Golden Fish: Evaluating and optimising the biological, social and economic returns of small-scale fisheries: Supplementary material

James Tweedley, Clara Obregón, Michael Hughes, Neil Loneragan, Alan Cottingham, Denis Abagna, Malcolm Tull, Sarah Beukes, and Anne Garnett
© Year Fisheries Research and Development Corporation.
All rights reserved.

Golden Fish: Evaluating and optimising the biological, social and economic returns of small-scale fisheries

2016/034

2023

Ownership of Intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation Murdoch University.

This publication (and any information sourced from it) should be attributed to Tweedley, J.R., Obregón, C., Hughes, M., Loneragan, N.R., Cottingham, A., Abagna, D., Tull, M., Beukes, S.J. \& Garnett, A.M. Murdoch University, 2023, Golden Fish: Evaluating and optimising the biological, social and economic returns of small-scale fisheries, Perth, August. CC BY 3.0.

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms.

Inquiries regarding the licence and any use of this document should be sent to: frdc@frdc.com.au

Disclaimer

The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC.

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry.

Acknowledgement of Country

We acknowledge the Traditional Custodians of Australia and their continuing connection to land and sea, waters, environment and community. We pay our respects to the Traditional Custodians of the lands we live and work on, their culture, and their Elders past and present.

Researcher Contact Details		FRDC Contact Details	
Name:	James Tweedley	Address:	25 Geils Court
Address:	Murdoch University, 90 South Street, Murdoch, WA		Deakin ACT 2600
	6150	Phone:	02 6122 2100
Phone:	0893602823	Email:	frdc@frdc.com.au
Fax:		Web:	www.frdc.com.au
Email:	j.tweedley@murdoch.edu.au		

1.2. Heterogeneity among recreational fishers' motivations for utilising two estuarine fisheries

Table S1.2.1. Number of responses (n) and the frequency of occurrence (\%) of responses about the demographics of Blue Swimmer Crabs and Black Bream fishers. Data obtained from respondents that answered all questions in the closed question online survey.

	Blue Swimmer Crab		Black Bream	
Gender	n	\%	n	\%
Male	298	83.94	99	93.40
Female	55	15.49	7	6.60
Other	2	0.56	0	0.00
Age	n	\%	n	\%
18-24	30	8.47	18	16.98
25-34	66	18.64	26	24.53
35-44	96	27.12	29	27.36
45-54	70	19.77	15	14.15
55-64	53	14.97	16	15.09
65 or more	39	11.02	2	1.89
Education	n	\%	n	\%
Primary School	3	0.88	1	0.94
Secondary School	108	31.67	41	38.68
Technical or Further educational institution	119	34.90	31	29.25
University or other Tertiary institution	111	32.55	32	30.19
Other	0	0.00	1	0.94
Household annual income	n	\%	n	\%
<\$0	5	1.61	3	3.06
\$0	14	4.50	6	6.12
\$1-\$20,799	20	6.43	9	9.18
\$20,800-\$41,599	28	9.00	10	10.20
\$41,600-\$62,399	48	15.43	10	10.20
\$62,400-\$83,199	50	16.08	18	18.37
\$84,000-\$103,999	32	10.29	16	16.33
\$104,000-\$142,999	41	13.18	7	7.14
\$143,000-\$181,999	32	10.29	6	6.12
\$182,000-\$233,999	21	6.75	7	7.14
\$234,000-\$285,999	5	1.61	1	1.02
\$286,000-\$337,999	6	1.93	2	2.04
> \$338,000	9	2.89	3	3.06

Table S1.2.2. Number of responses (n) and the frequency of occurrence (\%) of responses about the characteristics of Blue Swimmer Crabs and Black Bream fishers. Data obtained from respondents that answered all questions in the closed question online survey.

	Blue Swimmer Crab		Black Bream	
Fishing frequency	n	\%	n	\%
I have never been fishing for crabs*	10	1.92	2	1.40
I have not fished for crabs in the past 12 months*	33	6.32	7	4.90
Once	46	8.81	4	2.80
Once a month	92	17.62	27	18.88
Once every 2-3 months	87	16.67	16	11.19
Once every 4-6 months	97	18.58	7	4.90
1-2 days a fortnight	107	20.50	41	28.67
1-2 days a week	35	6.70	33	23.08
3-4 days a week	12	2.30	6	4.20
5 days or more a week	3	0.57	0	0.00
Fishing experience	n	\%	n	\%
1 year or less	24	5.16	5	3.91
2-3 years	34	7.31	13	10.16
4-5 years	40	8.60	22	17.19
6-10 years	63	13.55	18	14.06
11-20 years	93	20.00	36	28.13
21-39 years	119	25.59	24	18.75
40 years or more	92	19.78	10	7.81
Fishing location	n	\%	n	\%
Shore	124	26.67	51	40.16
Both but usually shore	53	11.40		
Both equally	34	7.31		
Both but usually boat	83	17.85		
Kayak			31	24.41
Boat	171	36.77	38	29.92
Other			7	5.51
Fishing method	n	\%^	n	\%
Drop/crab nets	372	79.49		
Scoop nets	276	58.97		
Catch by hand by diving/snorkelling/wading	93	19.87		
Crab traps	3	0.64		
Wire hook	5	1.07		
Bait			30	23.08
Lures (including soft plastics)			80	61.54
Bait and lures			18	13.85
Other			2	1.54
Skill level	n	\%	n	\%
Beginner (novice)	57	12.28	13	10.16
Intermediate	235	50.65	74	57.81
Expert	172	37.07	41	32.03

[^0]Table S1.2.3. Percentage number of times a salient motivation for (a) Blue Swimmer Crab and (b) Black Bream fishing was selected from the closed-question online survey. Percentages given for all fishers targeting the species (overall), for those fishers utilising a particular fishery and allocated to a fisher group. Values in both (a) and (b) shaded separately, with values in dark red being the lowest and those in dark green the highest. Note respondents were able to select as many motivations as they deemed appropriate. The CLUSTER-SIMPROF groups assigned are given below. Fisheries or fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different. In this and other tables, average responses from Black Bream fishers utilising Wilson Inlet and those in fisher group a were not subjected to CLUSTER-SIMPROF analysis due to them having very small numbers of respondents. Peel = Peel-Harvey Estuary; Swan = Swan-Canning Estuary; Lesch = Leschenault Estuary; Shark = Shark Bay; Black. = Blackwood River Estuary; Wilson = Wilson Inlet.

(a) Blue Swimmer Crabs	Fishery					Fisher group						
	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
Food	92	93	94	91	86	100	95	96	92	100	90	60
Enjoyment of catch	67	71	69	67	71	30	75	70	71	50	64	60
Enjoyment of outdoors	65	72	67	58	57	50	68	71	71	70	70	20
Pleasure	65	69	70	61	57	50	84	72	65	50	59	40
Time with family	51	57	47	52	57	30	67	56	41	20	51	60
Time with friends	48	51	56	36	43	20	54	58	45	30	45	0
	F group	a	a	a	a	a	b	b	b	a	b	c

(b) Black Bream	Fishery						Fisher group				
	Overall	Black.	Peel	Swan	Wilson	Other	a	b	c	d	e
Sport / Challenge	81	83	88	83	100	77	100	67	83	69	100
Enjoyment of outdoors	67	72	50	65	100	80	100	67	67	73	66
Pleasure	64	56	56	60	100	83	100	67	67	73	54
Relaxation	63	56	63	62	100	70	0	67	50	71	51
Enjoyment of catching a big fish	58	56	50	57	100	67	100	100	67	59	54
Time with friends/family	39	33	44	40	100	37	0	0	33	47	26
Food	15	6	19	14	0	17	0	0	50	19	6
Easy access to boat ramp and fishing sites	12	17	6	8	0	20	0	0	17	14	9
CLUSTER-SIMPROF group		a	a	a		a		a	a	a	a

Table S1.2.4. Average rating (X) and standard error (SE) from -3 to +3 for each salient motivation for (a) Blue Swimmer Crab and (b) Black Bream fishing provided in the closed-question online survey. Average rating values in both (a) and (b) shaded separately, with values in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries or fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

(a) Blue Swimmer Crabs						Fis											Fisher	grou						
	Ove		Pee		Sw		Lesc		Sha		a		b		c		d		e		f			
	X	SE																						
Catching enough crabs to eat	1.89	0.06	1.98	0.08	1.89	0.10	1.90	0.26	2.50	0.30	2.20	0.47	2.04	0.12	1.87	0.11	2.00	0.18	2.11	0.29	1.83	0.19	1.00	1.11
Catching big crabs	1.89	0.05	1.86	0.07	1.96	0.09	2.11	0.18	2.40	0.32	2.00	0.63	2.12	0.14	1.86	0.11	1.98	0.19	2.38	0.24	1.77	0.17	1.00	0.96
Being with friends/family is enough	1.52	0.06	1.59	0.08	1.46	0.10	0.78	0.33	1.33	0.20	2.00	0.49	1.46	0.16	1.50	0.11	1.08	0.24	1.57	0.40	1.64	0.15	1.75	0.39
Being outdoors is enough	1.44	0.06	1.46	0.09	1.31	0.10	0.96	${ }^{0.32}$	0.40	0.54	2.14	${ }^{0.50}$	1.32	0.14	1.35	0.12	1.36	${ }^{0.24}$	1.11	0.40	1.64	0.13	2.00	${ }^{0.58}$
Catching as many crabs as I am legally allowed to	0.43	0.09	0.64	0.12	0.37	0.14	0.19	0.34	-0.17	0.76	1.25	0.77	0.52	0.25	0.35	0.16	0.62	0.29	0.60	0.76	0.13	0.24	-1.67	0.62
Catching some crabs	-0.57	0.09	-0.52	0.13	-0.32	0.15	-0.77	0.35	-0.83	0.85	-1.25	0.86	-0.64	0.28	-0.41	0.17	-0.62	0.32	-1.22	0.74	-0.39	0.26	-2.20	0.73
CLUSTER-SIMPROF group			a		a		a		a		a		b		b				b		b			

