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Executive Summary  
What the report is about 

This research project was a collaborative project between CSIRO, Bureau of Meteorology and 
industry and management partners in Australia and the western Pacific region, with primary 
benefit for the ETBF. The project investigated the influence of local ocean conditions on the 
main target species availability in eastern Australian waters as well as the wider Pacific region, 
and how lagged ocean conditions elsewhere can also provide insight.  We sought to utilise 
existing environmental datasets to aid in this investigation and also to develop analysis ready 
datasets for this project and beyond. 

Background 

The five target species of the ETBF (Bigeye Tuna, Thunnus obesus; Yellowfin Tuna, Thunnus 
albacares; Albacore, Thunnus alalunga; Striped Marlin, Kajikia audax; Broadbill Swordfish, 
Xiphias gladius) have a wide distribution outside the Australian EEZ, but the influence of 
oceanographic factors on their distribution, abundance and phenology within the ETBF fishery 
region and the adjacent south-west Pacific region is poorly understood, creating uncertainty in 
current management arrangements.  This project investigated the influence of oceanographic 
conditions on species distribution in the ETBF and the wider region.  

Aims/objectives 

The specific project objectives were: 

• Enhance AFMA and industry understanding of influence of climate-ocean system drivers upon 
the spatial and temporal variability of key ETBF species; 

• Develop and deliver predictive models at seasonal and decadal time scales to assist management 
and industry planning; 

• Provide operational forecasts of habitat distribution for Australia and the regional partners 
within the life of the project; 

• Inform harvest and allocation discussions at national and international scales. 

In meeting these objectives, we used available data on species’ locations (rather than collecting 
new tagging data) and investigate how ocean conditions might affect their distributions in the 
south-west Pacific. 

 

Methods 

The project team undertook an examination of existing literature and research and held project 
workshops throughout the project lifetime to reveal current understanding of the focal species 
distribution.  A significant portion of the project resources were used in the collation of fisheries 
and ocean data to enable this investigation to be done. We initially applied habitat models that 
had been developed in other marine domains to test how well these models performed in our 
system.  After this assessment we focused our efforts on applying the best model from this 
initial process to the wider domain and for all five species.  We also investigated a new time-
series modelling framework that allowed us to include environmental information from both 
the region being investigated and also including time lagged environmental data from 
neighbouring regions to assess influence of conditions in one region on an adjacent region in the 
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future. All of these models were subsequently run using oceanographic input variables that can 
be forecast, and the results presented as example forecast case studies. 
 
Key Findings 

A key finding of the project was that sub-surface ocean state variables are important in 
explaining the variance in catch.  Previous work has focused on surface variables, as these are 
ones that have historically been available in seasonal models and models such as IPCC climate 
models.  Modern forecast systems, however, allow us to assess sub-surface variables, and 
revealed their importance for these target species and as a focus for future work.  

The figure below is taken from Figure 63 (a) in the main report and shows the relative 
contributions and the variation of each of the oceanographic variables included in the yellowfin 
tuna (YFT) model for the different study regions.  Variables to note are heat content in the 
upper 300m (hc300), mixed layer depth (mld1) and temperature at 500m (temp500) which are 
all sub-surface oceanographic variables.  The regions on the x-axis are the divisions of the study 
area: all regions (all); East Australian Current dominated (eac); Coral Sea (cs), Western Central 
Pacific (wcp) and New Zealand (nz). 

 
A key output from this project is an analysis-ready dataset for use in ongoing scientific 
investigation, and will be made accessible for management.  Additionally, two dedicated 
websites for real time forecasts of ocean state have been provisioned. The first is a project 
webpage, hosted by the Bureau of Meteorology, providing seasonal forecasts of ocean state 
(http://poama.bom.gov.au/project/etbf/index.html, Box 1), and the second is a dedicated 
project page where case studies of habitat model forecasts and project outputs will be located 
(http://www.cmar.csiro.au/etbf-oceanographic-influences/index.html). 
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Box 1: Example of Forecast Visualisation Tool and how to use it. 

1. Choose the Forecast Start Date 
2. Select the Basic Chart to view 
3. Choose the Domain from the list defined 
4. Select the appropriate forecast period (e.g. week 1 and 2, month 1, …) 

 
 

Implications for relevant stakeholders 

The outcomes of this work will have utility for fisheries stock assessments and management in 
the face of climate change.  It is expected that as the ocean continues to warm, and fish 
distributions change, there will be a need to use environmental nowcasts and forecasts to aid 
support sustainable harvest and management and inform the debate about spatial management 
tools such as static and dynamic protected areas. 
 
Ongoing provision of environmental status reports and forecasts (situational reports) will be 
useful for managers involved in natural resource management in a changing environment.  
 
Recommendations 

Based on continual project engagement with end users over four years, there is clear interest 
and need for continued and improved delivery of oceanographic information and insight to 
Australian fisheries management and industry.  During the evolution of this project, the team 
has worked closely with Bureau of Meteorology staff and CSIRO oceanographers to incorporate 
the various reanalysis and forecast products into our work.  The outputs of the modelling work 
show that primary (e.g. temperature at 500m) and derived (depth of the 20°C isotherm, heat 
content in the upper 300m, and mixed layer depth) sub-surface oceanographic variables are 
important, and yet these are limited in their availability to be forecast.  Many of these variables 
are yet to be fully assessed for forecast skill (a measure of accuracy), and when this has been 
done, efforts to make these available should be pursued. 
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The analysis-ready datasets produced by this project should be considered in the regular 
workflow of the TTRAG for use in standardising CPUE and providing updates of current ocean 
state. 
 
Engagement with the Bureau of Meteorology should be continued to promote the ongoing 
development of operational systems, and the continued provision and assessment of additional 
ocean variables (that include the sub-surface variables of interest). 
 
A substantial limitation in assessing the environmental influence on tuna and billfish availability 
in the ETBF and surrounding regions is the limited or absent fishery independent data such as 
that obtained from electronic tags. Targeted studies of species of interest in the Australian 
region are needed to explore the influences in more detail.  Catch data are clearly influenced by 
decisions made by fishers and managers, primarily to do with economics (e.g., distance from 
port, market price or demand), or harvest controls, which confound the ocean influences on fish 
distribution.   
 

Keywords 

Habitat modelling, tropical tuna, data assimilation, forecasting, ACCESS-S, CAFE60. 
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Introduction 

There is an ongoing need for the AFMA, its advisory committees and the ETBF industry to gain a 
much stronger understanding of past, current and potential future oceanographic and 
environmental impacts upon (i) the spatial and temporal distribution and level of ETBF catches, 
catch rates, fishing effort and fish sizes (particularly those indicators used in the ETBF harvest 
strategy), and (ii) the interactions between focal species in the ETBF with domestic (e.g. 
recreational) and international fisheries. Using established relationships with regional partners, 
which allowed comprehensive collation of catch and effort (and investigation of tracking) data for 
the focal species, habitat models for the whole region were developed. 
 
The abundance and distribution and hence availability of highly migratory tuna and billfish species 
to fisheries are known to be strongly influenced by oceanographic conditions. The five target 
species of the ETBF have a wide distribution outside the Australian EEZ, but the influence of 
oceanographic factors within the ETBF fishery region and the surrounding south-west Pacific 
region is poorly understood, creating uncertainty in current management arrangements. The 
waters off the east coast of Australia are also experiencing rapid climate change (Hobday and Pecl 
2014), with range expansion already observed for many coastal and pelagic fish species (Last et al 
2011; Sunday et al 2016). Changes in distribution over the century are also projected for the key 
ETBF species in eastern Australia (Hobday 2010; Hartog et al 2011; Dell et al, 2015; Robinson et al, 
2015) and the wider Pacific (e.g. albacore, Lehodey et al. 2015). 
 
Habitat models and seasonal forecasting approaches have been developed and used for a range of 
species, including southern bluefin tuna in eastern Australia (Hobday et al 2011), the Great 
Australia Bight (Eveson et al 2015) and various applications globally (Muhling et al 2017, Scales et 
al 2017, Tommasi et al 2017). These approaches have been built upon in this project and modified 
to use the Bureau of Meteorology’s ACCESS-S2 model (Australian examples having previously used 
the Bureau of Meteorology’s POAMA model (Hobday et al. 2016; Hobday et al. 2018). 
 
The project team undertook an examination of existing literature and research and held project 
workshops throughout the project lifetime to aid current understanding of the focal species’ 
distribution.  A significant portion of the project resources were used in the collation of fisheries 
and ocean data to enable this investigation to be done. We initially applied habitat models that 
had been developed in other marine domains to test how well these models performed in our 
system.  After this assessment we focused our efforts on applying the best model from this initial 
process to the wider domain and for all five species.  We also investigated a new time-series 
modelling framework that allowed us to include environmental data from the region being 
investigated as well as time-lagged environmental data from neighbouring regions to assess 
influence of conditions in one region on an adjacent region in the future. These models were run 
using input variables that can be forecast, and used to generate example forecast case studies. 
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Objectives 

The objectives of the project and how they have been addressed in this project are outlined 
below: 

 Objective Section where addressed 

1 

Enhance AFMA and 
industry understanding 
of influence of climate-
ocean system drivers 
upon the spatial and 
temporal variability of 
key ETBF species. 

• Section 1: Local and Regional Fishery Data 
• Section 2: State-of-the-art estimates of ocean state 
• Section 3 and Section 5: Habitat modelling sections 

2 

Develop and deliver 
predictive models at 
seasonal and decadal 
time scales to assist 
management and 
industry planning 

• Section 3: Initial Habitat Modelling 
• Section 5.2: BRT using CAFE60 
• Section 5.3: BRT using ACCESS-S2 
• Section 8: Categorical approach to prediction of CPUE based on 

ACCESS-S2 output 

3 

Provide operational 
forecasts of habitat 
distribution for Australia 
and the regional 
partners within the life 
of the project 

• Section 7: Projecting future patterns – seasonal and decadal 
forecasts 

• Provided at project websites: 
o http://poama.bom.gov.au/project/etbf/index.html 
o http://www.cmar.csiro.au/etbf-oceanographic-influences/index.html 

• Article written for  
o https://coastfish.spc.int/en/publications/bulletins/fisheries-newsletter 

 

4 

Inform harvest and 
allocation discussions at 
national and 
international scales 

• Results sections 
• Discussion and Conclusion 
• Executive Summary 
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1 Local and Regional Fishery Data 
Catch and effort data from 13 nations and territories across the South-West Pacific region (Cook 
Islands; French Polynesia; New Caledonia; New Zealand; Norfolk Island; Samoa; Solomon Islands; 
Tokelau; Tonga; Tuvalu; Vanuatu; Fiji and Australia) were provided by the Western and Central 
Pacific Fisheries Commission (WCPFC) and Australian Fisheries Management Authority (AFMA) for 
the five target species in the Eastern Tuna and Billfish Fishery (ETBF).  The data for these species 
(Bigeye Tuna, Thunnus obesus; Yellowfin Tuna, Thunnus albacares; Albacore, Thunnus alalunga; 
Striped Marlin, Kajikia audax; Broadbill Swordfish, Xiphias gladius) were provided in a summarised 
form by month and spatial grid cell from 1990 to 2020, using both a 1°x1° and 0.25°x0.25° grid 
(noting that the data for New Zealand were only available at the coarser 1°x1° resolution). 
 
Background information on the nature of the fishery from a domestic and international 
perspective can be found in the supplementary material to this report and further information on 
the ETBF can be also found at the AFMA website1.  These both provide context to much of the 
work to follow. 
 
Figure 1 to Figure 5 illustrate the general decline in longline CPUE from 2000 – 2008/9 for the focal 
species and the stabilisation from that point on.  In the latter sections of the report, we focus on 
the more stable period from 2008 onwards.  The regions shown (EAC, WCP, Coral Sea and NZ) are 
defined and the rationale for choosing them are shown in section 4. 
 

 
Figure 1: Yellowfin CPUE for the 4 regions in the study area.  The dotted lines show the 25th and 85th percentiles of CPUE. 

 
1 https://www.afma.gov.au/fisheries/eastern-tuna-and-billfish-fishery-page 
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Figure 2: Albacore CPUE for the 4 regions in the study area.  The dotted lines show the 25th and 85th percentiles of CPUE. 

 
Figure 3: Bigeye CPUE for the 4 regions in the study area.  The dotted lines show the 25th and 85th percentiles of CPUE. 
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Figure 4: Striped Marlin CPUE for the 4 regions in the study area.  The dotted lines show the 25th and 85th percentiles of CPUE. 

 

Figure 5: Swordfish CPUE for the 4 regions in the study area.  The dotted lines show the 25th and 85th percentiles of CPUE. 
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2 State-of-the-art estimates of ocean state 

Our modelling efforts start with estimates of the historical ocean state from two recently released 
coupled ocean-atmosphere retrospective analysis models.  These are both large national scientific 
efforts requiring significant computational resources and technical teams. 

2.1 CAFE60 

The CSIRO Climate retrospective Analysis and Forecast Ensemble system (CAFE60) provides a large 
ensemble retrospective analysis of the global climate system from 1960 through 2020. Using an 
ensemble Kalman filter approach, 96 climate state estimates are generated over the most recent 
six decades. For the purposes of this project, we have focused on 2008-2020 as the accuracy of 
any climate reanalysis can be particularly hard to assess (Saha et al. , 2010) prior to the advent of 
millions of new temperature-salinity subsurface observations from the global array of Argo 
profiling floats (Wong et al, 2020). 
 
The CAFE60 state estimates are constrained by monthly mean ocean, atmosphere, and sea ice 
observations, providing a comprehensive climate data resource for studying internal climate 
variability and predictability in the upper ocean ( O’Kane et al 2021a, O’Kane et al 2021b). In the 
ocean, satellite (altimetry, sea surface temperature, sea ice concentration) and observed in-situ 
ocean temperature and salinity profiles are directly assimilated. 
 
The CAFE60 climate model configuration is based on the Geophysical Fluid Dynamics Laboratory’s 
(GFDL) Climate Model 2.1 (CM2.1) (Delworth et al. 2006). The ocean model configuration uses the 
1° ocean grid as described by Bi et al. (2013). The ocean model is coupled to the land, atmospheric 
and sea ice components from CM2.1, namely, Land Model 2 (LM2), Atmospheric Model 2(AM2) 
and Sea Ice Simulator (SIS) respectively.  The nominal resolution of the Modular Ocean Model 
(MOMv4.1) ocean component is 1°, with extra latitudinal resolution in the tropics, 0.33° at the 
equator, with extra horizontal resolution in the Southern Ocean, corresponding to 0.25°  at 75° S. 
There are 50 vertical levels, with a 10m resolution in the upper ocean, increasing to roughly 300m 
at depth. 
 
Ocean subgrid processes are adopted from CM2.1, including neutral physics, Brian-Lewis vertical 
mixing profile, Lagrangian friction scheme and a K-profile parameterisation for the mixed layer 
calculation. Biases in the mode water structure and deep open ocean convection are reduced by 
restoring the ocean temperature and salinity below 2000 m to climatology based on World Ocean 
Atlas observations with a 1-year timescale. Deep restoring further accounts for the poor coverage 
of in-situ ocean observations that exists throughout the record. 
 
The CAFE60 reanalysis provides historical estimates of the ocean environmental state that defines 
the structure of the upper water column where ETBF target species spawn, live, and feed. 
 

