
 
 

No. SPC_ID SPC SPC_COMMON_NAME N_FISH ALO2 ALO3 ALO4 ALO5 ALO6 ELINE In Report

103 82 TRU Bastard Trumpeter 4 0 2 2 0 0 0 0

104 88 LUV Luvaru 4 0 0 2 1 1 0 0

105 250 eastern orange perch 4 0 0 0 4 0 0 0

106 156 MUL Jewfish/Mulloway 4 0 0 0 4 0 0 0

107 264 coral trout 4 0 0 0 4 0 0 0

108 86 LTT Long Tailed Tuna 3 2 0 0 0 1 0 0

109 363 BRA pomfrets 3 0 0 0 2 1 0 0

110 290 green jobfish 3 0 0 0 3 0 0 0

111 209 cod 3 0 0 0 3 0 0 0

112 90 SQO Squid 2 0 0 2 0 0 0 0

113 170 cow shark 2 0 0 0 2 0 0 0

114 216 garfishes 2 0 0 0 2 0 0 0

115 343 large-headed hairtail 2 0 0 0 2 0 0 0

116 368 tonguefish & soleidae 2 0 0 0 2 0 0 0

117 89 TRS Spotted Warehou 1 0 0 1 0 0 0 0

118 351 triggerfishes and leatherjackets 1 0 0 0 0 1 0 0

119 33 BOA Boarfish 1 0 0 0 0 1 0 0

120 265 bar rock cod 1 0 0 0 1 0 0 0

121 81 REM Red Mullet/Blue- lined Goatfish 1 0 0 1 0 0 0 0

122 312 silver bream 1 0 0 0 1 0 0 0

123 68 DFS White-Spotted Dogfish 1 0 0 1 0 0 0 0

124 72 PIK Common Pike Eel 1 0 0 1 0 0 0 0

125 74 GRB Hapuku and Bass Groper-NSW 1 0 0 1 0 0 0 0

126 76 SAM Samsonfish 1 0 0 1 0 0 0 0

127 137 perches, basses, rock cods 1 0 0 0 0 0 1 0

128 158 RAE Southern Eagle Ray 1 0 0 0 0 1 0 0

129 277 bigeye trevally 1 0 0 0 1 0 0 0

130 280 black pomfret 1 0 0 0 1 0 0 0

131 310 sea breams 1 0 0 0 1 0 0 0

132 345 medusa fish 1 0 0 0 0 0 1 0

133 356 squid 1 0 0 0 1 0 0 0

134 380 wedgefishes 1 0 0 0 0 1 0 0

135 399 Saddleback Snapper 1 0 0 0 0 1 0 0

136 425 WHO whales 1 0 0 0 0 1 0 0
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Appendix B. Spatial and temporal and distributions of CPUE 
in the ETBF 

The following are shown in this attachment: 

1. Spatial plots (1x1-degree) of aggregate effort and nominal CPUE over the years 2000-
2013 for each quarter of the year where: 
  Quarter 1 = Jan - Mar 
  Quarter 2 = Apr – Jun 
  Quarter 3 = Jul – Sep 
  Quarter 4 = Oct - Dec 
 

2. Pearson correlation between quarters of the spatial distributions of CPUE for each 
species. (Note, in order to avoid non-representative CPUE values due to a small amount 
of effort the spatial distribution over which the correlation was calculated was limited 
to the 76 one-degree squares where the deployed longline effort was greater than 3000 
hooks in each quarter.) 
 

3. Pearson correlation, by quarter, between the spatial distributions of CPUE for a given 
specie and each other species. (Note: uses the same 76 one-degree squares as for 2 
above.) 
 
Results are shown for the following species: 
 
  1 YFT  Yellowfin Tuna 
  2 BET  Bigeye Tuna 
  3 ALB  Albacore Tuna 
  4 SBT  Skipjack Tuna 
  5 NBT  Northern Bluefin Tuna 
  6 SKJ  Southern Bluefin Tuna 
  7 SWO  Broadbill Swordfish 
  8 STM  Striped Marlin 
  9 BAM  Black Marlin 
10 BUM  Blue Marlin 
11 SBS  Short-billed Spearfish 
12 SAF  Sailfish 
13 DOL  Dolphin Fish 
14 WAH  Wahoo 
15 OPA  Opah 
16 POA  Pomfrets 
17 OIL  Oilfish 
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Figure B.1: Longline Effort 
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Number of  Hooks

30,000 to 124,000   (26)
20,000 to 30,000   (10)
10,000 to 20,000   (17)
1,000 to 10,000  (104)

0 to 1,000  (131)

LONGLINE EFFORT - Qtr=4
Number of  Hooks

30,000 to 115,000   (22)
20,000 to 30,000   (13)
10,000 to 20,000   (29)
1,000 to 10,000  (103)

0 to 1,000  (112)
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Figure B.2a: Yellowfin Tuna 
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CPUE: YELLOWFIN TUNA - Qtr=1
Number per 1000 Hooks

8 to 50   (55)
6 to 8   (23)
4 to 6   (34)
2 to 4   (70)
0 to 2  (123)