(b) Black Bream							ishery										Fisher	roup				
	Ove		Blac		Pe		Swa		Wils				a		b		c		d		e	
	X	SE																				
Catching a big bream (over 30 cm)	2.33	0.13	2.53	0.36	2.92	0.08	2.40	0.15	-2.00		2.08	0.29	3.00		3.00	0.00	2.60	0.24	2.37	0.16	2.24	0.28
Having a relaxing day	1.70	0.15	1.15	0.80	2.07	0.29	1.78	0.15	2.00		1.80	0.31			0.33	1.76	1.20	0.49	2.09	0.14	1.39	0.34
Catching a legal sized bream (25 cm)	1.64	0.15	2.06	0.30	2.00	0.27	1.67	0.22	1.00		1.33	0.36	-2.00		1.67	0.88	1.00	1.00	1.59	0.20	1.88	0.34
Being outdoors is enough	1.44	0.16	0.44	0.69	2.36	0.28	1.57	0.15	3.00		1.57	0.29	2.00		-0.33	1.33	1.80	0.37	1.94	0.14	1.08	0.37
Catching a bream no matter the size	1.08	0.19	-0.38	0.74	2.07	0.28	1.31	0.24	3.00		0.88	0.32	-3.00		1.33	0.88	0.33	0.56	1.17	0.25	1.74	0.32
Being with friends/family is enough	1.07	0.21	0.58	0.79	1.44	0.73	1.18	0.22	2.00		1.15	0.42			-3.00		2.25	0.48	1.27	0.24	1.17	0.49
Good weather conditions	0.63	0.19	0.58	0.72	1.57	0.65	0.55	0.25	-1.00		0.73	0.34	-2.00		0.67	1.20	-0.25	0.75	0.96	0.24	0.38	0.41
Catching as many bream as I am legally allowed to	-0.94	0.23	0.57	0.69	-0.30	0.70	-1.50	0.29	-3.00		-0.83	0.42	-3.00		0.00	1.73	-1.25	0.25	-1.30	0.31	-0.42	0.49
CLUSTER-SIMPROF group			a		b		c		c						a			a	a		a	

Table S1.2.5. Percentage number of times (a) Blue Swimmer Crab and (b) Black Bream fishers eat, release and give away legal-sized individuals that they catch. Percentages given for all fishers targeting the species (overall), for those fishers utilising a particular fishery and allocated to a fisher group. Values in both (a) and (b) shaded separately, with values in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries or fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

(a) Blue Swimmer Crabs			Fishery			Fisher group						
Eat them	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
Always	91	93	92	90	100	80	95	96	90	90	84	83
Sometimes	8	7	7	10	0	20	4	4	10	10	14	0
Never	1	1	1	0	0	0	2	0	0	0	3	17
CLUSTER-SIMPROF group		a	a	a		a	b	b	b	b	b	c
Release after capture												
Always	2	2	0	0	0	0	5	0	0	11	3	20
Sometimes	68	69	67	55	67	60	54	68	69	78	78	80
Never	31	29	33	45	33	40	40	32	31	11	19	0
CLUSTE	F group	a	a	b		a	a	a	a	b	b	b
Give away												
Always	8	7	9	15	0	20	7	7	6	0	7	0
Sometimes	75	73	76	55	100	60	79	76	78	60	70	83
Never	18	20	16	30	0	20	16	17	16	40	22	17
CLUSTER-SIMPROF group		a	a	b		a	b	b	b	c	b	b

(b) Black Bream	Fishery					Fisher group				
Eat them Overall	Black.	Peel	Swan	Wilson	Other	a	b	c	d	e
Always 9	9	8	2	0	23	0	0	33	12	0
Sometimes	45	8	30	0	23	0	0	33	40	9
Never 64	45	83	69	100	54	100	100	33	48	91
CLUSTER-SIMPROF group	a	a	a		a		a	b	b	a
Release after capture										
Always 76	83	83	76	100	67	100	100	33	66	94
Sometimes	17	17	22	0	33	0	0	67	32	6
Never 1	0	0	2	0	0	0	0	0	2	0
CLUSTER-SIMPROF group	a	a	a		a		a	c	b	a
Give away										
Always 2	0	8	2	0	0	0	0	17	0	3
Sometimes 13	18	0	7	0	31	0	0	0	21	6
Never 85	82	92	91	100	69	100	100	83	79	91
CLUSTER-SIMPROF group	a	a	a		a		a	a	a	a

Table S1.2.6. Percentage number of times (a) Blue Swimmer Crab and (b) Black Bream fishers catch, fewer target individuals than allowed (i.e. the bag limit), the number allows, more than allowed and multiple options. Percentages given for all fishers targeting the species (overall), for those fishers utilising a particular fishery and allocated to a fisher group. Values in both (a) and (b) shaded separately, with values in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries or fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

As many fish as the limit allows

Always	4	8	0	5	0	0		0	0	0	5	3	
Sometimes	1		0	0	2	0	0		0	0	0	0	0
Never	85	83	100	82	100	85		100	67	83	81	94	
Don't know	10	8	0	11	0	15		0	33	17	14	3	
CLUSTER-SIMPROF group		a	a	a		a			a	a	a	a	

More fish than allowed

Always	0	0	0	0	0	0	0	0	0	0	0
Sometimes	1	0	0	2	0	0	0	0	0	0	0
Never	99	100	100	98	100	100	100	100	100	100	100
Don't know	0	0	0	0	0	0	0	0	0	0	0
CLUSTER-S		a	a	a		a		a	a	a	a
All of the above depending on the day											
Always	1	0	9	0	0	0	0	0	17	0	0
Sometimes	14	18	0	20	0	8	0	33	0	16	9
Never	74	73	82	67	100	85	100	67	50	70	89
Don't know	11	9	9	13	0	8	0	0	33	14	3
CLUSTER-SIMPROF group		a	a	a		a		a	b	a	a

Table S1.2.7. Perceived importance of (a) Blue Swimmer Crab and (b) Black Bream fishing to fishers that target those species and the percentage of fishers that would undertake different substitute activities if their target species could no longer be fished in the estuary they fish most regularly in. Percentages given for all fishers targeting the species (overall), for those fishers utilising a particular fishery and allocated to a fisher group. Values in both (a) and (b) shaded separately, with values in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries or fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

If crabbing was not available in the estuary where you fish most often, what would you most likely do instead?

| Fish for Blue Swimmer
 Crabs elsewhere | 58 | 60 | 62 | 42 | 67 | | 67 | 65 | 54 | 59 | 70 | 53 | 50 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Fish a different species
 in the same estuary | 19 | 20 | 17 | 32 | 17 | | 11 | 15 | 20 | 17 | 20 | 25 | 0 |
| Do a different water-
 based outdoor activity | 15 | 14 | 14 | 16 | 17 | | 22 | 15 | 22 | 9 | 0 | 10 | 33 |
| Take on a different
 land-based outdoor
 activity | 4 | 3 | 3 | 0 | 0 | | 0 | 4 | 2 | 9 | 10 | 4 | 17 |
| Loss of the fishery will
 not affect me | 4 | 2 | 3 | 11 | 0 | | 0 | 2 | 2 | 7 | 0 | 8 | 0 |
| CLUSTER-SIMPROF group | a | a | b | | | a | a | a | a | a | a | b | |

(b) Black Bream	Fishery												
	Overall		Black.	Peel	Swan	Wilso n	Othe r		a	b	c	d	e

Compared to other types of fishing, how important is bream fishing to you?											
Much more important	23	8	27	22	100	26	100	100	33	22	74
More important	30	17	27	35	0	30	0	0	33	29	14
The same importance	43	58	45	42	0	41	0	0	33	42	11
Less important	3	17	0	0	0	4	0	0	0	5	0
Much less important	1	0	0	2	0	0	0	0	0	2	0
CLUSTER-SIMPROF group		a	b	b		b		b	a	a	b

Compared to other types of outdoor recreation, how important is bream fishing to you?

Much more important	44	58	55	38	100	44		100	67	33	24	77	
More important	37		17	18	42	0	44		0	33	33	49	20
The same importance	12		0	18	16	0	7		0	0	33	15	3
Less important	4		17	9	0	0	4		0	0	0	7	0
Much less important	3	8	0	4	0	0		0	0	0	5	0	
CLUSTER-SIMPROF group	a	a	a		a			a	a	a	a		

Fish for Black Bream elsewhere	63	58	82	67	0	50	100	100	50	48	86
Fish a different species in the same estuary	30	33	9	27	100	38	0	0	17	43	11
Take on a different land-based outdoor activity	4	8	0	4	0	4	0	0	0	5	3
Do a different waterbased outdoor activity	3	0	9	2	0	4	0	0	33	2	0
Loss of the fishery will not affect me	1	0	0	0	0	4	0	0	0	2	0
CLUSTER-SIMPROF group		a	b	a		a		a	b	b	a

Figure S1.2.1. Dendrogram derived from CLUSTER-SIMPROF analysis of the five fisher characteristics of Blue Swimmer Crab fishers. Samples joined horizontal red line represent fishers that were shown by SIMPROF to have statistically similar fisher characteristics ($P>0.01$), but to be significantly different from all those fishers in other fisher groups ($P<0.01$).

Figure S1.2.2. Dendrogram derived from CLUSTER-SIMPROF analysis of the seven fisher characteristics of Black Bream fishers. Samples joined by dashed horizontal red line represent fishers that were shown by SIMPROF to have statistically similar fisher characteristics ($P>0.01$), but to be significantly different from all those fishers in other fisher groups ($P<0.01$) .