2.2 ACCESS-S 

ACCESS-S (Australian Community Climate and Earth-System Simulator-Seasonal) is the Bureau of 
Meteorology’s coupled ocean-atmosphere seasonal prediction system. It is based on based on the 
UK Met Office’s global coupled model seasonal forecast system (GloSea5; MacLachlan et al. 2015) 
and uses the Global Coupled model configuration version 2 (GC2; Williams et al. 2015). ACCESS-S1 
(version 1) was operationalised in August 2018 and then was upgraded to ACCESS-S2 (version 2) in 
October 2021. The model configuration, generation of initial conditions, ensemble generation, and 
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hindcast performance of ACCESS-S1 is described in Hudson et al (2017), with details of 
improvements in ACCESS-S2 in Wedd et al (2022). 
 
The ocean model is the Nucleus for European Modelling of the Ocean (NEMO) community model 
(Madec and NEMO team, 2012), which has an approximate horizontal resolution of 25 x 25 km in 
the Australian region. There are 75 depth layers, with the top 1-metre layer representing sea 
surface temperature (SST). Ocean model initial conditions are created using a new weakly coupled 
data assimilation scheme, which assimilates in situ ocean observations and satellite sea surface 
temperature data (see Wedd et al. 2022). The resulting gridded ocean data reanalysis was used in 
this study to provide input subsurface data for training models. 
 
A set of retrospective forecasts (hindcasts) were run using ACCESS-S2 for the period 1982-2018. 
Three forecasts were run out to 5 months into the future (i.e., lead time 0 – 4 months) on the 1st of 
each month in the period. Three additional forecasts were also run on each of the eight days prior 
to the 1st (giving a total of 9 days) to arrive at a 27-member ensemble forecast for each month. 
These ensemble forecasts were then averaged to give an ensemble mean for each month being 
forecast.  Anomalies were calculated by removing the monthly model climatologies at each lead 
time, calculated using the hindcast dataset (see Smith and Spillman 2019). 
 
A skill assessment of ACCESS-S2 is being prepared (Spillman et al, in prep), and will be also made 
available on the project website. 
 
 
 
 
Table 1- available ocean environmental variable from retrospective analyses 

Reanalysis model Product Description 
CAFE60 variable 
  

sss Sea Surface Salinity (PSU) 

  sst Sea Surface Temperature (oC) 
  temp50 Seawater Potential Temperature at 50m (oC) 
  temp100 Seawater Potential Temperature at 100m (oC) 
  temp200 Seawater Potential Temperature at 200m (oC) 
  temp500 Seawater Potential Temperature at 500m (oC) 
  u100 x velocity at 100m (m/s) 
  v100 y velocity at 100m (m/s) 
  mld Mixed layer depth (m) 
CAFE60 derived 
variable 
  

u100_300 x velocity depth weighted mean over 100 - 300m 
(m/s) 

  v100_300 y velocity depth weighted mean over 100 - 300m 
(m/s) 

  D20 Depth of the 20C isotherm (m) 
  eke300 Eddy kinetic energy depth weighted sum over upper 

300 m (cm2/s2) 
  eke2000 Eddy kinetic energy depth weighted sum over upper 

2000 m (cm2/s2) 
  hc200 Heat content upper 200 m (J/m2) 
  hc300 Heat content upper 300 m (J/m2) 
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ACCESS-S2 
variable 
  

sss Sea Surface Salinity (PSU) 

  sst Sea Surface Temperature (oC) 
  temp50 Seawater Potential Temperature at 50m (oC) 
  temp100 Seawater Potential Temperature at 100m (oC) 
  temp200 Seawater Potential Temperature at 200m (oC) 
  temp500 Seawater Potential Temperature at 500m (oC) 
  u100 x velocity at 100m (m/s) 
  v100 y velocity at 100m (m/s) 
  D20 Depth of the 20C isotherm (m) 
  hc300 Heat content upper 300 m (J/m2) 
  td Thermocline Depth (m) 
  ssh Sea Surface Height (m) 
  mld1 Kara Mixed Layer Depth (m) 
  mld2 Mixed Layer Depth 0.01 (m) 
ACCESS-S2 
derived variable 
  

eke300 Eddy kinetic energy depth weighted sum over upper 
300 m (cm2/s2) 

  eke2000 Eddy kinetic energy depth weighted sum over upper 
2000 m (cm2/s2) 

  u100_300 x velocity depth weighted mean over 100 - 300m 
(m/s) 

  v100_300 y velocity depth weighted mean over 100 - 300m 
(m/s) 

 

2.3 From coupled climate model output to analysis ready data (ARD) 
for fisheries applications. 

Both CAFE60 and ACCESS-S2 modelling is done on national supercomputing resources and are 
typically delivered as a reduced set of model variables across many thousands of individual files in 
multi-dimensional self-describing NetCDF format. These datasets are large (up to many 10’s of 
terabytes), require specialist tools, and come with significant challenges in terms of computer 
processing, quality control, and delivery that’s ready for ecological applications. 
Both CAFE60 and ACCESS-S2 retrospective analysis model output is available to researchers from 
Australia’s National Computational Infrastructure (NCI) supercomputing centre in Canberra, ACT.  
To make the raw coupled climate model output into analysis ready data (ARD) requires several 
steps, including: 

• Generating Zarr collections: Convert substantial number of raw NetCDF files into a single 
Zarr collection encompassing all variables required for fisheries modelling. This includes 
building boutique compatibility fixes that are typically required for datasets of this type. A 
well formatted Zarr collection allows for efficient and practical reduction of larger-than-
memory datasets using state-of-the-art open-source coding tools, namely Pangeo 
(https://github.com/pangeo-data) style workflows. 

• Masking and region cropping: Apply land masking where required and crop dataset 
regionally to reduce unnecessary processing cost. 

• Regridding: Convert datasets onto a single common grid for analysis. Computationally 
expensive regridding is required for compatibility within and between datasets, especially 
with the staggered Arakawa grid systems commonly used in modelling the climate system. 
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Alignment with grid systems for fisheries observations is also done to better enable further 
analyses. 

• Derived variables: Calculate derived ocean environmental variables from model outputs, 
combining all required products into a final single Zarr collection.  Derived variables like 
eddie kinetic energy, not directly available from model outputs, enhance the interpretation 
and value of retrospective analysis products. 

• ARD file: Run basic tests, formatting, and output final dataset in multi-dimensional or 
tabular formats required for ecological model analyses. 

 
While model output at NCI is nominally available to partner research organisations and through 
research flagship allocation schemes, commercial and industry access options exist.  We have 
provided links to open code repositories for both the CAFE60 (https://github.com/Thomas-Moore-
Creative/NCI-CAFE-ARD)  and ACCESS-S2 (https://github.com/Thomas-Moore-Creative/NCI-
ACCESS-S2-ARD) ARD workflows to assist others making easier use of these retrospective analysis 
datasets. 
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3 Initial Habitat Modelling 
The project plan was designed to deliver oceanographic insights and updates to management and 
industry in a phased approach.  The initial focus was on applying existing habitat model 
approaches to the ETBF region using catch and effort data and to investigate the availability of 
electronic tagging datasets and their utility.  Environmental datasets were obtained from a variety 
of sources (Appendix 1 - Table 1).  Surface variables were obtained from global satellite data 
providers (SST - https://www.ghrsst.org, 
https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html; ocean productivity - 
SeaWIFs and https://oceandata.sci.gsfc.nasa.gov). Physical variables below the surface were 
provided by synTS, an output from the CSIRO Bluelink project (Ridgway et al. 2006). 
 
During this initial period, requests for access to international catch and effort data were sent and 
support was obtained from regional partners allowing us to further investigate habitat models in 
domains other than the ETBF.  An evaluation of the available electronic tagging data was also 
undertaken in this initial period and revealed that there were insufficient data in the region 
relevant to this project for any of the species of interest to pursue these data further. 
 
After investigating different modelling approaches in this early stage, boosted regression trees 
(BRTs) were deemed to be most suitable, and the decision was made to apply these models to the 
wider domain and for all species helping us to meet Objectives 2 and 3, and providing information 
for Objectives 1 and 4. 
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4 Oceanographic background 
4.1 Overview 

El Niño-Southern Oscillation (ENSO) is the most prominent climate variability on interannual time 
scales. Every few years, the eastern and central tropical Pacific experiences ocean surface warming 
and weakening of trade winds during El Niño events, while the reverse situations happen during La 
Niña events. Although it originates in the tropical Pacific via strong air-sea coupling including 
Berjkernes feedback (Bjerknes, 1969), ENSO extends its influence beyond tropical Pacific via 
oceanic pathways as well as atmospheric teleconnections (Alexander et al. 2002; Timmerman et 
al. 2018). There is also an ENSO-like low-frequency climate variability mode in the Pacific on 
decadal to interdecadal time scales, i.e., the Pacific Decadal Oscillation (PDO; Mantua et al., 1997) 
or equivalently the Interdecadal Pacific Oscillation (IPO; Folland et al., 2002).  The PDO can be 
regarded as a reddened response to ENSO, or a response to ENSO and atmospheric noise (e.g., 
Newman et al. 2016). The PDO/IPO and ENSO are highly correlated in the low (decadal period) 
frequency band (Newman et al., 2016). 
 
The impacts of ENSO and PDO on ocean variables like sea level along the East Coast of Australia is 
not as strong as those along northern and western coasts of Australia (e.g., Zhang and Church 
2012; Frankcombe et al. 2015), because there is no similar direct oceanic pathway via Indonesian 
Throughflow and coastally trapped waves (e.g, Feng et al. 2004).  Holbrook et al. (2011) identified 
that the sea level in Sydney (Fort Denison) is not well correlated with the Southern Oscillation 
Index (SOI) at zero lag over the period 1914-2010, but is significantly correlated when lagged (both 
low-pass filtered with 5-yr running-mean filter), with maximum correlation of 0.54 at 3-year lag 
(Denison sea level lags the SOI). They also found the sea level anomalies at Fort Denison are highly 
correlated to baroclinic East Australia Current (EAC) transport anomalies across 33.5S (max 
correlation 0.58, at 9-mon lag), both of which are related to incoming westward-propagating 
Rossby waves, from both locally in the Tasman Sea and remotely from the interior of South Pacific 
(east of New Zealand). This can be favourably explained by the anticyclonic wind stress curl forcing 
tend to happen in the South Pacific Ocean interior during El Nino events. Similarly, Hill et al. (2008) 
also found the close connection between temperature and salinity in the Southeast coast of 
Australia (e.g., at Maria Island) and EAC extension strength for both long-term trends and decadal 
variability, which can be further linked to subtropical gyre circulation in response to wind stress 
forcing over a broader region of South Pacific. 
 
The analysis of the time series data from Port Hacking and Maria Island shows that shifts in 
seasonal phytoplankton cycles along the southeast coast of Australia are likely driven by the 
increased southward extension of the EAC (Kelly et al., 2015).  However, the changes in plankton 
biomass and primary production at Maria Island reflect a complex relationship between the EAC, 
its eddy field and subantarctic water masses, and the dynamics that drive the frontal interface 
between these water masses (Kelly et al., 2015).  For the East Australian region, there is a poor 
correlation between seasonal phytoplankton anomalies and SOI. ENSO variability is not a 
significant driver of East Australian phytoplankton and marine primary productivity variability. 
 
The Southern Annular Mode (SAM) describes the north–south movement of the westerly wind 
belt that circles Antarctica, with main impacts in the middle to higher latitudes of the southern 
hemisphere (e.g., Thompson and Wallace 2000). Because the SAM is mainly confined to middle-
high latitudes, it should only affect southeast coast (rather than the whole east coast) of Australia, 
through adjustments in the ocean gyre circulation and western boundary currents in response to 
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SAM-related wind stress variability. However, some studies indicate that SAM doesn’t play a 
significant role in climate variability in southeast coast of Australia (e.g., Francombe et al. 2015).  
For the seasonal anomaly in phytoplankton concentrations, there is a weak positive correlation 
between SAM index in the East Australian region.  This correlation is strongest along the south 
coast but does extend into the Tasman Sea, and would produce a positive correlation between 
primary productivity and the SAM index. 
 

4.2 Choice of study regions 

The South-West Pacific domain was partitioned into four regional sub-domains based on the time-
mean ratio of eddy kinetic energy to mean kinetic energy (EKE/MKE – Figure 6).  This was 
generated from BRAN2020, an eddy-resolving, near-global reanalysis (Chamberlain et al., 2021), 
and used to identify boundaries between regions dominated more by mesoscale eddies than 
mean currents, and vice versa. By combining the EKE/MKE analysis with a geographical breakdown 
of Western & Central Pacific Fisheries Commission (WCPFC) nations, four key regions were 
identified, referred to here as EAC-dominated (EAC), Coral Sea and Equatorial (CS), Western-
Central Pacific (WCP) and New Zealand (NZ) (Figure 7).  

 
Figure 6 - Ratio of EKE to MKE. 
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Figure 7 - Four key regions for analysis. EAC = EAC-dominated, CS = Coral Sea and Equatorial, WCP = Western-Central Pacific, NZ = 
New Zealand. 
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4.3 Catch heatmaps and events 

In section 8, we define a categorical approach to investigating CPUE trends. This approach defines 
CPUE as being in one of three states (bad, medium or good), based on percentiles of the CPUE 
distribution (less than the 25th, between the 25th and 85th, and above the 85th) respectively.  For a 
formal definition, see section 8.2.1.  CPUE heat maps demonstrated a link to two of the larger 
events of the 2009 – 2020 period, namely the strong El Nino conditions in 2015 through early 2016 
contrasted with long and strong La Nina conditions from late 2010 through early 2012 (Figure 
8).  Categorical CPUE heatmaps for YFT, BET, and ALB for the WCP region are shown (Figure 9, 
Figure 10, Figure 11). 
 
In this region links between ENSO and mixed layer depth and the extent of the 20° isotherm and 
other measures of ocean heat may be a driver given the preferred temperature range of tuna 
species (Lehodey 2005). 
 

 
Figure 8: ENSO phase across period of study based on the Oceanic Niño Index (ONI) 
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Figure 9: Heatmap of CPUE categorization for yellowfin tuna in the WCP region 
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Figure 10: Heatmap of CPUE categorization for bigeye tuna in the WCP region 
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Figure 11: Heatmap of CPUE categorization for albacore in the WCP region 

 
Examining timeseries of ENSO phase based on the Oceanic Nino Index (ONI) against CPUE 
categories for tuna species (Figure 12 - Figure 14) and STM (Figure 15) in the WCP, we see some 
relationship between the category of catch state and ENSO phase.  For species like SWO, with less 
restriction to upper ocean and mixed layer, this relationship is less clear (Figure 16).  Outside of 
the WCP, for example in the EAC region (Figure 17), even YFT show little relationship to ENSO 
phase, possibly due to the weaker links between east coast ocean dynamics and ENSO variability. 
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Figure 12: ENSO phase based on the Oceanic Niño Index (ONI) vs catch state ( “Bad”(0), “Normal”(1), “Good”(2) ) for yellowfin tuna 
in the WCP region. 
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Figure 13: ENSO phase based on the Oceanic Niño Index (ONI) vs catch state ( “Bad”(0), “Normal”(1), “Good”(2) ) for bigeye tuna in 
the WCP region 
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Figure 14: ENSO phase based on the Oceanic Niño Index (ONI) vs catch state ( “Bad”(0), “Normal”(1), “Good”(2) ) for albacore tuna 
in the WCP region 
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Figure 15: ENSO phase based on the Oceanic Niño Index (ONI) vs catch state ( “Bad”(0), “Normal”(1), “Good”(2) ) for striped marlin 
in the WCP region 
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Figure 16: ENSO phase based on the Oceanic Niño Index (ONI) vs catch state ( “Bad”(0), “Normal”(1), “Good”(2) ) for swordfish in 
the WCP region 
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Figure 17: ENSO phase based on the Oceanic Niño Index (ONI) vs catch state ( “Bad”(0), “Normal”(1), “Good”(2) ) for yellowfin tuna 
in the EAC region 
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4.4 Event case studies 

In this section we first show the overall climatology of regional oceanographic environmental 
variables available from the BoM’s ACCESS-S2 reanalysis product. We then examine the two major 
ENSO events in the 2009 – 2020 period considered in the previous section (4.3), namely the strong 
El Nino conditions in 2015 through to early 2016 contrasted with long and strong La Nina 
conditions from late 2010 through early 2012.  
 

