

Visiting scientist, Kostas Ganias - expert on fish reproductive biology related to egg production methods

Kostas Ganias

February 2018

FRDC Project No 2016/103

© 2018 Fisheries Research and Development Corporation. All rights reserved.

ISBN 978-618-82725-1-4

Visiting scientist, Kostas Ganias - expert on fish reproductive biology related to egg production methods Project No 2016/103 February 2018

Visiting scientist: Dr. Konstantinos Ganias, School of Biology, Aristotle University of Thessaloniki.

Host institution: PIRSA-SARDI, Adelaide, South-Australia. Visit period: 2–16 September 2017.

Ownership of Intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation and Aristotle University of Thessaloniki.

This publication (and any information sourced from it) should be attributed to Ganias, K., Aristotle University of Thessalonik2018, *Visiting scientist, Kostas Ganias - expert on fish reproductive biology related to egg production methods*, Adelaide, Australia, February 2018]

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms.

Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/degalcode.

Inquiries regarding the licence and any use of this document should be sent to: frdc@frdc.com.au

Disclaimer

The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC.

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry.

Researcher Contact Details

Name:	Kostas Gaias
Address:	Department of Zoology, School of Biology, Aristotle University, Thessaloniki, Greece
Email:	kganias@bio.auth.gr

FRDC Contact Details

Address:	25 Geils Court				
	Deakin ACT 2600				
Phone:	02 6285 0400				
Fax:	02 6285 0499				
Email:	frdc@frdc.com.au				
Web:	www.frdc.com.au				

In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form.

CONTENTS

1. Executive Summary	4
2. Background	5
3. Objectives	6
4. Method	7
5. Results	8
5.1 Revision of Australian Sardine POF ageing criteria	8
5.2. Batch fecundity measurement using particle analysis	11
6. Discussion	12
7. Planned publications	14
8. Links and future collaboration	14
9. Acknowledgments	14
10. References	15

1. Executive Summary

Foreword by A/Prof Tim Ward (SARDI Aquatic Sciences)

The Daily Egg Production Method (DEPM) is used to estimate the spawning biomass of several Australian fisheries for pelagic species, including the South Australian Sardine Fishery (SASF) and Commonwealth Small Pelagic Fishery (SPF). Dr Kostas Ganias of Aristotle University of Thessaloniki is a world leader in the reproductive biology of small pelagic fishes related to the application egg production methods. The aim of the Dr Ganias' visit to Australia was to evaluate and recommend options for improving the methods used to estimate the spawning fraction and fecundity of Australian Sardine (*Sardinops sagax*), Jack Mackerel (*Trachurus declivis*), Blue Mackerel (*Scomber australasicus*) and Redbait (*Emmelichthys nitidus*).

Dr Ganias made three key recommendations that have the potential to improve application of the DEPM to the SASF and SPF.

• 1. Consider the size of post-ovulatory follicles (POFs) and the time of sampling when allocating PoFs to daily cohorts.

This recommendation will be used to refine existing protocols for staging POFs.

A student project will also be undertaken in 2018 (by Mr Stuart Sexton, SARDI) to investigate the effects of temperature on the degeneration rates of PoFs and examine spatio-temporal relationships of spawning fraction and egg density.

• 2. Do not underake histological analysis ovaries that cannot have POFs.

The potential benefits if this recommendation will be evaluated during the application of the DEPM to the SASF during 2018.

• 3. Use a method for estimating batch fecundity that does not depend on the collection of females with hydrated females.

The application of the method suggested by Dr Ganias will be trailed in future assessments of the DEPM to SPF species (e.g. Redbait 2018).

The visit to Australia of Dr Ganias was informative. Recommendations have the potential to improve application of the DEPM to the SASF and SPF. Ongoing collborations, including joint projects and publications, are currently being planned.

