

Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment

Final Report for project 2017-038 for the Fisheries Research and Development Corporation

John Keesing, Franzis Althaus, Belinda Alvarez, Monika Bryce, Hector Lozano-Montes, Margaret Miller, Nick Mortimer, Melanie Orr, Roland Pitcher, John Pogonoski, Wayne Rochester, Keith Sainsbury, John Wakeford, Emma Westlake and Alan Williams

CSIRO Oceans and Atmosphere Research 19 December 2021

Australia's National Science Agency © 2021 Fisheries Research and Development Corporation. All rights reserved.

ISBN 978-1-925994-25-4 (PDF Digital on-line)

Long term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment [FRDC 2017-038]

Ownership of Intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation and CSIRO.

Citation for this report

Keesing, J.K., Althaus, F., Alvarez, B., Bryce, M., Lozano-Montes, H., Miller, M., Mortimer, N., Orr, M., Pitcher, C.R., Pogonoski, J., Rochester, W., Sainsbury, K.J., Wakeford, J., Westlake, E. and Williams, A. (2021). Long term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment. Final Report for project 2017-038 for the Fisheries Research and Development Corporation. CSIRO, Australia.

Individual chapters maybe cited, for example: Lozano-Montes, H. (2021). North West Shelf Ecosystem Trophodynamics Model. Chapter 7 in Keesing, J.K., Althaus, F., Alvarez, B., Bryce, M., Lozano-Montes, H., Miller, M., Mortimer, N., Orr, M., Pitcher, C.R., Pogonoski, J., Rochester, W., Sainsbury, K.J., Wakeford, J., Westlake, E. and Williams, A. (2021). Long term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment. Final Report for project 2017-038 for the Fisheries Research and Development Corporation. CSIRO, Australia.

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms.

Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from https://creativecommons.org/licenses/by/3.0/au/. The full licence terms are available from https://creativecommons.org/licenses/by-sa/3.0/au/legalcode.

Inquiries regarding the licence and any use of this document should be sent to: frdc@frdc.com.au

Disclaimer

The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader's particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC.

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry

Researcher contact details

Dr John Keesing CSIRO Oceans and Atmosphere Indian Ocean Marine Research Centre Fairway, Crawley, WA 6009 John.keesing@csiro.au

FRDC contact details

25 Geils Court Deakin, ACT, 2600 02 6285 0400 frdc@frdc.com.au

Contributors

The following people contributed to this study. Affiliation is (or was at the time of the work) CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development

<u>Study design and operational execution</u>: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams

<u>Field work</u>: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano-Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams

Data analysis, contributions to chapters and report preparation: Franzis Althaus, Belinda Alvarez, Sharon Appleyard, Monika Bryce, Norm Campbell, Frances Cooke, Alastair Graham, John Keesing, Hector Lozano-Montes, Margaret Miller, Justine De Montety, Nick Mortimer, James McLaughlin, Amy Nau, Melanie Orr, Roland Pitcher, John Pogonoski, Wayne Rochester, Keith Sainsbury, Dirk Slawinski, Joanna Strzelecki, John Wakeford, Emma Westlake, Alan Williams

Contents

List of	acronyn	าร	1
Acknow	wledgm	ents	2
Execut	ive sum	mary	3
1	Introdu	uction	12
	1.1	Survey design and research methods	13
	1.2	Voyage summary and operations undertaken	19
2	Characterisation of marine habitats across the North West Shelf		23
	2.1	Introduction	23
	2.2	Structure of this chapter and the analyses	23
	2.3	Data sources and methodology	23
	2.4 Dampie	Results from sites inshore of the commercial trawl fishery (including the er Marine Park)	34
	2.5 Monte	Results from sites west of the commercial trawl fishery (including the bello Marine Park)	56
	2.6	Results from sites in Pilbara Fish Trawl Fishery Area 1	70
	2.7	Results from sites in Pilbara Fish Trawl Fishery Area 2	87
	2.8	Results from sites in Pilbara Fish Trawl Fishery Area 3	102
	2.9	Results from sites in Pilbara Fish Trawl Fishery Area 4	115
3	Charac	terisation of fish and benthic filter feeder fauna assemblages	126
	3.1	Overview	126
	3.2	Fishes	126
	3.3	Soft Corals (Octocorallia, Hexacorallia, Ceriantipatharia)	137
	3.4	Sponges	142
4	2017 N	orth West Shelf survey design	150
	4.1	Introduction	150
	4.2	Characterising commercial trawling	150
	4.3	Characterising environmental gradients	154
	4.4	Addenda	168
5	2017 N	orth West Shelf survey benthos analyses	172
	5.1	Introduction	172

	5.2	Comparisons of trawl sponge-catch biomass with 'pre-trawl' biomass	.173
	5.3	Estimation of historical trawl gradient coefficient	.175
	5.4	Analyses of MNF2017 benthos data	.183
	5.5	Prediction of pre-trawling sessile benthos distributions	.195
	5.6	Trawl impact simulation modelling	.198
	5.7	Addenda	.202
6	Structu	re and temporal changes in fish assemblages on the NWS	. 205
	6.1	Introduction	.205
	6.2	Materials and methods	. 207
	6.3	Results	.230
	6.4	Discussion	.260
	6.5	Conclusions	.262
7	North V	Vest Shelf Ecosystem Trophodynamics Model	.266
	7.1	Introduction	.266
	7.2	Objectives	.267
	7.3	Methods	.267
	7.4	Results	.289
	7.5	Discussion	. 306
Append	dix A	Detailed description of survey design and methodology	. 309
Append voyage		Detailed list of operations by date, site and gear type during the RV <i>Investig</i> (INV2017_05)	
Append Investi		Representative seabed images typical of each site surveyed during the RV yage in 2017 (INV2017_05)	.334
Append (INV20		Full Species list of fish caught on the NWS on the RV <i>Investigator</i> voyage in 2 384	2017
Appendix E		Data tables giving site locations referred to in this report	. 393
Append	dix F	Data tables and figures of fish analyses	. 404
References		435	

Figures

Figure 1. Upper panel shows the spatial strata used in the 1982 to 1997 voyages (from Sainsbury 1991). The three areas indicated by the bolded arrows reflect the zoning areas for the experimental adaptive management experiment conducted between 1986 and 1991 (see Sainsbury et al. 1997). In this current study we have referred to these three areas from west to east as the Barrow, Legendre and Hedland subregions. Lower panel shows 100 sites sampled in the 2017 study. Each site sits within the environmental stratification described in detail in Chapter 4. The location of the zoning boundaries within the PFTF and Montebello and Dampier MPs are also shown. Greater spatial detail of the strata is shown in Chapter 4 and of the location of sample sites in Chapter 2
Figure 2. Historical trawl fishing effort in the NWS study region from 1979 to 1985. Area trawled = 191% per annum (hist_eff: 1.91)
Figure 3. Recent trawl fishing effort in the NWS study region from 2005 to 2016. Area trawled = 212% per annum (rec_eff: 2.12)
Figure 4. Example of groupings of categories of historical and recent fishing effort in the western part of the NWS study region. Categories 1 – 4 reflect zero/low, low/medium, medium/high and high levels of historical (1979–1985) trawl effort respectively and categories A – D reflect zero/low, low/medium, medium/high and high levels of recent (2005–2016) trawl effort respectively. Effort levels reflect the percentage of the seabed swept by trawl shots annually. See Chapter 4 for more detail
Figure 5. Map of survey area showing survey sites and location of the six fishing areas (FA) zoned within the PFTF
Figure 6. Examples of reef outcrop from thick (upper panel) and thin (lower panel) overlying sediment showing interpretation using SBP and acoustic backscatter data
Figure 7. Examples of sand dunes overlying reef (upper panel) and sand ripples (lower panel) showing interpretation using SBP and acoustic backscatter data
Figure 8. Examples of flat hard (reef) bottom (upper panel) and pockmarked reef (lower panel) showing interpretation using SBP and acoustic backscatter data
Figure 9. Examples of scoring of categories along sub-bottom profile tracks. Numbers on y-axis in milliseconds. Green is thin sediment, blue is thick sediment, yellow is sand dunes and orange is flat hard bottom
Figure 10. Examples of the different substrate categories used to score INV2017_05 still images. Similar categories were used for CSIRO 1982-1997 images
Figure 11. Examples of the different substrate categories used to score INV2017_05 still images. Similar categories were used for CSIRO 1982-1997 images
Figure 12. Examples of the different bottom topography categories used to score INV2017_05 still images
Figure 13. Examples of the different benthic biota categories used to score INV2017_05 still images

Figure 14. Location of INV2017_05 sites for which habitat data were collected inshore of the commercial trawl fishery, including Dampier MP. Table showing the start/end latitude and longitude for each trawl transect is given in Appendix D
Figure 15. Location of historical trawls from CSIRO 1982–1997 for which habitat data were collected within the southern (left) and northern (right) extent of the area inshore of the commercial trawl fishery, including within the since-formed Dampier MP. Table showing the start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997)
Figure 16. CTD profiles of water column parameters from sites W2, W3, W4* and W6* inshore of the commercial fishery. * denotes sites within Dampier MP
Figure 17. CTD profiles of water column parameters from sites W7, W8*, W9 and W11 inshore of the commercial fishery. * denotes sites within Dampier MP
Figure 18. CTD profiles of water column parameters from sites W15, W18, W20 and W22 inshore of the commercial fishery
Figure 19. CTD profiles of water column parameters from sites W25, W98 and W100 inshore of the commercial fishery40
Figure 20. Depth-averaged nutrient values for sites surveyed inshore of the commercial trawl fishery. Box plots show the median, 25 th and 75 th percentiles and outliers falling outside the 10 th and 90 th percentiles. * denotes sites within Dampier MP42
Figure 21. Proportion of bottom types determined using SBP for INV2017_05 sites inshore of the commercial trawl fishery. * denotes sites within Dampier MP
Figure 22. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites inshore of the commercial trawl fishery. * denotes sites within Dampier MP
Figure 23. Shepard's plot of sediment classification for INV2017_05 survey sites inshore of the commercial trawl fishery (excluding Dampier MP)
Figure 24. Shepard's plot of sediment classification for INV2017_05 survey sites within Dampier MP (inshore of the commercial trawl fishery)45
Figure 25. Proportion of substrate types in seabed images along trawl lines for historical CSIRO (1982–1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP
Figure 26. Proportion of substrate types in seabed images along trawl lines for historical CSIRO (1982–1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP
Figure 27. Proportion of topographic types in seabed images along trawl lines for historical CSIRO (1982–1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP
Figure 28. Proportion of topographic types in seabed images along trawl lines for historical CSIRO (1982–1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP

Figure 29. Proportion of biota types in seabed images for INV2017_05 survey sites inshore of the commercial trawl fishery. * denotes sites within Dampier MP. Dark grey = no biota present in images. 'Other' includes either filter feeders which could not be accurately allocated to a specific group because of image quality or other organsims
Figure 30. Sea whips <i>Junceella fragilis</i> provide an anchorage point for a sea horse at site W4 within the area inshore of the commercial fishery
Figure 31. Example of sponge community at site W4 within the area inshore of the commercial fishery
Figure 32. Large <i>lanthella flabelliformis</i> , an example of erect sponge from within the area inshore of the commercial fishery
Figure 33. Massive form sponge common at site W4 within the the area inshore of the commercial fishery
Figure 34. Large pink <i>Dendronephthea</i> sp. soft coral at sites including W8 inshore of the commercial fishery53
Figure 35. Proportion of biota types in seabed images for historical CSIRO (1982–1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP. Maroon = no biota present in the images, 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed
Figure 36. Proportion of biota types in seabed images for historical CSIRO 1982–1997 survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP. Maroon = no biota present in the images, 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed
Figure 37. Location of INV2017_05 sites within the area west of the commercial trawl fishery, including Monteblio MP. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D
Figure 38. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within the area west of the commercial trawl fishery, including within the since-formed Monteblio MP. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997)
Figure 39. CTD profiles of water column parameters from sites W13 and W46 within the area west of the commercial fishery
Figure 40. CTD profiles of water column parameters from sites W47, W49*, W79* and W81* within the area west of the commercial fishery. * denotes sites within Montebello MP
Figure 41. Depth-averaged nutrient values for sites surveyed west of the commercial trawl fishery (including sites within Montebello MP). Box plots show the median, 25 th and 75 th percentiles and outliers falling outside the 10 th and 90 th percentiles

Figure 42. Proportion of bottom types determined using SBP for INV2017_05 sites within the area west of the commercial trawl fishery. * denotes sites within Montebello MP62
Figure 43. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites west of the commercial trawl fishery. * denotes sites within Montebello MP
Figure 44. Shepard's plot of sediment classifications for INV2017_05 survey sites west of the commercial trawl fishery (excluding Montebello MP)
Figure 45. Shepard's plot of sediment classifications for INV2017_05 survey sites within Montebello MP (west of the commercial trawl fishery)64
Figure 46. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites west of the commercial trawl fishery. * denotes sites within the since-formed Montebello MP65
Figure 47. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites west of the commercial trawl fishery. * denotes sites within the since-formed Montebello MP. Dark grey = no biota present in the images, 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed
Figure 48. <i>Dendronephthea</i> spp. soft corals at site W14 within the area west of the commercial trawl fishery
Figure 49. Free-living crinoid <i>Comatula rotalaria</i> very common at sites W79, W80 and W97 within the area west of the commercial trawl fishery. The crinoid pictured was ~ 20 cm in diameter
Figure 50. Two of the common seapen species at site W49 within the area west of the commercial trawl fishery. Left panel: very common <i>Scytalium</i> sp., right panel: <i>Pteroeides</i> sp68
Figure 51. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites west of the commercial trawl fishery. * denotes sites within the since-formed Montebello MP. 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.
Figure 52. Location of INV2017_05 sites within PFTF Area 1, including Area 6. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D70
Figure 53. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 1, including Area 6. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997)
Figure 54. CTD profiles of water column parameters from site W12 within PFTF Area 6, combined with PFTF Area 173
Figure 55. CTD profiles of water column parameters from sites W28, W37, W38 and W40 within PFTF Area 1

Figure 56. CTD profiles of water column parameters from sites W41, W43, W44 and W58 within PFTF Area 1
Figure 57. CTD profiles of water column parameters from sites W59, W61, W69 and W70 within PFTF Area 1
Figure 58. CTD profiles of water column parameters from sites W76, W77, W83 and W84 within PFTF Area 177
Figure 59. CTD profiles of water column parameters from sites W89, W92, W94 and W95 within PFTF Area 1
Figure 60. Depth-averaged nutrient values for sites surveyed within PFTF Area 1 and W12 which fell within PFTF Area 6. Box plots show the median, 25 th and 75 th percentiles and outliers falling outside the 10 th and 90 th percentiles. * denotes site within PFTF Area 6
Figure 61. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Area 1. * denotes site within PFTF Area 6
Figure 62. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 1. * denotes site within PFTF Area 6.82
Figure 63. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Area 1 (excluding W12)
Figure 64. Shepard's plot of sediment classifications for INV2017_05 survey site W12 within PFTF Area 6
Figure 65. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 1
Figure 66. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 1. * denotes site within PFTF Area 6. 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed
Figure 67. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 1. 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed
Figure 68. Location of INV2017_05 sites within PFTF Area 2. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D
Figure 69. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 2. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997)
Figure 70. CTD profiles of water column parameters from sites W26, W29, W30 and W33 within PFTF Area 290
Figure 71. CTD profiles of water column parameters from sites W45, W60, W62 and W63 within PFTF Area 2

Figure 72. CTD profiles of water column parameters from sites W64, W65, W72 and W85 within PFTF Area 2
Figure 73. CTD profiles of water column parameters from sites W87 within PFTF Area 293
Figure 74. Depth-averaged nutrient values for sites surveyed within PFTF Area 2. Box plots show the median, 25 th and 75 th percentiles and outliers falling outside the 10 th and 90 th percentiles.95
Figure 75. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Area 2
Figure 76. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 297
Figure 77. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Area 2
Figure 78. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 2
Figure 79. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 2. 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed
Figure 80. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 2. 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed
Figure 81. Location of INV2017_05 sites within PFTF Area 3. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D
Figure 82. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 3. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997)
Figure 83. CTD profiles of water column parameters from sites W21, W52, W53 and W55 within PFTF Area 3 (currently closed to fishing)
Figure 84. CTD profiles of water column parameters from sites W56 and W57 within PFTF Area 3 (currently closed to fishing)
Figure 85. Depth-averaged nutrient values for sites surveyed within PFTF Area 3 (currently closed to fishing)
Figure 86. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Area 3, currently closed to fishing
Figure 87. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 3 (currently closed to fishing)110
Figure 88. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Area 3 (currently closed to fishing)111

Figure 89. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 3 (currently closed to fishing)......112 Figure 90. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 3 (currently closed to fishing). 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image guality and other benthic organisms not otherwise listed......113 Figure 91. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 3 (currently closed to fishing). 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of Figure 92. Location of INV2017_05 sites within PFTF Area 4. Table showing start/end latitude Figure 93. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 4. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on Figure 94. CTD profiles of water column parameters from sites W39, W67 and W74 within PFTF Figure 95. Depth-averaged nutrient values for sites surveyed within PFTF Area 4. Box plots show the median, 25th and 75th percentiles and outliers falling outside the 10th and 90th percentiles. Figure 96. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Figure 97. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 4.....121 Figure 98. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Figure 99. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 4......123 Figure 100. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 4. 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image guality and other benthic organisms not Figure 101. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 4. 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic Figure 102. Image showing 30 banded catsharks (Atelomycterus fasciatus) removed from a large sponge, Ircinia sp. at Site W6......130

Figure 103. One of the banded catsharks <i>Atelomycterus fasciatus</i> collected from Dampier MP (Site W6) retained for the CSIRO ANFC (mature male 38 cm total length)
Figure 104. Smalleye stingray, <i>Megatrygon microps</i> captured in the Montebello MP. The hose is being used to maintain water flow over the gills before measurement, DNA sampling and release
Figure 105. Smalleye stingray, <i>Megatrygon microps</i> captured in the Montebello MP being measured. The hose is being used to maintain water flow over the gills before DNA sampling and release
Figure 106. Reticulate whipray <i>Himantura australis</i> (mature male, 143 cm disc width, 4.8 m TL). The white cloth was used as a safety measure to cover the tail spine while measurements, photos and a fin-clip for genetic analysis was taken and removed before being released alive.
Figure 107. Whitespotted guitarfish, <i>Rhynchobatus australiae</i> . Female 287 cm TL released alive after measurement, photo and genetic fin-clip
Figure 108. Zebra seahorse, <i>Hippocampus zebra</i> (juvenile male, 32 mm height)135
Figure 109. Queensland seahorse, <i>Hippocampus spinosissimus</i> (male, 80 mm height)136
Figure 110. Western spiny seahorse, <i>Hippocampus angustus</i> (female, 60 mm height)136
Figure 111. Western pipehorse, <i>Solegnathus</i> sp. 2 [of Kuiter, 2009] (450 mm standard length) 136
Figure 112. Composition of octocoral taxa. Left chart shows Orders and right chart shows Families139
Figure 113. Examples of some of the sponge morphotypes sorted by size categories during the 2017 survey
Figure 114. Sponge families found in Dampier and Montebello MPs sorted by number of occurrences
Figure 115. Common sponge species found in Dampier and Montebello MPs. A–B Echinodictyum mesenterinum, B, Arenosclera WAM sp. 1 cf. D-E Axinella aruensis varieties145
Figure 116 Map of the NWS region showing the distribution and relative intensity of trawl effort (red=high, blue=low) for the "Historical Taiwanese pair-trawling" period 1979 to 1985. Black polygons outline current Western Australian management areas for their domestic trawl fishery [see Chapter 1]
Figure 117 Map of the NWS region showing the distribution and relative intensity of trawl effort for the "Recent domestic otter-trawling" period 2005 to 2016 (red=high, blue=low). Black polygons outline current Western Australian management areas for their domestic trawl fishery [see Chapter 1]
Figure 118 Map of the NWS region showing the combinations of historical and recent trawl effort categories in the study area. The inset scatter-plot of the category combinations provides a category legend

Figure 123 Predictor cumulative plots, showing cumulative importance distributions of treesplits improvement scaled by R² weighted importance, and standardised by density of observations, averaged over all 14 sessile benthos morpho-types. These show cumulative change in overall composition of the community, and where changes occur on the gradient. 162

Figure 125 Combined predictor cumulative plots, showing cumulative importance distributions for the three biological datasets: NWS photo benthos, NWS Frank and Brice trawls samples and McKenna trawl samples. The combined cumulative importance distributions across all three datasets provide transformation functions for each environmental gradient to cumulative biological importance, used for predicting compositional change across the study area grid. .164

Figure 132 Results from prediction of pair-trawling trial relationships (Figure 131) to the NWS.

Figure 134 Map of the sampled density of total sponges at survey stations in the NWS study area. Symbol size indicates sponge density kg/Ha. Symbol colour indicates survey: red=OM1963; blue=MNF2017. Hollow symbols are used because MNF2017 aimed to re-sample OM1963 stations where possible, hence some locations overlap. Background indicates the distribution and abundance of predicted 'pristine' total sponge biomass (see Section 5.5).....175

Figure 137 Plots of log benthos counts (mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for large and small size categories of 14 sessile benthos morpho-types. See Figure 136 caption for further details.

Figure 142 Box-plots of Rsq-standardised predictor importance (ordered by mean importance, from the top) in *randomForest* models of benthos morpho-type image counts with environmental predictors for (left) raw unstandardised counts, (middle) range-standardised counts, and (right) range-standardised counts with SBP classification as a factor predictor. ...185

Figure 147 Plots of log aggregated large and small benthos morpho-types (range-standardised mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for large and small size categories of 14 sessile benthos morphotypes, accounting for SBP substratum class proportions. See Figure 136 caption for further Figure 148 Plot of log total sponge biomass (kg/Ha) for each MNF2017 station (red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling. See Figure 136 caption for further details......193 Figure 149 Log-Log plots of counts of large and small benthos morpho-types recorded from Figure 150 Maps of ensemble predicted distributions of the relative abundance (red=high, blue/grey=low) of six major benthos morpho-types for the greater NWS study area. Black polygons outline current Western Australian management areas for their domestic trawl fishery. Depth contours are 50m intervals......196 Figure 151 Maps of uncertainty (pooled SDs on log scale; red=high, blue/grey=low) in ensemble predicted distributions of six major benthos morpho-types for the greater NWS study area. Black polygons outline current Western Australian management areas for their domestic trawl fishery. Depth contours are 50m intervals......197 Figure 152 Plots of trawl-impact simulation model results for predicted time-series of absolute status of 6 major benthos morpho-types (relative to pre-trawl abundance) in the greater NWS study area. Uncertainty is represented by 18 time-series lines for each morpho-type: for sensitivity to trawling, pre-trawling abundance, and swept-width of trawl gears. The time-series of trawling total annual swept-area is shown for each fishery......201 Figure 153 Map of the NWS region showing the distribution and relative intensity of trawl effort (number of trawls per 0.5° grid-cell) for historical Japanese otter-trawling. Circles indicate trawl stations surveyed by the Japanese vessel Oshoro Maru, with circle size and colour indicating raw sponge catch weights. Black polygons outline current Western Australian management Figure 154 Predictor importance in randomForest models of mean range-standardised benthos morpho-type counts at trawl station level, with environmental variables and proportion of SBP Figure 155 Marginal response plots of the average counts of benthos morpho-types to the proportion of SBP HARD substratum class in *randomForest* models at the trawl transect level; plots have different Y-axis scale (log) indicating the trend of response of different morpho-types to hard bottom type......204 Figure 156 Map of the NWS region showing the regional study area (yellow) and the 2017 study area (brown). The Barrow, Legendre and Hedland subregions are strata used to randomise research trawls in the Adaptive Management Experiment (AME); boundaries of relevant Pilbara Fish Trawl Fishery management areas and zones are shown (pink lines) and explained in Section 7.2.1. Isobaths are 10 m depth intervals, with 50, 100, 150 and 200 m bolded. Red outline

Figure 157 Annual distribution of foreign (mostly Taiwanese) and domestic fish trawl effort across the North West Shelf. Fishery management zones are identified in Figure 1. Years in which scientific surveys were undertaken are highlighted in green
Figure 158 Summary timeline of trawling activities, survey events, and management interventions relevant to this study showing the time periods identified for aggregating data in this analysis
Figure 159 Spatial distribution of the random stratified survey samples from the North West Shelf, shown in relation to the Barrow, Legendre and Hedland subregions, the regional study area (yellow) and the 2017 study area (brown)214
Figure 160 Cumulative catch weight by species for (a) all individual surveys labelled by survey year
Figure 161 Catch weights (shown as rate) of individual trawl samples across all surveys
Figure 162 Levels of contrast between historical (1979-1985) and recent (2005-2016) trawl effort in the 2017 study area. Numbers in cells are the number of 2017 samples in each sub- area. Orange polygon identifies the six areas suited to time-series analysis (based on adequate numbers of samples in pre-2017 surveys); see Chapter 4
Figure 163 Maps of the 11 areas analysed for changes in fish biomass: (a) Pilbara Fish Trawl Fishery management areas – Zone 2: PFTF Areas 1, 2, 3, 4; (b) an adjacent area (Barrow); and (c- h, respectively) trawl effort contrasts (1979-1985 vs 2005-2016) – three contrasts (TC 3A, 3B, 2A), and three non-contrasts (TC 1A, 2B, 3C)
Figure 164 Three theoretical responses (trends of change in biomass) of informative fish species to declining trawl impact on benthos. Type 1 species — significant positive trend due to strong association to structured benthic habitat; Type 2 species — a non-significant positive trend due to weak association to structured benthic habitat; Type 3 species — various changes in population abundance, but not a +ve trend responding to benthos recovery and may be a -ve response to increased benthos; trend undetectable, or, if detected, typically non-significant +ve or -ve.
Figure 165 Data summary graphics for the combined T2/T3 surveys: (a) species accumulation curve; (b) cumulative catch weight by species232
Figure 166 Cumulative biomass represented by the top ranked species by biomass for each of the 8 surveys between 1986 and 1997 after singleton species (those occurring only once in a survey) were excluded. Selection was in steps of 50 species, with '400' indicating the full species pool for the given year (see Table 19)
Figure 167 Non-metric multidimensional scaling ordinations of the T2/T3 samples with catch weights (a) untransformed, (b) 2nd root transformed, (c) 4th root transformed and (d) 8th root transformed. The 7 main clusters identified in the 4th-root transformed data are identified in (c). The spatial distribution of the sample clusters identified in the 4th root transformed data is shown in (e).
Figure 168 MDS (a) base-case, (b) base-case + occurrence in at least 7 surveys

Figure 169 Maps of the spatial distribution of the multivariate groups (a) base-case; (b) basecase + occurrence. The 6 main assemblages discussed below are identified in (a) as Groups 1 & 2: inner/mid-shelf; Groups 3 & 4 paeleocoastline, and Groups 5 & 6 shelf/ shelf-edge.240 Figure 170 Distribution of the (a) raw and (b) 4th root transformed biomass of the 20 typefying species of the two inner/mid-shelf communities (groups 1 - blue and 2 - red) identified in a SIMPER analysis of the base-case. The species names are listed against the CAAB in Table 24. Figure 171 Distribution of the (a) raw and (b) 4th root transformed biomass of the 20 typefying species of the two paeleocoastline communities (groups 3 - cyan and 4 - grey) identified in a SIMPER analysis of the base-case. The species names are listed against the CAAB inTable 25.243 Figure 172 Distribution of the (a) raw and (b) 4th root transformed biomass of the 20 typefying species of the two deep communities (groups 5 – green, 6 – pink) identified in a SIMPER analysis of the base-case. The species names are listed against the CAAB in Table 26......245 Figure 173 Distribution of abundances of (a) large, (b) small and (c) mini benthos by trawl operation in the main groups identified in the base-case analysis of the fish communities (colours match the assemblages colours in Figure 169......247 Figure 174 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for PFTF Zone 2 Areas 1 to 4 and in the Barrow area. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star Figure 175 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for six trawl contrasts. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1). Map insets show the approximate location of the areas as shown in Figure 163......250 Figure 176 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for PFTF Zone 2 Areas 1 to 4 and in the Barrow area, highlighting the series sta and end points aging the 25% reference line. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1). Map inset shows the location Figure 177 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for six trawl contrasts, highlighting the series sta and end points aging the 25% reference line. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star > 0.1). Map insets show the approximate location of the areas as shown Figure 178 Time-series trend in biomass of the four Key Genera in survey data for PFTF Area 1. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star Figure 179 Time-series trend in biomass of the 27 informative species in survey data for PFTF Area 1. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1); data = catch rate (kg per 30 min trawl tow, 4th root transformed)......254

Figure 180 Time-series trend in biomass of the four Key Genera in survey data for PFTF Area 1. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1); data = catch rate (kg per 30 min trawl tow, 4 th root transformed)255
Figure 181. The NWS model domain (red area) with approx. 46,770 square km. The model represents the foodweb of the demersal fish assembles and habitat forming invertebrates in the depth range from 20 to 100m
Figure 182. Trawl total weight (grams) for vertebrates obtained during 2017 voyage on board of R/V Investigator in the NWS
Figure 183. Trawl total weight (grams) for invertebrates obtained during the 2017 voyage on board of the R/V Investigator in the NWS
Figure 184. PREBAL diagnostics of the NWS model showing the distribution of biomass per trophic level
Figure 185. PREBAL of the NWS model showing Respiration to Assimilation ratio (RA/AS) for all non-producer groups. It is expected that RA/AS is closer to 1 for higher trophic groups level groups
Figure 186. Distribution of the Production / Biomass ratios by trophic level of the NWS model. The negative slope displayed is expected as lower trophic groups have in general higher mortality rates
Figure 187. Distribution of the ratios of Production to Consumption (P/Q) values predicted by the model. It is expected that consumption must be between 2 to 10 higher than production. 284
Figure 188. Food web diagram of the NWS ecosystem. Functional groups are indicated in circles with size proportional to their biomass. Colour of the circles represents the trophic level. The trophic links among groups are indicated by grey lines
Figure 189. Distribution of total biomass (t/km ²) by trophic level in the NWS model (grey bars). The black line represents the trophic aggregation of the 71 living groups, shows that the system is largely controlled by lower trophic levels
Figure 190. The proportion of the main energy flows (%) for each trophic level in the NWS model
Figure 191. The mixed trophic impact analysis for selected groups of the NWS model. Negative impacts are shown in red colour, positive impacts in blue and no impacts in white. Intensity of the colour is proportional to the degree of the trophic impacts
Figure 192. Relationship between relative total impact and relative biomass of the functional groups used to define the Keystone groups in the NWS model (right). * Conceptual identification of Keystone species (Valls et al., 2015)
Figure 193. Proportion of change in the biomass of the indicators of the NWS after 20 years of simulation under different fishing scenarios. Details of these scenarios are presented in Table 32

Figure 194. Proportion of change in the biomass of the indicators of the NWS model after 20	
years of reducing 90% the biomass of keystone groups ("Lizardfish", "Cuttlefish/Squid",	
"Asteroids" and "Large deep fish". See Table 32 for details	298
Figure 195. Proportion of changes in the biomass of the indicator groups of the NWS model	
after 20 years of reducing 50% the biomass of habitat-forming groups sponges, corals,	
seagrass). See Table 32 for details of this scenario.	299

Tables

Table 1. Spatial stratification of the 100 sites surveyed. See Chapter 4 and Appendix A forexplanation of the source of fishing effort data and how the strata of historical and recenteffort were established. See Figure 5 for location of sites. Colours representing the differentcombinations of historical and recent effort correspond to those shown in Figure 4
Table 2. Summary of site locations, depth and sampling operations undertaken for each site onthe October-November INV2017_05 RV Investigator voyage. SBP = Sub-bottom profiler. *notreported on in this study due to gear failure and net damage at site W29.20
Table 3. Nutrients (depth averaged values) for sites surveyed inshore of the commercial trawl fishery41
Table 4. Nutrients (depth averaged values) for sites surveyed west of the commercial trawlfishery. * denotes site within Montebello MP
Table 5. Nutrients (depth averaged values) for sites surveyed within PTFT Area 1. * denotes sitewithin PFTF Area 6. Nd denotes no data
Table 6. Nutrients (depth averaged values) for sites surveyed within PFTF Area 2. Nd denotes no data.
Table 7. Nutrients (depth averaged values) for sites surveyed within PTFT Area 3 (currently closed to fishing)
Table 8. Nutrients (depth averaged values) for sites surveyed within PTFT Area 4
Table 9. Species of Octocorallia (Alcyonacea) recorded from the Kimberley North West Shelf(NWS) survey area (RV INV_05 2017)
Table 10. List of sponge species and their higher taxonomic classification found in the Dampier and Montebello MP stations (W4, W6, W8, W14, W49, W50, W79, W80, W81, W82, W97). 'cf.': specimens that lack some of the diagnostic characteristics of the species. '?': specimens that could not be identified beyond the level of genus
Table 11 number of grid cells in the study area categorised at different intensities of historicaland recent trawl effort
Table 12 number of sampling stations to be selected in different category combinations ofhistorical and recent trawl effort intensities
Table 13. Environmental variables mapped to the Australian EEZ, available to the project156
Table 14 cumulative estimates of the historical trawl gradient coefficient for 14 sessile benthos morpho-types, with corresponding conversion to percentage depletion per unit of swept-area-ratio, and <i>approximate</i> significance level (see text). Major structure-forming benthos types are highlighted
Table 15 Estimates of trawl depletion rate d and logistic recovery rate r, with estimateduncertainty, aggregated to NWS benthos morhotypes, from analysis of the GBR effects oftrawling work.199

Table 16 Summary details of research surveys on Australia's North West Shelf
Table 17 Distribution of the research trawl samples by survey across the 19 NWS study strata;non-randomised trawls tallied separately215
Table 18 Summary of decisions made when reconciling taxonmic identifications of 787 CAAB taxa listed in the database showing rationale for including and excluding taxa in analyses217
Table 19 By survey summary of the catch data included in the present study, showing the number of samples, the total catch weight, weight per operatinand, number of species-level fishes, the total weight they commtribute. Also shown are the number identifications that were excluded from analyses and the relative weight they constitute. (data from Osho Maru 1963 not included)
Table 20 The 27 informative species showing their membership of the two primary inner/ mid- shelf assemablages (blue and red – see Section 7.3.1), plus additional mostly differentiating species (black) and showing their classification into 'types' for predicting trend of biomass change with a rationale (developed from regional analysis, below)
Table 21 Summary of singletons and their contribution to the by survey number of species and biomass. For completeness the 1982, 1983 and 2017 surveys are shown here (grey text) but these data are not considered in the analyses presented in this section
Table 22 Diagnostics of the results from multivariate analyses of the T2/T3 samples withdifferent transformations of the catch weights and frequency of occurrence across the 8 T2/T3surveys
Table 23 List of the top 50 of 254 fish species ranked by total biomass recorded in 8 surveys between 1986 and 1997. The total species pool of 254 fish species for regional assemblage analyses is supplied in Appendix F.1. Shown are: ranked biomass, total occurrences (occ.), total weight, rank and occurrence by number of surveys. The four key genera are indicated (*)237
Table 24 The 40 most informative species that typify and distinguish the two primary inner/mid-shelf assemblages as identified by average abundance (biomass) in transformed data across samples within cluster groups for base-case and base-case+occurrence scenarios. Species are ranked in order of importance to distinguishing assemblages (base-case data), with the 20 most important typifying species coloured based on Group membership (1 - blue and 2 - red); species important to typifying both groups are matched to the group where they are most abundant.
Table 25 The 40 most informative typifying and distinguishing paeleocoastline species.Highlighted are the 20 typefying species coloured based on the group (3 - cyan and 4 – grey)where they are more abundant
Table 26 The 35 most informative typifying and distinguishing deep species. Highlighted are the16 typefying species coloured based on the group (5 – green, 6 – pink) where they are moreabundant.246
Table 27 Predicted and observed changes in biomass of fishes in 11 areas within the study area sampled by the 2017 survey. Changes in fish biomass were calculated for three units of analysis: key genera (N=4) (following Sainsbury, 1997), the primary inner/ mid-shelf assemblages identified on this tropical shelf (N=2), and three groups of fish Types defined in relation to their
Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment xx

predicted changes in abundance (biomass) through time (N=27). Numbers in cells for fish types are species counts, with significance level shown in cell (**= $p<0.05$; *= $p<0.1$). Heat mapping indicates significant increases (green), significant decreases (pink) and non-significant changes (grey); significant heat mapping for fish Types reflects a response by the majority of species.
Linear regression plots and results are collated in Appendix F.2
Table 28. Basic parameters of the mass-balanced NWS model. Bold numbers were parameters calculated by EwE
Table 29. Diet matrix used in the mass-balanced NWS model. Continues several pages275
Table 30. Mean commercial and recreational catch (t/km²) from 2014 to 2016 estimated for theEwE NWS model domain based on data published by Western Australia DPIRD (FormerDepartment of Fisheries)280
Table 31. Values of Ecotrophic Efficiency (EE) higher than 1 estimated by EwE for the NWSmodel. Values of EE>1 are unrealistic and they were adjusted manually by reducing predationrates on the diet matrix of these groups
Table 32. Description of the baseline, fishing and ecological scenarios used to explore the dynamics of the NWS system.288
Table 33. Results from Ecosim Scenario # 1 Business as Usual. All fishing efforts were kelp at thesame level as 2017 and run it over 20 years
Table 34. Results from Ecosim Scenario 2 where all fisheries are closed, and the system isprojected over 20 years
Table 35. Results from Ecosim Scenario 3 where fishing effort is doubled over 20 years 302
Table 36. Results from Ecosim Scenario 4 where biomass of Keystone groups was reduced by90% over 20 years303
Table 37. Results from Scenario 5 where the biomass of habitat-forming species (sponges,corals, seagrass) were reduced 50% over 20 years
Table 38. The five model indicators (Metagroups, Keystone, Charismatic, Habitat forming and Invertebrates) species, used to classify the functional groups of the NWS model

Appendix tables

Apx Table 1 North West Shelf benthic image classification categories. For origin of this classification method see text sections above and Troje and Campbell (1989)
Apx Table 2 Sampling gear and instrument deployments undertaken on the RV <i>Investigator</i>
voyage INV2017_05
05

Apx Table 6. Total species pool of 254 fish species for regional assemblage analyses showing	
ranked biomass, total occurrences (occ.), total weight, rank and occurrence by number of	
surveys. The four key genera are indicated (*)	4

List of acronyms

- AFZ Australian Fishing Zone
- AHD Australian Height Datum
- ARA Angular Range Analysis
- Chl-a Chlorophyll-a
- CPUE Catch per unit of effort
- CSIRO Commonwealth Scientific and Industrial Research Organisation
- CTD Conductivity, temperature and depth
- DO Dissolved oxygen
- DOM Dissolved organic matter
- DPIRD Department of Primary Industries and Regional Development
- **EE Ecotrophic Efficiency**
- EwE Ecopath with Ecosim
- FA Fishing area
- IMG Image
- IMCRA Integrated Marine and Coastal Regionalisation of Australia
- INV2017_05 Surveys conducted in 2017 onboard the RV Investigator
- KSi Keystone species index
- MP Marine Park
- MTI Mixed Trophic Impacts
- NWS North West Shelf
- PAR Photosynthetically active radiation
- P/B Production / Biomass ratio
- PFTF Pilbara Fish Trawl Fishery
- PMCP Pilbara Marine Conservation Partnership
- Q/B Consumption / Biomass ratio
- RTI Relative total impact
- SBP Sub-bottom profiler
- SPM Suspended particulate matter
- TWT Two-way time
- VME Vulnerable marine ecosystem

Acknowledgments

This research was carried out aboard the RV *Investigator* (voyage INV2017_05) with funding and logistical support provided by Australia's Marine National Facility, the Fisheries Research and Development Corporation, Parks Australia and CSIRO. Particular thanks to the crew of the RV *Investigator*; Voyage Manager, Max McGuire; and the support staff of the Marine National Facility. Drs Beth Fulton and Cathy Bulman provided guidance on development of modeling scenarios. All samples were taken in accordance with CSIRO Wildlife and Large Animal - Animal Ethics Committee approval 2017_17, the Australian Fisheries Management Authority scientific permit 1003509, Australian Department of National Parks permits E2017-0134 and AU-COM2017-378 and the Western Australian Department of Biodiversity, Conservation and Attractions permit number 08-0011252-1.

Executive summary

Background

Australia's North West Shelf (NWS) was extensively fished, mainly by the Taiwanese pair trawlers (Liu et al. 1978) in international waters and for a few years after the NWS came under Australian management jurisdiction in 1979, and then by Australian fishers (Newman et al. 2018). Research was conducted by CSIRO and others between from 1982 to 1997 (Sainsbury 1987; 1988; 1991, Sainsbury et al. 1997) that included fish species composition, the distribution of seabed habitats and an adaptive fishery management regime. Analysis of the planned adaptive management experiment, conducted between 1986 and 1991, indicated improvements both in terms of recovery of seabed habitats and rebuilding fish stocks (Sainsbury et al. 1997). The extent to which trawled seabed habitats have recovered to their untrawled state since international fleets ceased trawling has remained a topic of interest, but the initial analysis could not determine the longer-term effects.

The aims of this project are (i) to determine the extent to which habitat-forming benthic invertebrate and demersal fish assemblages of the North West Shelf (NWS) have recovered from high levels of foreign trawling effort between the early 1970s and the mid-1980s, and (ii) to compare these with areas that have been closed to trawling since 1998 and areas that continued to be fished with lower levels of effort since 1990 within the area under management of the Pilbara Fish Trawl Fishery (PFTF).

The effects of trawling on the seabed are a major issue worldwide and the results of this project are both significant in an international context and relevant to the management of trawl fisheries around Australia. The results have significant potential for uptake into and impact on fisheries and marine ecosystem management.

A survey to re-sample the study area to assess recovery was undertaken in 2017 aboard the Marine National Facility RV *Investigator*. The study also draws on data collected on the NWS between 1982 and 1997 by CSIRO as part of the adaptive management regime, as well as other available data.

Objectives

By contrasting the diversity, abundance, and biomass of the demersal fish community and epibenthic, habitat forming invertebrates across gradients of historical and recent trawl-effort intensity, and by comparing these data with that collected in the 1980s and 1990s using the same methods, conclusions about the recovery of trawled communities and the sustainability of trawling may be inferred.

Consistent with the earlier development of the adaptive management regime, it is hypothesised that areas where trawling effort has ceased or has been dramatically reduced since the comparative surveys in the 1980s and 1990s will be characterised by (1) re-establishment of benthic habitats with greater coverage, biomass and complexity of larger habitat-forming filter-feeder communities, and (2) higher biomass of key habitat-associated demersal fish species (e.g. families Lethrinidae and Lutjanidae).

Structure of this report

Chapter 1 sets out the background to the study, provides context to the earlier research on the NWS and summarises how the work was designed and carried out on the 2017 voyage. A detailed description of all the methods employed in the study, including field operations and laboratory analyses, is provided in Appendix A.

Chapter 2 provides a physical and biological characterisation of benthic habitats using acoustic and image analysis methods. Habitat information was collected by mapping depths, sub-bottom profiling to determine seabed structure and multibeam acoustic swathing (bathymetry and backscatter [seabed hardness/softness]). Each of the sites surveyed have about 7 km of seabed swathed. Although depths are shallow, multiple passes at most sites mean the swath width is about 500–1000 m. The seabed imagery covers transects of about 3 km at each site. The analyses describe and compare the substrate type, topography and the benthic biota at sites grouped spatially into the Pilbara Fish Trawl Fishery areas, Marine Parks, and other relevant practical spatial classifications.

Chapter 3 describes the diversity and assemblage structure of habitat forming filter feeder communities (sponges and soft corals) and fish assemblages. A list of species caught is provided for sponges, softcorals and fishes with a discussion of notable taxa, especially those of important conservation significance.

Chapter 4 sets out the analysis of historical fishing effort and environmental and biological datasets that were available pre-voyage and how these were used to design the sampling strategy for the project.

Chapter 5 analyses the extent of recovery of the trawled sessile benthos communities 25 years after the period of Taiwanese pair-trawling ceased on the NWS. The basis of the assessment was the 2017 sampling survey that sampled areas previously subjected to high levels of pair-trawling but were then closed and remained untrawled. Data from the earlier surveys in the 1980s and 1990s were also re-assessed using similar approaches. In addition, the assessments also accounted for environmental gradients that may influence benthos distributions and abundance and potentially confound comparisons of trawl impact effects if not considered.

Chapter 6 present a spatial and temporal analysis of the demersal fish community from survey sampling during the 1980s through to the 2017 NWS voyage and examines trends in abundance over that period in each of the spatial constructs of interest to the area.

Lastly, chapter 7 presents an ecosystem model (Ecopath with Ecosim energy balance model) for the NWS, using data acquired during this study. These models have been widely applied to inform ecosystem-based management; climate change impacts, fishing impacts, spatial closures and impacts of artificial reefs since their development in the late 1980s. The model used a range of fishing scenarios to evaluate impacts of trawling.

Sampling design and methods

Survey sampling occurred aboard the RV *Investigator* between 12 October and 6 November 2017 between 30 and 125 km offshore between Port Hedland and the Montebello Islands on the Pilbara section of the NWS, WA, in water depths of 25 m to 100 m. Much of the area surveyed was within the PFTF which is divided into 6 management zones (called "Areas"). Some of these are referred to below.

The study also draws on data collected on the NWS using similar methods between 1982 and 1997 by CSIRO as part of an adaptive management experiment (Sainsbury 1987; 1991; Sainsbury et al. 1997). A random-stratified sampling design was implemented in 1982 and maintained consistently through to the 1997 survey. The design was based on 19 strata representing: three spatial areas, each with different management arrangements (see Figure 1); depth (shallow, middle, deep); and substratum type (shelly sand, sand, silty sand, undefined). These surveys conducted trawl sampling, using a McKenna trawl on two RV Southern Surveyor voyages (SS199508: 108 stations; SS199707: 106 stations), and Frank & Bryce trawls on 11 FRV Soela voyages (SO198205 to SO198805: 1096 stations) and two RV Southern Surveyor voyages (SS199002: 133 stations; SS199104: 101 stations). Identification and quantification of these trawl samples focussed primarily on fishes, with some identification of invertebrates at species or higher taxonomic levels. Sponges were quantified at the phylum level only on the two McKenna trawl voyages. On most voyages (10 of 15), a 35 mm still film camera was fitted to the headline of many trawls and provided images of sessile benthos on the seabed ahead of the trawl net. Photos were available for 583 stations (of a total of 1544 trawls) and typically about 80 photos were available for each, although this ranged widely. The imagery of the 10 voyages were analysed to assess abundance of seabed benthos and were used in analyses presented by Sainsbury (1991) and Sainsbury et al. (1997).

The principal limitation for the current study was that the field work needed to be conducted on just one voyage with about 25 days of operations available. It was envisaged that we would be able to sample about 100 sites in this time. The stratification needed by the 2017 survey required that the biological space (which is continuous) be sampled representatively to ensure that the influence of environmental gradients on demersal habitats and fish assemblages could be accounted for in analyses of trawl impacts and recovery.

The study area was constrained in comparison to the 1980s/90s surveys (Figure 1) and was first stratified by the trawl-effort contrasts reflecting combinations of contrasting historical (1979–1985) and recent (2005-2016) trawl effort (Figure 3). The trawling effort level contrasts for both historical and recent trawl effort included zero/low, low/medium, medium/high and high (see Figure 4). There were 16 possible combinations, although only 13 of the possible combinations existed (i.e. there were no cases of low/zero historical effort and medium, high or very high recent effort, Figure 4). Areas in the higher trawl effort categories were also relatively rare, particularly for the recent effort and especially the high-historical and high-recent combination, but all contrasts were allocated at least a minimum number of stations. Each combination was further stratified by important environmental gradients and clustered into a number of groups corresponding to the required number of stations for each contrast. Stations were then selected from each cluster group, prioritising locations previously sampled by earlier surveys that had recorded catches of benthos, otherwise the most central cell for each cluster was selected. In some cases, buffer zones around submarine cables, gas pipelines and other oil and gas infrastructure had an impact on where actual sampling could be undertaken. In total 100 stations were selected. To enable as close a comparison as possible with the earlier work, a McKenna trawl net was employed using the same time/distance for each shot and a trawl headline camera was used to capture images of the seabed to assess abundance of seabed benthos ahead of the net as had been done previously. Habitat and environmental data were also collected at each site using acoustic swath mapping and sub-bottom profiling. CTD profiles and Niskin water sampling were undertaken at some sites. A full description of the design methodology is provided in Chapter 4 and the methods are given in detail in Appendix A.

Summary of Results

Benthic habitat characterisation

One hundred sites across the NWS were surveyed in 2017. Each site was grouped among the four relevant PFTF Areas (1, 2, 3 or 4) or were allocated to a grouping inshore of the fishery (including sites in the Dampier Marine Park) or west of the fishery (including sites in the Montebello Marine Park. Characteristics of each of these 6 areas were compared with similar data from sites sampled in the same areas between 1982 and 1997. Data on seabed habitat characteristics from each site were assessed from images taken by the trawl headline camera and included substrate type and topography and the proportion of different biota types. For 2017, seabed type was available from the sub-bottom profiler and sediment grain size and some water column parameters were also measured.

Sites inshore of the commercial trawl fishery ranged in depth from 30 to 57 m with predominantly flat bottom of fine sand or fine sand overlaying hard substrate. The sub-bottom profiler revealed a high proportion of sites (13/23) exhibiting >50% hard bottom and 16/23 exhibiting 100% hard and/or thin sediment over hard bottom. Consequently, it was this inner-shelf area that the highest levels of filter-feeder habitat with 15/23 (65%) sites having sponges comprising >10% of the benthic biota visible in seabed imagery. This was similar to that for historical data (103/179 sites, 57%).

Sites west of the commercial trawl fishery ranged in depth from 55 to 84 m with predominantly flat bottom of fine sand. The sub-bottom profiler showed the seabed was predominantly thick or thin sand with only 2/13 sites having >10% hard bottom. These two sites (W14 and W49) were also the ones with the highest density of filter feeding habitat, predominantly soft corals. No sites had seabed biota comprising >10% sponges. In contrast, 12/20 of the historical sites, while having similar sediment features, had > 10% sponge cover and 6/20 had >20% sponges. These differences between the recent and historical data may explain the change in fish biomass over time (see below) but the reason for the change in biota is not clear.

Sites in PFTF Area 1 ranged in depth from 56 to 82 m (only 2 sites >80 m) and were of two types; 11/28 sites were >60% thick or thin sediment over bedrock and 15/28 were hard bottom. The seabed was largely flat with a fine sand on the surface; 9/15 (60%) of the hard substrate sites had >20% of seabed biota such as sponges. For the historical samples this was lower (20/48 sites or 42%).

Sites in PFTF Area 2 were very similar to those in PFTF Area 1. They ranged in depth from 57 m to 91 m (only one site >82 m) and were of two types; 8/21 sites were >60% thick or thin sediment over bedrock and 13/21 were hard bottom and or rocky outcrops. The seabed was largely flat with a fine sand on the surface; 11/21 (52 %) of the hard substrate sites had >10% of seabed biota being sponges (4/21 or 19% had >20% sponges). For the historical samples this was higher with 41/62 sites or 66% having >10% of seabed biota being sponges and 22/62 sites or 35% have >20% sponges.

Sites in PFTF Area 3 ranged in depth from 60 to 76 m and were of two types; 5/8 sites were 100% thick or thin sediment over bedrock and 2/8 were 100% hard bottom. The seabed was largely flat with a fine sand on the surface. Only 1 site (12 %) had >5% of seabed biota being sponges. For the historical samples this was much higher, 12/22 sites or 54% had > 10% biota being sponges. The other difference between the 2017 and historical sites was that 7/22 of the historical sites had >40% coarse sand compared to all of the 2017 having >95% fine sand.

Sites in PFTF Area 4 were mostly deep, ranging in depth from 73 to 91 m. These were also of two types, 3/7 sites had >70% hard bottom while 2/7 had >70% thin sediment. All sites had fine surface sand and were flat in terms of topography. None of the 2017 sites had >5% sponge biota which was in contrast to the historical sites which had 11/22 (50%) of sites with >10% benthic biota being sponges.

In summary the 2017 spatial groupings fell into 3 categories, the shallow largely hardbottom and dense filter feeder habitats inshore of the commercial trawl fishery, a mix of hard and soft bottom types with dense filter feeder habitats in some areas (PFTF 1 and 2) and mostly soft bottom habitats with sparse filter feeder habitat (PFTF3, PFTF 4 and the area west of the commercial trawl fishery).

Fish, sponge and softcoral diversity

Approximately 373 fish taxa from 89 families were identified from the 2017 NWS voyage. The following families had the highest number of identified taxa: Carangidae (19 species), Apogonidae (17), Serranidae and Labridae (16 species), Lutjanidae, Monacanthidae, Nemipteridae and Scorpaenidae (12), Dasyatidae, Synodontidae and Platycephalidae (11) and Lethrinidae (10). Other diverse families included Gobiidae, Bothidae and Tetraodontidae (9), Chaetodontidae and Paralichthyidae (8), Mullidae, Muraenidae and Ostraciidae (7 each), and Syngnathidae (6 each). All other families had five or less species and 41 families were represented by a single species.

One hundred and thirty-three "soft coral" species (133) within the subclass Octocorallia, Order Alcyonacea were identified. All five suborders within the Alcyonacea were present, representing 14 families and 44 genera. The five suborders comprised 2 Stolonifera octocoral species, 32 Alcyoniina, 12 Scleraxonia, 73 Holaxonia, and 14 Calcaxonia. The following families had the highest number of identified taxa: Plexauridae (58), Nephtheidae (13), Acanthogorgiidae (13), Ellisellidae (12) and Nidaliidae (10). All other families were represented by only a few species (1–9).

For this study, a full sponge species catch composition could only be achieved for the 11 stations that fell within the Dampier and Montebello MPs. This was made possible by additional project funds being provided by Parks Australia for post voyage taxonomy of some invertebrate groups. A total of 153 species from 12 orders, 38 families and 87 genera were found. Only 73 of those could be assigned to previously described species. The 153 species belong to a diverse number of families. The families with the greatest number of species were Raspailiidae, followed by the Callyspongiidae and Axinellidae. The most common species in these families were *Echinodictyum mesenterinum*, *Arenosclera WAM sp. 1 cf.* and *Axinella aruensis* (variety II) respectively. Most species found (78%) were singletons suggesting the area has high levels of endemism.

New species and/or new records for Australia or Western Australia were found among the fish, sponge and soft coral samples collected indicating that the fauna of the NWS is still poorly known despite relatively intensive previous sampling.

Patterns of distribution and recovery of benthos from trawling

A key aim of this study was to assess the extent of recovery of the trawled seabed communities 25 years after the cessation of foreign pair-trawling and closure of large areas to all trawling.

To achieve this, multiple lines of evidence were considered, including: (1) simple temporal comparisons of the sampled biomass of sponges; (2) temporal comparisons of depletion trends in observed benthos on the gradient of pair-trawling intensity; and (3) simulation modelling of trawl

impacts for the entire history of trawling in the region, to date. In summary: (1) The temporal comparisons of trawl-sampled sponge biomass suggested that sponge densities in 2017 were similar to those sampled in neighbouring locations in 1963, whereas those sampled in 1995-97 were less than both 1963 and 2017. (2) The analyses of trawl-gradient trends showed primarily negative trends indicative of benthos depletion during and shortly after the period of pair-trawling; however, analyses of the 2017 survey data showed zero (or even positive) trends indicative of recovery. (3) The trawl simulation modelling of the annual distribution and intensity of all trawling in the region from 1959 to 2016 suggested that following the peak of foreign pair-trawling regional benthos populations may have been depleted by 5%–35%, depending on the benthos type and uncertainty scenario, but subsequently recovered gradually after pair-trawling ceased and with progressive reductions in domestic trawl effort. Multiple lines of evidence indicated that the regional benthos populations had largely recovered to within a few percent of the estimated pre-trawl levels by 2017. Further, and more optimistic scenarios are plausible, indicating strong recovery of benthic communities. Recent trawling activities has some negative trends for some benthic morpho-types but this are highly localised and may have limited regional-scale population impacts of less than ~1%–2% of benthic cover.

Spatial and temporal trends in fish assemblages

An analysis of continental shelf fish assemblages of the NWS used a data set from eight historical research surveys (1986–1997) with standard sampling characteristics. Fish assemblages were strongly structured by depth, and there was no evidence of longitudinal pattern in the surveyed area. Two inner/mid-shelf assemblages in ~25–100 m depths were prominent, and strongly differentiated by species-habitat associations—either to structured benthic habitat (genera *Lethrinus* and *Lutjanus*) or unstructured habitat (genera *Nemipterus* and *Saurida*, and *Abalistes stellatus*). These assemblages had no broad spatial sub-structure, but were highly mixed at the scale of individual trawl samples, indicating association with a mosaic of habitats existing at fine spatial scales. Two other assemblages were associated with a prominent steep rocky paleocoastline at ~100 m depth, and a single stable deep-shelf assemblage occurred beyond the paleocoastline in ~100-150 m. In greater depths (> ~150 m), two less-stable assemblages were classified within relatively few samples from the steep and narrow continental shelf edge.

A time-series (by year) analysis of biomass change in inner/mid-shelf fish assemblages was made for the smaller area of the NWS surveyed in 2017 survey. This analysis used data from two additional years (1982 and 1983) when foreign trawl activity was recent, intense and widespread in the region. The study area was segmented into five fishery management areas of the PFTF and six areas characterised by a variety of contrasts between historical and recent trawl effort (Chapter 4). Widespread significant increases in fish biomass were consistent with an overall reduction in fishing mortality, but the prominence of species with associations to structured benthic habitat provided support for the hypothesis that biomass increases were a positive response to benthos recovery. This was corroborated by a general increase in the abundance of large benthos consistent with a decreased impact from bottom trawling as the intensity and spatial extent of trawl effort declined over the period of analysis (1983 to 2017) (and see Chapter 5). This result reinforces the findings of Sainsbury et al. (1997) which showed and increase in the benthos even after a relative short posttrawling period of the adaptive management experiment.

Several within-area changes in fish biomass did not, however, correspond to expectations of trend based on trawling history — these included a significant biomass increase in the core fishery PFTF

Area 1 where trawling effort remains relatively high, and, conversely, no significant increase in the PFTF Area 3 trawl closure. Areas where changes in fish biomass were inconsistent with expectations also corresponded to areas where there were unforeseen changes in abundance of large benthos — with co-located large increases in fish and benthos apparently reflecting areas with a higher pre-fishery carrying capacity and greater than expected recovery potential. A notable example was the aggregated sub-areas of PFTF Area 1 where high trawling effort had been consistently located throughout the duration of the fishery (trawl contrast area TC 3C in chapter 6). These aggregated areas appear to be the locations of the region's best trawling grounds, and therefore our data suggest they are characterised by habitats with elements of hard seabed structure, and that their relatively high potential for benthos recovery supported a greater than predicted increase in the biomass of fishes associated with structured habitats.

In contrast, the low biomass of habitat-associated fishes and lack of significant increase of fish biomass in the PFTF Area 3 closure correlate with a low carrying capacity (low benthos abundance and low potential for recovery), perhaps indicating the trawl closure was located where there was relatively little value for the fishery. Our findings differ somewhat from those of Langlois et al. (2021) whose 2010 study using baited remote underwater video found evidence of higher biomass and/or abundance of some target fish species including Lutjanus sebae and Epinephelus multinotatus in PFTF Area 3 as compared to other PFTF areas. The reasons for these differences warrant further examination of fish habitat dynamics in PFTF Area 3 but are most likely to reflect differences in time frames, methodology, scale of observations and how habitat varied at the sites were selected for sampling in the two studies. Langlois et al. (2021) compare biomass/abundance between areas at one point in time (2010). Our study examines trends within areas over a much longer period (1983 to 2017). The significant decline in biomass in all fish groups (with the exception of Saurida) in the Barrow area — the only area showing decline — is unexplained. It may be linked to limited recovery of benthos, (although there is limited evidence that this was ever an area of very high benthic filter feeder abundance) despite having a 'high to low' trawl contrast and being largely within the Montebello Marine Park which has been closed since 1993. There appears to be a local and unmeasured driver of change that has not affected adjacent areas to the east.

Ecological modelling

The structure and functioning of one of the most biodiverse ecosystems in Australia, the North West Shelf (NWS) in Western Australia was elucidated in this study using an ecosystem model developed with Ecopath with Ecosim software (www.Ecopath.org). The model was assembled using biological information for 73 functional groups sampled at 100 sites across gradients of historical and recent fishing effort, using a demersal fish trawl and epibenthic sleds during 2017 in the model region. Biomass of 59 of the 73 functional groups in the model were estimated directly from data collected during this biological survey. Model outputs from the network analysis suggest that the NWS is a system with medium to high maturity, stability and disturbance resistance. Keystone groups were identified (e.g. lizardfish, squids, sharks), which have an important role in the structuring of this food web from top down forces associated with predation. The effect of fishing was explored using a set of scenarios. For example, results from scenario "Business as Usual" showed a mean increment of 19% in the biomass of commercial exploited groups after 20 years of fishing at 2016/17 fishing rates. The simulation of closing all fisheries over 20 years resulted in an increase of 64% in the relative biomass of target species. The mean trophic level of the catch (MTLc) of the fisheries that access areas which form the NWS region was 3.61, markedly higher than the average estimate of the

trophic level catch for global coast and reef systems worldwide of 2.54 (Pauly et al., 1998). Analysis of commercial catches in the NWS reveals two contrasting periods of the MTLc. First, a fishing down effect is observed from 1973 to 1991, where the MTLc declined from 3.6 to 2.7 (indicating potential problems with overfishing), followed by a recovery from 1992 to 2018 with high trophic level fishes dominating the landings and increasing the MTLc in 2018 to 3.61 (estimated by the model) and to 3.58 (estimated from the catch data). The recovery in the MTLc most probably is explained by the introduction of continuous management actions since 1992, such as areas closures, gear restrictions, removing foreign fleets, and the use of input controls. The upward trend of the MTLc since the middle 1990s is an indication of the presence of effective governance to achieve sustainability and reflect the success of management regulations established since 1992. The model developed in this study integrates the data available in the region and it provides a summary of our current knowledge of the biomass, consumption, production, and trophic flows across the NWS.

Implications for stakeholders

Comparisons of this study with the results of the earlier adaptive management experiment (Sainsbury 1991) and the current long-term study are consistent. The intentions of the adaptive management experiment (Sainsbury 1991) were to examine the recovery of the seabed habitats and rebuild fish stocks. The short-term review of the experiment confirmed both these improvements (Sainsbury et al. 1997) but could not determine the longer-term effects. The 2017 survey and the results of this study have confirmed and refined the extent of the seabed recovery and stock rebuilding.

The results suggest that the region has largely recovered from the effects of heavy/intense historical foreign trawling and that existing levels of trawl effort are not impacting habitat-forming filterfeeder benthic habitats or fish stocks to a level which threatens the health of either. That is, the overall aims of the adaptive management experiment in the 1980s and 1990s, plus the following fishery management arrangements through the PFTF, were achieved. In general, the premise that filter-feeder habitat supports—or is at least associated with—a higher biomass and diversity of demersal fish species was supported. In most cases examined, there was evidence that fish biomass of target groups such as lethrinids and lutjanids had increased in association with recovery of filter feeder biomass and, in cases where comparisons were made, between historically high levels of trawl effort to lower levels. In some cases, results did not follow our expectations. Firstly, the area west of PFTF Area 1, much of which now comprises the Montebello Marine Park showed a reduction in fish biomass and an apparent decline in seabed habitat complexity. The reasons for this are unclear but warrant further investigation. Secondly, fish biomass did not increase to the extent anticipated in Area 3 which had been closed to trawling since 1998. Langlois et al. (2021) used baited remote underwater video in their 2010 study and found evidence of higher biomass and/or abundance of some target fish species in Area 3 relative to other PFTF areas. Our findings are interpreted as an indication that this area did not have historically high levels of benthic filter feeder habitat relative to other areas and despite the closure, and thus, its capacity to recover from trawling was not as great as other areas. Langlois et al. (2021) found only subtle differences in benthic filter feeder benthos and given the differences in methodology (our 2 km x 20 m trawl swath camera survey and trawl fish catch versus their fixed site, baited remote camera survey seven years earlier), the conclusions/interpretations about seabed benthos between the two studies can be regarded as being largely consistent.

Recommendations

The results of the study suggests that habitat recovery has occurred on the NWS since cessation of the high level of pair trawling effort in the 1970s and 1980s, and that there is little evidence that fishing effort since ~2005 has prevented continued recovery of filter feeder habitats. It is recommended that further exploration be undertaken of the reasons for the apparent decline in both seabed habitat complexity and fish biomass in the area west of the commercial trawl fishery.

Keywords

North West Shelf, NWS, Effects of Fishing, Vulnerable Marine Ecosystems, VMEs, ecological interactions, trawling, conservation, Marine Parks, biodiversity, fishes, sponges, soft corals filter-feeders

1 Introduction

John Keesing (CSIRO Oceans and Atmosphere Research)

Australia's North West Shelf (NWS) was extensively fished, mainly by the Taiwanese pair trawlers (Liu et al. 1978) in international waters and for a few years after the NWS came under Australian management jurisdiction in 1979, and then by Australian fishers (Newman et al. 2018). Research was conducted by CSIRO and others between from 1982 to 1997 as part of an adaptive management experiment conducted between 1986 and 1991 (Sainsbury 1991, Sainsbury et al. 1997). The adaptive management experiment was to test several hypotheses about the role of the seabed seabed habitats in determining fish community composition and the rates of their recovery from fishing. The adaptive management regime introduced sequential spatial management in the fishery. The Pilbara Fish Trawl Fishery (PFTF) was developed for the Australian fishing industry in 1990. The PFTF introduced spatial management arrangements in the late 1990s that were very similar to the adaptive management design, though there were some differences, and the domestic fishing effort was minor compared to the previous Taiwanese fishing. The adaptive management experiment was analysed in 1997, after the intended period of the experiment (Sainsbury et al. 1997). This found some increase in both habitat forming organisms and the associated fish community, confirming one of the tested hypotheses, but the extent of full recovery could not be determined from the short time series available then. As a result, the current project was conducted some 25 years after the original adaptive management experiment.

The aim of this project is to determine the extent to which habitat forming benthic invertebrate and demersal fish assemblages of the North West Shelf (NWS) have recovered from high levels of foreign trawling effort between the 1960s and the late 1980s and to compare these with areas which have been continuously fished with lower levels of effort or completely protected from trawling within the area under management of the Pilbara Fish Trawl Fishery (PFTF) since 1990.

Firm conclusions about the rates of recovery of trawled communities and the sustainability of trawling may be made by contrasting the diversity, abundance, biomass and size/age composition of the demersal fish community and epibenthic, habitat forming invertebrates across these gradients of historical and recent fishing effort, and by comparing these data with that collected in the 1980s using the same methods. It is hypothesised that areas where trawling effort has ceased or has been dramatically reduced will be characterised by re-establishment of benthic habitats with greater coverage, biomass and complexity of larger habitat-forming filter-feeder communities, and of higher production of key demersal fish species (families: Lethrinidae, Lutjanidae) since comparative surveys in the 1980s.