Figure S1.2.3. Dendrograms derived from CLUSTER-SIMPROF analysis of the motivations for fishing for (a, c) Blue Swimmer Crabs and (b, d) Black Bream by fisher operating in a particular (a, b) fishery and (c,d) belonging to a different fisher group (see Figures 1.2.2-1.2.5; Table 1.2.1). The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.2.4. Dendrograms derived from CLUSTER-SIMPROF analysis of the motivation ratings for fishing for (a,c) Blue Swimmer Crabs and (b,d) Black Bream by fisher operating in a particular (a,b) fishery and (c, d) belonging to a different fisher group (see Figures 1.2.2-1.2.5; Table 1.2.1). The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.2.5. Dendrograms derived from CLUSTER-SIMPROF analysis of the fate of legal-sized Blue Swimmer Crabs (i.e. a,b = eaten; c,d = released after capture and e,f = given away) after capture by fishers operating in a particular ($\mathrm{a}, \mathrm{c}, \mathrm{e}$) fishery and ($\mathrm{b}, \mathrm{d}, \mathrm{f}$) belonging to a different fisher groups. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.2.6. Dendrograms derived from CLUSTER-SIMPROF analysis of the fate of legal-sized Blue Swimmer Crabs (i.e. a,b = eaten; c,d = released after capture and e,f = given away) after capture by fishers operating in a particular ($\mathrm{a}, \mathrm{c}, \mathrm{e}$) fishery and (b,d,f) belonging to a different fisher groups. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.2.7. Dendrograms derived from CLUSTER-SIMPROF analysis on how often Blue Swimmer Crab fishers in a particular (a,c,e) fishery and (b,d,f) belonging to a different fisher groups obtain different sized catches. (a,b) Catch fewer crabs than allowed; (c,d) As many crabs as the limit allows; (e,f) More crabs than allowed; (e,f) All of the above depending on the day. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure S1.2.8. Dendrograms derived from CLUSTER-SIMPROF analysis on how often Black Bream fishers in a particular ($\mathrm{a}, \mathrm{c}, \mathrm{e}$) fishery and ($\mathrm{b}, \mathrm{d}, \mathrm{f}$) belonging to a different fisher groups obtain different sized catches. (a,b) Catch fewer fish than allowed; (c,d) As many fish as the limit allows; (e,f) More fish than allowed; (e,f) All of the above depending on the day. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.2.9. Dendrograms derived from CLUSTER-SIMPROF analysis on the importance of Blue Swimmer Crab fishing for fishers operating in a particular ($\mathrm{a}, \mathrm{c}, \mathrm{e}$) fishery and ($\mathrm{b}, \mathrm{d}, \mathrm{f}$) belonging to a different fisher group. (a,b) compared to other types of fishing, how important is crabbing to you; (c,d) compared to other types of outdoor recreation, how important is crabbing to you; (e,f) if crabbing was not available in the estuary where you fish most often, what would you most likely do instead. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.
(a)

(b)

(c)

(d)

(e)

(f)

Figure S1.2.10. Dendrograms derived from CLUSTER-SIMPROF analysis on the importance of Black Bream fishing for fishers operating in a particular (a, c, e) fishery and ($b, \mathrm{~d}, \mathrm{f}$) belonging to a different fisher group. (a,b) compared to other types of fishing, how important is bream fishing to you; (c,d) compared to other types of outdoor recreation, how important is bream fishing to you; (e,f) if bream fishing was not available in the estuary where you fish most often, what would you most likely do instead. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

1.4. Selecting from the fisheries managers tool-box: recreational and commercial fishers' views of stock enhancement and other management options

Table S1.4.1. Percentage of recreational Blue Swimmer Crab fishers that agreed, disagreed or were unsure about the effects of potential issues on their chosen fishery. Percentages given for all fishers (overall; see also Figure 1.4.1a) and for those fishers utilising a particular fishery. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different. Issues ranked by the percentage of respondents who agreed. Peel = PeelHarvey Estuary; Swan = Swan-Canning Estuary; Lesch. = Leschenault Estuary; Shark = Shark Bay.

Table S1.4.2. Percentage of recreational Black Bream fishers that agreed, disagreed or were unsure about the effects of potential issues on their chosen fishery. Percentages given for all fishers (overall; see also Figure 1.4.1b) and for those fishers utilising a particular fishery. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTERSIMPROF groups assigned are given below. Fisheries with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different. Issues ranked by the percentage of respondents who agreed. Black = Blackwood River Estuary; Peel = Peel-Harvey Estuary; Swan = Swan-Canning Estuary; Wilson = Wilson Inlet. Other = other estuaries, i.e. not one of the system named, e.g. Beaufort Inlet or Stokes Inlet.

Black Bream	Fishery				
Overall	Black.	Peel	Swan	Wilson	Other
Taking of undersized fish					
Agree	31	79	86	100	46
Unsure 23	46	14	12	0	43
Disagree 7	23	7	2	0	11
CLUSTER-SIMPROF group	b	a	a		b
Lack of education					
Agree	54	79	71	0	61
Unsure 20	31	21	15	100	21
Disagree 13	15	0	14	0	18
CLUSTER-SIMPROF group	a	a	a		a
Fishing pressure and overfishing					
Agree	69	77	73	0	46
Unsure 19	23	15	17	100	21
Disagree 15	8	8	10	0	32
CLUSTER-SIMPROF group	a	a	a		b
Exceeding the bag limit					
Agree	46	64	66	100	39
Unsure 33	38	36	29	0	39
Disagree 10	15	0	5	0	21
CLUSTER-SIMPROF group	a	a	b		c

Pollution

Agree	49	31	71	51	0	43
Unsure	29	31	14	36	100	18
Disagree	23	38	14	14	0	39
CLUSTER-SIMPROF group		b	a	a		b
Commercial fishing						
Agree	46	69	71	44	0	29
Unsure	39	23	14	46	0	46
Disagree	15	8	14	10	100	25
CLUSTER-SIMPROF group		a	a	b		b

Poor management

Agree	43		62	64	44	0	25
Unsure	13		8	7	15	0	14
Disagree	43		31	29	41	100	61
CLUSTER-SIMPROF group	a	a	a				

Recreational fishing

Agree	43		23	43	47	0	43
Unsure	28		23	50	25	0	25
Disagree	30		54	7	27	100	32
CLUSTER-SIMPROF group			a	a	a		a

Climate change

Agree	19		31	14	19	0
Unsure	56		46	57	58	100
Disagree	25		23	29	24	0
CLUSTER-SIMPROF group		a	b	b		29

There are no issues affecting the fishery

Agree	3	0	0	0	0	11
Unsure	12		23	7	10	0
Disagree	85	77	93	90	100	75
CLUSTER-SIMPROF group		a	a	a		a

Table S1.4.3. Percentage of recreational Blue Swimmer Crab fishers that considered that measures of their catches and fishing trips had changed. Percentages given for all fishers (overall) and for those fishers utilising a particular fishery. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

Blue Swimmer Crabs	Overall		Peel	Swan	Lesch.	Shark
Crab size	5		5	5	10	0
Increased	39		38	42	20	0
Not changed	56		57	53	70	100
Decreased	CLUSTER-SIMPROF group		a	a	b	c
Crab abundance	6		7	4	10	0
Increased	25		23	27	10	17
Not changed	69		70	69	80	83
Decreased	CLUSTER-SIMPROF group		a	a	a	a
Cland						

Abundance of other species caught						
Increased	10	7	11	10	0	
Not changed	56		60	52	50	67
Decreased	34		34	37	40	33
CLUSTER-SIMPROF group		a	b	b	a	

Number of people fishing

Increased	81		84	82	90
Not changed	17		15	16	5
Decreased	2		1	2	5
CLUSTER-SIMPROF group		a	a	b	0

Number of sites I fish regularly

Increased	18		19	23	15	0
Not changed	56		54	51	60	67
Decreased	26		27	25	25	33
CLUSTER-SIMPROF group		a	a	a	b	

Fishing depth

Increased	23		22	26	15	33
Not changed	75		75	72	80	67
Decreased	3		3	2	5	0
CLUSTER-SIMPROF group		a	a	b	c	

Time spent fishing

Increased	59		62	60	75	100
Not changed	30		28	27	25	0
Decreased	11		10	13	0	0
CLUSTER-SIMPROF group			a	a	b	c

Distance travelled

Increased	40		44	38	50
Not changed	58		56	59	50
Decreased	2		0	3	0
CLUSTER-SIMPROF group		a	a	a	0

Table S1.4.4. Percentage of recreational Black Bream fishers that considered that measures of their catches and fishing trips had changed. Percentages given for all fishers (overall) and for those fishers utilising a particular fishery. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

Black Bream	Fishery				
Overall	Black.	Peel	Swan	Wilson	Other
Black Bream size					
Increased 5	13	3	0	0	5
Not changed 35	6	60	14	100	33
Decreased 60	81	37	86	0	61
CLUSTER-SIMPROF group	a	b	a		b
Black Bream abundance					
Increased 13	6	14	16	100	7
Not changed 31	13	7	30	0	53
Decreased 56	81	79	56	0	37
CLUSTER-SIMPROF group	a	a	a		B
Abundance of other species caught					
Increased 21	25	21	14	100	21
Not changed 52	69	52	43	0	50
Decreased $\quad 27$	6	28	43	0	29
CLUSTER-SIMPROF group	a	b	b		C
Number of people fishing					
Increased	25	55	64	100	78
Not changed 32	56	41	36	0	19
Decreased	19	3	0	0	3
CLUSTER-SIMPROF group	a	b	b		C
Number of sites I fish regularly					
Increased 38	31	34	29	0	45
Not changed 48	38	55	64	100	41
Decreased 14	31	10	7	0	14
CLUSTER-SIMPROF group	a	a	a		b
Distance travelled					
Increased 46	60	21	50	0	55
Not changed	40	75	50	100	45
Decreased 1	0	4	0	0	0
CLUSTER-SIMPROF group	a	b	a		b

Table S1.4.5. Percentage of recreational Blue Swimmer Crab fishers that agreed, disagreed or were unsure about aspects of crab fishery management. Percentages given for all fishers (overall) and for those fishers utilising a particular fishery. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

Blue Swimmer Crabs		Fishery		
Overall	Peel	Swan	Lesch.	Shark
The fishery is well managed				
Agree	25	36	0	17
Unsure	30	30	50	33
Disagree 30	45	34	50	50
CLUSTER-SIMPROF group	a	b	c	a
Stocks need to be better managed				
Agree	70	66	85	83
Unsure	21	24	15	17
Disagree $\quad 9$	8	10	0	0
CLUSTER-SIMPROF group	a	a	b	b
I am happy with the number of crabs				
Agree $\quad 34$	33	38	33	33
Unsure	19	18	11	0
Disagree	49	44	56	67
CLUSTER-SIMPROF group	a	a	a	b
I am happy with the size of crabs				
Agree	33	47	48	0
Unsure	12	11	4	17
Disagree	56	41	48	83
CLUSTER-SIMPROF group	a	a	a	b

Table S1.4.6. Percentage of recreational Black Bream that fishers agreed, disagreed or were unsure about aspects of crab fishery management. Percentages given for all fishers (overall) and for those fishers utilising a particular fishery. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

Black Bream	Overall		Black.	Peel	Swan	Wilson	Other
	 The fishery is well managed Agree 14 8 7 16	40		31	14	47	0
Unsure	46		62	79	38	0	49
Disagree	CLUSTER-SIMPROF group		a	a	b		b

Stocks need to be better managed

Agree	74		85	86	74	0	64
Unsure	24		15	14	24	100	7
Disagree	3		0	0	2	0	29
CLUSTER-SIMPROF group		a	a	a		b	

I am happy with the number of Black Bream

Agree	26		15	14	19	100	50
Unsure	12		23	0	16	0	43
Disagree	61		62	86	66	0	7
CLUSTER-SIMPROF group		a	a	a		b	

I am happy with the size of Black Bream

Agree	22		8	14	12	100	48
Unsure	15		23	21	16	0	45
Disagree	63		69	64	72	0	7
CLUSTER-SIMPROF group		a	a	a		b	

Table S1.4.7. Percentage of recreational Blue Swimmer Crab fishers that chose a management acceptability rating for each of the nine options that currently are or could potentially be used to manage Blue Swimmer Crab fisheries in south-western Australia. Mean rating values (very unacceptable $=1$ to very acceptable $=5$) are also provided. Percentages and means are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries and fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different. Management options ordered by mean rating (i.e. acceptability).