4.4.1 Current index locations with summer / winter conditions 

Figure 18 & Figure 19 show summer and winter climatological conditions for SST with mean 
currents while providing the overall view of our study region, including the location of the four 
current indices that were produced for this project. 
 
Figure 20 and Figure 21 show the relationship between a current system with a strong relationship 
to ENSO (the SEC index), with a correlation of 0.4 at zero lag increasing to 0.5 at a 3-month lag, 
and a weak one (the EAC index) with overall poor correlation. 
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Figure 18: Regional summer conditions with SST, ocean currents, and location of 4 current indices. 
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Figure 19: Regional winter conditions with SST, ocean currents, and location of 4 current indices. 
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Figure 20: Ocean current index for the South Equatorial Current (SEC) – relative to ENSO (as described by the oceanic Nino index – 
ONI) 
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Figure 21: Ocean current index for the East Australian Current (EAC) – relative to ENSO (as described by the oceanic Nino index – 
ONI) 
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4.4.2 Ocean climatologies  

Figure 22 to Figure 28 show the seasonal climatologies for a selection of  ACCESS-S2 reanalysis 
ocean variables, namely sea surface temperature (SST in °C), temperature at 500 metres 
(Temp500 in °C), depth of the 20° isotherm (d20 in metres), ocean heat content over the upper 
300 metres (hc300 in J), seas surface salinity (SSS in psu), mixed layer depth (MLD in metres), and 
sea surface height (SSH in metres). 

 
Figure 22: Seasonal climatology for sea surface temperature from ACCESS-S2. 
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Figure 23: Seasonal climatology for temperature at 500m from ACCESS-S2. 
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Figure 24: Seasonal climatology for depth of the 20° isotherm from ACCESS-S2. 
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Figure 25: Seasonal climatology for ocean heat content for the upper 300m from ACCESS-S2. 
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Figure 26: Seasonal climatology for sea surface salinity from ACCESS-S2. 
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Figure 27: Seasonal climatology for mixed layer depth from ACCESS-S2. 
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Figure 28: Seasonal climatology for sea surface height from ACCESS-S2. 
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4.4.3 Strong ENSO events 

For two strong historical ENSO events (El Nino 2015-2016 and La Nina 2010-2012), we identified 
the months of strong El Nino / La Nina using the ONI characterisation of +0.5/-0.5 
respectively.  For each of these events the monthly anomalies across the event as it progressed 
are shown for each of the above seven ocean environmental variables (El Nino: Figure 29 to Figure 
35; La Nina: Figure 36 to Figure 42).  

 
Figure 29: Monthly anomalies for sea surface temperature from ACCESS-S2 for the 2015-2016 El Nino events 
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Figure 30: Monthly anomalies for sea surface salinity from ACCESS-S2 for the 2015-2016 El Nino events 



 

 38 

 
Figure 31: Monthly anomalies for sea surface height from ACCESS-S2 for the 2015-2016 El Nino events 
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Figure 32: Monthly anomalies for temperature at 500m from ACCESS-S2 for the 2015-2016 El Nino events 
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Figure 33: Monthly anomalies for depth of the 20 degree isotherm from ACCESS-S2 for the 2015-2016 El Nino events 
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Figure 34: Monthly anomalies for mixed layer depth from ACCESS-S2 for the 2015-2016 El Nino events 
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Figure 35: Monthly anomalies for heat content in the upper 300m from ACCESS-S2 for the 2015-2016 El Nino events 
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Figure 36: Monthly anomalies for sea surface temperature from ACCESS-S2 for the 2010-2012 La Nina events 
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Figure 37: Monthly anomalies for sea surface salinity from ACCESS-S2 for the 2010-2012 La Nina events 
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Figure 38: Monthly anomalies for sea surface height from ACCESS-S2 for the 2010-2012 La Nina events 
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Figure 39: Monthly anomalies for temperature at 500m from ACCESS-S2 for the 2010-2012 La Nina events 
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Figure 40: Monthly anomalies for depth of the 20 degree isotherm from ACCESS-S2 for the 2010-2012 La Nina events 
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Figure 41: Monthly values for mixed layer depth from ACCESS-S2 for the 2010-2012 La Nina events 
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Figure 42: Monthly anomalies for heat content in the upper 300m from ACCESS-S2 for the 2010-2012 La Nina events  

  

4.5 Discussion 

The habitat modelling sections that follow show that sub-surface variables representing upper 
ocean structure and stored heat can have the greatest relative contribution in explaining the 
variability in catch rates of tuna and billfish species.  While location specific, this may be 
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particularly important in general for species with specific thermal envelopes for which the ocean 
mixed layer is their primary environment.  This highlights an opportunity to move beyond the use 
of ocean observations and estimates focused solely on the sea surface. 
 
To expand their usefulness for catch prediction applications, products like the BoM ACCESS-S2 
model would need to provide regularly updated reanalyses for model building, tuning, and 
training, as well as near-real-time hindcast output of the same full suite of ocean environmental 
variables to enable verification and testing.  In looking towards a truly operational fisheries 
prediction system, forecast ocean inputs for the statistical catch modelling would need to be 
available in a regular and ongoing fashion to keep up with the decision trigger points for the 
industry.  Contemporary seasonal climate forecast products like ACCESS-S2 show real progress 
towards these needs. 
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5 Boosted Regression Trees 
5.1 General BRT methods 

Catch and effort data from 13 nations and territories across the South-West Pacific region (Cook 
Islands; French Polynesia; New Caledonia; New Zealand; Norfolk Island; Samoa; Solomon Islands; 
Tokelau; Tonga; Tuvalu; Vanuatu; Fiji and Australia) were provided by the Western and Central 
Pacific Fisheries Commission (WCPFC) and Australian Fisheries Management Authority (AFMA) for 
the five target species (see section 1).  The data were provided in a summarised form by month 
and spatial grid cell from 1990 to 2020, using both a 1°x1° and 0.25°x0.25° grid (noting that the 
data for New Zealand were only available at the coarser 1°x1° resolution). 
 
For each of the five target species, boosted regression trees (BRTs) were used to model the 
observed catch in each grid cell in each month assuming a Poisson distribution and including the 
number of hooks as an offset and the chosen oceanographic variables as predictors.  The spatial 
resolution used depended on the resolution of the oceanographic data (1°x1° for CAFE60 and 
0.25°x0.25° for ACCESS-S2).  Although the catch data were provided for years 1990-2020, only 
data from 2008 onwards were used since fishing pressure increased and catch rates declined 
steadily during the 2000-2007 period for most of the target species (see section 1). The data were 
split into a training dataset (2008-2015) and test (or validation) dataset (2016-20202) to allow 
validation of model performance.  We used the gbm.step() function from the BRT fitting protocols 
developed by Elith et al. (2008) as extensions to functions available in the gbm package for R 
(Greenwell et al. 2020).  gbm.step() implements a cross-validation method for identifying the 
optimal number of trees for a given learning rate, bag fraction and tree complexity. BRT fitting 
parameters were tuned using an iterative process to prevent overfitting to the training data, 
resulting in models with a ten-fold cross-validation, a bag fraction of 0.7, an interaction depth (or 
tree complexity) of 1, and using a maximum of 4000 trees. We trialled learning rates between 0.03 
and 0.05 to identify an optimal learning rate that resulted in at least 1000 trees, as recommended 
in Elith et al. (2008), selecting a learning rate of 0.04 for model fitting on the 2008-15 training 
dataset. Model performance was evaluated by calculating Pearson’s correlation (R2) and root-
mean-square error (RMSE) for both the training and test datasets, and deviance explained for the 
training dataset. However, deviance explained should be treated with caution since it calculates 
the deviance of catch values explained by the model and not CPUE, and hence includes number of 
hooks used. Since number of hooks is itself a predictor of catch, CPUE is more reliable as a metric 
of model performance as it removes the influence of number of hooks and relates to the 
predictive performance of the ‘ocean-only’ component of each model. 
 
Once the best-performing model was identified for each species based on the training dataset, the 
model was used to make spatial predictions of CPUE for each month and year in the test dataset. 
Maps were generated showing the average observed versus average predicted CPUE in each 
season across all years in the test dataset, where the seasons were defined as Dec-Jan-Feb 
(summer), Mar-Apr-May (autumn), Jun-Jul-Aug (winter), Sep-Oct-Nov (spring). 
 
Next, the South-West Pacific domain was partitioned into four regional sub-domains based on 
dominant oceanographic modes and timescales of variability in each region (see Section 4.2). Four 
key regions were identified (Figure 7), referred to here as EAC-dominated (EAC), Coral Sea and 
Equatorial (CS), Western-Central Pacific (WCP) and New Zealand (NZ).  Species-specific models 

 
2 2019 for the BRTs using oceanographic data from CAFE60 since that was the extent of the CAFE60 reanalysis at the 
time of running the models. 
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were then fitted to the data from each of these regional sub-domains following the same protocol 
as for the whole-domain model, and with model performance evaluated using the same methods. 
 

5.2 BRT using CAFE60 

5.2.1 Methods 

BRTs were fit to the catch and effort data for each of the five target species following the methods 
described in section 5.1, using as inputs: 

• catch and effort data compiled on a 1°x1° spatial grid 
• physical fields derived from CAFE60 ensemble and compiled on the same 1°x1° spatial grid. 

Although a suite of ocean variables is available from CAFE60, only those with suitably low pairwise 
correlation (<0.80) were chosen for inclusion in the BRTs (see Table 2 and Table 3). The same set 
of variables was used in the whole-region model and sub-region models for all species.  The 
number of trees used in each model, as selected by the cross-validation method described in 
section 5.1, is provided in Table 4. 
 
Table 2 - Physical predictors from CAFE60 ensemble reanalysis, direct and derived products. Bold indicates those used in BRT models 

Variable Description Note 
sst Sea Surface Temperature (°C) equivalent to potential 

temperature from the top grid 
cell 

sss Sea Surface Salinity (psu)  
temp50 Temperature at 50m (°C) potential temperature nearest to 

50m depth 
temp100 Temperature at 100m (°C) potential temperature nearest to 

50m depth 
temp200 Temperature at 200m (°C) potential temperature nearest to 

50m depth 
temp500 Temperature at 500m (°C) potential temperature nearest to 

50m depth 
mld Mixed layer depth (m) standard MOM5 metric based on 

density criteria 
u100, v100 Zonal (U) and meridional (V) velocities at 

100m (m/s) 
 

u100_300, 
v100_300 

Zonal (U) and meridional (V) velocities, 
depth-integrated 100m-300m (m/s) 

 

eke300 Mean eddy kinetic energy (EKE) in upper 
300m  

 

hc200 Ocean heat content in upper 200m  
hc300 Ocean heat content in upper 300m   
D20 Depth of 20°C isotherm (m) Where 20°C isotherm exists in 

ocean 
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Table 3 - Pairwise correlation of physical fields from CAFE60 listed in Table 1. The subset in bold were selected for inclusion in the BRTs since all pairwise correlations are < 0.80. 

 
D20 eke2000 eke300 hc200 hc300 mld sss sst temp100 temp200 temp50 temp500 u100 u100_300 v100 v100_300 

D20 1 -0.01 0 0.73 0.79 0.03 -0.08 0.53 0.6 0.81 0.6 -0.43 -0.06 -0.13 0.2 0.2 

eke2000 - 1 0.96 0.33 0.21 -0.01 -0.17 0.32 0.35 0 0.35 -0.33 -0.31 -0.38 0.02 0.04 
eke300   1 0.3 0.2 -0.05 -0.22 0.3 0.32 0.02 0.33 -0.3 -0.24 -0.32 0 0.04 
hc200    1 0.96 -0.19 -0.2 0.85 0.98 0.78 0.91 -0.73 -0.39 -0.58 0.18 0.24 
hc300     1 -0.18 -0.15 0.75 0.91 0.91 0.8 -0.6 -0.28 -0.45 0.19 0.23 
mld      1 0.34 -0.48 -0.15 -0.2 -0.27 0.15 -0.11 -0.06 -0.02 -0.04 
sss       1 -0.31 -0.16 -0.01 -0.25 0.08 -0.18 -0.02 0.14 0.03 
sst        1 0.87 0.67 0.95 -0.68 -0.33 -0.49 0.15 0.22 

temp100         1 0.73 0.96 -0.74 -0.41 -0.61 0.17 0.23 
temp200          1 0.71 -0.41 -0.09 -0.24 0.21 0.19 

temp50           1 -0.75 -0.39 -0.58 0.16 0.22 
temp500            1 0.39 0.54 -0.18 -0.26 
u100             1 0.89 -0.26 -0.2 

u100_300              1 -0.22 -0.22 
v100               1 0.9 
v100_300                1 



 

 54 

Table 4 - Number of trees fitted for each species/region combination. 
 

ALL EAC CS WCP NZ 
YFT 2350 2050 2000 2750 1850 

BET 2300 1700 1900 1850 1700 

ALB 2300 1400 2150 1500 2000 

MLS 3650 2100 1950 2100 2200 

SWO 4000 2350 1650 1900 2750 

 

5.2.2 Results  

5.2.2.1 Model performance  

Models trained on a 2008-2015 subset of the time series explained a high proportion of deviance 
observed in the catch in the same training data set for most species and regions (Table 5). Over 
the broad Western Central and South-West Pacific domain (“all”), models performed well for YFT, 
BET, ALB and reasonably well for SWO, but deviance explained was notably lower for MLS, 
presumably owing to a smaller number of records and lower catch numbers. In some cases, sub-
regional models performed better than the broad domain model. For example, models for YFT, 
BET and SWO in the EAC-dominated region, and YFT, BET and ALB in the Coral Sea performed 
slightly better than the broad domain model (see Table 5). 
 
R2 values for the observed versus predicted CPUE (defined as catch per 10,000 hooks) calculated 
from the BRT model for each species and region using the training dataset ranged from 0.06-0.46, 
with values tending to be lowest in the WCP and highest in the EAC and NZ regions (Table 6).  The 
R2 values for the whole-region model are slightly lower for the validation dataset than the training 
dataset, whereas they tend to be quite a bit lower for the sub-region models (Table 7). The RMSE 
values for the validation dataset are very similar to those for the training dataset (Table 10 and 
Table 11).  Overall, however, the predictive performance of the models is low for the validation 
dataset, with R2 values rarely above 0.20 (Table 7) 
 
 
Table 5 - Proportion of deviance explained by CAFE60-based boosted regression tree (BRT) models, for each species and sub-region 
(ALL = Western Central and South-West Pacific domain; EAC = East Australian Current domain; CS = Coral Sea/Equatorial; WCP = 
Western Central Pacific; NZ = New Zealand). 
 