CPUE: YELLOWFIN TUNA - Qtr=3
Number per 1000 Hooks

8 to 50  (73)
6 to 8  (23)
4 to 6  (51)
2 to 4  (61)
0 to 2  (41)

CPUE: YELLOWFIN TUNA - Qtr=2
Number per 1000 Hooks

8 to 50   (56)
6 to 8   (18)
4 to 6   (31)
2 to 4   (71)
0 to 2  (112)

CPUE: YELLOWFIN TUNA  - Qtr=4
Number per 1000 Hooks

8 to 50  (57)
6 to 8  (22)
4 to 6  (47)
2 to 4  (75)
0 to 2  (78)
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Figure B.2b:Bigeye Tuna 
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CPUE: BIGEYE TUNA - Qtr=1
Number per 1000 Hooks

4 to 40   (9)
3 to 4   (17)
2 to 3   (44)
1 to 2   (99)
0 to 1  (136)

CPUE: BIGEYE TUNA - Qtr=3
Number per 1000 Hooks

4 to 40  (27)
3 to 4  (18)
2 to 3  (76)
1 to 2  (47)
0 to 1  (81)

CPUE: BIGEYE TUNA - Qtr=2
Number per 1000 Hooks

4 to 40  (72)
3 to 4  (43)
2 to 3  (41)
1 to 2  (52)
0 to 1  (80)

CPUE: BIGEYE TUNA - Qtr=4
Number per 1000 Hooks

4 to 40   (9)
3 to 4   (6)
2 to 3   (27)
1 to 2   (71)
0 to 1  (166)
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Figure B.2c: Albacore Tuna 
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CPUE: ALBACORE TUNA - Qtr=1
Number per 1000 Hooks

10  to 90   (33)
7.5 to 10   (1)
5  to 7.5   (13)
2.5 to 5   (44)
0  to 2.5  (214)

CPUE: ALBACORE TUNA - Qtr=3
Number per 1000 Hooks

10  to 90   (135)
7.5 to 10   (17)
5  to 7.5   (19)
2.5 to 5   (26)
0  to 2.5   (52)

CPUE: ALBACORE TUNA - Qtr=2
Number per 1000 Hooks

10  to 90   (88)
7.5 to 10   (36)
5  to 7.5  (43)
2.5 to 5   (40)
0  to 2.5  (81)

CPUE: ALBACORE TUNA - Qtr=4
Number per 1000 Hooks

10  to 90   (35)
7.5 to 10   (5)
5  to 7.5   (14)
2.5 to 5   (55)
0  to 2.5  (170)
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Figure B.2d: Skipjack Tuna 
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CPUE: SKIPJACK TUNA - Qtr=1
Number per 1000 Hooks

0.04 to 5   (63)
0.03 to 0.04   (7)
0.02 to 0.03   (5)
0.01 to 0.02   (14)
0  to 0.01  (216)

CPUE: SKIPJACK TUNA - Qtr=3
Number per 1000 Hooks

0.04 to 6.91  (111)
0.03 to 0.04   (8)
0.02 to 0.03   (7)
0.01 to 0.02   (2)
0  to 0.01  (121)

CPUE: SKIPJACK TUNA - Qtr=2
Number per 1000 Hooks

0.04 to 6.92   (81)
0.03 to 0.04   (9)
0.02 to 0.03   (3)
0.01 to 0.02   (4)
0  to 0.01  (191)

CPUE: SKIPJACK TUNA - Qtr=4
Number per 1000 Hooks

0.04 to 1.46   (66)
0.03 to 0.04   (10)
0.02 to 0.03   (8)
0.01 to 0.02   (16)
0  to 0.01  (179)
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Figure B.2e: Southern Bluefin 
Tuna 
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CPUE: SOUTHERN BLUEFIN - Qtr=1
Number per 1000 Hooks

0.4 to 35   (2)
0.1 to 0.2   (1)
0  to 0.1  (302)

CPUE: SOUTHERN BLUEFIN - Qtr=3
Number per 1000 Hooks

0.5 to 35   (27)
0.2 to 0.3   (3)
0.1 to 0.2   (4)
0  to 0.1  (215)

CPUE: SOUTHERN BLUEFIN - Qtr=2
Number per 1000 Hooks

0.4 to 35   (20)
0.3 to 0.4   (4)
0.2 to 0.3   (1)
0.1 to 0.2   (1)
0  to 0.1  (262)

CPUE: SOUTHERN BLUFIN - Qtr=4
Number per 1000 Hooks

0.4 to 35   (14)
0.2 to 0.3   (1)
0.1 to 0.2   (4)
0  to 0.1  (260)
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Figure B.2f: Northern Bluefin 
Tuna 
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CPUE: NORTHERN BLUEFIN - Qtr=1
Number per 1000 Hooks

0.04 to 0.16   (2)
0.03 to 0.04   (1)
0.02 to 0.03   (4)
0.01 to 0.02   (9)
0  to 0.01  (289)

CPUE: NORTHERN BLUEFIN - Qtr=3
Number per 1000 Hooks

0.04 to 0.56   (22)
0.03 to 0.04   (10)
0.02 to 0.03   (16)
0.01 to 0.02   (27)
0  to 0.01  (174)