The results obtained and samples collected on the trip will enable an evaluation of the recovery of benthic habitats and demersal fish assemblages 30+ years after very significant reductions in trawl effort and enable a comparison with areas which have been trawled continuously over that period. The ability to do this with access to comparative data collected in the 1980s is unprecedented as a result of this voyage. This will result in significant improvements in what is understood about the ability of trawl-impacted systems to recover in the long term and whether management responses have been effective in both protecting and enabling recovery of impacted ecosystems.

The effects of trawling on the seabed are a major issue worldwide and these results will be both significant in an international context and relevant to the management of trawl fisheries in Australia and overseas. The results are likely to have significant potential for uptake into and impact on fisheries and marine ecosystem management.

1.1 Survey design and research methods

Research surveys and sampling were undertaken in October and November 2017 aboard the RV Investigator. The study also draws on data collected on the North West Shelf between 1982 and 1997 by CSIRO as part of an adaptive management experiment (Sainsbury 1987; 1991; Sainsbury et al. 1997). A random-stratified sampling design was implemented in 1982 and maintained consistently through to the 1997 survey. The design was based on 19 strata representing: three spatial areas (Legendre, Hedland, Barrow, each with different management arrangements, see Figure 1); depth (shallow, middle, deep); and substratum type (shelly sand, sand, silty sand, undefined). These surveys conducted trawl sampling, using a McKenna trawl on two RV Southern Surveyor voyages (SS199508: 108 stations; SS199707: 106 stations), and Frank & Bryce trawls on 11 FRV Soela voyages (SO198205 to SO198805: 1096 stations) and two RV Southern Surveyor voyages (SS199002: 133 stations; SS199104: 101 stations). Identification and guantification of these trawl samples focussed primarily on fishes, with some identification of discrete invertebrates at high taxonomic levels. Sponges were quantified at the phylum level only on the two McKenna trawl voyages. On most voyages (10 of 15), a 35 mm still film camera was fitted to the headline of many trawls and provided images of sessile benthos on the seabed ahead of the trawl net. Photos were available for 583 stations (of a total of 1544 trawls) and typically about 80 photos were available for each, although this ranged widely. The imagery of the 10 voyages was annotated in a series of annotation efforts over the years using protocols outlined in an internal report by Troje & Campbell (1989), and early annotation data were used in analyses presented by Sainsbury (1991) and Sainsbury et al (1997).

The principal limitation for the current study was that the field work needed to be conducted on just one voyage with about 25 days of operations available. It was envisaged that we would be able to sample about 100 sites in this time. The stratification needed by the 2017 survey required that the biological space (which is continuous) be sampled representatively to ensure that the influence of environmental gradients on demersal habitats and fish assemblages could be accounted for in analyses of trawl impacts and recovery.

The study area was constrained in comparison to the 1980s/90s surveys (Figure 1) and was first stratified by the trawl-effort contrasts reflecting combinations of contrasting historical [1979–1985] and recent [2005-2016] trawl effort (Figure 3). The trawling effort level contrasts for both historical and recent trawl effort included zero/low, low/medium, medium/high and high (see Figure 4). There were 16 possible combinations, although only 13 of the possible combinations existed (i.e. there were no cases of low/zero historical effort and medium, high or very high recent effort, Figure 4). Areas in the higher trawl effort categories were also relatively rare, particularly for the recent effort and especially the high-historical and high-recent combination, but all contrasts were allocated at least a minimum number of stations. Each combination was further stratified by important environmental gradients and clustered into a number of groups corresponding to the required number of stations for each contrast. Stations were then selected from each cluster group,

prioritising locations previously sampled by earlier surveys that had recorded catches of benthos, otherwise the most central cell for each cluster was selected. In some cases, buffer zones around submarine cables, gas pipelines and other oil and gas infrastructure had an impact on where actual sampling could be undertaken. In total 100 stations were selected. To enable as close a comparison as possible with the earlier work, a McKenna trawl net was employed using the same time/distance for each shot and a trawl headline camera was used to capture images of the seabed as had been done previously. A full description of the design methodology is provided in Chapter 4 and the methods are given in detail in Appendix A.

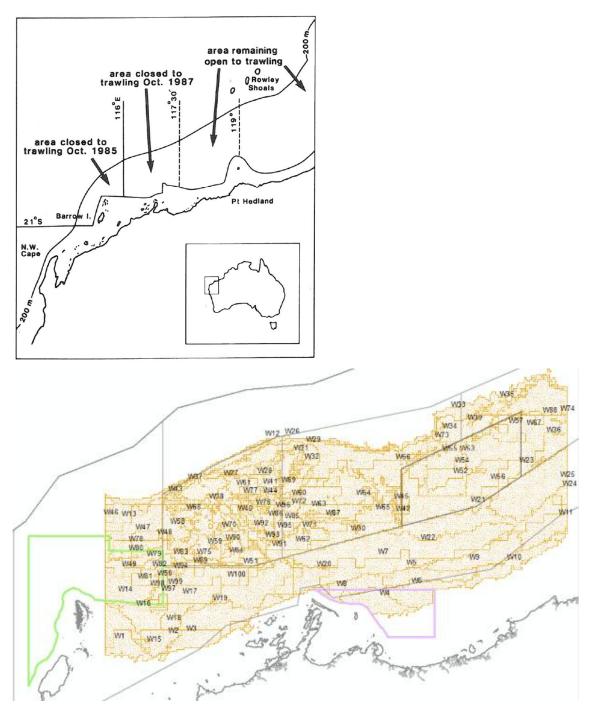


Figure 1. Upper panel shows the spatial strata used in the 1982 to 1997 voyages (from Sainsbury 1991). The three areas indicated by the bolded arrows reflect the zoning areas for the experimental adaptive management experiment conducted between 1986 and 1991 (see Sainsbury et al. 1997). In this current study we have referred to these three areas from west to east as the Barrow, Legendre and Hedland subregions. Lower panel shows 100 sites sampled in the 2017 study. Each site sits within the environmental stratification described in detail in Chapter 4. The location of the zoning boundaries within the PFTF and Montebello and Dampier MPs are also shown. Greater spatial detail of the strata is shown in Chapter 4 and of the location of sample sites in Chapter 2.

Figure 2. Historical trawl fishing effort in the NWS study region from 1979 to 1985. Area trawled = 191% per annum (hist_eff: 1.91).

Fishing effort 2005-2016

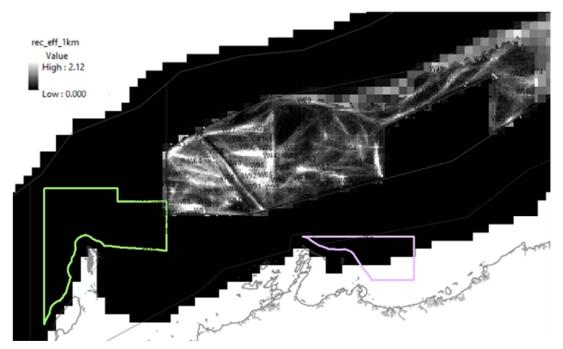


Figure 3. Recent trawl fishing effort in the NWS study region from 2005 to 2016. Area trawled = 212% per annum (rec_eff: 2.12).

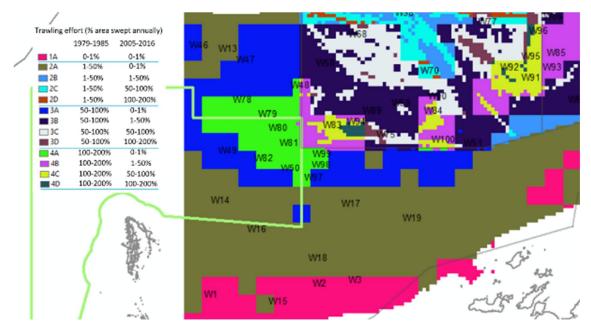


Figure 4. Example of groupings of categories of historical and recent fishing effort in the western part of the NWS study region. Categories 1 – 4 reflect zero/low, low/medium, medium/high and high levels of historical (1979–1985) trawl effort respectively and categories A – D reflect zero/low, low/medium, medium/high and high levels of recent (2005–2016) trawl effort respectively. Effort levels reflect the percentage of the seabed swept by trawl shots annually. See Chapter 4 for more detail.

Table 1. Spatial stratification of the 100 sites surveyed. See Chapter 4 and Appendix A for explanation of the source of fishing effort data and how the strata of historical and recent effort were established. See Figure 5 for location of sites. Colours representing the different combinations of historical and recent effort correspond to those shown in Figure 4.

		Historical effort (%) swept area per	Recent effort (%) swept area per		Current Fishing or Conservation	Historical effort (%) swept area per	Recent effort (%) swept area per
Site	Current Fishing or Conservation Zone	year	year	Site	Zone	year	year
W1	inshore of commercial trawl fishery	0-1 %	0-1%	W51	inshore of commercial trawl fishery	50-100%	0-1%
W2	inshore of commercial trawl fishery	0-1 %	0-1%	W52	PFTF Closed Area 3	50-100%	0-1%
W3	inshore of commercial trawl fishery	0-1 %	0-1%	W53	PFTF Closed Area 3	50-100%	0-1%
W4	Dampier MP	0-1 %	0-1%	W54	PFTF Closed Area 3	50-100%	0-1%
W5	inshore of commercial trawl fishery	0-1 %	0-1%	W55	PFTF Closed Area 3	50-100%	0-1%
W6	Dampier MP	0-1 %	0-1%	W56	PFTF Closed Area 3	50-100%	0-1%
W7	inshore of commercial trawl fishery	0-1 %	0-1%	W57	PFTF Closed Area 3	50-100%	0-1%
W8	Dampier MP	0-1 %	0-1%	W58	PFTF Area 1	50-100%	1-50%
W9	inshore of commercial trawl fishery	0-1 %	0-1%	W59	PFTF Area 1	50-100%	1-50%
W10	inshore of commercial trawl fishery	0-1 %	0-1%	W60	PFTF Area 2	50-100%	1-50%
W11	inshore of commercial trawl fishery	0-1 %	0-1%	W61	PFTF Area 1	50-100%	1-50%
W12	PFTF Area 6	1-50%	0-1%	W62	PFTF Area 2	50-100%	1-50%
W13	west of commercial trawl fishery	1-50%	0-1%	W63	PFTF Area 2	50-100%	1-50%
W14	Montebello MP	1-50%	0-1%	W64	PFTF Area 2	50-100%	1-50%
W15	inshore of commercial trawl fishery	1-50%	0-1%	W65	PFTF Area 2	50-100%	1-50%
W16	inshore of commercial trawl fishery	1-50%	0-1%	W66	PFTF Area 2	50-100%	1-50%
W17	inshore of commercial trawl fishery	1-50%	0-1%	W67	PFTF Area 4	50-100%	1-50%
W18	inshore of commercial trawl fishery	1-50%	0-1%	W68	PFTF Area 1	50-100%	50-100%
W19	inshore of commercial trawl fishery	1-50%	0-1%	W69	PFTF Area 1	50-100%	50-100%
W20	inshore of commercial trawl fishery	1-50%	0-1%	W70	PFTF Area 1	50-100%	50-100%
W21	PFTF Closed Area 3	1-50%	0-1%	W71	PFTF Area 2	50-100%	50-100%
W22	inshore of commercial trawl fishery	1-50%	0-1%	W72	PFTF Area 2	50-100%	50-100%
W23	PFTF Closed Area 3	1-50%	0-1%	W73	PFTF Area 2	50-100%	50-100%
W24	inshore of commercial trawl fishery	1-50%	0-1%	W74	PFTF Area 4	50-100%	50-100%
W25	inshore of commercial trawl fishery	1-50%	0-1%	W75	PFTF Area 1	50-100%	100-213%
W26	PFTF Area 2	1-50%	1-50%	W76	PFTF Area 1	50-100%	100-213%
W27	PFTF Area 1	1-50%	1-50%	W77	PFTF Area 1	50-100%	100-213%
W28	PFTF Area 1	1-50%	1-50%	W78	west of commercial trawl fishery	100-192%	0-1%
W29	PFTF Area 2	1-50%	1-50%	W79	Montebello MP	100-192%	0-1%
W30	PFTF Area 2	1-50%	1-50%	W80	Montebello MP	100-192%	0-1%
W31	PFTF Area 2	1-50%	1-50%	W81	Montebello MP	100-192%	0-1%
W32	PFTF Area 2	1-50%	1-50%	W82	Montebello MP	100-192%	0-1%
W33	PFTF Area 2	1-50%	1-50%	W83	PFTF Area 1	100-192%	1-50%
W34	PFTF Area 2	1-50%	1-50%	W84	PFTF Area 1	100-192%	1-50%
W35	PFTF Area 4	1-50%	1-50%	W85	PFTF Area 2	100-192%	1-50%
W36	PFTF Area 4	1-50%	1-50%	W86	PFTF Area 2	100-192%	1-50%
W37	PFTF Area 1	1-50%	50-100%	W87	PFTF Area 2	100-192%	1-50%
W38	PFTF Area 1	1-50%	50-100%	W88	PFTF Area 4	100-192%	1-50%
W39	PFTF Area 4	1-50%	50-100%	W89	PFTF Area 1	100-192%	50-100%
W40	PFTF Area 1	1-50%	50-100%	W90	PFTF Area 1	100-192%	50-100%
W41	PFTF Area 1	1-50%	50-100%	W91	PFTF Area 1	100-192%	50-100%
W42	PFTF Area 2	1-50%	50-100%	W92	PFTF Area 1	100-192%	50-100%
W43	PFTF Area 1	1-50%	100-213%	W93	PFTF Area 1	<u>100-192%</u>	50-100%
W44	PFTF Area 1	1-50%	100-213%	W94	PFTF Area 1	100-192%	100-213%
W45	PFTF Area 2	1-50%	100-213%	W95	PFTF Area 1	100-192%	100-213%
W46	west of commercial trawl fishery	50-100%	0-1%	W96	PFTF Area 1	100-192%	100-213%
W47	west of commercial trawl fishery	50-100%	0-1%	W97	Montebello MP	100-192%	0-1%
W48	west of commercial trawl fishery	50-100%	0-1%	W98	inshore of commercial trawl fishery	100-192%	0-1%
W49	Montebello MP	50-100%	0-1%	W99	inshore of commercial trawl fishery	100-192%	0-1%
W50	Montebello MP	50-100%	0-1%	W100	inshore of commercial trawl fishery	100-192%	0-1%

1.2 Voyage summary and operations undertaken

The voyage took place between 11 October 2017, following the departure of the RV *Investigator* from Broome, and 10 November 2017 when the ship berthed in Henderson, near Fremantle. Active sampling occurred between 12 October and 6 November between 30 and 125 km offshore between Port Hedland and the Montebello Islands on the Pilbara section of the NWS, WA, (Figure 5), in water depths of 25 to 93 m.

In total, 100 sites were sampled over 584 operations. Table 2 summarises the operations undertaken at each site and shows that the full set of planned operations were undertaken at most sites. Appendix B provides a full description of all operations undertaken at each site.

Sampling for biodiversity was undertaken at each site using a commercial scale (McKenna) demersal trawl net and epibenthic sled. The trawl net covered a large area (~ 3 km by 20 m width) and effectively sampled demersal fish and representatively sampled large benthic invertebrates. The epibenthic sled covered a smaller area (400 m by 1.5 m width) effectively sampling benthic invertebrates from 50 cm down to ~ 20 mm. Habitat and environmental data were collected at each site using acoustic swath mapping, sub-bottom profiling and a still camera attached to the trawl net headline, which captured an image every 3 seconds or every ~ 4 m. CTD profiles and Niskin water sampling were undertaken at some sites.

Although not reported in this study, sediment grab, turbulence probe and plankton net sampling were also undertaken at most sites. Tow video was not part of the original survey plan, however, in the latter part of the voyage time allowed for video to be collected at five sites as part of efforts to quantify the efficiency of trawl net sampling. A detailed description of the sampling methods and equipment used is given in Appendix A.

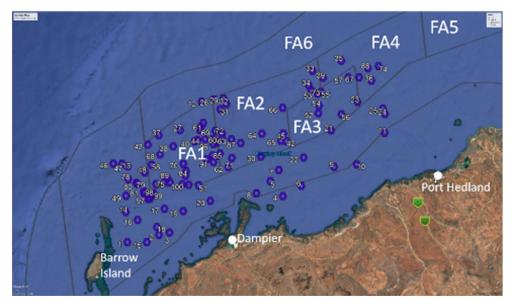


Figure 5. Map of survey area showing survey sites and location of the six fishing areas (FA) zoned within the PFTF.

Table 2. Summary of site locations, depth and sampling operations undertaken for each site on the October-November INV2017_05 RV *Investigator* voyage. SBP = Sub-bottom profiler. *not reported on in this study due to gear failure and net damage at site W29.

Site	Depth (m)	Long °E	Lat ∘S	Swat h/	Trawl	Trawl Camera	Tow Video	Sled	Grab	CTD	Plankton Tow	Turb. probe
		-E	-3	SBP								
W1	36	115.73	-20.6	Yes	Yes	Yes		Yes	Yes			
W2	36	116.03	-20.57	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W3	37	116.13	-20.56	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
W4	34	117.21	-20.36	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W5	37	117.36	-20.19	Yes	Yes	Yes		Yes	Yes		Yes	
W6	30	117.39	-20.29	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W7	44	117.2	-20.13	Yes	Yes	No		Yes	Yes	Yes	Yes	Yes
W8	31	116.97	-20.31	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W9	39	117.71	-20.16	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W10	33	117.92	-20.16	Yes	Yes	Yes		Yes	Yes		Yes	
W11	38	118.21	-19.91	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W12	82	116.57	-19.47	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W13	80	115.77	-19.92	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W14	41	115.75	-20.34	Yes	Yes	Yes	Yes	Yes	Yes		Yes	
W15	33	115.91	-20.62	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W16	37	115.85	-20.42	Yes	Yes	Yes	Yes	Yes	Yes		Yes	
W17	45	116.11	-20.35	Yes	Yes	Yes	Yes	Yes	Yes		Yes	
W18	42	116.02	-20.5	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W19	40	116.28	-20.39	Yes	Yes	Yes		Yes	Yes		Yes	
W20	46	116.86	-20.2	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W21	60	117.72	-19.84	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W22	50	117.44	-20.05	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W23	63	117.99	-19.62	Yes	Yes	Yes						
W24	37	118.23	-19.75	Yes	Yes	Yes		Yes	Yes		Yes	
W25	52	118.22	-19.7	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W26	82	116.68	-19.46	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W27	57	116.34	-19.69	Yes	Yes	Yes		Yes	Yes		Yes	Yes
W28	64	116.53	-19.68	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W29	81	116.77	-19.46	Yes	Yes*	Yes		Yes	Yes	Yes	Yes	Yes
W30	57	117.05	-20	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W31	57	116.73	-19.55	Yes	Yes	Yes		Yes	Yes			
W32	70	116.79	-19.51	Yes	Yes	Yes		Yes	Yes		Yes	Yes
W33	95	117.61	-19.31	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W34	89	117.56	-19.43	Yes	Yes	Yes		Yes	Yes	Yes	Yes	
W35	91	117.88	-19.25	Yes	Yes	Yes		Yes	Yes		Yes	
W36	73	118.14	-19.45	Yes	Yes	Yes		Yes	Yes			1

W37	80	116.14	-19.71	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W38	74	116.26	-19.82	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W39	86	117.7	-19.38	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W40	65	116.46	-19.8	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W41	63	116.56	-19.65	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W42	62	117.3	-19.89	Yes	Yes	Yes		Yes	Yes		Yes	
W43	79	116.03	-19.78	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W44	64	116.56	-19.79	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W45	61	117.29	-19.82	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W46	84	115.69	-19.91	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W47	78	115.82	-19.95	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W48	73	115.97	-20.02	Yes	Yes	Yes		Yes	Yes		Yes	
W49	61	115.77	-20.2	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W50	55	115.97	-20.25	Yes	Yes	Yes	Yes	Yes	Yes		Yes	
W51	51	116.45	-20.18	Yes	Yes	Yes		Yes	Yes		Yes	
W52	67	117.62	-19.68	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W53	75	117.63	-19.51	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W54	70	117.63	-19.62	Yes	Yes	Yes		Yes	Yes		Yes	
W55	70	117.67	-19.5	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W56	60	117.83	-19.71	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W57	76	117.93	-19.4	Yes	Yes	Yes		Yes	Yes	Yes		Yes
W58	74	116.04	-19.96	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W59	60	116.25	-20.07	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W60	65	116.72	-19.8	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W61	64	116.52	-19.71	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W62	59	116.74	-20.06	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W63	73	116.8	-19.82	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W64	70	117.08	-19.8	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W65	61	117.25	-19.88	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W66	75	117.3	-19.6	Yes	Yes	Yes		Yes	Yes		Yes	
W67	74	118.03	-19.41	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W68	74	116.13	-19.88	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W69	58	116.66	-19.73	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W70	56	116.33	-19.98	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W71	71	116.78	-19.98	Yes	Yes	Yes		Yes	Yes		Yes	
W72	58	116.72	-19.76	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W73	79	117.58	-19.48	Yes	Yes	Yes		Yes	Yes		Yes	
W74	80	118.22	-19.33	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W75	60	116.19	-20.13	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W76	62	116.63	-19.8	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W77	66	116.49	-19.79	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W78	72	115.81	-20.06	Yes	Yes	Yes		Yes	Yes		Yes	
	16		20.00	.03	105	105		103	103		105	

W79	70	115.88	-20.1	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W80	68	115.89	-20.11	Yes	Yes	Yes		Yes	Yes		Yes	Yes
W81	66	115.94	-20.18	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W82	60	115.94	-20.2	Yes	Yes	Yes		Yes	Yes		Yes	Yes
W83	62	116.06	-20.13	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W84	56	116.34	-20.09	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W85	64	116.68	-19.93	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W86	67	116.67	-19.83	Yes	Yes	Yes		Yes	Yes		Yes	Yes
W87	71	116.88	-19.86	Yes	Yes	Yes		Yes	Yes	Yes	Yes	
W88	80	118.12	-19.34	Yes	Yes	Yes		Yes	Yes			
W89	62	116.17	-20.09	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W90	57	116.35	-20.05	Yes	Yes	Yes	Yes	Yes	Yes		Yes	
W91	63	116.61	-20	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes
W92	62	116.55	-19.97	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W93	66	116.65	-19.95	Yes	Yes	Yes		Yes	Yes		Yes	Yes
W94	61	116.14	-20.12	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W95	61	116.61	-19.94	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W96	62	116.63	-19.87	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W97	56	115.99	-20.25	Yes	Yes	Yes		Yes	Yes		Yes	
W98	56	116.01	-20.22	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes
W99	54	116.03	-20.21	Yes	Yes	Yes		Yes	Yes		Yes	
W100	57	116.36	-20.17	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes

2 Characterisation of marine habitats across the North West Shelf

Emma Westlake, John Keesing and Margaret Miller (CSIRO Oceans and Atmosphere Research)

2.1 Introduction

Information on physical and biological attributes of marine habitats were collected across 100 sites on the NWS in order to understand the distribution of fishes and habitat-forming filter feeders, and to assess the status and extent of recovery of communities impacted by trawling.

Seabed information was collected by swathing depths, sub-bottom profiling to determine seabed structure, and multibeam acoustic swathing (bathymetry and backscatter [seabed hardness/softness]). Bathymetry and backscatter data were primarily used in planning the trawl survey operations in real time and to aid the interpretation of the sub-bottom profiling data.

Water column information was collected by CTD profiling to measure chlorophyll-*a* (chl-*a*), salinity, temperature, dissolved oxygen and photosynthetically active radiation (PAR). Water sampling was undertaken to measure nutrients.

Information on benthic substrata and biota were derived from still camera images obtained from the trawl headline camera which captured images ahead of the demersal trawl net every 3–4 seconds.

A detailed description of the methods used to collect seabed and water column data and to score and analyse the images is given in Appendix A.

2.2 Structure of this chapter and the analyses

The results of the survey and analyses of historicial data is presented in spatial subsets (Table 1) as follows

- Sites inshore of the commercial trawl fishery (including the Dampier MP)
- Sites west of the commercial trawl fishery (including the Montebello MP)
- Sites within the commercial fishery, PFTF Areas 1, 2, 3 (curently closed to fishing) and 4.

2.3 Data sources and methodology

This chapter of the report makes use of data collected on the 2017 RV *Investigator* voyage (INV2017_05) and the 1982–1997 CSIRO North West Shelf (NWS) Effects of Trawling project (Sainsbury 1988; 1991), hereafter called the CSIRO 1982–1997 surveys.

2.3.1 Bathymetry and acoustic backscatter

Depths were recorded continuously during the voyage using the Kongsberg EM710 multibeam echosounder used on the RV *Investigator*. The instrument also collected acoustic backscatter data in addition to bathymetry. This provided a measure of the reflectivity off the seabed which can be interpreted as the relative 'hardness' or 'softness' of the seabed (hard surfaces are more reflective) and 'roughness' by using the measured angle of incidence as sound is reflected from the seabed (Angular Range Analysis). These data were used to help interpret the sub-bottom profiling data when characterising the seabed but are not presented in detail in this report.

2.3.2 Sub-bottom profiling

Categorisation of bottom types from the sub-bottom profiler

The Kongsberg SBP120 sub-bottom profiler (SBP) used on the RV *Investigator* used acoustic signals to produce a 2-dimensional stratigraphy of the seabed. It is a 'chirp' system: a wide-band frequency modulated SBP that produces very high resolution (0.3 milliseconds/~ 0.25 m) profiles in soft sediments. The thickness of sediment layers cannot be measured accurately but can be approximated from the time it takes the sound signal to return (this is called 'two-way time', TWT).

These high frequency systems give very detailed information for near-surface features making them suitable for the interpretation of the recent geomorphology of the seabed (for example, rippled surfaces and reefs) and tracking of thin (decimetre scale) sub-surface layers. The extent of layers of consolidated and unconsolidated material like coarse sediment, compacted sand and rock outcrops, were interpreted with the aid of acoustic backscatter data.

The following bottom type categories were used in this project:

- 1. Rock outcrop
- 2. Flat Hard Surface
- 3. Thin sediment (< 3 milliseconds, < ~ 2.5 m over rock)
- 4. Thick sediment (> 3 milliseconds, > ~ 2.5 m over rock)
- 5. Dunes

Examples of each of these are shown in Figure 6, Figure 7 and Figure 8. These interpretations were then applied to each of the sub-bottom profile lines which corresponded to the trawl lines (e.g. Figure 9).

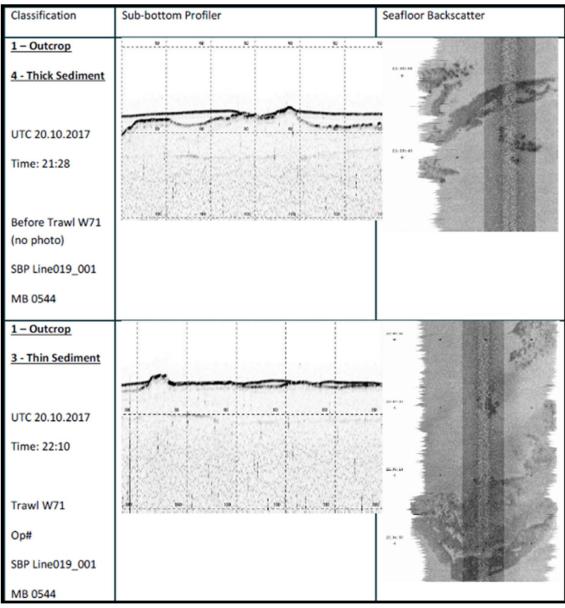


Figure 6. Examples of reef outcrop from thick (upper panel) and thin (lower panel) overlying sediment showing interpretation using SBP and acoustic backscatter data.

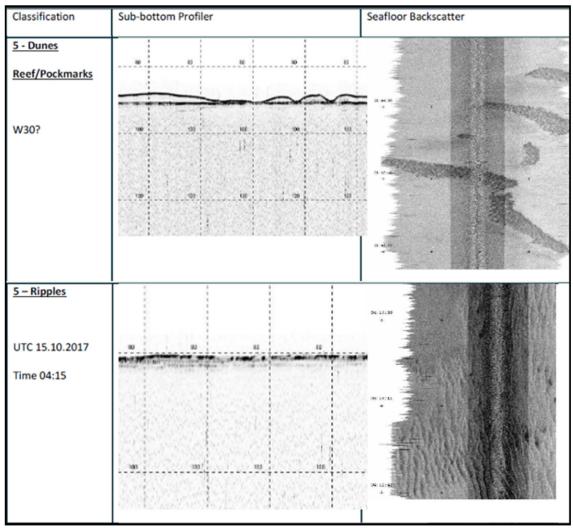


Figure 7. Examples of sand dunes overlying reef (upper panel) and sand ripples (lower panel) showing interpretation using SBP and acoustic backscatter data.

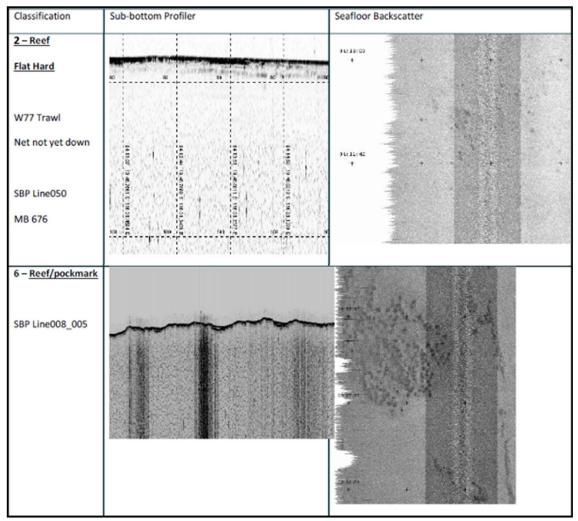


Figure 8. Examples of flat hard (reef) bottom (upper panel) and pockmarked reef (lower panel) showing interpretation using SBP and acoustic backscatter data.

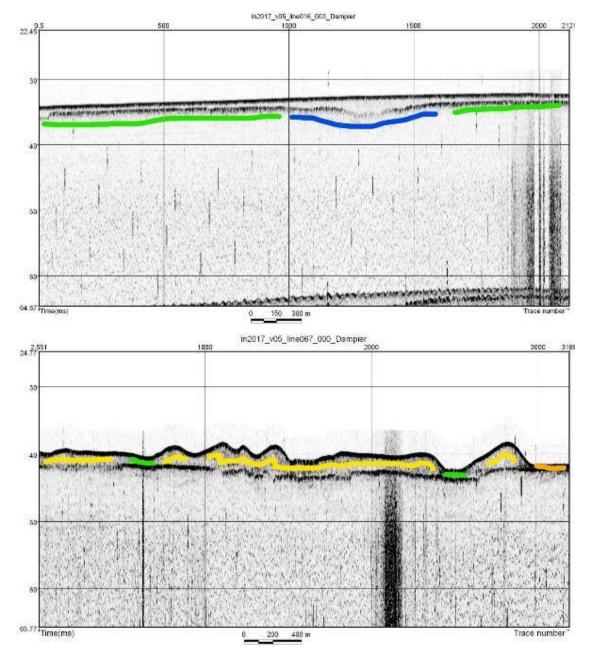


Figure 9. Examples of scoring of categories along sub-bottom profile tracks. Numbers on y-axis in milliseconds. Green is thin sediment, blue is thick sediment, yellow is sand dunes and orange is flat hard bottom.

2.3.3 Water column sampling

Nutrients

Water samples were collected using a 24 x 10 L Niskin bottle rosette. Replicate 10 mL water samples of unfiltered seawater from each depth were analysed for dissolved inorganic nutrients (nitrate + nitrite [hereafter nitrate], ammonia, phosphate and silicate) by flow injection analysis (Lachat QuickChem 8000), with detection by absorbance at specific wavelengths for silicate [QuikChem Method 31-114-27-1-D], nitrate [QuikChem Method 31-107-04-1-A] and phosphate [QuikChem Method 31-115-01-1-G]), and by fluorescence for ammonia (Watson et al. 2005). Detection limits were 0.02 μ M for all inorganic nutrient species, with a standard error of < 0.7%.

Pigments

In addition to nutrients, samples for chl-*a* were collected with 1 L of seawater from each depth vacuum-filtered onto a Whatman 25 mm diameter glass fibre filter (GF/F) (nominal pore size of 0.7 μ m). The filters were stored in at -80°C until analysis (24–48 hours post-collection). Pigments were extracted in 90% acetone overnight and analysed for chl-*a* and phaeopigment (represents the total chl-*a* fraction) using a calibrated Turner Designs model 10AU fluorometer and the acidification technique of Parsons et al. (1989).

Physical measurements

Water column profiles of conductivity (as a proxy for salinity) and temperature (Seabird SBE 9/11 dual-sensor unit), photosynthetically active radiation (PAR 400–700 nm; Biospherical Instruments QCP-2300), fluorescence (Chelsea Instruments Aquatracka[™] fluorometer), and dissolved oxygen (DO; Anderra 3975 series optode) were determined concurrently via a CTD rosette deployed from the starboard side of the ship.

2.3.4 Benthic substrate and topography

Classification of categories of substrate and topography

Substrate types

Five main substrate types were recognised from the INV2017_05 camera images; silt, fine sand, coarse sand, rock and rubble, and various combinations of these substrate types. These are illustrated in Figure 10 and Figure 11. Similar categories were used when scoring the trawl headline camera images from the earlier CSIRO 1982–1997 surveys.

Silt (Fine Sand/Silt)

Fine Sand

Fine Sand/Coarse Sand

Fine Sand/Coarse Sand/Rubble

Fine Sand/Coarse Sand/Rock

Fine Sand/Rubble/Rock

Fine Sand/Rubble

Fine Sand/Rock

Figure 10. Examples of the different substrate categories used to score INV2017_05 still images. Similar categories were used for CSIRO 1982-1997 images.

Coarse Sand/Rubble

Coarse Sand/Rock

Figure 11. Examples of the different substrate categories used to score INV2017_05 still images. Similar categories were used for CSIRO 1982-1997 images.

Soft bottom topography types

Four main types of soft-bottom topography were identified from the INV2017_05 camera images of soft bottom habitats; flat bottom, fine sand ripples, bioturbation, and furrows, and various combinations of these topographic types. Examples of these are illustrated in Figure 12.

Flat Bottom

Flat Bottom/Fine Ripple

Fine Ripple

Flat Bottom/Bioturbated

Flat Bottom/Fine Ripple/Bioturbated

Fine Ripple/Furrow

Figure 12. Examples of the different bottom topography categories used to score INV2017_05 still images.

2.3.5 Benthic biota and biohabitats

Data used to describe benthic biota were principally derived from still camera images taken from the trawl headline camera. This applied to both INV2017_05 and historical CSIRO 1982–1997 surveys. Benthic biota were classified into eight main categories: sponge; hydroid; whip; seapen; gorgonian; crinoid; soft coral; and 'other' (Figure 13). 'Other' comprised all benthic biota species not identified by the main categories and, during historical surveys, included hydroids. Images containing no biota were also identified. A detailed description of the methods used to collect, score and analyse the images is given in Appendix A.

Sponge (multiple morphologies)

Hydroid

Crinoid

Soft coral (seapens also visible)

2.4 Results from sites inshore of the commercial trawl fishery (including the Dampier Marine Park)

During the INV2017_05 voyage, 24 sites were surveyed within the area inshore of the commercial trawl fishery (Figure 14). This included three sites located within Dampier MP. The location of historical trawls conducted within this area between 1982–1997 for which habitat data were collected, including within the since-formed Dampier MP, are shown in Figure 15.

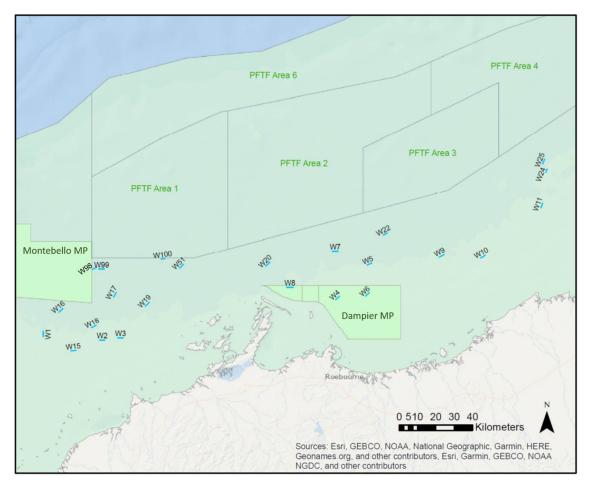


Figure 14. Location of INV2017_05 sites for which habitat data were collected inshore of the commercial trawl fishery, including Dampier MP. Table showing the start/end latitude and longitude for each trawl transect is given in Appendix D.

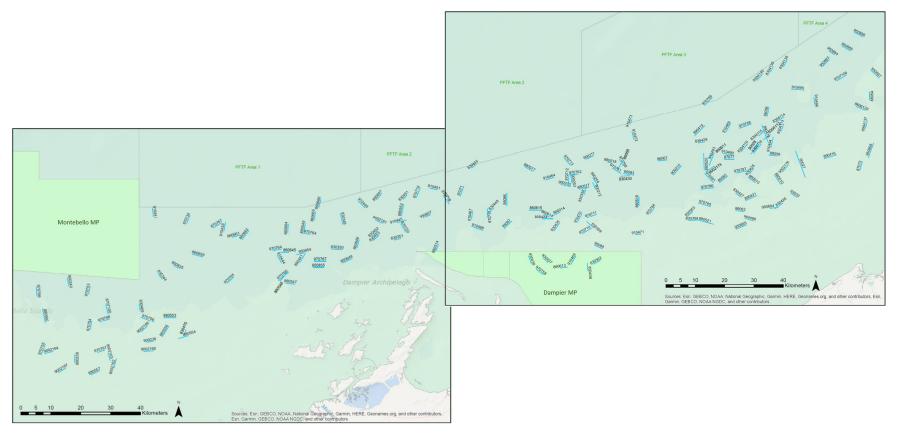


Figure 15. Location of historical trawls from CSIRO 1982–1997 for which habitat data were collected within the southern (left) and northern (right) extent of the area inshore of the commercial trawl fishery, including within the since-formed Dampier MP. Table showing the start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997).

2.4.1 Water column analyses

CTD profiles were obtained for 15 sites within the area inshore of the commercial trawl fishery, including three sites within Dampier MP (Figure 16–Figure 19). Salinity varied little across inshore sites (< 1 psu), ranging from 34.9–35.8 psu. Salinity remained constant for most sites, with most of these sites showing either very slight increases or decreases in salinity with depth. Sites W7, W20 and W25 which all showed a layer of mixing between 10–20 m depth.

Temperature ranged from 24.4–26.3°C across sites. Thermoclines were evident at sites W2, W3 and W25, highlighted by a decrease in temperature of roughly 0.5°C generally between 15–20 m depth. A larger decrease in temperature (almost 1°C) was observed at site W18, again within the 15–20 m depth range. A small thermocline forming between 8–12 m was observed at site W8 within Dampier MP, corresponding with a reduction in temperature of roughly 0.5°C. These temperature changes and subsequent formations of thermoclines generally coincided with an increase in chl-*a*.

Dissolved oxygen (DO) ranged from 205–219 mg/L with reductions in DO levels recorded at 20 m. Sites within Dampier MP showed mixed waters, with no discernible or consistent pattern evident. Inshore sites showed a more rapid reduction in DO levels than other sites. Many sites showed a subsurface maximum, generally associated with a thermocline. However, some sites (sites W9, W15 and W22) exhibited a constant DO profile. Site W100 was the only site to show a DO maximum near the surface that then decreased with depth.

PAR profiles across the inshore sites generally diminished with depth. A steady decline in PAR was recorded across all sites, except for an anomalous surface signal at site W6, likely caused by ship shadow. Site W25 showed a constant PAR of 0 (zero PAR profile) across all depths, but this was due to the survey at this site being conducted after 1800 h. PAR profiles showed light reached the seabed reduced by 22% from surface values at site W6 while at sites W4 and W8 the percent surface irradiance decreased to 10% or lower at the bottom (Figure 16).

Chlorophyll-*a* ranged from 13–34 mg.m⁻² and generally increased with depth to maxima between 20– 30 m, except site W8 within Dampier MP which showed a more constant chl-*a* profile. Chlorophyll-*a* maxima were reached at shallower depths for inshore sites compared to those offshore.

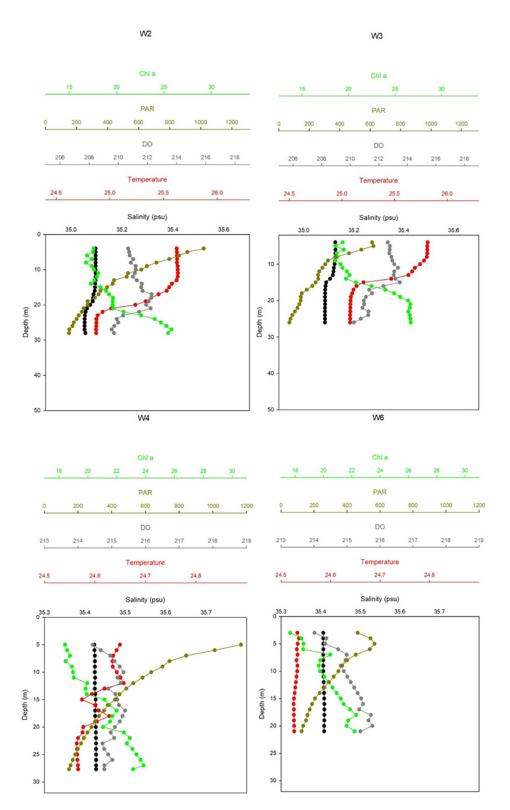
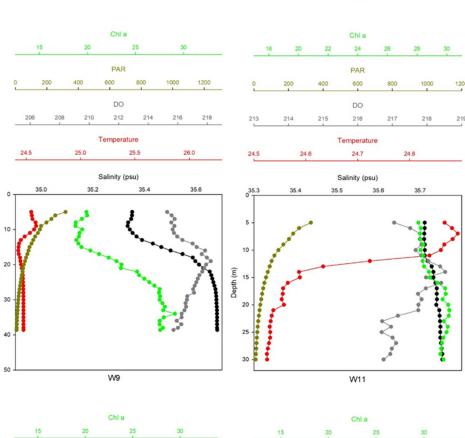



Figure 16. CTD profiles of water column parameters from sites W2, W3, W4* and W6* inshore of the commercial fishery. * denotes sites within Dampier MP.

W8

W7

Depth (m)

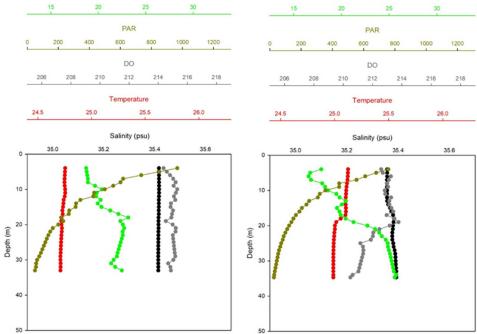


Figure 17. CTD profiles of water column parameters from sites W7, W8*, W9 and W11 inshore of the commercial fishery. * denotes sites within Dampier MP.

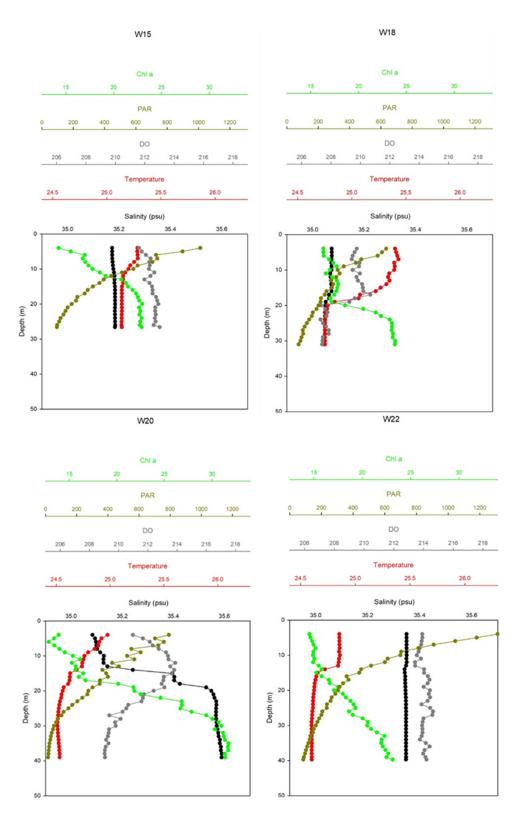
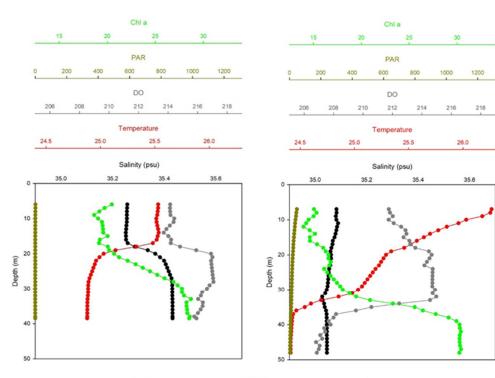



Figure 18. CTD profiles of water column parameters from sites W15, W18, W20 and W22 inshore of the commercial fishery.

W98

W100

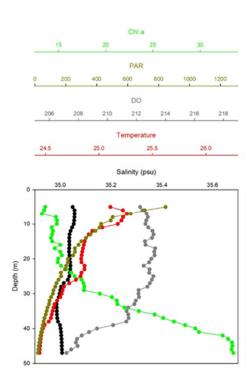


Figure 19. CTD profiles of water column parameters from sites W25, W98 and W100 inshore of the commercial fishery.

Depth-averaged nutrient values were obtained at 15 sites within the area inshore of the commercial trawl fishery, including the three sites within Dampier MP (Table 3, Figure 20). Mean total chl-*a* ranged from 0.16 to 0.48 mg m⁻² across sites, with the lowest value recorded at site W18 and lowest at site W8 within Dampier MP (Figure 20, top). Nitrate concentrations ranged from 0.010 mmol m⁻² (site W4 within Dampier MP) to 0.040 mmol m⁻² (site W100). Mean ammonia ranged from 0.005– 0.024 mmol m⁻² while silica ranged from 1.471–6.177 mmol ⁻². Both minimums were recorded at site W8 within Dampier MP, while both maximums were recorded at site W2 inshore of Montebello MP. Phosphate concentrations ranged from 0.110 mmol m⁻² again at site W8, to 0.154 mmol m⁻² at site W22, offshore of Dampier MP.

Site	Mean total Chl-a	Mean NO _x	Mean NH ₄	Mean PO ₄	Mean Si
	(mg m ⁻²)	(mmol m ⁻²)			
W2	0.26	0.015	0.008	0.134	6.177
W3	0.31	0.018	0.024	0.138	5.893
W4*	0.30	0.010	0.011	0.140	3.905
W6*	0.27	0.013	0.014	0.132	3.513
W7	0.30	0.016	0	0.132	2.749
W8*	0.48	0.017	0.009	0.110	1.471
W9	0.26	0.022	nd	0.141	3.701
W11	0.30	0.023	0.005	0.149	4.171
W15	0.24	0.018	0.008	0.127	4.555
W18	0.16	0.020	0.023	0.151	5.373
W20	0.31	0.027	0.009	0.129	3.052
W22	0.21	0.016	nd	0.154	4.778
W25	0.34	0.029	nd	0.131	3.765
W98	0.16	0.024	0.01	0.118	4.234
W100	0.28	0.040	0.022	0.127	4.282

 Table 3. Nutrients (depth averaged values) for sites surveyed inshore of the commercial trawl fishery.

 * denotes sites within Dampier MP. nd denotes no data.

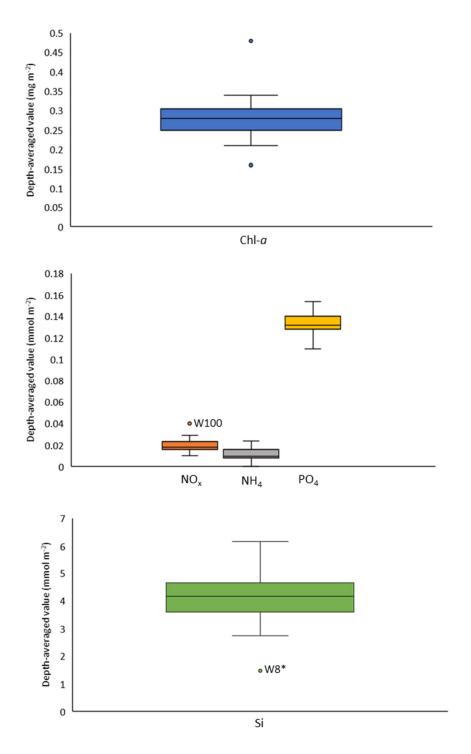


Figure 20. Depth-averaged nutrient values for sites surveyed inshore of the commercial trawl fishery. Box plots show the median, 25th and 75th percentiles and outliers falling outside the 10th and 90th percentiles. * denotes sites within Dampier MP.

2.4.2 Sub bottom profiling INV2017_05 sites

Sub-bottom profiling of sites inshore of the commerical trawl fishery showed varying bottom types (Figure 21. Note: no SBP data available for site W7). Bottom type was generally hard or a combination of hard bottom and either dune or thin sediment over rock. Sites W2 and W15 both exhibited a combination of dune and thick sediment on rock bottom, while site W18 was categorised solely as thick sediment. Site W24 was a combination of thick and thin sediment over rock, while a small proportion of outcrop was detected at site W19.

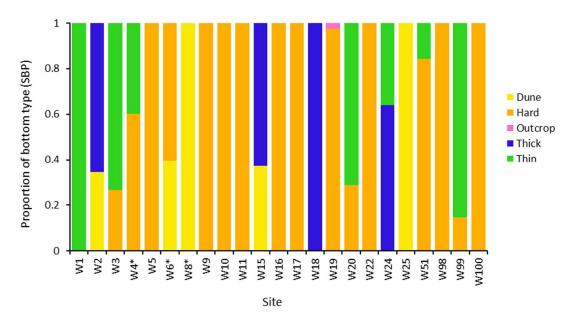


Figure 21. Proportion of bottom types determined using SBP for INV2017_05 sites inshore of the commercial trawl fishery. * denotes sites within Dampier MP.

2.4.3 Substrate and topography

INV2017_05 survey sites

In 2017, the trawl headline camera images revealed that fine sandy flat bottom substrates dominated sites inshore of the commercial fishery (Figure 22. Note: no substrate or topography data available for site W7). Coarse sand and rock were also identified at some sites. Shepard's plots of sediment classification for all sites inshore of the commercial trawl fishery (Figure 23) and those within Dampier MP (Figure 24) confirmed sediment composition as predominantly sand. Fine ripple topography was present at sites W1, W24, and W4, W6 and W8 within Dampier MP, while bioturbations were seen at site W100.

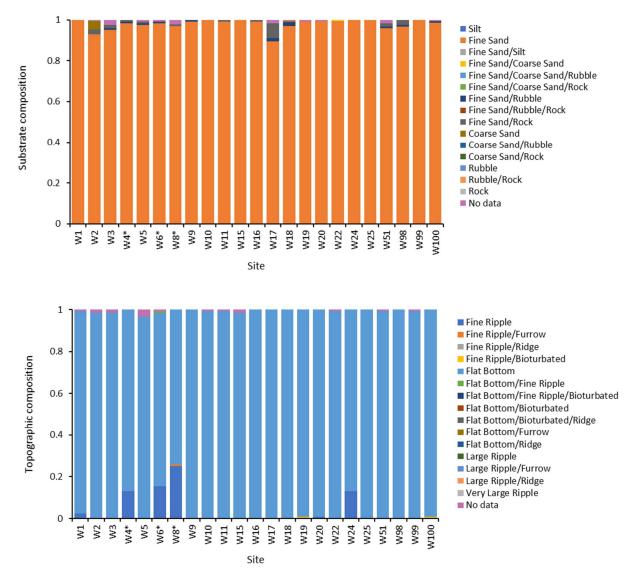


Figure 22. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites inshore of the commercial trawl fishery. * denotes sites within Dampier MP.

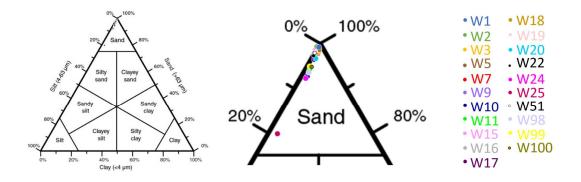


Figure 23. Shepard's plot of sediment classification for INV2017_05 survey sites inshore of the commercial trawl fishery (excluding Dampier MP).

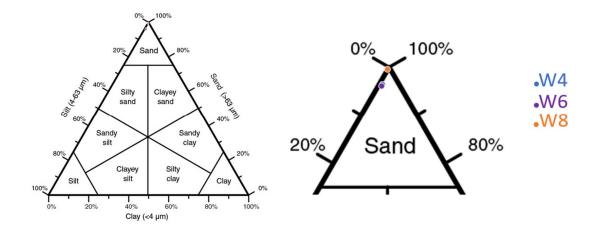


Figure 24. Shepard's plot of sediment classification for INV2017_05 survey sites within Dampier MP (inshore of the commercial trawl fishery).

CSIRO 1982–1997 surveys

Sites were dominated by fine and coarse sandy substrates during historical CSIRO 1982–1997 surveys (Figure 25 and Figure 26). A small proportion of rubble was identified at some sites including sites 830453 and 830470, while rock was also seen in very small proportions including at site 830362 in the since-formed Dampier MP.

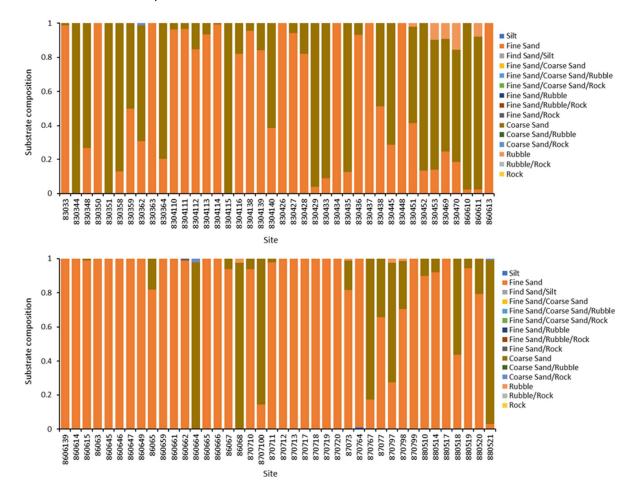
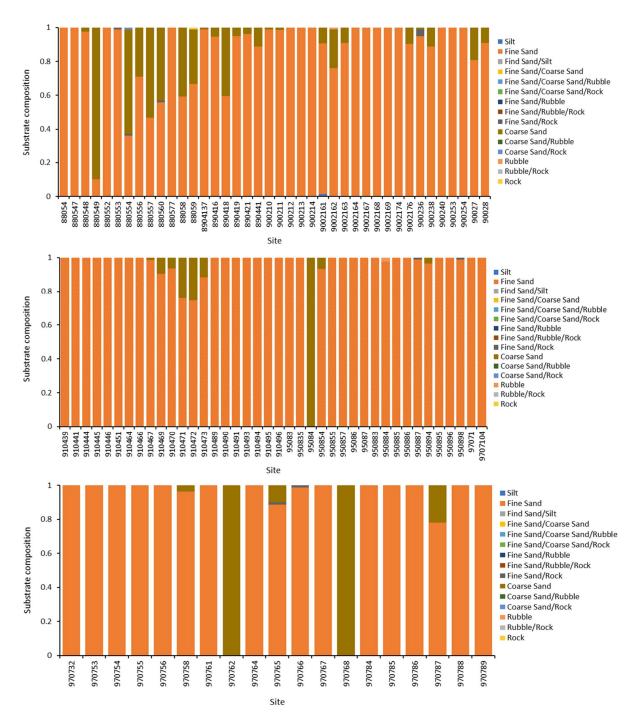



Figure 25. Proportion of substrate types in seabed images along trawl lines for historical CSIRO (1982–1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP.

Topographic composition during CSIRO 1982–1997 surveys was predominantly flat or fine rippled bottom. Some large ripples and ridges were present (Figure 27 and Figure 28), most notably at site 90027 and 890441, respectively. Bioturbations were also identified at some sites, with the largest proportion evident at sites 880552 and 970767.

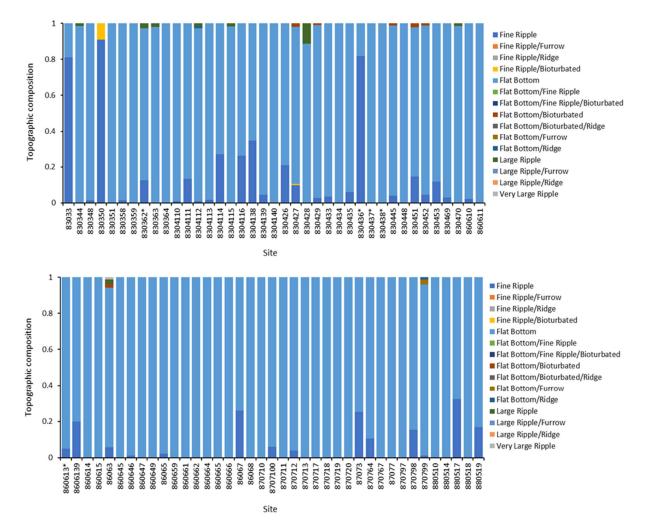


Figure 27. Proportion of topographic types in seabed images along trawl lines for historical CSIRO (1982– 1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP.

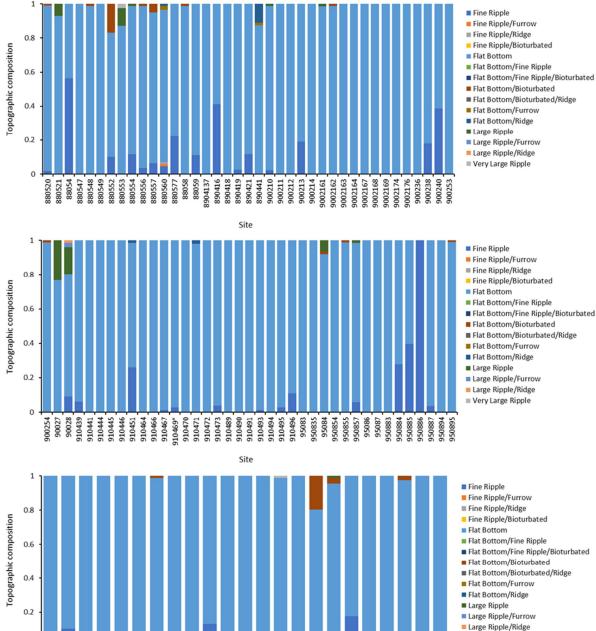


Figure 28. Proportion of topographic types in seabed images along trawl lines for historical CSIRO (1982-1997) survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP.

Site

970758*

2.4.4 Benthic biota

INV2017_05 survey sites

Benthic biota composition was determined for 23 sites during INV2017_05 surveys (Figure 29, also see representative images of each site in Appendix C. Note: no biota data available for site W7). Except for sites W20, W22 and W24 where the absence of biota was observed in large proportions, benthic filter feeders were abundant and diverse. Sponges were greatest at sites W3, W4, W17 and W51, while hydroids dominated sites W19, W51 and W100. Seapens were predominant at site W25, comprising over 60% of benthic biota. Similarly, crinoids had the greatest contribution to biota composition at site W99. Both whips and soft corals were most evident at sites W2 to W18. Within Dampier MP, sponges and whips such as *Junceella fragilis* (Figure 30) formed more than 70% of biota at W4. Site W4 also had a high biomass of very large erect and massive form sponges (Figure 31–Figure 33), while site W6 had large numbers of fans and site W8 had high numbers and biomass of *Dendronephthya* soft corals (Figure 34).

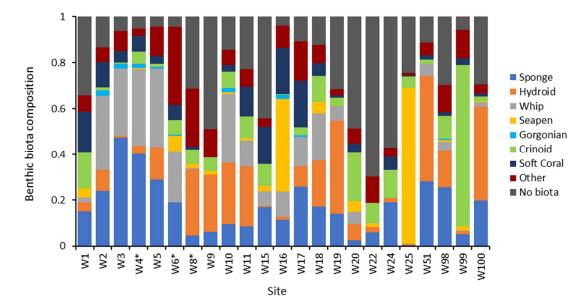


Figure 29. Proportion of biota types in seabed images for INV2017_05 survey sites inshore of the commercial trawl fishery. * denotes sites within Dampier MP. Dark grey = no biota present in images. 'Other' includes either filter feeders which could not be accurately allocated to a specific group because of image quality or other organsims.

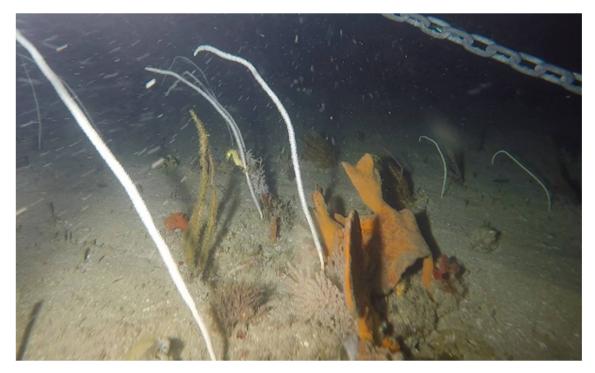


Figure 30. Sea whips *Junceella fragilis* provide an anchorage point for a sea horse at site W4 within the area inshore of the commercial fishery.

Figure 31. Example of sponge community at site W4 within the area inshore of the commercial fishery.

Figure 32. Large *lanthella flabelliformis*, an example of erect sponge from within the area inshore of the commercial fishery.

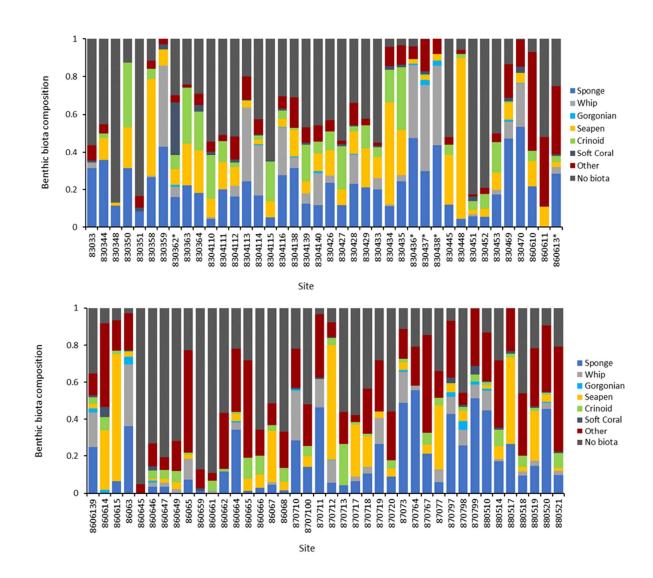

Figure 33. Massive form sponge common at site W4 within the the area inshore of the commercial fishery.

Figure 34. Large pink Dendronephthea sp. soft coral at sites including W8 inshore of the commercial fishery.

CSIRO 1982–1997 survey sites

As with INV2017_05 surveyed sites, the biota observed during CSIRO 1982–1997 surveys were variable across sites, both in diversity and abundance (Figure 35 and Figure 36). Large absences of biota were observed at many sites including sites 830348, 830351,830451, 830452, 860645, 860647, 860659 and 860661 where less than 20% benthic biota were identified. Sponges, whips, crinoids, seapens and 'other' biota including hydroids were common across sites. Proportions of seapens were notably high at sites 830448, 860615, 870712, 830351, 830434, 880517, 910464, 910427 and 950855, while only very small proportions of gorgonians were present across all sites (comprising less than 5% at each site). Only a limited number (approximately 15% of all sites) had extremely high proportions of biota identified (greater than 90%).

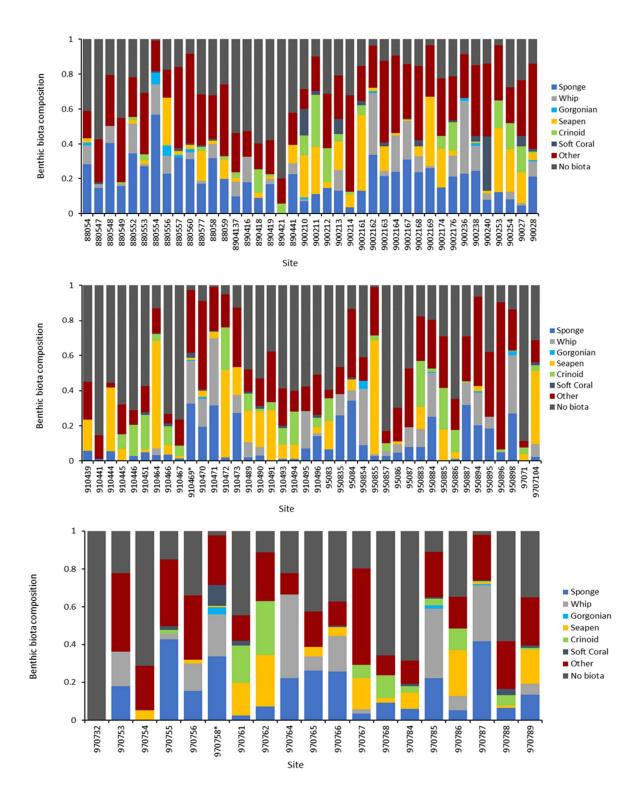


Figure 36. Proportion of biota types in seabed images for historical CSIRO 1982–1997 survey sites inshore of the commercial trawl fishery. * denotes sites within the since-formed Dampier MP. Maroon = no biota present in the images, 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

2.5 Results from sites west of the commercial trawl fishery (including the Montebello Marine Park)

During the INV2017_05 voyage, 13 sites were surveyed within the area west of the commercial trawl fishery (Figure 37). This included eight sites located within Montebello MP. The location of historical trawls conducted within this area between 1982–1997 for which habitat data were collected, including within the since-formed Montebello MP, are shown in Figure 38.

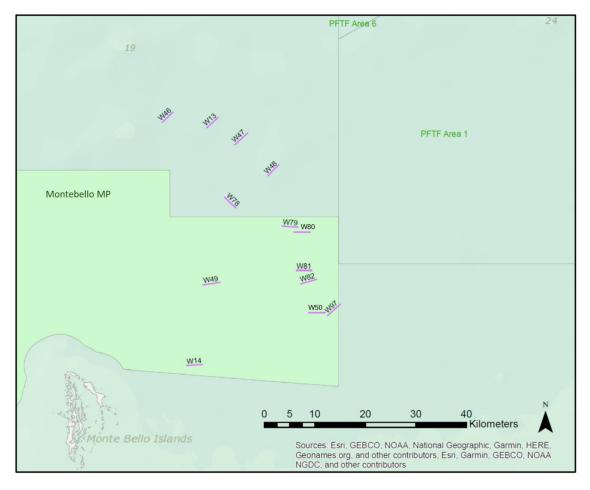


Figure 37. Location of INV2017_05 sites within the area west of the commercial trawl fishery, including Monteblio MP. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D.