2. Background

Egg production methods are amongst the most accurate fishery independent methods for assessing the stock spawning biomass, SSB, of commercially important fish stocks. Their concept was mainly shaped at the beginning of 1980s through the development of the daily egg production method (DEPM) which can be applied to any type of pelagic spawners. The DEPM has been extensively applied to fish stocks of various taxa worldwide, including Australia. Despite the long series of applications and large amount of effort and financial resources that have been invested on these assessments there are still important knowledge gaps that may lead to unreasonable increase in the cost and labor of DEPM assessments. Deficiencies might include unavailability of samples for fecundity measurements or inappropriate survey design that can lead to biased parameter estimates, etc.

The ageing of postovulatory follicles (POFs) and the subsequent assignment of spawners to daily classes remains one of the most complicated issues in the DEPM. Correct applications of the POF method presuppose the existence of a validated histological key that accurately corresponds histological POF stages to different ages. However, in many cases POF ageing is performed without prior basic knowledge on the process of POF resorption. The latter is often adopted by other populations of the same or even closely related species, e.g. the criteria developed for the Northern Anchovy (*Engraulis mordax*) by Hunter & Goldberg (1980). Apart from inaccuracy in the applied ageing keys, bias in the staging/ageing of POFs might also be introduced by other factors such as the quality of the slides, the material the ovaries have been embedded in, as well as the experience, patience and fatigue of the observer (Ganias, 2012).

The most common method used for estimating batch fecundity (BF) is to count the number of hydrated oocytes (HO) in imminent spawners (Hunter et al., 1985). Despite its popularity, applications of the HO method are often limited by difficulties in obtaining field collections of hydrated females. The latter is mainly due to (a) the very short daily duration of the ripe spawning phase and (b) the segregative behavior of spawning

individuals. Hydrated females in several fishes like Sardine and Anchovy move away from the main school, thus reducing the likelihood to encounter spawning fishes (Ganias et al., 2014). Therefore, accurate BF estimates require considerable sampling and processing effort. Ganias et al. (2010) measured the spawning batch in the Atlantic Sardine (*Sardina pilchardus*) based on oocyte size frequency distributions derived from automated particle counting procedures in digital images of ovarian whole mounts. The application of this automated method allows increased numbers of samples to be analysed for BF estimates in DEPM applications by minimizing both processing effort and time.

A Technical Workshop and Stakeholder Forum on Small Pelagic Fisheries held in Adelaide in 2014 confirmed that Australia is a world leader in the application of the DEPM (Ward et al. 2015). However, experts attending the workshop identified the potential benefits of investigating opportunities for refining application of the method, including protocols and techniques used to estimate key adult reproductive parameters, namely spawning fraction and batch fecundity. Also, a recent meeting of an ICES Working Group (WGALES, Greece 2016) attended by the host PI (Ward), identified similar opportunities to refine methods used to estimate adult parameters in several European fisheries. Funding for this travel travel to Australia was needed to review current methodologies and ensure methods used in Australian fisheries are consistent with world's best practice.

3. Objectives

The planned project objectives were:

- To review methods used to estimate spawning fraction and batch fecundity for Australian species, including Australian Sardine, Jack Mackerel, and Blue Mackerel.
- To compare Australian and European experience related to application of egg production methods.

In addition, through this project the host PI and the visiting scientist managed to:

 Strengthen links and stimulate potentials for future collaboration between PIRSA-SARDI and the School of Biology of the Aristotle's University of Thessaloniki. • Plan potential joint publications on the comparison between the breeding strategies of European and Australian pelagic species.

4. Method

In total, I spent two weeks working with PIRSA-SARDI (2nd to 16th September 2017). Most of this time was devoted in reviewing methods used to estimate spawning fraction and batch fecundity. This included: (a) detailed microscopic observations of histological preparations of Australian Sardine (*Sadinops sagax*) ovaries and (b) testing an image analysis technique for estimating fish fecundity.