Blue Swimmer Crabs		Fishery				Fisher group						
	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
Minimum size limit												
Very acceptable	84	84	84	81	50	100	84	82	84	80	88	100
Acceptable	10	9	8	19	33	0	4	11	14	20	11	0
Neutral	3	3	5	0	0	0	4	3	2	0	1	0
Unacceptable	1	1	1	0	0	0	2	1	0	0	0	0
Very unacceptable	2	3	2	0	17	0	7	4	0	0	0	0
Average	4.72	4.71	4.72	4.81	4.00	5.00	4.55	4.65	4.82	4.80	4.87	5.00
CLUSTER-SIMPROF group		a	a	b	c	a	b	b	b	b	b	a
Temporal closure												
Very acceptable	63	69	60	48	33	90	67	57	61	60	80	50
Acceptable	28	23	29	48	33	10	25	33	24	30	15	33
Neutral	5	3	5	0	0	0	4	5	6	10	3	17
Unacceptable	2	2	2	4	17	0	0	2	6	0	0	0
Very unacceptable	3	3	3	0	17	0	5	3	2	0	3	0
Average	4.46	4.52	4.41	4.41	3.50	4.90	4.47	4.39	4.37	4.50	4.69	4.33
CLUSTER-SIMPROF group		a	a	b	c	a	b	b	b	b	a	c
Fisher surveillance												
Very acceptable	66	71	66	48	33	80	67	65	79	30	69	67
Acceptable	21	19	19	26	33	0	26	19	13	70	20	17
Neutral	7	3	9	15	17	10	2	8	6	0	7	17
Unacceptable	3	3	4	4	0	10	4	3	2	0	1	0
Very unacceptable	3	4	3	7	17	0	2	5	0	0	3	0
Average	4.44	4.50	4.41	4.04	3.67	4.50	4.53	4.37	4.69	4.30	4.52	4.50
CLUSTER-SIMPROF group		a	a	b	b	a	a	a	a	a	a	a
Fisher education												
Very acceptable	58	58	58	48	17	70	63	49	67	60	63	83
Acceptable	28	29	29	33	50	10	23	36	18	30	24	0
Neutral	10	7	8	19	17	20	9	10	10	10	12	17
Unacceptable	2	3	2	0	17	0	4	2	2	0	1	0
Very unacceptable	2	2	2	0	0	0	2	3	2	0	0	0
Average	4.38	4.39	4.39	4.30	3.67	4.50	4.42	4.26	4.47	4.50	4.48	4.67
CLUSTER-SIMPROF group		a	a	b	c	a	b	b	b	b	b	a
Stock enhancement												
Very acceptable	60	59	64	59	50	60	58	64	57	50	56	67
Acceptable	21	22	21	11	17	10	26	21	12	20	28	0
Neutral	14	13	10	22	17	20	12	10	18	30	11	33
Unacceptable	3	2	2	0	17	10	2	4	2	0	3	0
Very unacceptable	3	3	2	7	0	0	2	2	10	0	3	0
Average	4.33	4.32	4.42	4.15	4.00	4.20	4.37	4.40	4.04	4.20	4.32	4.33
CLUSTER-SIMPROF group		a	a	a	a	a	a	a	a	a	a	a
Bag limit												
Very acceptable	59	61	61	56	33	90	54	60	53	40	68	67
Acceptable	26	22	25	37	33	10	28	23	20	30	25	33
Neutral	8	8	7	0	0	0	7	7	16	10	3	0
Unacceptable	5	5	5	0	33	0	9	5	2	20	3	0
Very unacceptable	3	4	2	7	0	0	2	4	8	0	1	0
Average	4.32	4.32	4.39	4.33	3.67	4.90	4.25	4.30	4.08	3.90	4.56	4.67
CLUSTER-SIMPROF group		a	a	b	c	a	b	b	C	d	b	b
Gear restriction												
Very acceptable	38	38	43	33	17	60	33	31	29	30	44	67
Acceptable	28	27	27	33	67	10	30	35	29	30	28	17
Neutral	17	19	12	11	0	0	12	18	22	10	17	17
Unacceptable	11	12	10	15	17	10	16	10	12	30	8	0
Very unacceptable	6	5	7	7	0	20	9	6	8	0	3	0
Average	3.81	3.80	3.88	3.70	3.83	3.80	3.63	3.77	3.57	3.60	4.03	4.50
CLUSTER-SIMPROF group		a	a	a	b	a	b	b	b	b	b	a

Table S1.4.7 continued. Percentage of recreational Blue Swimmer Crab fishers that chose a management acceptability rating for each of the nine options that currently are or could potentially be used to manage Blue Swimmer Crab fisheries in south-western Australia. Mean rating values (very unacceptable $=1$ to very acceptable $=5$) are also provided. Percentages and means are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries and fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different. Management options ordered by mean rating (i.e. acceptability).

Blue Swimmer Crabs			Fishery			Fisher group						
	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
Spatial closure												
Very acceptable	33	30	35	33	33	30	32	28	29	30	51	33
Acceptable	27	26	29	22	17	20	21	33	24	50	24	50
Neutral	19	20	18	15	17	20	20	17	24	20	16	17
Unacceptable	12	14	10	19	33	20	14	13	6	0	9	0
Very unacceptable	8	11	8	11	0	10	13	10	16	0	0	0
Average	3.66	3.51	3.72	3.48	3.50	3.40	3.46	3.55	3.43	4.10	4.16	4.17
CLUSTER-SIMPROF group		a	a	a	b	a						
Maximum size limit												
Very acceptable	15	13	19	19	0	10	18	16	10	20	17	17
Acceptable	9	7	10	4	0	10	5	5	10	30	16	0
Neutral	32	32	27	33	67	20	27	30	35	20	36	67
Unacceptable	25	27	23	19	33	30	25	28	18	20	25	0
Very unacceptable	20	22	21	26	0	30	24	21	27	10	5	17
Average	2.75	2.63	2.84	2.70	2.67	2.40	2.69	2.66	2.59	3.30	3.15	3.00
CLUSTER-SIMPROF group		a	a	a	b	a	a	a	a	a	a	b

Table S1.4.8. Percentage of recreational Black Bream fishers that chose a management acceptability rating for each of the ten options that currently are or could potentially be used to manage Black Bream fisheries in south-western Australia. Mean rating values (very unacceptable $=1$ to very acceptable $=5$) are also provided. Percentages and means are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below for fisheries only. Those with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different. No tested was done on fishery groups due to the low number of responses from fishers in some groups. Management options ordered by mean rating (i.e. acceptability).

Bag limit

| Very acceptable | 58 | | 50 | 36 | 65 | 0 | 59 | 0 | 100 | 50 | 61 | 60 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Acceptable | 17 | 17 | 21 | 14 | 0 | 21 | 100 | 0 | 50 | 17 | 9 | |
| Neutral | 11 | | 33 | 0 | 9 | 100 | 7 | 0 | 0 | 0 | 8 | 11 |
| Unacceptable | 6 | | 0 | 0 | 9 | 0 | 7 | 0 | 0 | 0 | 5 | 11 |
| Very unacceptable | 9 | | 0 | 43 | 4 | 0 | 7 | 0 | 0 | 0 | 8 | 9 |
| Average | $\mathbf{4 . 0 8}$ | | $\mathbf{4 . 1 7}$ | $\mathbf{3 . 0 7}$ | $\mathbf{4 . 2 8}$ | $\mathbf{3 . 0 0}$ | $\mathbf{4 . 1 7}$ | $\mathbf{4 . 0 0}$ | $\mathbf{5 . 0 0}$ | $\mathbf{4 . 5 0}$ | $\mathbf{4 . 1 7}$ | $\mathbf{4 . 0 0}$ |
| CLUSTER-SIMPROF group | | | b | a | c | | c | | | | | |

Table S1.4.8 continued. Percentage of recreational Black Bream fishers that chose a management acceptability rating for each of the ten options that currently are or could potentially be used to manage Black Bream fisheries in south-western Australia. Mean rating values (very unacceptable $=1$ to very acceptable $=5$) are also provided. Percentages and means are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below for fisheries only. Those with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different. No tested was done on fishery groups due to the low number of responses from fishers in some groups. Management options ordered by mean rating (i.e. acceptability).