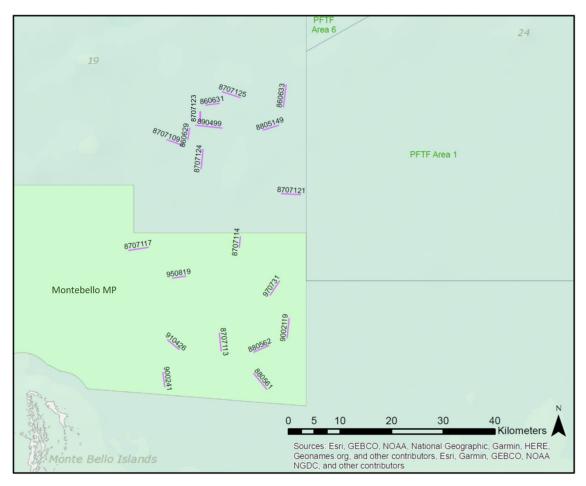


Figure 38. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within the area west of the commercial trawl fishery, including within the since-formed Monteblio MP. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997).

2.5.1 Water column analyses

CTD profiles were obtained at six sites within the area west of the commercial fishery, including three sites within Montebello MP (Figure 39 and Figure 40). Salinity differed slightly across sites and depth, ranging from 34.8–35.7 psu. Pycnoclines were recorded at sites W49, W79 and W81 around 25–40 m and were associated with the thermoclines at these sites. The salinity profile at site W79 had an anomalous signal near the surface before the trace changed to a profile similar to the two other sites within Montebello MP.

Temperature ranged from 23.9–26.5°C across all sites, with the highest value recorded within Montebello MP. Thermoclines were evident at sites W46, and W49, W79 and W81 within Montebello MP. Those within Montebello MP were deeper, characterised by a temperature change of between 1–2°C at a depth of 25–30 m (site W49), and a more subtle ~ 0.5°C at 35 m and 40 m (site W81 and W79 respectively). These temperature decreases and subsequent formations of thermoclines generally coincided with an increase in chl-*a*.

Dissolved oxygen concentrations generally decreased with depth following a maximum. Dissolved oxygen ranged from 184–215 mg/L with reductions in DO levels recorded at depths of 50–60 m for sites west of the commercial fishery, while occurring higher in the water column at depths of 40 m at sites within Montebello MP. At these sites, DO followed a similar pattern to salinity, with a DO minimum associated closely with the pycnocline at sites W79 and W81. Conversely, at site W49, the DO maximum rather than the minimum was associated with the pycnocline.

PAR profiles across the sites west of the commercial fishery generally diminished with depth with a steady decline in PAR across most sites. Site W47 was characterised by a relatively constant low to zero PAR profile, due to it being a late afternoon station. The depth range of light extinction for sites was > 65 m and 50–55 m for sites within Montebello MP, with approximately 1% light levels reaching the bottom depth at sites W79 and W81. Site W49 was profiled early in the morning with low surface PAR levels resulting in inaccurate calculation of the light dissipation at depth.

Chlorophyll-*a* ranged from 8–35 mg.m⁻² and increased with depth across all sites, with maximums reached within 60–80 m depth and 35–45 m for sites within Montebello MP.

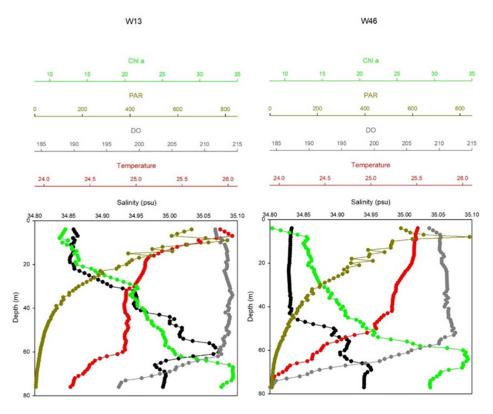


Figure 39. CTD profiles of water column parameters from sites W13 and W46 within the area west of the commercial fishery.

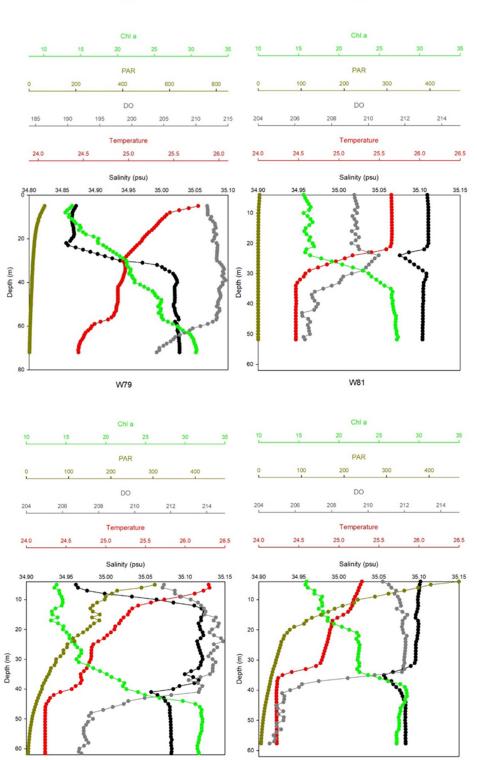


Figure 40. CTD profiles of water column parameters from sites W47, W49*, W79* and W81* within the area west of the commercial fishery. * denotes sites within Montebello MP.

Depth-averaged nutrient values were obtained at six sites within the area west of the commercial trawl fishery, including three sites within Montebello MP (Table 4, Figure 41. Depth-averaged nutrient values for sites surveyed west of the commercial trawl fishery (including sites within Montebello MP). Box plots show the median, 25th and 75th percentiles and outliers falling outside the 10th and 90th percentiles. Figure 41Table 3). Mean total chl-*a* ranged from 0.27 to 0.38 mg m⁻² across sites, with the highest value recorded at site W13 (Figure 41, top). Nitrate concentrations ranged from 0.043 mmol m⁻² (site W81 within Montebello MP) to 0.769 mmol m⁻² (site W46). Mean ammonia ranged from 0.003–0.083 mmol m⁻² while silica was relatively consistent across sites, ranging from 3.928–4.838 mmol ⁻². Both minimums were recorded at site W47, while site W49 within Montebello MP had the highest mean NH₄. Phosphate concentrations ranged from 0.116 mmol m⁻² at site W47, to 0.156 mmol m⁻² at site W46.

Site	Mean total chl-a	Mean NO _x	Mean NH ₄	Mean PO ₄	Mean Si
	(mg m ⁻²)	(mmol m ⁻²)			
W13	0.38	0.450	0.008	0.137	4.059
W46	0.29	0.769	0.016	0.156	4.067
W47	0.31	0.176	0.003	0.116	3.928
W49*	0.27	0.046	0.057	0.137	4.838
W79*	0.28	0.049	0.083	0.118	4.236
W81*	0.27	0.043	0.015	0.124	4.455

Table 4. Nutrients (depth averaged values) for sites surveyed west of the commercial trawl fishery. * denotes site within Montebello MP.

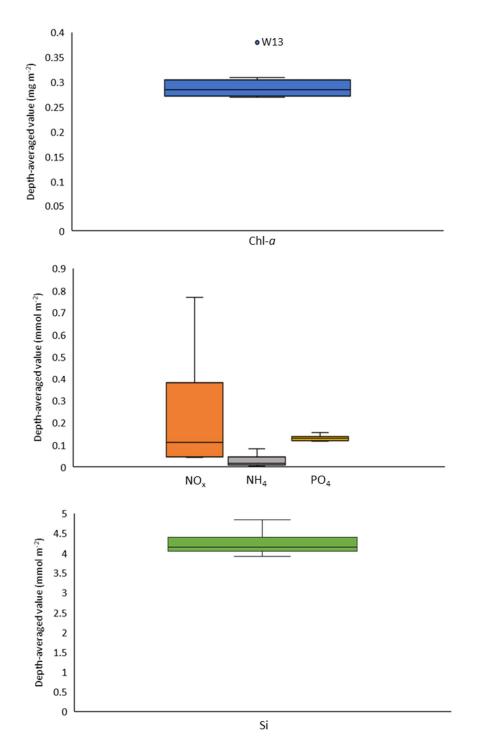


Figure 41. Depth-averaged nutrient values for sites surveyed west of the commercial trawl fishery (including sites within Montebello MP). Box plots show the median, 25th and 75th percentiles and outliers falling outside the 10th and 90th percentiles.

2.5.2 Sub bottom profiling INV2017_05 sites

Sub-bottom profiling of sites west of the commerical trawl fishery showed predominantly thin sediment over rock bottom (Figure 42). Sites W79 and W80 within Montebello MP were characteristed by a combination of thick and thin sediment over rock, while site W49, also within Montebello MP, was a mixture of thick sediment and hard bottom. Sites W14, W48, W81 and W97 were all characterised as predominantly thin sediment over rock with a small proportion of hard bottom.

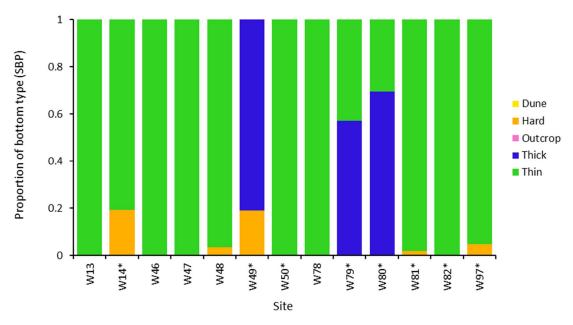


Figure 42. Proportion of bottom types determined using SBP for INV2017_05 sites within the area west of the commercial trawl fishery. * denotes sites within Montebello MP.

2.5.3 Substrate and topography

INV2017_05 survey sites

Fine sandy substrates dominated sites west of the commercial fishery during INV2017_05 surveys (Figure 43, top). Site W81, within Montebello MP, was the exception dominated by coarse sand. Shallower sites W14 and W49, also within Montebello MP, showed a small proportion (approximately 20% and 30% respectively) of a combination of fine sand, coarse sand and rubble, and rock (W14 only). Shepard's plots also confirmed sediment classification as sand across sites (Figure 44) including those within Montebello MP (Figure 45).

Flat bottom topography was ubiquitous across all sites (Figure 43, bottom). Bioturbations were evident at five sites, however, comprised a very small proportion of topographic composition.

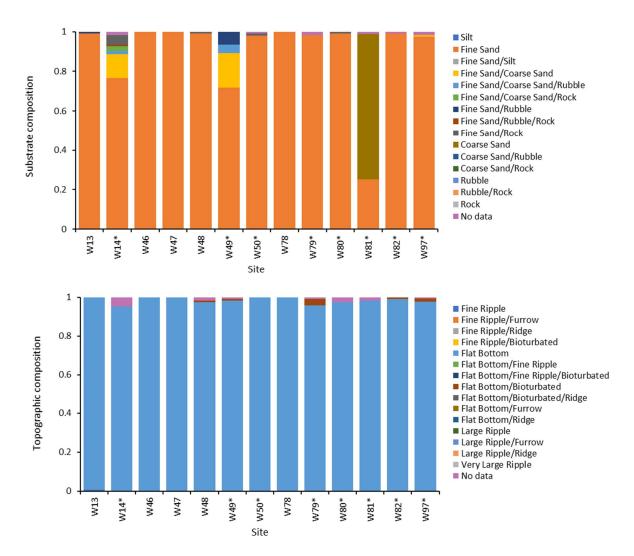


Figure 43. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites west of the commercial trawl fishery. * denotes sites within Montebello MP.

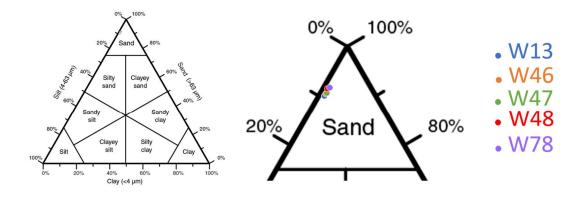


Figure 44. Shepard's plot of sediment classifications for INV2017_05 survey sites west of the commercial trawl fishery (excluding Montebello MP).

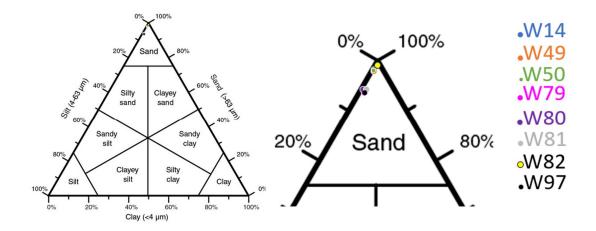


Figure 45. Shepard's plot of sediment classifications for INV2017_05 survey sites within Montebello MP (west of the commercial trawl fishery).

CSIRO 1982–1997 survey sites

Substrate type at CSIRO 1982–1997 historical sites west of the commercial fishery were predominantly fine sand or a mix of fine and coarse sand substrate (Figure 46, top). Site 8707117 was dominated by coarse sand, comprising over 95% of substrate composition. Topography was mostly flat bottom or flat bottom with ripples (Figure 46, bottom). Bioturbations were only present at site 860633. Sites 8707121 and 890499 had the largest proportion of fine ripples with these comprising greater than 60% and 80%, respectively.

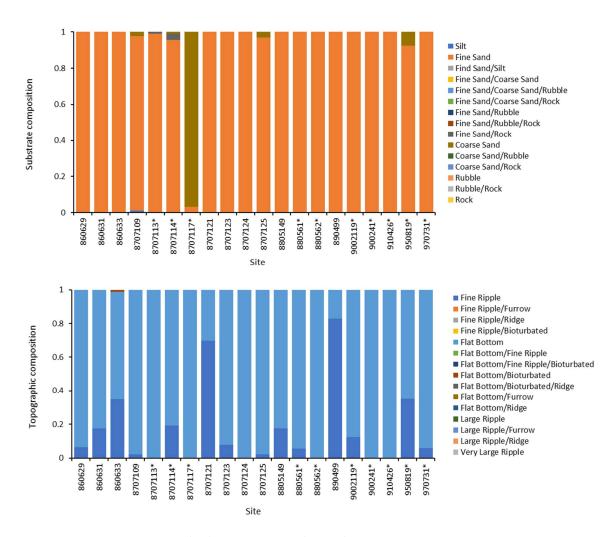


Figure 46. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites west of the commercial trawl fishery. * denotes sites within the since-formed Montebello MP.

2.5.4 Benthic biota INV2017_05 survey sites

A clear distinction was evident between the benthic biota composition across sites west of the commercial trawl fishery (Figure 47, also see representative images in Appendix C). Those outside of Montebello MP were predominantly lacking in benthic biota, with site W48 showing the greatest proportion (30%) and diversity of benthic biota. Sponges, crinoids and 'other' biota were present at all sites. Both seapens and 'other' biota were present in the greatest proportions at site W47, while sponges and crinoids were greatest at sites W48 and W78, respectively. Gorgonians were only present at site W48.

Conversely, sites within Montebello MP had high proportions of benthic biota present. With the exception of the most inshore and shallowest of these (site W14, Figure 48), sites surveyed during INV2017_05 in the eastern section of Montebello MP had low numbers of soft corals. Sponges, whips and gorgonians were also minimal, and as a result, complex benthic filter feeder communities were largely absent (e.g. see representative imagesin Appendix C in Appx Figure 24–Appx Figure 36). Instead, the dominant filter feeders were crinoids, hydroids and seapens. The most commonly recorded cronoid was *Comatula rotalaria* (Figure 49) which is free living on sand rather than associated with other filter feeders like gorgonians. Site W49 was notable for the large number of seapens present (Figure 50).

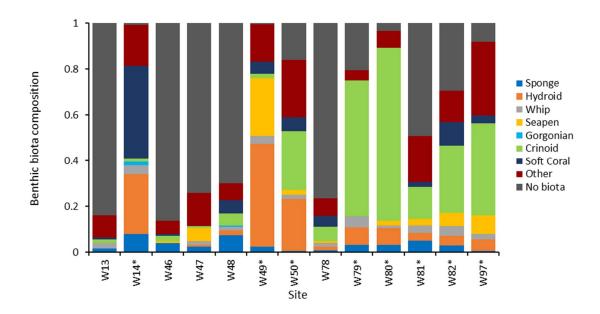


Figure 47. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites west of the commercial trawl fishery. * denotes sites within the since-formed Montebello MP. Dark grey = no biota present in the images, 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

Figure 48. Dendronephthea spp. soft corals at site W14 within the area west of the commercial trawl fishery.

Figure 49. Free-living crinoid *Comatula rotalaria* very common at sites W79, W80 and W97 within the area west of the commercial trawl fishery. The crinoid pictured was ~ 20 cm in diameter.

Figure 50. Two of the common seapen species at site W49 within the area west of the commercial trawl fishery. Left panel: very common *Scytalium* sp., right panel: *Pteroeides* sp.

CSIRO 1982–1997 survey sites

Similar to INV2017_05 surveys, sites within the since-formed Montebello MP showed a greater proportion of benthic biota than sites outside this area during CSIRO 1982–1997 surveys (Figure 51). With the exception of these sites within Montebello MP, the presence of benthic biota was generally greater during historical surveys than at INV2017_05 sites west of the commercial fishery (7–85% and 14–30%, respectively). Biota was dominated by sponges and 'other' biota including hydroids. Site 880561, within the since-formed Montebello MP, had the greatest proportion of biota, including seapens and 'other' benthic biota. Sponges were greatest at sites 880562 and 8707125, while crinoids made up a vastly greater proportion of biota at site 8707121 than at any other site. Seapens were abundant at sites 880561, 910426 and 8805149. Soft corals were greatest at site 9002119, making up almost 45% of benthic biota at this site.

The biota recorded at the historical CSIRO 1982–1997 sites varied markedly from that during the INV2017_05 surveys, in particular the large proportion of sponges and small proportion of crinoids seen at historical sites. However, two historical sites (950819 and 970731) located in the eastern part of the MP where the 2017 samples were taken, also had a large proportion of images with no biota.

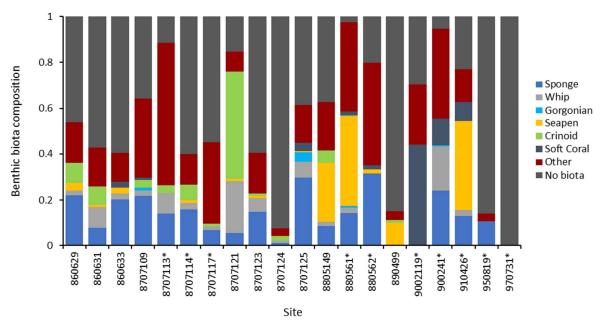


Figure 51. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites west of the commercial trawl fishery. * denotes sites within the since-formed Montebello MP. 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

2.6 Results from sites in Pilbara Fish Trawl Fishery Area 1

During the INV2017_05 voyage, 26 sites were surveyed within PFTF Area 1 (Figure 52). An additional site, W12 within PFTF Area 6, was also surveyed and included in the analysis of PFTF Area 1 due to its close proximity to this area. The location of historical trawls conducted within this area between 1982–1997 for which habitat data were collected are shown in Figure 53.

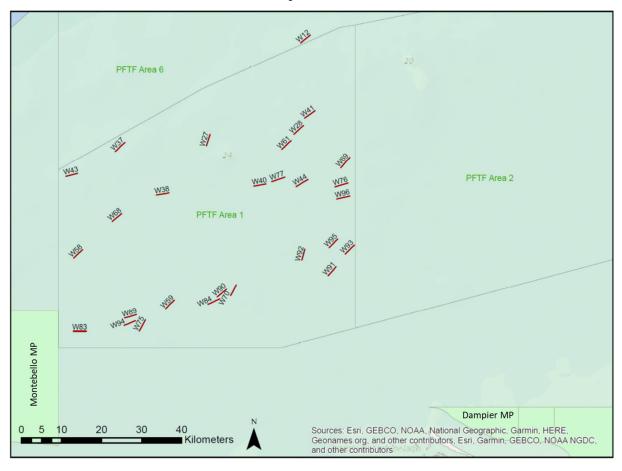


Figure 52. Location of INV2017_05 sites within PFTF Area 1, including Area 6. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D.

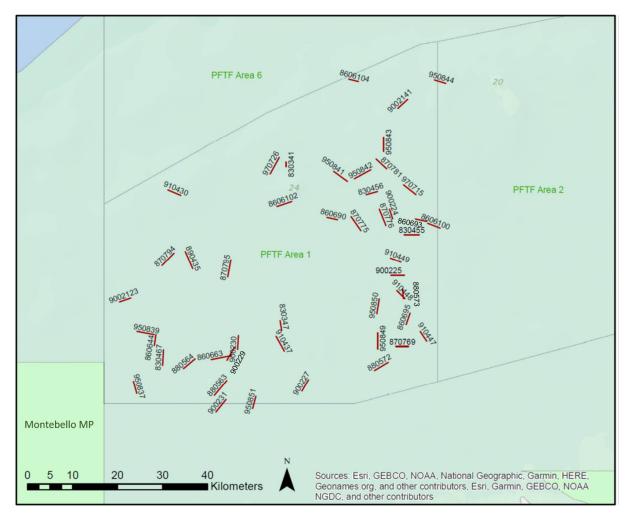


Figure 53. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 1, including Area 6. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997).

2.6.1 Water column analyses

CTD profiles were obtained at 21 sites within PFTF Area 1, including site W12 within PFTF Area 6 (Figure 54– Figure 59). Salinity varied little across sites within PFTF Areas 1 and 6, ranging from 34.8–35.05 psu. Salinity remained constant for most sites, showing either very slight increases or decreases with depth. Pycnoclines were recorded at sites W44, W69 and W95 at 20–30 m depth. The salinity profile at site W61 had an anomalous signal near the surface before the trace changed to a profile similar to the other sites within PFTF Area 1.

Temperature ranged from 23.5–26.5°C across sites, with both maximum and minimum values recorded at site W12 within Area 6. Obvious thermoclines were present at sites W38, W83 and W89, characterised by a decrease in temperature of roughly 0.5°C generally between 35–40 m depth. A larger reduction in temperature (roughly 1°C) was observed at site W40, with this shallower than other sites sitting at 20 m depth. Again, these temperature declines and subsequent formations of thermoclines generally coincided with an increase in chl-*a*. Site W43 showed a very subtle decrease in temperature from the surface to around 60 m depth, decreasing roughly 0.5°C over this depth range.

Dissolved oxygen ranged from 180–226 mg/L with decreases in DO levels generally recorded at 40 m. Sites W37 and W44 showed decreases in DO much shallower at 20 m depth, while changes at site W12 within PFTF Area 6, and sites W43 and W58 were deeper at around 60 m. This deeper decrease in DO at site W43 was also associated with a deep chl-*a* maximum and temperature change.

As with the areas inshore and west of the commercial trawl fishery, PAR profiles across sites within PFTF Areas 1 and 6 generally progressively diminished with depth. Six sites were characterised by near zero/zero PAR profiles (sites W37, W43, W69, W70, W84, W95 were all done in the ealy morning or late evening). Site W58 showed a steep reduction of PAR at 10 m depth. Light extinction ranged from 40–50 m, while at site W12 within PFTF Area 6 this was much deeper, at 65 m indicative of greater water clarity.

Chlorophyll-*a* ranged from 12.5–37.7 mg.m⁻² with maximum values generally reached at depths of 40–60 m. Sites W44 and W59 had chl-*a* maxima at 30–35 m, while site W43 had a deeper chl-*a* maximum at around 70 m – typical for this area. Like salinity, the chl-*a* profile at site W61 had an anomalous signal near the surface before the trace changed to a profile similar to the other sites within PFTF Area 1.

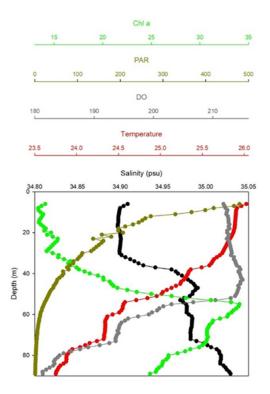


Figure 54. CTD profiles of water column parameters from site W12 within PFTF Area 6, combined with PFTF Area 1.

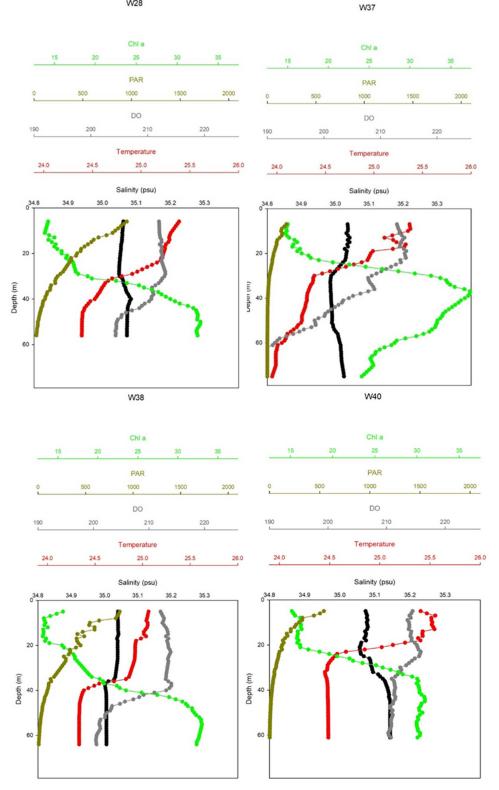


Figure 55. CTD profiles of water column parameters from sites W28, W37, W38 and W40 within PFTF Area 1.

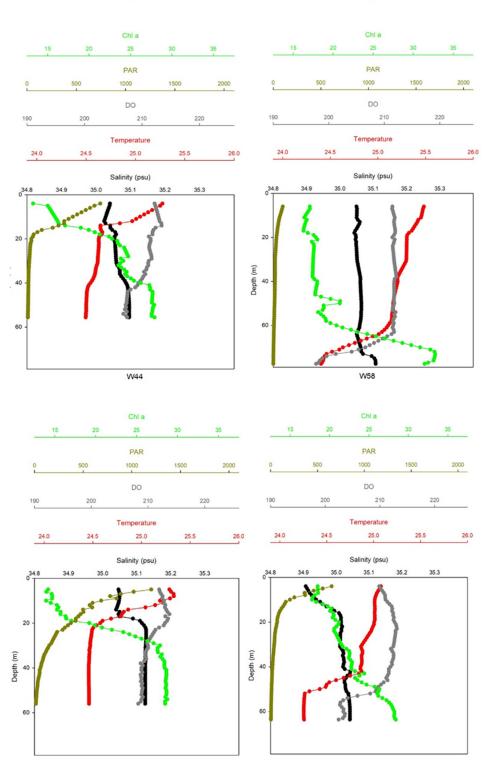
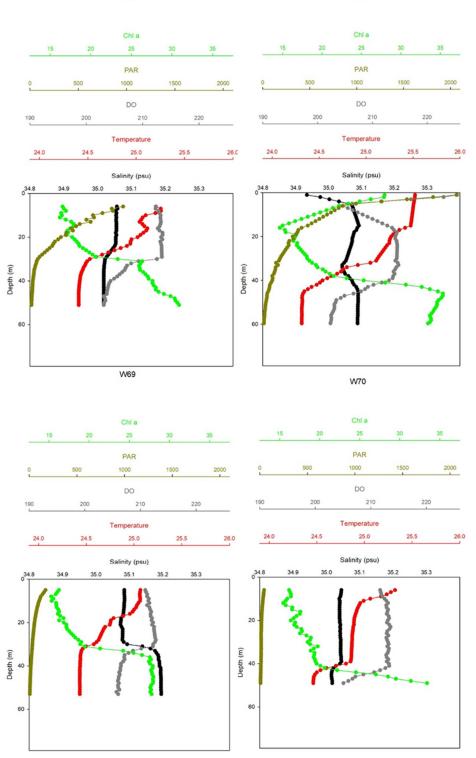



Figure 56. CTD profiles of water column parameters from sites W41, W43, W44 and W58 within PFTF Area 1.

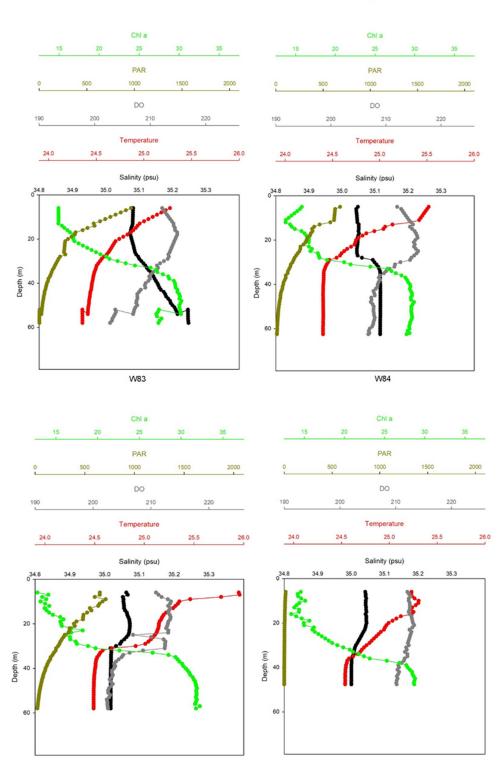
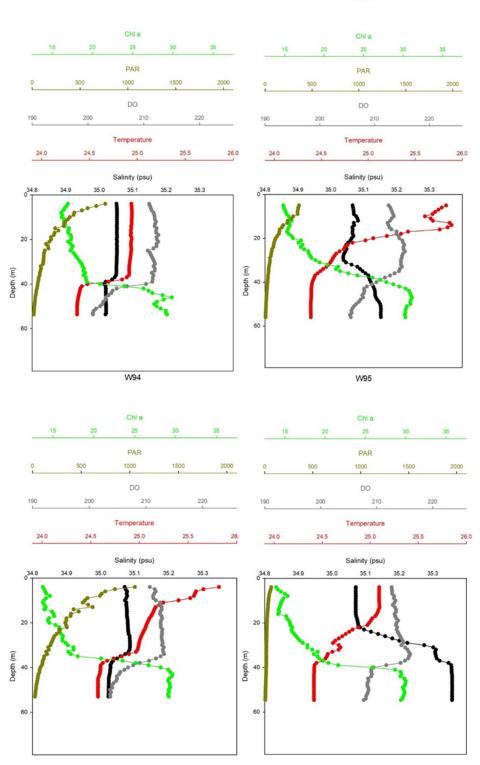
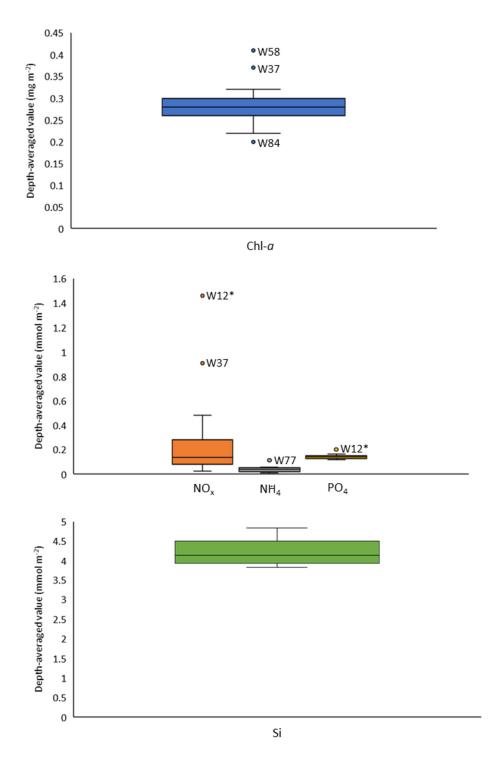



Figure 58. CTD profiles of water column parameters from sites W76, W77, W83 and W84 within PFTF Area 1.



Depth-averaged nutrient values were obtained at 19 sites within PFTF Area 1 and one site within PFTF Area 6 (Table 5, Figure 60). This site, site W12, was included in PFTF Area 1 as no other sites within PFTF Area 6 were surveyed. Total chl-*a* ranged from 0.20 to 0.41 mg m⁻² across sites, with the highest value recorded at sites W38 and W51. Nitrate concentrations ranged from 0.026 mmol m⁻² (site W44) to 1.462 mmol m⁻² (site W12 within PFTF Area 6). This value was far higher than all other sites, with the next highest value of 0.911 mmol m⁻² obtained at site W37. Mean ammonia ranged from 0.013–0.130 mmol m⁻² (sites W59 and W58, respectively) while silica was relatively consistent across sites, ranging from 3.821 (site W28) to 4.848 mmol ⁻² (site W70). Phosphate concentrations ranged from 0.120 mmol m⁻² at site W84, to 0.167 mmol m⁻² at site W39. Site W12, within PFTF Area 6, recorded a slightly higher PO₄ value than sites within PTFT Area 1 of 203 mmol m⁻².

Site	Mean total chl-a	Mean NO _x	Mean NH ₄	Mean PO ₄	Mean Si
l	(mg m ⁻²)	(mmol m ⁻²)			
W12*	0.23	1.462	nd	0.203	4.753
W28	0.28	0.203	0.038	0.141	3.821
W37	0.37	0.911	nd	0.167	4.645
W38	0.41	0.408	nd	0.134	4.508
W40	0.30	0.041	0.038	0.123	3.923
W41	0.26	0.118	0.042	0.151	3.823
W43	0.27	0.482	nd	0.143	4.182
W44	0.28	0.026	0.032	0.149	3.934
W58	0.41	0.117	0.130	0.162	4.141
W59	0.28	0.138	0.013	0.137	4.325
W61	0.32	0.312	0.019	0.137	4.065
W69	0.25	0.080	0.058	0.151	3.934
W70	0.29	0.156	0.019	0.143	4.848
W76	0.29	0.097	0.056	0.134	3.932
W77	0.26	0.063	0.115	0.151	4.081
W83	0.31	0.177	0.021	0.129	4.759
W84	0.20	0.030	0.011	0.120	4.175
W89	0.29	0.281	0.031	0.150	4.478
W92	0.23	0.125	0.038	0.127	3.896
W94	0.22	0.148	0.052	0.127	4.829
W95	0.26	0.061	0.053	0.121	3.969

Table 5. Nutrients (depth averaged values) for sites surveyed within PTFT Area 1. * denotes site within PFTF Area 6.
Nd denotes no data.

2.6.2 Sub bottom profiling INV2017_05 sites

Sub-bottom profiling of sites within PFTF Area 1 showed predominantly hard bottom or thin sediment over rock (Figure 61). Sites W58 and W89 were characteristed by thick sediment over rock, while sites W37 and W94 showed a combination of thin sediment and hard bottom. Site W41 was a mixture of thin sediment and hard bottom with areas of rocky outcrop, while site W75 was a combination of hard bottom and thick sediment. Site W12, within PTFT Area 6, was characterised by a mix of thin and thick sediments over rock and hard bottom.

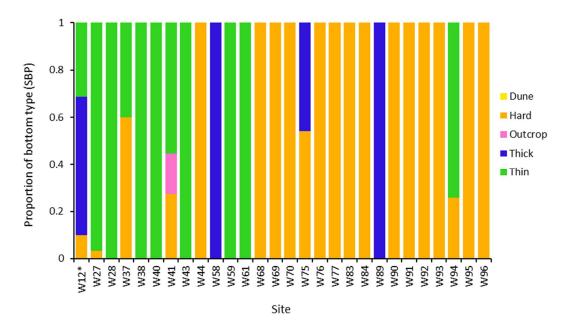
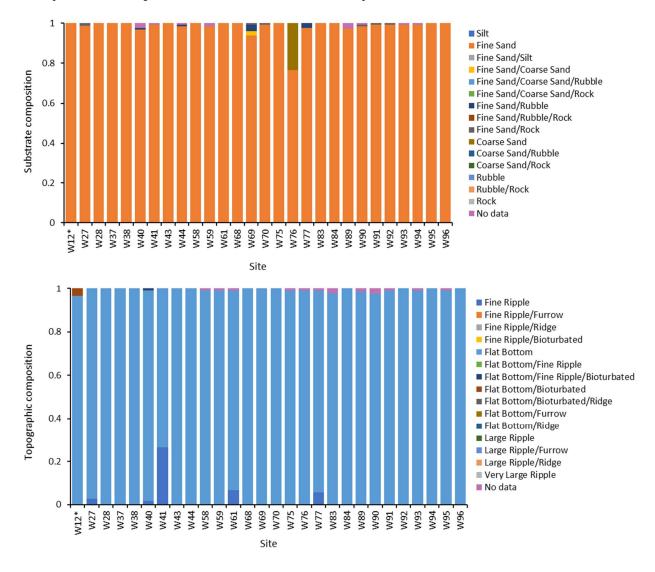



Figure 61. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Area 1. * denotes site within PFTF Area 6.

2.6.3 Substrate and topography

INV2017_05 survey sites

Substrate type was dominated by fine sand across all sites within the PFTF Area 1 (Figure 62, top). Site W76 showed the greatest proportion of coarse sand across all sites, making up approximately 25% of substrate composition. Shepard's plots of sediment classification confirmed substrate as predominantly sand (Figure 63). Substrate identified from images as fine sand at site W12, located farther north within PFTF Area 6 and slightly deeper, was classified by Shepard's plots as silty sand (Figure 64). Bottom topographic composition was dominated by flat bottom, while areas of fine ripples were also identified across some sites, most notably at site W41 (Figure 62, bottom). Site W12 was the only site where bioturbations were observed.

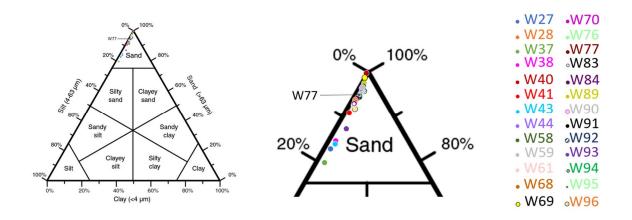


Figure 63. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Area 1 (excluding W12).

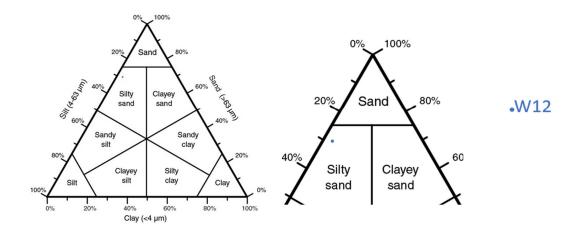
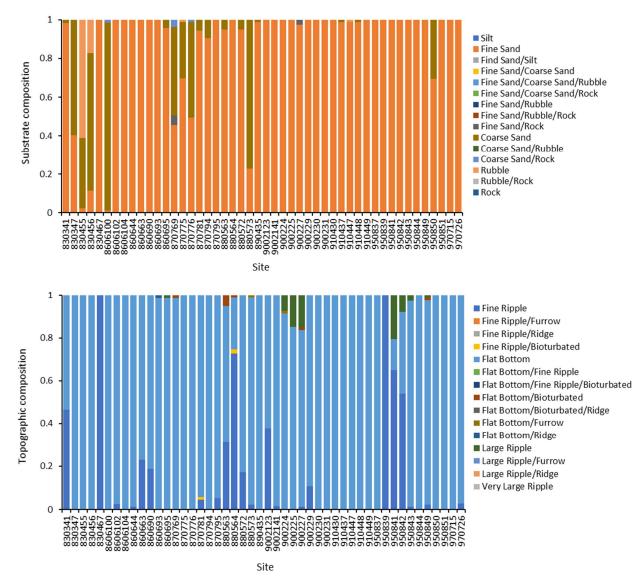



Figure 64. Shepard's plot of sediment classifications for INV2017_05 survey site W12 within PFTF Area 6.

CSIRO 1982–1997 survey sites

Historical surveys showed predominantly fine sandy substrates with some sites having combinations of fine sand, coarse sand and rubble (Figure 65, top). Rubble made up approximately 60% of substrate composition at site 830455. A greater proportion of coarse sand was identified across sites during historical surveys compared to those conducted during INV2017_05 surveys. Flat bottom and fine ripples dominated topographic composition (Figure 65, bottom). Large ripples were identified at eight sites, including sites 900225, 900227 and 950841, while bioturbated areas were also evident at some sites including site 880563.

2.6.4 Benthic biota

INV2017_05 survey sites

Biota varied considerably across sites within PFTF Area 1 (Figure 66, also see representative images in Appx Figure 37–Appx Figure 64. Note: no images available for site W85). Almost half of all sites recorded an absence of biota in more than 50% of images scored. High numbers of crinoids were evident at sites W28, W41, W59, W75, W89 and W94, while sponges were greatest at sites W70 and W90. Hydroids and whips were also abundant across sites and most notable at sites W76 and W84, and W93 and W96 respectively. Site W12, located within PFTF Area 6, showed very little benthic biota, with over 80% of images absent of biota.

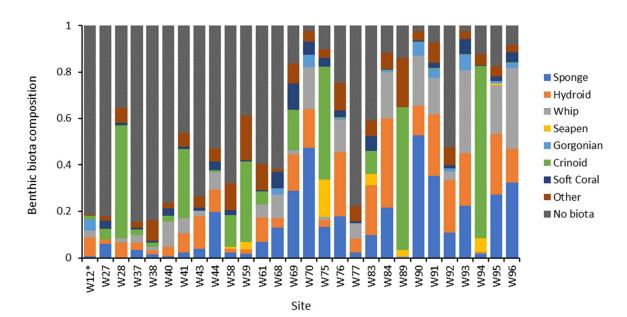


Figure 66. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 1. * denotes site within PFTF Area 6. 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

CSIRO 1982–1997 survey sites

As with INV2017_05 surveys, biota type varied considerably across sites within PFTF Area 1 (Figure 67). Sponges, whips, seapens and 'other' benthic biota including hydroids were the dominant biota types identified. Few soft corals and gorgonians were present. Approximately one third of sites had an absence of biota greater than 50%. While crinoids were less abundant during historical surveys (greatest contribution to biota composition at site 950839), a far greater proportion of seapens was identified across sites during historical surveys than in INV2017_05 surveys. 'Other' biota also comprised a larger proportion of benthic biota composition during historical surveys. Sponges were most dominant at site 830347.

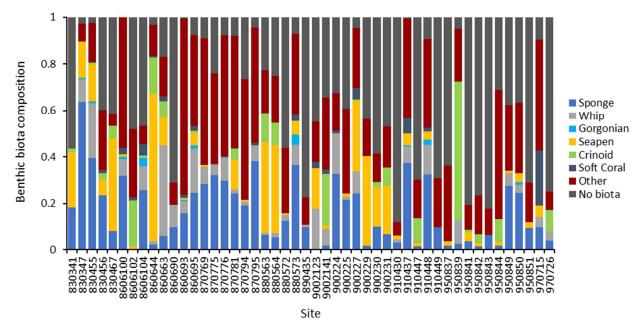


Figure 67. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 1. 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

2.7 Results from sites in Pilbara Fish Trawl Fishery Area 2

During the INV2017_05 voyage, 22 sites were surveyed within PFTF Area 2 (Figure 68). The location of historical trawls conducted within this area between 1982–1997 for which habitat data were collected are shown in Figure 69.

Figure 68. Location of INV2017_05 sites within PFTF Area 2. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D.

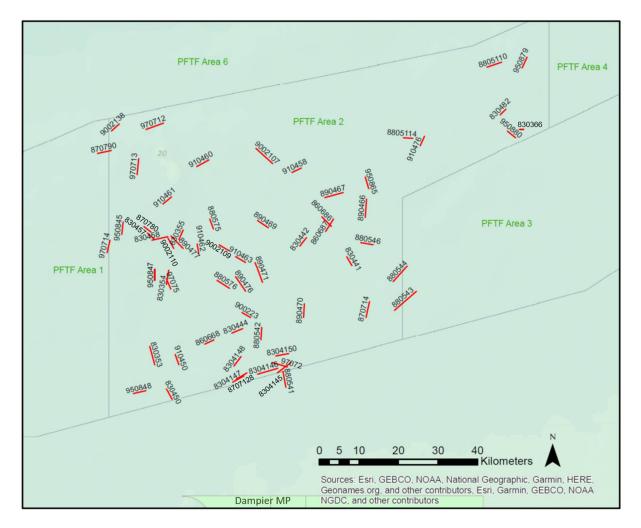


Figure 69. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 2. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997).

2.7.1 Water column analyses

CTD profiles were obtained for 13 sites within PFTF Area 2 (Figure 70–Figure 73). Again, salinity varied little across sites within PFTF Area 2 (< 1 psu), ranging from 34.8–35.5 psu. Salinity remained relatively constant for many sites with all sites showing an increase in salinity with depth. This increase was slight at most sites, except sites W62 and W63 which recorded the largest salinity variation, increasing 0.3 psu throughout the water column. Slight haloclines were recorded at sites W62 and W85 corresponding with depths of around 40 m. Layers of stratification were seen at some sites, again around 40 m depth. Site W29 and W33 showed this deeper at around 60 m while at site W72 this was closer to 20 m depth. Interestingly, site W87 showed stratification at two depths, evident at 20 m and 50 m.

Temperature ranged from 23.7–26.0°C across sites. Thermoclines were recorded at three sites (W29, W60 and W85). These were characterised at sites W60 and W85 by a decrease in temperature of 0.5-1°C at 20 m depth, while site W29 was much deeper, highlighted by a 1°C change at 60 m. Of note, temperature at site W26 remained steady throughout the water column before decreasing roughly 2°C between 40–70 m depth. Site W80 also showed a substantial decline of 1°C at a much shallower depth, between 10–20m. Again, temperature reductions and subsequent formations of thermoclines generally coincided with an increase in chl-*a*. This was not the case for sites W60 and W80 where temperature decreases were at shallower depths than chl-*a* increases.

Dissolved oxygen ranged from 185–217 mg/L with decreases in DO levels recorded at around 40 m for most sites. Sites W29 and W63 were the exception, with decreases in DO levels commencing a little deeper, at 60 m and 50 m, respectively. Most sites showed a subsurface maximum, generally at around 40 m, before progressively decreasing with depth. Sites W65 and W87 exhibited a more constant DO profile throughout the water column.

PAR profiles obtained within PFTF Area 2 generally showed a progressive diminishing with depth, with a steady decline recorded at most sites. Sites W29 and W60 recorded near zero PAR profiles with PAR dropping to zero at about 20 m depth, while site W65 was the only site to show a constant PAR of zero across all depths, due to this site being surveyed after 1800 h. PAR was generally reduced to zero at around 40–60 m depth while at four sites this occurred deeper at around 60–80 m.

Chlorophyll-*a* ranged from 10–37 mg.m⁻² and increased with depth until a maximum between 40–60 m before decreasing with depth. Site W65 was the only site to record a more constant chl-*a* rate within the water column.

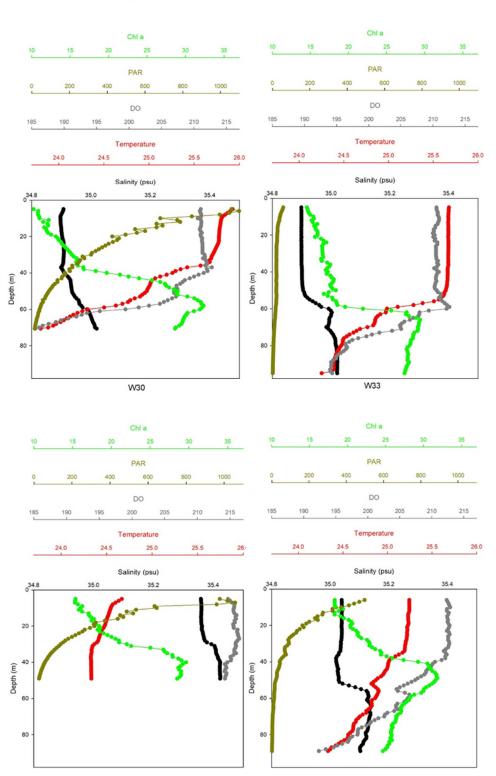


Figure 70. CTD profiles of water column parameters from sites W26, W29, W30 and W33 within PFTF Area 2.

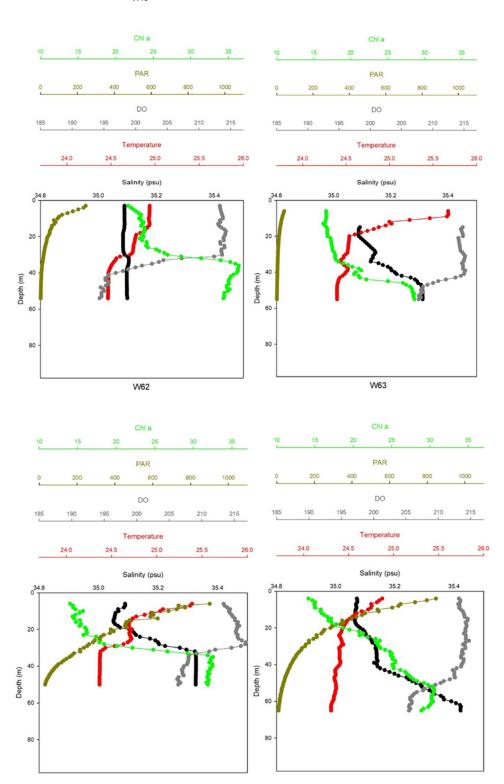


Figure 71. CTD profiles of water column parameters from sites W45, W60, W62 and W63 within PFTF Area 2.

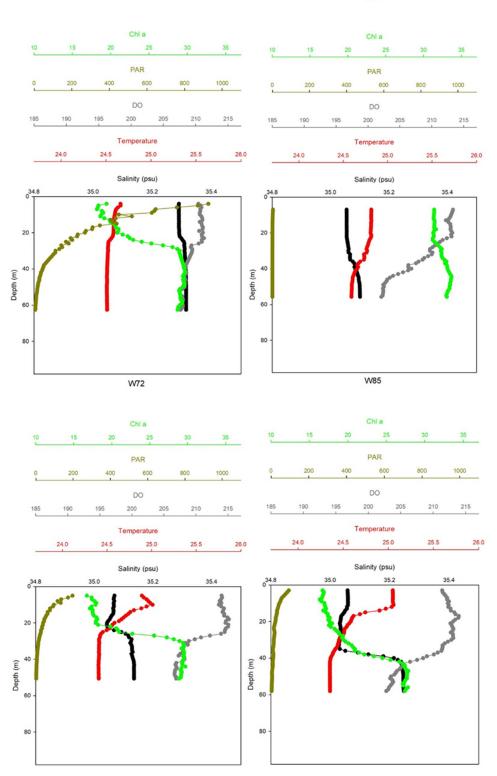


Figure 72. CTD profiles of water column parameters from sites W64, W65, W72 and W85 within PFTF Area 2.

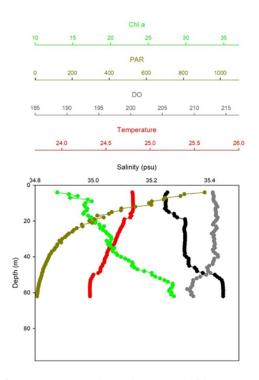


Figure 73. CTD profiles of water column parameters from sites W87 within PFTF Area 2.

Depth-averaged nutrient values were obtained at 13 sites within PFTF Area 2 (Table 6, Figure 74). Total chla ranged from 0.18 to 0.61 mg m⁻² across sites, with the highest value recorded at site W65 and lowest at W26. Nitrate concentrations ranged from 0.019 mmol m⁻² (site W30) to 1.266 mmol m⁻² (site W26). Mean ammonia ranged from 0.001–0.110 mmol m⁻² (sites W26 and W87, respectively) while silica ranged from 3.677 (site W30) to 4.864 mmol ⁻² (site W26). Phosphate concentrations ranged from 0.116 mmol m⁻² at site W72, to 0.197 mmol m⁻² at site W45. Site W26 recorded the highest nutrient values for NO_x and silica and lowest values for total chl-*a* and NH₄.

Site	Mean total chl-a	Mean NO _x	Mean NH ₄	Mean PO ₄	Mean Si
	(mg m ⁻²)	(mmol m ⁻²)			
W26	0.18	1.266	0.001	0.186	4.864
W29	0.23	0.626	0.007	0.147	3.874
W30	0.29	0.019	0.034	0.145	3.677
W33	0.31	0.798	0	0.169	4.338
W45	0.54	0.586	nd	0.197	4.723
W60	0.26	0.084	0.056	0.136	4.054
W62	0.36	0.066	0.043	0.140	4.174
W63	0.32	0.124	0.281	0.122	3.865
W64	0.36	0.076	0.022	0.172	4.677
W65	0.61	0.275	0.005	0.155	4.053
W72	0.28	0.116	0.075	0.116	3.925
W85	0.23	0.132	0.101	0.140	3.991
W87	0.31	0.054	0.110	0.138	4.104

Table 6. Nutrients	(depth averag	ed values) for sites	surveyed within PFTF	Area 2. Nd denotes no data.
	(

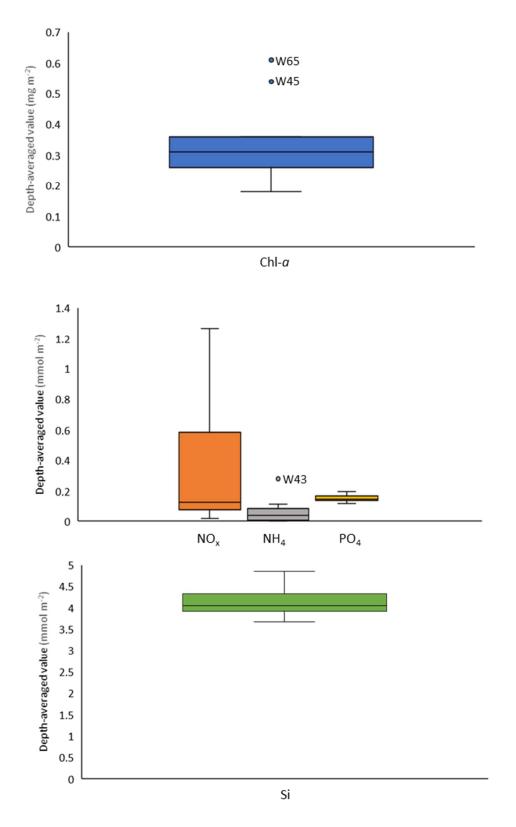


Figure 74. Depth-averaged nutrient values for sites surveyed within PFTF Area 2. Box plots show the median, 25th and 75th percentiles and outliers falling outside the 10th and 90th percentiles.

2.7.2 Sub-bottom profiling – INV2017_05

Sub-bottom profiling of sites within PFTF Area 2 varied across sites (Figure 75). Most sites were classified as either hard bottom or thin sediment over rock, or a combination of hard bottom and thick (site W26) or thin sediment (W30, W42 W63 and W65). Site W64 was classified as thick sediment over rock, while W87 was thin sediment only. Sites W32 and W66 were characterised by a combination of hard bottom and rocky outcrop.

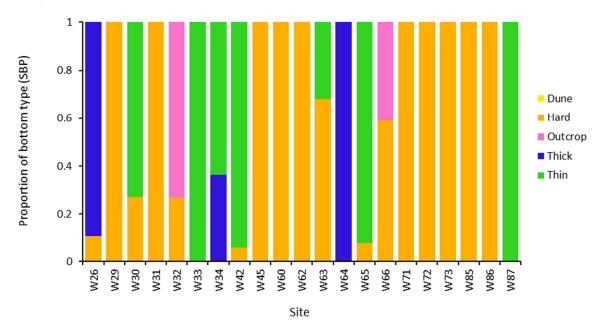


Figure 75. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Area 2.

2.7.3 Substrate and topography

INV2017_05 survey sites

Similar to PTFT Area 1, substrate type in PFTF Area 2 was dominated by fine sand (Figure 76, top). Coarse sand was notably high at site W72. Shepard's plots of sediment classification confirmed sediment type as sand (Figure 77). Topography was predominantly flat bottom across all sites except site W34 which showed a large proportion of fine ripples (Figure 76, bottom). Bioturbations were evident at sites W66 and W73.

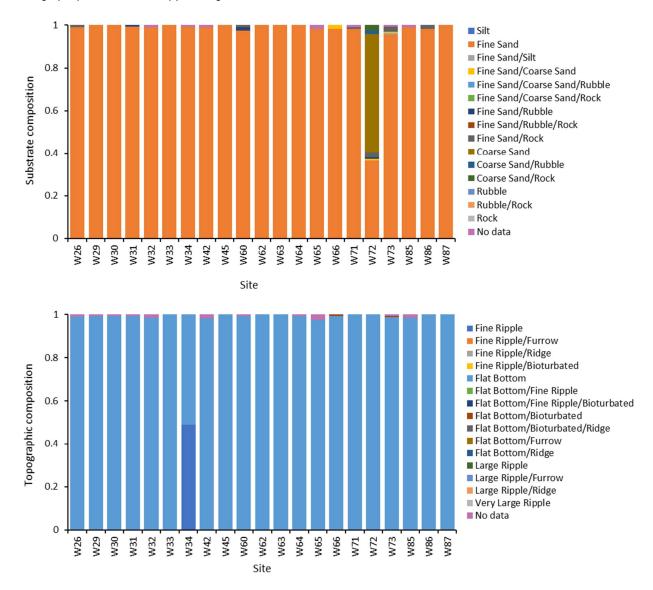


Figure 76. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 2.

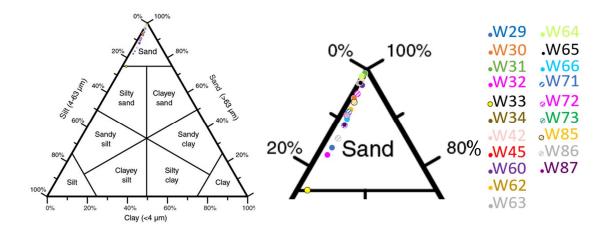


Figure 77. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Area 2.

CSIRO 1982–1997 survey sites

Fine and coarse sand substrates dominated historical survey sites in PFTF Area 2 (Figure 78, top). Rubble was evident at some sites, notably sites 830458 and 830457, while silty sediment was observed at site 8805110. Flat bottom and fine ripples were the most common topographic types across all sites (Figure 78, bottom). Very large ripples were evident at site 97072, while bioturbations were also identified at some sites including 830442, 830444 and 8805110.

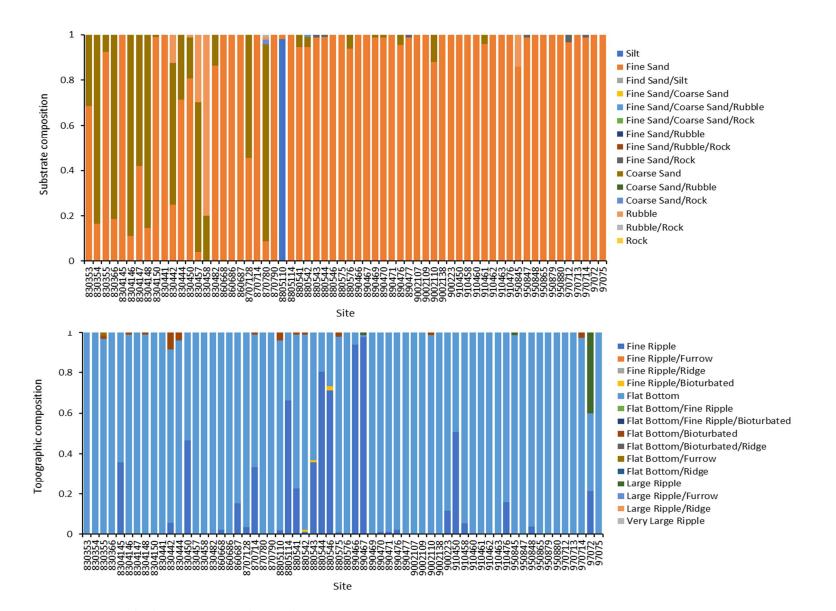


Figure 78. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 2.

Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment | 99

2.7.4 Benthic biota

INV2017_05 survey sites

Similar to PFTF Area 1, biota abundance and diversity varied between sites within PFTF Area 2 (Figure 79, also see representative images in Appx Figure 65–Appx Figure 84**Error! Reference source not found.**). While site W26 was dominated by gorgonians, crinoids were greatest at sites W30, W42 and W65. Whips were greatest at sites W60, W72 and W85, and sponges were identified mainly at sites W60 and W86. Seapens were evident at eight sites in PFTF Area 2. Ten sites showed a low proportion of benthic biota, notably at sites W33, W34, W64 and W87.

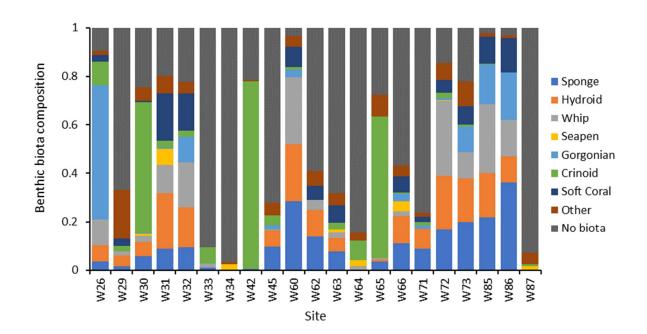


Figure 79. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 2. 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

CSIRO 1982–1997 survey sites

Biota types were variable across sites in PFTF Area 2 during CSIRO 1982–1997 surveys, with higher proportions of sponges, seapens and 'other' biota (including hydroids) present at most sites than during INV2017_05 surveys (Figure 80). Seapens and sponges were present at most sites, with sponges most notable at sites 830355, 830457 and 910461. Sites 830355, 950845, 870780, 830457 and 910461 showed the greatest proportion of biota in general (98–100%), compared to all other sites. Crinoids were greatest at sites 880544, 970713 and 880546, while the highest proportion of whips was at site 830355. Although diverse and abundant at many sites, benthic biota was identified in less than 50% of images for almost half of all sites (29 of 62 sites). Biota at these sites were very limited, with two of these – sites 97075 and 870790, having biota present in only 5% and 6% of images, respectively.

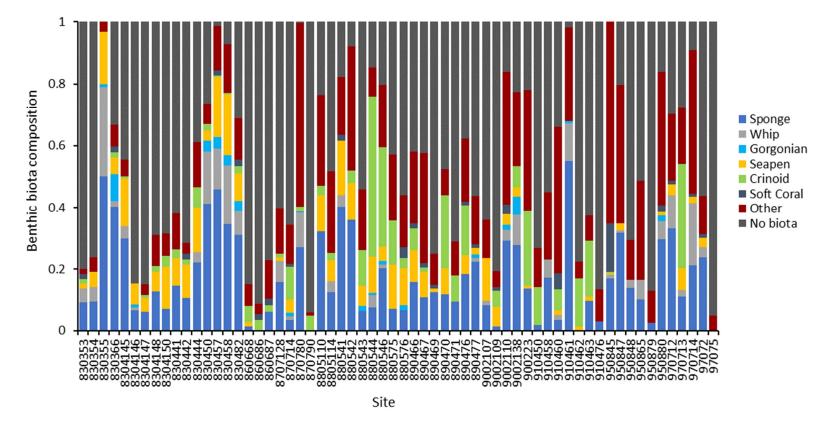


Figure 80. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 2. 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment | 101

2.8 Results from sites in Pilbara Fish Trawl Fishery Area 3

During the INV2017_05 voyage, eight sites were surveyed within PFTF Area 3 (Figure 81). The location of historical trawls conducted within this area between 1982–1997 for which habitat data were collected are shown in Figure 82.

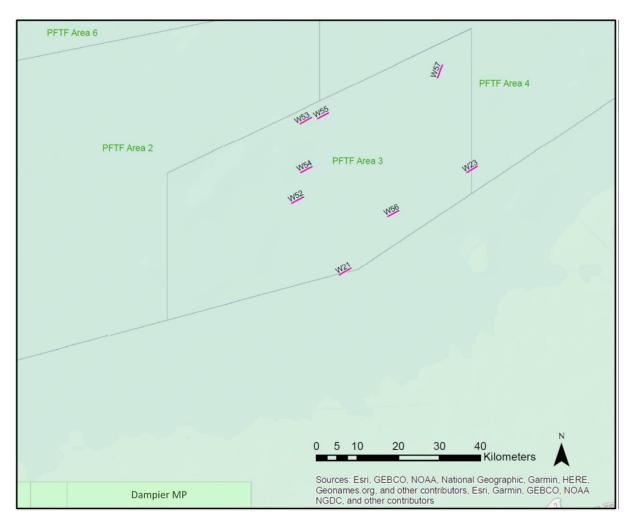


Figure 81. Location of INV2017_05 sites within PFTF Area 3. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D.

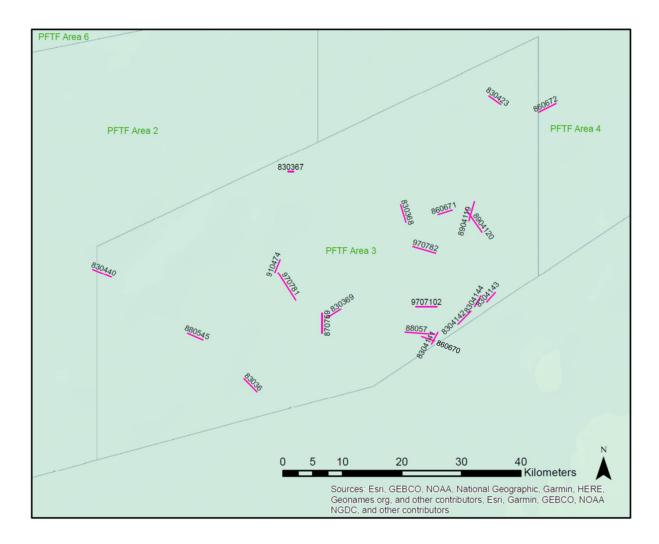


Figure 82. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 3. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997).

2.8.1 Water column analyses

CTD profiles were obtained at six sites within PFTF Area 3 (Figure 83 and Figure 84). Salinity again varied little across sites, ranging from 34.9–35.35 psu. Profiles remained relatively constant throughout the water column, with slight increases with depth observed at all sites except site W52 which showed a decrease with depth following a halocline at around 25 m.

Sites surveyed within PFTF Area 3 showed the smallest variation in temperature of all sites (1°C), ranging from 24.5–25.5°C. All sites recorded a decrease in temperature with depth, except site W52 which showed an increase in temperature at 25–30 m depth coinciding with a halocline, before once again decreasing. No thermoclines were recorded at these sites.

Dissolved oxygen ranged from 200–216 mg/L with decreases in DO levels recorded at depths of 40–50 m, except site W56 where this reduction occurred slightly shallower at around 35 m. Site W55 recorded an increase in DO at 60–70 m depth. Little discernible patterns in DO were evident at sites W21, W52 and W57.

Once again, PAR profiles for most sites within PFTF Area 3 showed a progressive decrease with depth declining to zero at 40–60 m. Site W56 was the exception, recording a constant zero PAR throughout the water column due to the CTD cast being carried out in the evening.

Chlorophyll-*a* ranged from 10–35 mg.m⁻² with maximums reached at 50–60 m depth, except site W57 which recorded a slightly shallower chl-*a* maxima (~ 40 m). The chl-*a* profile at site W21 had an anomalous signal near the surface before the trace changed to a profile similar to the other sites within PFTF Area 3.

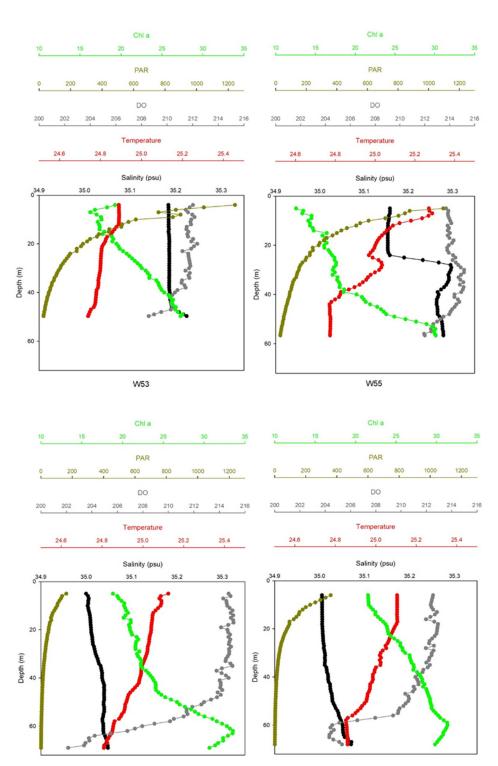


Figure 83. CTD profiles of water column parameters from sites W21, W52, W53 and W55 within PFTF Area 3 (currently closed to fishing).