An attempt was made to improve accuracy in the ageing of the postovulatory follicles (POFs) of the Australian Sardine by including their morphological characters through the development of their size and shape. This seeks to augment the purely histological POF features that previous staging/ageing keys were based on. POFs are reabsorbing structures and thus apart from changes in their histological characteristics, such as the state of the granulosa cell layer, they also undergo significant reduction in size, until complete resorption. Therefore, their size (expressed as their cross-sectional area in histological slides) could indicate their age and consequently the daily class to which female spawners belong.

A total of 135 histological slides of Australian Sardine ovaries were used for this task. All these individuals were previously scored as having POFs. These samples were collected during the 2017 DEPM survey and originated from Scott Cove and Greenly Island. Samples from Scott Cove (n=91) were caught late at night, between 2100 and 2230, i.e. during the peak daily spawning period of Sardine. Samples from Greenly Island (n=43) were caught at dawn. The advantage of this sample scheme is that it allowed the distinction of different daily cohorts of POFs both during spawning and some hours after spawning. Therefore, it helped to accurately configure the entire range of POF degeneration, from the very fresh POFs to almost fully resorbed POFs.

Concerning fecundity calculations, two Jack Mackerel (*Trachurus declivis*) ovaries at late vitellogenic or early final oocyte maturation (FOM) stages were used to examine whether batch fecundity can be measured in non-hydrated females through an automated image analysis procedure. These ovaries were previously weighted fresh, frozen and after a while placed in flasks with 10% formalin. Fecundity measurements

were made using the gravimetric method as follows: a sub-sample of 100-150 mg tissue was taken from each ovary, weighted (1 mg), cleared from the smaller oocytes (mostly primary) using a sieve of 150 µm mesh size and then placed in a Petri dish with tap water. The Petri dish was then placed under a dissecting microscope with an attached microscopy-camera and the subsample was photographed so that all the oocytes would fit into the micrograph. In order to have micrographs of the best possible quality for subsequent oocyte counting, prior to photography each subsample was cleaned from membranes and other non-oocyte material.

In addition to my technical/laboratory tasks, during the second week I gave a seminar in PIRSA-SARDI on issues related to the adult survey of egg production methods (see the Appendix).

Through the period of my visit I had extended conversations with Dr. Tim Ward on common problems of DEPM surveys and on ways to improve lab processing and field sampling and collaborated with members of his research group in PIRSA-SARDI, especially with Alex Ivey.

5. Results

5.1 Revision of Australian Sardine POF ageing criteria

The revision of POF ageing criteria resulted to the characterization of five different daily POF classes. Table 1 summarises the dimensional (shape, cross-sectional area) and fine histological (state of the granulosa layer) characteristics of different daily classes of Sardine POFs while Figure 1 shows the gradual stages of POF degeneration from the very young POFs to full resorption. The three different time phases per POF class (BEG, MID, END) correspond to samples caught during (latest Scott Cove samples), almost half day beyond (Greenly Island samples) and just before (earliest Scott cove sample) the daily spawning period (respectively).

As can be seen in Table 1 and Figure-1 the cross-sectional area (XSA) of POFs was shown to shrink by approximately 50% per day during the first two days after spawning. Specifically, very fresh Day-0 POFs, occurring in running females, had a mean XSA of 0.04 mm², which decreased to 0.018 mm² 24 h after spawning. The latter value coincided with the XSA of the very young Day-1 POFs, which decreased to 0.011 mm² 48 h after spawning. The per cent decrease in the XSA of Day-2 POFs was a bit lower,

reaching 0.08 mm² 72 h after spawning. The XSA of late Day-2 POFs and beyond was smaller than 0.01mm² while very small POFs (<0.006mm²) only persisted until the beginning of the Day-5 class.