Black Bream		Fishery					Fisher group				
Spatial closure											
Very acceptable	8	17	21	7	0	0	0	0	0	8	11
Acceptable	28	17	36	26	0	34	0	0	33	31	26
Neutral	27	25	14	33	100	17	100	33	0	25	29
Unacceptable	16	25	7	16	0	17	0	33	17	20	9
Very unacceptable	21	17	21	18	0	31	0	33	50	15	26
Average	2.86	2.92	3.29	2.89	3.00	2.55	3.00	2.00	2.17	2.97	2.89
Temporal closure											
Very acceptable	13	42	36	7	0	3	0	0	17	15	14
Acceptable	17	0	0	21	0	24	100	0	0	19	14
Neutral	21	25	21	18	0	28	0	67	50	19	23
Unacceptable	24	17	29	28	0	17	0	0	33	22	20
Very unacceptable	25	17	14	26	100	28	0	33	0	25	29
Average	2.70	3.33	3.14	2.54	1.00	2.59	4.00	2.33	3.00	2.76	2.66
Restricting recreational fishing											
Very acceptable	4	17	0	4	0	3	0	0	17	5	3
Acceptable	16	17	14	16	100	14	100	0	0	17	20
Neutral	12	8	21	14	0	7	0	0	0	19	3
Unacceptable	27	17	21	33	0	21	0	67	33	24	29
Very unacceptable	41	42	43	33	0	55	0	33	50	36	46
Average	2.17	2.50	2.07	2.23	4.00	1.90	4.00	1.67	2.00	2.32	2.06
CLUSTER-SIMPROF group		a	a	a		a					

Table S1.4.9. Percentage of recreational Blue Swimmer Crab fishers that chose an option about whether management option should change or remain the same. Percentages are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries and fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

Blue Swimmer Crabs			Fishery			Fisher group						
	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
Minimum size limit												
Increase	34	33	37	30	17	11	38	32	23	50	39	67
Remain the same	65	65	61	65	83	67	63	67	77	50	60	33
Decrease	1	1	1	4	0	11	0	1	0	0	0	0
Unsure	1	1	1	0	0	11	0	0	0	0	1	0
CLUSTER-SIMPROF group		a	a	a	b	a	b	b	c	d	b	d

Temporal closure

Increase	52	60	47	46	67	0	4	9	6	40	3	17
Remain the same	40	35	45	42	33	80	81	67	82	40	67	67
Decrease	3	2	3	0	0	20	14	24	12	20	28	17
Unsure	5	3	5	13	0	0	2	1	0	0	3	0
CLUSTER-SIMPROF group		a	b	b	a	a	a	b	a	c	b	d

Fisher surveillance

Increase	83		87	82	75	100		70	86	87	80	70	87	67
Remain the same	13		9	14	21	0		20	13	10	18	30	8	33
Decrease	1		1	1	0	0		0	0	1	2	0	0	0
Unsure	3		3	2	4	0		10	2	2	0	0	5	0
CLUSTER-SIMPROF group		a	a	a	b		a	b	b	b	a	b	a	

Fisher education

Increase	82		82	85	75	83		100	88	79	79	70	81	100
Remain the same	14		14	13	21	0		0	11	17	15	30	15	0
Decrease	1		1	2	4	17		0	0	2	0	0	0	0
Unsure	3		3	1	0	0		0	2	1	6	0	4	0
CLUSTER-SIMPROF group		a	a	a	a		a	b	b	b	b	b	a	

Bag limit														
Increase	7	9	3	0	0	0	4	9	6	40	3	17		
Remain the same	71		72	73	67	67		80	81	67	82	40	67	67
Decrease	21		18	24	33	33		20	14	24	12	20	28	17
Unsure	1		1	1	0	0		0	2	1	0	0	3	0
CLUSTER-SIMPROF group		a	a	b	b		a	a	c	a	d	c	b	

Boat limit

Increase	12		13	10	4	0		20	12	13	10	40	5	33
Remain the same	67		68	70	67	83		60	77	69	73	50	55	50
Decrease	19		18	20	29	17		20	11	18	15	10	31	17
Unsure	2		2	0	0	0		0	0	0	2	0	9	0
CLUSTER-SIMPROF group		a	a	a	a		a	a	a	a	c	b	c	

Table S1.4.10. Percentage of recreational Black Bream fishers that chose an option about whether management option should change or remain the same. Percentages are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries and fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

Table S1.4.11. Mean ratings for each stock enhancement belief across (a) belief strength (0 ; very unlikely to 6 ; very likely), (b) belief evaluation (-3 ; very bad to +3 ; very good) and (c) cross-products (belief-based attitude: -18; very likely and very bad to +18 ; very likely and very good) for Blue Swimmer Crab stock enhancement overall and for each fishery and fisher group. Cells shaded according to the magnitude of their values with for belief strength and belief evaluation those in dark red being the lowest and those in dark green the highest and for the belief-based attitude from dark red to dark blue.

Blue Swimmer Crabs		Fishery				Fisher groups						
Belief strength (0 to 6)	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
Increasing crab numbers	4.78	4.73	4.88	5.15	5.40	5.20	4.75	4.79	4.29	4.63	4.96	5.00
More crabs to catch	4.82	4.78	4.85	5.19	5.00	5.25	4.67	4.87	4.38	4.78	4.86	4.67
More fishers fishing	4.54	4.59	4.38	4.81	4.67	5.14	4.42	4.43	4.69	3.90	4.77	5.40
No change in crab abundance	2.20	2.27	2.01	1.61	1.20	1.86	2.57	2.08	2.85	3.50	1.81	2.25
Increasing fishing pressure	3.05	3.09	2.83	3.17	1.50	2.38	2.87	3.14	3.34	1.88	3.18	5.00
Environment impact	2.87	2.62	2.94	2.57	1.00	2.60	2.14	3.02	2.98	3.22	3.26	3.00
CLUSTER-SIMPROF group		a	a	a	b	a	a	a	a	a	a	a
Belief evaluation (-3 to +3)												
Increasing crab numbers	2.14	2.14	2.12	2.20	2.67	2.33	2.12	2.26	1.87	1.90	2.13	3.00
More crabs to catch	2.17	2.17	2.17	2.55	2.50	2.80	2.04	2.25	2.07	2.10	2.09	1.20
More fishers fishing	-0.55	-0.77	-0.35	0.60	0.50	1.14	-0.44	-0.55	-0.86	0.29	-0.69	-1.20
No change in crab abundance	-1.31	-1.32	-1.45	-1.35	-2.33	-2.00	-1.22	-1.36	-0.95	0.80	-1.64	-2.00
Increasing fishing pressure	-1.50	-1.46	-1.70	-1.26	-2.33	-1.67	-1.44	-1.47	-1.49	-1.11	-1.67	-1.60
Environment impact	-1.30	-1.38	-1.34	-0.31	-2.20	-0.88	-1.43	-1.19	-1.46	0.13	-1.39	-1.50
CLUSTER-SIMPROF group		a	a	a	a	a	b	b	b	c	b	d
Belief-based attitude (-18 to +18)												
Increasing crab numbers	10.45	10.25	11.01	11.25	12.17	13.11	9.76	10.74	9.96	8.00	10.83	11.25
More crabs to catch	10.39	10.11	10.66	13.75	13.33	11.80	9.06	10.85	10.57	10.30	9.56	4.40
More fishers fishing	-1.18	-1.85	-0.30	3.60	4.17	2.86	0.44	-0.76	-2.81	3.00	-2.86	-6.40
No change in crab abundance	-1.28	-1.15	-1.68	-1.00	-1.83	-0.50	-1.73	-1.57	-1.43	4.80	-1.23	-4.25
Increasing fishing pressure	-3.41	-3.46	-3.52	-3.63	-2.83	-5.83	-3.12	-3.40	-2.82	1.67	-4.31	-7.00
Environment impact	-2.10	-2.45	-2.55	1.50	-1.20	-2.50	-1.65	-2.30	-2.54	2.75	-2.25	-3.00
CLUSTER-SIMPROF group		a	a	b	b	a	b	b	b	c	b	d

Table S1.4.12. Mean ratings for each stock enhancement of belief across (a) belief strength (0 ; very unlikely to 6 ; very likely), (b) belief evaluation (-3 ; very bad to +3 ; very good) and (c) cross-products (belief-based attitude: -18; very likely and very bad to +18; very likely and very good) for Black Bream stock enhancement overall and for each fishery and fisher group. Cells shaded according to the magnitude of their values with for belief strength and belief evaluation those in dark red being the lowest and those in dark green the highest and for the belief-based attitude from dark red to dark blue.

Black Bream		Fishery					Fisher groups				
Belief strength (0 to 6)	Overall	Black.	Peel	Swan	Wilson	Other	a	b	c	d	e
Increasing the number of bream	5.34	5.45	5.08	5.35	5.00	5.38	4.00	6.00	5.00	5.26	5.47
More bream to catch	5.31	5.55	5.09	5.40	4.00	5.19		5.50	4.83	5.15	5.72
Too many Black Bream	1.08	1.20	0.67	1.11	4.00	1.04		0.00	0.83	0.98	1.10
Less bream surviving	1.17	1.71	0.82	1.05	3.00	1.29		0.00	1.00	1.57	0.60
Increasing fishing pressure	2.02	1.22	1.91	2.27	5.00	1.78	1.00	1.67	1.00	2.37	1.63
CLUSTER-SIMPROF group		a	a	a	b	a		a	a	a	a
Belief evaluation (-3 to +3)											
Increasing the number of bream	2.57	2.64	2.67	2.63	2.00	2.42		2.33	2.00	2.58	2.82
More bream to catch	2.58	2.45	2.58	2.67	3.00	2.44	2.00	2.33	2.00	2.52	2.80
Too many Black Bream	1.44	2.56	2.27	1.46	0.00	0.59	-2.00	1.67	2.00	1.07	2.19
Less bream surviving	-2.41	-2.78	-2.64	-2.49	-3.00	-2.00	-1.00	-2.33	-1.80	-2.31	-2.71
Increasing fishing pressure	-1.98	-2.11	-2.27	-2.08	-1.00	-1.64	-2.00	-2.67	-1.67	-1.92	-2.20
CLUSTER-SIMPROF group		a	a	a	b	b		a	a	a	a
Belief-based attitude (-18 to +18)											
Increasing the number of bream	13.54	14.82	13.58	13.84	10.00	12.54		14.00	8.60	13.44	15.15
More bream to catch	13.28	14.00	12.42	13.94	12.00	12.04	0.00	11.00	10.40	12.72	15.40
Too many Black Bream	0.54	2.44	1.64	0.24	0.00	-0.14	0.00	0.00	1.75	-0.09	1.81
Less bream surviving	-1.77	-4.00	-2.00	-1.42	-9.00	-1.35	0.00	0.00	-1.80	-2.22	-1.12
Increasing fishing pressure	-2.84	-1.11	-4.91	-2.94	-5.00	-2.28	-2.00	-3.67	-2.33	-3.38	-2.13
CLUSTER-SIMPROF group		a	a	a	b	a		a	a	a	a

Table S1.4.13. Percentage of recreational (a) Blue Swimmer Crab and (b) Black Bream fishers that agreed, disagreed or were unsure whether they would continue to fish if the population is restocked. Percentages are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries and fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

(a) Blue Swimmer Crabs			Fishery				Fisher group					
	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
Agree	88	88	87	89	83	100	86	89	82	80	92	50
Unsure	10	9	9	4	17	0	11	9	12	0	1	33
Disagree	3	3	4	7	0	0	4	2	6	20	7	17
CLUSTER-SIMPROF group		a	a	a	b	a	a	a	a	a	a	b

(b) Black Bream		Fishery					Fisher group				
	Overall	Black.	Peel	Swan	Wilson	Other	a	b	c	d	e
Agree	96	92	93	97	100	97	100	100	83	95	100
Unsure	3	8	7	2	0	3	0	0	0	3	0
Disagree	2	0	0	2	0	0	0	0	17	2	0
CLUSTER-SIMPROF group		a	a	a		a		a	a	a	

Table S1.4.14. Percentage of recreational Blue Swimmer Crab fishers that chose options related to what they would do if they caught a hatchery-reared crab. Percentages are given for all fishers (overall) and for those fishers utilising a particular fishery and those belonging to a fisher group. Cells shaded according to the magnitude of their values with those in dark red being the lowest and those in dark green the highest. The CLUSTER-SIMPROF groups assigned are given below. Fisheries and fisher groups with the same letter indicate no significant difference in the percentage contribution across the possible answers, whereas those with different letters are deemed to be different.