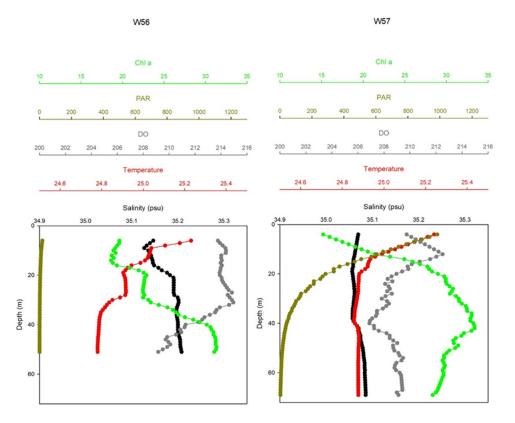


Figure 84. CTD profiles of water column parameters from sites W56 and W57 within PFTF Area 3 (currently closed to fishing)

Depth-averaged nutrient values were obtained at six sites within PFTF Area 3 (Table 7, Figure 85). Total chl*a* was relatively consistent across sites, ranging from 0.24 mg m⁻² at site W52 to 0.43 mg m⁻² W57. Nitrate concentrations ranged from 0.018 mmol m⁻² (again at site 52) to 0.172 mmol m⁻² (site W55). Mean ammonia ranged from 0.005–0.06 mmol m⁻² (sites W53 and W56, respectively). Like chl-*a*, silica was consistent across sites, ranging from 3.187–3.614 mmol ⁻². Phosphate concentrations ranged from 0.135 mmol m⁻² at site W55, to 0.178 mmol m⁻² at site W21.

Site	Mean total chl-a	Mean NO _x	Mean NH ₄	Mean PO ₄	Mean Si
	(mg m ⁻²)	(mmol m ⁻²)			
W21	0.29	0.029	0.045	0.178	3.510
W52	0.24	0.018	0.008	0.161	3.614
W53	0.33	0.177	0.005	0.142	3.187
W55	0.37	0.172	0.036	0.135	3.557
W56	0.29	0.034	0.06	0.141	3.564
W57	0.43	0.113	0.054	0.143	3.557

Table 7. Nutrients (depth averaged values) for sites surveyed within PTFT Area 3 (currently closed to fishing).

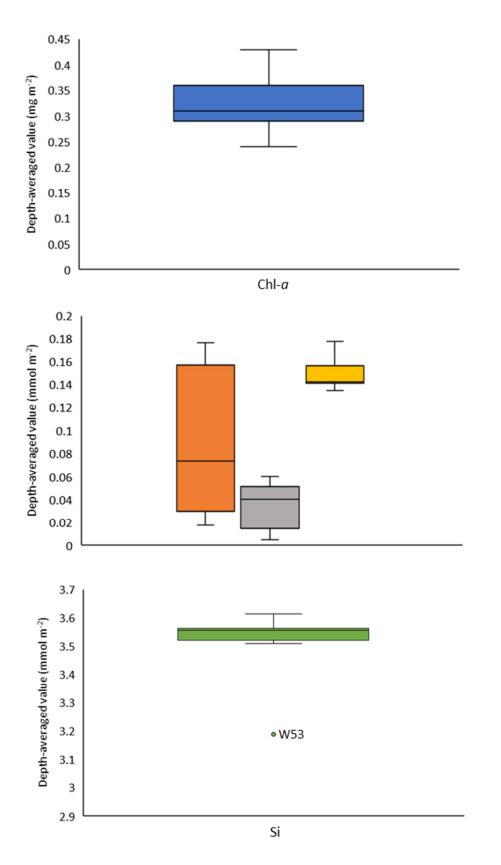


Figure 85. Depth-averaged nutrient values for sites surveyed within PFTF Area 3 (currently closed to fishing). Box plots show the median, 25th and 75th percentiles and outliers falling outside the 10th and 90th percentiles.

2.8.2 Sub-bottom profiling – INV2017_05

Sub-bottom profiling of sites within PFTF Area 3 varied across sites (Figure 86). Again, most sites were classified as either hard bottom or thin sediment over rock. Site W21 was classified as predominantly thin sediment over rock with hard bottom making up around 20% of bottom type at this site. Site 54 was characterised by thick sediment over rock only, while site W87 was a combination of thick and thin sediment types.

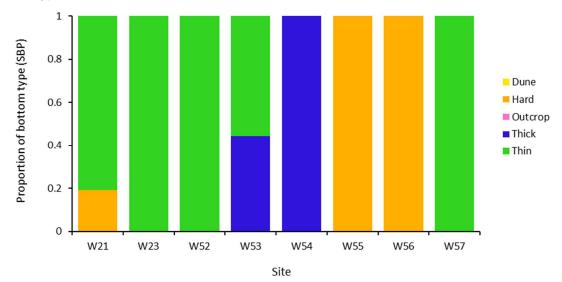


Figure 86. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Area 3, currently closed to fishing.

2.8.3 Substrate and soft-bottom topography

INV2017_05 survey sites

Substrate type within PFTF Area 3 was vastly dominated by fine sand (Figure 87, top). A very small proportion of rock was identified at site W56. Shepard's plots confirmed these identifications, classifying sediment at all sites as sand (Figure 88). Topography was once again dominated by flat bottom, while fine ripples were identified at sites W54 and W57 (Figure 87, bottom).

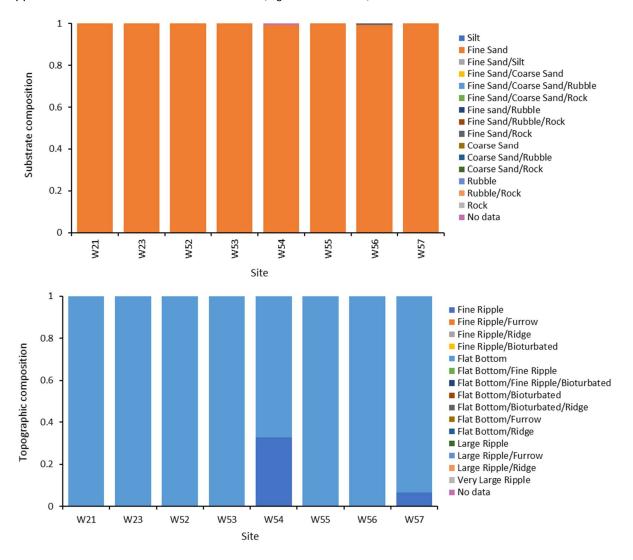


Figure 87. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 3 (currently closed to fishing).

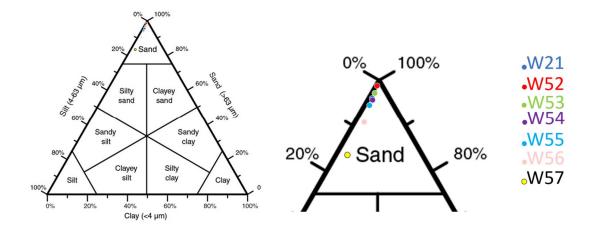
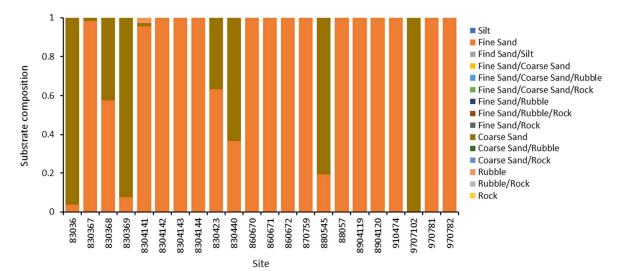



Figure 88. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Area 3 (currently closed to fishing).

CSIRO 1982–1997 survey sites

Historical surveys indentified fine and coarse sandy substrates within PFTF Area 3 (Figure 89, top). Sites 83036 and 830369 were vastly dominated by coarse sand, with this making up 100% of the sediment composition at site 9707102. Rubble was only identified at site 8304141. Flat bottom and fine ripples dominated topographic composition across sites (Figure 89, bottom). A very small proportion of ridge topography was identified at site 8304142.

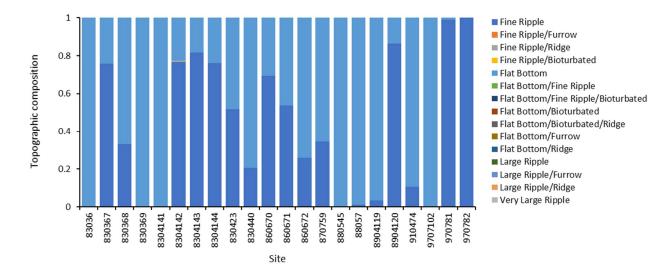


Figure 89. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 3 (currently closed to fishing).

2.8.4 Benthic biota

INV2017_05 survey sites

Interestingly, sites within PFTF Area 3 – which is currently closed to fishing – showed little biota across all eight sites (Figure 90, also see representative images in Appx Figure 85–Appx Figure 92). Of the biota present, hydroids, crinoids and whips made up the greatest proportion. Site W56 showed the greatest proportion of biota in PFTF Area 3 (approximately 40%). This site also had the highest proportion of sponges and whips, while hydroids were greatest at site W57.

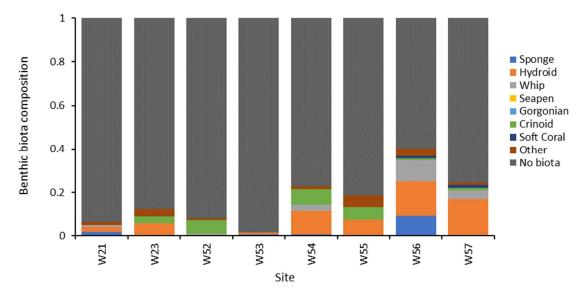


Figure 90. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 3 (currently closed to fishing). 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

CSIRO 1982–1997 survey sites

Although currently closed to fishing operations, greater proportions of biota were identified across all sites in PFTF Area 3 during historical surveys (Figure 91, also see representative images in Appx Figure 93–Appx Figure 98) than during INV2017_05 surveys. Approximately half of sites had a proportion of benthic biota greater than 40%, compared to all sites having less than this during INV2017_05 surveys. Site 970782 was predominantly void of biota, while site 8304143 did not have any biota identified from images. Sponges, seapens and 'other' biota including hydroids contributed largely across PFTF Area 3. Notably, the highest proportion of biota was evident at site 870759 (92%). Both seapens and crinoids contributed the greatest to benthic biota composition at site 830440, while the proportion of sponges was greatest at sites 8904119 and 8304142.

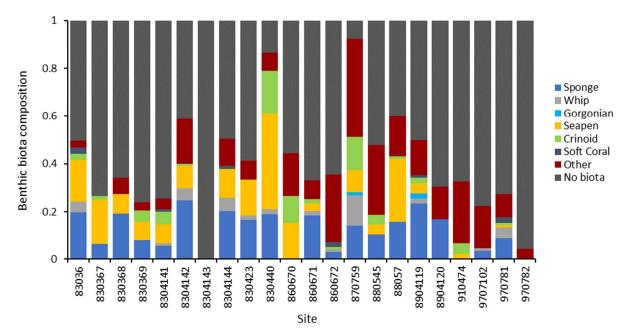


Figure 91. Proportion of biota types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 3 (currently closed to fishing). 'Other' includes hydroids, filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

2.9 Results from sites in Pilbara Fish Trawl Fishery Area 4

During the INV2017_05 voyage, six sites were surveyed within PFTF Area 4 (Figure 92). The location of historical trawls conducted within this area between 1982–1997 for which habitat data were collected are shown in Figure 93.

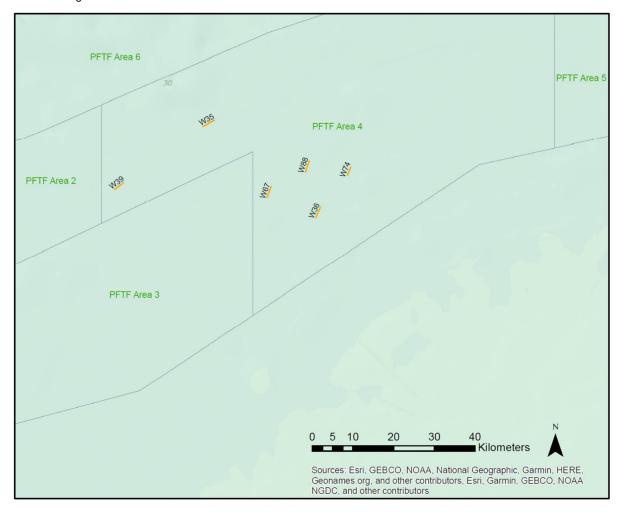


Figure 92. Location of INV2017_05 sites within PFTF Area 4. Table showing start/end latitude and longitude for each trawl transect is given in Appendix D.

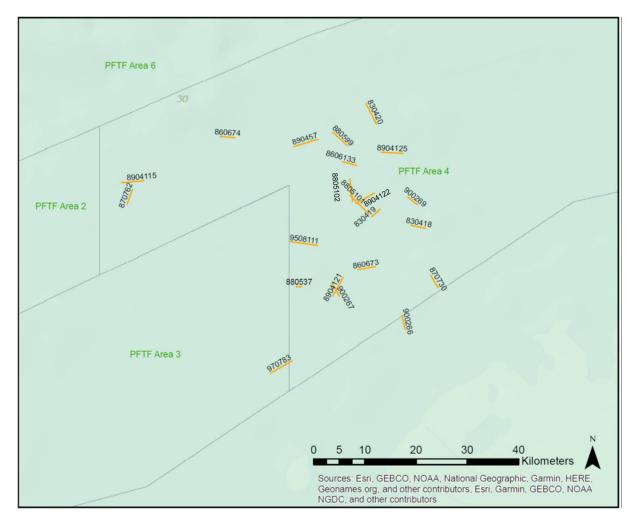
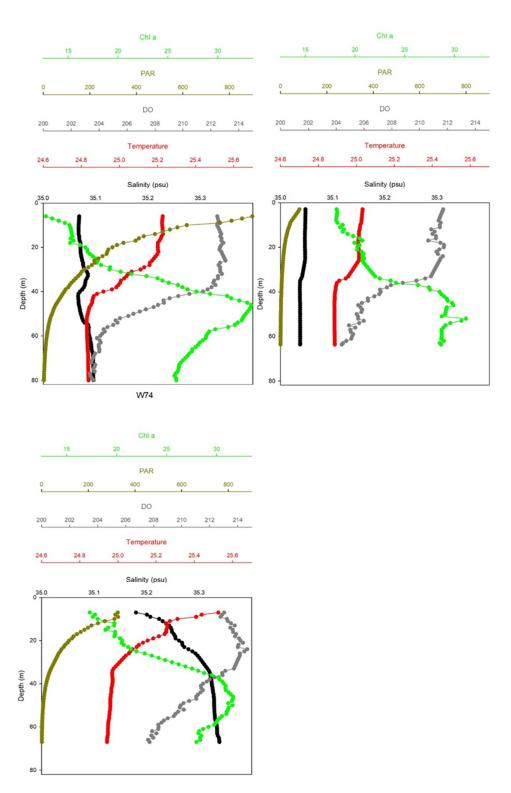


Figure 93. Location of historical CSIRO 1987–1997 trawls for which habitat data were collected within PFTF Area 4. Table showing start/end latitude and longitude for each trawl transect is given in Appendix E. Trawl number = year, voyage and site number (e.g. 970758 was site 58 on the seventh voyage in 1997).

2.9.1 Water column analyses

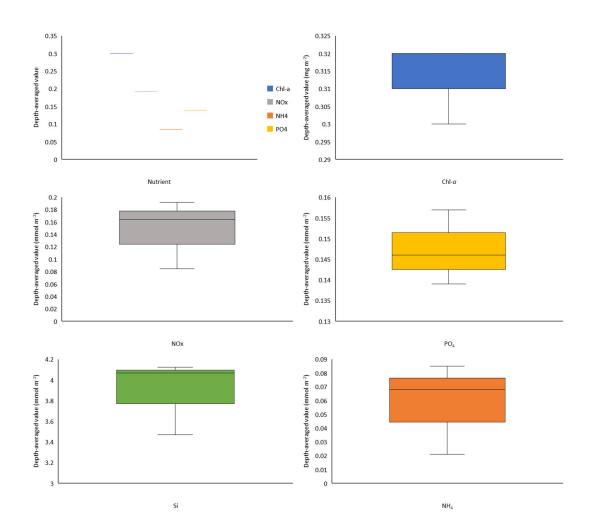

CTD profiles were obtained for three sites within PFTF Area 4 (Figure 94). Salinity again varied very little across sites (< 0.5 psu) within PFTF Area 4, ranging from 35.0–35.4 psu. Salinity remained constant for sites W39 and W67, while site W74 differed from these two profiles, continuously increasing with depth.

Temperature ranged from 24.6–25.7°C. All sites were characterised by a decrease in temperature with depth to 40 m before becoming well-mixed. No thermoclines were recorded, however, a decrease in temperature of around 0.3°C between 10–15 m depth was observed at site W74 before, like the other two sites, becoming well-mixed at 40 m.

Dissolved oxygen ranged from 200–215 mg/L with reductions in DO levels evident at 40 m depth. Sites W39 and W67 showed a DO maximum near the surface and an area of well-mixed water below with concentrations decreasing with depth below 40 m. Site W74, however, recorded a subsurface maximum, with DO increasing to 30 m before decreasing below this depth.

While all sites recorded a diminishment in PAR with depth, the PAR profiles of these sites varied somewhat. Site W39 recorded a large decrease in PAR (the largest decrease of the three sites) within the top 20 m of the water column. Site W74 showed a similar shaped profile, although PAR levels and subsequent diminishment were less dramatic, while site W67 recorded an almost constant PAR of zero below 25 m.

Chlorophyll-*a* ranged from 12.5-33.5 mg.m⁻² and increased with depth to a maximum between 40–60 m at all sites. A spike in chl-*a* was recorded at roughly 55 m depth at site W67 before once again decreasing at 60 m.



Depth-averaged nutrient values were obtained at three sites within PFTF Area 4 (Table 8, Figure 95). Total chl-*a* was consistent across sites, ranging from 0.30 mg m⁻² at site W39 to 0.32 mg m⁻² at both sites W67 and W74. Nitrate concentrations ranged from 0.085 mmol m⁻² (site W74) to 0.192 mmol m⁻² (site W39). Mean ammonia ranged from 0.021–0.085 mmol m⁻² (sites W67 and W39, respectively). Silica ranged from 3.471–4.124 mmol ⁻² (sites W39 and W67, respectively) Phosphate concentrations ranged from 0.139 mmol m⁻² to 0.157 mmol m⁻² at site W74. Minimum nutrient values for silica and phosphate were both recorded at site W39.

Site	Mean total chl- <i>a</i> (mg m ⁻²)	Mean NO _x (mmol m ⁻²)	Mean NH ₄ (mmol m ⁻²)	Mean PO ₄ (mmol m ⁻²)	Mean Si (mmol m ⁻²)
W35	No sample	No sample	No sample	No sample	No sample
W36	No sample	No sample	No sample	No sample	No sample
W39	0.30	0.192	0.085	0.139	3.471
W67	0.32	0.164	0.021	0.146	4.124
W74	0.32	0.085	0.068	0.157	4.069
W88	No sample	No sample	No sample	No sample	No sample

Table 8. Nutrients (depth averaged values) for sites surveyed within PTFT Area 4.

2.9.2 Sub-bottom profiling – INV2017_05

Sub-bottom profiling of sites within PFTF Area 4 were predominantly characterised as hard bottom or a combination of hard bottom and thin sediment over rock (Figure 96). Two sites, W35 and W67, also showed sand dune formations, while a small proportion of outcrop was evident at site W39.

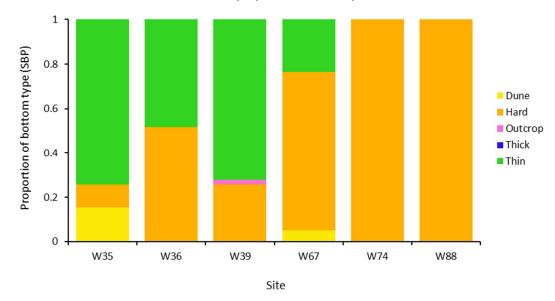
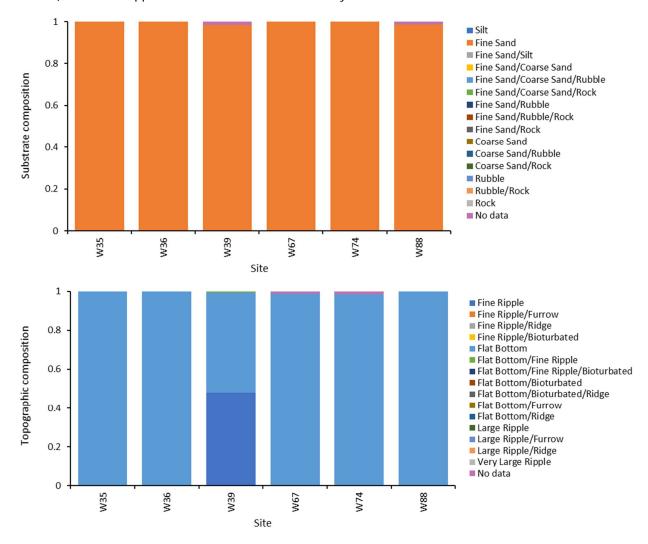
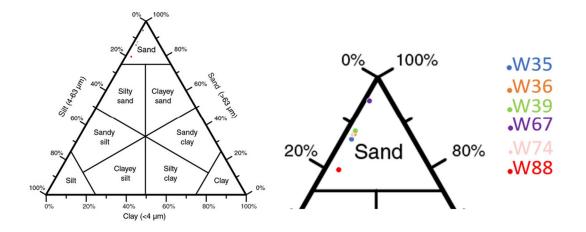
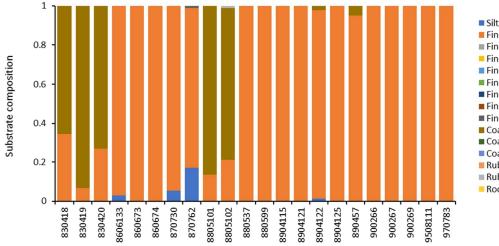



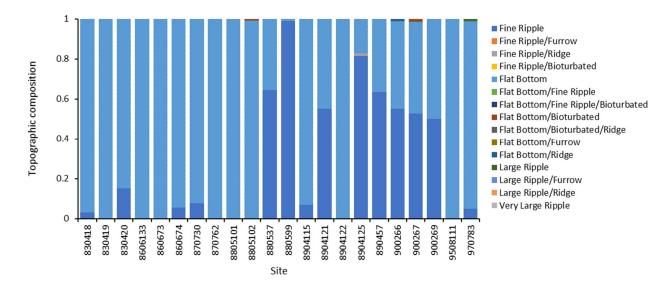
Figure 96. Proportion of bottom types determined using SBP for INV2017_05 sites within PFTF Area 4.

2.9.3 Substrate and topography

INV2017_05 survey sites

Fine sandy substrate dominated across all sites within PFTF Area 4 (Figure 97, top), confirmed using Shepard's plots of sediment classification (Figure 98). Flat bottom was evident at all sites (Figure 97, bottom), while fine ripples were identified at site W39 only.


Figure 98. Shepard's plot of sediment classifications for INV2017_05 survey sites within PFTF Area 4.

CSIRO 1982–1997 survey sites

Fine sand and a combination of fine and coarse sandy substrates were observed at all sites in PFTF Area 4 during historical surveys (Figure 99, top). Silt was identified at four sites (8606133, 870730, 870762 and 8904122). Very small proportions of rubble and rock were also identified at sites 870762 and 8805102. Topographic composition was once again dominated by flat bottom and fine ripples (Figure 99, bottom). Large ripples and ridges made up small proportions of topographic composition at sites 970783, and 900266 and 8904125, respectively. Bioturbations were present at sites 900267 and 8805102.

Site

Figure 99. Proportion of substrate (top) and topography (bottom) types in seabed images along trawl lines for historical CSIRO 1982–1997 survey sites within PFTF Area 4.

2.9.4 Benthic biota

INV2017_05 survey sites

As with INV2017_05 surveys of PFTF Area 3, all sites within PFTF Area 4 had small proportions of biota present (Figure 100, also see representative images in Appx Figure 93–Appx Figure 98Appendix C). Of the biota types present, hydroids and 'other' biota made up the greatest proportion. Sites W67, W74 and W88 showed the highest proportions of benthic biota, with all three dominated by hydroids. Soft corals were also identified at all sites except site W35.

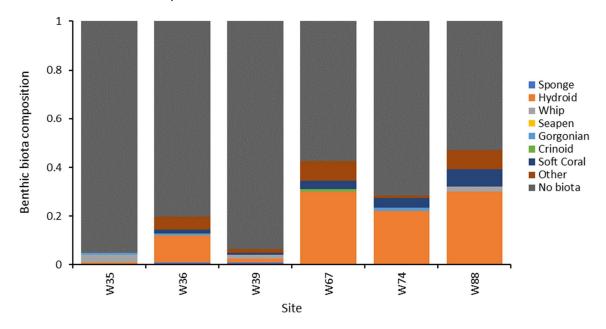
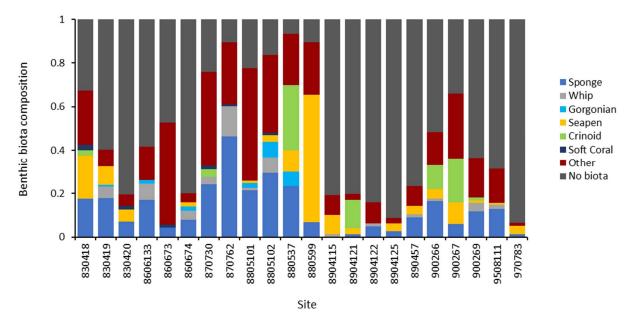



Figure 100. Proportion of biota types in seabed images along trawl lines for INV2017_05 survey sites within PFTF Area 4. 'Other' includes both filter feeders which could not be accurately allocated to a specific group because of image quality and other benthic organisms not otherwise listed.

CSIRO 1982–1997 survey sites

Greater proportions of biota were identified within PFTF Area 4 during historical surveys (Figure 101) than during INV2017_05 surveys. While only two INV2017_05 sites showed proportions of biota greater than 40% (42% at site W67 and 47% at site W88), approximately half of all historical sites exceeded this, with some sites showing proportions of greater than 80% (sites 870762, 8805102 and 880599) and up to 93% (site 880537). Sponges and 'other' biota including hydroids dominated benthic biota types. Crinoids were greatest at site 880537, while seapens were the dominant biota type at site 880599. 'Other' biota were identified at all sites, making up the largest proportions at sites 8805101, 860673 and 870730.

3 Characterisation of fish and benthic filter feeder fauna assemblages

John Pogonoski, Monika Bryce and Belinda Alvarez (CSIRO Oceans and Atmosphere)

3.1 Overview

A key focus for this study was the association and dependencies of demersal fish assemblages on benthic habitat forming filter feeders, principally sponges and soft corals, which are disturbed and/or damaged by trawling. This chapter describes the species assemblages of fishes, sponges and soft corals sampled on the 2017 voyage. The work on identification of the fish is complete and is advanced for the sponges and soft corals. While the full diversity of sampled fishes will be presented in the final report, it was not possible to identify all sponges and soft corals captured at all stations. However, all soft corals that were vouchered from each station haven been identified as has a large proportion of the sponges. For the benthic filter feeders a greater emphasis was placed on a complete analysis of catch numbers and biomass of the different growth forms at each station rather than on an exhaustive taxonomic effort.

3.2 Fishes

3.2.1 Taxonomic and Collection Scope

Fishes were collected using a CSIRO Semi V Wing trawl net (McKenna trawl net) or an epibenthic sled (Pitcher et al. 2016) at 103 stations including 100 stations within the study area during the RV Investigator Voyage (INV2017_05).

Fishes were sorted onboard into species or operational taxonomic units (OTUs), depending on level of difficulty, given time constraints to clear the catch. Voucher specimens were photographed, sampled for genetics and either preserved onboard in 10% formaldehyde or frozen for later fixation. Counts and weights of each taxon were recorded and databased. In almost all cases, large sharks and rays were photographed, measured, fin-clipped for genetic analyses and released alive. A reference collection of the vast majority of species (excluding most large elasmobranchs) has been registered and deposited into the CSIRO Australian National Fish Collection (ANFC), Hobart.

To maintain consistency with taxonomic identifications, most fishes were identified onboard by John Pogonoski, with assistance from Alastair Graham (both CSIRO ANFC). Keith Sainsbury identified all specimens of *Saurida* spp. (Synodontidae), Carangidae and Mullidae onboard to maintain stability of identifications with those groups, although some needed to be revisited post voyage. For uniformity of data recording, all onboard fish data were entered by Margaret Miller (CSIRO). During and post-voyage, expert taxonomists were contacted to assist with the identification of various fish groups via the transfer of images, data and occasionally by the loan of preserved specimens. Experts who assisted (in taxonomic order) included William White and Peter

Last (elasmobranchs; some identifications confirmed remotely during voyage), Yusuke Hibino (Ophichthidae), Barry Russell (Synodontidae and Nemipteridae), Keita Koeda (Carapidae - genus *Onuxodon*), Rudie Kuiter (Solenostomidae), Glenn Moore (Syngnathidae and miscellaneous groups), Hiroyuki Motomura (Scorpaenidae and miscellaneous groups), Mizuki Matsunuma (Scorpaenidae: Pteroinae, Synanceiidae), Martin Gomon (Triglidae and Uranoscopidae), Jeff Johnson (Aploactinidae, Haemulidae, Pinguipedidae and Acanthuridae), Hisashi Imamura (Platycephalidae), Anthony Gill (Serranidae and Pseudochromidae), Tom Fraser (Apogonidae), Chris Dowling (Sillaginidae), Bill Smith-Vaniz (Carangidae), Seishi Kimura (Leiognathidae), Yukio Iwaksuki (Sparidae), Satoshi Morishita (Sphyraenidae), Ofer Gon (Champsodontidae and Apogonidae: *Jaydia*), Ron Fricke (Callionymidae), Doug Hoese and Helen Larson (Gobiidae), Keichii Matsuura (Tetraodontidae) and Gerry Allen (Pomacentridae and miscellaneous groups).

Approximately 373 fish taxa from 89 families were identified from the breadth of the NWS voyage from 103 sites sampled in late 2017 (Appendix C). For the voyage as whole, the following families had the highest number of identified taxa: Carangidae (19), Apogonidae (18), Labridae (17), Serranidae (16 species), Lutjanidae, Monacanthidae, Nemipteridae and Scorpaenidae (12), Dasyatidae and Platycephalidae (11) and Synodontidae and Lethrinidae (10). Other diverse families included Gobiidae, Bothidae and Tetraodontidae (9), Chaetodontidae and Paralichthyidae (8), Mullidae, Muraenidae and Ostraciidae (7 each), and Syngnathidae (6). All other families had five or less species and 41 families were represented by a single species.

Most species could be identified to species level, but a few taxa remain unresolved due to some groups being in need of or currently in the process of taxonomic revision, including leptocephalus eel larvae (unidentified species of multiple Anguilliformes families), *Ariosoma* spp. (family Congridae), *Pterois* spp (family Scorpaenidae), *Bregmaceros* sp. (family Bregmacerotidae), *Ophidion* sp. (family Ophidiidae), *Onigocia* sp. (family Platycephalidae), *Gymnapogon* spp. and *Ostorhinchus* spp. (family Apogonidae), family Gobiidae, especially *Bathygobius* spp., *Larsonella* spp. and *Sueviota* spp., some flatfishes (order Pleuronectiformes) and *Paramonacanthus* spp. (family Monacanthidae). Some other taxa of uncertain status have a 'cf' included in their name to highlight that their identity is uncertain and although the species name listed is possibly the closest species, they may not be that species. Most of these unresolved taxa made up a very small component of the catches.

3.2.2 COI barcoding

To aid the morphological identification of fish specimens, muscle samples (~ 0.5 g) were removed from all fish taxa for analysis of the Cytochrome Oxidase mitochondrial DNA barcode gene (COI). DNA was extracted and bi-directionally sequenced using the FishF1, FishF2 and FishR2 primers of Ward et al. (2005); sequencing was undertaken at the Ramaciotti Centre for Genomics, University of New South Wales - http://www.ramaciotti.unsw.edu.au/ and at the CSIRO Marine Laboratories on 3730xl and 3130xl DNA Analyzers, Thermo Fisher Scientific, USA, respectively, for at least one specimen from each taxon that had been sampled (300 taxa or 87% of all species recorded). Forward and reverse sequences were trimmed, de novo assembled, checked by eye and then converted into consensus sequences using Geneious (Biomatters Ltd, New Zealand) vers R8.1.4. Consensus sequences for each sample were compared using the Barcode of Life Data Systems v4 (BOLD) identification system (http://www.boldsystems.org/index.php/IDS_OpenIdEngine) and

GenBank BLASTn (via an internal application in Geneious) to check the similarity of sample sequences against existing database sequences. Species identification was usually based on a percentage of sequence identity, with homology of ≥99% as the criterion used here for species confirmation. On some occasions the COI sequence was not obtainable or the result did not concur with morphological data. In these cases, the identification listed in Appendix C is the closest possible match to a known taxon. Sequences from this survey are available in Barcode of Life Data (BOLD) Systems, http://www.boldsystems.org/.

3.2.3 Discussion of species detection methods used

Accurate and thorough documentation of marine biodiversity for any given area is ideally required for effective marine management, especially in the designation, zoning and ongoing monitoring of Marine Parks or areas closed to fishing. A suite of methods are available for species detection, but no single method has been reliably proven to be the ultimate answer. Although non-destructive techniques (e.g. towed video, BRUV, environmental DNA) are often favoured due to their low level of interference with the marine environment, destructive sampling is also required in areas that are poorly studied and to assist with ground-truthing of data collected by non-destructive techniques. For example, a combination of towed video or Baited Remote Underwater Videos (BRUVS) and trawl sampling would allow for greater accuracy of data extrapolation from the towed video or BRUVS alone. Voucher specimens and associated fresh colour images from the trawling allows more accurate identification of towed video or BRUV images as the trawl samples allow for consideration of spatial (distributional) and temporal (seasonal) confirmation. Environmental DNA relies on reference sequences from sampled and known specimens being available in public sequence databases.

Numerous species collected during this NWS survey could not have been reliably detected without destructive sampling. For example, the fish trawl takes advantage of the behavioural aspect of fish schooling allowing a herding effect that is not possible using a smaller beam trawl or sled, where large and/or fast-swimming fishes could easily escape. Only one of 27 sharks and rays was collected by the benthic sled, whereas all 27 species were collected by fish trawl.

BRUVS have their place for detection of large, mobile species that can outswim a trawl net (e.g. tunas, mackerels in the pelagic environment) or when species-specific/fishery-specific questions need to be answered relating to a low number of easily detectable and identifiable species.

However, BRUVS have minimal benefit for species that cannot be reliably identified from images or external appearance (many fishes can only reliably be identified from scale counts, gill raker counts or other internal features) or for cryptic and/or shy species that are not attracted to baits.

The benthic sled collected some rarely recorded (rusty perchlet, *Plectranthias ferrugineus* new species; Dampierian threadtail anthias, *Tosana dampieriensis* and highfin cardinalfish, *Gymnapogon velum* new species), cryptic (e.g. the snake eels *Apterichthus* cf *nariculus* and *Scolecenchelys gymnota*) and nocturnal species (e.g. spinyeye cardinalfish, *Pristiapogon fraenatus*) not collected by the trawl.

3.2.4 Novelty

Although the vast majority of fishes collected from the present surveys have been encountered previously in WA, at least three new species were discovered and others are the first records of their species in Australia or Western Australia.

New species

Eight specimens of a new perchlet species (rusty perchlet, *Plectranthias ferrugineus* Gill et al. 2021a)) were collected in a sled at operation 358 (site W26), one specimen of a new anthias (Dampierian threadtail anthias, *Tosana dampieriensis* Gill et al. 2021b) was collected in a sled at operation 310 (site W93) and two new species of cardinal fishes of the genus Gymnapogon have recently (Gymnapogon velum Fraser 2019) or are currently in the process of being described (Fraser, in preparation) after specimens were collected in sled (Operation 310, site W93) and trawl samples (operations 278, 296, 297; sites W92, W51 and W19, respectively). Additional undescribed taxa are possible within the following genera, but await further investigation: Apogonichthyoides, Ariosoma, Chromileptes, Lepidotrigla, Ostorhinchus, Solegnathus and Velifer. Undescribed species that were previously known from the survey area include one species each of Pterois (Matsunuma, in preparation) and Bathygobius (Hoese, in preparation). One specimen of a newly described wrasse (Opaline Razorfish, Iniistius opalus Fukui 2018), was trawled (operation 581, site W3) and a single specimen of another known, but undescribed species of *Iniistius* (Fukui, in preparation) was taken in a sled (operation 411, site W59). Several specimens of the newly described Western Queen scorpionfish, Scorpaena sororreginae Wibowo & Motomura 2021 were collected by sled and trawl from operations 126 (W10), 169 (W5), 533 (W3), 571 (W14).

New Australian records

The Moluccan moray *Gymnothorax moluccensis*, previously known from Indonesia and a few other Indo-Pacific localities, has now been confirmed from Australian waters from two specimens, one each from trawl operations 109 (site W34) and 557 (site W15). The snake eel *Apterichtus nariculus* cf. (sled operation 435, site W58) is also a new record for Australia. The only other known specimens are from Indonesia (McCosker & Hibino, 2015). Several other species are likely to be new Australian records when more fully investigated.

New Western Australian records

Taylor's pygmy leatherjacket, *Brachaluteres taylori* was confirmed for the first time from Western Australia from a single specimen collected at trawl operation 539 (site W17).

Interesting findings – catsharks associated with sponges

On 20th October 2017 at site W6 (op 174, 32–33 m depth), a large *Ircinia* sponge (family Irciniidae) was trawled that had many holes and tunnels where animals could live. Upon closer investigation, some shark tails were seen protruding from the sponge holes. A total of 30 banded catsharks, *Atelomycterus fasciatus* were discovered living inside this single sponge (Figure 102, Figure 103), revealing an important habitat association not previously documented for this shark. Five individuals (1 juvenile male, 1 juvenile female, 2 late adolescent to mature males and 1 likely mature female) were retained for the CSIRO ANFC and the remaining 25 (9 juvenile males, 11 females and 5 late adolescent to mature males) were released alive. The fact that both adults and

juveniles of both sexes were present suggests a possible small home range for this species. No egg cases were found in the sponge, so it is unknown if it is also used as an egg-laying substrate. This catshark is a north-western WA endemic, occurring from Exmouth northwards to Eighty Mile Beach in 25–125 m depth (Last & Stevens, 2009).

Figure 102. Image showing 30 banded catsharks (*Atelomycterus fasciatus*) removed from a large sponge, *Ircinia* sp. at Site W6.

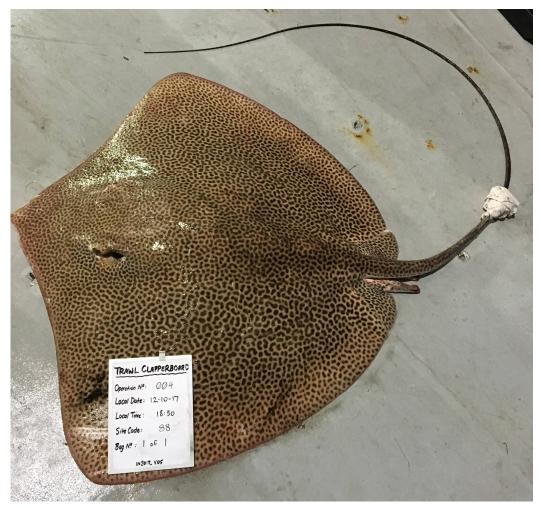
Figure 103. One of the banded catsharks *Atelomycterus fasciatus* collected from Dampier MP (Site W6) retained for the CSIRO ANFC (mature male 38 cm total length).

Interesting Findings – smalleye stingray

On 2nd November 2017 at site W81 (op 497, 63 m depth), a mature female smalleye stingray, *Megatrygon microps* (204 cm disc width, 230 cm total length) was captured in the trawl net

(Figure 104, Figure 105). This was the second individual captured during the voyage – the other (female 218 cm disc width) being a week earlier in 68 m depth about 70 km to the north-east. This massive and distinctive semi-pelagic stingray that gives birth to a single pup is a new record for the Western Australian fish fauna. It is known from patchy records across the breadth of the Indian Ocean and western Pacific, but Australian records were previously limited to a few sightings further north and east in the Arafura Sea, Gulf of Carpentaria (Northern Territory) and north-eastern Queensland. The individuals collected on this voyage were photographed and fin-clipped for genetic analysis and released alive; the Montebello MP individual was observed actively swimming after release. Recent molecular research suggests that this species may belong in its own family, separate to the true stingrays of the family Dasyatidae (Last et al. 2016).

Figure 104. Smalleye stingray, *Megatrygon microps* captured in the Montebello MP. The hose is being used to maintain water flow over the gills before measurement, DNA sampling and release


Figure 105. Smalleye stingray, *Megatrygon microps* captured in the Montebello MP being measured. The hose is being used to maintain water flow over the gills before DNA sampling and release

3.2.5 Elasmobranchs

Twenty seven (27) species of elasmobranchs (sharks and rays) were recorded from the NWS survey, consisting of nine shark species and 18 batoid species (11 stingrays, two guitarfishes, three shovelnose rays, one eagle ray and one butterfly ray). All species were collected with the trawl net and a juvenile of one species (banded catshark, Atelomycterus fasciatus) was collected with the

benthic sled. Eight elasmobranchs were recorded from the Montebello MP and five from the Dampier MP. Two species (banded catshark Atelomycterus fasciatus and whitespotted guitarfish, Rhynchobatus australiae) were recorded from both MP's. The small-eye stingray, Megatrygon microps (new record for Western Australia) and the pink whipray, Pateobatis fai had not previously been recorded from the Montebello MP (ALA spatial tool).

Some of the elasmobranch species collected were at maximum or near maximum known sizes of their species. These species included a number of stingrays (family Dasyatidae), e.g. reticulate whipray Himantura australis (Figure 106), 143 cm disc width (DW) and 480 cm total length (TL) (previously recorded to 113 cm DW and 350 cm TL by Last et al. 2016), leopard whipray, Himantura leoparda 183 cm DW and 360 cm TL (previously known to 140 cm DW and 410 cm TL, Last et al. 2016), blackspotted whipray, Maculabatis astra, 92 cm DW and 213 cm TL (previously documented to 80 cm DW and 180 cm TL by Last et al. 2016) and blotched fantail ray, Taeniurops meyeni, 190 cm DW, 260 cm TL (previously known to 180 cm DW and 330 cm TL, Last et al. 2016), the ornate eagle ray, Aetomylaeus vespertilio (family Myliobatidae), 301 cm DW and 365 cm TL (documented to at least 300 cm DW, possibly 350 cm DW and 600 cm TL by Last et al. 2016) and the whitespotted guitarfish, Rhynchobatus australiae (family Rhinidae, Figure 107), 287 cm TL (recorded to 300 cm TL by Last et al. 2016). The large sizes of elasmobranchs from some sites, including mature males and/or females suggests there are important feeding and/or mating areas for these species in the survey area. Very few juvenile elasmobranchs were collected which suggests that the species encountered may be giving birth in shallower, inshore waters.

Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment | 133

Figure 106. Reticulate whipray *Himantura australis* (mature male, 143 cm disc width, 4.8 m TL). The white cloth was used as a safety measure to cover the tail spine while measurements, photos and a fin-clip for genetic analysis was taken and removed before being released alive.

Figure 107. Whitespotted guitarfish, *Rhynchobatus australiae*. Female 287 cm TL released alive after measurement, photo and genetic fin-clip.

3.2.6 Syngnathidae (seahorses, pipefishes, etc.)

Four species of Syngnathidae were collected during the survey – all were landed dead or discovered dead late in the sorting process due to their small size and/or camouflage within invertebrate debris.

A single specimen of the zebra seahorse, *Hippocampus zebra* (Figure 108) was collected during the survey (Dampier MP site W6, op 174, 32–33 m depth). This species has previously been recorded from the Dampier MP.

Four specimens of Queensland seahorse, *Hippocampus spinosissimus* (Figure 109) were collected in 54–62 m depth – two outside the MPs (sites W76, W99) and two inside the Montebello MP (site W49 – Op 573 and Op 578). This species has previously been recorded from the Montebello MP.

Five specimens of western spiny seahorse, *Hippocampus angustus* (Figure 110) were collected in 34–63 m depth – all outside the MPs (one each at sites W3, W18 and W95, and two at site W91). This species has a wide distribution in northern Australian from Shark Bay, WA (25°57`S) to east of Agnes Water (24° 11'S), QId.

All *Hippocampus* specimens were loaned to Dr Glenn Moore (Western Australian Museum), who is undertaking taxonomic and molecular investigations into the genus with international collaborators.

Two specimens of western pipehorse, *Solegnathus* sp. 2 [of Kuiter, 2009] (Figure 111) were collected in 73–97 m depth, both outside the MPs (sites W12, W68). This species is possibly undescribed and has also been referred to as *Solegnathus hardwickii*. Its taxonomic status and distribution needs further research. The voucher specimens and associated genetic material collected from this survey will aid resolving its identity.

Figure 108. Zebra seahorse, Hippocampus zebra (juvenile male, 32 mm height)

Figure 109. Queensland seahorse, Hippocampus spinosissimus (male, 80 mm height)

Figure 111. Western pipehorse, *Solegnathus* sp. 2 [of Kuiter, 2009] (450 mm standard length)

3.3 Soft Corals (Octocorallia, Hexacorallia, Ceriantipatharia)

3.3.1 Introduction

Soft corals and sea fans are a major component of coral reef communities and marine benthos, and among the most important contributors to the total biomass of Indo-Pacific coral reef systems (Tursch and Tursch 1982; Fabricius and Alderslade 2001). Soft corals and sea fans occur worldwide in all benthic habitats from the intertidal to abyssal depths. In the tropical Indo-Pacific they are represented by over 90 genera (Fabricius and Alderslade 2001). Octocorals perform important functions in tropical environments as they provide substrata for primary production, habitats for other invertebrates and fishes, increase the topographic complexity of the seabed, and influence physical seabed processes. Despite their ecological importance, the diversity of octocorals remains poorly known and new species, genera and families are still discovered and described (e.g. Breedy et al. 2012; McFadden and van Ofwegen, 2013; Bryce et al. 2015; Bryce & Wilson 2018). Surveys into octocoral diversity are fundamental to assessing the biodiversity of ecosystems with respect to ecosystem function (food web-dynamics and conductivity), assessing the long term changes in benthic community structure and understanding and monitoring the outcomes of habitat recovery after disturbance (Williams 1992, Fabricius et al. 2007, Chanmethakul et al. 2010, Benayahu et al. 2012, Shackleton and Rees 2016). The aim of this part of the study was the assessment of marine biodiversity of the soft coral and gorgonian fauna on the NWS off the coast of WA over a wide range of habitats and locations as part of determining long-term recovery of trawled communities, and to comment on diversity trends, community composition and spatial patterns of this faunal group.

3.3.2 Methods

Taxonomic and collection scope

Cnidarian vouchers were collected using a CSIRO Semi V Wing trawl net (McKenna trawl net) or an epibenthic sled (Pitcher et al. 2016) at 100 stations during the RV Investigator Voyage (INV2017_05). All soft corals and sea fans (Alcyonacea) were sorted into morphotypes (massive, /whips, fans, *Dendronephthya*) and all cnidarian into size categories (<25 cm, 25–50 cm, 50–100 cm, >100 cm). Counts and weights of each morphotype and size category combination were recorded and databased. Cnidarian vouchers were collected at each station for further taxonomic determinations to species level utilising either the binomial species or OTU concepts. Species within the genus Dendronephthya (Alcyonacea, Nephtheidae) and the genus Pteroeides (Pennatulacea, Pennatulidae) were identified to genus level only due to high taxonomic uncertainty resulting from high level of intracolony and intraspecies variability (McFadden et al. 2009, Williams 1995). The concept of morphospecies assumes that each OTU represents a single species, which has not been identified using the Linnaean binomial system; they have differences in morphological characters from published descriptions and/or are preliminary identifications. Subsequent research will determine if they represent an undescribed species or have been previously described in historic taxonomic literature. A reference collection of all species has been registered and deposited in the Western Australian Museum, Perth.

Morphological identification

Vouchers were photographed, counted and weighed on deck and then preserved in 100% ethanol until transferred into 75% ethanol at the CSIRO laboratory. Soft coral and sea fan sclerites were prepared for microscopy by cutting small subsamples from the voucher from five different regions (polyps, surface of the polyp region, surface of the base, interior of the polyp region and interior of the base), which were put into dissolved sodium hypochlorite (13% available chlorine). After the organic material had dissolved, the sclerites were rinsed with distilled water and dried on a glass microscope slide for further investigation. *Durcupan ACM*($^{\text{TM}}$) was used as a mounting medium for permanent slides (Fabricius and Alderslade 2001). Sea pen sclerites were examined by dissolving small subsamples from the voucher from the polyps, surface of the polyp region, surface of the base, and interior of the base, on a microscope slide (sodium hypochlorite, 13% available chlorine) until all organic matter was dissolved and then rinsed in water.

3.3.3 Species composition and assemblages of higher Alcyonacean octocoral taxa

One hundred and thirty three species (133) within the subclass Octocorallia, Order Alcyonacea were identified. All five suborders within the Alcyonacea were present, representing 14 families and 44 genera (Bayer 1981) (Table 9). The five suborders comprised 2 Stolonifera octocoral species, 32 Alcyoniina, 12 Scleraxonia, 73 Holaxonia, and 14 Calcaxonia (Figure 112). Species belonging to *Dendronephthya* (Nephtheidae) were identified to genus only due to high taxonomic uncertainty as a result of a high level of intracolony and intraspecies variability (McFadden et al. 2009). Nevertheless, the high variability in colony shape and colour, and the extreme high biomass at many locations suggests a high diversity within this genus. The following families had the highest number of identified taxa: Plexauridae (58), Nephtheidae (13), Acanthogorgiidae (13), Ellisellidae (12) and Nidaliidae (10) (Figure 112). All other families were represented by only a few species (1–9).

Within the suborder Stolonifera, only two species within the family Clavulariidae were present in the survey area (Table 1). *Telesto arborea* Wright & Studer, 1889 was common in the turbid coastal areas. *Paratelesto* Utinomi, 1958 (Coelogorgiidae) was a new Australian geographical record from this survey.

The suborder Alcyoniina was presented with the families Alcyoniidae (4 genera), Nephtheidae (4), Viguieriotidae (1), and Nidaliidae (3) (Table 9). The family Alcyoniidae showed extremely low biodiversity with only four species found in the survey area. One new species, *Eleutherobia sumbawaensis* Verseveldt & Bayer, 1988 was collected at close proximity at station 57 (PFTP Area 3) and station 88 (PFTP Area 4) from a depth of approximately 80 meters. This small digitate species was first described from Indonesia in 1988 and seems to present a new Australian geographical record from this survey.

The suborder Alcyoniina was strongly represented by the family Nephtheidae with the genera *Dendronephthya, Chromonephthea, Scleronephthya,* and *Umbellulifera* respectively. Species within the genus *Dendronephthya* (Nephtheidae) were not identified to species level due to high taxonomic uncertainty, and have been treated in this report as 'one species' (McFadden et al. 2009). Nevertheless, the high variability in colony shape and colour suggests a high diversity within this genus. The family Nidaliidae included eight species of *Chironephthya*, one species of

Siphonogorgia, and *Nephthyigorgia kükenthali* Broch, 1916. *N. kükenthali* was common in the inshore area. This species was first described from Cape Jaubert, south of Broome and thought rare, but can now be considered very abundant from sandy environments of the Pilbara region (Keesing et al. 2011; Pitcher et al. 2016; Bryce et al. 2018). The same seems to hold true for the rarely reported species *Studeriotes crassa* Kükenthal, 1910 (Viguieriotidae). No specimens from the family Xeniidae were collected in the survey area.

Within the Scleraxonia the sea fans Annella reticulata (Ellis & Solander, 1786), Subergorgia suberosa (Pallas, 1766), Melithaea spp., and Parisis australis Wright & Studer, 1889 were abundant, as well as Solenocaulon tortuosum and Iciligorgia mjoebergi within the family Anthothelidae. The high abundance of *S. tortuosum* was remarkable. It is known to have a wide Indo-Pacific distribution in turbid, silty environments with strong currents, but was thought to be uncommon in Australia. *P. australis* was considered to be rare in shallow waters, but was collected from 30-103 metres in the survey area.

Within the suborders Holoxonia the family Plexauridae was extremely abundant and speciose with all genera represented. Several genera were thought to be uncommon (*Euplexaura, Bebryce, Echinomuricea, Trimuricea, Paracis, Paraplexaura*), but can now be considered very abundant from sandy environments of the Pilbara region (Keesing et al. 2011; Pitcher et al. 2016; Bryce et al. 2018). This has been confirmed by this survey.

Within the suborder Calcaxonia the family Ellisellidae was very diverse with sea whip and sea fan species, *Ctenocella pectinata*, *Dichotella gemmacea*, *Junceella fragilis* and *J. juncea*, *Ellisella*, *Verrucella*, and *Viminella* being very common. The family Primnoidae was the only other family represented within the Calcaxonia. *Plumarella penna* was collected from a depth range between 33-65 metres. This delicate, feather-like, soft coral has rarely been recorded from shallow waters (< 60 m). Only a few specimens within the genus *Callogorgia* were so far collected from the West coast of Australia and are held in WAM. At this stage it can be considered extremely rare. We collected *Callogorgia* at three offshore sites in close proximity (PFTF Area 1 – station 26, 29, 32) from a depth range between 64-111 metres.

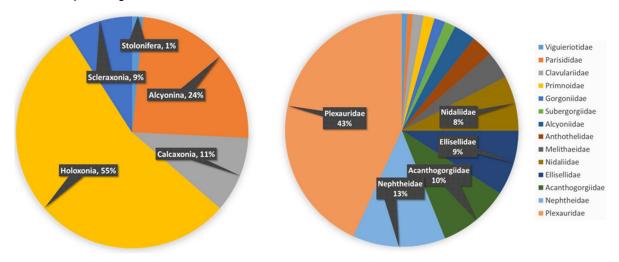


Figure 112. Composition of octocoral taxa. Left chart shows Orders and right chart shows Families

Table 9. Species of Octocorallia (Alcyonacea) recorded from the Kimberley North West Shelf (NWS) survey area (RV INV_05 2017)

Таха
STOLONIFERA
CLAVULARIIDAE
Telesto arborea Wright & Studer, 1889
Paratelesto sp. 1
ALCYONIINA
ALCYONIIDAE
Cladiella sp. 1
Klyxum sp. 1
Eleutherobia sumbawaensis Verseveldt & Bayer, 1988
Sinularia sp. 7
NEPHTHEIDAE
Chromonephthea aldersladei van Ofwegen, 2005
Chromonephthea benayahui van Ofwegen, 2005
Chromonephthea cf. rubra (Kükenthal, 1910)
Chromonephthea complanata (Kükenthal, 1910)
Chromonephthea dampierensis (Verseveldt, 1977)
Chromonephtea spp.
Dendronephthya spp.
Scleronephthyasp. 1-5
Umbellulifera sp. 1-6
NIDALIIDAE
Chironephthya sp. 1-8
Nephthyigorgia kükenthali Broch, 1916
Siphonogorgia sp. 1
VIGUIERIOTIDAE
Studeriotes crassa Kükenthal, 1910
SCLERAXONIA
ANTHOTHELIDAE
Alertigorgia mjöbergi Broch, 1916
Iciligorgia brunnea (Nutting, 1911)
Iciligorgia sp. 1
Solenocaulon tortuosum Gray, 1862
SUBERGORGIIDAE
Annella reticulata (Ellis & Solander, 1786)
Subergorgia suberosa (Pallas, 1766)
MELITHAEIDAE
Melithaea spp.
PARASIDIDAE
Parisis australis Wright & Studer, 1889
HOLOXONIA

140 | Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment

ACANTHOGORGIIDAE
Acanthogorgia (sp. 1-7)
Anthogorgia (sp. 1-3)
Muricella (sp. 2-4)
PLEXAURIDAE
Astrogorgia sp. 2-12
Bebryce studeri Whitelegge, 1897
Bebryce sp. 1-3
Echinogorgia sp. 1-3
Echinogorgia sp. 22-26
Echinomuricea sp. 1-2
Echinomuricea sp. 3-5
Euplexaura sp. 1
Euplexaura sp. 5-12
Menella sp. 2
Menella sp. 6-7
Menella sp. 8-9
Paracis sp. 1
Paraplexaura sp. 6-11
Trimuricea sp. 1-2
Villogorgia sp. 1-2
GORGONIIDAE
Pseudopterogorgia australiensis (Ridley, 1884)
Guaiagorgia anas Grasshoff & Alderslade, 1997
CALCAXONIA
ELLISELLIDAE
Ctenocella pectinata (Pallas, 1766)
Dichotella gemmacea (Milne Edwards & Haime, 1857)
Ellisella sp. 1.
Ellisella sp. 3
Junceella fragilis (Ridley, 1884)
Junceella juncea (Pallas, 1766)
Verrucella sp. 1
Verrucella sp. 3
Verrucella sp. 5
Viminella sp. 1
Viminella sp. 2
Viminella sp. 3
PRIMNOIDAE
Plumarella penna (Lamarck, 1815)
Callogorgia sp. 1

3.4 Sponges

3.4.1 Introduction

Sponges (Phylum Porifera) are filter feeders and the oldest metazoan group on Earth. They have been found in all aquatic habitats including freshwater, from intertidal to deep water marine habitats. Sponge species grow in very distinct shapes, from encrusting to massive or large cups or barrels. They have very different colours and smells and an important source of natural chemicals for products like pharmaceuticals. Their body organisation is simple and supported by a siliceous and/or spongin skeleton which is the main characteristic used for their classification and taxonomic identification.

Sponges are one of the most abundant and diverse group of invertebrates inhabiting the NWS. The area is reported as a sponge biodiversity hotspot with approximately 344 species and a 37% of 'apparent endemics' (species counts include OTUs) one of the highest reported for Australia (Hooper et al. 2002).

Although prior to this study, limited sampling had been carried out within many parts of the NWS, the sponge diversity of Dampier Archipelago is reasonably well known. Dampier Archipelago has been surveyed previously, and sponge collections made by SCUBA and limited to shallow waters are available. Those studies (Fromont 2004; 2006) reported a range of 150 sponge species, based in quantitative survey to 275 from non-quantitative surveys. Quantitative surveys captured only 56–80% of the sponge diversity and indicated that 48% were 'apparent endemics' supporting conclusions of Hooper et al. (2002). Despite nearly half of the sponge fauna potentially being endemic, the area remains poorly known in terms of sponge biodiversity and only three species and one new genus have been named so far: *Anthotethya fromontae* Sara &Sara, 2002; *Laxotethya dampierensis* Sara & Sara, 2002, *Tetrapocilon bergquistae* Fromont, Alvarez, Gomez & Roberts, 2010. A survey of the southern Pilbara by CSIRO in 2013 (PMCP study, Pitcher et al. 2016) overlapped in the southern part of our study area (near Barrow Island) and showed the area holds a high diversity of sponges. Approximately 114 different species were found in that survey. At least one new species, *Ceratopsion montebelloensis* Hooper, 1993 has been described from this area.

3.4.2 Collections made and species identification

Sponge specimens were collected using a CSIRO Semi V Wing trawl net (McKenna trawl net) or an epibenthic sled (Pitcher et al. 2016) in the surveyed stations between 30 and 70 m. Once on deck they were sorted in morphotypes (i.e. Massive, Erect, Cups, see Figure 113) following the classification system developed by Christine Schoenberg (Australian Institute of Marine Sciences) and Jane Fromont (Western Australian Museum, WAM), and those into size categories (<25 cm, 25–50 cm, 50–100 cm, >100 cm) giving a total of 12 sorting categories. Fragments of specimens that could not be unambiguously assigned to any of the categories were separated in a different category. Individual counts and weights were recorded for each category. One representative specimen of each morphospecies (i.e. species that look different based on external morphology) included in the sorted categories was separated and photographed. A subsample was preserved in 100% ethanol or frozen for taxonomic identification. Selected entire specimens were preserved

frozen for exhibition display or for future genetic studies. Some specimens were also selected for fluorescence studies by Dr. Peter Karuso (Macquarie University, NSW).

A thick section and spicule slide was prepared from each sponge voucher using standard methods (Rützler, 1978), identified to genus following Hooper & van Soest (2002), and assigned to valid species as listed in the current version of the World Porifera database (van Soest et al., 2018) using available taxonomic literature. Specimens that did not fully agree with all the characters described for the species were denoted with 'cf.' A unique code or OTU was assigned to unknown or undescribed species and matched to existing ones deposited at WAM. We used the WAM OTU code if matches were found, to facilitate future comparisons of species composition and richness in the area. A few specimens lacked characters for recognition beyond the genus level and were denoted with '?'.

Sponge collections of the WAM, Queensland Museum and Northern Territory Museum and, records from scientific literature have been published in the Atlas of Living Australia (ALA) (https://www.ala.org.au/) allowing us to find which species have been previously recorded for the area. Using the spatial search tool of that platform we listed species recorded in a demarcated area in the Pilbara bio-region and within the surveyed MPs and compared it to the species recorded in this study. We also interrogated the WAM database and extracted registered specimens that have been previously found in the surveyed area for further comparisons of the sponge biodiversity.

3.4.3 Taxa sampled

For this study, a full sponge species catch composition could only be achieved for the 11 stations that fell within the Dampier and Montebello MPs. This was made possible by additional project funds being provided by Parks Australia for post voyage taxonomy of some invertebrate groups. A total of 365 sponge vouchers were examined and identified to species/OTU level. Table 10 shows the list of taxa identified for the surveyed stations. Only one specimen from the Class Calcarea was represented in the collection. All the rest belonged into the class Demospongiae. A total of 153 species from 12 orders, 38 families and 87 genera were found. Only 73 of those could be assigned to previously described species.

Eighty species were assigned to OTUs (Table 10) as they could not be assigned to known species. Approximately 60% of those matched OTUs from the WA Museum (WAM) collections which suggest they have been found in the Western Australian waters previously. OTUs labelled with the prefix '0BA' in Table 10 could not be match to existing OTUs and are likely to be either new species or new records for the area. The 153 species belong to a diverse number of families (Figure 114). The families with the greatest number of species were Raspailiidae, followed by the Callyspongiidae and Axinellidae (Figure 114). The most common species in these families were *Echinodictyum mesenterinum, Arenosclera WAM sp. 1 cf.* and *Axinella aruensis* (variety II) respectively (Figure 115). Most species found (78%) were singletons suggesting the area has high levels of endemism.

Full taxonomic documentation and even genetic studies are necessary to fine-tune the sponge diversity knowledge of what appear to be a highly diverse area as reported by previous studies. The standardisation of sponge identifications done by different taxonomists is an essential step to

achieve this. However, there is no doubt that the area supports one of the highest sponge diversities recorded for Australian waters.

Figure 113. Examples of some of the sponge morphotypes sorted by size categories during the 2017 survey

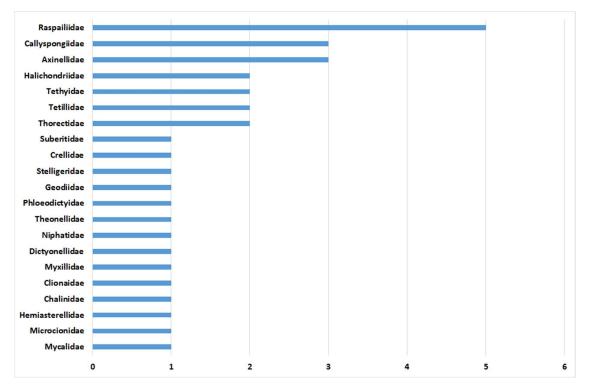


Figure 114. Sponge families found in Dampier and Montebello MPs sorted by number of occurrences.

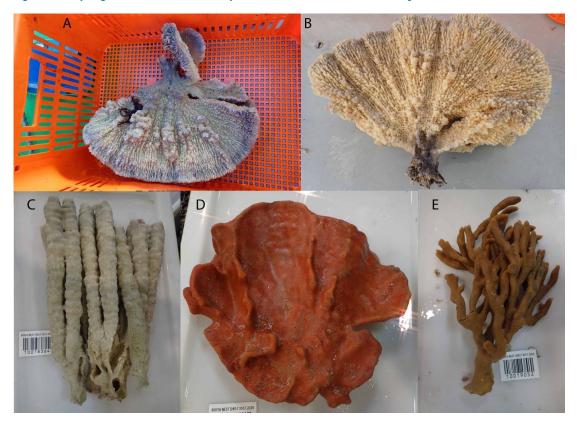


Figure 115. Common sponge species found in Dampier and Montebello MPs. A–B *Echinodictyum mesenterinum*, B, *Arenosclera WAM sp. 1 cf.* D-E *Axinella aruensis* varieties.