Table 1. Summary of dimensional (shape, cross-sectional area) and fine histological (state									
of the granulosa la	ayer) c	characteristics	of	different	daily	classes	of	Australian	Sardine
postovulatory follicle	s								

POF age class	Shape	State of granulosa	Cross-sectiona	Cross-sectional area (mm ²)		
Day0	Irregular	Thick and	BEG	0.040		
		looped	MID	0.041		
			END	0.018		
Day1	Rectangular	One well- formulated layer	BEG	0.018		
			MID	0.015		
			END	0.011		
Day2	Triangular	A thin	BEG	0.012		
		receding	MID	0.011		
		layer	END	0.008		
Day3	Triangular	Resorption	BEG	0.009		
		almost	MID	0.007		
		completed	END	0.006		
Day4	Triangular	Resorption almost completed	BEG	0.006		

5.2. Batch fecundity measurement using particle analysis

Digital photomicrographs were processed through an automated procedure based on the ability of most image-analysis software to count and measure objects in binary or thresholded images (Fig. 2).

Figure 2. Consecutive phases of the processing of ovarian whole mounts of Jack Mackerel for the automated counting of oocytes.

The routine was quite similar to that described by Thorsen and Kjesbu (2001) and included consecutively the adjustment of brightness and contrast, conversion of the image type to 8-bit (Fig. 2B), restriction of colour spectrum to a region that includes all the oocytes (thresholding; Fig. 2C), separation of individual particles (segmentation; Fig. 2D) and counting of all particles above the size order of previtellogenic oocytes (Fig. 2E & F). After measuring the size of individual oocytes and producing size frequency distributions for each ovary separately, frequency histograms were produced (Fig. 3). The number of the advanced batch oocytes was measured through decomposing composite oocyte size distributions and estimating the number of particles in the distribution that corresponds to the spawning batch using a combination of the Bhattacharya's method and the NORMSEP module inside the FiSAT II software (http://www.fao.org/). Batch fecundity was estimated gravimetrically by dividing the oocyte number number with sub-sample weight and multiplying it with

whole ovary weight. Relative batch fecundity was measured by dividing fecundity with total somatic weight and ranged between 200–250 oocytes*g⁻¹.

6. Discussion

The size of POFs provided an indirect, estimation of the time elapsed from spawning and may thus be used to test both the validity of POF staging criteria for identifying daily cohorts of spawners and the effect of other factors (such as temperature) in Australian Sardine DEPM applications.

Some recommendations for future assessments are:

1. To consider the possible effect of temperature in POF resorption rates by analysing years and samples caught at extreme temperatures (low/high).

- To consider the hour of sampling during POF scorings in order to have better correspondence with the respective morpho-histological features of each resorption phase.
- 3. To not take into account very late triangular POFs with XSA lower than 0.01 mm² (marked in red in Table1), as these are generally hard to be aged and thus assigned to daily classes. These small POFs include the very late Day-2 POFs and all older classes.
- 4. To discard from the histological analysis all those ovaries that are impossible to have POFs such as late vitellogenic and the pre-ovulatory stages, including nucleus migration and germinal vesicle breakdown stage. This will much reduce cost and labor in spawning fraction estimations. To discard the inactive, postspawning stages from the analysis of the spawning fraction.

Concerning the fecundity task, the resulting relative fecundity values (~200–250 oocytes*g⁻¹) where within the range of previous estimates for the same population (Ward et al., 2016), suggesting that the method worked well for estimating batch fecundity in Jack Mackerel using non-hydrated females. The main advantage of this method deals with the time that is needed for fecundity measurements. After the parameterization of the software, the process of analyzing even large volumes of image files may be carried out quite easily and quickly. In particular, the time needed (excluding the technical work required for the preparation of the whole mounts) to measure oocytes directly under the ocular microscope requires at least 5 minutes per specimen, while large numbers of photomicrographs can be analyzed using a macro in the image analysis software in only few minutes. Applications of this method may also provide large archives of digital micrographs to which someone can easily comeback for posterior analysis without depending on the status of stored biological material and existing laboratory infrastructure (precision gauges, stereoscope, etc.).