Blue Swimmer Crabs		Fishery				Fisher group						
	Overall	Peel	Swan	Lesch.	Shark	a	b	c	d	e	f	g
I would eat it as if it was wild crab												
Agree	84	81	89	95	83	80	88	87	78	70	81	83
Don't know	13	15	9	5	0	0	11	12	16	30	16	0
Disagree	3	3	2	0	17	20	2	1	6	0	3	17
CLUSTER-SIMPROF group		a	a	a	a	a	b	b	b	b	b	a

I would eat it but would prefer wild crab

Agree	28	28	27	29	0		60	26	25	27	60	29
17												
Don't know	41	43	41	43	50	30	28	46	41	10	40	33
Disagree	32	29	32	29	50	10	46	29	33	30	31	50
CLUSTER-SIMPROF group	a	a	a	b		a	c	b	b	a	b	c

I would not eat it myself but would keep it for family/friends

Agree	4	4	5	5	0	0	0	3	4	10	9	0
Don't know	20	22	19	14	0	0	14	16	22	30	33	20
Disagree	75	74	77	81	100	100	86	81	73	60	57	80
CLUSTER-SIMPROF group		a	a	b	b	a	b	b	b	c	c	b
I would release after capture, I don't like aquacultured crabs												
Agree	3	4	2	0	0	20	4	1	2	0	5	0
Don't know	33	35	25	29	0	20	21	29	45	60	44	20
Disagree	64	61	73	71	100	60	75	70	53	40	51	80
CLUSTER-SIMP	ROF group	a	a	a	b	a	a	a	b	b	b	a

Figure S1.4.1. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Blue Swimmer Crab fishers who agree, disagree or were unsure about the effects of potential issues on each fishery (see Table 1.4.1). Potential issues; (a) taking of undersized crabs; (b) overfishing of stocks; (c) exceeding the bag limit; (d) recreational fishing; (e) commercial fishing; (f) lack of education; (g) the closed season is too short; (h) recreational fishing pressure is irrelevant to commercial pressure; (i) pollution; (j) climate change; (k) there are no issues affecting the fishery. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.
(a)

(c)

(e)

(f)
(g)

(i)
(b)

(d)

(h)

(j)

Figure S1.4.2. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Black Bream fishers who agree, disagree or were unsure about the effects of potential issues on each fishery (see Table 1.4.2). Potential issues; (a) taking of undersized fish; (b) lack of education; (c) fishing pressure and overfishing; (d) exceeding the bag limit; (e) pollution; (f) commercial fishing; (g) poor management; (h) recreational fishing; (i) climate change; (j) there are no issues affecting the fishery. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.3. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Blue Swimmer Crab fishers considered that parameters around their catches and fishing trips had changed (see Table 1.4.3). Parameters; (a) crab size; (b) crab abundance; (c) abundance of other species caught; (d) number of people fishing; (e) number of sites I fish regularly; (f) fishing depth; (g) time spent fishing; (h) distance travelled. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.4. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Black Bream fishers considered that parameters around their catches and fishing trips had changed (see Table 1.4.4). Parameters; (a) Black Bream size; (b) Black Bream abundance; (c) abundance of other species caught; (d) number of people fishing; (e) number of sites I fish regularly; (f) distance travelled. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.5. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Blue Swimmer Crab fishers that agreed, disagreed or were unsure about aspects of crab fishery management (see Table 1.4.5). Aspects: (a) the fishery is well managed; (b) stocks need to be better managed; (c) I am happy with the number of crabs; (d) I am happy with the size of crabs. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.6. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Black Bream fishers that agreed, disagreed or were unsure about aspects of crab fishery management (see Table 1.4.5). Aspects: (a) the fishery is well managed; (b) stocks need to be better managed; (c) I am happy with the number of Black Bream; (d) I am happy with the size of Black Bream. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.7. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Blue Swimmer Crab fishers that utilise each fishery ($\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}, \mathrm{i}, \mathrm{k}, \mathrm{m}, \mathrm{o}, \mathrm{q}$) and belong to each fisher group ($\mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{h}, \mathrm{j}, \mathrm{l}, \mathrm{n}, \mathrm{p}, \mathrm{r}$) that chose a management acceptability rating for each of the nine options that currently are or could potentially be used to manage Blue Swimmer Crab fisheries in south-western Australia. Management options: (a, b) minimum size limit; (c, d) temporal closure; ((e, f) fisher surveillance; (g, h) fisher education; (i,j) stock enhancement; (k,l) bag limit; (m,n) gear restriction; (o,p) spatial closure; (q,r) maximum size limit. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.7 continued. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Blue Swimmer Crab fishers that utilise each fishery ($a, c, e, g, i, k, m, o, q$) and belong to each fisher group ($\mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{h}, \mathrm{j}, \mathrm{l}, \mathrm{n}, \mathrm{p}, \mathrm{r}$) that chose a management acceptability rating for each of the nine options that currently are or could potentially be used to manage Blue Swimmer Crab fisheries in south-western Australia. Management options: (a, b) minimum size limit; (c, d) temporal closure; (e,f) fisher surveillance; (g, h) fisher education; (i,j) stock enhancement; (k,l) bag limit; (m,n) gear restriction; (o,p) spatial closure; (q, r) maximum size limit. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.
(a)

(b)

(c)

(e)

(f)

(g)

(h)

(j)

Figure S1.4.8. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Black Bream fishers that utilise each fishery that chose a management acceptability rating for each of the nine options that currently are or could potentially be used to manage Black Bream fisheries in southwestern Australia. Management options: (a) minimum size limit; (b) stock enhancement; (c) fisher education; (d) maximum size limit; (e) restricting commercial fishing; (f) fisher surveillance; (g) bag limit; (h) spatial closure; (i) temporal closure; (j) restricting recreational fishing. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.9. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Blue Swimmer Crab fishers that utilise each fishery ($\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}, \mathrm{i}, \mathrm{k}$) and belong to each fisher group ($\mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{h}, \mathrm{j}, \mathrm{l}$) that chose an option about whether management option should change of remain the same. Management options: (a,b) minimum size limit; (c,d) temporal closure; (e,f) fisher surveillance; (g,h) fisher education; (i,j) bag limit; (k,l) boat limit. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.10. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Black Bream fishers that utilise each fishery that chose an option about whether management option should change of remain the same. Management options: (a) minimum size limit; (b) fisher education, (c) fisher surveillance; (d) bag limit; (e) boat limit. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.11. Dendrograms derived from CLUSTER-SIMPROF analysis of the ratings for each stock enhancement belief across (a, b) belief strength, (c, d) belief evaluation and (e,f) belief-based attitude for Blue Swimmer Crab stock enhancement. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.12. Dendrograms derived from CLUSTER-SIMPROF analysis of the ratings for each stock enhancement belief across (a) belief strength, (b) belief evaluation and (c) belief-based attitude for Black Bream stock enhancement. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.13. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of (a, b) Blue Swimmer Crab and (c, d) Black Bream fishers that utilise each fishery (a, c) and belong to each fisher group (b,d) that agreed, disagreed or were unsure whether they would continue to fish if the population is restocked. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

Figure S1.4.14. Dendrograms derived from CLUSTER-SIMPROF analysis of the percentage number of Blue Swimmer Crab fishers that utilise each fishery ($\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}$) and belong to each fisher group (b,d,f,h) Crab chose options related to what they would do if they caught a restocked crab. (a) I would eat as if it was wild crab; (b) I would eat it but would prefer wild crab; (c) I would not eat it myself but would keep it for family/friends; (d) I would release after capture, I don't like restocked crabs. The clusters under each dashed vertical red line represent 'samples' that were shown by SIMPROF to be statistically similar.

1.5. Information sharing and the management of the Peel-Harvey Estuary

Table S1.5.1. Exponential random graph model results for attribute-based mixing for the attribute 'Seniority' of individual stakeholders forming the extended PHBSC fishery network.

Attribute	\boldsymbol{P} value
mix.seniority.1.1	0.544
mix.seniority.2.1	0.492
mix.seniority.3.1	0.943
mix.seniority.1.2	0.535
mix.seniority.2.2	0.903
mix.seniority.3.2	0.687
mix.seniority.1.3	0.914
mix.seniority.2.3	0.367
mix.seniority.3.3	0.042
mix.seniority.NA.3	0.336

Table S1.5.2. Exponential random graph model results for attribute-based mixing for the attribute 'Organisation' of individual stakeholders forming the extended PHBSC fishery network.