Table 10. List of sponge species and their higher taxonomic classification found in the Dampier and Montebello MP stations (W4, W6, W8, W14, W49, W50, W79, W80, W81, W82, W97). 'cf.': specimens that lack some of the diagnostic characteristics of the species. '?': specimens that could not be identified beyond the level of genus

CLASS	ORDER	FAMILY	GENUS	SPECIES/OTUs
Calcarea	Clathrinida	Leucetiidae	Leucetta	?
Demospongiae	Axinellida	Axinellidae	Axinella	aruensis
Demospongiae	Axinellida	Axinellidae	Axinella	?
Demospongiae	Axinellida	Axinellidae	Axinella	aruensis
Demospongiae	Axinellida	Axinellidae	Axinella	WAM sp. Ng3 cf.
Demospongiae	Axinellida	Axinellidae	Axinella	sinoxea cf.
Demospongiae	Axinellida	Axinellidae	Axinella	aruensis II
Demospongiae	Axinellida	Axinellidae	Dragmacidon	0BA1
Demospongiae	Axinellida	Axinellidae	Phakellia	tropicalis cf.
Demospongiae	Axinellida	Axinellidae	Phycopsis	pesgalli
Demospongiae	Axinellida	Axinellidae	Pipestela	occidentalis
Demospongiae	Axinellida	Axinellidae	Ptilocaulis	spiculifer cf.
Demospongiae	Axinellida	Axinellidae	Reniochalina	WAM0006
Demospongiae	Axinellida	Axinellidae	Reniochalina	stalagmitis
Demospongiae	Axinellida	Heteroxyidae	Myrmekioderma	granulata
Demospongiae	Axinellida	Raspailiidae	Ceratopsion	0BA1
Demospongiae	Axinellida	Raspailiidae	Ceratopsion	montebelloensis
Demospongiae	Axinellida	Raspailiidae	Ceratopsion	palmatum
Demospongiae	Axinellida	Raspailiidae	Echinodictyum	clathrioides
Demospongiae	Axinellida	Raspailiidae	Echinodictyum	conulosum
Demospongiae	Axinellida	Raspailiidae	Echinodictyum	cancellatum cf.
Demospongiae	Axinellida	Raspailiidae	Echinodictyum	cancellatum
Demospongiae	Axinellida	Raspailiidae	Echinodictyum	mesenterinum
Demospongiae	Axinellida	Raspailiidae	Ectyoplasia	vannus
Demospongiae	Axinellida	Raspailiidae	Ectyoplasia	tabula
Demospongiae	Axinellida	Raspailiidae	Raspailia	compressa
Demospongiae	Axinellida	Raspailiidae	Raspailia	0BA1
Demospongiae	Axinellida	Raspailiidae	Raspailia	vestigifera
Demospongiae	Admentida	Raspannuae	Kaspania	vestignera
Demospongiae	Axinellida	Raspailiidae	Raspailia (Clathriodendron)	keriontria
Demospongiae	Axinellida	Raspailiidae	Sollasella	WAM n sp.
Demospongiae	Axinellida	Raspailiidae	Thrinacophora	cervicornis
Demospongiae	Axinellida	Raspailiidae	Trikentrion	flabelliforme
Demospongiae	Axinellida	Stelligeridae	Higginsia	mixta
Demospongiae	Bubarida	Dictyonellidae	Acanthella	pulcherrima
Demospongiae	Bubarida	Dictyonellidae	Acanthella	cavernosa cf.
Demospongiae	Bubarida	Dictyonellidae	Acanthella	pulcherrima cf.
Demospongiae	Bubarida	Dictyonellidae	Phakettia	virgultosa
Demospongiae	Bubarida	Dictyonellidae	Phakettia	euctimena
Demospongiae	Bubarida	Dictyonellidae	Stylissa	carteri
Demospongiae	Bubarida	Dictyonellidae	Stylissa	carteri cf.
Demospongiae	Clionaida	Clionaidae	Spheciospongia	congenera
Demospongiae	Clionaida	Clionaidae	Spheciospongia	vagabunda

Demospongiae	Clionaida	Placospongiidae	Placospongia	melobesioides cf.
Demospongiae	Dendroceratida	Darwinellidae	Darwinellidae_unknown genus	?
Demospongiae	Dendroceratida	Darwinellidae	Dendrilla	lacunosa
Demospongiae	Dendroceratida	Dictyodendrillidae	Dictyodendrilla	0BA1
Demospongiae	Dictyoceratida	Dysideidae	Dysidea	0BA1
Demospongiae	Dictyoceratida	Dysideidae	Dysidea	0BA2
Demospongiae	Dictyoceratida	Dysideidae	Euryspongia	0BA1
Demospongiae	j	Irciniidae	Ircinia	0BA4
	Dictyoceratida			
Demospongiae	Dictyoceratida	Irciniidae	Ircinia	OBA1
Demospongiae	Dictyoceratida	Irciniidae	Ircinia	OBA2
Demospongiae	Dictyoceratida	Irciniidae	Ircinia	OBA3
Demospongiae	Dictyoceratida	Irciniidae	Ircinia	irregularis cf.
Demospongiae	Dictyoceratida	Irciniidae	Ircinia	pinna cf.
				NTM sp. 0089/WAMSI
Demospongiae	Dictyoceratida	Irciniidae	Ircinia	Ircinia sp. 1
Demospongiae	Dictyoceratida	Irciniidae	Ircinia	irregularis
Demospongiae	Dictyoceratida	Irciniidae	Sarcotragus	WAM sp. PB1
Demospongiae	Dictyoceratida	Spongiidae	Coscinoderma	0BA1
Demospongiae	Dictyoceratida	Spongiidae	Hippospongia	0BA1
Demospongiae	Dictyoceratida	Spongiidae	Hippospongia	0BA2
Demospongiae	Dictyoceratida	Spongiidae	Hyattella	intestinalis cf.
Demospongiae	Dictyoceratida	Spongiidae	Hyattella	WAM sp. 1 cf.
Demospongiae	Dictyoceratida	Spongiidae	Hyattella	?
Demospongiae	Dictyoceratida	Spongiidae	Hyattella	WAM sp.1 cf.
Demospongiae	Dictyoceratida	Spongiidae	Spongia	0BA1
Demospongiae	Dictyoceratida	Thorectidae	Aplysinopsis	NTM sp. 017
Demospongiae	Dictyoceratida	Thorectidae	Dactylospongia	0BA1
Demospongiae	Dictyoceratida	Thorectidae	Fascaplysinopsis	0BA1
Demospongiae	Dictyoceratida	Thorectidae	Hyrtios	0BA1
Demospongiae	Dictyoceratida	Thorectidae	Strepsichordaia	0BA1
Demospongiae	Dictyoceratida	Thorectidae	Thorectandra	excavatus
Demospongiae	Dictyoceratida	Thorectidae	Thorectidae unknown genus_1	OBA1
Demospongiae	Dictyoceratida	Thorectidae	Thorectidae unknown genus_2	0BA1
Demospongiae	Haplosclerida	Callyspongiidae	Arenosclera	WAM sp. EG1
Demospongiae	Haplosclerida	Callyspongiidae	Arenosclera	WAM sp. 1
Demospongiae	Haplosclerida	Callyspongiidae	Arenosclera	WAM sp. 1 cf.
Demospongiae	Haplosclerida	Callyspongiidae	Callyspongia	WAM sp. 2
Demospongiae	Haplosclerida	Callyspongiidae	Callyspongia (Callyspongia)	WAM sp. K1
Demospongiae	Haplosclerida	Callyspongiidae	Callyspongia (Callyspongia)	WAM sp. SS1 cf.
Demospongiae	Haplosclerida	Callyspongiidae	Callyspongia (Cladochalina)	aerizuza cf.
Demospongiae	Haplosclerida	Callyspongiidae	Callyspongia (Toxochalina)	WAM sp.1 cf.
Demospongiae	Haplosclerida	Callyspongiidae	Callyspongia (Toxochalina)	WAM sp. 2
Demospongiae	Haplosclerida	Callyspongiidae	Callyspongia (Toxochalina)	WAM sp. 1
Demospongiae	Haplosclerida	Chalinidae	Chalinula	0BA1

Demospongiae	Haplosclerida	Chalinidae	Haliclona (Gellius)	NTM sp. 146
Demospongiae	Haplosclerida	Chalinidae	Haliclona (Haliclona)	0BA1
Demospongiae	Haplosclerida	Chalinidae	Haliclona (Haliclona)	0BA2
Demospongiae	Haplosclerida	Chalinidae	Haliclona (Reniera)	0BA1
Demospongiae	Haplosclerida	Niphatidae	Amphimedon	WAM sp.3 cf.
Demospongiae	Haplosclerida	Niphatidae	Amphimedon	paraviridis cf.
Demospongiae	Haplosclerida	Niphatidae	Cribrochalina	0BA1
Demospongiae	Haplosclerida	Niphatidae	Gelliodes	WAM sp. KMB1 cf.
Demospongiae	Haplosclerida	Niphatidae	Gelliodes	WAM sp. KMB1
Demospongiae	Haplosclerida	Niphatidae	Niphates	0BA1
Demospongiae	Haplosclerida	Petrosiidae	Acanthostrongylophora	ashmorica
Demospongiae	Haplosclerida	Petrosiidae	Petrosia	?
Demospongiae	Haplosclerida	Phloeodictyidae	Oceanapia	ramsayi cf.
Demospongiae	Haplosclerida	Phloeodictyidae	Oceanapia	macrotoxa
Demospongiae	Haplosclerida	Phloeodictyidae	Oceanapia	WAM sp. SS3
Demospongiae	Haplosclerida	Phloeodictyidae	Phloeodictyidae unknown genus_1	0BA1
Demospongiae	Haplosclerida	Phloeodictyidae	Siphonodictyon	WAM sp. KB1
Demospongiae	Poecilosclerida	Crellidae	Crella (Yvesia)	WAM sp. SS1
Demospongiae	Poecilosclerida	Desmacididae	Desmacidon	WAM sp. SS1 cf.
Demospongiae	Poecilosclerida	Hymedesmiidae	Hymedesmia	dichela ?
Demospongiae	Poecilosclerida	Hymedesmiidae	Phorbas	WAM CERF sp. 1 cf.
Demospongiae	Poecilosclerida	Iotrochotidae	lotrochota	baculifera cf.
Demospongiae	Poecilosclerida	Iotrochotidae	lotrochota	baculifera
Demospongiae	Poecilosclerida	Iotrochotidae	lotrochota	NTM sp. 0233
Demospongiae	Poecilosclerida	Microcionidae	Clathria (Thalysias)	reinwardti
Demospongiae	Poecilosclerida	Microcionidae	Clathria (Thalysias)	abietina cf.
Demospongiae	Poecilosclerida	Microcionidae	Clathria (Thalysias)	erecta
Demospongiae	Poecilosclerida	Microcionidae	Clathria (Thalysias)	WAM sp. Ng1
Demospongiae	Poecilosclerida	Microcionidae	Clathria (Thalysias)	abietina
Demospongiae	Poecilosclerida	Microcionidae	Clathria (Thalysias)	vulpina
Demospongiae	Poecilosclerida	Mycalidae	Mycale (Aegogropila)	WAM sp. 2
Demospongiae	Poecilosclerida	Mycalidae	Mycale (Aegogropila)	WAM sp.1
Demospongiae	Poecilosclerida	Myxillidae	Psammochela	tutiae cf.
Demospongiae	Poecilosclerida	Myxillidae	Psammochela	tutiae
Demospongiae	Poecilosclerida	Podospongiidae	Diacarnus	WAM sp. SS1
Demospongiae	Poecilosclerida	Tedaniidae	Tedania	WAM sp. EG1
Demospongiae	Suberitida	Halichondriidae	Amorphinopsis	excavans
Demospongiae	Suberitida	Halichondriidae	Axinyssa	berquistae cf.
Demospongiae	Suberitida	Halichondriidae	Ciocalypta	stalagmitis
Demospongiae	Suberitida	Halichondriidae	Halichondria	phakellioides
Demospongiae	Suberitida	Halichondriidae	Hymeniacidon	WAM sp. SS4 cf.
Demospongiae	Suberitida	Halichondriidae	Hymeniacidon	WAM sp. SS4 cf.
Demospongiae	Suberitida	Suberitidae	Aaptos	0BA1
Demospongiae	Suberitida	Suberitidae	Caulospongia	biflabellata
Demospongiae	Suberitida	Suberitidae	Caulospongia	amplexa
Demospongiae	Tethyida	Hemiasterellidae	Axos	flabelliformis
Demospongiae	Tethyida	Tethyidae	Tethya	ingalli cf.

Demospongiae	Tethyida	Tethyidae	Tethya	robusta cf.
Demospongiae	Tethyida	Tethyidae	Xenospongia	patelliformis
Demospongiae	Tetractinellida	Ancorinidae	Asteropus	?
Demospongiae	Tetractinellida	Ancorinidae	Jaspis	WAM sp. SS2?
Demospongiae	Tetractinellida	Ancorinidae	Psammastra	WAM sp. SS1 cf.
Demospongiae	Tetractinellida	Ancorinidae	Rhabdastrella	globostellata
Demospongiae	Tetractinellida	Ancorinidae	Stelletta	<i>clavosa</i> cf.
Demospongiae	Tetractinellida	Ancorinidae	Stelletta	WAM sp.CERF 2
Demospongiae	Tetractinellida	Geodiidae	Geodia	WAM sp. CERF3
Demospongiae	Tetractinellida	Tetillidae	Cinachyrella	NTM sp. 259
Demospongiae	Tetractinellida	Tetillidae	Cinachyrella	WAM sp. SS2?
Demospongiae	Tetractinellida	Tetillidae	Cinachyrella	WAM sp. Ng1
Demospongiae	Tetractinellida	Tetillidae	Cinachyrella	australiensis
Demospongiae	Tetractinellida	Tetillidae	Tetilla	WAM sp. SS1
Demospongiae	Tetractinellida	Theonellidae	Theonella	levior cf.
Demospongiae	Trachycladida	Trachycladidae	Trachycladus	laevispirulifer
Demospongiae	Verongiida	Aplysinellidae	Aplysinidae unknown genus_1	?
Demospongiae	Verongiida	lanthellidae	lanthella	?
Demospongiae	Verongiida	lanthellidae	lanthella	flabelliformis
Demospongiae	Verongiida	Pseudoceratinidae	Pseudoceratina	0BA1
Demospongiae	Verongiida	Pseudoceratinidae	Pseudoceratina	0BA2

4 2017 North West Shelf survey design

Roland Pitcher (CSIRO Oceans and Atmosphere Research)

4.1 Introduction

The North West Shelf (NWS) area has a long history of commercial demersal trawling. Prior to the mid-late 1980s, foreign fishing fleets applied most of the trawl effort — particularly Taiwanese pair-trawlers from the early 1970s to the mid-late 1980s. From the mid-late 1980s, a domestic otter-trawl fishery developed, with effort peaking in the mid-1990s and subsequently tapering downwards following new management arrangements. A range of spatial management, where areas were closed to trawling, was introduced in the 1980s due to concerns about impacts of trawling on the seabed and on fish stocks—and to provide opportunities for domestic trap fishing. Further spatial management was introduced through the 1990s.

Associated with these changes were a series of research voyages and sampling surveys undertaken in the years 1982–1983, 1986–1991, 1995 and 1997—as part of a large-scale adaptive management experiment that aimed to assess the effects of spatial closures and different fishing methods (primarily trawling and trapping) on benthic habitat dynamics and overall productivity of the NWS fish stocks (Sainsbury et al. 1987;1988; 1991). This research highlighted trawl impacts on large sessile epi-benthos, such as various sponges and gorgonians, as an important contributing factor to the decline in stocks and change in catch compositions.

A key aim of this study, to be informed by a regional survey in 2017, was to assess the extent of recovery of the trawled seabed communities 25 years after the cessation of foreign pair-trawling and closure of large areas to all trawling. To address this, a key feature of the 2017 survey strategy was to re-sample areas that had been subject to high levels of pair-trawling but then closed and remained untrawled—in addition, other trawl contrasts were also of interest. Further, it was also important to account for environmental gradients that may influence benthos distribution and abundance and potentially confound comparisons of trawl impact effects if not considered.

To implement these features, a period of historical Taiwanese pair-trawl effort was quantified and mapped, as was a recent period of domestic otter-trawl fishery effort—and analyses were conducted to quantify the influence of multiple environmental gradients on the abundance composition of the biotic communities.

4.2 Characterising commercial trawling

4.2.1 Historical Taiwanese pair-trawling

Taiwanese pair-trawlers fished on the NWS between 1971 and 1989. Fishery logbook data available for the years 1973 to 1981 comprised total catch and effort, as number of hauls, recorded in half-degree square blocks. Later, 'shot-by-shot' fishing data were provided to the

Australian authorities, allowing higher-resolution mapping of the trawl effort for years 1979 to 1989 inclusive, although in 1979 at least these data substantially underestimated annual effort. The trawl start and end positions (latitude & longitude) of these individual shot data were recorded approximately (pre-GPS) and the finest resolution that these data could be reliably gridded to was ~0.05 degree. The annual average grid-cell effort (hours) for the period 1979 to 1985 was used to characterise the distribution and intensity of effort for the "Historical Taiwanese pair-trawling" period (Figure 116).

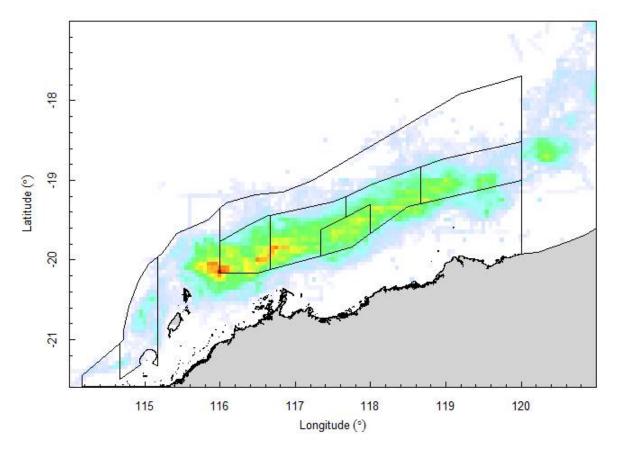


Figure 116 Map of the NWS region showing the distribution and relative intensity of trawl effort (red=high, blue=low) for the "Historical Taiwanese pair-trawling" period 1979 to 1985. Black polygons outline current Western Australian management areas for their domestic trawl fishery [see Chapter 1].

For the purpose of seabed impact analyses, trawl effort (e.g. in hours of trawling, per grid cell) needs to be converted to the area of seabed swept (contacted) by the trawl gear, per grid cell. The area swept by each trawl is a function of the bottom-contact width of the gear, the towing speed and the tow duration (hours). Tow durations were provided in the data, and towing speeds were about 3.5 knots based on reports by Shindo (1972), Liu et al. (1978) and Edwards (1983). Bottom-contact widths are difficult to quantify because pair-trawls do not use trawl doors. Initially, an estimate of 100m was used to calculate total swept area, which was sufficient to characterise the relative intensity of historical effort for the sampling design analyses. The total area swept by trawls divided by the area of each grid is the swept-area ratio (SAR) of trawling for each grid. SAR forms a key input to the trawl impact assessment; hence, later a more specific estimate was desired. Schematic diagrams, based on contemporary descriptions of the pair-trawl gear, were

indicative of a spread at the head of the sweeps of about 120-125m (Addenda 4.4.1). Subsequent analyses of data from demersal pair-trawling trials conducted in Scotland provided predicted gear ground-contact widths of about 100–130m (mean: \sim 112m, \pm SD 14.1m) (Addenda 4.4.2).

4.2.2 Recent domestic otter-trawling

Australian domestic trawling was recorded in commercial logbooks from 1987, but trawl effort remained low until 1989. The early domestic fishery logbook data recorded effort as boat-days in one-degree square blocks. From 1993 onwards, 'shot-by-shot' fishing data recorded in logbooks managed by Western Australian authorities, enabled higher-resolution mapping of the trawl effort for subsequent years. The trawl start and end positions (latitude & longitude) of these individual shot data were recorded more accurately with advent of GPS, and these data could be reliably gridded to 0.01 degree. The annual average grid-cell effort for the period 2005 to 2016 was used to characterise the distribution and intensity of effort for the "Recent domestic otter-trawling" period (Figure 117).

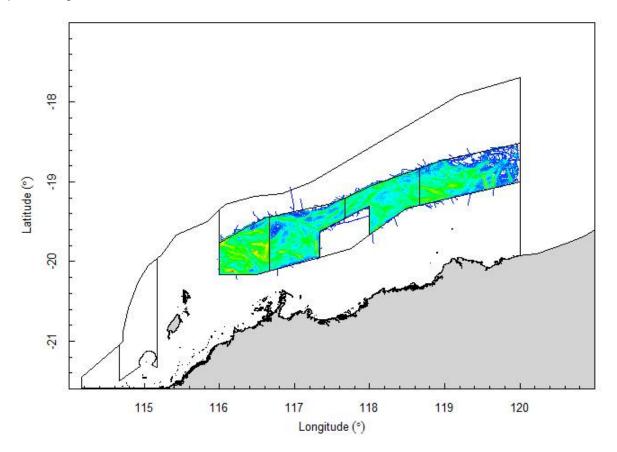


Figure 117 Map of the NWS region showing the distribution and relative intensity of trawl effort for the "Recent domestic otter-trawling" period 2005 to 2016 (red=high, blue=low). Black polygons outline current Western Australian management areas for their domestic trawl fishery [see Chapter 1].

The swept area of domestic otter trawling was estimated from tow durations (hours) recorded in logbooks for each trawl, towing speeds of 3.25kn and nominal bottom-contact widths of 100m as commonly used for Australian fish-trawls. This initial estimate was sufficient to characterise the

relative intensity of recent effort for the sampling design analyses. Later, for the purpose of seabed impact analyses, an alternative estimate based on logbook data for total sweeps + bridles \approx 110m, with the door-spread model from Ramm (1995), suggests mean contact width of about 80m.

4.2.3 Historical vs Recent trawl contrasts

To establish the suite of trawl contrasts to be sampled, both the historical and recent trawl effort (as SAR) were categorised as zero/low [0,0.01]; low/medium (0.01,0.5]; medium/high (0.5,1]; and high (1,~2]. The entire study area for the survey comprised 24,371 grid cells at 0.01° resolution. The categorised grid cells were mapped (Figure 118) and tabulated (Table 11). Grid cells in the higher trawl effort categories were relatively rare (Table 11), particularly for the recent effort and especially the high historical and high recent combination, but nevertheless required a minimum number of sampling stations to be allocated (at least 3).

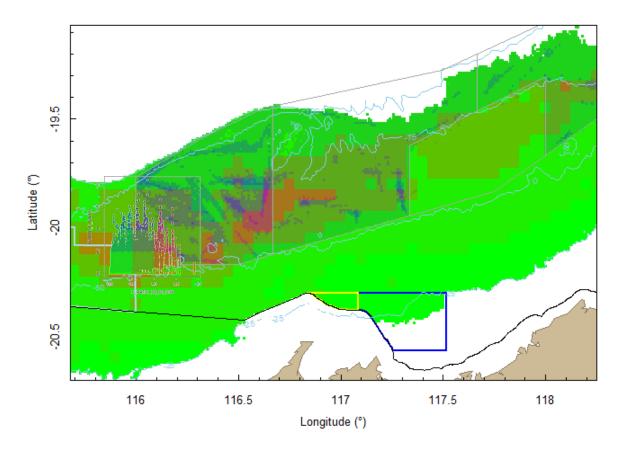


Figure 118 Map of the NWS region showing the combinations of historical and recent trawl effort categories in the study area. The inset scatter-plot of the category combinations provides a category legend.

Table 11 number of grid cells in the study area categorised at different intensities of historical and recent trawl effort.

	HISTORICAL_CAT			
RECENT_CAT	[0,0.01]	<u>(0.01,0.5]</u>	<u>(0.5,1]</u>	<u>(1,1.92]</u>
[0,0.01]	3915	7321	2740	502
(0.01,0.5]	0	4142	3219	562
(0.5,1]	0	628	826	273
(1,2.13]	0	95	110	38

To ensure adequate sampling of all historical and recent trawl effort combinations, the number of stations in each combination was pre-set prior to the bio-physical stratification of each category described in the next section. Sampling was biased towards the rare combinations by down-weighting the common combinations by a power of one-third, and then also adding some extra stations to the rarest or most important combinations (such as high historical and low recent trawl effort) to provide a total of 100 stations (Table 12).

Table 12 number of sampling stations to be selected in different category combinations of historical and recent trawl effort intensities.

	HISTORICAL_CAT			
RECENT_CAT	[0,0.01]	<u>(0.01,0.5]</u>	<u>(0.5,1]</u>	<u>(1,1.92]</u>
[0,0.01]	11	14	10+2	6+3
(0.01,0.5]	0	11	10	6
(0.5,1]	0	6	7	5
(1,2.13]	0	3	3	2+1

4.3 Characterising environmental gradients

To enable stratification of the 2017 sampling to account for environmental gradients that may influence benthos distributions and potentially confound comparisons of trawl impact effects, analyses were conducted using R package *gradientForest* (Ellis et al. 2012) to quantify the influence of multiple environmental variables on the abundance composition of the biotic communities. The demersal community sampling data were from the research voyages undertaken in 1982-1983, 1986-1991, 1995 and 1997 as part of the historical Sainsbury et al. (1987; 1988; 1991) NWS effects of trawling experiment. The sampling data included biomass of primarily fish species caught by two types of fish-trawls, and densities of sessile benthos morphotypes from trawl head-line camera photos. The environmental data were used from a comprehensive database of up to 41 variables (Table 13), gridded at 0.01° resolution for the Australian EEZ (Pitcher et al. 2018: FRDC 2016-039). The multiple biological survey datasets were analysed using *gradientForest* with the environmental layers to quantify the magnitude of change in demersal species composition along the environmental gradients (as predictors). This

information was then used to predict and map the distribution of demersal assemblages on the 0.01° grid. Statistical details of *gradientForest* Forest, a regression-tree based modelling method, are described in Ellis et al. (2012), and example ecological applications are described in Pitcher et al. (2010, 2012), and Pitcher et al. 2018 (FRDC 2016-039) which produced biodiversity and bioregional maps around Australia. Further information is available at http://r-forge.r-project.org/projects/gradientforest/.

Other data required for the survey design included spatial data for offshore oil and gas infrastructure such as production platforms and pipelines, which have navigation exclusion zones around them that prohibit seabed sampling. These areas had to be excluded from possible selection as sampling stations.

#	Variable	Description		
1	GA_BATHY	Bathymetry (depth) from Geoscience Australia digital elevation model (DEM) – metres		
2	GA_SLOPE	Slope derived from Geoscience Australia bathymetry DEM – degrees		
3	GA_ASPECT	Aspect of slope derived from Geoscience Australia bathymetry DEM – degrees T		
4	GA_MUD	Sediment % mud grainsize fraction, (Ø < 63 μ m) from Geoscience Australia		
5	GA_SAND	Sediment % sand grainsize fraction, (63 μm < Ø < 2 mm) from Geoscience Australia		
6	GA_GRAVEL	Sediment % gravel grainsize fraction, (\emptyset > 2 mm) from Geoscience Australia		
7	GA_CRBNT	Sediment % carbonate (CaCO ₃) composition, from Geoscience Australia		
8	RBN_BSTRESS	Seabed current stress, RMS mean from CSIRO 'ribbon' model – Nm ⁻²		
9	RBN_BSTRESS_SR	Seabed current stress, Seasonal Range		
10	CRS_NO3_AV	Nitrate bottom water annual average NO3 from CARS – µM		
11	CRS_NO3_SR	Nitrate Seasonal Range		
12	CRS_PO4_AV	Phosphate bottom water annual average PO4 from CARS – µM		
13	CRS_PO4_SR	Phosphate Seasonal Range		
14	CRS_O2_AV	Oxygen bottom water annual average O2 from CARS – ml L ^{−1}		
15	CRS_02_SR	Oxygen Seasonal Range		
16	CRS_S_AV	Salinity bottom water annual average S from CARS – ‰ (ppt)		
17	CRS_S_SR	Salinity Seasonal Range		
18	CRS_T_AV	Temperature bottom water annual average T from CARS – °C		
19	CRS_T_SR	Temperature Seasonal Range		
20	CRS_SI_AV	Silicate bottom water annual average Si from CARS – µM		
21	CRS_SI_SR	Silicate Seasonal Range		
22	SW_CHLA_AV	Chlorophyll annual average from SeaWiFS – mg m ^{−3}		
23	SW_CHLA_SR	Chlorophyll Seasonal Range		
24	SW_K490_AV	Attenuation coefficient at wavelength 490nm annual average from SeaWiFS – m^{-1}		
25	SW_K490_SR	Attenuation coefficient Seasonal Range		
26	MT_SST_AV	Sea Surface Temperature annual average from Modis – °C		
27	MT_SST_SR	Sea Surface Temperature Seasonal Range		
28	NPP_AV	Net Primary Production annual average from SeaWiFS – mg C $m^{-2} d^{-1}$		
29	NPP_SR	Net Primary Production seasonal range		
30	PAR_AV	Photosynthetically Active Radiation (PAR) from MODIS – Einsteins m-2day-1		
31	PAR_SR	Photosynthetically Active Radiation seasonal range		
32	BIR_AV	Benthic Irradiance annual average, BIR = PAR × exp(-K490 * Depth)		
33	BIR_SR	Benthic Irradiance Seasonal Range		
34	EPOC_AV	Exported Particulate Organic Carbon flux annual average from SeaWiFS – mg C $m^{-2} d^{-1}$		
35	EPOC_SR	Exported Particulate Organic Carbon seasonal range		
36	TERAN_CHAN	Terrain channel, probability of membership of topographic shape "channel" (Lucieer, 2007)		
37	TERAN_PASS	Terrain pass, probability of membership of topographic shape "pass" (Lucieer, 2007)		
38	TERAN_PEAK	Terrain peak, probability of membership of topographic shape "peak" (Lucieer, 2007)		
39	TERAN_PIT	Terrain pit, probability of membership of topographic shape "pit" (Lucieer, 2007)		
40	TERAN_PLAN	Terrain plane, probability of membership of topographic shape "plane" (Lucieer, 2007)		
41	TERAN_RIDG	Terrain ridge, probability of membership of topographic shape "ridge" (Lucieer, 2007)		

Table 13. Environmental variables mapped to the Australian EEZ, available to the project

4.3.1 Results for historical photo-benthos data

The head-line camera photo-benthos dataset comprised densities of 14 morpho-types averaged over about 80 photos for each of 583 trawl stations collected between 1982 and 1997 (Figure 119). The *gradientForest* results for this dataset are provided in some detail; analogous results from analyses of the two fish-trawl datasets were subsequently combined.

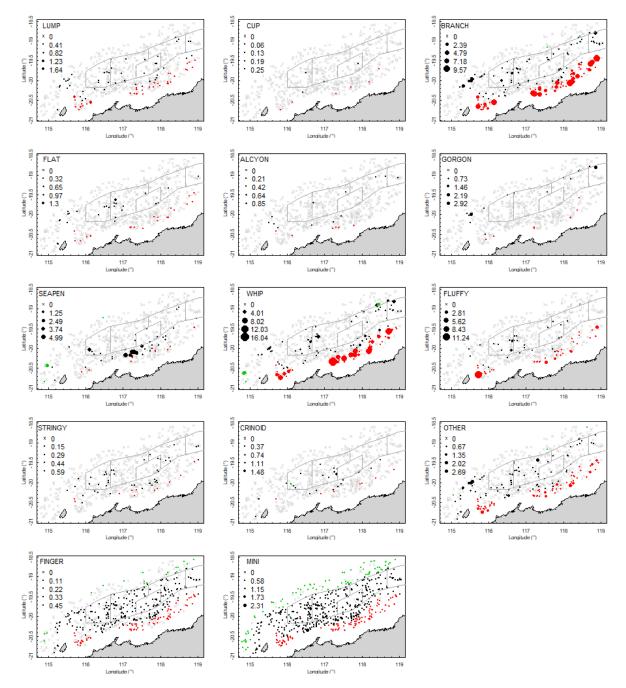


Figure 119 Maps of the observed density distributions of 14 sessile benthos morpho-types (Sponges: Lump, Cup, Branched, Flat, Finger; Alcyonarian soft-corals; Gorgonians; Sea-pens; Sea-whips; 'fluffy' or 'stringy' hydroids or similar; Crinoids; other or small 'mini' benthos) scored from trawl head-line camera photos at historical sampling stations in the NWS study area. Symbol size indicates mean density per photo frame; symbol colours indicate each of three main assemblage compositions of benthos morpho-types, as determined by multi-variate regression tree analysis of these data.

The most important environmental predictors associated with differences in patterns of abundance and composition of the 14 photo-benthos morpho-types included: seabed current stress, sediment gravel content, net primary productivity and seasonal range in bottom-water oxygen levels among others (Figure 120). The least important predictors included: photosynthetically active radiation, sediment carbonate and mud content, annual average sea-surface temperature and recent trawl-effort intensity among others. The rate of change of benthos composition along each environmental gradient is not constant (Figure 121), typically there are peaks of change with intervals of little change. Different benthos morpho-types may change to different total extents along each environmental gradient (Figure 122). Sometimes, several benthos types may change at the same location on a gradient; other times different types may change most at different locations. The cumulative change in overall composition of the benthos community is typically non-linear (Figure 123); there may be abrupt step-changes in composition indicating sharp boundaries between assemblages at one or more locations on gradients interspersing areas of little compositional change. The environmental variables had different levels of predictive capacity for different benthos types (Figure 124); best performance was for branched sponges and sea whips, poorest was for sea pens and crinoids.

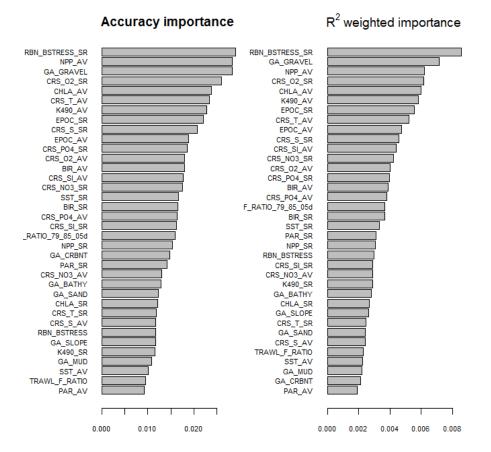


Figure 120 Average importance of environmental predictors associated with differences in abundance and composition of 14 photo-benthos morpho-types at sampled stations in the NWS study area (see Table 13 for variable definitions). Accuracy importance is the average predictor importance on the in-bag (training) data; R² weighted importance is the average predictor importance on the out-of-bag (held-out test) data, weighted by the R² of prediction performance on the out-of-bag data.

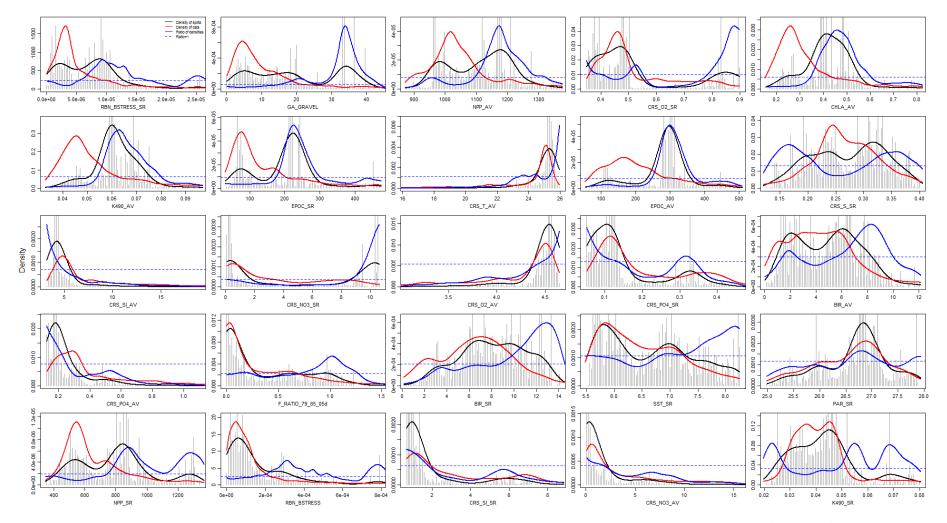


Figure 121 Splits-density plots for 14 sessile benthos morpho-types, showing tree-split importance and location on each environmental gradient (grey spikes), kernel density of splits (black lines), of observations (red lines) and of splits standardised by observations density (blue lines). Each distribution integrates to predictor importance. These plots indicate where important changes in the abundance of multiple species occur along each gradient; showing the rate of composition change.

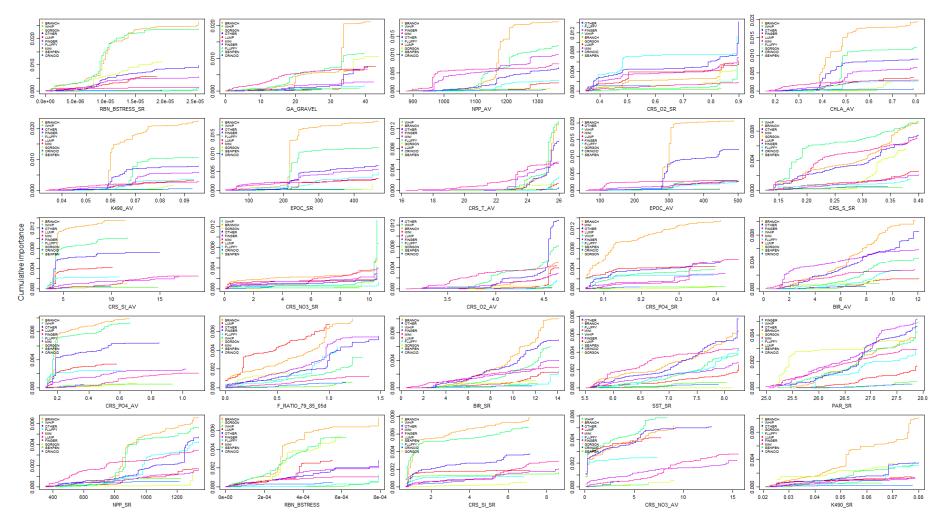


Figure 122 Species cumulative plots for 14 sessile benthos morpho-types, showing cumulative importance distributions of tree-splits improvement scaled by R² weighted importance, and standardised by density of observations. These show cumulative change in abundance of individual morpho-types, where changes occur on the gradient, and the morpho-types changing most on each gradient.

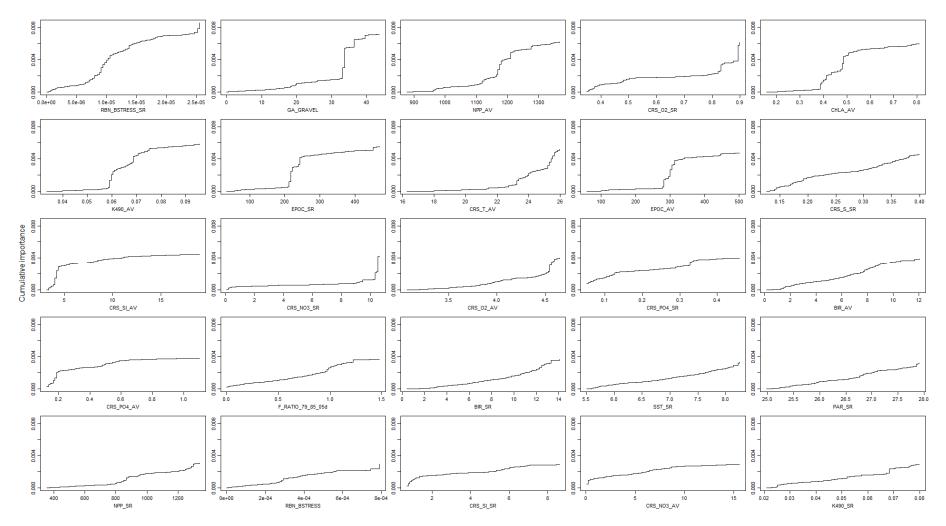


Figure 123 Predictor cumulative plots, showing cumulative importance distributions of tree-splits improvement scaled by R² weighted importance, and standardised by density of observations, averaged over all 14 sessile benthos morpho-types. These show cumulative change in overall composition of the community, and where changes occur on the gradient.

Overall performance of random forests over species

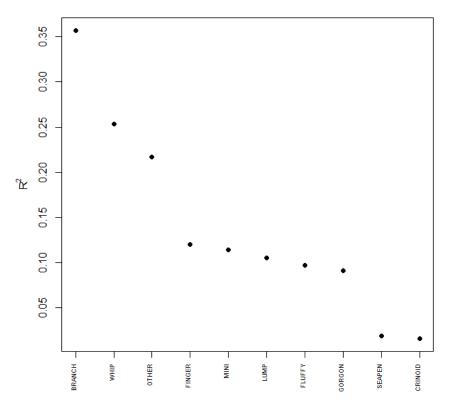


Figure 124 R² Performance of the model predictions on the out-of-bag data for each of 14 photo-benthos morphotypes sampled at stations in the NWS study area.

4.3.2 Combining results for photo-benthos and trawl datasets

The cumulative importance curves resulting from the analysis of the sessile benthos morpho-types dataset were combined with analogous curves output from analyses of the two fish-trawl datasets (Figure 125). The combined cumulative importance curves are not just simple averages across the three datasets, but also account for the information content and strength of evidence from each, including number of species, number of sites, model performance (R^2) , and density of observations along each environmental gradient. The combined cumulative importance curves provide empirical transformation functions for each environmental gradient (measured on many disparate scales) to a common scale that represents gradients in biological composition associated with the environment. Variables with greater influence are associated with larger changes in composition. These functions were used to transform all gridded environmental variables across the entire study area and to predict the demersal compositional patterns in the region. After transforming, principal components analysis provided a multi-dimensional biological space (Figure 126) that represents predicted composition associated with the environment. Points close together in this space have similar composition (and colours) that differs from locations more distant in this space. Vectors indicate the direction and magnitude of influence of the major environmental variables. The biological space mapped into geographic space (Figure 127) represents the spatial distribution of these continuous changes in biological composition.

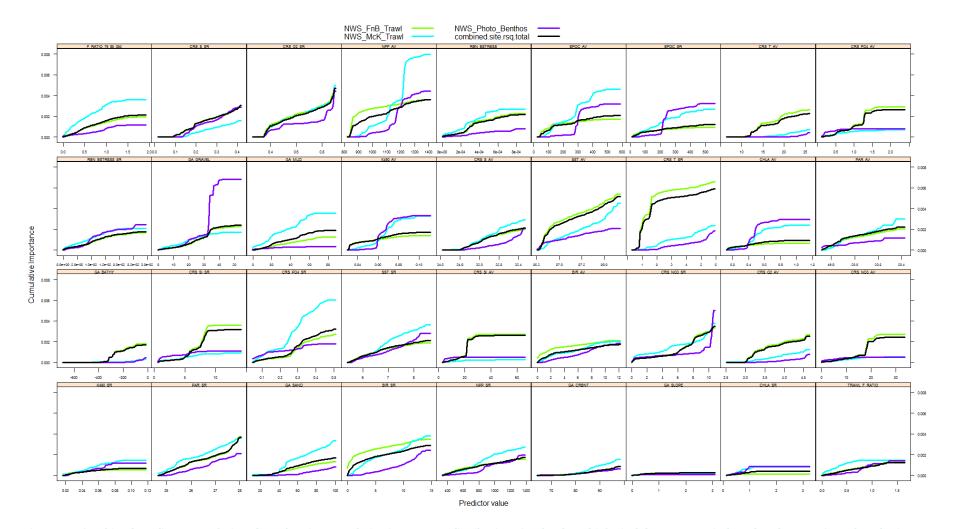


Figure 125 Combined predictor cumulative plots, showing cumulative importance distributions for the three biological datasets: NWS photo benthos, NWS Frank and Brice trawls samples and McKenna trawl samples. The combined cumulative importance distributions across all three datasets provide transformation functions for each environmental gradient to cumulative biological importance, used for predicting compositional change across the study area grid.

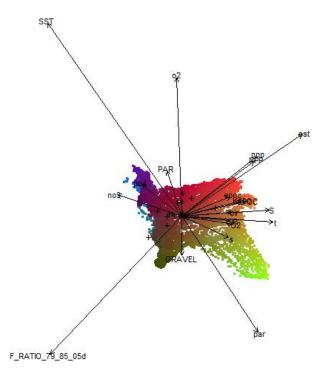


Figure 126 PCA plot, showing the first 2 dimensions of the multi-variate bio-physical space following transformation of each environmental gradient to cumulative biological importance, representing a prediction of compositional change throughout the entire study area.

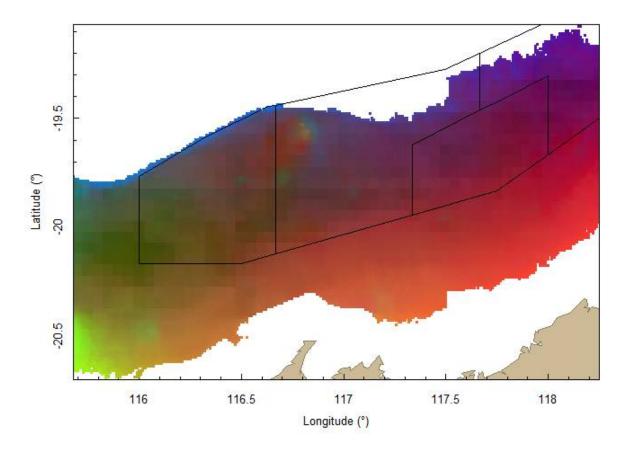


Figure 127 Map of transformed environmental gradients to cumulative biological importance, representing a prediction of continuous compositional change patterns across the study area grid.

4.3.3 Stratification for survey sampling

The stratification needed by the 2017 survey required that the continuous biological space (Figure 126) be sampled representatively to ensure that the influence of environmental gradient on demersal compositions could be accounted for in analyses of trawl impacts and recovery. A first-order stratification could be achieved by clustering the multi-dimensional biological space (Figure 126) into the same number of groups as the expected number of sampling sites (100). The medoid (most central) grid-cell in each group would be a suitable first-order choice for a representative sampling station (Figure 128). However, even though the historical trawl effort for 1979-85 was strongly represented in the biological space (Figure 126), the first-order clustering did not provide the minimum numbers of stations in the rarer historical–recent trawl effort combinations (Table 12) — even if the weighting of the trawl effort combinations was increased in the clustering. Consequently, the study area was first stratified by the trawl effort combinations (Figure 118), then biological space for each combination was clustered into the number groups corresponding to the required number of stations (Table 12); the medoid cell for each group provided an initial station selection.

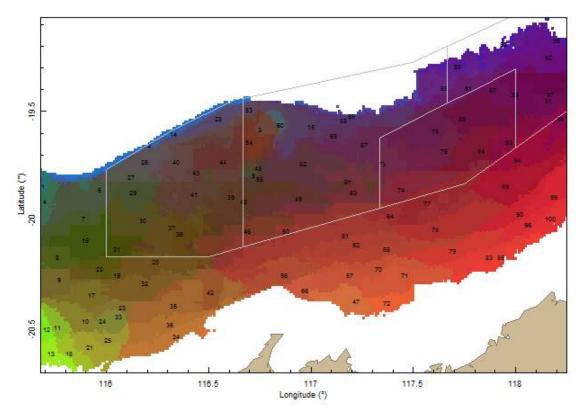


Figure 128 Map of initial clustering of the transformed biological space, representing a first-order stratification — number 1-100 indicates medoid grid-cells, which could provide sampling stations representative of the environmental gradients.

4.3.4 Selection of sampling stations

Grid-cells falling within navigation exclusion zones around offshore infrastructure were excluded from possible selection as sampling stations. Stations were then selected from each cluster group within each historical–recent trawl effort combination according to the following preference where possible: (1) Locations corresponding to stations sampled during the Japanese survey by the vessel Oshoro Maru in 1963, which recorded biomass of sampled sponges. (2) Locations corresponding to stations sampled during the CSIRO surveys on the RV Southern Surveyor in 1995 and 1997, which also recorded biomass of sampled sponges. (3) Nearest to medoid locations corresponding to stations sampled during other CSIRO surveys between 1982 and 1991. (4) The medoid cell if not in an exclusion zone, otherwise the nearest cell outside exclusion zones.

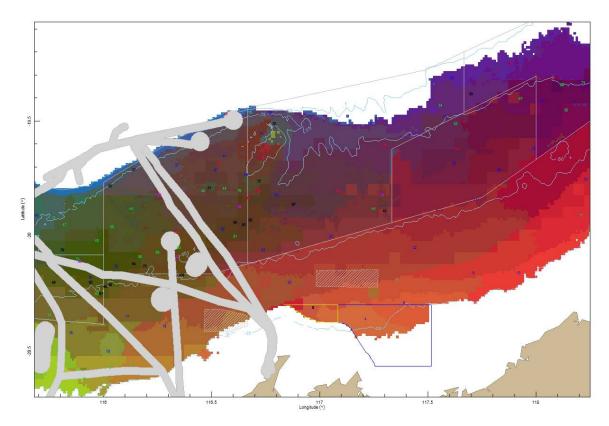


Figure 129 Map of final effort-contrast stratification and biophysical clustering, with final sites numbered 1-100, selected from locations sampled by the Japanese vessel Oshoro Maru in 1963 (red), the CSIRO vessel Southern Surveyor in 1995 or 1997 (blue); other CSIRO surveys between 1982 and 1991 (green), or medoid cells (black) or cell nearest to medoid (magenta).

4.4 Addenda

4.4.1 Schematics of pair-trawls

An outline description of the Taiwanese pair-trawl gear, contributing towards an estimate of their swept width is as follows. Trawl footrope length was reported as 75 m, with a spread factor of 0.67, giving a width of 50 m (Shindo 1972; Liu et al. 1978; Edwards 1983). However, this excludes any contact made by bridles, which average 5 m length, and by the sweep wires, which may be about 120 m in length but are in sections and some may be removed where sponges and corals were abundant Edwards (~1982). The sweep wires were bound with poly-rope and were called "combination ropes"; these were joined to tow warps of up to 500 m in length, but vary with water depth and the type of seabed (Edwards ~1982). The overall trawl swept width varies with these factors as well as the distance separating the paired trawlers. Edwards (~1982) visually estimated this distance as 400 to 500 m — but recollections by other fishery observers contacted personally ranged widely, from about 200 to 400 m. The UK Seafish Manual (Montgomerie & Forbes 2015) suggests vessel separation for pair-trawlers should be half the tow-warp length (implying a maximum of ~250m on the NWS). The FAO Fisherman's Workbook provides a formula for pair-trawl vessel separation of 36 of total gear length (i.e. ~625m max), which is also ~250m. While none of this information provides a confirmed estimate of bottom-contact width, nevertheless a schematic of these descriptions is indicative of a spread at the head of the sweeps of about 120-125m (Figure 130).

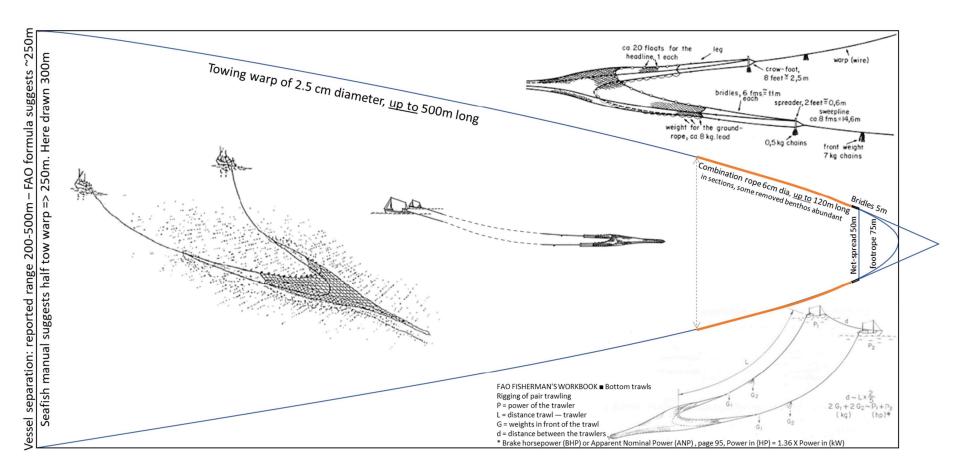


Figure 130 Schematic of pair-trawl description and dimensions provided by Edwards (~1982), with additional drawings from the FAO Fisherman's Workbook. Given this unconfirmed layout, the spread at the head of the sweeps ("Combination rope") is about 120-125m (grey dotted line). Edwards reported that the bridles were spread by a "Dan Leno" bar, but did not report use of any weights attached to bridles or sweeps.

4.4.2 Analysis of Scottish pair-trawling trials data

Galbraith (1984) conducted demersal pair-trawling trials in Scotland, with the purpose of estimating bottom contact-widths of the gear, and provides comprehensive data for the gear performance. Their results showed that ground-contact spread decreases with speed, as the wires lift off, and increases with vessel separation — and they concluded that 'the lengths of wire in ground contact were much less than previously supposed'. Analyses of these data (converted to a suite of ratios among gear and operational components, so they would be more applicable to other depths and warp-lengths etc) provided predictions of spread-ratio (ground-contact spread / vessel separation distance) as a function of tow-speed, scope-ratio (warp length / depth) and vessel distance-ratio (vessel separation distance / warp length) (Figure 131).

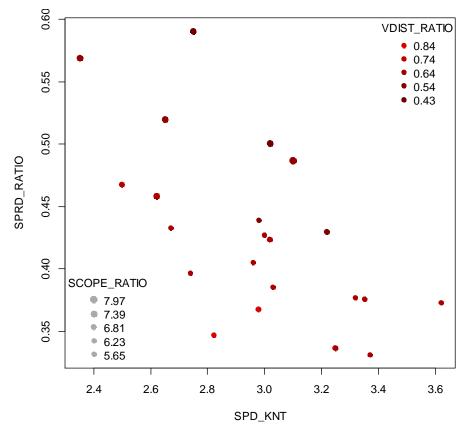


Figure 131 Results of analysis of data from demersal pair-trawling trials conducted in Scotland (Galbraith 1984), showing relationships between gear spread-ratio (ground contact spread / vessel separation distance) as a function of tow-speed, scope-ratio (warp length / depth) and distance-ratio (vessel separation distance / warp length).

Using the model from this analysis, and given the depths (~65m; 50–90) and tow-speeds (3.5kn) on the NWS, the expected scope-ratios are 6–8, warp lengths 350–550m, vessel separation distances 200–400m, and the predicted gear ground contact widths were 100–130m (mean: ~112m, \pm SD 14.1m) (Figure 132).

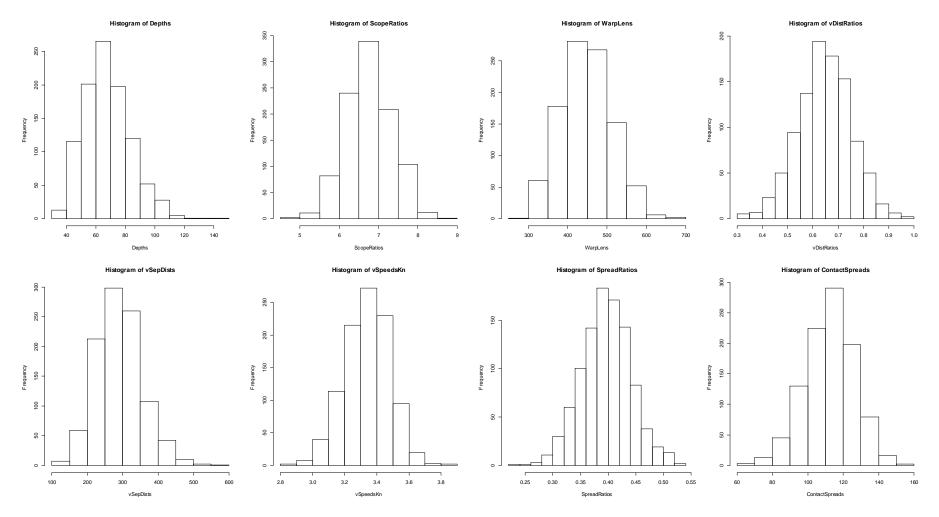


Figure 132 Results from prediction of pair-trawling trial relationships (Figure 131) to the NWS.

5 2017 North West Shelf survey benthos analyses

Roland Pitcher and Wayne Rochester (CSIRO Oceans and Atmosphere Research)

5.1 Introduction

The key aim of this part of the study was to assess the extent of recovery of the trawled sessile benthos communities 25 years after a period of Taiwanese pair-trawling ceased on the NWS. The basis of the assessment was the 2017 sampling survey that sampled areas previously subjected to high levels of pair-trawling but were then closed and remained untrawled. Data from the earlier surveys in the 1980s and 1990s were also re-assessed using similar approaches. In addition, the assessments also accounted for environmental gradients that may influence benthos distributions and abundance and potentially confound comparisons of trawl impact effects if not considered.

Multiple lines of evidence were considered to assess recovery, including: (1) simple temporal comparisons of the biomass of sponges sampled by trawls; (2) temporal comparisons of the trends in benthos depletion along the gradient of pair-trawling intensity, based on counts of morphotypes from images; and (3) simulation modelling of trawl impacts for the entire history of trawling in the region, to the current day.

(1) The temporal comparisons of trawl-sampled sponge biomass used data from a Japanese survey in 1963, CSIRO surveys in 1995 and 1997, and the MNF survey in 2017. All these samples could be standardised to kg / Ha, allowing direct comparisons between each time period.

(2) The image counts of sessile benthos morphotypes could not be standardised to densities because the counted area of images was not known for any survey. Thus, comparisons between time periods required an indirect approach whereby the coefficient of the trawl-gradient trend for each morphotype in each period were first estimated, then subsequently compared. Depletion of benthos by pair-trawling would be indicated by negative coefficients, whereas recovery would be indicated by zero (or possibly positive) coefficients.

(3) The trawl modelling involved simulation of the annual distribution and intensity of all trawling in the region from 1959 to 2016. The model simulated trawl impacts and recovery based on rates previously estimated for the same or similar benthos in the GBR. Starting distributions and abundances of benthos were predicted from regional grid-mappings of multiple environmental variables, based on fitted models of survey benthos abundances (adjusted trawl-gradient coefficients where appropriate) against the same environmental variables.

Additional trawl-gradient analyses were also conducted for sponge biomass from (1) the Japanese 1963 survey against Japanese trawl effort 1959-1963; (2) the CSIRO 1995 and 1997 surveys against Taiwanese pair-trawl effort; and (3) the MNF 2017 survey against Taiwanese pair-trawl effort. Further, MNF 2017 survey also acquired data for the distance (range) between the imaging camera and the seabed, and for seabed substratum classes from an acoustic sub-bottom profiler (SBP). Thus, the importance of image range standardisation and SBP class was also investigated, including their effects on analyses of the 2017 trawl-gradients. Finally, we examined the MNF 2017

survey data to provide some information on the relative catchability of sessile benthos into trawl nets.

5.2 Comparisons of trawl sponge-catch biomass with 'pre-trawl' biomass

Initial assessment of benthos recovery in the NWS was made by comparing the earliest known available sampling data for sponge biomass with that of subsequent CSIRO trawl surveys, and with the 2017 MNF survey trawl sponge biomass.

The earliest sponge sample biomass data were from a survey by the Japanese vessel Oshoro Maru, which sampled 20 trawl stations on the NWS in Dec 1963 – Feb 1964, and recorded catch weights of fish taxa and total sponge (Addenda 5.7.1, Figure 153). These samples do not represent true 'pristine' sponge biomass as Japanese commercial trawlers fished the region from Nov 1959 to Mar 1963 (Figure 153). Nevertheless, the Japanese trawling effort was relatively light compared with subsequent effort; they recorded 7616 trawls over 41 months, which at 1.95 hrs per haul (Robins 1969) corresponds to ~4,347 hrs/yr for 3.4 years. In comparison, heavily regulated current trawl effort in the region, using similar trawl gear is about 6000 hrs/yr — and except for 1987–89 is the lowest effort since the Taiwanese started fishing in 1972. Effort during the main period of the Taiwanese pair-trawl fishery averaged ~46,000 hrs/yr for 13 years.

The Oshoro Maru 1963 survey (OM1963) sponge catches were standardised to kg/Ha based on gear head-rope (38.2m), tow speeds (3.5kn) and tow durations (1–1.5hr) recorded in the voyage report. These densities were compared with standardised sponge densities sampled by CSIRO Southern Surveyor surveys on the NWS in 1995 and 1997 — and with total sponge densities from the 2017 MNF survey. For these comparisons, the SS1995-97 and MNF2017 stations were subsetted to those that fell within the same latitude, longitude and depth range as the OM1963 stations — plus a 0.05° and 10m depth buffer.

Visually, the simple mapped comparisons appear to indicate that SS1995-97 sponge densities were less than OM1963 in neighbouring locations (Figure 133), and that MNF2017 sponge densities were typically similar to or perhaps greater than OM1963 in neighbouring locations (Figure 134). Quantitatively, the mean OM1963 station density of sponges was 34.2 kg/Ha (range 3.98–144.4) compared with 13.5 kg/Ha for SS1995-97 (range 0.00–144.9), and 48.9 kg/Ha for MNF2017 (range 0.198–355.1), corroborating the visual interpretation. Nevertheless, raw densities are unlikely to be normally distributed and their means may be influenced be a few large values, hence means of log(x+1) transformed data were also compared. In this case, the log mean for OM1963 sponges was 3.14, compared with 1.94 for SS1995-97, and 3.15 for MNF2017 — suggesting that sponge densities in 2017 were similar to those in 1963, and greater than in 1995-97, for the same general area, and appears to indicate that total sponge biomass has now recovered.

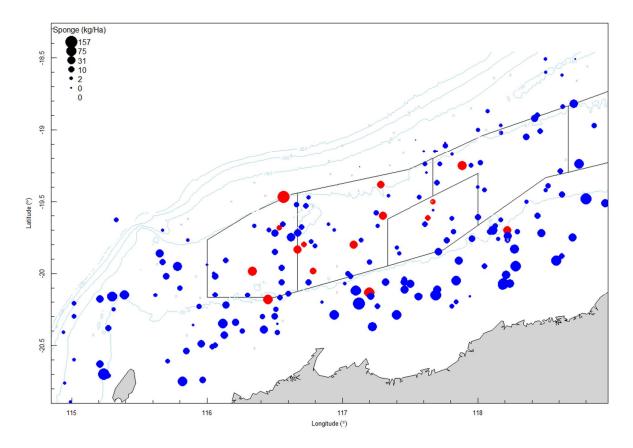


Figure 133 Map of the sampled density of total sponges at survey stations in the greater NWS study area. Symbol size indicates sponge density kg/Ha. Symbol colour indicates survey: red=OM1963; blue= SS1995-97. Black polygons outline current Western Australian management areas for their domestic trawl fishery. Depth contours are 50m intervals.

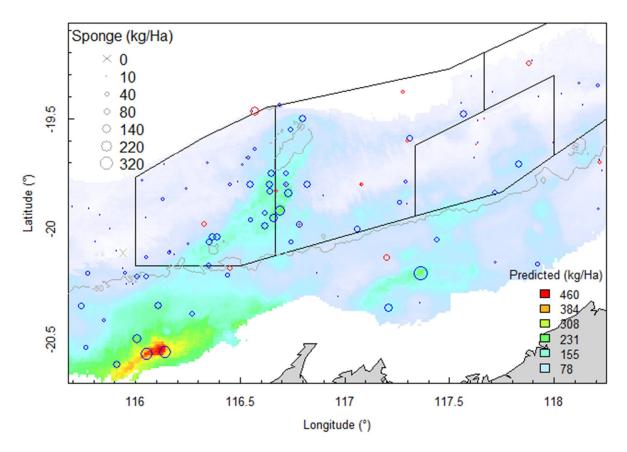


Figure 134 Map of the sampled density of total sponges at survey stations in the NWS study area. Symbol size indicates sponge density kg/Ha. Symbol colour indicates survey: red=OM1963; blue=MNF2017. Hollow symbols are used because MNF2017 aimed to re-sample OM1963 stations where possible, hence some locations overlap. Background indicates the distribution and abundance of predicted 'pristine' total sponge biomass (see Section 5.5).

5.3 Estimation of historical trawl gradient coefficient

The goal of this analysis was to estimate the impact effect on sessile benthos of the historical Taiwanese pair-trawling effort. The distribution and intensity of Taiwanese effort varied across the study area (Figure 116), hence there was a gradient of effort intensity among stations that had been sampled for sessile benthos, so more specifically the objective was to estimate the coefficient of the slope of benthos density along this gradient. Further, the distribution and abundance of sessile benthos was also likely to be determined by environmental and habitat factors (see section 4.3) independently of impacts due to trawling, thus it is important to attempt to disentangle these influences.

The method used to estimate the trawl gradient coefficient while accounting for the environmental influences can affect the interpretation of the results. For example, multiple regression ANOVA assumes the response is linearly related to the predictor variables. If the shape of benthos abundance response to a predictor variable (e.g. depth) is known a priori then perhaps a transformation of the environmental variable is possible before analysis; however, such shapes

are rarely if ever known in advance and were not known in this case. Hence, multiple regression ANOVA methods were considered unsuitable for estimating the environmental influences. On the other hand, there is reason to expect that benthos abundance decreases exponentially with increasing trawl impact (i.e. a constant proportional decrease per unit of trawl effort, e.g. see Burridge et al. 2003; Pitcher et al. 2000, 2016, 2017; Ellis et al. 2014) — this is a log-linear response and can be estimated using regression ANOVA with log-transformation of the response. Because of these differences, we used a relatively experimental hybrid analysis approach (Chen et al. 2007; Venables 2011; Mazor et al. 2017) where the trawl coefficient is estimated by using a linear-regression method iteratively with a regression-tree method that accounts for the environmental influences flexibly, where successive iterations of each model are fit to the residuals of the previous until convergence, and the overall estimate of the trawl coefficient is the cumulative sum of the iterated estimates. In our application, we used the R function *Im*(), package base stats, to estimate the trawl gradient coefficient, and R function *randomForest*(), package *randomForest* (Liaw & Wiener 2002, based on Breiman 2001), to estimate the environmental influences flexibly.

5.3.1 CSIRO photo-benthos dataset vs historical Taiwanese effort

First, we analysed the photo-benthos dataset, comprising densities of 14 morpho-types, from the historical Sainsbury et al. NWS research voyages (1982 to 1997), as described in Sections 4.3 and 4.3.1 — along with the historical Taiwanese pair-trawling effort (Section 4.2.1) and the suite of mapped environmental variables (Section 4.3). Initially, we used an aggregation of large (>15cm high) and small (<15cm) benthos for each type, where counts of small types were scaled down by the estimated weight difference between small and large types before summing as a single measure per type. At the outset, we examined whether there was a bias in the estimate of the trawl gradient coefficient depending on whether the *Im* was executed before the *randomForest* in the iteration or vice-versa. This test demonstrated (Figure 135) that the *Im* first approach initially estimated very large negative trawl coefficients, which changed rapidly with each iteration and eventually drifted towards an asymptote. In contrast, the *randomForest* first approach initially estimated very small/zero trawl coefficients, which changed slowly with each iteration and eventually drifted towards the ~same cumulative estimate as the *Im* first approach. The randomForest first approach converged with fewer iterations, and given both approaches converged to the ~same estimate of the trawl coefficients, we proceeded to use the *randomForest* first approach in all subsequent analyses. The finding that the *randomForest* first approach converged more quickly and with less change in magnitude, compared with the *Im* first approach, suggests that the environmental influences on the regional distribution and abundance of these benthos are larger than the trawl effects.

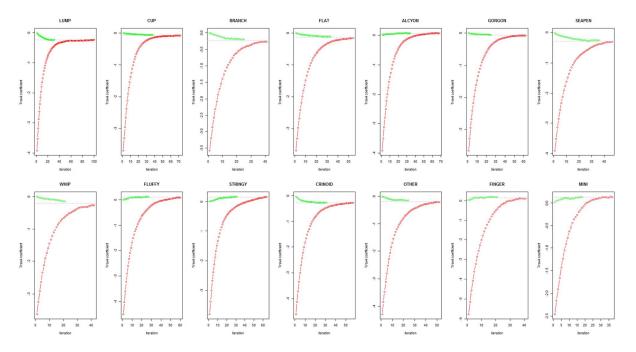


Figure 135 Iterative estimation of the historical trawl gradient coefficient for 14 sessile benthos morpho-types (Sponges: Lump, Cup, Branched, Flat, Finger; Alcyonarian soft-corals; Gorgonians; Sea-pens; Sea-whips; 'fluffy' or 'stringy' hydroids or similar; Crinoids; other or small 'mini' benthos). Dots with lines show the progressive cumulative estimate of the trawl coefficient, red indicates the *Im*() first approach, green indicates the *randomForest*() first approach.