CPUE: NORTHERN BLUEFIN - Qtr=2
Number per 1000 Hooks

0.04 to 0.87   (7)
0.03 to 0.04   (2)
0.02 to 0.03   (2)
0.01 to 0.02   (6)
0  to 0.01  (271)

CPUE: NORTHERN BLUEFIN - Qtr=4
Number per 1000 Hooks

0.04 to 0.15   (1)
0.03 to 0.04   (1)
0.01 to 0.02   (3)
0  to 0.01  (274)
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Figure B.2g: Broadbill Swordfish 
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CPUE: BROADBILL SWORDFISH - Qtr=1
Number per 1000 Hooks

8 to 45   (69)
6 to 8   (31)
4 to 6   (41)
2 to 4   (32)
0 to 2  (132)

CPUE: BROADBILL SWORDFISH - Qtr=3
Number per 1000 Hooks

8 to 45   (40)
6 to 8   (27)
4 to 6   (40)
2 to 4   (36)
0 to 2  (106)

CPUE: BROADBILL SWORDFISH - Qtr=2
Number per 1000 Hooks

8 to 45   (44)
6 to 8   (25)
4 to 6   (44)
2 to 4   (41)
0 to 2  (134)

CPUE: BROADBILL SWORDFISH - Qtr=4
Number per 1000 Hooks

8 to 45   (35)
6 to 8   (34)
4 to 6   (40)
2 to 4   (37)
0 to 2  (133)
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Figure B.2h: Striped Marlin 
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CPUE: STRIPED MARLIN - Qtr=1
Number per 1000 Hooks

0.8 to 7   (44)
0.6 to 0.8   (26)
0.4 to 0.6   (60)
0.2 to 0.4   (59)
0  to 0.2  (116)

CPUE: STRIPED MARLIN - Qtr=3
Number per 1000 Hooks

0.8 to 7   (20)
0.6 to 0.8  (33)
0.4 to 0.6  (43)
0.2 to 0.4  (57)
0  to 0.2  (96)

CPUE: STRIPED MARLIN - Qtr=2
Number per 1000 Hooks

0.8 to 7   (29)
0.6 to 0.8   (11)
0.4 to 0.6   (38)
0.2 to 0.4   (87)
0  to 0.2  (123)
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Figure B.2i: Black Marlin 
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CPUE: BLACK MARLIN - Qtr=1
Number per 1000 Hooks

0.4 to 13   (8)
0.3 to 0.4   (5)
0.2 to 0.3   (11)
0.1 to 0.2   (38)
0  to 0.1  (243)

CPUE: BLACK MARLIN - Qtr=3
Number per 1000 Hooks

0.4 to 3   (5)
0.3 to 0.4   (2)
0.2 to 0.3   (2)
0.1 to 0.2   (10)
0  to 0.1  (230)

CPUE: BLACK MARLIN - Qtr=2
Number per 1000 Hooks

0.4 to 13   (3)
0.2 to 0.3   (6)
0.1 to 0.2   (15)
0  to 0.1  (264)

CPUE: BLACK MARLIN - Qtr=4
Number per 1000 Hooks

0.4 to 13   (28)
0.3 to 0.4   (2)
0.2 to 0.3   (10)
0.1 to 0.2   (15)
0  to 0.1  (224)
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Figure B.2j: Blue Marlin 
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CPUE: BLUE MARLIN - Qtr=1
Number per 1000 Hooks

0.4 to 15   (10)
0.3 to 0.4   (10)
0.2 to 0.3   (23)
0.1 to 0.2   (45)
0  to 0.1  (217)

CPUE: BLUE MARLIN - Qtr=3
Number per 1000 Hooks

0.4 to 15   (9)
0.3 to 0.4   (2)
0.2 to 0.3   (2)
0.1 to 0.2   (10)
0  to 0.1  (226)

CPUE: BLUE MARLIN - Qtr=2
Number per 1000  Hooks

0.4 to 15   (4)
0.3 to 0.4   (2)
0.2 to 0.3   (8)
0.1 to 0.2   (18)
0  to 0.1  (256)

CPUE: BLUE MARLIN - Qtr=4
Number per 1000 Hooks

0.4 to 15   (23)
0.3 to 0.4   (4)
0.2 to 0.3   (16)
0.1 to 0.2   (17)
0  to 0.1  (219)
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Figure B.2k: Short-billed 
Spearfish 
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CPUE: SHORT-BILLED SPEARFISH - Qtr=1
Number per 1000 Hooks

0.4 to 3   (8)
0.3 to 0.4   (6)
0.2 to 0.3   (9)
0.1 to 0.2   (49)
0  to 0.1  (233)

CPUE: SHORT-BILLED SPEARFISH - Qtr=3
Number per 1000 Hooks

0.4 to 3   (25)
0.3 to 0.4   (14)
0.2 to 0.3   (13)
0.1 to 0.2   (36)
0  to 0.1  (161)

CPUE: SHORT-BILLED SPEARFISH - Qtr=2
Number per 1000 Hooks

0.4 to 3   (18)
0.3 to 0.4   (5)
0.2 to 0.3   (10)
0.1 to 0.2   (34)
0  to 0.1  (221)