Both methods, i.e. the measurement of POF are in spawning fraction estimates and the automated procedure in BF estimation are currently used in several institutes across Europe (e.g. IPMA, Portugal; IEO, Spain) and are anticipated to improve DEPM application in Australian waters.

7. Planned publications

Two potential publications in peer-review journals were planned:

The first potential publication concerns the daily spawning dynamics and formation of spawning aggregations in Australian Sardine.

The second potential publication concerns an inter-specific and inter-population analysis of consistency in spawning frequency values among Sardine (genera *Sardinops* and *Sardina*) stocks worldwide using Australian Sardine as case study.

8. Links and future collaboration

Several forms of collaboration with Dr. Ward and PIRSA-SARDI were discussed during this visit. Apart from the aforementioned joint publications, these include the use of staff mobility programs, and the joint supervision of post-graduate and PhD projects. Moreover, close collaboration is anticipated within the framework of ongoing ICES work on the study of spawning dynamics of various commercial fish stocks.

9. Acknowledgments

First, I would like to thank Dr. Tim Ward for organizing this visit and for being an excellent host and providing all possible means to support this visit. Alex Ivey is also greatly thanked for his valuable help with histological material and data-sets.

10. References

- Ganias, K., 2012. Thirty years of using the postovulatory follicles method: Overview, problems and alternatives. Fish. Res. 117–118, 63–74. doi:10.1016/j.fishres.2011.01.009
- Ganias, K., Rakka, M., Vavalidis, T., Nunes, C., 2010. Measuring batch fecundity using automated particle counting. Fish. Res. 106, 570–574. doi:DOI 10.1016/j.fishres.2010.09.016
- Ganias, K., Somarakis, S., Nunes, C., 2014. Reproductive Potential, in: Ganias, K. (Ed.), Biology and Ecology of Sardines and Anchovies. CRC Press, Boca Raton, FL, pp. 79–121.
- Hunter, J.R., Goldberg, S.R., 1980. Spawning incidence and batch fecundity in northern Anchovy, *Engraulis mordax*. Fish. Bull. 77, 641–652.
- Hunter, J.R., Lo, N.C.H., Leong, H.J., 1985. Batch fecundity in multiple spawning fishes, in: Lasker, R. (Ed.), An Egg Production Method for Estimating Spawning Biomass of Pelagic Fish: Application to the Northern Anchovy, *Engraulis mordax*. NOAA Technical Rep NMFS 36. pp. 67–77.
- Thorsen, A., Kjesbu, O.S., 2001. A rapid method for estimation of oocyte size and potential fecundity in Atlantic cod using a computer-aided particle analysis system. J. Sea Res. 46, 295–308.
- Ward, T.M, Angelico, M.M., Cubillos, L.A., van Damme, C. J. G., Ganias, K., Ibaibarriaga, L. and Lo, N. C. H. South Australian Research and Development Institute (Aquatic Sciences) 2015, Benchmarking Australia's small pelagic fisheries against world's best practice. Adelaide, December.
- Ward, T.M., Burnell, O.W., Ivey, A., Sexton, S.C., Carroll, J., Keane, J., Lyle, J.M., 2016. Spawning biomass of jack Mackerel (*Trachurus declivis*) off eastern Australia: Critical knowledge for managing a controversial fishery. Fish. Res. 179, 10–22. doi:10.1016/j.fishres.2016.02.005

11. Appendix 1. Ganias seminar

Background information Development of a method which allowed: POFs are reabsorbing structures Thus, apart from changes in their histological characteristics To improve accuracy in the aging of the postovulatory follicles of sardine by including such as the state of the granulosa-cell layer, they also undergo gradual reduction in size, until complete resorption the evolution of their shape and their size to their morphological characterization Under similar environmental conditions POFs are postulated to shrink at To explore other factors that might affect the a more or less constant rate size of POFs such as the embedding material (paraffin/resin) and ambient temperature. Thus, the size of the POFs could indicate their age and consequently the daily spawning class of active females

22