ALL EAC CS WCP NZ 
YFT 0.78 0.81 0.82 0.69 0.80 

BET 0.73 0.82 0.76 0.65 0.71 

ALB 0.83 0.80 0.83 0.86 0.89 

MLS 0.48 0.74 0.40 0.40 0.65 

SWO 0.72 0.82 0.52 0.51 0.81 
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Table 6 - Pearson correlation (R2) of observed and predicted catch-per-unit-effort (CPUE) values for 2008-2015 model training 
dataset for the CAFE60-based boosted regression tree (BRT) models. 
 

ALL EAC CS WCP NZ 
YFT 0.20 0.24 0.15 0.10 0.46 

BET 0.23 0.21 0.19 0.06 0.21 

ALB 0.15 0.32 0.27 0.11 0.31 

MLS 0.24 0.24 0.22 0.21 0.26 

SWO 0.33 0.43 0.19 0.11 0.37 

 
 
Table 7 - Pearson correlation (R2) of observed and predicted catch-per-unit-effort (CPUE) per 1° grid cell for 2016-2019 independent 
testing (validation) dataset for the CAFE60-based boosted regression tree (BRT) models. 
 

ALL EAC CS WCP NZ 
YFT 0.13 0.09 0.04 0.05 0.07 

BET 0.16 0.10 0.07 0.05 0.12 

ALB 0.14 0.26 0.15 0.08 0.22 

MLS 0.20 0.16 0.05 0.17 0.07 

SWO 0.34 0.24 0.19 0.09 0.24 

 
 
Table 8 - Pearson correlation (R2) of observed and predicted catch per 1° grid cell for 2008-15 model training dataset for the CAFE60-
based boosted regression tree (BRT) models. 
 

ALL EAC CS WCP NZ 
YFT 0.67 0.75 0.74 0.60 0.81 

BET 0.63 0.79 0.67 0.52 0.71 

ALB 0.79 0.74 0.79 0.85 0.90 

MLS 0.43 0.73 0.40 0.33 0.71 

SWO 0.61 0.85 0.51 0.42 0.77 

 
 
Table 9 - Pearson correlation (R2) of observed and predicted catch per 1° grid cell for 2016-19 independent testing (validation) 
dataset for the CAFE60-based boosted regression tree (BRT) models. 
 

ALL EAC CS WCP NZ 
YFT 0.58 0.59 0.55 0.46 0.12 

BET 0.54 0.47 0.56 0.56 0.41 

ALB 0.79 0.64 0.59 0.84 0.76 

MLS 0.43 0.63 0.10 0.24 0.27 

SWO 0.56 0.71 0.41 0.37 0.45 
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Table 10 - Root mean squared error (RMSE) values for observed vs predicted CPUE (defined as catch per 10,000 hooks) calculated 
from the BRT model for each species and region using: the training dataset (2008-2015) for the CAFE60-based boosted regression 
tree (BRT) models. Mean observed CPUE in parentheses below. 
 

ALL EAC CS WCP NZ 
YFT 47.5 

(35.9) 

57.1 

(45.5) 

67.2 

(64.8) 

38.0 

(31.0) 

10.5 

(5.8) 
BET 15.2 

(12.0) 

17.1 

(14.1) 

19.4 

(18.4) 

7.0 

(5.1) 

14.9 

(11.1) 
ALB 88.8 

(95.0) 

99.5 

(82.6) 

70.7 

(66.4) 

85.7 

(113.5) 

114.5 

(118.7) 
MLS 2.5 

(0.9) 

6.2 

(4.6) 

1.3 

(0.3) 

1.6 

(0.6) 

3.7 

(1.8) 
SWO 17.5 

(5.7) 

23.0 

(25.8) 

7.4 

(1.6) 

2.5 

(0.7) 

47.1 

(44.3) 
 
 
 
Table 11 - Root mean squared error (RMSE) values for observed vs predicted CPUE (defined as catch per 10,000 hooks) calculated 
from the for the CAFE60-based boosted regression tree (BRT) models for each species and region using the validation dataset (2016-
2019). Mean observed CPUE in parentheses below. 
 

ALL EAC CS WCP NZ 
YFT 42.1 

(35.0) 
52.5 

(40.2) 
64.5 

(57.9) 
35.0 

(31.4) 
19.1 
(9.0) 

BET 14.5 
(11.2) 

17.9 
(9.9) 

19.3 
(17.9) 

6.4 
(5.3) 

15.9 
(10.0) 

ALB 82.4 
(85.0) 

114.6 
(91.5) 

70.6 
(58.2) 

78.9 
(102.6) 

123.0 
(109.0) 

MLS 2.4 
(0.8) 

4.8 
(3.7) 

1.1 
(0.2) 

1.2 
(0.4) 

5.3 
(2.1) 

SWO 12.7 
(4.1) 

26.0 
(19.0) 

3.6 
(1.0) 

1.5 
(0.5) 

40.0 
(27.4) 

 
 
5.2.2.2 Relative contributions of physical predictors from CAFE60 ensemble  

Sub-surface variables that represent upper ocean structure and heat content had the greatest 
relative contribution in explaining the variability in catch rates of tuna and billfish species over the 
time series. For YFT, temperature at 500m (temp500), depth of the 20°C isotherm (D20), ocean 
heat content in the upper 300m (hc300), and mixed-layer depth (mld) contributed the most to the 
predictive skill of the broad Western Central and South-West Pacific domain model. Indeed, 
temp500 contributed ~67% to the overall explanation of deviance in the training dataset, with 
D20, hc300 and mld each contributing ~5%. For BET, temperature at 500m (temp500) remained 
the most informative predictor in the broad domain (“all”) model (42%), with mixed-layer depth, 
depth of the 20°C isotherm (D20), and sea surface salinity (sss) also making contributions of >10% 
to overall predictive skill. For ALB, temp500 contributed ~23% to the overall explanation of 
deviance in the training dataset, with sst, sss, u100, D20 each also contributing >10%. For MLS, sst 
(29%), D20 (26%) and hc300 (21%) made the highest relative contributions, although this model 
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had much lower deviance explained (48%) than for other species in this broad-scale region (Table 
5). For SWO, hc300 (39%), temp500 (24%), D20 (14%), v100 (13%) were the most informative 
predictors of CPUE. 
 
Temperature at 500m emerged as an informative predictor of CPUE for all species in the broad 
Western Central and South-West Pacific region, with the exception of MLS. Metrics of upper ocean 
structure and heat content including D20, hc300 and mld were informative predictors across 
several species, notably for tuna, indicating that these predictors capture some of the variability in 
the physical environment that contributes to the spatial structuring of CPUE of tuna and billfish 
across the Western Central and South-West Pacific. 
 
Relative variable importance in regional sub-domain models was notably different in comparison 
with the whole Western Central and South-West Pacific model for particular species/regions 
combinations. For example, sst and hc300 were of greater relative importance in the YFT model 
for the EAC-dominated region than for the broader domain model. For BET and ALB, mld and 
hc300 were of increased influence in the EAC region with respect to the broader domain, and for 
SWO, the influence of v100 was markedly higher in the EAC region. These results are in 
accordance with our understanding of the physical dynamics of the EAC-dominated region, in 
which mesoscale and sub-mesoscale variability dominates around the southward flowing, warm-
water western boundary current.  

 
Figure 43 - Relative contributions of physical fields from CAFÉ-60 ensemble to overall deviance explained by models of YFT CPUE in 
the five model domains (“all” = Western Central and South-West Pacific; “eac” = EAC-dominated region; “cs” = Coral Sea; “wcp” = 
Western Central Pacific; “nz” = New Zealand). Variable names described in Table 2. 
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Figure 44 - Relative contributions of physical fields from CAFÉ-60 ensemble to overall deviance explained by models of BET CPUE in 
the five model domains (“all” = Western Central and South-West Pacific; “eac” = EAC-dominated region; “cs” = Coral Sea; “wcp” = 
Western Central Pacific; “nz” = New Zealand). 

 

 
Figure 45 - Relative contributions of physical fields from CAFÉ-60 ensemble to overall deviance explained by models of ALB CPUE in 
the five model domains (“all” = Western Central and South-West Pacific; “eac” = EAC-dominated region; “cs” = Coral Sea; “wcp” = 
Western Central Pacific; “nz” = New Zealand). 
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Figure 46 - Relative contributions of physical fields from CAFÉ-60 ensemble to overall deviance explained by models of MLS CPUE in 
the five model domains (“all” = Western Central and South-West Pacific; “eac” = EAC-dominated region; “cs” = Coral Sea; “wcp” = 
Western Central Pacific; “nz” = New Zealand). 

 
Figure 47 - Relative contributions of physical fields from CAFÉ-60 ensemble to overall deviance explained by models of SWO CPUE in 
the five model domains (“all” = Western Central and South-West Pacific; “eac” = EAC-dominated region; “cs” = Coral Sea; “wcp” = 
Western Central Pacific; “nz” = New Zealand). 

 
5.2.2.3 Spatial predictions of CPUE 

Models were able to capture some of the seasonal spatial structuring of CPUE, with spatial 
predictions generally mirroring the observed distribution of CPUE at seasonal timescales. Seasonal 
spatial CPUE predictions resulting from the best performing species-region combination models 
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are shown in Figure 48 - Figure 52, with additional plots of spatial predictions of each species-
region combination included in Appendix 2. 
 
Mean predicted CPUE for YFT in winter (Dec-Feb), the season of peak YFT catches in Australia’s 
Eastern Tuna and Billfish Fishery, approximated the observed mean seasonal CPUE over the same 
time period (model validation period, 2016-19), highlighting high CPUE around the Solomon 
Islands, Western Central Pacific, Coral Sea and East Australian Current regions (Figure 48). 
Similarly, the BET model for the broad Western Central and South-West Pacific recreated the 
general pattern of spatial structuring of CPUE for Autumn (Mar-May) for the model validation time 
period, 2016-19 (Figure 49). 
 
Some smoothing of observed CPUE hotspots into gradients of high-low CPUE is evident in the 
spatial predictions, owing to the gradients in physical ocean data fields used to predict from the 
models (Figure 48 - Figure 52). This may represent more generalisable patterns in what might be 
expected in terms of CPUE at seasonal timescales than the more patchy observed CPUE, which is 
driven by a range of fishery, ecological and physical factors that may not have been adequately 
represented in this correlative modelling based on physical variability as a sole driver of CPUE 
variability in space and time. 
 

 
Figure 48 - Seasonal mean of predicted vs. observed catch-per-unit-effort (CPUE, per 10000 hooks) of YFT for winter (Dec-Feb), 
predicted from the broad Western Central and South-West Pacific domain and averaged across the testing (validation) dataset, 
2016-19.  The mean observed CPUE over the EAC sub-region is given in the lower corner of the observed map, whereas Pearson’s R2 
value and the root mean squared error (RMSE) are given in the lower corner of the prediction map as an indicator of predictive 
performance. 
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Figure 49 - Seasonal mean of predicted vs. observed catch-per-unit-effort (CPUE, per 10000 hooks) of BET for autumn (Mar-May), 
predicted from the broad Western Central and South-West Pacific domain and averaged across the testing (validation) dataset, 
2016-19.  The mean observed CPUE over the EAC sub-region is given in the lower corner of the observed map, whereas Pearson’s R2 
value and the root mean squared error (RMSE) are given in the lower corner of the prediction map as an indicator of predictive 
performance. 

 

 
Figure 50 - Seasonal mean of predicted vs. observed catch-per-unit-effort (CPUE, per 10000 hooks) of ALB for winter (Dec-Feb), 
predicted from the Coral Sea domain and averaged across the testing (validation) dataset, 2016-19.  The mean observed CPUE over 
the EAC sub-region is given in the lower corner of the observed map, whereas Pearson’s R2 value and the root mean squared error 
(RMSE) are given in the lower corner of the prediction map as an indicator of predictive performance. 

 
The mean predicted CPUE per 10,000 hooks for SWO in Spring (Sept-Nov) in the EAC region, the 
time of peak catches in the ETBF, also reflects the observed distribution of CPUE for this species 
during the model validation time period, 2016-19 (Figure 51, Figure 52). Highest CPUE values 
(<=50 per 10,000 hooks) were predicted in the central, offshore quadrant of the EAC-dominated 
region, as per the corresponding seasonal observations for Spring. The EAC-dominated sub-region 
model exhibited marginally greater predictive skill (R2 = 0.3; Figure 51; Table 5 - Table 9) than the 
broad Western Central and South-West Pacific model, but both captured the overall spatial 
structuring of SWO catch in Spring, with the broader domain model also highlighting higher CPUE 
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in the mid-latitudes east of the EAC-dominated region and to the north-west of New Zealand 
(Figure 52). 
 

 
Figure 51 - Seasonal mean of predicted vs. observed catch-per-unit-effort (CPUE, per 10000 hooks) of SWO for spring (Sept-Nov), 
predicted from the EAC-dominated model domain and averaged across the testing (validation) dataset, 2016-19.  The mean 
observed CPUE over the EAC sub-region is given in the lower corner of the observed map, whereas Pearson’s R2 value and the root 
mean squared error (RMSE) are given in the lower corner of the prediction map as an indicator of predictive performance. 

 
Figure 52 - Seasonal mean of predicted vs. observed catch-per-unit-effort (CPUE, per 10000 hooks) of SWO for spring (Sept-Nov), 
predicted from the broad Western Central and South-West Pacific domain and averaged across the testing (validation) dataset, 
2016-19.  The mean observed CPUE over the EAC sub-region is given in the lower corner of the observed map, whereas Pearson’s R2 
value and the root mean squared error (RMSE) are given in the lower corner of the prediction map as an indicator of predictive 
performance. 
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5.2.2.4 Effects of physical predictors from CAFE60 ensemble on CPUE 

Physical predictors from the CAFE60 ensemble had different effects on predicted CPUE of each 
species in each region. Figures below show the most influential predictors for case studies 
highlighted in spatial plots above, with complete sets for each species/region combination 
included in Appendix 2. 
 
For example, for YFT and BET, cooler temperatures at 500m (<8°C) were associated with higher 
predicted CPUE (Figure 53, Figure 54) in the broad Western Central and South-West Pacific model, 
and for ALB in the Coral Sea, while warmer temperatures at 500m (>10C) were associated with 
higher SWO CPUE in both the broad domain and EAC-dominated region. Our hypothesis is that the 
importance of temperature at depth relates to both the thermal physiological limits of the fish as 
well as vertical habitat compression pushing fish higher into the water column, into the depth 
range of the fishery and thus increasing catchability. For YFT, which are thermally constrained 
predominantly to the mixed layer in the upper ocean, cooler temperatures at depth may increase 
catchability through vertical habitat compression. For SWO, which are known to perform diurnal 
dives to greater depths than YFT, warmer temperatures at depth may be more likely to increase 
the likelihood of presence in that general location, as areas with warmer temperatures at 500m 
would be more broadly favourable habitat for SWO. 
 