CPUE: SHORT-BILLED SPEARFISH - Qtr=1
Number per 1000 Hooks

0.4 to 3   (10)
0.3 to 0.4   (7)
0.2 to 0.3   (19)
0.1 to 0.2   (54)
0  to 0.1  (189)
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Figure B.2l: Sailfish 
 
 
Quarter 1 

 
 
Quarter 3 

 
 

 
 
 
Quarter 2 

 
 
Quarter 4 

 

  

CPUE: SAILFISH - Qtr=1
Number per 1000 Hooks

0.04 to 5.13   (57)
0.03 to 0.04   (18)
0.02 to 0.03   (19)
0.01 to 0.02   (20)
0  to 0.01  (191)

CPUE: SAILFISH - Qtr=3
Number per 1000 Hooks

0.04 to 0.35   (10)
0.03 to 0.04   (3)
0.02 to 0.03   (4)
0.01 to 0.02   (11)
0  to 0.01  (221)

CPUE: SAILFISH - Qtr=2
Number per 1000 Hooks

0.04 to 2.73   (24)
0.03 to 0.04   (5)
0.02 to 0.03   (7)
0.01 to 0.02   (20)
0  to 0.01  (232)

CPUE: SAILFISH - Qtr=4
Number per 1000 Hooks

0.04 to 3.31   (30)
0.03 to 0.04   (5)
0.02 to 0.03   (11)
0.01 to 0.02   (27)
0  to 0.01  (206)
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Figure B.2m: Dolphin Fish 
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CPUE: DOLPHIN FISH - Qtr=1
Number per 1000 Hooks

2  to 32   (95)
1.5 to 2   (35)
1  to 1.5  (42)
0.5 to 1   (55)
0  to 0.5  (78)

CPUE: DOLPHIN FISH - Qtr=3
Number per 1000 Hooks

2  to 32   (47)
1.5 to 2   (5)
1  to 1.5   (26)
0.5 to 1   (53)
0  to 0.5  (118)

CPUE: DOLPHIN FISH - Qtr=2
Number per 1000 Hooks

2  to 32   (75)
1.5 to 2   (31)
1  to 1.5  (38)
0.5 to 1   (50)
0  to 0.5  (94)

CPUE: DOLPHIN FISH - Qtr=4
Number per 1000 Hooks

2  to 32   (62)
1.5 to 2   (16)
1  to 1.5   (31)
0.5 to 1   (42)
0  to 0.5  (128)
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Figure B.2n: Wahoo 
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CPUE: WAHOO - Qtr=1
Number per 1000 Hooks

0.4 to 4   (74)
0.3 to 0.4   (5)
0.2 to 0.3   (12)
0.1 to 0.2   (35)
0  to 0.1  (179)

CPUE: WAHOO - Qtr=3
Number per 1000 Hooks

0.4 to 4   (37)
0.3 to 0.4   (8)
0.2 to 0.3   (7)
0.1 to 0.2   (14)
0  to 0.1  (183)

CPUE: WAHOO - Qtr=2
Number per 1000 Hooks

0.4 to 4   (41)
0.3 to 0.4   (7)
0.2 to 0.3   (9)
0.1 to 0.2   (31)
0  to 0.1  (200)

CPUE: WAHOO - Qtr=4
Number per 1000 Hooks

0.4 to 4   (61)
0.3 to 0.4   (9)
0.2 to 0.3   (11)
0.1 to 0.2   (15)
0  to 0.1  (183)
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Figure B.2o: Opah 
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CPUE: OPAH - Qtr=1
Number per 1000 Hooks

0.4 to 3   (30)
0.3 to 0.4   (13)
0.2 to 0.3   (23)
0.1 to 0.2   (47)
0  to 0.1  (192)

CPUE: OPAH - Qtr=3
Number per 1000 Hooks

0.4 to 3   (29)
0.3 to 0.4   (8)
0.2 to 0.3   (9)
0.1 to 0.2   (22)
0  to 0.1  (181)

CPUE: OPAH - Qtr=2
Number per 1000 Hooks

0.4 to 3   (7)
0.3 to 0.4   (9)
0.2 to 0.3   (11)
0.1 to 0.2   (27)
0  to 0.1  (234)

CPUE: OPAH - Qtr=4
Number per 1000 Hooks

0.4 to 3   (36)
0.3 to 0.4   (7)
0.2 to 0.3   (14)
0.1 to 0.2   (31)
0  to 0.1  (191)
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Figure B.2p: Pomfrets 
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CPUE: POMFRETS - Qtr=1
Number per 1000 Hooks

0.4 to 40   (8)
0.3 to 0.4   (5)
0.2 to 0.3   (6)
0.1 to 0.2   (12)
0  to 0.1  (274)

CPUE: POMFRETS - Qtr=3
Number per 1000 Hooks

0.4 to 40   (74)
0.3 to 0.4   (6)
0.2 to 0.3   (13)
0.1 to 0.2   (15)
0  to 0.1  (141)

CPUE: POMFRETS - Qtr=2
Number per 1000 Hooks

0.4 to 40   (21)
0.3 to 0.4   (2)
0.2 to 0.3   (6)
0.1 to 0.2   (12)
0  to 0.1  (247)