Attribute	P value
mix.organisation.DPIRD.Birdlife Australia	0.029
mix.organisation.City of Mandurah.City of Mandurah	0.508
mix.organisation.DBCA.City of Mandurah	0.512
mix.organisation.DPIRD.City of Mandurah	0.001
mix.organisation.MSC.City of Mandurah	0.941
mix.organisation.PHCC.City of Mandurah	0.079
mix.organisation.City of Mandurah.DBCA	0.512
mix.organisation.DPIRD.DBCA	0.004
mix.organisation.DPIRD.Dolphin Watch	0.028
mix.organisation.Birdlife Australia.DPIRD	0.028
mix.organisation.DPIRD.DPIRD	0.004
mix.organisation.DWER.DPIRD	0.001
mix.organisation.General public.DPIRD	0.004
mix.organisation.MLFA.DPIRD	0.002
mix.organisation.MSC.DPIRD	0.087
mix.organisation.Murdoch.DPIRD	<0.001
mix.organisation.PDC.DPIRD	0.004
mix.organisation.PHCC.DPIRD	<0.001
mix.organisation.Rec. fishers.DPIRD	<0.001
mix.organisation.RFW.DPIRD	<0.001
mix.organisation.SCS.DPIRD	0.044
mix.organisation.SSPWA.DPIRD	0.028
mix.organisation.WAFIC.DPIRD	<0.001
mix.organisation.DPIRD.DWER	<0.001
mix.organisation.MLFA.DWER	0.014
mix.organisation.Murdoch.DWER	0.017
mix.organisation.PHCC.DWER	0.049
mix.organisation.Murdoch.FRDC	0.285
mix.organisation.City of Mandurah.General public	0.512
mix.organisation.DPIRD.General public	0.004
mix.organisation.MLFA.Mandurah cruises	0.376
mix.organisation.RFW.Mandurah times	0.870
mix.organisation.DPIRD.MLFA	<0.001
mix.organisation.MLFA.MLFA	0.002
mix.organisation.MSC.MLFA	0.376
mix.organisation.Murdoch.MLFA	0.001
mix.organisation.PHCC.MLFA	0.009
mix.organisation.RFW.MLFA	0.034
mix.organisation.SCS.MLFA	0.827

mix.organisation.SSPWA.MLFA	0.040
mix.organisation.WAFIC.MLFA	0.031
Attribute	P value
mix.organisation.RFW.MOFSC	0.870
mix.organisation.DPIRD.MSC	0.087
mix.organisation.MLFA.MSC	0.827
mix.organisation.PHCC.MSC	0.721
mix.organisation.Rec. fishers.MSC	0.721
mix.organisation.WAFIC.MSC	0.721
mix.organisation.DPIRD.Murdoch	<0.001
mix.organisation.DWER.Murdoch	0.009
mix.organisation.MLFA.Murdoch	<0.001
mix.organisation.Murdoch.Murdoch	<0.001
mix.organisation.PDC.Murdoch	0.079
mix.organisation.PHCC.Murdoch	0.005
mix.organisation.WAFIC.Murdoch	0.005
mix.organisation.DPIRD.PDC	0.006
mix.organisation.DWER.PDC	0.313
mix.organisation.Murdoch.PDC	0.158
mix.organisation.PHCC.PDC	0.241
mix.organisation.RFW.PDC	0.827
mix.organisation.DPIRD.Peel Bright Minds	0.028
mix.organisation.DPIRD.PHCC	<0.001
mix.organisation.DWER.PHCC	0.049
mix.organisation.MLFA.PHCC	0.008
mix.organisation.Murdoch.PHCC	0.005
mix.organisation.RFW.PHCC	0.177
mix.organisation.SCS.PHCC	0.721
mix.organisation.MLFA.Politician	0.242
mix.organisation.RFW.Rec. fishers	0.754
mix.organisation.SCS.Rec. fishers	0.721
mix.organisation.DPIRD.RFW	0.067
mix.organisation.MLFA.RFW	0.034
mix.organisation.MOFSC.RFW	0.870
mix.organisation.MSC.RFW	0.870
mix.organisation.Murdoch.RFW	0.008
mix.organisation.PDC.RFW	0.376
mix.organisation.PHCC.RFW	0.177
mix.organisation.Rec. fishers.RFW	0.754
mix.organisation.RFW.RFW	0.599
mix.organisation.SSPWA.RFW	0.870
mix.organisation.WAFIC.RFW	0.322
mix.organisation.DPIRD.SCS	0.087
mix.organisation.MLFA.SCS	0.376
mix.organisation.MSC.SCS	0.966
mix.organisation.RFW.SCS	0.870
mix.organisation.WAFIC.SCS	0.721
mix.organisation.MLFA.Seafood producer	0.242
mix.organisation.DPIRD.SSPWA	0.028
mix.organisation.MLFA.SSPWA	0.674
mix.organisation.RFW.SSPWA	0.870
mix.organisation.WAFIC.SSPWA	0.198
mix.organisation.Murdoch.UWA	0.285
mix.organisation.DPIRD.WAFIC	<0.001
mix.organisation.MLFA.WAFIC	0.031
mix.organisation.MSC.WAFIC	0.721
mix.organisation.Murdoch.WAFIC	0.005
mix.organisation.PHCC.WAFIC	0.031
mix.organisation.RFW.WAFIC	0.322
mix.organisation.SCS.WAFIC	0.721
mix.organisation.SSPWA.WAFIC	0.608

Table S1.5.3. Exponential random graph model results for attribute-based mixing for the attribute 'Age' of individual stakeholders forming the extended PHBSC fishery network.

Attribute	\boldsymbol{P} value
mix.age.25-34.25-34	0.226
mix.age.35-44.25-34	0.432
mix.age.45-54.25-34	0.001
mix.age.55-64.25-34	0.132
mix.age.NA.25-34	0.031
mix.age.25-34.35-44	0.226
mix.age.35-44.35-44	0.037
mix.age.45-54.35-44	0.011
mix.age.55-64.35-44	0.192
mix.age.NA.35-44	0.251
mix.age.25-34.45-54	0.010
mix.age.35-44.45-54	0.039
mix.age.45-54.45-54	0.001
mix.age.55-64.45-54	0.041
mix.age.NA.45-54	0.040
mix.age.25-34.55-64	0.132
mix.age.35-44.55-64	0.070
mix.age.45-54.55-64	0.005
mix.age.55-64.55-64	0.987
mix.age.65+.55-64	0.380
mix.age.NA.55-64	0.012
mix.age.NA.65+	0.262
mix.age.25-34.NA	0.031
mix.age.35-44.NA	0.197
mix.age.45-54.NA	0.050
mix.age.55-64.NA	0.080

Table S1.5.4. Exponential random graph model results for attribute-based mixing for the attribute 'Group of individual stakeholders forming the extended PHBSC fishery network.

Attribute	\boldsymbol{P} value
mix.group.Academics.Academics	0.004
mix.group.Commercial sector.Academics	<0.001
mix.group.Government body.Academics	<0.001
mix.group.NGO, Conservation groups.Academics	0.001
mix.group.Academics.Commercial sector	<0.001
mix.group.Commercial sector.Commercial sector	0.191
mix.group.Government body.Commercial sector	<0.001
mix.group.NGO, Conservation groups.Commercial sector	0.004
mix.group.Recreational sector.Commercial sector	<0.001
mix.group.Academics.Government body	<0.001
mix.group.Commercial sector.Government body	<0.001
mix.group.Government body.Government body	<0.001
mix.group.NGO, Conservation groups.Government body	<0.001
mix.group.Public awareness \& Tourism.Government body	<0.001
mix.group.Recreational sector.Government body	<0.001
mix.group.Academics.NGO, Conservation groups	0.001
mix.group.Commercial sector.NGO, Conservation groups	0.001
mix.group.Government body.NGO, Conservation groups	<0.001
mix.group.NGO, Conservation groups.NGO, Conservation groups	0.019
mix.group.Recreational sector.NGO, Conservation groups	0.013
mix.group.Commercial sector.Public awareness \& Tourism	<0.001
mix.group.Government body.Public awareness \& Tourism	<0.001
mix.group.Recreational sector.Public awareness \& Tourism	0.003
mix.group.Academics.Recreational sector	0.001
mix.group.Commercial sector.Recreational sector	<0.001
mix.group.Government body.Recreational sector	<0.001
mix.group.NGO, Conservation groups.Recreational sector	0.013
mix.group.Public awareness \& Tourism.Recreational sector	0.004

Table S1.5.5. Exponential random graph model results for attribute-based mixing for the attribute 'Organisation' of individual stakeholders forming the extended PHBSC fishery network.

Attribute	\boldsymbol{P} value
mix.gender.Female.Female	0.040
mix.gender.Male.Female	0.104
mix.gender.Female.Male	0.125
mix.gender.Male.Male	NA

2.1. Economic value of recreational Blue Swimmer Crab fishing in south-western Australian estuaries

Table S2.2.1. Number of responses (n) and the frequency of occurrence (\%) of responses about the demographics of Blue Swimmer Crabs fishers. Data obtained from respondents that answered all questions in the closed question online survey.

Demographic Information	n	\%
Gender		
Female	18	15.4
Male	98	83.8
Other	1	0.9
Age group		
18 to 24 years	14	12.2
25 to 34 years	29	25.2
35 to 44 years	27	23.5
45 to 54 years	29	25.2
55 to 64 years	11	9.6
$65+$ years	5	4.4
Education of respondents		
Primary school	2	1.7
Secondary school	27	23.3
Technical or further education	44	37.9
University education	37	31.9
Other	1	0.9
Not stated	5	4.3
Employment category		
Unemployed	3	2.6
Home duties	5	4.3
Full-time student	4	3.5
Part time or casual paid employment	12	10.4
Full time paid employment	78	67.8
Pensioner (disability, illness, age, etc)	3	2.6
Retired	4	3.5
Other	6	5.2
Annual income group		
Negative income (less than \$0)	2	1.6
No income (\$0)	9	7.4
\$1-\$20,799	13	10.7
\$20,800-\$41,599	16	13.1
\$41,600-\$62,399	17	13.9
\$62,400-\$83,199	16	13.1
\$84,000-\$103,999	15	12.3
\$104,000-\$142,999	11	9.0
\$143,000-181,999	10	8.2
\$182,000-\$233,999	1	0.8
\$234,000-\$285,999	1	0.8
\$286,000-\$337,999	1	0.8
Prefer not to say	10	8.2

2.2. Estimation of the economic value of recreational Black Bream fishing

Table S2.2.1. Number of responses (n) and the frequency of occurrence (\%) of responses about the demographics of Black Bream fishers. Data obtained from respondents that answered all questions in the closed question online survey.