Depth of the 20°C isotherm (D20) was an influential predictor across several of the models for YFT, 
BET, ALB and SWO, particularly in the broad Western Central and South-West Pacific domain 
(Figure 53 - Figure 56). In all cases, CPUE decreased as the depth of the 20° isotherm increased, 
particularly beyond 150-200m. This reinforces our hypothesis of vertical habitat compression 
influencing CPUE, as a deeper 20°C isotherm would enable thermally constrained, vertically 
migrating fish to access deeper habitats and reducing catchability in the upper 200m of the water 
column. However, D20 was found to have an inverse effect for ALB in the Coral Sea (Figure 55), 
with a shoaling isotherm increasing ALB catchability. Sea surface salinity (sss) was also important 
for ALB in the Coral Sea, with higher CPUE associated with less saline water masses, presumably 
owing to the relatively uniform nature of temperature in the Coral Sea with respect to salinity. 
 

 
Figure 53 - Marginal effects plots for YFT Western Central and South-West Pacific model, showing most influential predictors.. The 
rug plot along the top axis marks deciles in the data, so the marginal effect functions are of most relevance within the 10th and 90th 
deciles (i.e., between the second and tenth marks).  
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Figure 54 - Marginal effects plots for BET Western Central and South-West Pacific model, showing most influential predictors. The 
rug plot along the top axis marks deciles in the data, so the marginal effect functions are of most relevance within the 10th and 90th 
deciles (i.e., between the second and tenth marks).  

 

 

 

 
Figure 55 - Marginal effects plots for ALB Coral Sea model, showing most influential predictors. The rug plot along the top axis 
marks deciles in the data, so the marginal effect functions are of most relevance within the 10th and 90th deciles (i.e., between the 
second and tenth marks).  

 
Southward zonal velocity (v100) was an influential predictor of SWO CPUE, both in the EAC-
dominated regional model and the broad Western Central and South-West Pacific model, which is 
to be expected given the dominance of the southward-flowing East Australian Current in this sub-
region, and the high CPUE for SWO co-located with the EAC and to its east. 
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Figure 56 - Marginal effects plots for SWO EAC-dominated model, showing most influential predictors. The rug plot along the top 
axis marks deciles in the data, so the marginal effect functions are of most relevance within the 10th and 90th deciles (i.e., between 
the second and tenth marks).  

 

 
Figure 57 - Marginal effects plots for SWO Western Central and South-West Pacific model, showing most influential predictors. The 
rug plot along the top axis marks deciles in the data, so the marginal effect functions are of most relevance within the 10th and 90th 
deciles (i.e., between the second and tenth marks).  

 

5.2.2.5 Total catch, observed and predicted over 2008-19 time series 

Inter-annual trends in total catch of each species over the broad Western Central and South-West 
Pacific model domain were reproduced reasonably well for YFT (R2=0.858; Figure 58) and BET 
(R2=0.91; Figure 59), demonstrating some level of skill in the model, although the magnitude of 
extreme peak catches (e.g. YFT in 2012, 2014; BET in 2012, 2015) were not captured in model 
predictions. Extreme peak catches of ALB in the Coral Sea were similarly not captured by model 
predictions, although the model recreated inter-annual trends in total catch for the independent 
validation period with some skill (R2=0.82; Figure 60). The failure of models to capture extreme 
peaks and troughs is likely a result of an incapacity of correlative statistical modelling techniques 
such as boosted regression trees to capture the multifaceted drivers of fish catchability, including 
population-level processes occurring at ocean-basin scales. Models presented here capture only 
the proximate influence of physical variability on catch rates and so cannot represent population 
fluctuations or changing recruitment, etc., that influence inter-annual variability in total catch. 
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Inter-annual trends in total catch of SWO in the EAC-dominated region were captured by the 
model with reasonable skill (R2=0.60), particularly during the model training period (2008-15), but 
less so in the independent validation dataset, presumably owing to similar population-level or 
stock-level processes that our models have not captured, non-stationarity in fish and fisher 
responses to environmental conditions, and/or inter-periodic variability in environmental 
conditions. However, the EAC-dominated regional model did outperform the broad Western 
Central and South-West Pacific model for SWO, which dramatically over-predicted total catch of 
SWO in the independent model validation period (2016-19). It should be noted that predictions of 
total catch include the number of hooks used in each grid cell in addition to ocean data fields. 
 
Inter-annual trends in observed and predicted total catch for other species/region combinations 
are shown in Appendix 2. 
 
 

 
Figure 58 - Observed (black line) and predicted (red line) total catch of YFT over the broad Western Central and South-West Pacific 
(“all”) domain, as sum of total catch across all 1° grid cells per month over the time series 2008-19. Dashed line shows separation of 
model training (2008-15) and validation (2016-19) datasets. 
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Figure 59 - Observed (black line) and predicted (red line) total catch of BET over the broad Western Central and South-West Pacific 
(“all”) domain, as sum of total catch across all 1° grid cells per month over the time series 2008-19. Dashed line shows separation of 
model training (2008-15) and validation (2016-19) datasets. 

 

 
Figure 60 - Observed (black line) and predicted (red line) total catch of ALB in the Coral Sea domain, as sum of total catch across all 
1° grid cells per month over the time series 2008-19. Dashed line shows separation of model training (2008-15) and validation 
(2008-15) and validation (2016-19) datasets. 
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Figure 61 - Observed (black line) and predicted (red line) total catch of SWO in the EAC-dominated region, as sum of total catch 
across all 1° grid cells per month over the time series 2008-19. Dashed line shows separation of model training (2008-15) and 
validation (2016-19) datasets. 

 
Figure 62 - Observed (black line) and predicted (red line) total catch of SWO over the broad Western Central and South-West Pacific 
(“all”) domain, as sum of total catch across all 1° grid cells per month over the time series 2008-19. Dashed line shows separation of 
model training (2008-15) and validation (2016-19) datasets. 
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5.3 BRT using ACCESS-S2  

5.3.1 Methods 

BRTs were fit to the catch and effort data for each of the five target species following the methods 
described in section 5.1, using as inputs: 

• catch and effort data compiled on a 0.25° x 0.25° spatial grid 
• ACCESS-S2 oceanographic data compiled on the same 0.25° x 0.25° spatial grid. 

Although a suite of ocean variables is available from ACCESS-S2, only those with suitably low 
pairwise correlation (<0.80) were chosen for inclusion in the BRTs (see Table 12 and Table 13).  
The same set of variables was used in the whole-region model and sub-region models for all 
species.  The number of trees used in each model, as selected by the cross-validation method 
described section 5.1, is provided in Table 14. 

5.3.2 Results 

5.3.2.1 Model performance  

The BRT models explained a reasonably high proportion of deviance in the catch data (>0.50) for 
most species and regions, with exceptions for MLS in all regions but the NZ sub-region, all species 
except ALB in the WCP sub-region, and SWO in the CS sub-region (Table 4). Lower performance for 
these species and regions may, at least in part be, due to lower catch numbers.  However, as was 
cautioned in section 5.1, these deviance-explained statistics pertain to the catch, and include the 
number of hooks in determining how much of the deviance was explained by the model.  It’s not 
surprising that catch is strongly correlated with number of hooks; what we are interested in here is 
how much the ocean variables influence the catch rate (CPUE), and which ones have the strongest 
influence. As such, we will focus on performance statistics (R2 and RMSE) measuring how well 
CPUE is predicted by the models. 
 
R2 values for the observed versus predicted CPUE (defined as catch per 10,000 hooks) calculated 
from the BRT model for each species and region using the training dataset ranged from 0.05-0.39, 
with values tending to be lowest in the WCP and highest in the EAC and NZ regions (Table 16, left).  
The R2 values for the whole-region model are only slightly lower for the validation dataset than the 
training dataset, whereas they tend to be quite a bit lower for the sub-region models (Table 16, 
right). The RMSE values for the validation dataset are very similar to those for the training dataset, 
and even slightly lower in some cases (Table 17).  Overall, however, the predictive performance of 
the models is low for the validation dataset, with R2 values < 0.20 for all species and regions 
except SWO for the whole domain and the EAC and NZ sub-regions, and RMSE values greater than 
the mean CPUE for almost all species and regions. 
 
5.3.2.2 Relative contributions of ocean predictors 

Although predictive power of the models is generally low, it is still of interest to consider which 
ocean variables are contributing the most to explaining the deviance in the CPUE for each species 
and region.  As can be seen in Figure 63(a-e), the variables that are most influential vary 
significantly, both between region for a given species and between species for a given region.  For 
example, for YFT, sea surface salinity (sss) was the most influential variable in the whole domain 
model, whereas mixed layer depth (mld1) and temperature at 500 m (temp500) came out as most 
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influential in the EAC sub-region.  For BET, sea surface temperature (sst) and depth of the 
thermocline (td) were most influential in the whole domain model, whereas mld1 came out as the 
best predictor in the EAC sub-region. For SWO, temp500 dominated in all of the sub-region 
models, even though, interestingly, sea surface temperature (sst) and heat content in the upper 
300 m (hc300) were most influential in the whole domain model. 
 
5.3.2.3 Effects of ocean predictors on CPUE 

Once the most influential variables were identified, it was of interest to see what relationship they 
have with CPUE.  For example, in the whole-domain models, marginal effects plots show that 
CPUE is expected to decrease as sss increases for YFT, and to increase as sst and td increase for 
BET (Figure 64a,b).  For SWO, CPUE tends to decrease as hc300 increases, but the relationship with 
sst is more complex, and in fact appears relatively flat over the range of sst values most common 
in the dataset (Figure 64c).  In the EAC sub-region models, CPUE of YFT is expected to decrease as 
temp500 increases, but the relationship with mld1 is more complex and suggests CPUE first 
declines then increases slightly as mld1 increases from 0 to 90 m (the range over which most of 
the data occur) (Figure 65).  The relationship between CPUE and mld1 for BET in the EAC sub-
region is simpler to interpret, with CPUE showing an almost linear increase as mld1 increases over 
the range of most relevance (Figure 65b). Similarly, for SWO in the EAC sub-region, CPUE shows an 
almost linear increase as temp500 increases (Figure 65c). 
 
Although we have chosen to concentrate on results for YFT, BET and SWO from the whole-domain 
models and the EAC sub-region model, the full set of marginal effects plots for all species and 
regions can be found in Appendix 2.  
 
5.3.2.4 Spatial predictions of CPUE 

Spatial maps showing the average observed and average predicted CPUE values for a given 
species, region and season are useful for highlighting areas where the models perform better or 
worse.  The whole-domain models tend to do a reasonable job at capturing the overall pattern in 
CPUE across space, but often do not succeed in predicting specific areas of high and low CPUEs 
(Figure 66).  For example, the whole-domain model for YFT in winter underestimates the high 
CPUE values observed off the north-eastern coast of Australia in the CS sub-region, in the eastern 
part of the WCP sub-region, and along the coast in the south of the EAC sub-region (Figure 66a).  
For BET, the whole domain model tends to predict more average CPUE values across space than 
was observed in autumn (i.e., it tends to underpredict high CPUEs and overpredict low CPUEs) 
(Figure 66b).  The SWO model performs well at predicting the high catch rates off the central east 
coast of Australia in summer but overestimates the lower catch rates directly to the south (Figure 
66c).   
 
In some cases, the sub-region models were able to improve upon the predictive performance of 
whole-domain models.  For example, for YFT in the winter, the EAC sub-region model better 
predicts the higher CPUEs along the coast, although tends to slightly overestimate them (Figure 
67a).  For SWO in summer, the EAC sub-region model does not overestimate the CPUE off the 



 

 71 

southeast coast as much as the whole domain model while still predicting the high values off the 
central east coast (Figure 67c).   
 
Although we have chosen to concentrate on results for YFT, BET and SWO from the whole-domain 
models and the EAC sub-region model, the full set of observed and predicted spatial maps for all 
species, regions and seasons can be found in Appendix 2. 
 
 
Table 12. List of oceanographic variables available from the ACCESS-S2 reanalysis data (direct and derived products), except for 
bathymetry taken from TerrainBase (https://www.ngdc.noaa.gov/mgg/gravity/1999/document/html/tbase.html). Bold indicates 
those included in the BRTs.  

Variable name Description 
d20 Depth of 20°C isotherm 
eke2000 Eddy kinetic energy - weighted sum of 0-300m 
eke300 Eddy kinetic energy - weighted sum of 0-2000m 
hc300 Heat content - upper 300m 
mld1 Mixed layer depth 
ssh Sea surface height (corrected) 
sss Sea surface salinity 
sst Sea surface temperature 
td Thermocline depth 
t100 Temperature at 100m 
t200 Temperature at 200m 
t50 Temperature at 50m 
t500 Temperature at 500m 
u100 East/west velocity at 100m 
u100-300 East/west velocity - weighted mean of 100-300m 
v100 North/south velocity at 100 m 
v100-300 North/south velocity - weighted mean of 100-300m 
bathy Bathymetry 
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Table 13. Pairwise correlations between all ocean variables listed in Table 12. The subset in bold were selected for inclusion in the BRTs since all pairwise correlations are < 0.80.  

 d20 eke2000 eke300 hc300 mld1 ssh sss sst td temp100 temp200 temp50 temp500 u100 u100-300 v100 v100-300 bathy 

d20 1.00 -0.29 -0.30 0.84 -0.01 0.66 -0.08 0.61 0.22 0.69 0.87 0.63 -0.37 -0.08 -0.13 0.15 0.14 -0.08 

eke2000  1.00 0.93 -0.16 0.05 -0.12 -0.02 -0.15 0.01 -0.14 -0.24 -0.14 0.15 0.11 0.11 -0.19 -0.19 -0.09 
eke300   1.00 -0.18 0.04 -0.12 0.00 -0.18 -0.02 -0.18 -0.24 -0.18 0.18 0.13 0.12 -0.20 -0.20 -0.06 

hc300    1.00 -0.13 0.70 -0.14 0.77 0.21 0.89 0.94 0.83 -0.44 -0.11 -0.18 0.12 0.12 -0.23 
mld1     1.00 -0.09 0.36 -0.43 0.58 -0.11 -0.08 -0.28 0.17 -0.01 0.01 -0.06 -0.06 -0.10 
ssh      1.00 -0.28 0.57 0.08 0.62 0.78 0.58 0.13 -0.01 -0.08 0.05 0.03 0.03 

sss       1.00 -0.35 0.23 -0.26 0.01 -0.34 0.24 -0.05 0.00 0.00 -0.02 -0.13 
sst        1.00 -0.02 0.88 0.66 0.97 -0.61 -0.10 -0.15 0.10 0.11 -0.15 

td         1.00 0.32 0.25 0.12 -0.19 -0.03 -0.05 0.01 0.00 -0.22 
temp100          1.00 0.76 0.94 -0.63 -0.11 -0.18 0.10 0.11 -0.21 

temp200           1.00 0.69 -0.27 -0.11 -0.18 0.11 0.11 -0.05 
temp50            1.00 -0.66 -0.10 -0.16 0.09 0.10 -0.19 
temp500             1.00 0.12 0.15 -0.10 -0.13 0.21 

u100              1.00 0.93 -0.08 -0.06 0.04 
u100-300               1.00 -0.08 -0.07 0.04 

v100                1.00 0.95 -0.02 
v100-300                 1.00 -0.01 
bathy                  1.00 
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Table 14. Number of trees used in the BRT model for each species and region (ALL = whole domain).  
 

ALL EAC CS WCP NZ 
YFT 3150 2000 2700 3000 2550 
BET 3500 2900 2400 2300 2550 
ALB 3550 3000 3800 2050 3000 
MLS 2200 2500 550 2550 1650 
SWO 4000 2850 3000 2500 4000 
 

Table 15. Proportion of deviance in catch explained by the BRT model for each species and region using the training dataset.   
 