CPUE: POMFRETS - Qtr=4
Number per 1000 Hooks

0.4 to 40   (40)
0.3 to 0.4   (5)
0.2 to 0.3   (8)
0.1 to 0.2   (12)
0  to 0.1  (214)
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Figure B.2q: Oilfish 
 
 
Quarter 1 

 
 
Quarter 3 

 
 

 
 
 
Quarter 2 

 
 
Quarter 4 

 

 
 

CPUE: OILFISH - Qtr=1
Number per 1000 Hooks

4 to 26   (85)
3 to 4   (33)
2 to 3   (31)
1 to 2   (47)
0 to 1  (109)

CPUE: OILFISH - Qtr=3
Number per 1000 Hooks

4 to 26  (52)
3 to 4  (17)
2 to 3  (31)
1 to 2  (52)
0 to 1  (97)

CPUE: OILFISH - Qtr=2
Number per 1000 Hooks

4 to 26   (58)
3 to 4   (26)
2 to 3   (38)
1 to 2   (59)
0 to 1  (107)

CPUE: OILFISH - Qtr=4
Number per 1000 Hooks

4 to 26   (28)
3 to 4   (11)
2 to 3   (41)
1 to 2   (69)
0 to 1  (130)
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Appendix C. Clustering by deployed fishing gears 

Numerical data (such as catch number) have meaning as a measurement and as such a 
‘distance’ (or dissimilarity measure for use in a cluster analysis) between any two such data 
points is easy to define.  On the other hand, for categorical data which represent characteristics 
such as a fish’s gender, reproductive stage, or the types of gears used in a fishing operation, it 
is not obvious how one define a ‘distance’ or ‘dissimilarity’ measure. One can associate 
categorical data with numerical values (such as “1” indicating male and “2” indicating female) 
but these numbers don’t have mathematical meaning. In order to define a ‘distance’ measure 
for clustering by gear-type the following approach was used.  
 
First, the following gears-settings were identified: 

A) Hooks-per-float 7 levels (<8, 8-9, 10-11,12-14,15-19,20-29,30-40) 
B) Start-time  6 levels (0-4am, 4-8am, 8-12am, 0-4pm, 4-8pm, 8-12pm) 
C) Bait   8 levels 
D) Light-stick usage 7 levels (0-19%, 20-39%, 40-59%, 60-79%, 80-99%, 100%) 

Second, for each set the use of each gear and level was coded by a series of 0’s and 1’s. This 
provides a string of 28 characters long consisting of 4 ‘1’s and 24 ‘0’s for each data record.  
Third, the Jaccard measure of similarity was then calculated between each set where the 
Jaccard coefficient J is defined as the number of variables that are coded as 1 for both states 
divided by the number of variables that are coded as 1 for either or both states. Since 
dissimilarity measures are required by the cluster procedure, the Jaccard measure of 
dissimilarity (1-J) is selected. Finally, using this distance measure a hierarchical cluster 
analysis using the Ward method is undertaken on each of the data records.  
 
As with the cluster analysis based on species composition, the above analysis was first carried 
out separately for each month and then as a single analysis across all records combined. For 
the monthly analysis seven cluster-types were identified for each month and the aggregate 
species composition for each cluster-type was calculated. These 84 species-compositions (7 
clusters x 12 months) were then subject to a second cluster analysis in order to identify a set of 
dominant cluster-types. Based on an inspection of the Pseudo-F clustering criterion for each 
month (c.f. Figure C.1) this final number of clusters was set to be nine. A pictorial 
representation of the nine clusters for each month based on plots of the first two canonical 
variables are shown in Figure C.2.   
 
The distribution of the 84 monthly cluster-types identified in stage 1 of the analysis across the 
nine cluster types identified in second cluster analysis based on species-composition are shown 
in Figure C.3. For each cluster-type the catch composition based on 11 species is shown. Note, 
where more than one of the 7 cluster-types identified for a month related to the same stage-2 
cluster-type, these clusters were combined into an single cluster. This resulted in a total of 52-
monthly clusters being distributed across the 12 months.  
 
The distribution of the nine cluster types (as a percentage of sets) across each year and month 
are shown in Figures C.4 while the distribution of settings for four gear-types (bait-type, hooks-
per-float, light-stick usage and set start-time) across the seven cluster–types is shown in Figure 
C.5. While this latter figure shows that a large range of gear-settings are associated with each 
cluster-type, again certain combinations of gear-settings are more likely to be associated with 
certain cluster-types (and resulting catches) than others.  
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Figure C.1: Clustering criteria used to identify the appropriate final number of clusters based on 
clustering the 84 monthly cluster types identified in the first stage of the gear-based analysis. 

 
 

 

Figure C.2: Pictorial representation of the nine cluster types based on plots of the first two 
canonical variables for the 84 monthly gear-based clusters. 