The results of the randomForest() first approach are shown in Figure 136, and suggest that the major structure-forming benthos types (Sponges: Lump, Cup, Branched, Flat; Gorgonians; Seawhips) all have negative responses along the historical trawl gradient, indicative of impacts. Some of the smaller benthos types, considered not to be important for forming habitat structure, do not show negative responses — possibly due to being more resilient and/or having faster recovery. These coefficients are quantified in Table 14 along with conversions to the corresponding percentage depletion per unit of swept-area-ratio (i.e. 100-exp(trawl_coef)*100), and an estimate of the approximate significance level. The latter is estimated by subtracting the estimated trawleffect from the raw data (see blue crosses in Figure 136), fitting a single randomForest() model to these adjusted data to estimate the environmental influences, then calculating the difference between the randomForest() model predictions and the original unadjusted data, and finally fitting an Im() to these differenced data to re-estimate the trawl coefficient after removing the estimated environmental influences — the p-value from this final Im() model provides an approximate estimate of significant level. This indirect procedure means that formal statistical inference is difficult; the method is primarily exploratory and useful for indicating patterns and dependencies in the data.

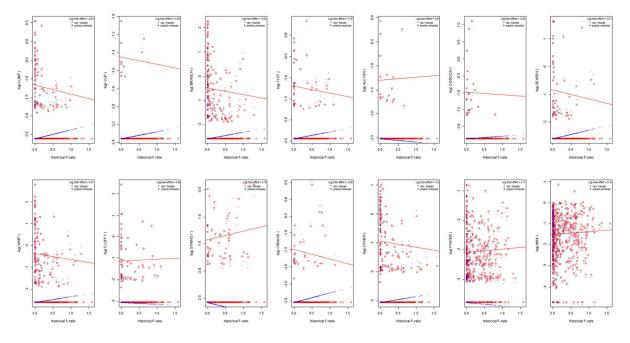


Figure 136 Plots of log benthos counts (mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for 14 sessile benthos morpho-types. Note that these are essentially scatterplots of the raw data and include all the variation due to environmental influences, they do not show the just the trawl effect in isolation. The red line indicates the final cumulative estimate of the trawl coefficient, following the *randomForest*() first iterative approach. The blue crosses indicate the expected pre-trawl response after adjusting for the trawl coefficient.

Table 14 cumulative estimates of the historical trawl gradient coefficient for 14 sessile benthos morpho-types, with corresponding conversion to percentage depletion per unit of swept-area-ratio, and *approximate* significance level (see text). Major structure-forming benthos types are highlighted.

Morpho- type	Trawl Coef	depletion rate	Approx significance
LUMP	-0.239	21.2	<0.001
CUP	-0.079	7.6	<0.001
BRANCH	-0.277	24.2	0.03
FLAT	-0.164	15.1	0.006
ALCYON	0.064	-6.6	0.01
GORGON	-0.079	7.6	0.06
SEAPEN	-0.312	26.8	< 0.001
WHIP	-0.270	23.7	0.13
FLUFFY	0.080	-8.3	0.11
STRINGY	0.160	-17.4	< 0.001
CRINOID	-0.279	24.4	< 0.001
OTHER	-0.204	18.5	0.09
FINGER	0.109	-11.5	0.12
MINI	0.123	-13.1	0.22

NOTE: "Flat" sponges are erect, fan-shaped – not prostrate.

As a second step, we analysed the photo-benthos dataset without aggregating large and small benthos for each type, and estimated the historical trawl coefficient separately for each of these sizes groups (Figure 137). In this case, the large size category for a number of the more major structure-forming benthos types tended to have more negative coefficients than the small size category, which might indicate that small sizes may be less affected by trawling and/or that benthos can recover to small sizes more quickly.

As a third step, given that some other datasets (e.g. trawl biomass from OM1963 and SS1995-97) only have highly aggregated data, we also analysed the photo-benthos dataset after aggregating all sponge types (Lump, Cup, Branched, Flat) and all gorgonian types (Gorgonians, Sea-whips), and estimated the historical trawl coefficient separately for each of these. In this case, both the all-sponges and all-gorgonians benthos types showed negative coefficients (Figure 138) somewhat intermediate to the corresponding dis-aggregated types shown in Table 14.

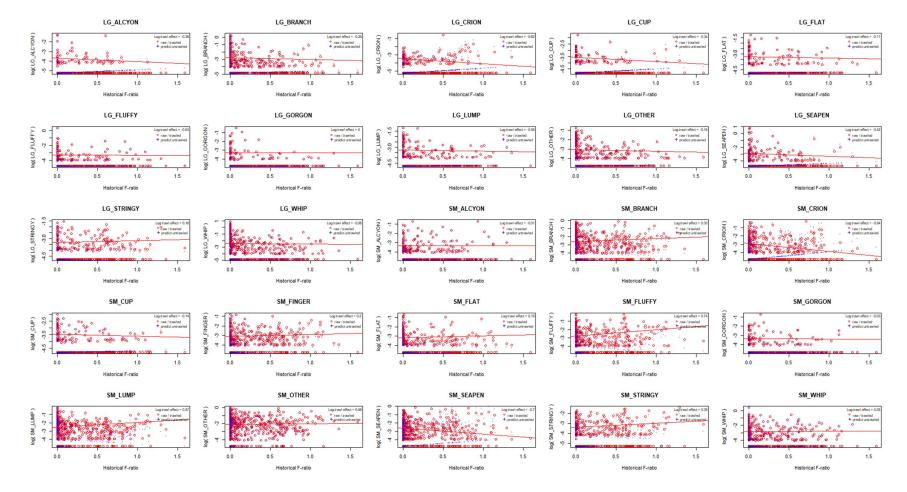


Figure 137 Plots of log benthos counts (mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for large and small size categories of 14 sessile benthos morpho-types. See Figure 136 caption for further details.

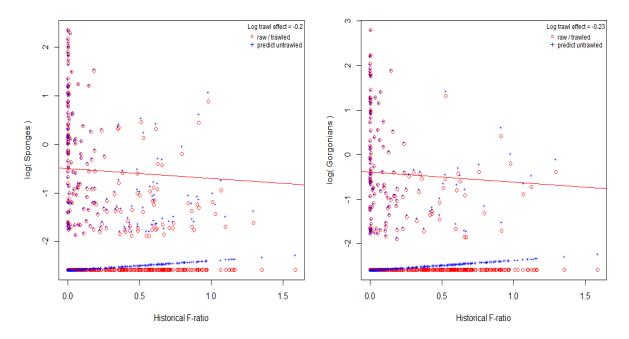


Figure 138 Plots of log benthos counts (mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for aggregated all sponge types (Lump, Cup, Branched, Flat) and all gorgonian types (Gorgonians, Sea-whips),. See Figure 136 caption for further details.

5.3.2 CSIRO trawl survey sponge dataset vs historical Taiwanese effort

The standardised densities of total sponge biomass sampled by the CSIRO Southern Surveyor surveys on the NWS in 1995 and 1997 (Section 5.2, Figure 133) were analysed to estimate the effect of the historical Taiwanese pair-trawling effort (Section 4.2.1), using the same iterative method as described in the preceding section, which also aims to account for the environmental variables (Section 4.3). Again, the total sponge biomass showed a negative coefficient (Figure 139) consistent with (possibly more negative than) those shown by various aggregations of sponges from the photo-benthos dataset shown in the preceding section.

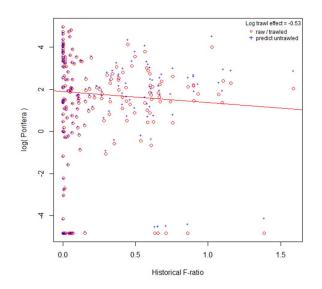
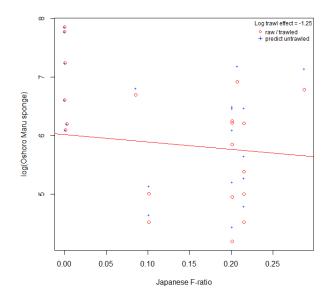
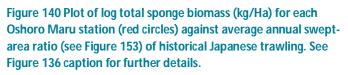




Figure 139 Plot of log total sponge biomass (kg/Ha) for each SS95-97 station (red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling. See Figure 136 caption for further details.

5.3.3 Japanese Oshoro Maru trawl survey sponge data vs historical Japanese effort

The earliest sponge sample biomass data, surveyed by the Japanese vessel Oshoro Maru at 20 trawl stations on the NWS in Dec 1963 – Feb 1964 (Section 5.2, Addenda 5.7.1, Figure 153), were also analysed to estimate the effect of the historical Japanese commercial otter-trawling effort in the region from Nov 1959 to Mar 1963 (Figure 153). The Oshoro Maru 1963 (OM1963) sponge catches were standardised to kg/Ha (Section 5.2, Figure 133), and the same iterative method was used as described in the preceding sections, which also aims to account for the environmental variables (Section 4.3). Note that this analysis is uncertain due to being compromised by the small number of stations (n<20) and the very coarse 0.5° mapping of Japanese effort (Figure 153). Nevertheless, the Oshoro Maru total sponge biomass also showed a negative coefficient against the Japanese trawl gradient (Figure 140).

5.4 Analyses of MNF2017 benthos data

In 2017, the MNF Investigator voyage was able to acquire a range of additional data, to supplement the biological sampling data, which were not possible in earlier voyages. Among other things, the MNF2017 used a digital headline camera with a ~5 second image rate and also used scaling lasers, which enabled estimate of distance (range, m) from the camera to the point where the lasers reflected from the seabed for each image — estimates of image area per se however could not be known with certainty because the angle of the headline camera relative to the seabed could vary as the trawl net moved or slope of the seabed changed. Earlier voyages used a 35mm film camera with a ~20 second image rate and had no lasers, so range estimates were not possible. The MNF2017 also acquired sub-bottom profile (SBP) data, which enabled classification of seabed substratum and sediment cover into the following seabed types: "DUNE", "HARD", "OUTCROP", "THICK", "THIN" — one of these categories was attached to each image for which classified SBP data were available. Such classifications were not possible for any earlier voyages. Prior to estimating the historical trawl gradient coefficient for the 2017 MNF survey, the importance of the camera range data and SBP categories were examined relative to environmental and trawling intensity, at the scale of individual images within trawl stations, and subsequently at the scale of trawl stations (i.e. averages for within trawls).

5.4.1 Effect of image range standardisation and SBP class data at the image level

Ultimately, there were 89 stations with image range data, 101 with SBP data, and 89 with both — these data were attached to each image and merged with the individual image morpho-type

counts data. For stations and images that have both range and SBP data, we used *randomForest* analyses at the image level to evaluate whether these data add value.

First, raw image-count data for each morpho-type – without range standardisation nor SBP variables – were modelled against the environmental variables and trawl effort as predictors. The Rsq performance of each morpho-type model and the *randomForest* importance measures for each predictor were extracted and stored. Second, the modelling was repeated after first dividing the raw image-count data by the square of the range (as a surrogate for image area), and again the Rsq performance and importance measures were stored. Third, the range-standardized image-count data were modelling again, with the SBP classification also included as a factor predictor. Again the Rsq performance and importance measures were stored.

Following these analyses, the Rsq performances of the unstandardised image models were compared with the range-standardized models — and the performances of the range-standardised models were compared with the range-standardized plus SBP factor models — by plotting the Rsq's against each other (Figure 141). These results suggest that standardising morpho-type counts by image range doesn't improve Rsq of model fits substantively (Figure 141, left). Nevertheless, range standardisation "de-quantises" counts from integers per image to continuous numbers per image depending on the varying range, and consequently there is a greater diversity of response values. Thus, the number of morpho-types that have >5 unique response values across all stations increases from 16 of 28 types that can be analysed to all 28 types. Including the SBP factor predictor (to range standardised data) appears to improve the Rsq performance of most models (Figure 141, right), with an average improvement in Rsq of almost 10% (regression coefficient = $1.097 \times$).

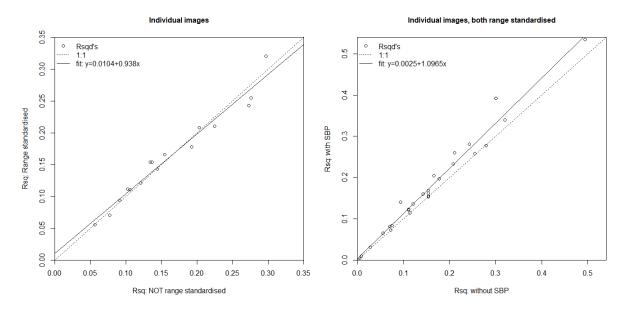


Figure 141 Plots comparing Rsq performance of *randomForest* models of benthos morpho-type image counts with environmental predictors for (left) raw unstandardised counts vs range-standardised counts, and (right) range-standardised counts vs range-standardised counts with SBP classification as a factor predictor. Circles: paired results for each morpho-type; dotted line: the 1:1 comparison (no difference); solid line: linear regression fit.

Plots of the Rsq-standardised predictor importance for the three sets of models (Figure 142) appears to indicate that range standardising the data increases variability in importance among morpho-type models (Figure 142, left cf. middle, wider boxes & whiskers, more outliers), although this could be due to an additional 12 morpho-types being included among the range standardised models. The overall order of most predictor importances are not greatly altered; for example historical trawl effort (F_Ratio_79_85) remains at high importance, but an obvious exception is recent effort (Trawl_F_Ratio) which drops from first to 12th in overall average importance. When the SBP factor predictor is included in models (Figure 142, right), it appears to be clearly most important in most morpho-type models — historical trawl effort again remains at high importance, but recent effort drops further to 28th in overall average importance.

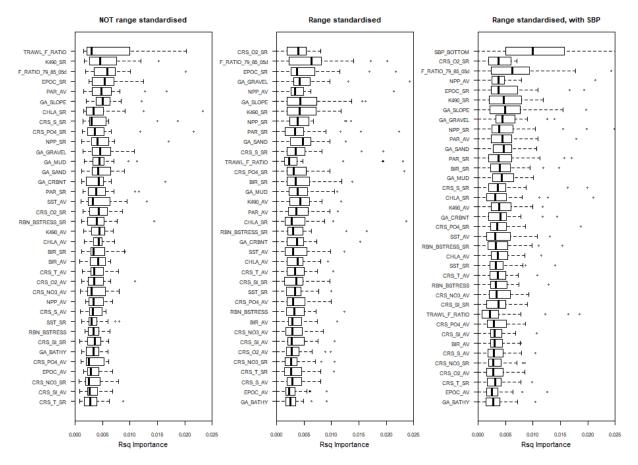


Figure 142 Box-plots of Rsq-standardised predictor importance (ordered by mean importance, from the top) in *randomForest* models of benthos morpho-type image counts with environmental predictors for (left) raw unstandardised counts, (middle) range-standardised counts, and (right) range-standardised counts with SBP classification as a factor predictor.

Given the stand-out importance of the SBP factor predictor at the image level, the response of benthos morpho-types to the SBP classification was examined further using *randomForest* marginal response plots (Figure 143). These plots show the mean response of each morpho-type to each of the SBP classes relative to their overall mean response at the average value of all other

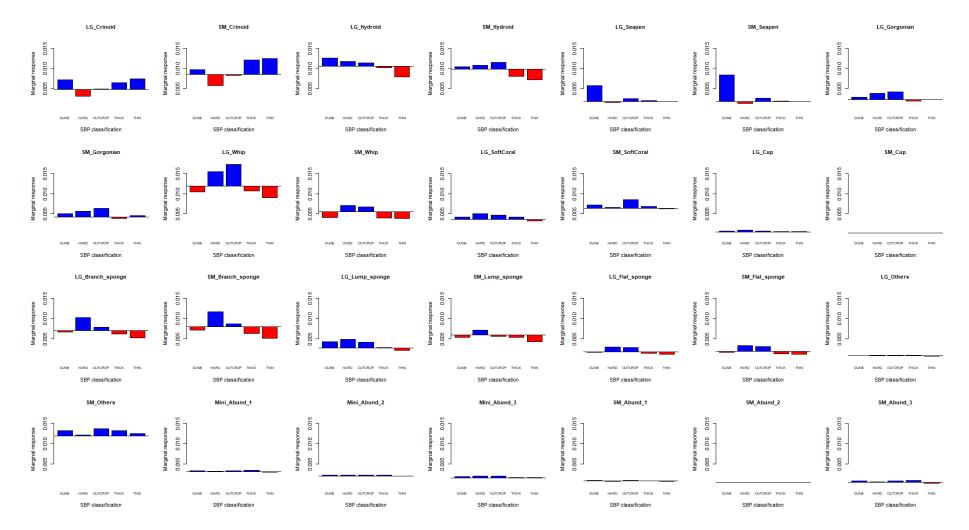


Figure 143 Marginal response plots of the benthos morpho-types to each SBP class in *randomForest* models at the individual image level; all plots have the same Y-axis scale indicating the different degree of response of different morpho-types to each bottom type. Blue bars indicate positive responses, red bars indicate negative responses, relative to the mean response for each morpho-type.

predictors; the Y-axis scaling is the same for all plots highlighting the contrasting responses different morpho-types to each bottom type. For example, crinoids are more abundant on sediments whereas most structure-forming attached benthos (gorgonians & whips, sponges) are more abundant on hard substrates and outcrop. These results are as expected given the known habitat requirements of such taxa.

Taken together, these results (Figure 141, Figure 142, Figure 143) suggest that morpho-type counts at image level should be range standardised and that the SBP classification should be included in subsequent modelling to estimate the trawl gradient coefficient. However, the analyses discussed in this sub-section were of the morpho-type data at the individual image level, whereas subsequent analyses would be at the trawl station level so would use the mean of image counts within trawls (which would be range standardised first), and SBP data would be summarised at the station level as a proportion of each of the 5 SBP class types occurring over the length of the trawl (i.e. 5 continuous variables rather than 1 factor variable).

5.4.2 Effect of SBP class proportions at trawl transect level

Before proceeding to estimate any residual effect of the historical Taiwanese trawl effort gradient on benthos morpho-types in 2017, as sampled by the MNF survey, the importance of the SBP bottom classification was further examined at the scale of trawl stations, relative to the importance of environmental variables and trawling intensity.

For analyses at the scale of trawl stations, the image-level counts of the benthos morpho-types were range standardised and the average count for each type was calculated for each trawl as the response variable, and the frequency of each SBP substratum type within each trawl was calculated as a proportion and provided 5 continuous predictor variables for each SBP class. These data were modelled with the station-level environmental variables and trawl effort as predictors, again using *randomForest* and extracting the predictor importance measures. The results indicated that the overall proportion of the HARD SBP class among the images within trawls often appears to be important for many benthos morpho-types (Figure 154, Addenda 5.7.2), and marginal response plots for HARD indicate that most benthos types (except Crinoids) have relatively higher mean abundance along trawls over seabed with higher proportions of HARD-classed seabed (Figure 155, Addenda 5.7.2). Like the image-level analyses, these trawl-station level results also indicate that the SBP classification should be included in modelling to estimate the trawl gradient coefficient.

5.4.3 Estimation of the residual historical trawl gradient effect in 2017

The historical Taiwanese trawl gradient coefficient for the 2017 MNF survey was estimated using the same iterative *randomForest/Im* approach as described in Section 5.3, where the *randomForest* fits the environmental variables and the *Im* fits the historical trawl effort gradient. Sections 5.4.1 and 5.4.2 provide evidence that benthos morpho-type image count data should be range standardised and that the analysis should include the SBP substratum type as predictors. Nevertheless, for completeness and understanding of the influence of this extra information on

estimation of the historical trawl effect, three sets of analyses were run, using: 1. unstandardised benthos counts, averaged for each trawl; 2. benthos counts standardised by range², averaged for each trawl; 3. range standardised benthos counts, with SBP class proportions for each trawl as extra predictors.

The first results (unstandardised) suggest that, in 2017, all habitat-forming sessile benthos and most other types have positive responses along the historical trawl gradient (Figure 144), the exceptions being non-structure forming crinoids and seapens. The second results (range-standardised) are qualitatively the same (Figure 145), with minor differences in magnitude of the estimated trawl coefficient. The third results (range-standardised with SBP class proportions) are qualitatively similar with reduced absolute magnitude (both positive or negative) for most benthos types (Figure 146); however, the coefficient of small crinoids becomes positive on the trawl gradient, that of large and small Lump sponges become somewhat negative as do 'mini' benthos_1. Hence, it is possible that after accounting for trawl-scale substratum differences, there may still be some evidence of a small residual historical trawl effect on Lump sponges.

Further, we repeated the analysis, using range-standardised data with SBP class predictors, after aggregating the large (>15cm high) and small (<15cm) sizes for each benthos type, to (1) compare with the initial analysis of the historical photo-benthos dataset from the Sainsbury et al. NWS research voyages (1982–97, see Section 5.3.1, Figure 136), and (2) because subsequent simulation modelling of the entire temporal history of trawl-fishery impacts (Section 5.6) does not include the complexity of benthos size classes. The aggregation involved scaling up counts of large size classes of each benthos type by the ratio of average weight difference between large and small individuals of each type, based on the weights and counts of benthos sizes classes sampled by the trawls in MNF2017 (sponges: Cup=5.4, Branched & Flat=3.9, Lump=3.2, Gorgonians=3.5, Seapen=4.7, Soft Coral=2.3, Whips=23.3), before summing as a single index of abundance for each type. The aggregated analysis was completed for nine of the more major of the benthos morpho-types. The aggregated results suggest that all major habitat-forming sessile benthos and most other types have positive responses along the historical Taiwanese trawl effort gradient (Figure 147), the exceptions being non-structure forming sea-pens.

The final analysis for the 2017 MNF survey data against the historical Taiwanese trawl gradient coefficient was for the aggregation of the total biomass of all trawl-sampled sponges, to compare with the analysis results for the SS95-97 total sponge biomass (Section 5.3.2, Figure 139) — and with results for the Oshoro Maru survey total sponge biomass against the Japanese trawl gradient (Section 5.3.3, Figure 140). In this final case, total sponge biomass in 2017 showed a very slight positive coefficient (effectively zero, Figure 148), providing evidence of no residual reduced abundance of sponges ~30 years after the cessation of the historical Taiwanese pair trawling.

Taken overall, the results of these analyses of the MNF2017 data against the historical Taiwanese trawl gradient, when compared with the primarily negative coefficients of SS1995-97, suggest that most of the major habitat-forming sessile benthos morpho-types had recovered by 2017. There is some uncertainty for Lump sponges, as not all analyses were consistently positive. It is also unclear why crinoids and sea-pens would be consistently negative, as neither are known to be particularly sensitive to trawling in terms of high impact rates or slow recovery. It is possible that this reflects some unknown compensatory effect.

Figure 144 Plots of log benthos counts (unstandardised mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for large and small size categories of 14 sessile benthos morpho-types. See Figure 136 caption for further details.

Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment | 189

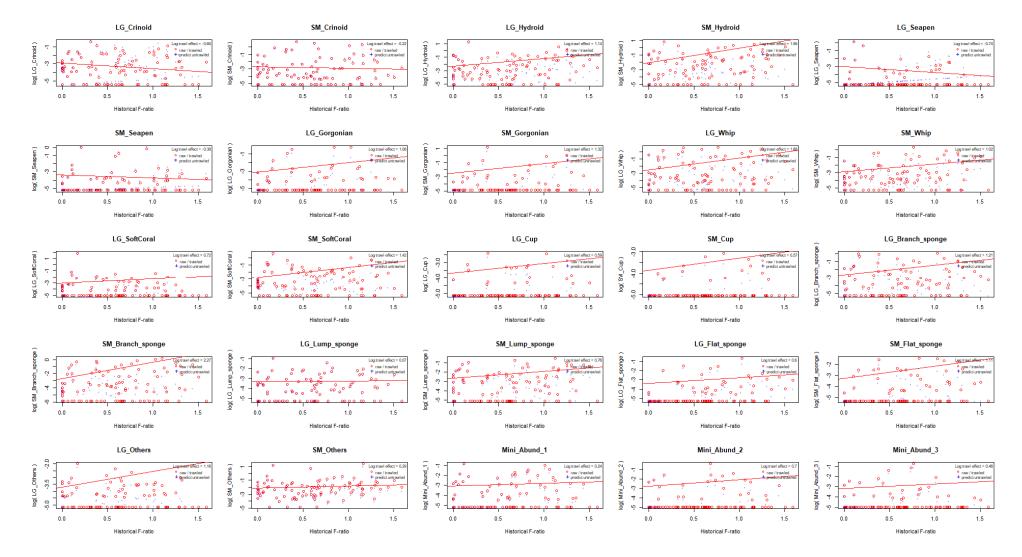


Figure 145 Plots of log benthos counts (range-standardised mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for large and small size categories of 14 sessile benthos morpho-types. See Figure 136 caption for further details.

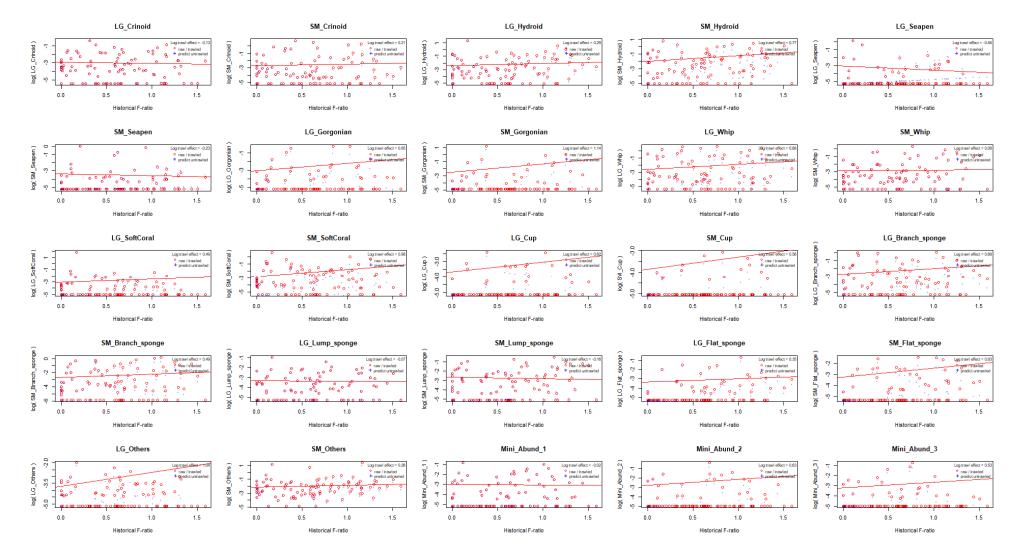


Figure 146 Plots of log benthos counts (range-standardised mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for large and small size categories of 14 sessile benthos morpho-types, accounting for SBP substratum class proportions. See Figure 136 caption for further details.

Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment | 191

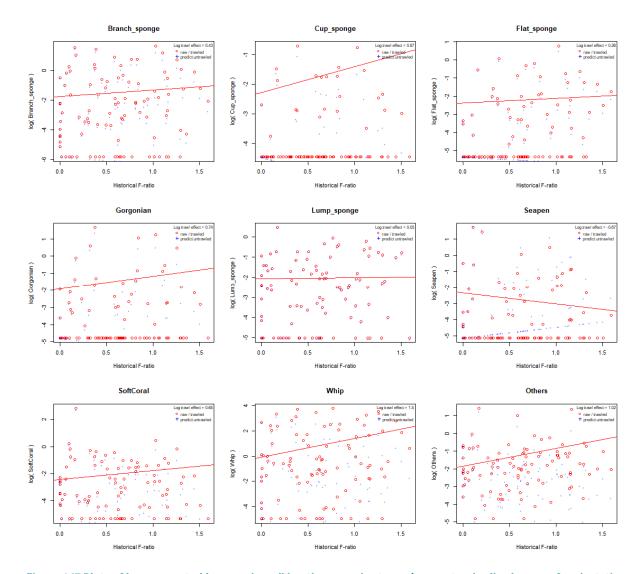


Figure 147 Plots of log aggregated large and small benthos morpho-types (range-standardised mean of each station, red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling for large and small size categories of 14 sessile benthos morpho-types, accounting for SBP substratum class proportions. See Figure 136 caption for further details.

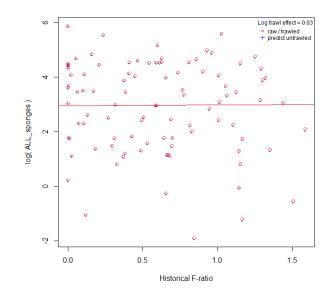


Figure 148 Plot of log total sponge biomass (kg/Ha) for each MNF2017 station (red circles) against average annual swept-area ratio (see section 4.2.1) of historical Taiwanese trawling. See Figure 136 caption for further details.

5.4.4 Catchability of sessile benthos morpho-types in trawl nets

With an aim of obtaining some understanding of catchability of sessile benthos morpho-types into trawl nets, we compared counts of each benthos type caught in trawl samples with counts of the same benthos types recorded from scoring the trawl head-line camera images. Trawl counts could be standardized by hectare, but unfortunately the camera image area is not known with sufficient certainty at this time, so image counts cannot be converted to density for a fully quantitative comparison with trawl catch counts (although they were standardized for range). In most cases, the trawl caught benthos types were recorded in more detail than possible from the images, so trawl caught benthos were aggregated to the same morpho-types and size-groups (small: <25cm, large: >25cm) as recorded for images — the main exception was that the Flat and Branched type sponges recorded from images were both recorded as Erect type sponges in trawl catches, hence image counts for Flat and Branched had to be aggregated to Erect type sponges. The count data from trawls and images were plotted against each other in log-log scale plots, for each benthos type and size-group (Figure 149). In most cases, there are reasonable relationships between benthos types and size observed in cameras and those caught in trawls. Further, while the coefficients of the relationships cannot directly quantify catchability (without image area estimates needed for standardization), there are clear differences in the relationships for large and small sizes of the same types showing relatively higher catch rates for large sizes and strongly indicating that large benthos have higher catchability than small benthos (as would be expected). Sainsbury et al. (1997) also found differences in selectivity of the trawl to different sizes of benthos.

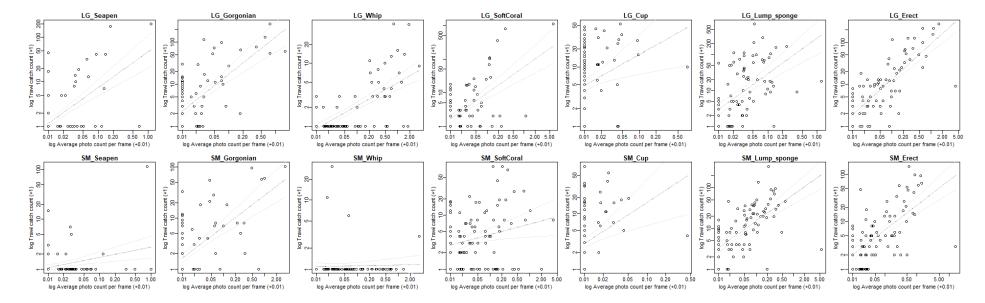


Figure 149 Log-Log plots of counts of large and small benthos morpho-types recorded from trawl samples and head-line camera images. Note that axes have different scales.

5.5 Prediction of pre-trawling sessile benthos distributions

Following estimation of benthos responses along the Taiwanese trawl gradient, the results for the (negative) trawl coefficient can be subtracted from the data and used to predict an estimate of the pre-trawl distribution from the environmental predictors using randomForest. The predicted initial distributions can then be used as a starting point in simulation modelling of the entire temporal history of trawl-fishery impacts (Section 5.6). There are constraints on the level of complexity of the trawl modelling that influenced the approach to predicting the pre-trawl distributions. In addition to abundance distributions, the trawl simulation modelling requires estimates of trawl impact rates and recovery rates. Estimates of these parameters for a number of sessile taxa are available from the GBR effects of trawling work (e.g. Pitcher et al 2007; Ellis et al 2014; Pitcher et al 2016), and many of the NWS benthos morphotypes can be directly or closely matched to the GBR taxa, but not all. The GBR work showed some trends in size depletion effects (higher depletion for larger benthos) but the effect was not significant, and there is only a single impact estimate for each taxon, and only one recovery rate estimate, regardless of size. Further, the simulation modelling treats each morphotype as a population, without separate size-classes (to do so would require too many unknown parameters). For these reasons, pre-trawl distributions were estimated for the aggregate of small and large sizes for each of the six most important habitatforming benthos morphotypes (Sponges: Branched, Cup, Flat, Lump; Gorgonians and Whips).

For the MNF2017 image data, LG & SM sizes for each major morphotype were aggregated after first scaling counts based on the ratio of mean weights of large and small from the MNF2017 catch data (see Section 5.4.3). The aggregated image data were not further adjusted for the Taiwanese trawl gradient coefficient since there was no evidence of a negative trawl effect in the aggregated MNF2017 data (Figure 147). Then *randomForest* models were fitted to log(X+minX) transformed data with the environmental variables as predictors. Following fitting, the models were used with the full grid of environmental variables to make predictions of each morphotype on the log scale, which were back-transformed using the standard 'bias-correction' procedure ($e^{(\bar{y}+\sigma^2/2)}$). Standard deviations of the grid predictions (on the log scale) were calculated from the forest of individual tree predictions (*n*=500) for each benthos type.

For the historical photo-benthos dataset from the Sainsbury et al. NWS research voyages (1982– 97, see Section 5.3.1), there was evidence that most large sizes had a negative coefficient for the historical Taiwanese trawl gradient effect (Figure 137). Hence, data for large and small sizes of each morphotype were adjusted for any negative Taiwanese trawl effects, before fitting *randomForest* models to log(X+minX) transformed data with the environmental variables as predictors. Again, grid predictions of benthos distributions from these models were backtransformed using bias-correction, and SDs were calculated. The separate back-transformed predictions for large and small sizes were added after first re-scaling to account for the mean weight differences between large and small benthos, as described above. The cell variances of the grid predictions on the log scale for large and small benthos, were pooled after taking into account the weight-scaling. The back-transformed predictions of pre-trawl distributions on the natural scale, from the historical period and from 2017, were ensembled for each morphotype. The ensembling involved weighted averaging, so that more uncertain predictions had lower weights,

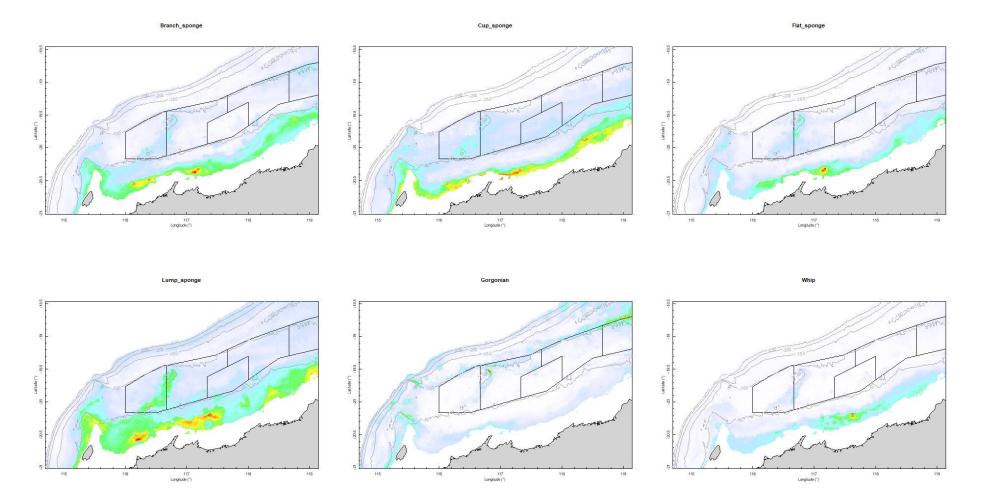


Figure 150 Maps of ensemble predicted distributions of the relative abundance (red=high, blue/grey=low) of six major benthos morpho-types for the greater NWS study area. Black polygons outline current Western Australian management areas for their domestic trawl fishery. Depth contours are 50m intervals.

Branch_sponge

Cup_sponge

Flat_sponge

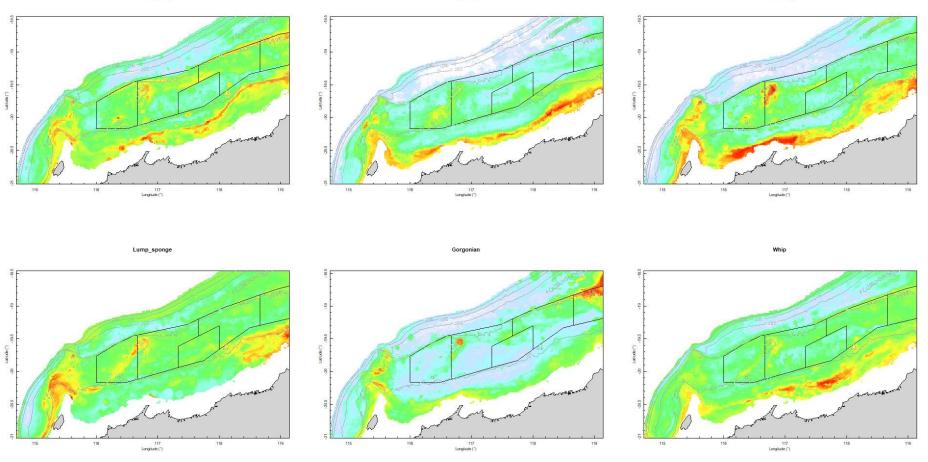


Figure 151 Maps of uncertainty (pooled SDs on log scale; red=high, blue/grey=low) in ensemble predicted distributions of six major benthos morpho-types for the greater NWS study area. Black polygons outline current Western Australian management areas for their domestic trawl fishery. Depth contours are 50m intervals.

using minimum-variance-unbiased-estimator (MVUE) to calculate the weightings at the level of each grid-cell (based on inverse grid-cell SDs) as well as at the overall level (based on model Rsqd's). An estimate of the ensembled SDs for each grid-cell (on the log scale) was calculated using the same weighting procedure.

The ensembled mean grid-cell predictions on the natural scale were mapped (Figure 150), as were the estimated combined grid-cell SDs on the log scale (Figure 151). Given the image counts were re-scaled by the ratio of mean weights for large and small size-classes, the predictions may be considered to represent the estimated relative 'amount' of each benthos type. These were divided by totals to provide normalised distribution profiles that sum to 1, which were used as the starting distributions in the trawl impact simulation modelling.

5.6 Trawl impact simulation modelling

A spatial dynamic modelling framework (originally developed in 1999 for the GBR Marine Park area, see Ellis and Pantus 2001, and Ellis et al. 2014 for model details) was used to estimate the regional impact of trawling on sessile benthos types, in terms of removal of relative abundance, by implementing a simulation of the spatial and temporal pattern of all past trawling effort on the greater NWS study area, including the Japanese otter trawling, Taiwanese pair-trawling, and subsequent domestic otter trawling (to 2016). The model estimates a time-series of benthos relative abundance for each spatial grid-cell that depends on the sequence and intensity of trawl effort, and estimates of per-trawl depletion rates and post-trawl recovery rates. The model has been used to compare trawl management scenarios in the GBR (Pitcher et al 2007 and 2016) and in the Southeast Region (Pitcher et al 2015).

The trawl simulation model is based on a Schaefer (1954) equation, widely used in fisheries assessments, with the fishing removal term modified to describe benthic impacts of trawling:

$\delta B/\delta t = rB(1-B/K) - dFB$

where $\delta B/\delta t$ is the rate of change in abundance *B* in time *t*, *r* is the recovery rate, *K* is carrying capacity, *d* is the trawl depletion rate and *F* is trawling effort as swept-area ratio. Each cell was assumed independent from neighbouring cells — a reasonable simplification for immobile sessile taxa that have short-range propagules. Estimates of *d* and *r* for a number of sessile taxa are available from the GBR effects of trawling work (see Pitcher et al. 2007); these were aggregated by morphotype to provide mean estimates for comparable morphotypes of the NWS benthos (Table 15), some of which are the same taxa (e.g. Flat sponge = *lanthella* sp.s).

Benthos morho-type	d_value	low_d	high_d	<i>r</i> _value	low_r	high_r
Lump sponge	0.38	0.29	0.46	0.45	0.33	0.56
Cup sponge	0.37	0.29	0.45	0.75	0.56	0.94
Branch sponge	0.36	0.28	0.44	0.48	0.36	0.60
Flat sponge	0.32	0.25	0.39	0.25	0.19	0.31
Gorgonian	0.41	0.32	0.50	1.15	0.86	1.44
Whip	0.08	0.06	0.10	0.64	0.48	0.80

Table 15 Estimates of trawl depletion rate *d* and logistic recovery rate *r*, with estimated uncertainty, aggregated to NWS benthos morhotypes, from analysis of the GBR effects of trawling work.

Estimates of carrying capacity *K* were provided by the predictions of pre-trawl distributions (Section 5.5, Figure 150). Nevertheless, the model was run with a starting value of K=1 in all cells, thus model predictions are initially of relative benthos status (0–1) for each cell, which are subsequently multiplied by the predicted pre-trawl distribution for each cell, to provide an estimated time-series of 'absolute' status.

The annual trawl effort time series was provided by existing data and/or from fishery logbook databases. Japanese otter trawling effort for 1959 to 1963 was sourced from Robins (1969) on a 0.5° grid (see Section 5.2, Addenda 5.7.1). Taiwanese pair-trawling effort for 1972 to 1989 was originally sourced from Taiwanese fishery logbook data on a 0.5° grid for the years 1972 to 1981 (Althaus et al. 2006), and for years 1979 to 1989, 'shot-by-shot' trawl data were sourced from AFMA and were gridded at 0.05° resolution (see Section 4.2.1). Domestic otter trawling effort for 1987 to 1992 on a 1° grid was sourced from Fisheries WA catch and effort statistics (CAES, see in Althaus et al. 2006), and for years 1993 to 2016, 'shot-by-shot' trawl data were provided by WA DPIRD (updated in 2017 and 2020) and were gridded at 0.01° resolution (see Section 4.2.2). Trawl effort in number of tows and/or hours was converted to swept-area ratio *F* based on gear swept-widths and tow-speeds as described in Sections 4.2.1, 4.2.2, 5.2).

We also incorporated uncertainty around the parameters into the simulation, in addition to the mean estimates, to propagate uncertainty through the trawl model, so that the outputs would provide a distribution of potential outcomes. Uncertainty in depletion *d* and recovery rates *r* was provided by an analysis of the mean absolute deviations (MADs) of the estimates for the GBR taxa. Since benthos sensitivity to trawling is the ratio *d*/*r*, we characterised uncertainty by using ±half the MAD relative to the mean for each morphotype, which leads to a range of sensitivities comparable to the inter-quartile range of the total spread of sensitivity. This corresponds to about ±22.5% for *d* and about ±25% for *r*— thus, high sensitivity was *d*+22.5% with *r*-25%, and low sensitivity was *d*-22.5% with *r*+25% (see Table 15). For uncertainty in trawl swept-area ratio (SAR), we used mean and high estimates for the swept-width of trawl gear, where mean pair-trawl width was 112m and high (+1SD) was 126m (Section 4.2.1) and mean otter trawl door-to-door width was 80m and high was 100m (Section 4.2.2). Uncertainty in predicted distributions was represented by mean ± SD for each morphotype (see Section 5.5) — thus, low range distribution was exp(log(x)-SD), and high range distribution was exp(log(x)+SD) for each grid cell.

The trawl simulation model predicted that the regional status of the six sessile benthos morphotypes declined when trawl effort increased and recovered when trawl effort reduced (Figure 152). Lowest status occurred around 1980, towards the end of the period of highest Taiwanese effort. Depending on the uncertainty scenario and morpho-type, the lowest status reached ranged between about 65% to 98% of pre-trawling abundances. There were indications of a secondary dip in status for some morpho-types in the mid-late 1990s as domestic trawl effort increased and peaked in 1996. The uncertainty range is wide for most morpho-types; greatest uncertainty appears to be with the benthos sensitivity to trawling, followed by mean vs high SAR, then distributions (where alternatives are likely to be correlated). Sponges (Branched, Cup, Flat, Lump) are most sensitive, Whips are least sensitive, and Gorgonians have intermediate sensitivity. The shapes of the status time-series varied among morpho-types; for example, compared with other morpho-types, the Cup Sponges (and also Flat Sponges) continued to be depressed by ongoing Taiwanese effort through the 1980s. These patterns are likely to be due to differing distributions; i.e. as spatial patterns of fishing changed over time, areas where cup sponges (and flat sponges) were distributed continued to be relatively more exposed to trawling than areas where the other benthos types occurred.

The status of the benthos morpho-types at the end of the time-series in 2016 varies with the uncertainty scenario, but is at the highest levels since Taiwanese trawling started in 1972. Further, given analyses of the MNF2017 data suggest little or no residual Taiwanese trawl effect remains in 2017 (Section 5.4.3) — and analogous empirical analyses of the MNF2017 data on the recent trawl gradient (while showing negative effects for some morpho-types) suggest regional-scale depletion of current status is less than ~1%-2% — thus, it is perhaps more likely that the more optimistic uncertainty scenarios are a more plausible reflection of the history of impacts.

Estimates of unfished benthos in this recent analysis are less than in the original analysis of the adaptive management experiment. This can be largely attributed to the Improved availability of environmental data for the recent analysis and because the impact of Taiwanese and other foreign trawling was estimated to be higher in the past analyses than is considered to be the case now.

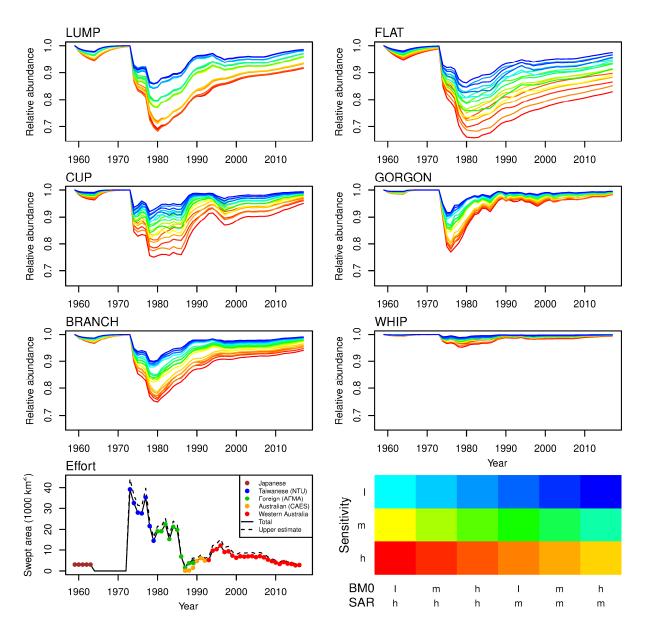


Figure 152 Plots of trawl-impact simulation model results for predicted time-series of absolute status of 6 major benthos morpho-types (relative to pre-trawl abundance) in the greater NWS study area. Uncertainty is represented by 18 time-series lines for each morpho-type: for sensitivity to trawling, pre-trawling abundance, and swept-width of trawl gears. The time-series of trawling total annual swept-area is shown for each fishery.

5.7 Addenda

5.7.1 Japanese commercial trawl effort and survey stations

Japanese commercial trawlers fished the NWS, using otter-trawl gear, from Nov 1959 to Mar 1963, and recorded 7616 trawls over 41 months (Robins 1969, Figure 153). The Japanese vessel Oshoro Maru sampled 20 trawl stations on the NWS in Dec 1963 – Feb 1964 (Figure 153). Two stations were well east of subsequent study areas, and 4 stations were at the same location in the middle of the current study area. The survey recorded the catches of 16 taxa of fishes, and total sponges.

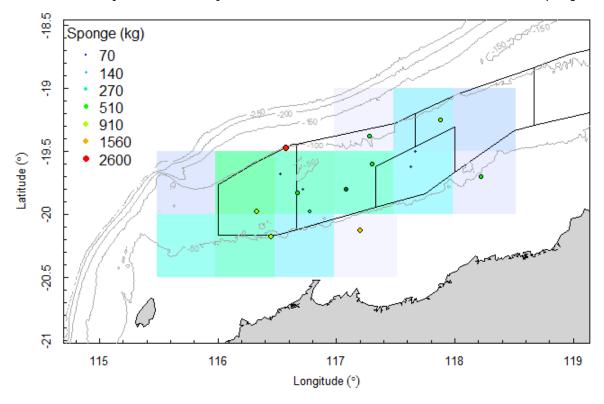
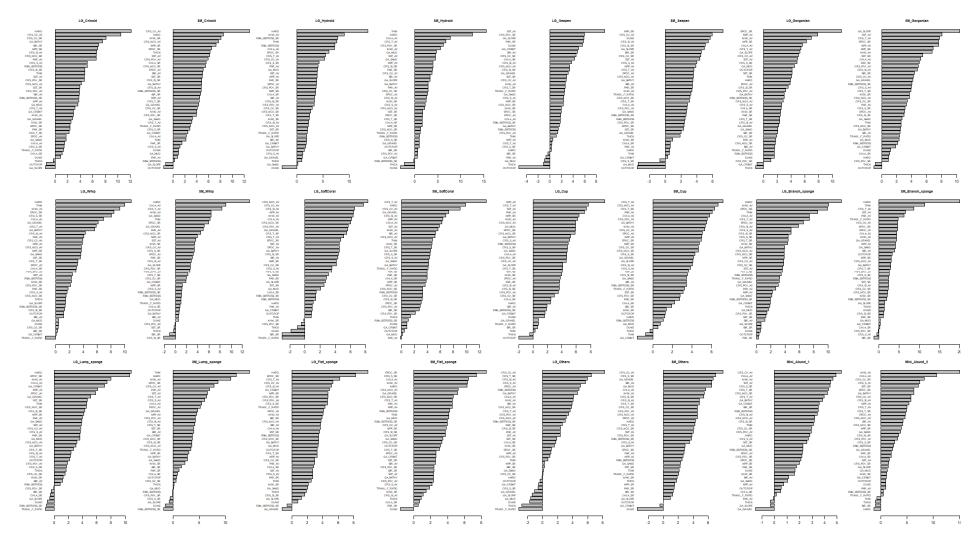



Figure 153 Map of the NWS region showing the distribution and relative intensity of trawl effort (number of trawls per 0.5° grid-cell) for historical Japanese otter-trawling. Circles indicate trawl stations surveyed by the Japanese vessel Oshoro Maru, with circle size and colour indicating raw sponge catch weights. Black polygons outline current Western Australian management areas for the current domestic trawl fishery.

5.7.2 randomForest results at the scale of trawl stations

Figure 154 Predictor importance in *randomForest* models of mean range-standardised benthos morpho-type counts at trawl station level, with environmental variables and proportion of SBP substratum classes as predictors.

Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment | 203

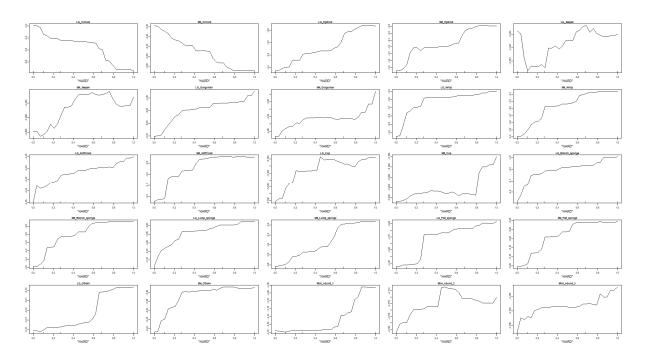
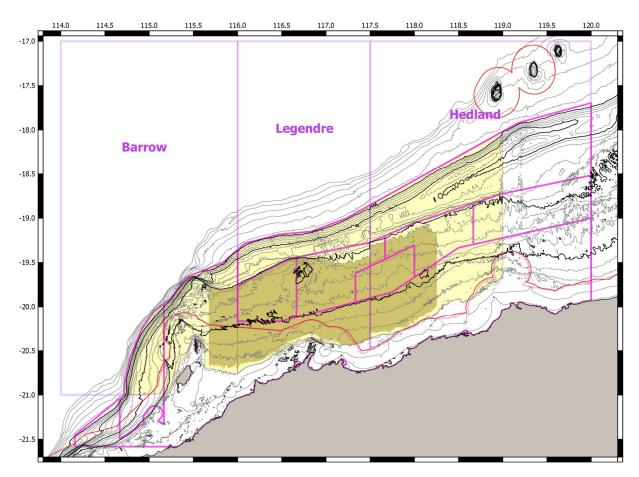
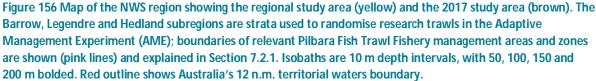


Figure 155 Marginal response plots of the average counts of benthos morpho-types to the proportion of SBP HARD substratum class in *randomForest* models at the trawl transect level; plots have different Y-axis scale (log) indicating the trend of response of different morpho-types to hard bottom type.

6 Structure and temporal changes in fish assemblages on the NWS

Alan Williams and Franzis Althaus (CSIRO Marine and Atmosphere Research)


6.1 Introduction


6.1.1 Trawling in the NSW region

The North West Shelf (NWS) area has a long history of commercial demersal trawling for scalefish (Section 7.2.1) and, relative to any other area in the Australian Marine Jurisdiction, a long history of research trawling for fishes. Research voyages include 16 large and statistically-designed surveys undertaken between 1982 and 2017 — a concentration of research effort linked to a large-scale adaptive management experiment (AME) (Sainsbury et al. 1991) that aimed to measure the effects of spatial closures and different fishing methods (primarily trawling and trapping) on the seabed habitats and overall productivity of the NSW scalefish fishery.

6.1.2 This chapter

In the context of evaluating the long-term recovery of trawled marine communities of the NWS, this chapter examines, firstly, regional-scale spatial structure (species composition and distribution) in NWS demersal fish assemblages and, secondly, temporal changes in assemblage structure and the abundances and size spectra of informative species for the period 1982 to 2017 within the study area. Data were available from 16 research surveys of the continental shelf area roughly between Dampier and Port Hedland in depths between ~20 and 200 m (Figure 119).

This chapter's two primary objectives are to:

Objective 1) Determine regional-scale patterns in fish assemblage structure in the entire survey area (the "regional" analysis which captures the full area of previous surveys conducted between 1982 and 1997).

This analysis uses data from a sub-set of eight historical research surveys that have standardised sampling characteristics: the same regional extent (Figure 156), a consistent random-stratified statistical design, and complete records of catch weight for all species in every trawl sample. Six of these surveys occurred during a relative lull in trawling effort between 1986 and 1991 when the extent and intensity of foreign trawling rapidly declined and then concluded, and as the domestic trawl fishery commenced and its footprint expanded. The other two research surveys occurred in 1995 and 1997 when the domestic trawl footprint had stabilised but before fishery spatial management zoning was introduced in the Pilbara Fish Trawl Fishery (Wakefield et al. 2014). This analysis of data collected over a 12-year period (1986 to 1997) therefore smoothes the temporal effects of annually variable trawl effort intensity and distribution, and environment variation, to provide a "time-integrated"

regional-scale description of the continental shelf fish assemblages. It excludes earlier survey data collected during the period of intense foreign trawling (7 surveys in 1982-1983), and data from the single survey undertaken a decade later (2017). These surveys were excluded either to avoid the period of intense foreign trawling and/or because they did not share all of the standard sampling characteristics – notably the reduced spatial extent of the 2017 survey.

Objective 2) Identify changes in fish assemblage structure in the sub-regional study area surveyed in 2017 based on a time-series analysis of historical survey data (the "time-series analysis").

This analysis uses data from four additional surveys (two from 1982 (combined), one each from 1983, and 2017), but is limited to the sub-regional study area surveyed in 2017 (Figure 156). The surveys in 1982 and 1983 occurred prior to the AME when foreign trawl activity was intense and widespread in the region but concentrated in the sub-regional study area. This analysis examined changes in the composition and distribution of fish assemblages through a time-series (by year) analysis of historical survey data, including to use the 'time-integrated' regional analysis for context.

6.2 Materials and methods

6.2.1 History of commercial and research trawling

A key element of our analyses was to examine the complex spatial and temporal patterns of historical trawling effort and fishery closures so that the timing of scientific surveys could be interpreted in relation to historical trawl effort. This informed the selection of individual surveys best suited to addressing our objectives — not all surveys were used for each analysis.

Commercial trawling

Demeral trawling on the NWS began with a Japanese experimental fishing program in 1935 (Sainsbury, 1987) but commercial fishing did not begin until 1958. This was initially by foreign fleets: Japanese trawlers operated between 1958 and 1963, followed by Taiwanese pair-trawlers between 1971 and 1989. Foreign trawling effort peaked around 1974 when there were > 100 pair trawlers active (Sainsbury, 1987); annual effort in the mid- to late 1970s varied between ~20,000 and 55,000 hours (NWSJEMS 2007). Most of the fishing on the NWS was in the High Seas until the Australian 200 nautical mile management zone was declared in 1979. A transition from foreign to domestic fishing occurred between 1987 and 1989: the most productive fishing area was closed to foreign trawling in 1987 and all foreign fishing concluded in 1989. Domestic trawling was recorded in commercial logbooks in 1987 but there was no appreciable effort until 1989; domestic trawl effort peaked in 1991 (around 15,000 hours), then declined by 1993 to a level of <10,000 hours annually.

Distribution of commercial trawling through time

The spatial and temporal distribution of commercial trawling (annual gridded trawl effort data for foreign and domestic fleets overlaid on spatial fishery closures (T1 — Foreign fishery only (yellow highlight: survey years)

J curs)								
1979	1980	1981	1982	1983	1984	1985		
	Land Land	Loren Laperta	Energy Lipscher Lipsc	Lange Lange	Even Lepente	Jacob Lipsch		

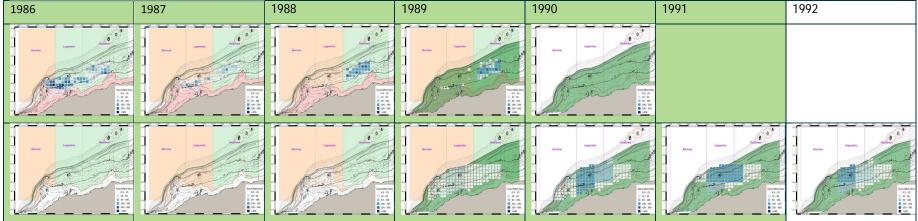
1986	1987	1988	1989	1990	1991	1992
	Land Land Land Land Land Land Land Land	Bree Lipsch	Breek Lipscher	Errer Ligner		
		Error Lapare		Error Department Depar	Rose Lipsie	Error Lapon

T3 — Domestic fishery only (yellow highlight: T3 survey years)

		<u></u>				
1993	1994	1995	1996	1997	1998	1999
		Landon La	Lagarda	Error Lagente	Legendre Leg	

Figure 157) show that:

- Historial foreign trawling occurred mainly between 50 and 100 m depths (hereby referred as the 'core' depth range).
- In the core depth range, annual historial trawling in relation to closures and the AME can be summarised as:
 - Prior to 1985: the overall distribution of foreign trawling was annually consistent, being spread across the Barrow, Legendre and Hedland subregions, but with a concentration at the Barrow-Legendre boundary.
 - 1985: there was little change in effort distribution recorded in this calender year despite the Barrow area being closed as the AME commenced (noting that the precise time of the AME closure in 1985 is not known).


- 1986: foreign effort declined dramatically overall, but, remained relatively high in the Barrow-Legendre boundary area; there was no domestic effort.
- 1987: the Legendre area is closed as the AME develops; foreign effort reduces further but remains widespread, including in the Barrow and Legendre areas; domestic effort commences at a very low level in Barrow.
- 1988: foreign effort is largely restricted to the Hedland area; low-level domestic effort expands into Legendre (including either side of the 'core' foreign fishery depth range).
- 1989: domestic effort extends further westwards into the Hedland area and intensifies in Legendre (coinciding with the transition to management of the NWS fishery by WA Fisheries).
- 1990: foreign trawling has ceased; domestic trawling occupies the full regional area and is focussed in the Legendre area; the AME concludes.
- 1991: domestic effort peaks and is largely focussed in the Legendre and western Hedland areas.
- 1992: trawl effort distribution is similar to 1991, but there is no trawling in the Barrow area (perhaps closed?)
- o 1993-1994: trawling is restricted to the Legendre area in depths > 50 m by WA Fisheries
- 1995: spatial zoning plan introduced by WA Fisheries but not implemented; trap areas were established, and trawling excluded (the Barrow area and all other areas in < 50 m depth).
- 1996 onwards: WA Fisheries zoning implemented; trawling mostly in the Legendre area, but widespread and mostly low in Hedland. Some trawling continues in deep waters.
- 1998: trawl closure (Z2A3) implemented (Wakefield et al. 2014). Trawl effort concentrated in Z2A1. Still some trawling in deep waters.
- 1999: full implementation of zoning; trawl effort concentrated in Z2A1. No effort in deep waters.
- In depths shallower than 'core' (< 50 m) there is foreign effort where the Territorial Waters (TW) 12 n.m. boundary bulges seawards around the Dampier Peninsula and Barrow Island. Foreign fishing continues here into the AME period, including being strong in 1985. Many research samples were taken within TW, but only in the west where foreign fishing occurred meaning there is no east-west bias in the distribution of research samples in relation to commercial trawl effort distibution. Elsewhere, there is very little historical effort inside TW. These patterns indicate the locations of research and foreign fishing was driven by depth, not by the TW boundary; research trawls were conducted landwards to 20 m depth, while commercial fishing extended in to only ~30-40 m depth.
- In depths greater than 'core' (> 100 m) there was an early period of Taiwanese trawling (during the 1970's until 1979) but the real spatial extent of this effort is uncertain because data are coarsely mapped. Since 1980, there has been low effort in depths > 100 m; this

included virtually no foreign fishing, but low-level domestic effort since its early development (1988) until WA Fisheries zoning excluded deep trawling in 1998.

T1 — Foreign fishery only (yellow highlight: survey years)

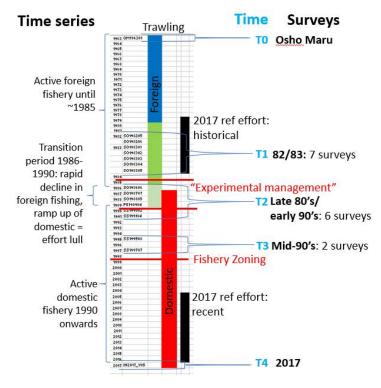
1979	1980	1981	1982	1983	1984	1985
				Egente Maria de la construir de la construir de la construir d		

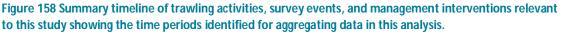
T2 — OVERLAP of foreign (top row) and domestic (bottom row) fishery (yellow highlight: T2 survey years)

T3 — Domestic fishery only (yellow highlight: T3 survey years)

1993	1994	1995	1996	1997	1998	1999
		Rame Lands L		Russ Particle Burger Particle Burger		Loren Loren Colored Co

Figure 157 Annual distribution of foreign (mostly Taiwanese) and domestic fish trawl effort across the North West Shelf. Fishery management zones are identified in Figure 1. Years in which scientific surveys were undertaken are highlighted in green.


Long-term recovery of trawled marine communities 25 years after the world's largest adaptive management experiment | 211


History of research surveys (design and implementation)

Research trawl sampling commenced with a survey by a Japanese vessel in 1963 and was followed by a series of 16 surveys undertaken between 1982 and 2017, variously on Australian commercial and research vessels (Table 16; Figure 158). Thirteen of the 17 surveys were linked to the AME. Data from many of the 17 research surveys are used in the analyses presented here. (Some additional earlier research trawling was undertaken by the vessel Courageous, but those data were not used in our analyses.)

Year	Vessel	Survey ID	Month	No. fish trawl samples	Random stratified trawl samples
1963	RV Osho Maru	OM196301	Dec-Jan	17	Jumpics
1982	RV Solela	SO198205	Sept-Oct	125	52
1982		SO198606	Nov-Dec	53	53
1983		SO198301	Jan	99	53
1983		SO198302	April	43	43
1983		SO198303	June	51	51
1983		SO198304	August	121	61
1983		SO198305	Oct	129	55
1986		SO198606	Oct	106	102
1987		SO198707	Sept	97	97
1988		SO198805	Sept	100	100
1989	FV Pride of Eden	PE198904	Sept	108	104
1990	RV Southern Surveyor	SS199002	Sept	130	130
1991	2	SS199104	Sept	96	96
1995		SS199508	Aug- Sept	102	96
1997		SS199707	Aug	102	102
2017	RV Investigator	IN2017_V05	Oct	104	100

Table 16 Summary details of research surveys on Australia's North West Shelf

Stratified random design vs other objectives

A random-stratified sampling design was implemented for the first Australian survey in 1982 and maintained consistently through to the 1997 survey. The design was based on 19 strata representing: subregion (Legendre, Hedland, Barrow); depth (shallow, middle, deep); and substratum type (shelly sand, sand, silty sand, undefined). Additional trawl samples were taken on some of the surveys, particularly in 1982, but these were not used in our analyses which were restricted to the randomised subset (Table 16). The random sampling in 1982 and 1983 was restricted to the Legendre and Hedland regions – strata 1-16 (Figure 159). In 2017, the sampling area was restricted to the central zone of the NWS and new strata were defined (see Chapter 4).

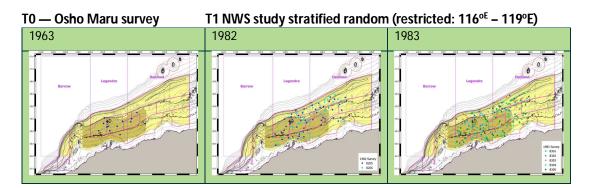


Figure 159 Spatial distribution of the random stratified survey samples from the North West Shelf, shown in relation to the Barrow, Legendre and Hedland subregions, the regional study area (yellow) and the 2017 study area (brown).

6.2.2 Description of data holdings

The database compiled for the NWS JEMS project (NWSJEMS 2007) was used to extract trawl sample and fish catch composition data.

6.2.3 Data selection

Trawl samples

Only geolocated trawl samples from the ramdomised sampling design with full catch composition data (all species accompanied by catch weights) were used for analysis (Figure 159). Trawls were geolocated using either trawl mid-point where start and end position were reported or by the single start or end point when only that was reported.

Mapping of trawl operations into the 19 strata subregion x depth x substratum strata showed that all were sampled by surveys between 1986 and 1997 (Table 17), but strata 17-19 in the western-most sub-region (Barrow) were not sampled prior to 1986 (Figure 159).

The 2017 (and Osho Maru) samples extended across only part of the regional study area and none were located in several strata, e.g. western Barrow, eastern Hedland and deep depths) (Figure 159).

							N	WS st	tudy	strat	a						Other	Non-
Survey	1	2	3	4	5	6	7	8	9	10	12	13	14	17	18	19	strategy	random
OM196301																	17	
SO198205	4		7	3	3	2	6	7	5	4	4	4	3					73
SO198606	5	1	7	3	2	3	6	5	8	2	6	1	4					
SO198301		3	3	5	3	4	7	7	7	2	7	2	2	1				46
SO198302	3		5	4	3	2	5	5	5	2	5		4					
SO198303	4	2	5	5	5	1	3	8	4	1	7	4	2					
SO198304	7	4	7	4	5	4	10	3	4	3	4	4	2					60
SO198305	4	3	5	3	3	3	7	5	7	1	4	5	5					74
SO198606	7	5	10	6	3	4	9	11	6	5	5	6	5	5	13	2		4
SO198707	8	1	6	6	4	5	9	11	7	6	4	5	4	6	11	4		
SO198805	8	6	8	5	3	4	11	10	6	5	5	5	5	7	9	3		
PE198904	9	6	8	8	3	3	9	10	8	5	7	5	4	6	10	3		4
SS199002	12	7	10	10	7	5	8	11	10	6	4	6	4	10	17	3		
SS199104	6	7	7	7	5	5	10	9	6	2	6	5	7	4	7	3		
SS199508	6	5	7	7	3	4	10	10	7	7	5	6	2	6	8	3		6
SS199707	6	5	9	8	4	6	8	12	7	5	4	3	5	5	11	4		
IN2017_V05																	104	

Table 17 Distribution of the research trawl samples by survey across the 19 NWS study strata; nonrandomised trawls tallied separately

Taxonomic entities

Fish identifications recorded in catch composition data were linked to a numeric specieslevel identifier in a database that provides an authorative national standard for taxonomic nomenclature — Codes for Australian Aquatic Biota (CAAB) (Yearsley et al. 1997; Rees et al 1999; CAAB 2021). This 8-digit 'CAAB code' enables identifications, including revisions and synonymies, to be tracked, upgraded and standardised through time, and manipulated as checklists.