Demographic Information	n	\%
Gender		
Female	7	5.7
Male	113	92.6
Other	2	1.6
Age group		
18 to 24 years	24	19.5
25 to 34 years	26	21.1
35 to 44 years	33	26.8
45 to 54 years	19	15.4
55 to 64 years	14	11.4
65+ years	7	5.7
Education of respondents		
Primary school	2	1.6
Secondary school	37	30.1
Technical or further education	42	34.1
University education	39	31.7
Other	2	1.6
Not stated	1	0.8
Employment category		
Unemployed	8	6.6
Home duties	6	4.9
Full-time student	8	6.6
Part time or casual paid employment	12	9.8
Full time paid employment	75	61.5
Pensioner (disability, illness, age, etc)	2	1.6
Retired	5	4.1
Other	6	4.9
Annual income group		
Negative income (less than \$0)	1	0.9
No income (\$0)	8	7.1
\$1-\$20,799	9	8.0
\$20,800-\$41,599	13	11.5
\$41,600-\$62,399	11	9.7
\$62,400-\$83,199	17	15.0
\$84,000-\$103,999	15	13.3
\$104,000-\$142,999	12	10.6
\$143,000-181,999	5	4.4
\$182,000-\$233,999	6	5.3
\$234,000-\$285,999	1	0.9
\$286,000-\$337,999	1	0.9
Prefer not to say	14	12.4

Appendix 3. Social dimensions of Blue Swimmer Crab recreational fishing in the Peel-Harvey Estuary

Table A3S1. Number of responses (n) and the frequency of occurrence (\%) of responses for questions about fisher demographics and fisher characteristics obtained from 41 face-to-face interviews with Blue Swimmer Crabs fishers on the Peel-Harvey Estuary.

Respondent characteristics	n	\%
Gender		
Male	31	75.6
Female	10	24.4
Age group		
18-24	1	2.4
25-34	8	19.5
35-44	5	12.2
45-54	6	14.6
55-64	9	22.0
65+	12	29.3
Residency		
Mandurah resident (live within 20 km of estuary)	29	70.7
Non-Mandurah resident	12	29.3
Length of time fishing for Blue Swimmer Crabs		
1 year or less	5	14.3
2-3 years	4	11.4
4-10 years	2	5.7
11-20 years	7	20.0
21-39 years	5	14.3
40 or more years	12	34.3
Highest level of education		
Secondary	22	53.7
Tertiary or further educational institution	11	26.8
University	8	19.5
Primary	0	0
Fishing method		
Both boat and shore, but mainly boat	11	26.8
Shore only	9	22.0
Both boat and shore, but mainly shore	8	19.5
Both equally	7	17.1
Boat only	6	14.6
Are Blue Swimmer Crabs key to fisher identity?		
No	27	65.9
Yes	14	34.1
Fisher awareness of restocking		
Yes	34	82.9
No	7	17.1

Table A3S2. Number of responses (n) and the frequency of occurrence (\%) of responses for questions about fisher demographics and fisher characteristics obtained from the closed question online survey with Blue Swimmer Crabs fishers using the Peel-Harvey Estuary.

Fisher characteristics	n	\%
Gender		
Male	129	79.6
Female	32	19.8
Other	1	0.6
Age		
18-24	10	6.2
25-34	30	18.6
35-44	37	23.0
45-54	39	24.2
55-64	28	17.3
65+	17	10.6
Residency		
Non-Mandurah resident	81	50.9
Mandurah resident	78	49.1
Length of time fishing for Blue Swimmer Crabs		
1 year or less	8	3.8
2-3 years	12	5.7
4-5 years	20	9.5
6-10 years	26	12.3
11-20 years	43	20.4
21-39 years	54	25.6
40 or more years	48	22.7
Frequency of fishing over the last 12 months		
I have not fished for the crabs in the past 12 months	6	2.6
Once	27	11.6
Once every 4-6 months	43	18.5
Once every 2 - 3 months	42	18.1
Once a month	47	20.3
1-2 days a fortnight	39	16.8
1-2 days a week	22	9.5
3-4 days a week	4	1.7
5 days or more a week	2	0.9
Education		
Secondary	53	34.2
Tertiary or further educational institution	51	32.9
University	48	31.0
Primary	3	1.9
Fishing method		
Boat only	71	33.3
Shore only	50	23.5
Both boat and shore, but mainly boat	41	19.2
Both boat and shore, but mainly shore	30	14.1
Both equally	21	9.9
Self-assessed fishing level		
Intermediate	109	51.7
Expert	82	38.8
Beginner (novice)	20	9.5

Table A3S3. H-values from Kruskal-Wallis tests between the basic fisher demographics, fisher characteristics and CLUSTER-SIMPROF fisher groups and the motivational factors. Dark and light shading indicate significant results $(p<0.050)$ and those with a p-value between $0.051-0.100$, respectively.

	What makes a fishing trip successful?					
	Catching enough crabs to eat	Catching big crabs	Being with friends/family is enough	Being outdoors is enough	Catching as many crabs as legally allowed	Catching some crabs, despite number or size
Demographics						
Age	1.19	4.41	1.76	2.68	5.00	11.99
Gender	3.36	3.11	4.39	1.91	3.76	4.14
Residency	5.08	0.13	3.40	4.14	1.82	0.69
Fisher charact.						
Fishing frequency	17.08	6.22	14.89	15.32	8.65	8.95
Length of practice	6.66	1.60	4.56	11.81	3.82	5.50
Fishing method	5.19	1.44	1.31	4.26	11.08	3.63
Expertise	3.38	3.66	2.60	3.48	2.02	0.46
Fisher groups	4.78	2.15	3.30	4.37	3.40	0.70

Table A3S4. H-values from Kruskal-Wallis tests between the basic fisher demographics, fisher characteristics and CLUSTER-SIMPROF fisher groups and the restocking belief strength. Dark and light shading indicate significant results ($p<0.050$) and those with a p-value between $0.051-0.100$, respectively.

	Belief Strength					
	Increase crab number	More crabs to catch	More fishers fishing	No change in crab abundance	Increase fishing pressure	Impact on the environment and species
Demographics	6.93	7.89	3.69	6.13	8.83	
Age	1.81	3.39	1.81	1.09	4.41	9.44
Gender Residency	1.25	2.78	0.01	2.74	1.43	2.97
Fisher charact.						0.06
Fishing frequency	6.99	7.72	10.48	4.69	5.96	8.05
Length of practice	6.98	6.24	5.50	5.01	7.27	6.89
Fishing method	3.06	2.06	2.41	0.75	1.70	8.16
Expertise	1.36	0.05	1.61	1.01	0.21	5.24
Fisher groups	2.03	2.58	4.32	4.72	3.28	10.67

Table A3S5. H-values from Kruskal-Wallis tests between the basic fisher demographics, fisher characteristics and CLUSTER-SIMPROF fisher groups and the restocking belief evaluation. Dark and light shading indicate significant results $(p<0.050)$ and those with a p-value between $0.051-0.100$, respectively.

	Belief evaluation					
	Increase crab number is	More crabs to catch is	More fishers fishing is	No change in crab abundance is	Increase fishing pressure is	Impact on the environment and species is
Demographics	3.73	5.11	2.80	4.67	2.49	4.53
Age	5.42	5.47	0.45	0.38	2.26	0.01
Gender	0.32	1.88	2.32	2.93	0.39	1.53
Residency						
Fisher charact.	8.68	10.13	8.88	12.14	3.38	3.95
Fishing frequency	4.12	3.83	12.06	8.88	4.15	10.38
Length of practice	4.01	2.33	4.13	4.76	2.15	6.42
Fishing method	1.39	0.30	0.66	4.12	4.16	0.34
Expertise	2.02	4.58	4.16	6.75	1.32	4.39
Fisher group						

Table A3S6. H-values from the Kruskal-Wallis test between the basic fisher demographics, fisher characteristics and CLUSTER-SIMPROF fisher groups and the restocking cross-product data. Dark and light shading indicate significant results ($p<0.050$) and those with a p-value between 0.051-0.100, respectively.

	Cross-product (belief strength \mathbf{x} belief evaluation)					
	Increase crab number	More crabs to catch	More fishers fishing	No change in crab abundance	Increase fishing pressure	Impact on the environment and species
Demographics	6.20	4.69	1.66	3.63	3.92	
Age	3.77	4.61	0.32	0.16	0.02	3.31
Gender	0.59	2.59	1.75	0.38	1.04	3.77
Residency						
Fisher charact.	11.49	10.40	11.24	12.50	3.18	
Fishing frequency	6.12	3.89	13.34	4.30	9.28	9.14
Length of practice	2.77	2.07	1.85	2.47	4.37	5.55
Fishing method	0.61	0.13	0.17	2.43	4.54	4.51
Expertise	2.36	5.33	2.98	1.93	2.49	7.63
Fisher groups						

Table A3S6. H-values from Kruskal-Wallis tests between the basic fisher demographics, fisher characteristics and CLUSTER-SIMPROF groups and the various management interventions. Dark and light shading indicate significant results $(p<0.050)$ and those with a p-value between $0.051-0.100$, respectively.

	Management									
	Min size limits	Max size limits	Bag limits	Season closure	Closed fishing zones	Restrict fishing gear	Monitor fishers	Educate fishers	Restock crabs	
Demographics	0.92	6.40	0.32	3.89	4.07	3.44	7.99	5.88	5.05	
Age	0.38	7.51	1.82	1.57	5.79	2.21	0.37	1.17	0.64	
Gender	0.07	1.31	0.90	0.20	0.07	0.07	0.09	0.01	1.40	
Residency										
Fisher charact.	2.64	14.37	5.91	6.84	17.51	5.65	6.71	2.94	2.05	
Fishing freq.	5.60	7.11	3.83	3.04	9.25	6.56	4.06	6.19	5.28	
Len. of practice	2.76	14.84	3.88	3.41	8.64	4.33	1.06	3.40	3.80	
Fishing method	2.43	4.79	2.88	0.07	13.77	6.17	2.07	1.56	1.47	
Expertise	1.99	8.28	5.71	3.38	9.93	3.29	3.09	3.57	0.54	
Fisher group	1									

[^0]: * After selecting this response these respondents were automatically transferred to the final page of the questionnaire to complete some basic demographic questions and received a thank you message.
 \wedge Respondents were able to select multiple options and so value do not sum to 100 .