ALL EAC CS WCP NZ 
YFT 0.60 0.66 0.64 0.46 0.62 
BET 0.52 0.65 0.57 0.39 0.71 
ALB 0.67 0.69 0.66 0.74 0.82 
MLS 0.32 0.45 0.18 0.22 0.59 
SWO 0.68 0.60 0.30 0.22 0.81 
 
Table 16. R2 values for observed vs predicted CPUE (defined as catch per 10,000 hooks) calculated from the BRT model for each 
species and region using: (left) the training dataset (2008-2015), and (right) the validation dataset (2016-2020).  

 Training dataset  Validation dataset  
ALL EAC CS WCP NZ  ALL EAC CS WCP NZ 

YFT 0.13 0.17 0.08 0.08 0.36  0.10 0.08 0.04 0.04 0.09 
BET 0.15 0.17 0.12 0.05 0.15 

 
0.10 0.07 0.04 0.03 0.11 

ALB 0.11 0.26 0.19 0.11 0.30 
 

0.11 0.19 0.13 0.09 0.17 
MLS 0.18 0.20 0.12 0.12 0.24 

 
0.16 0.08 0.04 0.12 0.10 

SWO 0.38 0.35 0.16 0.05 0.39 
 

0.35 0.21 0.14 0.04 0.23 
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Table 17. Root mean squared error (RMSE) values for observed vs predicted CPUE (defined as catch per 10,000 hooks) calculated 
from the BRT model for each species and region using: (left) the training dataset (2008-2015), and (right) the validation dataset 
(2016-2020). The mean observed CPUE value is given in parentheses below for reference. 

 Training dataset  Validation dataset  
ALL EAC CS WCP NZ 

 
ALL EAC CS WCP NZ 

YFT 60.1 69.7 84.2 45.2 15.5 
 

51.6 71.1 70.9 43.4 23.1 
 (38.2) (46.6) (67.5) (29.3) (8.9)  (37.7) (47.9) (60.9) (32.9) (14.0) 
BET 17.4 21.8 21.6 8.7 19.2 

 
15.3 20.6 18.5 7.6 16.2 

 (11.2) (16.2) (16.1) (5.1) (10.1)  (10.0) (10.4) (14.5) (5.3) (8.7) 
ALB 104.4 115.4 93.2 102.3 136.9 

 
85.5 140.8 73.7 83.3 138.9 

 (104.2) (85.2) (76.5) (121.4) (149.3)  (87.9) (103.1) (58.6) (101.2) (141.2) 
MLS 2.8 9.0 1.5 1.8 4.0 

 
2.3 6.6 1.1 1.4 4.6 

 (0.8) (4.8) (0.2) (0.5) (1.8)  (0.7) (3.8) (0.1) (0.3) (1.8) 
SWO 11.6 27.6 5.6 2.4 42.9 

 
10.0 26.6 3.4 1.7 34.9 

 (3.4) (27.4) (1.2) (0.6) (35.6)  (2.3) (18.2) (0.7) (0.4) (20.1) 
 

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 

  
Figure 63. Relative contributions of each of the oceanographic variables included in the BRTs for each species and region (all = whole 
region; eac = EAC-dominated region; cs = Coral Sea; wcp = Western Central Pacific; nz=New Zealand) (see Figure 7).  See Table 12 for 
definitions of oceanographic variables.   
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(a) YFT 

 
(b) BET 

 
(c) SWO 

 
Figure 64. Marginal effect plots for the ocean variables that explain at least 10% of the total deviance in the whole-domain models 
for (a) YFT, (b) BET and (c) SWO. The rug plot along the top axis marks deciles in the data, so the marginal effect functions are of 
most relevance within the 10th and 90th deciles (i.e., between the second and tenth marks).  
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(a) YFT 

 
(b) BET 

 
(c) SWO 

 
Figure 65. Marginal effect plots for the ocean variables that explain at least 10% of the total deviance in the EAC-dominated sub-
region models for (a) YFT, (b) BET and (c) SWO. The rug plot along the top axis marks deciles in the data, so the marginal effect 
functions are of most relevance within the 10th and 90th deciles (i.e., between the second and tenth marks). 
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(a) 
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(b) 
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(c) 

 
Figure 66. Spatial maps showing the average observed (left) and average predicted (right) CPUE over all years in the validation/test dataset (2016-2020) for (a) YFT in winter, (b) BET in autumn, and (c) 
SWO in summer, where CPUE is defined as catch per 10,000 hooks and predictions were made using the whole-domain BRTs. The mean observed CPUE over the whole region is given in the lower corner of 
the observed map, whereas Pearson’s R2 value and the root mean squared error (RMSE) are given in the lower corner of the prediction map as an indicator of predictive performance.    
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(a) 
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(b) 
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(c) 

 
Figure 67. Spatial maps showing the average observed (left) and average predicted (right) CPUE over all years in the validation/test dataset (2016-2020) for (a) YFT in winter, (b) BET in autumn, and (c) 
SWO in summer, where CPUE is defined as catch per 10,000 hooks and predictions were made using the EAC sub-region BRTs. The mean observed CPUE over the EAC sub-region is given in the lower corner 
of the observed map, whereas Pearson’s R2 value and the root mean squared error (RMSE) are given in the lower corner of the prediction map as an indicator of predictive performance. 

  



 

 85 

6 BRT forecasting with ACCESS-S2 
6.1 Methods 

One of the goals of the project was to investigate forecasts of fish distribution for the five key 
species for Australia and regional partners based on the habitat models developed.  Although the 
BRTs are modelling catch, not fish abundance, they can still be used to provide forecasts of catch 
distribution (rather than fish distribution).  Unfortunately, not all of the ocean variables that were 
included in developing the ACCESS-S2 BRT models in the previous section are available in forecast 
mode.  There are, however. four variables available: sea surface temperature (sst), sea surface 
height (ssh), mixed layer depth (mld; mld2 is used in this section as a better calculation of mld) and 
heat content in the upper 300 m (hc300).  Thus, in order to use the BRTs to provide forecasts, the 
models needed to be re-run using only these variables. Bathymetry could also be included given it 
is a static variable, resulting in a total of five variables.  
 
The exact same methods were followed to generate BRTs as in the previous section, but only using 
the five variables available for forecasting.  The optimal number of trees selected for each species 
and region is given in Table 14.  Note that the BRT for MLS in the CS sub-region did not converge 
due to insufficient data.  
 

6.2 Results 

6.2.1 Model performance 

As expected, the performance of the models degraded with a reduced set of predictors; however, 
it did not degrade markedly.  The proportion of deviance in the catch explained by the models 
tended to only drop by a few percent (Table 19 compared with the equivalent table in the 
previous section). As explained in section 5.1, the performance statistics for CPUE are of more 
interest here than the catch statistics, as they measure the influence of the ocean predictors 
independent of the number of hooks set.  The R2 values for the observed versus predicted CPUE 
(defined as catch per 10,000 hooks) for each species and region were only slightly lower using the 
forecasting variables than the full set of variables (Table 20 compared to Table 16 in previous 
section).  Thus, the same comments from the models using the full set of variables apply here, 
namely: 

• For the training dataset, R2 values tended to be lowest in the WCP and highest in the EAC 
and NZ regions (Table 16, left). 

• For the validation dataset, the R2 values for the whole-region model are only slightly lower 
for the validation dataset than the training dataset, but tend to be much lower for the sub-
region models (Table 5, right). 

• Overall, the predictive performance of the models is low for the validation dataset, with R2 
values < 0.20 for most species and regions. 
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6.2.2 Relative contributions of ocean predictors 

Figure 63 shows the relative contribution by each of the forecasting variables in explaining the 
deviance in the CPUE for each species and region. For the whole domain models, sst is most 
influential for all species; however, in the sub-regions, the variables that are most influential vary. 
For instance, in the EAC-dominated sub-region, mld2 is most influential for YFT and BET, compared 
to bathymetry and sst for ALB, and bathymetry and hc300 for SWO.   

6.2.3 Effects of ocean predictors on CPUE 

Figure 69 shows the relationship between CPUE and the most influential forecasting variables for 
YFT, BET and SWO in the whole-domain models. For YFT and BET, CPUE is expected to increase as 
sst increases, whereas the opposite is true for SWO (over the majority of the data, as indicated by 
the rug plot along the x-axis).  For the EAC sub-region models, CPUE for YFT and BET is expected to 
increase as the mixed layer deepens, and CPUE for SWO is expected to decrease in shallow waters 
(as bathymetry increases, Figure 70).   
 
The full set of marginal effects plots for the BRT forecasting models for all species and regions can 
be found in Appendix 2.  
 
Table 18. Number of trees used in the BRT forecasting model for each species and region (ALL = whole domain).  
 

ALL EAC CS WCP NZ 
YFT 2850 1350 2350 2550 1400 
BET 2500 1450 2700 1850 1650 
ALB 2600 3450 3200 1300 2450 
MLS 3550 2700 NA 2750 3000 
SWO 4000 2500 3500 1950 4000 
 

Table 19. Proportion of deviance in catch explained by the BRT forecasting model for each species and region using the training 
dataset.   
 

ALL EAC CS WCP NZ 
YFT 0.56 0.61 0.61 0.45 0.56 
BET 0.47 0.61 0.53 0.38 0.67 
ALB 0.65 0.65 0.61 0.72 0.80 
MLS 0.29 0.44 NA 0.21 0.58 
SWO 0.62 0.55 0.25 0.20 0.80 
 
Table 20. R2 values for observed vs predicted CPUE (defined as catch per 10,000 hooks) calculated from the BRT model for each 
species and region using: (left) the training dataset (2008-2015), and (right) the validation dataset (2016-2020).  

 Training dataset  Validation dataset  
ALL EAC CS WCP NZ  ALL EAC CS WCP NZ 

YFT 0.09 0.12 0.06 0.07 0.31  0.07 0.05 0.03 0.03 0.08 
BET 0.10 0.13 0.10 0.04 0.11 

 
0.06 0.06 0.03 0.02 0.11 

ALB 0.07 0.22 0.13 0.07 0.26 
 

0.08 0.17 0.08 0.06 0.21 
MLS 0.16 0.20 NA 0.11 0.23 

 
0.13 0.08 NA 0.10 0.11 

SWO 0.31 0.27 0.11 0.04 0.37 
 

0.29 0.16 0.12 0.04 0.23 
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(a) 

 
 
(b) 
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(c) 

 
 
(d) 
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(e) 

  
Figure 68. Relative contributions of each of the oceanographic variables included in the BRT forecasting models for each species and 
region (all = whole region; eac = EAC-dominated region; cs = Coral Sea; wcp = Western Central Pacific; nz=New Zealand) (see Figure 
7 in Section 4). 

(a) YFT 

 
(b) BET 

 
(c) SWO 

 
Figure 69. Marginal effect plots for the ocean variables with a relative contribution to explaining the total deviance of at least 20% 
in the whole-domain BRT forecasting models for (a) YFT, (b) BET and (c) SWO. The rug plot along the top axis marks deciles in the 
data, so the marginal effect functions are of most relevance within the 10th and 90th deciles (i.e., between the second and tenth 
marks).  
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(a) YFT 

 
(b) BET 

 
(c) SWO 

 
Figure 70. Marginal effect plots for the ocean variables with a relative contribution to explaining the total deviance of at least 20% 
in the EAC-dominated sub-region BRT forecasting models for (a) YFT, (b) BET and (c) SWO. The rug plot along the top axis marks 
deciles in the data, so the marginal effect functions are of most relevance within the 10th and 90th deciles (i.e., between the second 
and tenth marks). 
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7 Projecting future patterns – seasonal and 
decadal forecasts 

A selection of case study forecasts has been made available at the following project website: 
• http://www.cmar.csiro.au/etbf-oceanographic-influences/index.html 

along with a suite of timeseries plots of identified key ocean state variables for the regions 
identified and also for a selection of finer scale regions in the EAC domain. 
 

7.1 Forecast runs  

Using the ACCESS-S2 hindcast data set as input to the BRT forecast models, seasonal hindcasts of 
catch, i.e., retrospective forecasts run in the past, were run at one, two, and three month lead 
times from a summer initialisation date of February 2018, providing hindcasts for March-April-May 
2018.  The predicted spatial catch distribution for each species, region and month could be 
contrasted with the observed catch and effort data to assess how well the models performed at 
predicting patterns in catch.  R2 values were calculated between the observed and predicted CPUE 
(catch per 10000 hooks) in each month for each species and region using the ACCESS-S2 hindcast 
data, and these were compared to the R2 values obtained using the reanalysis ocean dataset.  
Somewhat surprisingly, the hindcast R2 values were very similar to the reanalysis values, and could 
by chance be slightly better in some cases (Table 21; note that only results for the whole domain 
model are shown but that the general findings were similar for all regions).  This is because the 
correlation between the ACCESS-S2 hindcast data and the re-analysis data for these months is very 
high, even for May (where we would expect the greatest divergence given the 3-month lead time).   
Assuming similar performance in other months and years, this suggests that the predictive power 
of the BRTs should not be degraded much by using forecasted ocean data up to 3 months lead 
time. 

To demonstrate an actual catch forecast, catch forecasts were run in January 2022 at one-, two- 
and three-month lead times from an initialisation date of 1 January 2022, providing “real-time” 
forecasts for February-March-April 2022.  Maps showing the forecasted spatial distribution of 
catch per 10000 hooks in February 2022 for YFT, BET and SWO for the whole domain are given in 
Figure 71.  
 
For provision of forecasted input data (sst, hc300 etc) for the eastern Australian region, there is 
currently a dedicated project page hosted at: 
 

• http://poama.bom.gov.au/access-s/etbf/ 
 
which is username and password protected, and this can be provided upon request. 
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Table 21. R2 values for observed vs predicted CPUE (defined as catch per 10,000 hooks) calculated from the BRT whole-region 
forecast model for each species run using: (left) the ACCESS-S2 hindcast oceanographic data output for March, April and May 2018 
from a February 1st initialisation date; (right) the observed oceanographic data for March, April and May 2018 for comparison.  

 ACCESS-S2 hindcast data  Observed data  
March April May  March April May 

YFT 0.025 0.012 0.099  0.020 0.017 0.099 
BET 0.098 0.092 0.073 

 
0.072 0.085 0.073 

ALB 0.018 0.031 0.052 
 

0.028 0.059 0.069 
MLS 0.240 0.147 0.106 

 
0.243 0.138 0.095 

SWO 0.357 0.424 0.363 
 

0.416 0.492 0.433 
 
 
(a) 
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(b) 

 
(c) 

 
Figure 71. Spatial maps showing the predicted CPUE (defined as catch per 10,000 hooks) for February 2022 for (a) YFT, (b) BET, and 
(c) SWO, obtained using the whole-domain BRT forecast model with ACCESS-S2 forecast data initialised on January 1st 2022 as input. 
Only grid cells with at least some fishing effort historically are included.  (Note that the catch and effort data around New Zealand 
was only provided at a 1 x 1 degree resolution, hence the sparse appearance of the predictions which are made at a 0.25 x 0.25 
degree resolution).   
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7.2 Progress on CAFE decadal (multi-year) forecasts 

Multi-year prediction is a less mature field than weather or seasonal prediction.  Bridging the gap 
between shorter-term forecasts and longer-term climate projections to predict conditions in the 
multi-year period is recognised as a substantial scientific “grand challenge” but one that is of great 
societal relevance and benefit.  One of the risks in embarking on these efforts are unknown 
challenges effecting workplan timeframes. 
 