The data for the analyses presented here, as extracted from the digital database compiled during the NWSJEMS project, contained a total of 841 CAAB codes for fishes (37 000000). Of these, 693 were species-level identifications, 47 to genus, 71 to family, 27 to family groups and 3 codes referred to 'undifferentiated fishes'.

In addition 46 invertebrate CAAB codes — 6 sponge (10 00000), 8 cnidaria (11 000000), 1 bryozoa (20 000000), 4 cephalopods (23 000000), 1 bivalve (24 000000), 9 echinoderms (25 000000), 15 malacostracan crustacea (28 000000), and 2 ascidians (35 000000) — and 18 reptiles (39 000000) were also recorded in the database, but were excluded from analyses here.

6.2.4 Taxa included and excluded from analyses

We paid considerable attention to the provenance of taxonomic identifications because survey data were collected over a period of 35 years during which the taxonomic knowledge of Indo-West Pacific fishes advanced considerably. High quality identications were made on board by ichthyologists, and specimens of poorly known species were collected for laboratory examination. Continuity of identifications through time was underpinned by research on large numbers of specimens curated in museum collections, particularly the Australian National Fish Collection (ANFC) at CSIRO, and by using the CAAB system to systematically review the consistency of identifications in the data analysed here.

The review included three steps: (1) a complete species checklist was examined by ichthyologists to identify misidentifications, i.e. species that could be immediately recognised as spurious, those based on outdated nomenclature, and those outside their known distributional ranges; (2) the total numbers of fish species (CAAB codes), and species checklists with abundance (biomass) summed across all relevant trawl samples were generated for each survey. This enabled species presences and abundances to be compared across surveys to identify inconsistencies or trends through time, e.g. patterns of recording in known species-complexes, abrupt changes in the abundance of congeners or similar species at certain points in time, and the presence of species in only the most recent surveys; (3) the taxonomic histories and catch records of all species identified at steps 1 and 2 as being uncertain were examined in detail to determine if species-level identifications could be reconciled; this step included comparing CAAB codes and collection specimen lists.

When species-level identification could not be reconciled, decision rules were used to either aggregate taxa at genus or family level (inclusions), or to remove the data from our 'species-level' analyses (exclusions). The decision to exclude species was applied in a number of

different circumstances; decisions were coded in the original database before making the data extracts used in our analyses:

Inclusions in species level analyses:

- s: species level identifications that are correct and consistent across surveys
- ss: species complexes recognised in later surveys but cannot be disentangled in early data
- g: genus level identification for inconsistently identified congeners, but where only few species were involved

Exclusions from species level analyses:

- d: delete mis-identified species that are spurious, or which cannot be reconciled
- df: family level identification only
- dg: genus level identification involving many species
- e: species recognised in later surveys (mostly only in 2017)

In summary, 97% of the 615 taxa included in analyses were true species; 172 taxa were excluded (Table 18). An electronic file of full list of recorded fishes and the translations/ rules applied in the reconciliation process described above is available the MarLIN metadata record of this project (MarLIN, 2021).

 Table 18 Summary of decisions made when reconciling taxonmic identifications of 787 CAAB taxa listed in the database showing rationale for including and excluding taxa in analyses

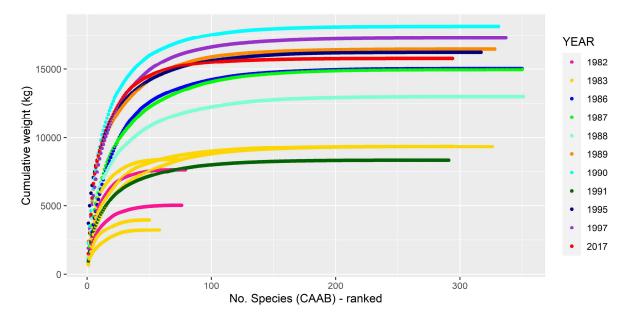
Description of the taxonomic identification after reconciliation	Species- level Analyses	Number of final CAAB
Species level identifications: correct and consistent across surveys	include	597
Species complexes	include	6
Genus level identification: two or few congeners	include	12
TOTAL taxa included in species-level analyses referred to as 'species'		615
Species recognised in later surveys (mostly only 2017)	exclude	42
Species: spurious or unreconcilable	exclude	2
Genus level identification involving many species	exclude	29
Family level identification	exclude	99
TOTAL taxa excluded		172

6.2.5 Final data set

Data summary

The final data set comprised 1,195 fish trawl samples and 615 fish taxa. Except for three surveys with incomplete catch composition (Table 19, bolded), the relative contributions of

the retained taxa to the final data set were mostly very large (>97.5% of total survey catch weight) (Table 19).


Table 19 By survey summary of the catch data included in the present study, showing the number of samples, the total catch weight, weight per operatinand, number of species-level fishes, the total weight they commtribute. Also shown are the number identifications that were excluded from analyses and the relative weight they constitute. (data from Osho Maru 1963 not included)

Survey	Number of samples	Total sample weight (kg)	Weight per sample (kg)	Number of species (analyses)	Total weight (analyses)	Weight per sample (analyses)	Number of CAAB excluded	Percent of excluded taxa	Tot weight excluded	Percent weight of excluded taxa
SO198205	52	4567	88	73	4501	87	7	8.8	66	1.4
SO198206	53	5077	96	76	5023	95	7	8.4	54	1.1
SO198301	53	8455	160	326	8406	159	33	9.2	49	0.6
SO198302	43	6394	149	50	3966	92	1	2.0	2428	38.0
SO198303	51	5778	113	58	3225	63	5	7.9	2553	44.2
SO198304	61	7988	131	290	7787	128	35	10.8	200	2.5
SO198305	55	9397	171	71	6083	111	7	9.0	3314	35.3
SO198606	102	14644	144	350	14533	142	48	12.1	112	0.8
SO198707	97	15014	155	350	14961	154	36	9.3	53	0.4
SO198805	100	13292	133	351	12982	130	39	10.0	310	2.3
PE198904	104	16012	154	327	15482	149	28	7.9	530	3.3
SS199002	130	19186	148	331	18126	139	39	10.5	1061	5.5
SS199104	96	8376	87	291	8339	87	23	7.3	37	0.4
SS199508	96	15956	166	312	15849	165	38	10.9	107	0.7
SS199707	102	17302	170	337	17288	169	17	4.8	14	0.1
IN2017_V05	103	15816	154	293	15796	153	62	17.5	20	0.1

Not all species were fully recorded in the T1 (1982 and 1983) surveys, except for SO198301 and SO198304. Thus, for the initial regional assemblage analyses we limited analysis to data from six T2 surveys (1986 to 1991) and two T3 surveys (1995 & 1997). Characteristics of this series of surveys included: (1) the number of samples was high, between 96 and 130; (2) the regional strata were sampled relatively evenly; and (3) the number of species recorded in each was comparable (between 291 and 350). Excluded species (see above) made minor contributions to the total catches, i.e. collectively contributing < 3% of the total catch weight in every survey between 1986 and 1997 — except in 1990 where the excluded weight was 5.5%. In 2017, 17% of the recorded taxa (mostly 'new' species-level identifications) were excluded but these contributed only 1% of the total catch weight.

Cumulative catch weight in individual surveys from 1982 to 2017, based on all species ranked by total catch, showed that most biomass was represented by a restricted species pool – all curves tended to asymptote at <100 species (Figure 160). Two distinct groups of

surveys were also revealed: group 1 — six individual 1982 and 1983 surveys plus the 1991 survey have relatively low total catches (<8,000 kg), and group 2 — the eight individual 1986-1997 surveys (except 1991) have total catches above 12,500 kg (Figure 160). Low catches in most 1982 and 1983 surveys are clearly explained by fewer contributing species (stemming from incomplete catch composition recording, Table 19). Low total catches in the two 1983 surveys with full catch composition recording (8301 & 8304) occured because, respectively, only 53 and 61 random-stratified trawls were conducted; catch rates per sample were comparable to the other surveys. The relatively low total catch in 1991 was based on 96 stratified random trawl samples and could neither be explained by other factors including unrecognised sub-sampling, changes in data recording or excluded species.

The reason appeared to be an absence of large individual sample catches (> 250 kg) in 1991 (survey ID 9104) which were consistently taken in relatively low numbers in all other survey years (Figure 161a). The median and variance of total catch weight by sample across surveys showed, however, that the 1991 catches, though low, were within the ranges of the other surveys (Figure 161 b).

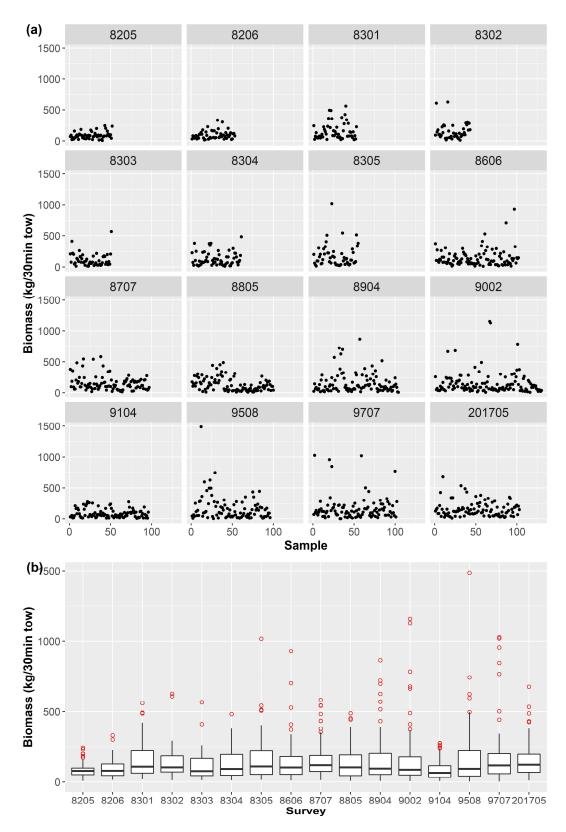


Figure 161 Catch weights (shown as rate) of individual trawl samples across all surveys

Survey time periods

Five temporal groups of surveys (T0 to T4) (Figure 158) were identified in relation to phases of (1) bottom trawling and (2) spatial adaptive management of trawling effort in the NWS region:

- TO: a single Japanese survey (1963) that predated the commerical fishery.
- **T1**: a series of seven surveys spanning two years (1982-1983) that occurred during the concluding phase of trawling by foreign vessels, but shortly after peak trawling effort.
- **T2**: a series of six surveys spanning six years (1986-1991) that occurred during the transition from foreign to domestic trawling when total effort was relatively low, and, corresponding to the AME.
- **T3**: a pair of surveys (1995 and 1997) that followed the AME but preceeded the implementation of spatial management zones for the domestic fishery.
- **T4**: a single survey (2017) that followed 20 years of regulated trawling under the zoning plan

Species reduction

A noteworthy feature of the fish fauna of this tropical shelf is its high species richness. The total of 787 'taxa' in the combined data from the 16 surveys signalled the presence of many uncommonly caught species. We reduced this species pool to enhance the signal to noise ratio in the data by eliminating minor species that would not contribute informatively to single-species or assemblage-level patterns of ecological similarity. Our species reduction strategy variously included removal of (1) singleton species (on a per survey basis consistent with the need to treat individual surveys separately in time series analysis); (2) species contributing low abundance on a per survey basis (based on biomass rather than count to reflect relevance to fishery productivity — and because counts were not available for many surveys); and (3) species occurring in few surveys (recognising that scarce large-bodied species, and schooling species caught occasionally in large quantities, are retained by a reduction strategy based on rank-biomass but may not be informative).

6.2.6 Regional analysis (combined T2/T3 surveys)

Species reduction of the T2/T3 samples (533 of the 615 reconciled species) involved firstly removing singletons— defined as species occurring in only one sample in any individual survey — and then using ranked biomass per survey to screen out rarely occurring species. The potential positive inclusion bias towards large-bodied species and schooling species caught occasionally in large quantities was explored by further reducing species based on their frequency of occurence across surveys (1 to 8 surveys) in the combined T2/T3 data set.

Fish assemblages within the regional assemblage pool were identified using group-averaged clustering with a 'similarity profile' (SIMPROF) permuatation test to identify clusters or groups, and non-metric multidimntional scaling in PRIMER-e v7 (Clarke & Gorley2015).

Assemblage groups were visualised spatially by mapping trawl sample sites in a GIS (QGIS 2020). The final groups were identified at the similarity level where all resultant clusters differed from each other at 5% significance, based on 999 permutations in the SIMPROF analysis (here termed the 'threshold similarity'). Comparisions used MDS plots to visualise each analysis, and metrics for MDS stress, ecological similarity at the threshold similarity, number of groups identified at SIMPROF split, the number of groups with > 4 samples, and the number of outlier groups identified in cluster analyses. The effect of increasing the severity of data transformation to de-emphasise the influence of the most abundant species was examined for the base case T2/T3 species pool. Outputs from group-averaged clustering and MDS with 2nd, 4th and 8th root transforms were compared to raw abundance, also using MDS plots to visualise each analysis, and the metrics described above. Species with the largest influence on defining assemblage structure were identified using SIMPER analysis (Clarke & Gorley2015) that uses the average abundance in transformed data across samples within cluster groups to identify 'typifying' species (making the largest contributions to similarity within cluster groups) and 'distinguishing' species (making the largest contributions to dissimilarity between cluster groups). Because this analysis is based on transformed and averaged data, it has the potential to considerably de-emphasise the contribution of highly abundant species if the transform is strong.

Benthos observed in imagery collected by the trawl headline camera during the T2/T3 surveys was used to determine if there was a correlation between fish assemblages and benthos abundance. The unit of analysis for benthos was the frequency of occurrence of large (>25 cm), small (>5 cm but <25 cm) and mini benthos (<5 cm) (presence in an image) averaged over all images in an operation. Details of the image data collection and annotation methods are described in Appendix A. Failures of the camera and other circumstances meant that not each trawl operation had annotated imagery, so analysis was limited to only the operations where image data were available.

6.2.7 Time series analysis

Conceptual model for time-series analyses

Responses by the inner/ mid-shelf fish assemblage to a decline in trawl effort through time were expected to be mediated by recovering benthos, but also by unmeasurable or unknown effects. These included:

- an assemblage-level biomass increase due to reduced trawling fishing mortality (F);
- changes in trawl-induced F due to changes in fishing patterns and fishery regulations as the fishery evolved;
- selective removals by other fishing sectors, such as Trap;
- interspecific interactions such as predation or competition;
- environmental changes;
- other possible anthropogenic disturbance such as oil/gas industry activities;
- and combined effects.

Despite the complexity of these unmeasurable or unknown effects, we expected all areas analysed to show a general positive response (increased fish biomass) to reduced trawl-F, independent of benthos recovery and habitat association. We did not expect to observe significant declines in fish biomass but, if detected, they would be assumed to be attributable to effects such inter-species predation that were unknown aspects of species' ecology. Thus, any 'signal' of benthos-mediated change would be superimposed on 'noise' related mainly to reduced trawl-induced F.

Further, we expected to detect <u>trends</u> of biomass change (mostly increases) irrespective of between-area variation in the pre-fishery distribution and abundance of benthos ('carrying capacity') because (1) all areas analysed had been trawled in large part for several years (since at least 1980) and therefore there was potential for benthos recovery in every area, and (2) each was defined by a quantitative contrast in trawl effort (based either on fishery regulation or by analysis of trawl effort distribution and intensity).

Our expectation was therefore that the <u>magnitude</u> of biomass change would be stronger for those species with strong association to structured benthic habitat, and less predictable for those without habitat-association. We considered that the magnitude of change in fish biomass could also be influenced by between-area variation in pre-fishery benthos carrying capacity meaning that some areas had greater potential for benthos recovery than others, but this relationship was not known *a priori*. Notwithstanding, we were confident of detecting trends (catch rate) for the fishes analysed because most were highly abundant and frequently occurring across the time-series data, and/or were informative species — less abundant but strongly typifying either the habitat-associated or non-associated inner/mid-shelf assemblage. Attributing a response to benthos recovery was, however, less certain for some species (notably *S. undosquamis*, *N. furcosus* and *A. stellatus*) that were ubiquitously abundant in all habitats.

Based on this conceptual model we hypothesised, a priori, that:

- (1) A widespread increase (recovery) of benthos would occur because mortality/ removals by bottom trawling had declined.
- (2) A widespread increase in fish biomass would occur as bottom trawling declined, principally due to the combined effect of reduced trawl-induced fishing mortality (F) and reduced trawling impacts on benthos.
- (3) Relatively strong signals of biomass increase for fishes with marked association to structured benthic habitat would establish cause from the effect of reduced trawling impacts on benthos (as opposed to reduced F).
- (4) The trend of the signals would correlate with the contrast in historical and recent bottom trawl effort, with strongest trends of increase where the decline in trawl effort was greatest, and weakest trend of increase where trawling continues.
- (5) The magnitude of the signals increased fish biomass and recovery of benthos may be influenced by the pre-fishery benthos carrying capacity, i.e. greater increases may occur in areas with higher potential to recover and where trawl impact had

declined, and this could be determined from *a posteriori* analysis of benthos abundance.

Units of analysis

Fishes

Three levels of data were analysed:

- <u>Key genera (N=4)</u> (following Sainsbury 1991): Lethrinus, Lutjanus, Nemipterus, Saurida. (Checks were made to identify the influential species that represented each genus to determine if aggregation at genus-level introduced bias due to uneven species distribution, e.g. if mixing shallow and deep species that may have confounded spatial patterns. The genera were strongly dominated by single species except Nemipterus, but *N. furcosus* was quite dominant and all *Nemipterus* species were scattered over the study area. Only *N. peronii* showed some concentrating to the west, but it was much less abundant than the other species.)
- Informative species (N=27) (Table 20): this was an aggregated suite of species that combined: (a) Key Genera; (b) additional species that were top-ranked as typifying/distinguishing the primary inner/mid-shelf assemblages identified by the Regional Analysis (below in Results); (c) 'other' additional species of commercial interest, i.e. species examined routinely by WA Fisheries.
- 3. <u>Inner/mid-shelf assemblages (N</u>= 2) (summed biomass of the typifying species for each of the assemblages identified on the shelf (blue and red see regional analysis, Section 7.3.1).

Input data were 4th root transformed standardised biomass (kg/ 30min tow), including absences as zero catch by tow. Note for assemblage analysis, data for typifying species of each assemblage were summed after 4th root transformation because assemblages were identified based on Bray-Curtis dissimilarity of 4th root transformed biomass data. Trends in biomass through time were identified using linear regressions in R package moderndive (Kim & Ismay, 2021) using function Im() and plotted using R tidyverse (Wickham et al., 2019) ggplot() with geom_smooth(method = "Im") to add regression lines with 95% confidence intervals (R Core Team, 2021).

Table 20 The 27 informative species showing their membership of the two primary inner/mid-shelf assemablages (blue and red – see Section 7.3.1), plus additional mostly differentiating species (black) and showing their classification into 'types' for predicting trend of biomass change with a rationale (developed from regional analysis, below)

Scientific namme	CAAB	Common Name	Туре	Rationale
Priacanthus hamrur	37326005	Lunartail Bigeye	1	Typifying of Group 1 and differentiating species for assemblages
Lutjanus vitta	37346003	Brownstripe	1	Typifying of Group 1 and differentiating species for assemblages
		Snapper		and established association with structured habitat
Lutjanus sebae	37346004	Red Emperor	1	Typifying of Group 1 and differentiating species for assemblages
Scolonsis	37347006	Rainbow Monocle	2	and established association with structured habitat Typifying of Group 1 and differentiating species for assemblages
Scolopsis monogramma	37347000	Bream	2	Typing of Group Tand unterentiating species for assemblages
Diagramma pictum	37350003	Painted Sweetlips	1	Typifying of Group 1 and differentiating species for assemblages
				and established association with structured habitat
Lethrinus nebulosus	37351904	Spangled emperor	1	Typifying of Group 1 and differentiating species for assemblages
& Lethrinus sp.				and established association with structured habitat
Argyrops bleekeri	37353006	Frypan Bream	1	Typifying of Group 1 and differentiating species for assemblages
Parupeneus	37355004	Opalescent	2	and established association with structured habitat Typifying of Group 1 and differentiating species for assemblages
heptacanthus	3730004	Goatfish	2	Typing of Group Tand unrefermating species for assemblages
Parachaetodon	37365003	Ocellate	1	Typifying of Group 1 and differentiating species for assemblages
ocellatus	37303003	Butterflyfish		and established association with structured habitat
Chaetodontoplus	37365008	Yellowtail	1	Typifying of Group 1 and differentiating species for assemblages
personifer		Angelfish		and established association with structured habitat
Chaetodontoplus	37365009	Scribbled	1	Typifying of Group 1 and differentiating species for assemblages
duboulayi		Angelfish		and established association with structured habitat
Choerodon	37384005	Bluespotted	1	Typifying of Group 1 and differentiating species for assemblages
cauteroma		Tuskfish		and established association with structured habitat
Saurida	37118001	Largescale Saury	2	Typifying of Group 2 and differentiating species for assemblages
undosquamis				but ubiquitously abundant
Saurida	37118016	Grey Saury	3	Typifying of Group 2 and differentiating species for assemblages
grandisquamis	07047004		2	
Nemipterus	37347004	Celebes Threadfin	3	Typifying of Group 2 and differentiating species for assemblages
celebicus Nomintorus	27247005	Bream Docy Throadfin	2	Typifying of Group 2 and differentiating species for assemblages
Nemipterus furcosus	37347005	Rosy Threadfin Bream	2	but ubiquitously abundant
Upeneus guttatus	37355008	Orange-barred	3	Typifying of Group 2 and differentiating species for assemblages
openeus guitatus	373330000	goatfish	J	Typing of Group 2 and anterentiating species for assemblages
Pseudorhombus	37460004	Three Twinspot	3	Typifying of Group 2 and differentiating species for assemblages
dupliciocellatus		Flounder	-	· · · · · · · · · · · · · · · · · · ·
Pseudorhombus	37460015	Bigtooth Twinspot	3	Typifying of Group 2 and differentiating species for assemblages
diplospilus		Flounder		
Abalistes stellatus	37465011	Starry Triggerfish	2	Typifying of Group 2 and differentiating species for assemblages
				but ubiquitously abundant
Epinephelus	37311009	Yellowspotted	1	Differentiating species for assemblages and established
areolatus		Rockcod		association with structured habitat
Epinephelus	37311010	Rankin Cod	1	Differentiating species for assemblages and established
multinotatus	27211012	Darahaak Caral	1	association with structured habitat
Plectropomus	37311012	Barcheek Coral Trout	1	Differentiating species for assemblages and established
maculatus Pristinomoidos	37346002	Goldband Snapper	1	association with structured habitat Differentiating species for assemblages and established
Pristipomoides multidens	J/J4000Z	Solubariu shappel	1	association with structured habitat
Lutjanus	37346007	Saddletail Snapper	1	Differentiating species for assemblages and established
malabaricus	57570007			association with structured habitat
Pentapodus porosus	37347007	Northwest	3	Differentiating species for assemblages
	5.5.1.001	Threadfin Bream	Ű	
Lutjanus	37346005	Crimson Snapper	1	Differentiating species for assemblages and established
erythropterus				association with structured habitat

Time periods

Data were analysed by year for the years in which there were data from spring-early summer surveys with full catch composition data, including for the 27 informative species.

Areas

The Time series analysis was restricted to the area covered by the 2017 survey area. Within it, 11 sub-areas were analysed for changes in fish biomass: four of the Pilbara Fish Trawl Fishery management areas – Zone 2: PFTF Areas 1, 2, 3, 4; one adjacent area immediately west of the PFTF Zone 2 (Barrow); and six areas corresponding to contrasts in trawl effort — historical (1979-1985) vs recent (2005-2016) (Chapter 1) (Figure 162) – we selected three areas of contrasts (TC 3A, 3B, 2A) and three areas of non-contrast (TC 1A, 2B, 3C) where sufficient data were available across all years.

Because the trawl contrast (TC) areas are defined solely by contrasts in historic and recent trawl effort they provided an ability to examine trends in biomass independently of PFTF zoning, i.e. zoom into sub-areas defined only by trawl effort contrast, including to aggregate across PFTF Areas. Most importantly this was to zoom into areas of highest and continuing trawl effort (TC 3A), areas of relatively high trawl contrast (3A, 3B), and to depth-defined areas that were not captured by PFTF areas (TC 1A, 2A).

No Strata					
	Recent	0-1%	1-50%	50-100%	100-213%
Hist		A	В	С	D
0-1%	1	11	na	na	na
1-50%	2	14	11	6	3
50-100%	3	12	10	7	3
100-192%	4	9	6.	5	3

Figure 162 Levels of contrast between historical (1979-1985) and recent (2005-2016) trawl effort in the 2017 study area. Numbers in cells are the number of 2017 samples in each sub-area. Orange polygon identifies the six areas suited to time-series analysis (based on adequate numbers of samples in pre-2017 surveys); see Chapter 4.

Characteristics of Pilbara Fish Trawl Fishery management areas

- PFTF Area 1: Trawling continuously widespread, with relatively high effort compared to other areas in the Pilbara Fish Trawl Fishery Zone 2. Recent fishing appears concentrated in smaller patches partly due to resolution of reporting but some patches are new, indicating improved fishing knowledge and navigational ability over the duration of the time-series data.
- PFTF Area 2: Trawling still widespread, but relatively low effort compared to PFTF Area 1. There has been a substantial decline in trawl effort and effort distribution, including with trawling concentrated in a few smaller patches, including new patches.

- PFTF Area 3: Trawling was widespread, but with relatively low effort compared to PFTF Areas 1 and 2. Fully closed since 1998 following consistent trawling beforehand (1979 onwards).
- PFTF Area 4 Trawling has always been limited in distribution with relatively low effort compared to other Areas. There have been only small changes in effort and effort distribution over time.

Characteristics of selected adjacent area

Barrow area: An area of high historical trawling effort compared to other areas in the Pilbara Fish Trawl Fishery Zone 2. Low effort since 1987 then closed to trawl fishery from 1993. Now contains the Monte Bello Marine Park and oil/gas infrastructure. This is the part of the 2017 survey area that overlaps with the adaptive management experiment (AME) Barrow zone.

Characteristics of trawl effort contrast (TC) areas

The contrasts in these areas capture a difference between the peak of foreign fishing ('historical' = 1979-1985) and effort from a decade some 20 years later, including the entire T2 and T3 periods ('recent' = 2005-2016) (Figure 162). Three areas represent contrasts (TC 3A, 3B, 2A) and three areas represent non-contrasts (TC 1A, 2B, 3C) (Figure 163). These are potentially very informative scenarios, but don't fully represent complex underlying patterns that vary within and between the areas contrasted – including environmental patterns.

Trawl effort contrasts:

- TC 3A [high —> low] has a strongly disjunct E-W distribution within the study area, but is outside the main trawl fishery area (Figure 163). Contrast may be confounded because fishing still occurred in E when W was closed – i.e. Barrow had a much longer period of recovery.
- TC 3B [high —> moderately low] extends broadly across study area and main trawl fishery area (Figure 163). Well sampled – magnitude of initial impact bigger than TC 2A.
- TC 2A [high —> low] extends broadly across study area but is outside the main trawl fishery area (Figure 163). There was some trawling, especially in W, during T1, but shallow and mainly in the trap zone which was closed to trawling in 1993.

Trawl effort non-contrasts:

- TC 1A [low —> low] extends broadly across study area; very shallow and consistently little trawled through time (Figure 163).
- TC 2B [moderately low —> moderately low] extends broadly across study area and main trawl fishery area; has depth disjuncture, most is in deepest part of study area (Figure 163).

• TC 3C [high —> high] is concentrated in one part of the study area and is highly fragmented – continued trawling (Figure 163).

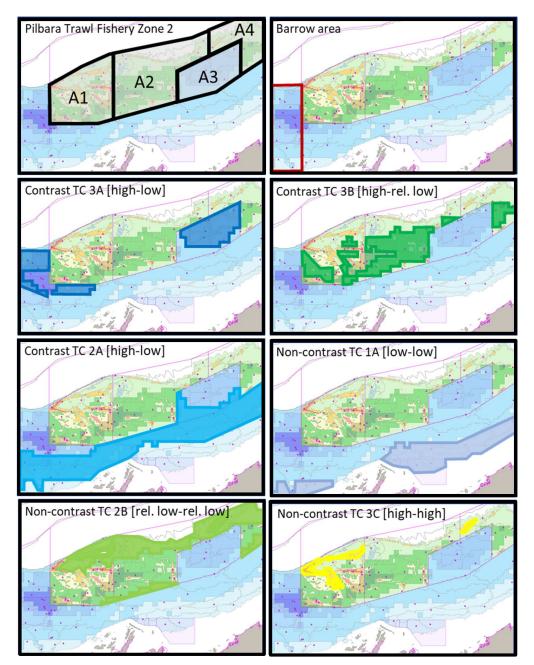


Figure 163 Maps of the 11 areas analysed for changes in fish biomass: (a) Pilbara Fish Trawl Fishery management areas – Zone 2: PFTF Areas 1, 2, 3, 4; (b) an adjacent area (Barrow); and (c-h, respectively) trawl effort contrasts (1979-1985 vs 2005-2016) – three contrasts (TC 3A, 3B, 2A), and three non-contrasts (TC 1A, 2B, 3C)

Benthos

The benthos data used for the time-series analysis were derived from imagery because catch data were taken on relatively few surveys. Data from a camera mounted on the trawl headline were available for 10 surveys spanning 1983 to 2017 and therefore provided the best option for comparative analysis with changes in fish biomass.

A simple measure of benthos abundance was used: the frequency of occurrence of the presence of large benthos in the complete set of images taken along an individual transect = % occurrence of images containing large benthos per operation. This was because (1) the camera field-of-view was not sufficiently or consistently quantifiable, and (2) to avoid any inconsistency in scoring methodology stemming from changes (improvements) in image resolution over this time period. The trade-off for using a simple metric to avoid these sources of uncertainly was that changes in benthos abundance were not detected.

Predicted temporal changes for species, assemablages and areas

Based on these hypotheses, we predicted, *a priori*, the following responses (signal) of increased fish biomass that would be superimposed on any positive response to reduced F. The aim was to differentiate a trend of strong +ve response to benthos recovery from other responses, not capture a wide range of possible responses.

Species-level responses

Three types of species responses were predicted (Figure 164, Table 20):

- Type 1 species: would show marked increased population abundance in response to benthos recovery; +ve trend is detected and significant (driven most notably by members of the relatively abundant genera *Lutjanus* and *Lethrinus*).
- Type 2 species: would show increased population abundance in response to benthos recovery, but less strongly; +ve trend is detected but non-significant.
- Type 3 species: may show change in population abundance, but not a +ve trend responding to benthos recovery and may be a -ve response to increased benthos; trend undetectable, or, if detected, typically non-significant +ve or -ve.

Figure 164 Three theoretical responses (trends of change in biomass) of informative fish species to declining trawl impact on benthos. Type 1 species — significant positive trend due to strong association to structured benthic habitat; Type 2 species — a non-significant positive trend due to weak association to structured benthic habitat; Type 3 species — various changes in population abundance, but not a +ve trend responding to benthos recovery and may be a -ve response to increased benthos; trend undetectable, or, if detected, typically non-significant +ve or -ve.

Assemblage-level responses:

- Structured habitat assemblage (blue): would show significant increase in aggregate population biomass stemming from dominance by Type 1 species, especially *Lutjanus & Lethrinus.*
- Unstructured habitat assemblage (red): would show change, often small increase, in population abundance stemming from a mix of dominance by Type 2 and Type 3 species and the strong influence of highly abundant ubiquitous species (*N. furcosus, S. undosquamis* and *A. stellatus*) all of which are most abundant in this assemblage.

Area-level responses:

The magnitude of response (number of species with significant responses) was expected to mirror the change in historical and recent trawl effort, but may also be influenced by benthos carrying capacity effects if they existed:

- Fishery management regions: PFTF Area 3 (closure) > PFTF Area 4, PFTF Area 2 > PFTF Area 1
- Selected areas (Barrow): Barrow > PFTF Area 1, PFTF Area 2
- Trawl effort contrasts: TC 3A > TC 3B, TC 2A (contrasts) >> TC 1A, TC 2B, TC 3C (noncontrasts); TC 3A ~ PFTF Area 3 (closure), Barrow; TC 3B ~ PFTF Area 1, PFTF Area 2

6.3 Results

6.3.1 Regional analysis

Richness, data reduction and sensitivity analyses

Species richness

The NWS fish fauna is highly species-rich: a tally of 553 species was caught in the T2/T3 surveys with 285-338 species per survey (Table 21). There was considerable turnover between surveys as indicated by numerous (61-88) singleton species per survey (Table 21) — a total of 127 singletons was identified across the T2/T3 surveys. A species rarefaction curve for the combined T2/T3 surveys was initially extremely steep but had a very extended shallow incline after the first ~25% (~200) of trawl samples (Figure 165 a). These characteristics identified that within this rich species pool, about one third of species (~200) were uncommonly caught and slowly accumulated in the remaining ~75% of trawls (~600). Surprisingly, given the intensity of sampling effort, the presence of additional unsampled species was indicated by the curve failing to reach an asymptote. This may be driven in-part by evolving taxonomic knowledge and scrutiny, i.e. the addition of apparently new species, but does also reflect first-time captures of previously known and recognisable species. The

cumulative weight on the other hand shows that most of the biomass sampled is represented by <200 species (Figure 165 b).

Three properties of the data set (1) high species richness, (2) a high proportion of uncommonly caught species, and (3) a high proportion of biomass contributed by relatively few species (Figure 160), collectively confirmed there would be benefit from reducing the number of species included in analyses.

Table 21 Summary of singletons and their contribution to the by survey number of species and biomass. For completeness the 1982, 1983 and 2017 surveys are shown here (grey text) but these data are not considered in the analyses presented in this section.

Year	Survey	Number species	Number singleton species	Proportion of singletons	Total weight (kg)	Total weight of combined singletons (kg)	Weight of singletons as a proportion of total weight
1982	8205	73	19	26.0	4501	117	2.6
1982	8206	76	24	31.6	5023	232	4.6
1983	8301	326	66	20.2	8406	141	1.7
1983	8302	50	8	16.0	3966	59	1.5
1983	8303	58	14	24.1	3225	62	1.9
1983	8304	290	63	21.7	7787	133	1.7
1983	8305	71	20	28.2	6083	243	4.0
1986	8606	350	73	20.9	14533	405	2.8
1987	8707	350	61	17.4	14961	156	1.0
1988	8805	351	75	21.4	12982	536	4.1
1989	8904	327	88	26.9	15482	292	1.9
1990	9002	331	74	22.4	18126	414	2.3
1991	9104	291	70	24.1	8339	259	3.1
1995	9508	312	84	26.9	15849	219	1.4
1997	9707	337	77	22.8	17288	300	1.7
2017	201705	293	58	19.8	15796	73	0.5

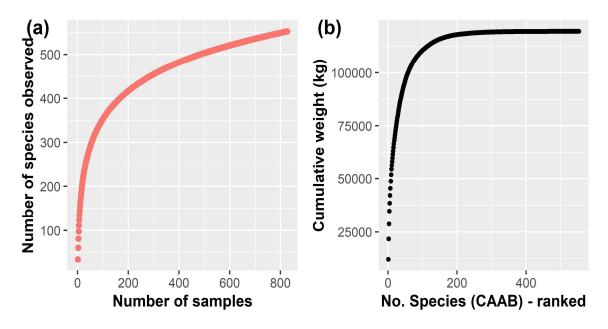


Figure 165 Data summary graphics for the combined T2/T3 surveys: (a) species accumulation curve; (b) cumulative catch weight by species

Species reduction based on biomass

After removing singletons, species making small contributions to biomass in individual T2/T3 surveys were also removed (Figure 166). The top-ranked 50 species were judged to be too few to adequately represent total survey biomass (81% in 1988). Cut-offs at 100 and 150 species both appeared to adequately represent the samples, while species totals exceeding 200 made negligible additions to cumulative biomass. The 150 species cut-off was selected for species reduction because it represented >95% of biomass in 7 of 8 surveys. After reduction, the total of 254 species represented 46% of the total number (553) of species caught across T2/T3 surveys (Appendix F-1).

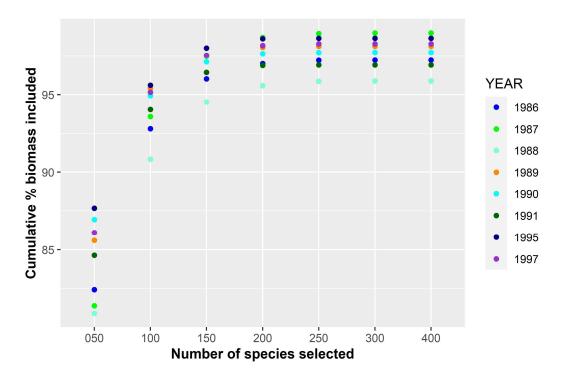


Figure 166 Cumulative biomass represented by the top ranked species by biomass for each of the 8 surveys between 1986 and 1997 after singleton species (those occurring only once in a survey) were excluded. Selection was in steps of 50 species, with '400' indicating the full species pool for the given year (see Table 19)

Data transformation

Group-averaged clustering and MDS of untransformed, 2nd, 4th and 8th root transformed biomass data clearly distinguished depth-related sample groups; relatively little pattern emerged in untransformed data (Figure 167). The 4th root transform provided the most informative representation of ecological similarity between samples by strongly differentiating two groups in depths <100 m (mostly representing the core fishery depth range) and revealing a group of samples representing a paleocoastline, a known rocky habitat with characteristic fish species centred around 100 m depth. Additional groups of samples in depths >100 m occurred on the deep shelf and at the shelf edge. In contrast, structure within the core depth range was not apparent in the less severe (2nd root) transform; the paleocoastline was not evident in either the less severe (2nd root) or more severe (8th root) transforms (Figure 167). On this basis, the 4th root transformed data for the top-ranked 150 species by biomass was considered to be the base-case for further analysis.

	Number species	Threshold	Number of groups with >4	Number groups identified at threshold	Number of groups identified by	MDS stress	MDS stress			
Treatment	included	similarity	samples	similarity	SIMPROF	2D	3D			
(a) Transformation (present in >=1 surveys)										
Untransformed	254	8.78	6	10	68	0.19	0.15			
2 nd root	254	21.05	6	14	145	0.16	0.12			
4 th root	254	27.84	7	16	146	0.16	0.12			
8 th root	254	28.71	6	11	130	0.16	0.12			
(b) Occurrence by surveys	(4 th root tra	nsformed da	nta)							
present in all 8 surveys	159	17.4	2	3	85	0.15	0.11			
present in >=7 surveys	188	32.66	7	23	148	0.15	0.11			
present in >=6 surveys	205	33.1	10	26	160	0.16	0.11			
present in all 5 surveys	213	24.51	5	11	164	0.16	0.11			
present in >=4 surveys	225	25.8	4	12	157	0.16	0.12			
present in >=3 surveys	236	27.84	5	15	153	0.16	0.12			
present in >=2 surveys	243	23.39	5	9	150	0.16	0.11			
present in >=1 surveys	254	27.84	7	16	146	0.16	0.12			

Table 22 Diagnostics of the results from multivariate analyses of the T2/T3 samples with different transformations of the catch weights and frequency of occurrence across the 8 T2/T3 surveys.

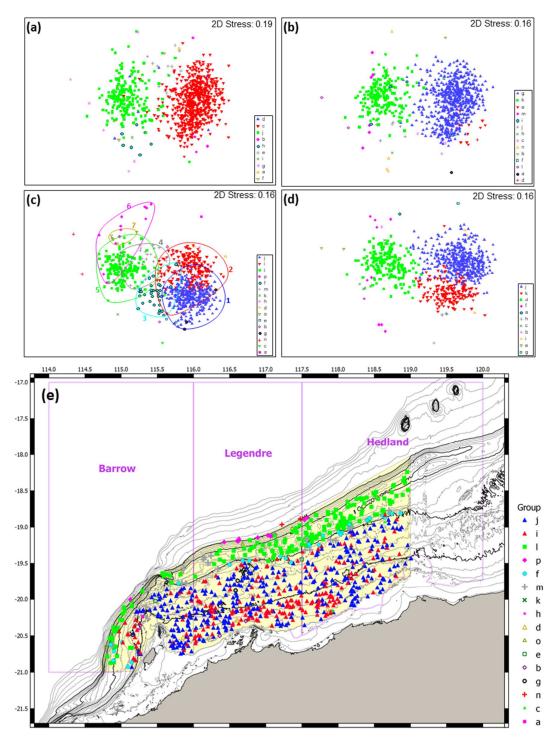


Figure 167 Non-metric multidimensional scaling ordinations of the T2/T3 samples with catch weights (a) untransformed, (b) 2nd root transformed, (c) 4th root transformed and (d) 8th root transformed. The 7 main clusters identified in the 4th-root transformed data are identified in (c). The spatial distribution of the sample clusters identified in the 4th root transformed data is shown in (e).

Species reduction based on occurrence

Compared to the base-case, further species reduction based on species' occurrence across surveys (using 4th root transformed data for the top-ranked 150 species by biomass) did affect sample groupings and some of the sensitivity metrics based on the last non-significant SIMPROF split (Table 22).

Most noteworthy differences were at the most severe species reduction (occurence in all 8 surveys) where several values were markedly lower than the corresponding values at other occurences; in other cases there were fewer (4-5) significant groups using occurrences in 2-5 surveys (decreased structure in core depths) but an elevated (and unexplained) 10-group tally at 6 surveys (increased structure in core and deep depths). An occurrence cut-off at 7 surveys, the secondmost severe reduction, reduced the species pool from 254 to 188 compared to the base-case and generated the same number of sample groups (7) at a higher level of similarity (Table 22) that had a very similar grouping in multivariate space (Figure 168), but with a higher number of outliers. There was no apparent pattern (bias) among the 66 species excluded, e.g. towards large-bodied elasmobranchs and deep species. The excluded group did include sharks, rays and shelf-edge species but also very shallow species, pelagic species and species known to commonly occur at low abundance.

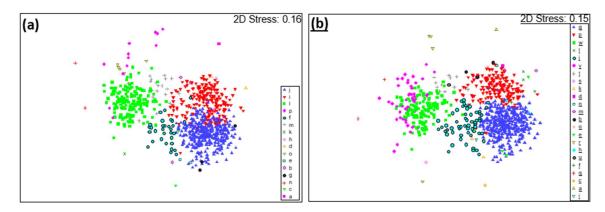


Figure 168 MDS (a) base-case, (b) base-case + occurrence in at least 7 surveys

Species composition/ Faunal characteristics

The 254 species included in the base-case analysis represent 17 chondrychthyan and 64 bony fish families (Appendix F.1). Of these 81 families, 41 are represented by a single species, and 14 by two species. The Carangidae is the most diverse family with 24 species represented in the data, followed by Lujanidae (13 species), Nemipteridae (12), Lethrinidae and Mullidae (11 each) and Serranidae (10); the Dasyatidae family with 8 species was the most species diverse of the chondrychthyans.

The top 50 species by biomass included in the base-case analyses ranged in total catch weights between 580 and 12,183 kg. Most species, 44 of 50, were represented across all eight surveys and were observed frequently, present in 37 to 610 operations. However, the

top 50 also included two dasyatid rays that were each caught in only 6 operations over 4 surveys, and *Pateobatis fai* a dasyatid ray only seen in 2 operations in the 1997 survey at a total catch weight of 620 kg.

In the top 50 species by biomass, the family Lujanidae is represented by seven species (two in the top 10), Nemipteridae by five species (two in the top 10), Mullidae by four and Lethrinidae by three species (one each in the top 10). The Synodontidae are only represented by two species in the top 50 by biomass, however, both these species have large total catch weights in the overall top 10: 6,970 kg (*Saurida undosquamis*) and 2,999 kg (*Saurida* cf. *filamentosa*) (Table 23).

Table 23 List of the top 50 of 254 fish species ranked by total biomass recorded in 8 surveys between 1986 and 1997. The total species pool of 254 fish species for regional assemblage analyses is supplied in Appendix F.1. Shown are: ranked biomass, total occurrences (occ.), total weight, rank and occurrence by number of surveys. The four key genera are indicated (*).

Scientific name	Common name	Family	Key Gen.	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Surveys
Lethrinus nebulosus &		,						i
Lethrinus sp.	Spangled emperor	Lethrinidae	*	37351904	353	12183.3	1	8
Nemipterus furcosus	Rosy Threadfin Bream	Nemipteridae	*	37347005	532	9492.88	2	8
Saurida undosquamis	Largescale Saury	Synodontidae	*	37118001	609	6970.25	3	8
Abalistes stellatus	Starry Triggerfish	Balistidae		37465011	610	6019.79	4	8
Lutjanus sebae	Red Emperor	Lutjanidae	*	37346004	328	3727.34	5	8
Diagramma pictum	Painted Sweetlips Northwest Threadfin	Haemulidae		37350003	245	3597.23	6	8
Pentapodus porosus	Bream	Nemipteridae		37347007	253	3318.23	7	8
Saurida cf filamentosa	Threadfin Saury	Synodontidae	*	37118006	262	2998.39	8	8
Upeneus moluccensis	Goldband Goatfish	Mullidae		37355003	136	2957.4	9	8
Lutjanus vitta	Brownstripe Snapper	Lutjanidae	*	37346003	369	2587.93	10	8
Lutjanus malabaricus	Saddletail Snapper	Lutjanidae	*	37346007	149	1870.41	11	8
Selaroides leptolepis Pristipomoides	Yellowstripe Scad	Carangidae		37337015	122	1789.2	12	8
multidens Parupeneus	Goldband Snapper	Lutjanidae		37346002	188	1692.42	13	8
heptacanthus	Opalescent Goatfish Rainbow Monocle	Mullidae		37355004	432	1690.54	14	8
Scolopsis monogramma	Bream	Nemipteridae		37347006	282	1643.8	15	8
Argyrops bleekeri	Frypan Bream	Sparidae		37353006	448	1634.12	16	8
Lethrinus genivittatus	Threadfin Emperor	Lethrinidae	*	37351002	152	1501.52	17	8
Priacanthus hamrur Chaetodontoplus	Lunartail Bigeye	Priacanthidae		37326005	452	1341.53	18	8
duboulayi	Scribbled Angelfish	Pomacanthidae		37365009	260	1282.03	19	8
Pentaprion longimanus	Longfin Silverbiddy	Gerreidae		37349002	194	1209.18	20	8
Rhynchobatus spp.	A wedgefish	Rhinidae		37026900	94	1195.94	21	8
Ariomma indicum	Indian Driftfish	Ariommatidae		37447007	70	1131.69	22	8
Photopectoralis bindus	Orangefin Ponyfish Yellowbelly Threadfin	Leiognathidae		37341002	146	1128.75	23	8
Nemipterus bathybius Gymnocranius	Bream	Nemipteridae	*	37347001	194	1103.39	24	8
grandoculis	Robinson's Seabream	Lethrinidae		37351005	37	1071.42	25	8

Scientific name	Common name	Family	Key Gen.	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Surveys
Epinephelus		<u> </u>						
multinotatus	Rankin Cod	Serranidae		37311010	158	1065.35	26	8
Himantura spp.	One and here a	Dasyatidae		37035902	47	1046.71	27	6
Upeneus guttatus Carangoides	Orange-barred goatfish	Mullidae		37355008	444	1033.63	28	8
caeruleopinnatus Lutjanus	Onion Trevally	Carangidae		37337021	255	1015.36	29	8
argentimaculatus Lutjanus	Mangrove Jack	Lutjanidae	*	37346015	11	1009.12	30	3
quinquelineatus	Fiveline Snapper	Lutjanidae	*	37346006	15	907.21	31	3
Bathytoshia lata	Black Stingray	Dasyatidae		37035002	6	900	32	1
Priacanthus tayenus	Purplespotted Bigeye	Priacanthidae		37326003	164	897.84	33	8
Choerodon cauteroma	Bluespotted Tuskfish Celebes Threadfin	Labridae		37384005	255	894.56	34	8
Nemipterus celebicus	Bream	Nemipteridae	*	37347004	503	846.33	35	8
Taeniurops meyeni	Blotched Fantail Ray	Dasyatidae		37035017	6	835	36	2
Netuma thalassina Chaetodontoplus	Giant Sea Catfish	Ariidae		37188001	104	793.68	37	8
personifer	Yellowtail Angelfish	Pomacanthidae		37365008	368	781.99	38	8
Siganus fuscescens	Black Rabbitfish	Siganidae		37438001	189	739.07	39	8
Sargocentron rubrum	Red Squirrelfish	Holocentridae		37261001	78	704.1	40	8
Stegostoma tigrinum	Zebra Shark	Stegostomatidae		37013006	19	685.2	41	6
Platax batavianus Lutjanus sp. (in Yearsley. Last & Ward.	Humphead Batfish	Ephippidae		37362002	195	647.43	42	8
1999)	Russell's snapper	Lutjanidae	*	37346012	184	640.1	43	8
Pristotis obtusirostris	Gulf Damsel	Pomacentridae		37372001	292	625.03	44	8
Pateobatis fai	Pink Whipray	Dasyatidae		37035024	2	620	45	1
Upeneus australiae	Australian Goatfish Yellowspotted	Mullidae		37355032	136	608.66	46	8
Epinephelus areolatus	Rockcod	Serranidae		37311009	278	596.87	47	8
Pterocaesio chrysozona Pseudorhombus	Yellowband Fusilier Three Twinspot	Caesionidae		37346009	173	584.55	48	8
dupliciocellatus	Flounder	Paralichthyidae		37460004	439	583.78	49	8
Glaucosoma buergeri	Northern Pearl Perch	Glaucosomatidae		37320001	126	579.61	50	8

Assemblage patterns

Depth-related pattern dominated the structure of fish assemblages on the regional continental shelf; there was no evidence of longitudinal pattern at this scale (Figure 169). The base-case analysis clearly distinguished sample Groups 1 and 2 as inner/mid-shelf assemblages in ~25-100 m depths, Groups 3 and 4 as assemblages associated with a prominent paleocoastline at ~100 m, and Group 5 as a deep shelf assemblage in ~100-150 m — a pattern that was strongly preserved even after more severe species reduction by the 7-survey occurrence cut-off (Figure 169). The remaining deeper samples from > ~150 m represented another assemblage at the shelf-edge — but its structure was less clearly distinguished and less consistently mirrored in the two analyses. The shelf-edge assemblage was represented by Groups 6 and 7 in the base-case analysis, and by several outlier samples in both analyses (Figure 169).

The relatively unstable structure of the shelf-edge assemblage is explained by having relatively few samples from a steep and narrow area of seabed at the boundary between continental shelf and slope biomes. Sample grouping at the paleocoastline was predicted from knowledge of its geomorphology — a depth band of steep seabed (relative to the adjacent shallow and deep shelf) composed of rocky substratum with abundant megabenthos, and fishery characteristics — selected commercially important species at elevated abundances. The most striking pattern was the strongly mixed spatial distributions of samples comprising the two inner/mid-shelf assemblages. This indicated strong differentiation in species composition, but without any broad spatial sub-structure.

Figure 169 Maps of the spatial distribution of the multivariate groups (a) base-case; (b) base-case + occurrence. The 6 main assemblages discussed below are identified in (a) as Groups 1 & 2: inner/mid-shelf; Groups 3 & 4 paeleocoastline, and Groups 5 & 6 shelf/ shelf-edge.

Informative species

Inner/mid-shelf assemblages

The species with greatest influence on assemblage structure were mostly abundant species that both typified one or other group — 12 in Group 1 (blue), and 8 in Group 2 (red) — and contributed strongly to distinguishing groups (Table 24). The most influential species were from the genera *Lethrinus* and *Lutjanus* in Group 1 and *Nemipterus* and *Saurida*, and *Abalistes stellatus*, in Group 2. Other prominent groups were mullids, which were abundant in both groups (*Parupeneus heptacanthus* in Group 1 and *Upeneus guttatus* in Group 2), and bothids (*Pseudorhombus dupliciocellatus* and *P. diplospilus*) which were abundant in Group 2. Another 19 species contributed strongly to distinguishing the groups,

Notably, three species (*Nemipterus furcosus, Saurida undosquamis, Abalistes stellatus*) were typical in both groups because they were ubiquitously abundant — but also distinguished the groups because they were considerably more abundant in Group 2 (Table 24). The robustness of this outcome was demonstrated by only minor differences resulting from using the reduced species-pool based on occurrence, e.g. 29 of the 30 top-ranked distinguishing species are common to both analyses (Table 24).

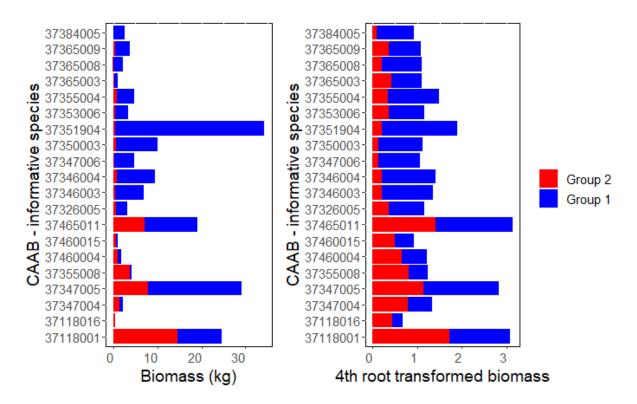


Figure 170 Distribution of the (a) raw and (b) 4th root transformed biomass of the 20 typefying species of the two inner/mid-shelf communities (groups 1 - blue and 2 - red) identified in a SIMPER analysis of the basecase. The species names are listed against the CAAB in Table 24.

Table 24 The 40 most informative species that typify and distinguish the two primary inner/mid-shelf assemblages as identified by average abundance (biomass) in transformed data across samples within cluster groups for base-case and base-case+occurrence scenarios. Species are ranked in order of importance to distinguishing assemblages (base-case data), with the 20 most important typifying species coloured based on Group membership (1 - blue and 2 - red); species important to typifying both groups are matched to the group where they are most abundant.

			т	ypifying	Disti	nauisl	ning spe	cies		
			Base		•	irrence	Base-	•	•••	irrence
			Grp 2	Grp 1	Grp 2	Grp 1	blue v		blue v	
CAAB	Species	Common name	red	blue	red	blue	red	Rank	red	Rank
37351904	Lethrinus nebulosus & Lethrinus sp.	Spangled emperor		6.17		5.8	3.2	1	3.36	1
37346004	Lutjanus sebae	Red Emperor		4.27		4	2.42	2	2.52	2
37347005	Nemipterus furcosus	Rosy Threadfin Bream	8.43	7.28	8.46	7.42	2.21	3	2.35	3
37346003	Lutjanus vitta	Brownstripe Snapper		4.42		4.2	2.19	4	2.34	4
37355004	Parupeneus heptacanthus	Opalescent Goatfish		4.82		4.8	2.01	5	2.24	5
37350003	Diagramma pictum	Painted Sweetlips		2.56		2.49	2.01	6	2.07	6
37347007	Pentapodus porosus	Northwest Threadfin Bream					1.79	7	1.91	7
37347006	Scolopsis monogramma	Rainbow Monocle Bream		2.8		2.99	1.74	8	1.9	8
37118001	Saurida undosquamis	Largescale Saury	18.02	5.75	19.76	6.04	1.69	9	1.74	10
37365008	Chaetodontoplus personifer	Yellowtail Angelfish		3.41		3.3	1.66	10	1.77	9
37384005	Choerodon cauteroma	Bluespotted Tuskfish		2.55		2.56	1.63	11	1.72	11
37353006	Argyrops bleekeri	Frypan Bream		2.58		2.42	1.54	12	1.58	13
37326005	Priacanthus hamrur	Lunartail Bigeye		2.42		2.37	1.51	13	1.57	15
37355008	Upeneus guttatus	orange-barred goatfish	4.86		4.57		1.5	14	1.62	12
37365009	Chaetodontoplus duboulayi	Scribbled Angelfish				1.81	1.48	15	1.58	14
37311009	Epinephelus areolatus	Yellowspotted Rockcod					1.29	16	1.26	19
37460004	Pseudorhombus dupliciocellatus	Three Twinspot Flounder	4.77		5.32		1.29	17	1.38	16
37465011	Abalistes stellatus	Starry Triggerfish	14.07	8.92	15.09	15.09 8.98	1.24	18	1.29	17
37311010	Epinephelus multinotatus	Rankin Cod					1.23	19	1.22	21
37347004	Nemipterus celebicus	Celebes Threadfin Bream	6.32		6.31		1.22	20	1.27	18
37372001	Pristotis obtusirostris	Gulf Damsel					1.17	21	1.25	20
37337021	Carangoides caeruleopinnatus	Onion Trevally					1.15	22	1.1	28
37460015	Pseudorhombus diplospilus	Bigtooth Twinspot Flounder	2.67		3.19		1.12	23	1.19	23
37337022	Carangoides gymnoste thus	Bludger Trevally					1.11	24	1.18	24
37365003	Parachaetodon ocellatus	Ocellate Butterflyfish		2.49		2.59	1.09	25	1.2	22
37362002	Platax batavianus	Humphead Batfish					1.09	26	1.06	30
37466005	Ostracion nasus	Shortnose Boxfish					1.07	27	1.11	27
37351002	Lethrinus genivittatus	Threadfin Emperor					1.06	28	1.12	25
37438001	Siganus fuscescens	Black Rabbitfish					1.06	29	1.12	26
37351010	Gymnocranius elongatus	Swallowtail Seabream					1.01	30	0.95	35
37365004	Coradion chrysozonus	Orangebanded Coralfish					0.98	31	1.07	29
37118016	Saurida grandisquamis	Grey Saury	2.71				0.96	32	1.04	31
37386001	Scarus ghobban	Bluebarred Parrotfish					0.96	33	0.96	34
37346012	Lutjanus sp. (in Yearsley. Last & War	Russell's snapper					0.94	34	0.89	40
37346009	Pterocaesio chrysozona	Yellowband Fusilier					0.93	35	0.94	36
37337015	Selaroides leptolepis	Yellowstripe Scad					0.93	36	1	33
37460011	Pseudorhombus spinosus	Spiny Flounder					0.92	37	1	32
37384004	Choerodon cephalotes	Purple Tuskfish					0.89	38	0.93	37
37311012	Plectropomus maculatus	Barcheek Coral Trout					0.89	39	0.89	41
37465020	Pseudomonacanthus peroni	Potbelly Leatherjacket					0.88	40	0.89	42
	•									

Paleocoastline assemblages

In the base-case analysis, the most informative 40 species characterising Group 3 (cyan) and Group 4 (grey) included abundant species that both typified one or other group (13 in Group 3, and 7 in Group 4), and contributed strongly to distinguishing groups (Table 25). Group 3 was dominated by commercial species: Lutjanidae (*Lutjanus* spp. and *Pristipomoides multidens*) and *Agryrops, Glaucosoma, Epinephelus* and a variety of other (non-commercial) species that were also informative on the inner/mid-shelf — including the

mullid *P. heptacanthus* that strongly typified Group 1. Group 4 was dominated primarily by species of *Nemipterus* and *Saurida*; the species were mostly the same species as those characterising the inner/mid-shelf Group 2, but there was a turnover of the most dominant: *S. undosquamis* replaced by *S. filamentosa*, and *N. furcosus* by *N. celebicus*. As for the inner/mid-shelf, *Abalistes stellatus* was abundant but typical in only Group 3. Another 20 species contributed strongly to distinguishing the groups. There were greater differences in the outcome from using the reduced species-pool based on occurrence compared to the inner/mid-shelf outcome, but the result was judged to be similarly robust based on the 16 top-ranked distinguishing species being common to both analyses (Table 25).

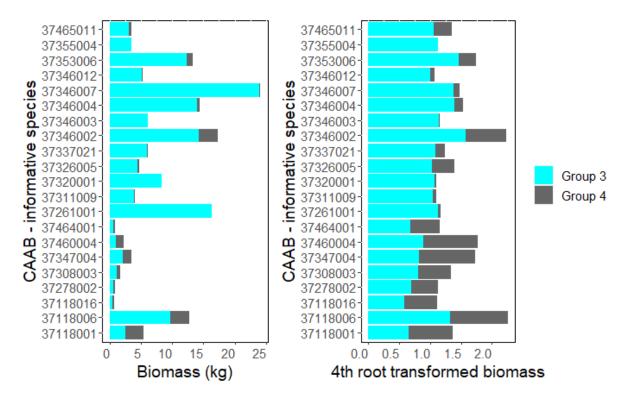


Figure 171 Distribution of the (a) raw and (b) 4th root transformed biomass of the 20 typefying species of the two paeleocoastline communities (groups 3 - cyan and 4 - grey) identified in a SIMPER analysis of the base-case. The species names are listed against the CAAB inTable 25.

Table 25 The 40 most informative typifying and distinguishing paeleocoastline species. Highlighted are the 20 typefying species coloured based on the group (3 - cyan and 4 – grey) where they are more abundant.

				Typifyir	ng specie	S	Disti	nguish	ing spec	ies
			Base	-case	+ occu	rrence	Base-	case	+ occur	rence
			0	0	0	0				
СААВ	Species	Common name	Grp 3 cyan	Grp 4 grey	Grp 3 cyan	Grp 4 grey	cyan v grey	Rank	cyan v	Rank
	Lutianus malabaricus	Saddletail Snapper	3.72		cyan	yrey	2.78	канк 1	2.18	11
		Frypan Bream	4.82		5.06		2.70	2	3.03	3
	Lutjanus sebae	Red Emperor	4.02		3.23		2.62	2	2.54	4
	Pristipomoides multidens	Goldband Snapper	5.66		4.77		2.59	4	3.14	1
	Parupeneus heptacanthus	Opalescent Goatfish	4.61		3.83		2.37	5	2.38	7
	Lutjanus vitta	Brownstripe Snapper	3.44		3.38		2.31	6	2.30	6
	Sargocentron rubrum	Red Squirrelfish	2.53		5.50		2.22	7	1.69	16
	Glaucosoma buergeri	Northern Pearl Perch	2.33		2.57		2.22	, 8	2.17	12
	Epinephelus areolatus	Yellowspotted Rockcod	3.77		4.2		2.16	9	2.17	5
		Onion Trevally	3.24		3.64		2.10	10	2.31	8
	Lutjanus sp. (in Yearsley. Last &	5	2.6		5.04		1.98	10	2.30	14
		Starry Triggerfish	3.92		5.94		1.94	12	3.07	2
	Saurida cf filamentosa	Threadfin Saury	4.49					12	2.22	2 9
	Pentaprion longimanus	Longfin Silverbiddy	4.47	11.17	4.70	7.04	1.73	14	2.22	13
		Lunartail Bigeye	3.12		3.05		1.73	14	1.8	15
	Saurida undosquamis	Largescale Saury	J. 12	5.62				16	2.19	10
	Pristipomoides typus	Sharptooth Snapper		J.02	J.22	0.11	1.68	10	2.17	10
	Gymnocranius grandoculis	Robinson's Seabream					1.67	18		
	Lethrinus lentjan	Redspot Emperor					1.67	10	1.28	24
	Upeneus moluccensis	Goldband Goatfish					1.34	20	1.49	18
	Priacanthus tayenus	Purplespotted Bigeye					1.34	20	1.47	10
	Nemipterus celebicus	Celebes Threadfin Bream	2.69	13.3	4.29	14.21		22	1.23	26
	Netuma thalassina	Giant Sea Catfish	2.07	13.5	7.27	17.21	1.23	23	1.15	28
	Dactyloptena macracanthus	Mottled Flying Gurnard	2.99	4.6	3.11		1.18	23	1.47	20 19
	Parascolopsis tanyactis	Longray Monocle Bream	2.77	4.0	5.11		1.18	25	1.1	31
		Yellowbelly Threadfin Bream	1				1.12	26	1.1	51
		Crimson Snapper					1.12	20		
		#N/A					1.07	28		
	Lagocephalus inermis	Smooth Golden Toadfish				5.05		29	1.62	17
	Chaetodontoplus personifer	Yellowtail Angelfish				0.00	1.02	30	1.14	29
	Fistularia petimba	Rough Flutemouth		4.46		8.14		31		
		Roundbelly Cowfish		1.10		0.11	1.01	32	1.29	22
	Trixiphichthys weberi	Blacktip Tripodfish		4.6	2.64		0.98	33	1.24	25
	Upeneus guttatus	orange-barred goatfish			2.01		0.96	34	1.2	27
	Epinephelus amblycephalus	Banded Grouper					0.94	35		
		Grey Saury		5.89			0.94	36		
	Carangoides equula	Whitefin Trevally		5.07			0.93	37	1.29	23
	Gymnocranius elongatus	Swallowtail Seabream					0.93	38	1.31	21
	Nemipterus furcosus	Rosy Threadfin Bream					2.70	39	1.33	20
	Champsodon spp.	0				4.57		40	1.13	30
	i i i i i i i i i i i i i i i i i i i									

Deep shelf/shelf-edge assemblages

These assemblages contained fewer species overall in the base-case analysis but a large number (39) were informative — in part because three groups (vs two) were being distinguished. A total of 16 species collectively characterised the three groups, 7 species in Group 5 (green), 6 in Group 6 (pink) and 3 in Group 7 (brown); again, these included highly abundant species that both typified one or more groups and contributed strongly to distinguishing groups (Table 26). Group 5 species were dominated by *Nemipterus virgatus*,

N. bathybius and *Saurida filamentosa*, Group 6 by *Dentex spariformis* and *Acropoma japonicum*, and Group 7 also by *Saurida filamentosa* and *Nemipterus bathybius* plus *Carangoides equula* (Table 26). A relatively large number (29) of informative species mostly distinguished between the two major Groups 5 and 6, and several also distinguished between these groups and Group 7; the remaining 10 species mostly distinguished Groups 5 and 7 (Table 26). Compared to shallower depths, there were greater differences when comparing the base-case to the reduced species-pool based on occurrence for the deep shelf/shelf-edge, but the result was judged to be similarly robust 29 of the 31 distinguishing species in the reduced species pool overlaps with those in the base-case analysis (Table 26).

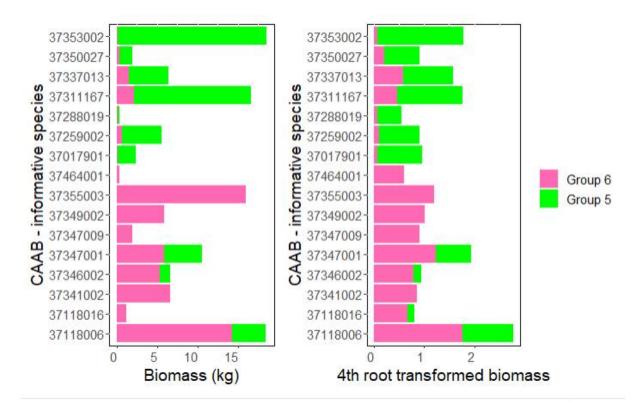


Figure 172 Distribution of the (a) raw and (b) 4th root transformed biomass of the 20 typefying species of the two deep communities (groups 5 – green, 6 – pink) identified in a SIMPER analysis of the base-case. The species names are listed against the CAAB in Table 26.