 
 
 
Finally, the catch composition of the nine cluster-types identified in the clustering the 84 
monthly clusters (Figure C.6a) can be compared with the catch composition of the nine cluster-
types identified directly by a single analysis of all 108,650 records (Figure C.6b). 
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Figure C.3: Distribution of the 84 monthly cluster types identified in stage 1 of the gear-based 
analysis across the nine cluster types identified in the second cluster analysis. 
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Figure C.4: Distribution of nine cluster types (percentage of sets) based on the gear-based cluster 
analysis across (a) month, and (b) year.  
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Figure C.5: Distribution of gear-settings across the nine gear-based cluster types identified in the 2-stage monthly analysis. 
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Figure C.6: Catch composition of the nine clusters based on (a) the analysis by month, and (b) the 
single analysis of all sets. 
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Appendix D. Spatial Dynamics Factor Analysis Model 

 

SDFA method 
We explored the potential of a method known as Spatial Dynamic Factor Analysis (SDFA) (Thorson 
et al. 2016) to provide improved indices of abundance. The approach simultaneously models several 
effects on catch rates in a statistically coherent way, and has the potential to provide robust, precise, 
and reliable indices of abundance. Issues that affect catch rates and which are included in the model 
include: 

i)  spatial variation in the density of each species;  
ii)  auto-correlated spatiotemporal variation for each species, since species distributions change 

through time;  
iii)  correlations in spatiotemporal variation among species, such as those caused by species 

having similar habitat requirements; and  
iv) correlated catch rates among species arising from the behaviour of the fisheries. 

The method explains species density as a log-linear combination of factors, in which each factor 
represents unobserved spatial variation in density for a species assemblage.  
 
The SDFA method is very different from the two-stage clustering-based models, otherwise used in 
this project. The SDFA analysis is done in a single model, so variation in one part of the model (e.g. 
time trends in abundance) is allowed for elsewhere in the model (e.g. in the allocation of effort among 
fishing strategies).  
 
Thorson et al. (2016) report the following advantages for the SDFA method:  

1. Uncertainty in the identification of fishing tactics is propagated throughout the analysis, 
rather than being ignored in the regression analysis.  

2. The design of the overall model and the interactions among components are clearly 
expressed.  

3. The number of subjective decisions is reduced, such as the number of clusters to use, the 
choice of data transformation when estimating fishing tactics.  

4. Changes in relative abundance among species are accounted for in the estimation of fishing 
tactics.  

However, there are also disadvantages. The model is computationally demanding, which limits the 
ability to take covariates into account in the large datasets used for CPUE standardization. In addition, 
the approach is new (published in April 2016) and still under development, and software changes 
occur regularly. For example, the SpatialDFA package is no longer being actively maintained and a 
new package VAST is recommended instead (Jim Thorson, personal communication). VAST can do 
almost everything that the SpatialDFA package does, but it may run slower, and was not tested here. 
Code for the SDFA model itself was obtained from the SpatialDFA package in the github repository 
https://github.com/James-Thorson/spatial_DFA, and other code was based on the example analyses 
therein.  
 
The aim of the analyses undertaken and outlined below was to explore the viability of the approach 
given the large size of the ETBF datasets and the number of species involved; to determine RAM and 
time requirements for analysis, and to see whether the results were reasonable. We did not aim to 
optimise the approach by including covariates known to be important, such as gear factors.  
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Methods 
We conducted analyses using the SDFA model. For a full description of the approach see Thorson et 
al. (2016).  
 
Paraphrasing Thorson et al. (2016), SDFA models the catch for species s based on the catch equation tO = �O#ONO, where q is catchability, f is nominal fishing effort after accounting for small-scale 
targeting, and d is density. Density, fishing mortality and catchability are modelled as follows:  

log�NO'X, n(
 = feO,9¹9'X, n(º
9T� +f»O,q7q'X, n(¼

qT�  

log�#O'X, n(
 = fgO,½¾½'"(¿
½T�  

log��O'X, n(
 = f=O,qaq'"(¼
qT�  

As,j is an S by J matrix of factors on log-density, ψj(a,t) is the value of factor j in area a at time t, xl is 
the l-th measured variable at site s and time t, and ϒs,l is the effect of covariate l on density for species 
s. Bs,k is an S by K matrix representing the impact on species s of small-scale variables ¾½'"(, such 
that ¾½'"( is one or more latent variables representing variation in fishing tactics. =O,q is the effect of 
covariate l onb catch rates from species s, and aq'"( is the l-th measured variable affecting catch rates 
for fishing occasion i. Residual variation follows the zero-inflated Gamma distribution.  
 
Analyses were carried out for the following datasets:  

i) the reduced simulated ETBF dataset (N3) with 31,959 rows of data, using the deterministic 
catches;  

ii)  the full simulated ETBF dataset with 113,711 rows of data, using the deterministic D-
catches;  

iii)  the full simulated ETBF dataset, using 10 realisations of the randomized R-catches (called 
hear-after the R10 results).  

Set locations, specified in the dataset by latitude and longitude, were modelled with a 139 location 
mesh using INLA. Data were entered into the model as catch rates (number per hook per set). The 
number of spatial factors J, which represent unobserved spatial variation in density for a species 
assemblage, was set to 4. The number of targeting factors K, which represent small-scale 
spatiotemporal variation in targeting of species assemblages, was set to 3.  
 