CSIRO’s CAFE decadal hindcast/forecast dataset, including historical baselines for the hindcasts 
allowing exploration of the value of initialisation vs forcing, have only recently been completed.  A 
“generic” global evaluation of the decadal hindcast/forecast product, while not yet complete, is 
well underway.  Documentation will be published and once available will be linked on the project 
website. 
 
In the decadal forecasting space, which covers predictions over a multi-year period, we ran 9, 12, 
18, 24, and 36 month model hindcasts for both summer and winter initialisation dates for a year 
that best spans the variability in available CPUE data.  These results are available on the project 
website. 
 
Once the generic evaluation is complete there is an opportunity to perform a more specific 
assessment of the decadal forecast product in relation to ETBF applications, informed in part by 
the results of the current project. 
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8 Categorical approach to prediction of CPUE 
based on ACCESS-S2 output  

8.1 Background 

In this section of the report, we consider a simplified approach to prediction of catch in relation to 
ocean conditions. Instead of trying to predict continuous values of catch-per-unit-effort (CPUE) 
given certain ocean conditions, we simply try to predict if the catch rates will be “normal”, 
“higher-than normal” or “lower than normal” over a defined spatial region. We therefore 
categorized regional CPUE observations into three states: (1) medium (25-85th percentile), (2) bad 
(less than 25th percentile) and (3) good (above 85th percentile). We used time-dependent 
multinomial generalized additive models (GAMs) to predict current state as a function of previous 
state and ocean variables. Broad scale spatial aspects of the SW pacific were incorporated by using 
the state of catches in adjacent regions to predict the focal region’s state. 
 
The difficulty in developing predictive habitat models for target species based on observed ocean 
data or reanalysis output has been noted (Section 3 and Section 5). Using catch as a proxy for 
favoured habitat conditions of the fish necessarily means viewing the process through the lens of 
fishery dependent data. Therefore, the dynamics of the fishing process, such as market forces, 
management decisions etc. as well as the influence of fishing on stock abundance, determine the 
response between fishing effort and catch. Additionally, the process of observing and compiling 
catch data and the aggregation involved, and, finally, ocean and habitat conditions, add to the 
fishery dynamics to ultimately create an inherently noisy set of observations of what is a highly 
complex ecological process. 
 
Even without the complications of fishing as a sampling “tool”, the link between top-order ocean 
predators’ abundance in space and time and the physical dynamics of the ocean is not necessarily 
direct. Key variables such as temperature will influence the broad distribution of species (e.g. 
warm water species such as YFT are less likely to persist in temperate waters). But within these 
distribution, small scale features such as fronts, local prey density, eddy fields are also likely to be 
influential in determining spatiotemporal distribution. All these factors mean that making 
spatiotemporal predictions of target species based purely on ocean data is challenging. 
 
However, industry knowledge has shown that there are particular seasons which have better catch 
rates of particular species throughout the ETBF. In discussions with fishery operators and 
managers in the TTRAG, the researchers asked if there was interest in pursuing an approach where 
the goal of the modelling was simply to predict whether the current fishing year was likely to be 
roughly the same as current conditions (and similar to recent average years) or substantially better 
or worse. This idea was positively received and hence investigated in the project. 
 
Additionally, fishers raised the potential for catches in foreign EEZs to be predictors of later 
catches in the Australian region. The methods used in section 5, are not easily adapted to use 
observations of lagged covariates (e.g. past catch rates). 
 
To deal with this, the method we detail below categorizes monthly CPUE into a series of discrete 
states which simply describe if the catch rates were “Good”, “Medium” or “Bad” as a function of 
the state at a previous time and other covariates.  Therefore these statistical models attempt to 
predict the current state in a particular region as a function of: (a) The state of CPUE 
(Good/Medium/Bad) in the last month; (b) optionally, the state of CPUE for the previous month in 
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neighbouring regions in order to simply model spatiotemporal dependence and (c) local ocean 
conditions. 
 
From a scientific perspective and given the challenges inherent in full spatiotemporal prediction 
(see section 5), there was interest in determining whether there are advantages in effectively 
reducing the problem of predicting continuous CPUE values to a much simpler set of outcomes. 
The aim was for the coarse features of the system to be captured by aggregating the complex and 
or noisy aspects of the ecological and fishing processes. 
 
It is necessary to be clear from the outset, that it was not apparent whether this would be the case 
or not. On the one hand there is potential that although the signals are less detailed, that they 
may be more robust or predictable. On the other, there was every chance that the 
aforementioned complexity and noise would simply swamp any overall signal. 
 
In this section we describe the statistical approach and present the model selection results for all 
species in the analysis. We focus on the results of YFT, BBL and BET with a focus on the EAC region 
(see below for map and see section 4) as a case study to present the degree to which the models 
detailed below were able to predict the categorized states.  
 

8.2 Methods  

8.2.1 Data categorization   

Nominal catch per unit effort data (total catch / hooks) Ut was used as described in 
section 1 and 5. There was a clear decreasing trend across all CPUE target species time 
series (see Figure 1 to 

Figure 5) which was likely due to both structural changes in the fisheries and depletion of the 
harvest species by fishing: factors independent of oceanography having a strong influence on 
the catch rates. We therefore opted to consider the period from January 2009 onwards as the 
CPUE series tended to be more stable over this time span. 

For each month and region, CPUE was categorized into three states according to the 
following simple method.  

1. The 25th and 85th percentiles of the data (q25 and q85) were calculated. 

2. These were used to assign states according to the following:  

𝑆!,# = #
𝑈!,# < 𝑞$%, 𝐵𝑎𝑑
𝑞$% ≤ 𝑈!,# < 𝑞&% 𝑀𝑒𝑑𝑖𝑢𝑚
𝑈!,# > 𝑞&%, 𝐺𝑜𝑜𝑑

 

 

This was used to generate a series of observations St for each region i (see section 8.2.2) and for 
the species considered in this study.  

The aim of the analysis was to predict St,i, the categorical state of CPUE at time t in region i given 
St-1,i, oceanographic conditions, and the state in other regions in the previous timestep. In its most 
general form, the model needs to provide the probability of the state in region i at time t given the 
state in the previous month and other covariates Yt which can be expressed as Pr4𝑆!,#|𝑆!'(,) , 𝑌!7.  
The form of this probability implies a first-order Markov model with covariates. This can be 
estimated as a multinomial linear model (further details below). 
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8.2.2 Spatial configuration 

In order to capture the notion that there is a spatial component to patterns of the states St, we 
used the same set of regions defined in section 4.2. A series of St was therefore created for each 
region i (see Figure 72) and these series were used as predictors in generalized additive models 
(see section 8.2.3).  According to the structure of dependence on adjacent regions, the models in 
this report are either labelled as ‘self’ models, or ‘adjacent’ models. ‘Self’ models include the catch 
state in a polygon as a function of the catch state in this polygon at the previous time-step. ‘Self’ 
models treat catch rates (and the categorized state St,i) as spatially independent. Therefore 
according to the self models, St,i will change through time or in response to environmental 
conditions, but state in one polygon does not affect any other polygon. The maps in Figure 72 
illustrate ‘self’ models in the EAC and New Zealand polygons, where a looped arrow illustrates the 
previous month’s catch state being used to help predict the current month’s catch state. 

 
Figure 72 - Spatial configuration used in the ‘self’ models – as per the figure, there is no spatial dependence. 

 

In contrast, ‘adjacent’ models model the catch state in a polygon as a function of the catch state in 
this polygon at the previous time-step, as well as the catch states in all adjacent polygons in the 
previous time-step.  

‘Adjacent’ models treat St,i as spatially dependent. In other words, the state in a neighbouring cell 
influences the state in the focal cell. We note that the exact nature of this dependence is not really 
described in these models. For example, spatial dependence could be due to a combination of 
factors such as literal fish movement, changes in abundance or catchability or spatiotemporally 
correlated ocean conditions.  

The following maps illustrate ‘self’ models in the EAC and New Zealand polygons, where an arrow 
illustrates the previous month’s catch state at the base of the arrow being used to help predict the 
current month’s catch state at the tip of the arrow. 
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Figure 73 - Spatial configuration used in the ‘adjacent’ models for the case of the EAC and NZ blocks at illustrations. The model is 
configured so that only adjacent blocks influence the focal cell. 

8.2.3 Statistical models 

The approach used to predict St,i was to employ multinomial Generalized additive models fit using 
the MGCV library (Wood, 2006) in R (R Core Team, 2019). These allow prediction of categorical 
data which is assumed to be distributed according to a multinomial distribution, as a function of 
linear predictors. The model has 𝐾 linear predictors,	each dependent on smooth functions of 
predictor variables 𝑦!,) 	as is usual for GAMS (Wood, 2006). If the response variable is St,i Î 
{0, . . . , 𝐾}, then the likelihood for 𝑆t,i = exp4𝑦!,)7/{1 + ∑ exp) (𝑦!,))}. If St,i=0 the likelihood is 
1/{1 + ∑ exp) 4𝑦!,)7}. In the two-class case, this becomes a binary logistic regression model 
(Wood, Pya and Saefken, 2016). 

We use the following notation to describe ‘self’ and ‘adjacent’cases, as outlined above. For ‘self’ 
models, the GAMs take the form: 

𝑆!,# ∼ 𝛽* + 𝛽(𝑆!'(,# + 𝛽$f (month) +G𝛽#
#+$

𝑓#(𝑂#) 

Where 𝛽 are estimated coefficients, month is a factor term for month of the year and Oi are the 
set of ocean covariates described in chapter (see section 4). The f(.) are non-parametric smoothing 
splines.  The term f(month) was a cyclic smooth (Wood, 2006) where a periodic smooth is used to 
model an annual cyclic effect. 

For ‘adjacent’ models, the GAMs take the form: 

𝑆!,# ∼ 𝛽* + 𝛽(𝑆!'(,# + 𝛽$month + G 𝛽,
,∈𝒜(0)

𝑆!'(,, +G𝛽#
#+$

𝑓#(𝑂#) 

which is the same as the previous model structure except that it includes the k extra parameters 
for adjacent states (here denoted by 𝒜(𝑆). )  We included the observed catch states in the 
previous month in each polygon adjacent to the polygon under investigation as another set of 
predictors. 
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8.2.4 Ocean model data output 

As a simple descriptor of ocean state, we used extracted data from the ACCESS-S2 model 
output and averaged across each month/region for the time series. For full details of the 
ACCESS-S2 model see section 2). 

 

8.2.5 Model selection 

The model selection aimed to narrow down the space of possible models. We therefore aimed to 
select both a self model and an adjacent model for each species/region combination. To do this 
we employed the following procedure.  

First, we fit reduced models that each included a single oceanographic predictor, separately for 
each oceanographic predictor. These reduced models were divided into:  

- 1. Reduced ‘self’ models which included the previous state in the polygon, month, and 
a single oceanographic predictor.  

- 2. Reduced ‘adjacent’ models which also included the previous state in the polygon and 
all adjacent polygons, as well as month, and a single oceanographic predictor  

 
We recorded the deviance explained by each reduced model in both 1 and 2 above. 
To select a ‘chosen’ model, we started with the reduced model that explained the highest 
proportion of the deviance, then sequentially added oceanographic predictors from the reduced 
model that explained the second-most deviance, then third-most, and so on, stopping when: 

1. Adding another additional variable did not result in a model that explained a higher 
proportion of the deviance, or 

2. Adding the next predictor resulted in a singular model, or 
3. The model contained six oceanographic predictors, at which point adding further 

predictors was infeasible for reasons of computer power. 

The final model in this process was added to the set of ‘chosen’ models which consists of one ‘self’ 
and one ‘adjacent’ model for each species for each area.  
 

8.3 Results 

8.3.1 Ocean conditions 

Figure 74 below shows the times series of monthly averaged ocean data fields from ACCESS-S2 for 
the EAC region. Clearly there are some variables (such as SST/ HC300/TD) which show very clear 
seasonal signals. Immediately this indicates that there are likely to be correlations with the month 
term. Other variables (e.g v100/u100/eke2000) do not have this same signal. However, there is 
evidence of strong autocorrelation in most variables.  
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Figure 74 - Monthly time series for the EAC-dominated region (see Figure 7 above). 

 

CPUE and categorized state sequences (Table 22) shows the observed state transitions after 
categorisation for each species in the EAC region. The time series themselves and resultant time 
series of categorized data are shown in subsequent figures. Apparent from Table 22 is that the 
transitions are dominated by Medium->Medium transitions. This is a function of the use of the 
25th/85th percentile thresholds and means that the proportion of time in state is equal across all 
species’ time series. We consider how other approaches to choosing thresholds should be 
considered in any extension of this project in the discussion section below. The consequence of 
this is that the model has less “information” on transitions to and from the other states. If the 
percentile thresholds we used do correspond to the typical experience of operators in the industry 
as to what catch rates are poor/average or good, then this would be unavoidable. However, it 
would be better if the thresholds were based on direct information from fishers.  
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Table 22 - observed state transitions for each species for the EAC dominated region. The tables are to be read as the “from state” as 
rows and “to state” as columns. 

YFT bad medium good 

bad 10 24 2 
medium 21 50 14 
good 4 12 6 

BET bad medium good 
bad 13 20 3 
medium 19 53 13 
good 3 13 6 

SWO bad medium good 
bad 16 19 1 
medium 18 53 14 
good 2 13 7 

ALB bad medium good 
bad 10 24 2 
medium 21 50 14 
good 4 12 6 

STM bad medium good 
bad 15 20 1 
medium 19 51 16 
good 2 14 5 

 

We now detail the categorized time series and percentiles for each species. By definition, 15% of 
observations for each species are considered 'good’, 60% of observations are ‘medium’, and 25% 
of observations are ‘bad’. 
 

8.3.2 Yellowfin tuna  

Figure 75 (a) shows the monthly CPUE for YFT in the EAC. There is still some indication of a 
downward trend in catch rates from 2009-2013. However, there are still periods of high catch 
rates – although these were generally less than those from the pre-2009 period (not shown). 
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Figure 75 - Yellowfin tuna (top) catch rates and (bottom) categorized series of catch states 

 

8.3.3 Bigeye Tuna 

Figure 76(a) shows the monthly CPUE for BET in the EAC. As per the data for YFT, there was still 
some indication of a downward trend in catch rates, though visually it appears that these 
stabilized earlier -- from 2011. Relative to YFT there are a greater proportion of monthly CPUE 
observations that fall into the medium state.  
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Figure 76 - Bigeye tuna (top) catch rates and (bottom) categorized series of catch states. 

 

8.3.4 Broadbill swordfish 

The SWO monthly CPUE series shows a period of downward trend for 2009-2011 (interspersed 
with two Good state observations) and then a period of relatively stable catches from 2013-2017. 
In the latter part of the time series there appears to be a greater degree of variability with a series 
of particularly low monthly CPUE values (Figure 77a).  
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Figure 77 - Broadbill swordfish (top) catch rates and (bottom) categorized series of catch states. 

 

8.3.5 Striped Marlin  

The STM monthly CPUE series shows a period of downward trend for 2009-2013, and then a 
period of relatively stable catches from 2013-2017. After 2017, there appears to be another drop 
in catches, and no ‘good’ catches occur in the last three years of the data series (Figure 78a).  The 
STM series does not appear to be strongly seasonal. 
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Figure 78 - striped marlin (top) catch rates and (bottom) categorized series of catch states. 