To increase computation speed, covariates that may affect catchability, such as HBF and set time, 
were not included in the standardization. Time variation was annual, and quarterly variation in 
catchability or spatial effects was not included. Models were run using Microsoft R Open with R 
version 3.3.2 and a CRAN mirror snapshot from 1 November 2016. We used the Intel Math Kernel 
Library for parallel mathematical computing.  The processor was Intel core i7-6700HQ with 64 GB 
RAM, running 64 bit Windows 10 Pro.  
 
Results  
All models ran successfully. The model for the reduced N3 deterministic dataset ran for 1.4 hours, 
while the full deterministic ETBF dataset run took 6.5 hours. The full random ETBF datasets took 
similar times, averaging 6.7 hours and with a range from 5.4 to 7.3 hours. Memory use was reasonable 
with up to 6.8 GB per model run for the full dataset, varying through each run. In the following we 
only report those results fitted to the full simulated EBF dataset. 
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A comparison of the annual abundance indices based on the SDFA method with the assumed and 
nominal model indices is shown in Figure D.1. Performance of the SDFA method fitted to the 10 
realisations of the randomized R-catches in comparison with the Group-A models (fitted to the same 
set of 10 realisations) varied by species (Figure D.2). The SDFA method had the second-best 
performance for YFT, but worst for DOL and (particularly) SWO. Averaging errors across all species 
gave the lowest rank to the SDFA method for each error type (Figure D.3). Similar results (not shown) 
were obtained for the performance of the SDFA method fitted to the single realisations of the 
deterministic D-catches in comparison with the Group-A models, though the relative performance of 
the SDFA model was found to be best (4th) for ALB.  
 
Figure D.1: Comparisons by species of annual indices between true, nominal, and SDFA model results. 
The SDFA-R10 model indices are the means of the 10 model runs using random data, while the SDFA-
D model indicates the index for the single run using the deterministic catches.  
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Figure D.2: Comparisons among the Group-A and SDFA models by species, for the four error types. 
All results based on fitting each model to the 10 realisations of the ETBF dataset using the random 
catches.  

 
 
Figure D.3: Comparison of the Species Ranked Scores (SRS) for the Group-A and SDFA models by 
species, when fitted to the 10 realisations of the ETBF dataset using the random catches.  
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Discussion 
The SDFA method appears promising. Results were generally worse than those for the Group-A 
models, indicating that the approach, as implemented here, requires more development before it can 
be used for management advice. Resource use was less than we expected with analyses completing 
in about 6 hours for a large dataset of over 100,000 records.  
 
However, the worse model performance may be caused more by aspects of the model implementation 
than by the modelling approach itself. The SDFA model structure differed from the Group A models 
in several important ways, quite separate from the major difference in statistical approach. Seasonal 
variation (Qtr and its interactions with Year and Area) was not accounted for, with Year the only 
modelled time effect. Seasonal effects are important for these species. The gear effects HPF and 
STIME were also omitted, so that the structure of the model was effectively CPUE ~ Year*Area. 
However, gear effects were omitted in the Group A models with subscript a, and these models also 
outperformed the SDFA model. The SDFA model also has a more complex spatial representation 
than the standard models, and incorporates time-area effects.  
 
Our limited exploration of this new modelling approach suggest that it has potential, and we 
recommend further work to explore and develop its capabilities.  
 
Code 
# File structure 

TmbFile = system.file("executables", package="SpatialDFA") 

basedir <- "~/SDFA_memtests/" 

setwd(basedir) 

DateFile = paste(getwd(),'/',Sys.Date(),'/',sep='') 

dir.create(DateFile) 

setwd(DateFile) 

 

# Settings 

Version = "spatial_dfa_v18" 

 

# Settings 

Nfactors = 4    # spatial factors 

Nobsfactors = 3   # targeting factors 

 

# Libraries 

library( INLA ) 

library( TMB ) 

 

# Specific libraries 

library( SpatialDFA ) 

setMKLthreads(1) 

 

# Compile TMB model 

setwd( TmbFile ) 

compile( paste0(Version,".cpp") ) 

 

# Data 

dsets <- list.files(path=paste0(basedir,"../../Robs100datasets/"),pattern="datagen_",full.names = TRUE) 

for(ds in 1:3) { 

  nm <- read.table( dsets[ds],skip=5,nrows=1,stringsAsFactors = FALSE) 
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  Data = read.table( dsets[ds],header=FALSE,col.names=nm,skip=7 ) 

  #Data = read.table( paste0(basedir,"../../Robs100datasets/datagen_1.txt"),header=TRUE ) 

  Data = Data[,1:23] 

  Data = cbind(Data, 'Lat'=Data[,'LAT'], 'Lon'=Data[,'LON']) 

  # lat_set 

  Data$Lat = Data$Lat - 12 

  Data$Lon = Data$Lon - 144 

  latlong_set = unique(paste( Data[,'Lat'], Data[,'Lon'], sep="_")) 

  lat_set = as.numeric(sapply( latlong_set, FUN=function(Char){strsplit(Char,"_")[[1]][1]})) 

  long_set = as.numeric(sapply( latlong_set, FUN=function(Char){strsplit(Char,"_")[[1]][2]})) 

  loc_xy=data.frame(x=lat_set,y=long_set) 

  # Rename stuff 

  Data$FOP_ID <- factor(Data$FOP_ID) 