 

8.3.6 Albacore 

The ALB monthly CPUE series shows an apparent decline from 2009 – 2013, a period of flat CPUE 
from 2013 – 2018, and another period of apparent decline through to the end of 2020.  The series 
features three outstanding months – very low months in late 2010 and late 2018, and very high in 
early 2014 (Figure 79). The ALB series show a seasonal pattern, in that good catches are most 
likely to occur in Feb – May, whereas bad catches are most likely to occur Oct- Jan. 
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Figure 79 - Albacore (top) catch rates and (bottom) categorized series of catch states. 

 

8.3.7 Summary of oceanographic predictors in selected models 

The number of times each oceanographic predictor was used in a ‘chosen’ model in each oceanographic 
region, and across all oceanographic regions is shown in Table 23.  

Although causal assignment is impossible for this exercise, the oceanographic predictors that appear in 
many of our ‘chosen’ models are consistently predictive of catch per unit effort across a suite of species 
and locations. This may indicate that these variables may drive differences in catchability for the species 
studied. The top few predictors, in decreasing order of number of ‘chosen’ models are temp100, SSS, 
temp50, eke2000, temp500, and u_100, which may indicate that catchability is driven in part by sub-
surface temperature (temp100, temp50, and temp500), ocean transport (eke2000 and u_100), and surface 
chemistry variables (SSS). On the other end of the spectrum, ocean mixing variables unrelated to 
temperature, such as mld1 and d20, appear in relatively few models and may be less indicative of 
differences in catchability. 
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Table 23 - Number of times a given ocean covariate was retained in set of 40 chosen models. 

Variable CS WCP NZ ETBF total 

d20 1 1 1 1 4 

Td 1 5 4 1 11 

eke2000 3 5 1 3 12 

mld1 0 0 2 5 7 

Nino 1 6 2 1 10 

hc300 0 3 3 2 7 

Sss 6 7 1 1 15 

Sst 3 0 2 3 8 

temp50 5 6 1 1 13 

temp100 0 7 6 4 17 

temp200 0 0 1 1 2 

temp500 5 2 3 2 12 

u_100 6 2 2 2 12 

v_100 4 1 5 1 11 
 

8.3.8 Examples of model prediction for the EAC dominated region.  

For comparisons between ‘self’ and ‘adjacent’ forms of models, our primary metric model 
performance is the Akaike Information Criterion (AIC). On this criterion, ‘adjacent’ models 
outperform ‘self’ models for most (14 / 20) pairs of models, with a further 2 pairs being tied 
between the ‘self’ and ‘adjacent’ forms. Given that AIC should penalize models with many extra 
parameters, then this could suggest that there is some signal of spatial dependence at the 
monthly scale in this data and could be due to a combination of movement processes, correlated 
ocean conditions at large scales and similarities in habitat requirements across the region. This 
analysis does not have sufficient information to pull out the relative influence of these aspects – 
largely because of the complexity of disentangling ocean dynamics, target species ecology and 
fisheries dynamics from catch data alone.   

The amount of deviance described by these models was small (See Tables in Appendix 3 for the 
full set). The best models for STM and SWO explained just only 23.1% and 23.5% of the deviance, 
respectively. However, this does not automatically mean they are poor predictors of state.  

In the rest of this section, we detail the results from EAC region to demonstrate how the models 
perform. Because ‘adjacent’ models generally outperform ‘self’ models, we will focus our case 
studies on adjacent models for Yellowfin Tuna, Bigeye Tuna, and Swordfish, in the ETBF polygon. 

 

Table 24 - Deviance explained according to self (S) and adjacent (A) models. 

Species YFT 
 

ALB 
 

BET 
 

STM 
 

SWO 
 

Model 
type 

S A S A S A S A S A 

Deviance 5.60% 10% 5.90% 19.70% 10.40% 16.70% 18.60% 23.10% 19% 23.50% 
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To examine the model predictions graphically, we employed a ‘bullseye chart’. For each month in 
a bullseye chart, we have an observed catch state, and a maximum-likelihood catch state derived 
from our oceanographic model. A bullseye chart is simply the observed and modelled catch state, 
plotted together for each month. The observed catch state is plotted as a round plotting symbol, 
and the predicted catch state is plotted as a plus-sign. If the observed and predicted states were 
the same, they line up to produce a cross-hairs, indicating that we ‘hit our target’ that month.  To 
make it easier to spot patterns, we have also plotted transparent bars over each month where our 
modelled and observed catch states differed: blue if our modelled state was worse than the real 
state (a ‘pessimistic’ model error), and red if the modelled state was better than the real state (an 
‘optimistic’ model error). 
 
The maximum-likelihood predictions for each month are catch states: ‘good’, ‘medium’, or ‘bad’. 
These three states are not equally likely a priori, by definition. For instance, a ‘good’ year is 
defined as one in the top 15% of all years, so the a priori probability of a ‘good’ year is 0.15, and 
the probability of randomly calling a ‘good’ year when it really happens to be a ‘good’ year is 
0.15$ = 0.0225. Considering all three states, the probability of randomly calling the ‘correct’ state 
0.445. Alternatively, a non-random strategy of always guessing ‘medium’ every month will be 
correct 60% of the time, because 60% of all observations are contained between the 25th and 
85th percentiles (which are our ‘bad’ and ‘good’ cutoffs, respectively). For each plot, we provide 
the percentage of ‘correct’ calls provided by the model, noting that 44.5% of all calls would be 
correct if our models were simply predicting at random, or 60% of calls would be correct if the 
models always guessed ‘medium’. This again points to the need for an independent and case- or 
usage- specific set of thresholds between the states. 
 
The models ranged from 58.3% correct state prediction for YFT to 71.5% correct in the case of 
albacore. These numbers indicate that there may be a tighter coupling between ocean and catch 
states in some species. 
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(A)  

(B)  

 

(C) 

 
(D) 

 
(E) 
Figure 80 - State predictions for each species through time. See text for explanation of the plots. 

8.4 Discussion 

To recap, the results of the modelling were only moderately successful. The deviance explained by 
the models was low and while the models typically did better than a random prediction of state, 
their success at predicting the next state based on current state and oceanography was variable. 
The results shown here use the ETBF as a focal region for prediction and show that (best to worst) 
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ALB, STM, BBL, BET and YFT states were predicted with-accuracy between 71 and 58% accuracy. 
This indicates that useful predictions may be generated for some species. There was, however, a 
lower degree of predictability for BET and YFT. We discuss aspects of the modelling that may be 
investigated in further work, which may improve the success rates. 
 
The aim of this chapter was to trial a new approach to prediction of catch rates based on ocean 
data. For this we selected a period of relatively stable nominal CPUE from which we produced a 
categorized set of discrete states which we labelled Good, Medium and Bad. We then considered 
whether these states could be predicted through time for each month based on knowledge of the 
previous months state in both the region of interest and adjacent regions and descriptors of 
oceanography in the current state. 
 
The results we obtained suggest that the models were generally able to predict better than a 
random guess. However, the models we fit here are probably insufficient to be used as a highly 
accurate predictive tool. Further development is required to determine if the accuracy of the 
models can be improved. For this there are several lines of inquiry which could be explored in 
future work.  

8.4.1 Selection of thresholds for categorisation of states 

One aspect where improvements may be gained is in the categorisation of the state itself. For 
uniformity across the species, our categorisation of state using the 25th and 85th percentiles as 
thresholds. This may not be optimal for the following reasons:  

• These thresholds may not capture what the industry considers to be a good / poor catch 
rate. If there is interest in developing an approach similar to that considered here, we hope 
that this initial exploration of the method will allow for focused discussion in 
industry/management forums such as TTRAG. This may elucidate the thresholds 
considered by industry to be exceptionally good or bad years.  

• The ability of the model to correctly estimate the state is likely to be a function of how 
many times it “sees” transitions to and from states. The number of these will be a function 
of the thresholds we selected. In other words, if you used an inappropriate threshold, you 
could have no observations of a given state etc.  

• The use of the same percentiles may not be appropriate across all species.  

The latter two aspects of these may be improved by shifting from the approach we took, where 
the state is considered to be directly observable (once thresholds have been selected), to a more 
sophisticated model where the states are considered to be latent variables. In the latter 
formulation, the model ‘decides’ the probability that a given observation is drawn from a set of 
underlying state-distributions. This is known as a Hidden Markov Model (MacDonald and Zuchinni, 
2016). 
 
While this approach would be more objective from a statistical standpoint, as it allows the data to 
decide whether a given observation is to be considered “Good”, “Medium” or “Bad”, the approach 
is more complex – especially when the transitions between states is a function of covariates. Such 
models are widely used in a range of problems (e.g. finance, medical applications, speech 
recognition). Typically, these require a large amount of data but in principle these approaches 
could address the dependence on selected cut-offs. 
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8.4.2 Spatial configuration 

In all species, the adjacent models which depended on state categorisations from neighbouring 
regions were preferred. On the face of it, this may indicate that there is spatiotemporal 
dependence in catch rates. This may be the case, but there are some caveats that should be raised 
on this point.  
 
First, the adjacent models may be preferred simply because there is more covariate data to inform 
the model. We consider this possible but not necessarily likely. Our conclusion of a general 
tendency for better performance in the adjacent models was based on AIC. This criterion should 
penalize the addition of spurious covariates and reduce overfitting. 
 
Further, and in the same vein as the discussion above regarding the dependence on choice of 
thresholds in the catch rate time series, the spatial units considered here may not be appropriate 
for all species. The results of section 4 on oceanographic regimes/regions of course gives us a 
physical basis for the spatial configuration used. However, the target species considered here may 
not respond to oceanography in the same way or at the same spatial/time scales.  Nevertheless, 
the fact that some variables were more consistently selected may point to common influences 
across species.  
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Discussion and Conclusion 

The results from this exploration into a suite of habitat models for investigating drivers in the ETBF 
and surrounding regions has suggested that sub-surface variables are important in explaining the 
variance.  Although much variance is explained by effort (and we have been constrained to using 
fishery-dependant data for the most part), there is still a significant part of the variance in CPUE 
that is linked to the environment for some species and regions. 
 
Our results also suggest the importance of developing regionally trained models.  A model that is 
conditioned in an area dominated by a specific set of drivers is not always applicable to the other 
areas where a different environment dominates (eg EAC vs CS), and this needs to be taken into 
account. 
 
The method we investigated in the categorical approach showed promise for some species 
(ALB/SWO and STM). For BET and YFT our results were not encouraging. However, as we 
considered in the discussion in that section, there are aspects which may improve the ability of 
models to predict catch states. 
 
In principle, the models could be fitted to historical ‘nowcast data’ and, in conjunction with 
predictive ocean models, provide a near-term future forecast of catch rates. As with any aspect of 
the fishery, care would need to be taken to consider predictions in light of the dynamics of the 
target species stock. Obviously for a highly depleted stock, we would expect relatively poor catch 
rates, irrespective of the ocean dynamics. Therefore, any usage of these models in a truly 
predictive mode (i.e. predictive of the future catch state) would need to consider this information. 
Future work could consider how to include stock assessment model projections in predictions of 
catch rate.  
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Implications  

The outcomes of this work will have utility for fisheries stock assessments and management in the 
face of climate change.  It is expected that as the ocean continues to warm, and fish distributions 
change, there will be a need to use environmental nowcasts and forecasts to aid support 
sustainable harvest and management and inform the debate about spatial management tools such 
as static and dynamic protected areas. 
Ongoing provision of environmental status reports and forecasts (situational reports) will be useful 
for managers managing these resources in a changing environment.  
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Recommendations 

Based on continual project engagement with end users over four years, there is a clear interest 
from industry and need for continued and improved delivery of oceanographic information and 
insight to Australian fisheries management and industry.  During the evolution of this project, the 
team has worked closely with Bureau of Meteorology staff and CSIRO oceanographers to 
incorporate the various reanalysis and forecast products into our work.  The outputs of the 
modelling work show that primary (e.g., temperature at 500m) and derived (e.g., depth of the 
20°C isotherm, heat content in the upper 300m, and mixed layer depth) sub-surface 
oceanographic variables are important, and yet these are limited in their availability to be 
forecast.  Many of these variables are yet to be fully assessed for forecast skill (a measure of 
accuracy), and when this has been done, efforts to make these available should be pursued. 
The analysis-ready datasets produced by this project should be considered in the regular workflow 
of the TTRAG for use in standardising CPUE and providing updates of current ocean state. 
Ongoing development of operational systems and engagement with the Bureau of Meteorology 
(and continued provision and assessment of additional ocean variables) that include the sub-
surface variables of interest should be pursued. 
 

Further development  

A substantial limitation in assessing the environmental influence on tuna and billfish availability in 
the ETBF and surrounding regions is the limited or absent fishery independent data such as that 
obtained from electronic tags. There is a need for targeted studies of species of interest in the 
Australian region to explore the influences in more detail.  Catch data are clearly influenced by 
decisions made by fishers and managers, primarily to do with economics (e.g., distance from port, 
market price or demand), or harvest controls, which confound the ocean influences on fish 
distribution. 
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Extension and Adoption 

A variety of aspects of this work has been presented at scientific meetings and are outlined in 
Appendix 5 – project updates. 
 
In addition, we wrote an article for the SPC Newsletter 
(https://coastfish.spc.int/en/publications/bulletins/fisheries-newsletter), that is attached at 
Appendix 6. 
 
We will continue the development and population of the project website for delivery of timeseries 
of key indices (from section 4). 
Investigate partnering with Climate Resilient Enterprise (API delivery of climate products to end-
users). 
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Project materials developed 

We have one paper that is in review at Fisheries Oceanography: 
 

“Forecast-ready models to support fisheries adaptation to global variability and change" 
Kylie L. Scales1, Thomas S. Moore II2, Bernadette Sloyan2, Claire Spillman3, J. Paige Eveson2, 
Toby A. Patterson2, Ashley Williams2, Alistair J. Hobday2, Jason R. Hartog2 
1School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia. 
2CSIRO Oceans & Atmosphere, Castray Esplanade, Hobart, Tasmania, Australia. 
3Bureau of Meteorology, Melbourne, Victoria, Australia. 

 
 
 
During the project, we delivered 6 written project updates to TTRAG and SPC (these can be found 
in Appendix 5.  In addition, formal presentations were made to TTRAG and the Steering 
Committee through the life of the project. 
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Appendices 

Appendix 1 – Initial Habitat Modelling exploration (attached) 

Appendix 2 – Boosted Regression Tree results for all species and 
regions (attached) 

Appendix 3 – Categorical Timeseries (attached) 

Appendix 4 – Project Staff 

Jason Hartog (CSIRO) – Project leader (co-Project leader at inception) 
Alistair Hobday (CSIRO) – co-Project leader (Project leader at inception) 
Paige Eveson (CSIRO) 
Thomas Moore (CSIRO) 
Bernadette Sloyan (CSIRO) 
Kylie Scales (USC) 
Toby Patterson (CSIRO) 
Shane Baylis (CSIRO) 
Robert Campbell (CSIRO) 
Ashley Williams (CSIRO) 
Claire Spillman (BOM) 
Don Bromhead (AFMA) 
 
 

Appendix 5 – Project Updates (attached) 

Appendix 6 – SPC Newsletter article (attached) 
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