  YRs = sort(unique(Data[,'YEAR'])) 

  DF_blank = data.frame( 'sitenum'=match(paste( Data[,'Lat'], Data[,'Lon'], sep="_"),latlong_set), 'spp'=NA, 

'year'=match(Data[,'YEAR'],YRs), 'catch'=NA, 'TowID'=Data[,'FOP_ID']) 

  #  DF_blank = data.frame( 'sitenum'=match(paste( Data[,'Lat'], Data[,'Lon'], sep="_"),latlong_set), 

'spp'=NA, 'year'=Data[,'yr'], 'catch'=NA, 'TowID'=Data[,'X']) # try this later 

  DF = NULL 

  for( i in 1:5 ){ 

    Temp = DF_blank 

    Temp[,'spp'] = c("ALB_R", "BET_R", "DOL_R", "SWO_R", "YFT_R")[i] 

    Temp[,'catch'] = Data[,Temp[1,'spp']] / Data[,'HOOKS'] 

    DF = rbind(DF, Temp) 

  } 

  DF[,'spp'] = as.factor(DF[,'spp']) 

  EncounterFunction = 1 

  estimation_method = c("mesh","grid")[1] 

   

  ## Build SPDE object using INLA 

  mesh = inla.mesh.create( cbind(long_set, lat_set), plot.delay=NULL, refine=FALSE )  # loc_samp  ;  

,max.edge.data=0.08,max.edge.extra=0.2 

  plot.inla.mesh(mesh) 

   

  # Bundle inputs 

  if(estimation_method=="grid") { 

    InputList = MakeInput_Fn( Version=Version, DF=DF, Nfactors=Nfactors, Nobsfactors=Nobsfactors, 

loc_xy=loc_xy, EncounterFunction=EncounterFunction,method=estimation_method ) 

  } else { 

    InputList = MakeInput_Fn( Version=Version, DF=DF, Nfactors=Nfactors, Nobsfactors=Nobsfactors, 

loc_xy=loc_xy, inla_mesh=mesh, a_n=rep(1,mesh$n), EncounterFunction=EncounterFunction ) 

  } 

  InputList$TmbData$a_n[InputList$TmbData$a_n==0] <- 1 

  InputList$Map$gamma_ptl = NULL 

   

  # Link TMB 

  dyn.load( dynlib(Version) ) 

   

  # Initialization 

  obj <- MakeADFun(data=InputList[["TmbData"]], parameters=InputList[["TmbParams"]], 

random=InputList[["Random"]], map=InputList[["Map"]], hessian=FALSE, inner.control=list(maxit=1000) ) 

  obj$control <- c( obj$control, list(trace=1, parscale=1, REPORT=1, reltol=1e-12, maxit=100) ) 

  obj$env$inner.control <- c(obj$env$inner.control, list("step.tol"=1e-8, "tol10"=1e-6, "grad.tol"=1e-8) ) 
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  # Bounds 

  Upper = rep(Inf, length(obj$par) ) 

    Upper[grep("rho_j",names(obj$par))] = 0.99 

  Lower = rep(-Inf, length(obj$par) ) 

    Lower[grep("rho_j",names(obj$par))] = -0.99 

   

  # Run model 

  #  Rprof(tf <- "rprof.log", memory.profiling=TRUE) 

  Start_time = Sys.time() 

  for(i in 1:2) opt = nlminb(start=obj$env$last.par.best[-c(obj$env$random)], objective=obj$fn, 

gradient=obj$gr, upper=Upper, lower=Lower, control=list(eval.max=1e4, iter.max=1e4, trace=1, rel.tol=1e-

14) ) 

  opt[["final_gradient"]] = obj$gr( opt$par ) 

  opt[["total_time_to_run"]] = Sys.time() - Start_time 

  print(opt[["total_time_to_run"]]) 

  Report = obj$report() 

  SD = sdreport( obj, bias.correct=FALSE ) 

   

  # Loadings matrix 

  L_pj = Report$L_pj 

  dimnames(L_pj) = list(levels(DF[,'spp']), paste("Factor",1:Nfactors)) 

   

  # Extract factors 

  Psi = Report$psi_njt 

   

  # Rotate 

  if(Nfactors>1){ 

    RotateList = Rotate_Fn( L_pj=L_pj, Psi=Psi, RotationMethod="PCA", testcutoff=1e-5 ) 

    L_pj_rot = RotateList[["L_pj_rot"]] 

    Psi_rot = RotateList[["Psi_rot"]] 

  }else{ 

    L_pj_rot = L_pj 

    Psi_rot = Psi 

  } 

  opt[["total_time_to_run_plus"]] = Sys.time() - Start_time 

   

  # Save stuff 

  Save = list("opt"=opt, "Report"=Report, "Sdreport"=SD, "ParHat"=obj$env$parList(opt$par), 

"TmbData"=InputList[["TmbData"]]) 

  save(Save, file=paste0(DateFile,"Save",ds,"_",estimation_method,".RData")) 

  capture.output( opt, file=paste0(DateFile,"Opt",ds,"_",estimation_method,".txt")) 

  capture.output( SD, file=paste0(DateFile,"Sdreport",ds,"_",estimation_method,".txt")) 

}  
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