Table 26 The 35 most informative typifying and distinguishing deep species. Highlighted are the 16 typefying species coloured based on the group (5 – green, 6 – pink) where they are more abundant.

			species		Distinguishing species					
				e-case	+ occu	rrence	Base-	case	+ 000	urrence
			Grp 5	Grp 6	Grp 5	Grp 6	greenv		green v	
CAAB	Species	Common name	green	pink	green	pink	pink	Rank	pink	Rank
	2 Dentex spariformis	Yellowback Bream		17.21			4.77		1 2.05	
37311167	Acropoma japonicum	Japanese Seabass		10.95		4.99	3.37		2 2.99	96
37355003	B Upeneus moluccensis	Goldband Goatfish	6.14		7.62		3.29		3 4.44	1
37118006	Saurida cf filamentosa***	Threadfin Saury	16.71				3.01		4 2.23	
37349002	Pentaprion longimanus	Longfin Silverbiddy	5.97		7.94		2.86		5 4.03	3 2
37347001	Nemipterus bathybius***	Yellowbelly Threadfin Bream	10.28		8.68		2.83		5 2.59	
37347009	Nemipterus virgatus	Golden Threadfin Bream	6.88		6.42		2.66		7 2.54	10
37017901	Mustelus spp.	gummy shark		7.71			2.64		3	
37341002	Photopectoralis bindus	Orangefin Ponyfish	4.58		5.4		2.46		9 3.33	3 4
37346002	Pristipomoides multidens	Goldband Snapper	3.61				2.39	1	3.14	1 5
37337013	Carangoides equula	Whitefin Trevally		7.86		13.49	2.21	1	1 3.43	3 3
37259002	2 Monocentris japonica	Japanese Pineapplefish		3.77			2.18	1	2 1.58	3 21
37350027	Hapalogenys dampieriensis	[a grunter bream]		4.12			1.99	1	3 1.52	2 22
37326003	Priacanthus tayenus	Purplespotted Bigeye			5.03		1.93	1	4 2.92	2 7
37326005	5 Priacanthus hamrur	Lunartail Bigeye				5.1	1.89	1	5 2.35	5 12
37118016	Saurida grandisquamis	Grey Saury	3.98				1.78	1	5 2.39) 11
37464001	Trixiphichthys weberi	Blacktip Tripodfish	4.61		5.13		1.74	1	7 1.83	3 16
37267004	Antigonia capros	Robust Deepsea Boarfish					1.71	1	3	
37447007	Ariomma indicum	Indian Driftfish					1.62	1	9 2.71	8
37288019	Satyrichthys rieffeli	Spotted Armour Gurnard		4.66			1.57	2	C	
37326001	Priacanthus macracanthus	Spotted Bigeye					1.44	2	1 1.83	3 17
37287009	P Neosebastes occidentalis	Orangebanded Gurnard Perch					1.44	2	2	
37267001	Antigonia rubescens	Sharpsnout Deepsea Boarfish					1.44	2	3	
37208001	l Lophiomus setigerus	Broadhead Goosefish					1.42	2	4	
37018007	Carcharhinus plumbeus	Sandbar Shark					1.38	2	5	
37020901	l Squalus spp.	greeneye dogfish					1.33	2	5	
37467008	3 Lagocephalus inermis	Smooth Golden Toadfish					1.31	2	7 2	2 15
37038009	9 Urolophus westraliensis	Brown Stingaree					1.3	2	3	
37188001	Netuma thalassina	Giant Sea Catfish					1.26	2	9 1.82	2 18
37355002	2 Upeneus torres	Japanese Goatfish							1.82	2 19
37353006	Argyrops bleekeri	Frypan Bream							1.77	20
37308003	B Dactyloptena macracanthus	Mottled Flying Gurnard							1.5	5 23
37347004	Nemipterus celebicus	Celebes Threadfin Bream							1.48	3 24
37288015	5 Lepidotrigla sp. 2 [in Sainsbury	e mottled red spot gurnard							1.46	5 25
37401901	Champsodon spp.	0				5.06			1.44	26

Benthos abundance

Benthos data from imagery (frequency of presence of large, small and mini benthos averaged over all images in an operation) was not available for all trawl operations for all assemblages: availability ranged between 58% and 66% for the inner/mid shelf and paeleocoastline communities and 50% for the deep communities (group 6) and only 36% (group 5). Because missing data were due to random effects such as camera malfunction, there is no expectation of bias in the sub-sets of data available for analysis.

There was a general depth effect, with benthos abundance declining as the depth of fish assemblages increased (Figure 173, left to right). The inner/mid-shelf fish assemblages were generally associated with high levels of benthos, and higher levels were observed at locations (trawl operations) where the blue assemblage (associated to structural benthos) were dominant compared to the red assemblage (not associated to structural benthos) – although the variance in observed abundances was high in most cases (fish assemblages and benthos classes).

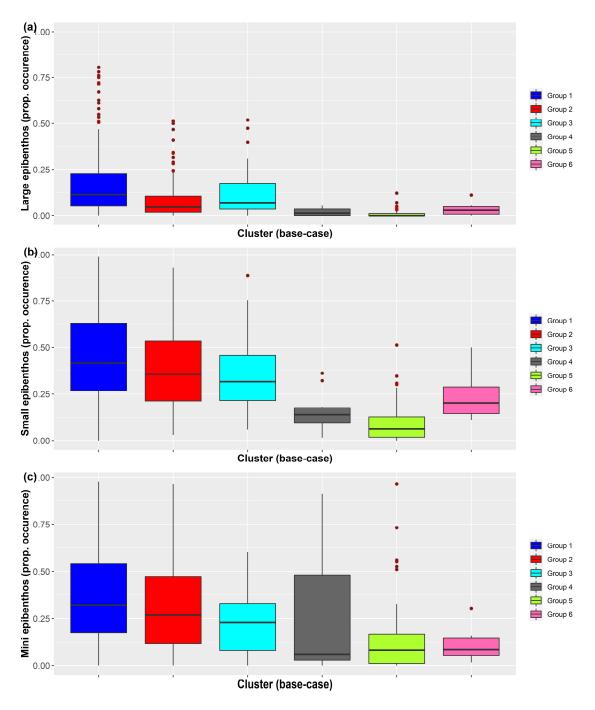


Figure 173 Distribution of abundances of (a) large, (b) small and (c) mini benthos by trawl operation in the main groups identified in the base-case analysis of the fish communities (colours match the assemblages colours in Figure 169.

6.3.2 Time series analysis

Temporal changes in benthos abundance

Abundance of large benthos (% occurrence of images containing large benthos per trawl operation) increased in all of the five areas defined by fishery regulations — four areas in the Pilbara Fish Trawl Fishery (PFTF) Zone 2 plus the westernmost Barrow area (Figure 174). The increases in benthos were significant and greatest in PFTF Areas A1 and A2, least (non - significant and barely discernible) in the trawl closure PFTF Area 3, similarly small in PFTF Area 4, and somewhat intermediate (distinctly increasing but non-significant) in Barrow (Figure 174). These trends were not consistent with patterns of change in trawl effort — particularly in PFTF Area A1 where trawling effort remains relatively high and PFTF that is closed to trawling.

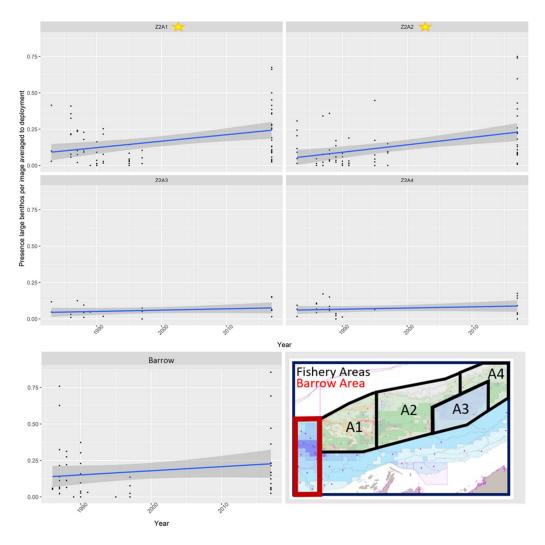


Figure 174 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for PFTF Zone 2 Areas 1 to 4 and in the Barrow area. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1). Map inset shows the location of the areas as shown in Figure 163.

Abundance of large benthos also increased in all six trawl contrast (TC) areas defined solely by contrasts in historic and recent trawl effort (contrasts, TC Areas 3A, 3B, 2A, and noncontrasts TC Areas 1A, 2B, 3C) (Figure 175). The increases were significant in five of the six areas, and only non-significant in TC Area 1A which provided a non-contrast of very low historical and recent trawling in the shallowest part of the study area (Figure 174). The patterns in TC Areas mirrored those in PFTF Areas, but provided different insights because they were independenly defined. Thus, the surprisingly strong increase of benthos seen in PFTF Area 1 remained strongly evident (significant) in TC Area 3C even after zooming into the smaller sub-areas in which high historical and recent trawling is concentrated (Figure 175). There was also an increase in benthos in TC 3B, which contrasted high historical to moderate recent trawl effort across PFTF Areas 1, 2 and 4, but less significantly. The significant increase of benthos in TC 3A — a high-low contrast that drew data from both the PFTF A3 closure and Barrow Area — appeared to be inconsistent with the PFTF analysis, but was clearly driven by the increased benthos in Barrow. The TC areas that represented trawl effort contrast in relation to depth showed no change in benthos in TC 1A (shallowest area, unchanged low trawl effort), but significant increases in TC 2A (shallow area, high to low effort) and TC 2B (deep area of core fishery, with unchanged moderately low effort) (Figure 175).

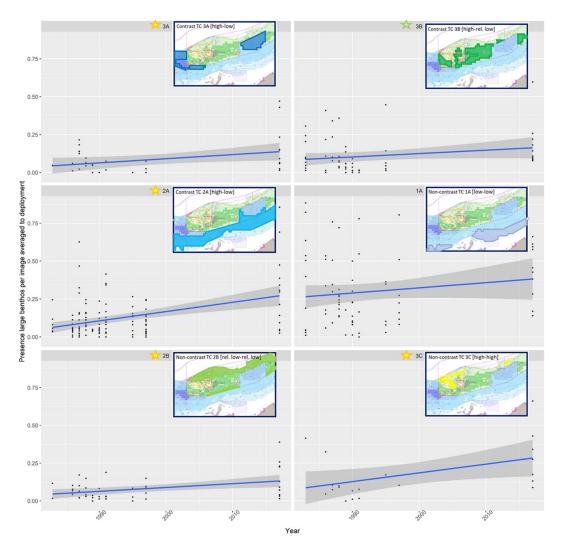


Figure 175 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for six trawl contrasts. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1). Map insets show the approximate location of the areas as shown in Figure 163.

Examining the magnitude of change of benthos in addition to recovery trend showed there was a 'carrying capacity' signal in the data, i.e. a greater potential for benthos recovery in areas where there was most benthos pre-fishery, independently of trawl effort contrasts (Figure 176 & Figure 177). Thus, benthos abundances in the core fishery areas PFTF A1 and A2 were intermediate when surveyed during the 1980s fishery era (relative to PFTF Area 3 & 4 and Barrow), but showed relatively strong recovery which was also apparent in trawl contrast areas TC 3B and TC 3C. Benthos abundance in the non-core fishery area PFTF A3 closure and A4 Areas was considerably lower than others, indicating they had low structured habitat in the early era of the fishery, and relatively low potential for increase.

Carrying capacity also had a depth signal with less benthos as depth increases. This was visible in the TC areas with TC 1A (shallowest) > TC 2A (shallow) > TC 2B (deep). The lack of significant increase in the abundance of benthos in TC 1A was clearly due to it having a high

abundance (greater than all other areas) and being least affected by trawling. Nonetheless, the modest increase may indicate a higher level of historical trawl impact than was captured in the trawl effort contrast. There is no corresponding signal from TC 1A in any PFTF Area because there is no overlap between them.

Overall, the observations were consistent with the hypotheses of widespread increase in benthos as the level and spatial extent of trawl effort declined (i.e. no area showed a decrease), and that pre-fishery benthos carrying capacity had influenced changes. Thus, the trends for benthos recovery did not simply follow the patterns of contrast in historical and recent trawling effort; large increases were observed in areas where trawl impact had declined (TC 2A, 3B) but also where there appeared to be a higher potential for benthos recovery — conspicuously in TC 3C where trawling remains relatively high, but is more concentrated in spatial extent.

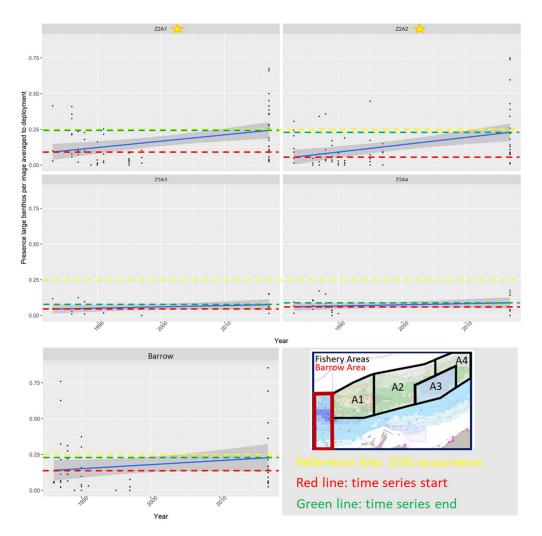


Figure 176 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for PFTF Zone 2 Areas 1 to 4 and in the Barrow area, highlighting the series sta and end points aging the 25% reference line. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1). Map inset shows the location of the areas as shown in Figure 163.

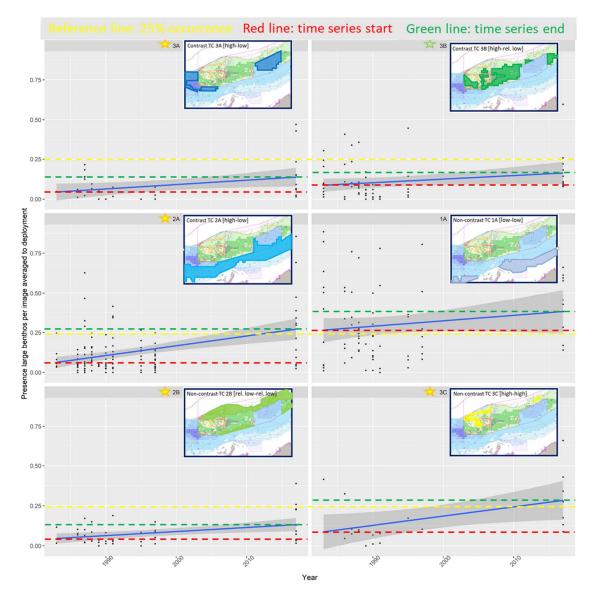


Figure 177 Time-series trend in abundance (percent occurrence in images per trawl operation) of large benthos in survey data for six trawl contrasts, highlighting the series sta and end points aging the 25% reference line. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1). Map insets show the approximate location of the areas as shown in Figure 163.

Temporal changes in fish biomass

Time-series plots of fish biomass (kg per 30 minute tow) and linear regression results are provided separately for each of the 11 analysis areas for (1) Key Genera (N= 4), (2) Informative species (N=27), and (3) inner/mid-shelf assemblages (N=2) in Appendix F.2. One example is provided here (Figure 178, Figure 179, Figure 180) for the first area (PFTF Area 1) and the results for all areas are summarised in Table 27.

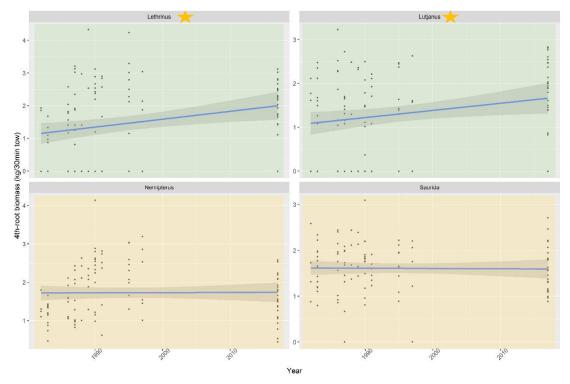


Figure 178 Time-series trend in biomass of the four Key Genera in survey data for PFTF Area 1. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1); data = catch rate (kg per 30 min trawl tow, 4th root transformed).

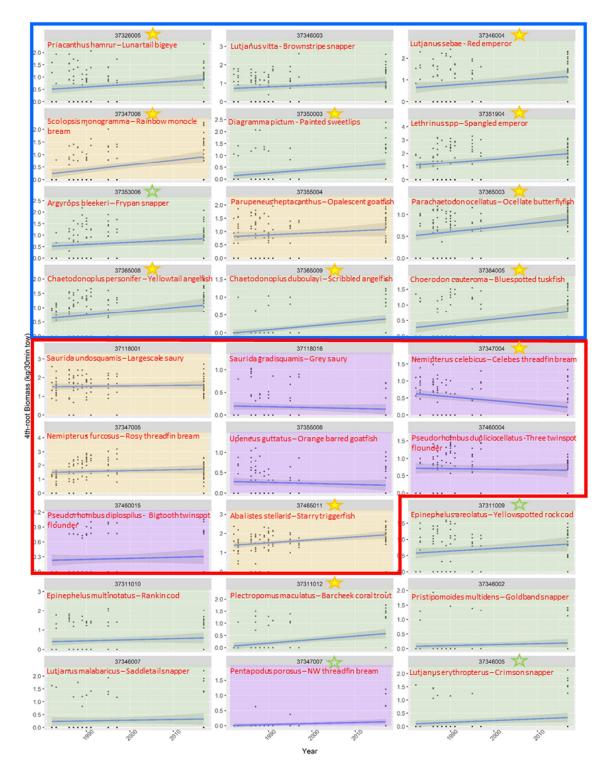


Figure 179 Time-series trend in biomass of the 27 informative species in survey data for PFTF Area 1. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1); data = catch rate (kg per 30 min trawl tow, 4th root transformed).

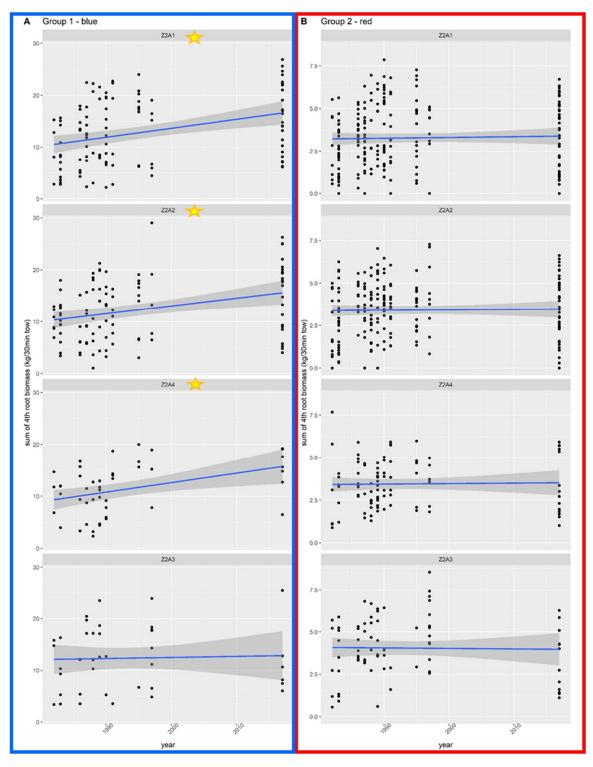


Figure 180 Time-series trend in biomass of the four Key Genera in survey data for PFTF Area 1. Significance of linear regression indicated by star (gold star < 0.05; green star < 0.1; no star >0.1); data = catch rate (kg per 30 min trawl tow, 4^{th} root transformed).

Table 27 Predicted and observed changes in biomass of fishes in 11 areas within the study area sampled by the 2017 survey. Changes in fish biomass were calculated for three units of analysis: key genera (N=4) (following Sainsbury, 1997), the primary inner/ mid-shelf assemblages identified on this tropical shelf (N=2), and three groups of fish Types defined in relation to their predicted changes in abundance (biomass) through time (N=27). Numbers in cells for fish types are species counts, with significance level shown in cell (**= p<0.05; *= p<0.1). Heat mapping indicates significant increases (green), significant decreases (pink) and non-significant changes (grey); significant heat mapping for fish Types reflects a response by the majority of species. Linear regression plots and results are collated in Appendix F.2.

			Pi	Pilbara Trawl Fishery (Zone 2) areas			Selected	Trawl effort contrasts						
		Code	A1	A2	A3 (closure)	A4	Barrow	TC 3A	TC 3B	TC 2A	TC 1A	TC 2B	TC 3C	
		Contrast	hi - hi	mod low	mod nil	mod low	high - low	high - low	high - mod. Iow	mod. low - low	low - low	mod. low - mod. low	high - high	
Predicted overall response		Relative change in biomass	Mostly non- significant increases, limited mainly to Type 2 & 3 species	Mixed significant/ non-significant increases; significant increases include Type 1 species	Significant increases, many species – including many Type 1 species	Significant increases, many species – including some Type 1 species	Significant increases, many species - including many Type 1 species	Significant increases, many species – including many Type 1 species	Mostly non- significant increases; significant increases include Type 1 species	Mostly non- significant increases; significant increases include Type 1 species	Mostly non- significant increases; significant increases include Type 1 species	Mostly non- significant increases; significant increases include Type 1 species	Mostly non- significant increases, limited mainly to Type 2 & 3 species	
	Unit of analysis	Fish group/ type	N 1 **	**		**	**		**					
	Key Genera	Lethrinus Lutjanus Nemipterus	1 ** 1 ** 1			**	**		**					
		Saurida	1	-			**						**	
	Assemblage	Habitat associated	1 **	**		**	**		**		*	**		
		Not habitat associated	1											
Observed		Type 1 # increase Type 1 # decrease	16 16: 9**/ 3* 0	16: 6**/ 6* 0	6: 3** 5: 2**/ 1*	<u>14: 4**/ 4*</u> 1	2 12: 6**/ 2*	5: 3** 5: 1**	16: 12**/ 2* 0	4: 3** 5: 1*	8: 3**/ 3* 3	15: 3**/ 1* 1	13: 4**/ 2* 1	
response	Fish species	Type 2 # increase Type 2 # decrease	5 <u>3: 2**</u> 0	4: 3** 1	1: 1** 1: 1*	4: 3** 1	1: 1** 4: 2**	1 3: 1*	4: 3**/1* 1	1 3	2 3	4: 1**/ 2* 1	4: 1** 1: 1*	
		Type 3 # increase Type 3 # decrease	6 1: 1* 4: 1**	2 2: 1** / 1*	2: 1** 4: 1**	2: 1** 2: 1**	2: 1** 4: 1**	1: 1* 3: 3**	2: 1* 2: 1**/ 1*	2: 1** 3	3 1	4 2: 1**	3 2	
		Relative change in biomass	Increases in most species, many significant including many Type 1 species	including many	Mixed trajactories of increase and decrease; few significant	Increases in most species, many significant - including many Type 1 species	Decreases in most species, many significant - including Type 1 species	Mixed trajactories of increase and decrease; few significant	Increases in most species, many significant - including many Type 1 species	Mixed trajactories of increase and decrease; few significant	Mixed trajactories of increase and decrease; few significant	2: 1** Increases in most species, many significant - including many	Increases in most species, many significant - including many Type 1 species	
Fit to prediction			Observed increases in biomass exceed prediction, but are consistent with strong benthos recovery	Observed increases in biomass exceed prediction, but are consistent with strong benthos recovery	Decreases in biomass where significant increases predicted; patterns inconsistent with some recovery of benthos	Significant observed increases in biomass match prediction, although limited recovery of benthos	Significant decreases in biomass where increases predicted, but consistent with negligable benthos recovery	Decreases in biomass where increases predicted; not explained by patterns of benthos abundance	Observed increases in biomass exceed prediction and are not well explained by modest benthos recovery	Predicted increases in biomass not observed, and benthos recovery higher than expected.	Mostly non- signficant increases in biomass match prediction, and consistent with modest benthos recovery.	Observed increases in biomass exceed prediction, but are consistent with significant benthos recovery	Observed increases in biomass exceed prediction, but are consistent with strong benthos recovery	

Patterns of biomass change in the five areas defined by fishery regulations — four areas in the Pilbara Fish Trawl Fishery (PFTF) Zone 2 plus the westernmost Barrow area — were mostly inconsistent or contrary to predictions based simply on changes in trawl effort alone (Table 27). The largest contrary observation was in Barrow where there was a general and strong decrease in fish biomass; this was significant in two of four genera, the habitatassociated assemblage, and Type 1, Type 2 and Type 3 species (Table 27). A total of 12 of 16 Type 1 species showed decreases, eight of which were significant — including the relatively abundant L. sebae and Lethrinus species complex. Significantly increased biomass was observed only in the genus Saurida (driven mostly by S. undosquamis) and one flounder species (*P. dupliciocellatus*) – species characterising the assemblage without association to structured benthic habitat. Barrow was the only area of the eleven analysed to show an overall pattern of decreased biomass. This is particularly notable because the Barrow area represents a strong contrast from high to low trawl effort — low since 1987 then closed from 1993 (as also reflected by TC Area 4A in the trawl contrast design) — and now contains the Monte Bello Marine Park. The result was not explained by taking patterns of benthos change into account because there was a modest (non-significant) increase in benthos abundance in this area (Figure 174) and relatively high abundance compared to PFTF Areas 3 and 4 (Figure 176).

Patterns in PFTF Area A3 — an area closed to trawling for ~20 years — were also contrary to the prediction of significantly increased biomass across many species, particularly those associated with structured benthic habitat (Type 1 species) (Table 27). Significant increases were seen in five individual species but in only one (*A. bleekeri*) characteristic of the habitat-associated assemblage. Otherwise, there were increases for *P. multidens* and *L. malabaricus*, but flat or negative trajectories for other Type 1 species including the *Lethrinus* species complex. There were no significant signals of increase at fish group level (genus or assemblage), a mix of mostly non-significant trajectories across species Types, and an overall decrease in Type 3 species. This is particularly notable because PFTF Area 3 has been managed as a long-term trawl closure within the PFTF Zone 2. The results are, however, consistent with the change of benthos in PFTF Area 3 where the smallest change (non -significant and barely discernible increase) was observed (Figure 174) and abundance was relatively low compared to all other areas except PFTF Area 4 (Figure 176).

Increases in fish biomass in PFTF Areas A1 and A2 — both areas where trawling remains widespread, and in PFTF A1 where recent effort remains high relative to other areas — had strong increases in biomass which exceeded predictions (Table 27). Three of the four key genera (*Lethrinus, Lutjanus* and *Nemipterus*), the habitat-associated assemblage, and many Type 1 and Type 2 species, showed strong increases where only small increases were predicted. Changes in biomasses of some relatively highly abundant individual species influenced the patterns seen at genus and assemblage level — most notably the *Lethrinus* species complex which has a considerably larger raw biomass than any other species. Notwithstanding, these significant trends were evident for key genera and assemblages even when data were 4th-root transformed to de-emphasise the influence of such species. The larger than expected increases are, however, consistent with the degree of benthos

recovery which was significant in both areas (Figure 174). The magnitude of increase in PFTF Area A1 (Figure 176), where trawling remains relatively high, indicated its relatively high potential for recovery (the carrying capacity effect), and that whilst trawling remains relatively high, its intensity and spatial extent had contracted over the time period analysed.

Patterns of biomass increase in PFTF Area A4 were more consistent with the prediction of modest increases based on this area's low contrast in trawling history (consistent and relatively low exposure historically and recently), but still somewhat stronger (Table 27). The trajectories of biomass increase mirrored those in PFTF Area 1 and were identical to those in PFTF Area A2 across virtually all species, assemblages and key genera. Interestingly, however, these increases did not match the patterns of benthos abundance which were characterised by a negliable increase (Figure 174), and low level relative to other areas (Figure 176).

Six trawl contrast (TC) areas defined solely by contrasts in historic and recent trawl effort, which were defined independently of PFTF zoning, provided alternative spatial units in which to examine trends in biomass. Three each provided contrasts (TC Areas 3A, 3B, 2A) and non-contrasts (TC Areas 1A, 2B, 3C) (Figure 163).

Among the contrasts, patterns observed in TC Area 3A — the largest contrast of historically high to recent low trawl effort — were contrary to the prediction based on trawl effort contrast alone (Table 27). Rather than significant increases in biomass in many species, including the Type 1 habitat associated species, there were no significant signals of increase at fish group level (genus or assemblage), a mix of mostly non-significant trajectories across species Types, and an overall decrease in Type 3 species. The majority of the data for contrast TC Area 3A were drawn from Barrow and PFTF Area 3 closure and therefore provide another reflection of the biomass decreases identified in both areas — but here the result is more explicitly linked to a quantitative contrast in trawling. The result is therefore consistent with the patterns of benthos abundance in the PFTF Area 3A closure where there was a relatively low level and change was indiscernible, but not consistent with Barrow where there was a modest (non-significant) increase to a relatively high level (Figure 174 and Figure 176).

In TC Area 3B — a contrast of high to moderately low trawl effort across most of the fishery area — the changes observed were more consistent with the predicted trajectory, but markedly stronger (Table 27). Notably, biomass increased in all 16 Type 1 species, and four of the five Type 2 species; 18 of these 20 increases were significant. Accordingly, biomass also increased significantly in the key genera *Lethrinus* and *Lutjanus*, and the habitat-associated assemblage. This result is, however, entirely consistent with the increased biomass observed in PFTF Areas 1, 2 and 4 — from where the TC Area 3B data are drawn, and consistent with the relatively high recovery of benthos in PFTF Areas 1 and 2 (Figure 175). Benthos recovery was, however, only weakly significant and benthos abundance relatively low in the sub-areas defined by the TC 3B contrast (Figure 175 and Figure 177). The importance of contrast area TC 3B is that it emphasises the high to moderately low contrast in trawling *within* those larger fishery areas. In other words, contrast TC Area 3B

magnifies the strong effects of benthic habitat recovery. The positive response by fish communities — including all Type 1 species with an association to structured benthic habitat — is stronger in these sub-areas than in any other part of the study area.

Contrast Area TC 2A lies shoreward of the PFTF managed zone in relatively shallow water and has historically supported a trap fishery. Its low exposure to trawling is reflected here by a moderately low to low trawling contrast. Small increases in biomass were predicted, and individual species did show a mix of trajectories of increased and decreased biomasses (Table 27). However, few were significant, and while increases outnumbered decreases they were from minor species. Accordingly, changes at assemblage and genus level were nonsignificant. This result was not consistent with the observation of a significant increase in benthos abundance to a relatively high level in TC 2A (Figure 175 and Figure 177). These observations are inconsistent with the predicted increase in fish biomass and perhaps reflect both the ongoing selective removal of Type 1 species by the trap fishery and a higher level of historical trawl impact than was captured in the trawl effort contrast.

Among the non-contrasting areas, negligible to small changes in biomass were predicted in TC Area 1A because it represented a non-contrast of very low historical and recent trawling in the shallowest areas of the study area. Observations were generally consistent with this, with a mix of trajectories that including several increases in Type 1 species some of which were significant (Table 27). This is generally consistent with the modest (distinct but non-significant) increase in benthos abundance to what is the highest level of all areas (Figure 175 and Figure 177).

The non-contrast TC Area 2B represented an unchanged level of moderately low trawl effort in the deepest part of the study area, mostly seaward of the primary trawling grounds. While only small biomass increases were predicted here (likely due to an overall regionalscale reduction in fishing mortality), the biomass of the habitat-associated assemblage increased significantly (Table 27). This was based on increases in the great majority of Type 1 species, albeit with few significant increases of individual species. On this basis, the observation was not consistent with the prediction based on trawl effort contrast, but was consistent with the significant recovery of benthos, albeit to a relatively low abundance compared to shallower areas of the fishery (Figure 175 and Figure 177).

The TC Area 3C, which provided a non-contrast of high historical and high recent trawling effort, was made up by several small sub-areas embedded mostly in the most heavily trawled PFTF Area A1. It therefore represented a fine spatial-scale focus on the most heavily and consistently trawled parts of the study area. On this basis, the prediction was for only small increases in biomass limited mainly to Type 2 and Type 3 species. Observation of increased biomass in many (13/16) Type 1 species, six of which were significant, were somewhat inconsistent with the prediction based soley on trawl effort contrast (Table 27) — although increases were mainly minor (non-commercial) species with the exception of *P. maculatus*. This inconsistency may be explained by changes in benthos abundance characterised by a significant increase to a level that was relatively high compared to other

core fishery areas, and exceeded only by the shallow inshore areas TC 1A and 2A (Figure 175 and Figure 177).

6.4 Discussion

6.4.1 Assemblage structure

A process of species reduction successfully identified sub-sets of species to analyse for assemblage structure from the total of 553 species in the T2/T3 surveys: 254 species based on ranked biomass (base-case) and 188 when occurrence was added. These reductions had the effect of reducing noise from species that contributed only small proportions of total biomass and were uncommonly caught, and produced highly consistent assemblage patterns on the regional continental shelf. Structure was strongly dominated by depth, and there was no evidence of longitudinal pattern at this scale. Two inner/mid-shelf assemblages in ~25–100 m depths were prominent; their strongly mixed spatial distributions across individual samples indicated strong differentiation in species composition, but without any broad spatial sub-structure, i.e. association with a mosaic of habitat types. Two other assemblages were associated with a prominent paleocoastline at ~100 m—a depth band of steep seabed composed of rocky substratum with relatively abundant megabenthos (compared to the adjacent shallow and deep shelf). A single stable deep shelf assemblage occurred in ~100-150 m depths, and two less stable shelf-edge assemblages occurred in > ~150 m. Their instability stemmed from being represented by relatively few samples from a steep and narrow area of seabed at the boundary between continental shelf and slope biomes.

Informative species having the greatest influence on assemblage structure were mostly abundant species that both typified one or other group and contributed strongly to distinguishing groups.

An analysis of benthos co-occurring with fish assemblages (based on imagery from a camera on the trawl headline) showed there was high variance in observed benthos abundances among fish assemablages and benthos classes, but evidence of a general depth effect. Thus, the inner/ mid-shelf fish assemblages were associated with higher levels of benthos than deeper assemblages, and generally, benthos abundance declined as the depth of fish assemblages increased. In relation to the time-series analysis, it was noteworthy that higher levels of benthos were observed at locations (trawl operations) where the assemblage associated to structural benthos was dominant and lower levels of benthos where the assemblage not associated to structural benthos was dominant.

6.4.2 Time series

Significant changes in the abundance of large benthos and the population biomass of demersal fishes occurred in the study area between 1985 and 2017 as total trawl effort declined and the spatial extent of trawling contracted. An increased abundance of large

benthos observed in most areas substantiated the hypothesis that widespread increase (recovery) of benthos would follow the decline in bottom trawling (see also Chapter 5).

Increases and decreases in fish biomass were observed across the sub-areas analysed — in key genera, the two primary inner/mid-shelf assemblages, and many individual informative species—and, overall, there were more significant increases than decreases (Table 27). These results indicate there had been a regional-scale increase in the aggregate fishery stock since trawling declined from its peak in the mid-1970s—an observation consistent with an overall reduction in fishing mortality. Most significant increases were observed in species with association to structured benthic habitat. These species drove the significant positive responses observed in several areas (core fishery areas PFTF Areas A1, A2 and non-core area A4) and trawl contrast areas (TC 3B, 2B, 3C), including at genus and assemblage-levels (Table 27). These results provided support for the hypothesis that biomass of benthic habitat-associated fishes had increased as a positive response to recovery of habitat provided by structural benthos—a signal that was evident despite noise from other likely drivers of changes in biomass that were unmeasured (reduced fishing mortality) or unknown (e.g. inter- and intra-specific effects such as predation and competition).

But, despite the prominence of increased biomass among fishes with associations to structural benthic habitat, a striking feature of the results was that several positive and negative responses of fishes to benthos recovery did not correspond to predictions of change based simply on trawling history. We hypothesised that changes in fish biomass would generally mirror the contrast in trawl effort, with the largest increases in biomass colocated with the largest decreases in trawling. However, significant biomass increases occurred in the core fishery areas PFTF Areas 1 and 2 (and to a lesser extent within trawl contrasts TC Areas 3B and 3C) where recent trawling remains relatively high, while no significant increases were observed in the PFT Area 3 trawl closure. In addition, there was a significantly decreased fish biomass in Barrow where trawling had declined from high to zero. These findings appear to be mainly explained by greater than expected increases of benthos in some areas where contrasts between historical and recent trawl effort are relatively low, including where trawling remains high. Thus, there were correspondingly significant increases of benthos in PFTF Areas 1 and 2 where significant increases in fish biomass were not predicted, but a barely discernible increased benthos abundance in the PFT Area 3 closure where there was little change in fish biomass despite a significant increase being predicted. The effects of benthos increases in PFTF Areas 1 and 2 can be further understood by examining the TC areas that lay within them. Thus, zooming to where trawl exposure remains high (TC 3C) shows that benthos recovery was significant and reached a high abundance relative to all other areas except the shallow inshore area TC 1A. Zooming into where trawl contrast is high to low (TC 3B) also showed recovery, albeit weakly significant and to a lower abundance.

These results provided support for the hypothesis that the magnitude of the signals increased fish biomass and recovery of benthos—were influenced by the pre-fishery benthos carrying capacity, i.e. greater increases occurred in areas with higher potential to recover. It appears that trawling has preferentially targeted the same areas of the fishery throughout its history, i.e. continued to use what have proven to be the best trawling grounds, and that these areas are characterised by relatively high levels of structural benthic habitat that experienced relatively high impact but have had relatively high recovery of benthos. In turn, this has led to a greater than expected increase in the biomass of fishes associated with habitats with elements of hard seabed structure.

This explanation is mirrored to a lesser extent in PFTF Area 2 (and therefore TC 3B), and is also corroborated by the lack of significant increase of fish biomass in the PFTF Area 3 closure. It appears the closure was located where benthos abundance was relatively very low early in the fishery and had little potential for recovery, perhaps because the area had relatively little value for the trawl fishery.

The observations in Barrow are unexplained: this area has a high to low trawl contrast and some recovery of benthos (albeit non-significant) but was the only area that showed a decline in fish biomass. The decline was significant in all groups with the exception of *Saurida* — which showed a significant increased biomass.

6.5 Conclusions

Data from 17 historical research surveys on the North West Shelf were thoroughly evaluated and processed to generate a quality-assured data set that was used to:

- 1. determine regional-scale patterns in fish assemblage structure in the entire survey area the "regional" analysis (Objective 1)
- identify changes in fish assemblage structure in the sub-regional study area surveyed in 2017 based on a time-series analysis of historical survey data — the "time-series analysis" (Objective 2)

The regional analysis used data from a sub-set of eight historical research surveys with standard sampling characteristics undertaken between 1986 and 1997. The surveys were made during a relative lull in trawling effort between 1986 and 1991 when the extent and intensity of foreign trawling rapidly declined and then concluded and as the domestic trawl fishery commenced and its footprint expanded and then stabilised, but before fishery spatial management zoning was introduced. These data provide a "time-integrated" regional-scale description of the continental shelf fish assemblages that smoothed the temporal effects of annually variable trawl effort intensity and distribution, and environment variation.

The time-series (by year) analysis used data from three additional survey years (1982, 1983, and 2017), but was limited to the sub-regional study area surveyed in 2017. The surveys in 1982 and 1983 occurred when foreign trawl activity was intense and widespread in the region but concentrated in the sub-regional survey area. The analysis examined changes in the composition and distribution of inner/ mid- shelf fish assemblages identified by the 'time-integrated' regional analysis.

Fish assemblages were strongly structured by depth, and there was no evidence of longitudinal pattern at sub-regional scale. Informative species (mostly with high relative abundance) were identified for the purpose of characterising assemblage composition. Two inner/mid-shelf assemblages in ~25-100 m depths were prominent, and strongly differentiated by species-habitat associations — to either structured benthic habitat (genera *Lethrinus* and *Lutjanus*) or unstructured habitat (genera *Nemipterus* and *Saurida*, and *Abalistes stellatus*). These assemblages had no broad spatial sub-structure, but were highly mixed at the scale of individual trawl samples, indicating association with a mosaic of habitats existing at fine spatial scales. Two other assemblages were associated with a prominent steep rocky paleocoastline at ~100 m depth, and a single stable deep-shelf assemblage occurred beyond the paleocoastline in ~100-150 m. In greater depths (> ~150 m), two less-stable assemblages were classified within relatively few samples from the steep and narrow continental shelf edge.

For time-series analysis, the 2017 survey area was segmented into five fishery management areas of the Pilbara Fish Trawl Fishery (PFTF) and six areas characterised by a variety of contrasts between historical and recent trawl effort (Chapter 4). This enabled signals of benthos recovery and changes in fish biomass to be interpreted in relation to trawling history, the patterns to be compared between areas, and signals of change corroborated.

Signals of change in fish biomass – particularly species with associations to structured benthic habitats — were detected against a background of considerable noise stemming from unmeasured and unknown environmental and ecological effects. Widespread significant increases in fish biomass were consistent with an overall reduction in fishing mortality, but the prominence of species with associations to structured benthic habitat provided support for the hypothesis that biomass increases were a positive response to benthos recovery. This was corroborated by a general increase in the abundance of large benthos consistent with a decreased impact from bottom trawling as the intensity and spatial extent of trawl effort declined over the period of analysis (1983 to 2017) (and see Chapter 5).

Several within-area changes in fish biomass did not, however, correspond to predictions of trend based on trawling history — these included a significant biomass increase in the core fishery PFTF Area 1 where trawling remains relatively high, and, conversely, no significant increase in the PFFT Area 3 trawl closure—where benthos appeared to have remained consistently low, or have declined (see Chapter 2). Areas where changes in fish biomass were inconsistent with predictions corresponded to areas where there were also unforeseen changes in abundance of large benthos—with co-located large increases in fish and benthos apparently reflecting areas with a higher pre-fishery carrying capacity and greater-than-expected recovery potential. A notable example was the aggregated sub-areas of PFTF Area 1 where high trawling effort had been consistently located throughout the duration of the fishery (trawl contrast area TC 3C). These aggregated areas appear to be the locations of the region's best trawling grounds, and therefore our data suggest they are characterised by habitats with elements of hard seabed structure, and that their relatively

high potential for benthos recovery supported a greater than predicted increase in the biomass of structured habitat-associated fishes.

In contrast, the low biomass of habitat-associated fishes and lack of significant increase of fish biomass in the PFTF Area 3 closure correlate with a low carrying capacity (low benthos abundance and low potential for recovery), perhaps indicating the trawl closure was located where there was relatively little value for the fishery. Our findings differ somewhat from those of Langlois et al. (2021) whose 2010 study using baited remote underwater video found evidence of higher biomass and/or abundance of some target fish species including Lutjanus sebae and Epinephelus multinotatus in PFTF Area 3 as compared to other PFTF areas. The reasons for these differences warrant further examination of fish habitat dynamics in PFTF Area 3 but are most likely to reflect differences in time frames, methodology, scale of observations and how habitat varied at the sites were selected for sampling in the two studies. It is possible the Langlois et al. (2021) sampled sites with greater hard structure/more rugged seabed that could be trawled across in our study and there for the differences in findings might simply reflect the known relationship between complex three-dimensional seabed structure and abundance of the fish species. Langlois et al. (2021) compare biomass/abundance between areas at one point in time (2010). Our study examines trends *within* areas over a much longer period (1983 to 2017).

Our findings are interpreted as an indication that this area did not have historically high levels of benthic filter feeder habitat relative to other areas and despite the closure and thus, its capacity to recover from trawling was not as great as other areas. Langlois et al. (2021) found only subtle changes in benthic filter feeder benthos and given the differences in methodology (our 2 km x 20 m trawl swath camera survey and trawl fish catch versus their fixed site, baited remote camera survey seven years earlier), the conclusions/interpretations about seabed benthos between the two studies can be regarded as being largely consistent.

The significant decline in biomass in all fish groups (with the exception of *Saurida*) in the Barrow area—the only area showing decline—is unexplained. Sites surveyed in 2017 showed a much lower abundance of filter feeder and structured habitat than previous time periods (Chapter 2). The decline in fish biomass may be linked to limited recovery of benthos, (although there is limited evidence that this was ever an area of very high benthic filter feeder abundance) despite having a 'high to low' trawl contrast and being largely within the Montebello Marine Park which has been closed since 1993. There appears to be an unmeasured driver of change in that has not affected adjacent areas to the east.

One factor not considered in our study is any system wide effect of the aggregating influence of oil and gas infrastructure, in particular pipelines, (Bond et al. 2018; McLean et al. 2020). McLean et al. (2021) also found that targetted commercial fish species were more abundant near pipelines than in areas of naturally occurring filter feeder habitat. We are only aware of anecdontal reports of trap fishers targetting oil and gas pipelines on the NWS but targetted trapping of fish along such artificial structures is well known in other parts of the world (e.g. Rouse et al. 2018).

Comparisons with the results of the earlier adaptive management experiment (Sainsbury 1991) and the current long-term study are consistent. The intentions of the adaptive

management experiment (Sainsbury 1991) were to examine the recovery of the seabed habitats and rebuild fish stocks. The short-term review of the experiment confirmed both of these improvements (Sainsbury et al. 1997) but could not determine the longer-term effects. The 2017 survey has confirmed and refined the extent of the seabed recovery, and it has confirmed and refined stock rebuilding.

7 North West Shelf Ecosystem Trophodynamics Model

Hector Lozano-Montes (CSIRO Oceans and Atmosphere)

7.1 Introduction

The waters of the North West Shelf (NWS) of Australia have been fished since 1950s by national and foreign trawlers (Japanese, Taiwanese, Russian fleets; Branford, 1984). In mid 1970s, the trawling and demersal fisheries reached a peak that resulted in the establishment in 1979 of the 200 nautical mile Australian Fishing Zone (AFZ) to regulate foreign fleet activities beyond 12 nautical miles (Sainsbury, 1987). A substantial decline in CPUE in the Taiwanese trawling fleet in 1985s suggested that the declining catch could be explained by a decreasing abundance of the benthic fish communities of the region (Branford, 1984). Fishing pressure increased from 1984 as domestic trap and trawl fleets activities were established. To protect these species, in 1988 the Australian government restricted areas in the NWS that were accessible to foreign fleets (Jernakoff and Sainsbury, 1990). Foreign vessels have not trawled on the region since 1989 and the current Australian fishery is operated over a much smaller area with a fewer vessels with modest landings. For example, in 2015 they caught 1,779 tonnes.

To get a better understanding of the direct impacts of trawling on sea floor organism (e.g. sea sponges and sea fans) and demersal target finfish groups (e.g. serranids, lutjanids, lethrinids), a series of comprehensives trawl surveys and stock assessments were conducted by CSIRO from 1978 to 1991. Foreign trawling caused extensive impact on benthic and fish communities (Jernakoff and Sainsbury, 1990). For example, the lethrinids, lutjanids and serranids were quite depleted by 1986 and the species composition of the catches changed significantly from the early 1970s (Jernakoff and Sainsbury, 1990). These changes suggested that the NWS system was not in equilibrium and important changes of demersal communities (invertebrates and finfishes) resulted by trawling before 1988. After 1990s, it was assumed that the NWS system reached a point of the least rate of change where fishing continuing at the relatively low 1987 rates (Bulman, 2006).

To understand the recovery of the NWS, a scientific expedition conducted in late 2017 by CSIRO investigated the species composition, size and biomass of fish in the region; also the sea bed habitats (including types and abundance of organisms living in the sea floor) were quantify during the re-survey of the NWS. In this study, we used this biological information to gain knowledge of how these communities are organized in food webs and key aspects of ecosystem functions and other trophic process are still far from comprehensive. We developed an Ecosystem model of the NWS (using Ecopath with Ecosim software) to quantify: (1) ecosystem attributes and trophic structures; (2) ecological role of sea floor

organism (e.g. sea sponges and sea fans), top predators and keystone species; and (3) we used model scenarios to evaluate impacts of trawling.

7.2 Objectives

1. Evaluate how food webs and the fisheries they support are likely to be influenced by trawling in the NWS.

2. Investigate how changes in abundance of key benthic species (e.g. marine sponges, corals) are likely to influence other species.

3. Identify useful indicators of ecosystem response to changes in the environment and management systems.

7.3 Methods

7.3.1 Study area

The North West Shelf (NWS) model area is situated between 18 and 21°S on the northwest coast of Australia (Figure 181), and covers a total area of about 46,770 square km. The model domain includes the Pilbara offshore bioregion and the southern-most part of the North West Shelf bioregion (IMCRA Technical Group, 1998). The NWS region is characterized by a very dynamic oceanography subject to several tropical cyclones every year, seasonal monsoons, a large tide regimen and interannual variability from El Nino and La Nina events (Condie et al., 2003). The contour depth range included in the model was between 20-100m, and species considered included demersal fishes and habitat-forming invertebrates.

7.3.2 Ecopath with Ecosim (EwE)

The structure of the EwE model is largely subjective, and it was tailored to satisfy specific requirements of the investigation in this study. The NWS model contains 73 functional groups, including two non-living groups such as dissolved organic matter (DOM) and organic detritus (Table 28). A number of functional groups were defined for species of significance to commercial or recreational fishing fishers (e.g. Lethrinidae, Carangidae, and Lutjanidae). The model also represents sharks, rays, sea snakes, turtles, commercial and non-commercial invertebrates and plants. See section below for more details of the functional groups, mortalities and fisheries data (gear types and landings) included in the model.

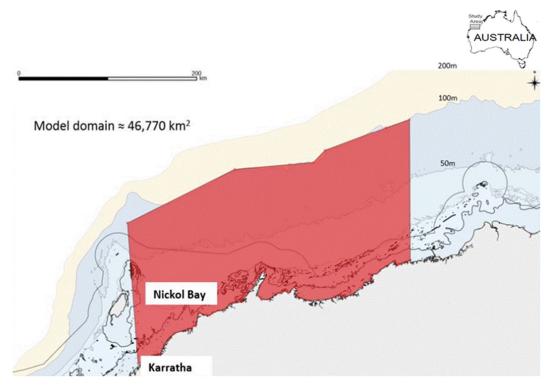


Figure 181. The NWS model domain (red area) with approx. 46,770 square km. The model represents the foodweb of the demersal fish assembles and habitat forming invertebrates in the depth range from 20 to 100m.

The EwE modelling software is a free software (under the terms of the GNU General Public Licence), and downloadable online (www.ecopath.org) with more than 400 EwE models for aquatic systems (and a few terrestrial systems) published worldwide (Colléter et al., 2015). EwE creates a static mass-balanced snapshot of the resources and their interactions, including biomass and energy flows. This will help us to elucidate the structure and functioning of the NWS system. The Ecopath model is based on a set of linear equations that quantify the trophic flows among the components of the system (living and non-living species or functional groups). Ecopath uses a series of simultaneous linear equations, one for each functional group to quantify the energetic flows among trophic groups according to the law of conservation of mass or energy (Equation 1). The net production of a functional group equals the total mass removed by its predators and fisheries plus its net migration and its energy or mass that flows to detritus. The master equation is described as:

Production – Predation - Other mortality – Exports + import = 0

Or;

Production= mortality (Fishing + Predation + Other) + Biomass accumulation + Net Migration

$$B_{i} \cdot (P/B)_{i} = Y_{i} + \sum_{j=1}^{n} B_{j} \cdot (Q/B)_{j} \cdot DC_{ji} + E_{i} + BA_{i} + B_{i}(P/B)_{i} \cdot (1 - EE_{i}) \dots Equation 1$$

Where, B_i and B_j are biomasses of prey (*i*) and predator (*j*), respectively;

 P/B_i is the production/biomass ratio;

Y_i is the total fishery catch rate of group (*i*);

 Q/B_j is the consumption/biomass ratio;

 DC_{ij} is the fraction of prey (*i*) in the average diet of predator (*j*);

E_i is the net migration rate (emigration – immigration); and

 BA_i is the biomass accumulation rate for group (*i*).

EEi is the ecotrophic efficiency; the fraction of group mortality explained in the model.

The consumption rate within a group equals the sum of production, respiration and unassimilated food, as in equation 2.

Conservation of energy between groups:

 $B \cdot (Q/B) = B \cdot (P/B) + (1-GS) \cdot Q - (1-TM) \cdot P + B \cdot (Q/B) \cdot GS$... Equation 2

Where GS is the proportion of food unassimilated; and TM is the trophic mode expressing the degree of heterotrophy; 0 and 1 represent autotrophs and heterotrophs, respectively. Intermediate values represent facultative consumers.

EwE uses a set of algorithms (Christensen et al., 2009) to simultaneously solve n linear equations of the form in equation 1, where n is the number of functional groups. Under the assumption of mass-balance, Ecopath can estimate missing parameters. This allows modellers to select their inputs. EwE uses the constraint of mass-balance to infer qualities of uncertain ecosystem components based on our knowledge of well-understood groups. It places piecemeal information on a framework that allows us to analyse the compatibility of data, and it offers heuristic value by providing scientists a forum to summarize what is known about the ecosystem and to identify gaps in knowledge.

The input data for any functional group are: P/B, Q/B, B, EE and diet composition (DC); however, EwE requires DC as an input while any one of the other parameters can be estimated by mass balance if the other three are known. Normally EE is estimated, but in cases when biomass is unknown, it is possible to obtain an estimate by assuming about EE (0.95, for example).

Ecosim (Walters et al., 1997) adds temporal dynamics into the Ecopath models and was used to predict changes in biomass in response to changes in fishing pressure defined by mortality and fishing effort. A key component of Ecosim modelling is its ability to simulate predator-prey interactions on a temporal arena under the foraging arena theory, which splits the availability of a prey group's biomass to each predator group into several vulnerable and invulnerable states (Ahrens et al., 2012). In Ecosim, vulnerabilities (v) are assigned to individual predator/prey relationships, indicating whether the biomass of a group is controlled primarily by predators or prey. In Ecosim, vulnerabilities range from 1 to ∞ ; when v takes high values ('top down'), a high proportion of the biomass is vulnerable to predation. If v is closer to 1.0 ('bottom up'), prey have the opportunity to find refuge from predators. Initially, the vs during the fitting process were allocated from 1.0 to 10.0 and the final vs of each group were set during the tuning of the model with time-series of catch per effort (CPUE) for the main target species in the Kimberley.

7.3.3 Input data and information sources

This section describes the general methodology used to assign functional groups their basic parameters required by the EwE model. The data needs of EwE can be summarized as follows. Four data points are required for each functional group: biomass (in t km⁻²), the ratio of production over biomass (P/B; in yr^{-1}), the ratio of consumption over biomass (Q/B; in yr⁻¹), and ecotrophic efficiency (EE; unitless). EwE also provides an input field representing the ratio of production over consumption (P/Q; unitless), which users may alternatively use to infer either P/B or Q/B based on the other. Each functional group requires 3 out of 4 of these input parameters and the remaining parameter is estimated using the mass-balance relationship in equations 1 and 2. The production/biomass (P/B) and consumption/biomass (Q/B) ratios (year ⁻¹) are basic input parameters in EwE. The P/B ratio (year ⁻¹) for non-target species is equivalent to natural mortality (M, year⁻¹; Pauly, 1980) and it was estimated using the empirical equation prediction of natural mortality proposed in Pauly (1980). P/B For commercial exploited finfish groups was estimated adding fishing mortality (F, year ⁻¹) to M rates. The estimates of food consumption rates (Q/B, year ⁻¹) for most fish and invertebrate groups were obtained from empirical equations proposed in Palomares and Pauly (1998). We used these empirical formulae as a proxy of mortalities and consumption rates. The four basic input parameters for each of the 73 functional groups in the model are presented in Table 29. A biomass accumulation rate may be entered optionally; the default setting assumes a zero-rate instantaneous biomass change. No biomass accumulation was used in this study. Biomasses of fish and invertebrates in the model were estimated mainly from a local study conducted in October 2017 on board of the R/V Investigator. Figure 182 and Figure 183 show the total trawl weights in grams for both vertebrates and invertebrates recovered during the 2017 voyage. Table 28shows the biomasses (g/m²) obtained during this survey and used in the model.

Table 28. Basic parameters of the mass-balanced NWS model. Bold numbers were parameters calculated by EwE

Group name	Trophic level	Hab area (proportion)	Biomass (t/km ²)	Production / biomass (/year)	Consumption / biomass (/year)	Ecotroph Efficienc
Coastal sharks	4.90717	1	0.51	0.27	3.8	0.8885
Rays	3.47985	1	4.719	0.36	2.44	0.8664
Lizardfish	4.5818	1	4.6891	0.31	7.3	0.9673
Carangids	4.07127	1	3.77	0.89	2.988	0.6601
Sea snakes	4.68151	1	0.6211	0.46	6.3	0.7316
Sea turtles	3.28708	1	0.267	0.36	11	0.2135
Deep Lethrinids	3.89381	1	5.6876	0.74	7.2	0.8909
Deep Lutjanids Mullids	4.00704	1	6.57 2.93	0.71	5.8	0.9405
Deep Large fish	4.75466	1	0.622	0.92	4.2	0.8504
Deep Medium fish	3.64946	1	18.1322	0.86	6.49	0.9645
Deep Small fish	3.49273	1	10.2328	2.67	12.96	0.8644
Shallow Lethrinids	3.92515	1	1.041	0.82	7.6	0.5589
Shallow Lutjanids	4.07429	1	1.4397	0.79	5.96	0.9698
Shallow Large fish	4.7905	1	0.427	0.86	6.15	0.9482
Shallow Medium fish	3.43261	1	10.3211	0.91	9.55	0.8075
Shallow Small fish	3.51665	1	4.9287	1.88	11.2	0.6203
Sponges Cup <25cm	2.5	1	45.47	1.48	5.285	0.4906
Sponges Cup 25-50cm	2.5	1	117.86	1.48	5.285	0.1893
Sponges Cup 50-100 cm	2.5	1	67.44	1.38	5.285	0.3547
Sponges Cup >100 cm	2.5	1	38.06	1.28	5.3	0.6777
Sponges Massive <25cm	2.5	1	356.29 284.055	1.48	5.285	0.0626
Sponges Massive 25-50cm Sponges Massive 50-100 cm	2.5	1	149.055	1.38	5.285	0.1605
Sponges Massive >100 cm	2.5	1	179.98	1.38	5.285	0.1433
Sponges Erect < 25cm	2.5	1	143.87	1.48	5.285	0.1550
Sponges Erect 25-50cm	2.5	1	187.127	1.42	5.285	0.1242
Sponges Erect 50-100 cm	2.5	1	116.14	1.38	5.285	0.2060
Sponges Erect >100 cm	2.5	1	25.11	1.38	5.285	0.9527
Soft coral Fans <25 cm	2.59823	1	12.26	1.58	27.89	0.2440
Soft coral Fans 25-50 cm	2.55555	1	13.45	1.55	27.89	0.0000
Soft coral Fans 50-100 cm	2.55555	1	8.41	1.5	27.89	0.0000
Soft coral Fans > 100 cm	2.55555	1	2.401	1.45	27.89	0.0000
Soft coral Massive <25 cm	2.55555	1	11.27	1.58	27.89	0.0000
Soft coral Massive 25-50 cm	2.55555	1	86.85	1.55	27.89	0.0000
Soft coral Massive 50-100 cm	2.55555	1	4.755	1.5	27.89	0.0000
Soft coral Massive >100 cm	2.55555	1	0.071	1.45	27.89	0.0000
Soft coral Whip <25 cm	2.55555	1	0.6879	1.75	27.89	0.0000
Soft coral Whip 25-100cm	2.55555	1	1.5934	1.72	27.89	0.0000
Soft coral Whip 50-100cm	2.55555	1	1.4316	1.7	27.89	0.0000
Soft coral Whip > 100cm Hard corals	2.55555	1	1.3308	0.12	27.89	0.0000
Cuttlefish & Squids	2.55555	1	9.18	6.74	18.5	0.0000
Octopus	3.4771	1	1.2201	9.78	16.5	0.5892
Bryozoa	2.65654	1	53.33	0.2	16	0.0000
Hydroids	3.16155	1	30.26	2.3	20	0.0000
Ascidians	2.2	1	34.95	2.3	20	0.0589
Gastropods and Scaphopods	2.05019	1	7.63	16.6	22	0.9955
Bivalves	3.15434	1	11.18	3.35	5.618	0.8690
Prawns & shrimps	2	1	2.31	11.5	36.95	0.8998
Crabs	2.94351	1	6.209	6.2	20.21	0.9746
Crustaceans others	2.71262	1	2.891	9.74	14.5	0.9819
Echinoids	2 3.14721	1	22.32 19.33	5.46	9.428	0.9465
Asteroids Crinoids	3.14/21	1	37.0311	1.92	19.26	0.962
Holothurians	2.24017	1	15.083	1.92	3.83	0.8287
Ophiuroids	2.09488	1	3.112	5.9	13.5	0.7341
Ophiuroids "basket stars"	3.21204	1	3.975	5.9	13.5	0.68266
Seapen < 50cm	2	1	6.449	6.2	8.9	0.93166
Seapen > 50cm	2	1	2.7015	6.2	8.9	0.73817
Worms	2	1	0.83	22	28	0.59690
Anemone / Zoanthids	3.53091	1	1.4911	2.56	12	0.97831
Large Zooplankton	2.51505	1	91.1565	20	40	0.95
Small Zooplankton	2.0101	1	99.56121	40	65.75	0.95
Jellyfish	3.4678	1	0.6871	10.2	53.21	0.44095
Microbial heterotrophs	2	1	100.6655	40	100	0.94999
Algae	1	1	13.97	18.5		0.95689
Seagrass	1	1	1.7055 51.66723	24		0.99180
Large Phytoplankton Small Phytoplankton	1	1	54.32032	200		0.95
Benthic Phytoplankton	1	1	30	13.5		0.90783
DOC	1	1	80			0.60959
Detritus	1	1	50			0.55274

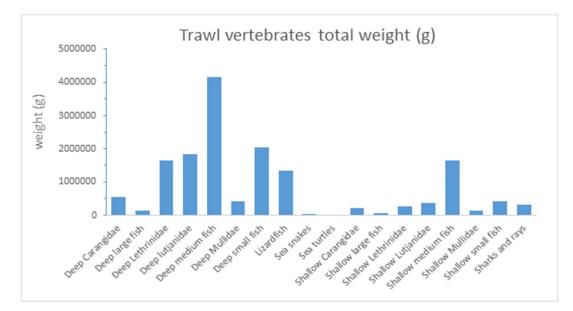


Figure 182. Trawl total weight (grams) for vertebrates obtained during 2017 voyage on board of R/V Investigator in the NWS.

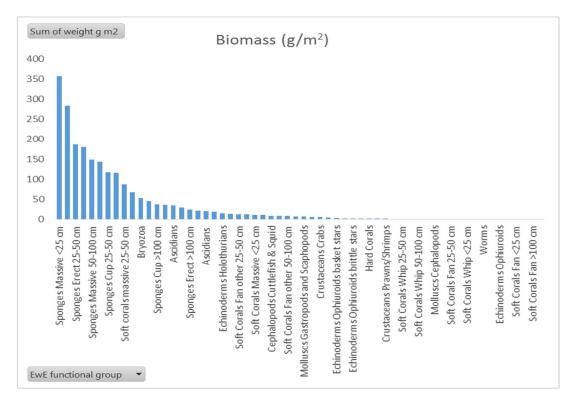


Figure 183. Trawl total weight (grams) for invertebrates obtained during the 2017 voyage on board of the R/V Investigator in the NWS.

7.3.4 Diet Composition (DC)

The diet composition matrix was assembled as percentage weight or volume of the annual fraction that each prey contributes to the overall diet of the predator (according to the methodology recommend by Christensen et al., 2004, 2008). Several local reports were employed to assemble this matrix of feeding interactions. As some data from NWS were not available, missing values were taken for the relevant species from adjacent areas (Kimberley, Ningaloo, and Gulf of Carpentaria) (Table 29). EwE will use tis diet matrix to estimate trophic interactions and predation rates based on Equations 1 and 2.

7.3.5 Fisheries gear types and landings

The fishing gear types included the NWS model were selected based on the operating fleets reported in the region by Western Australia Department of Primary Industries and Regional Development (former Department of Fisheries). The gear structure proposed for the model included six gear types for both commercial and recreational fisheries. A total of five gear types represent the commercial fisheries of the region with the following gears: Pilbara Demersal Trawl Scalefish, Pilbara Trap Managed Fishery, Pilbara Line Managed Fishery, Nickol Bay Prawn Managed Fishery and Pilbara Developing Crab Fishery. In the case of recreational fishing, only one gear is included in the model: Near-shore beach boat. Most of the commercial fisheries catch data used in the model were estimated from the fisheries statistics reported (annual reports; DIRP, 2015) by the Western Australia Department of Primary Industries and Regional Development. The fisheries data included the total catch (tonnes), gear types and species fished within each of the relevant districts in which the Department of Fisheries manages and reports fisheries statistics in Western Australia. According to this organization, the region of the NWS is included in the North Coast Bioregion. Most of the Western Australia state's smaller prawn trawl fisheries are also based in this region. Table 30 presents the commercial and recreational landings included in the model from the main six fleets operating in the NWS from 2014 to 2016.

7.3.6 Data quality of the model

The 'pedigree' routine in Ecopath, functions as a sensitivity analysis for documenting the effect of inputs on estimated parameters and their quality (Walters et al., 2005). The pedigree index (P) measures the amount of local data used (i.e., minor uncertainty in the inputs) among the five basic categories of models: Biomass (B), Production to biomass (P/B), the ratio of consumption to biomass (Q/B), and diets and catches for each of the functional groups (Walters et al., 2005). The range of P is from 0 for data not rooted locally to 1.0 for data that are fully rooted in local data (Christensen et al., 2004). The pedigree Index for the NWS model was calculated using the following expression:

$$P = \sum_{i=1}^{n} \frac{I_{ij}}{n}$$

Where *lij* is the pedigree index value for group *l* and parameter *j* for each of the living groups in the ecosystem; *j* can represent either B, P/B, Q/B and Y or diet.

The pedigree of an Ecopath input represents the origin a given input. There is a pre-defined table in Ecopath for each type of input parameters. The Ecoranger module of Ecopath (Walters et al., 2005, 2009) can subsequently pick up the confidence intervals from the pedigree tables and use these as prior probability distributions for all input data.

Table 29. Diet matrix used in the mass-balanced NWS model. Continues several pages.

Prey I predator Coastal sharks	1 0.0631	2	3 0	4 0	5	6 0	7 0	8 0	9 0	10 0	11 0	12 0
Loastai sharks Rays	0.1263	0	0	0	0	0	0	0	0	0.249	0	0
Hays Lizardfish		-	0	-	0	0	-	0	0	0.243	-	0
	0.1328	0	-	0			0				0	-
Carangids	0.0011	0	0.0646	0	0	0	0	0	0	0.001	0	0
Sea snakes	0.02	0	0	0	0	0	0	0	0	0.0365	0	0
Seaturtles	0.0106	0	0	0	0	0	0	0	0	0	0	0
Deep Lethrinids	0	0	0.1028	0	0	0	0	0.0051	0	0.009	0	0
Deep Lutjanids	0.0077	0	0.1267	0	0	0	0	0	0	0.0087	0	0
Mullids	0	0	0.1215	0	0.0084	0	0.0208	0.0002	0	0.0042	0.0045	0.002
Deep Large fish	######	0	0.0159	0	0	0	0	0.0002	0	0	0	0
Deep Medium fish	0.0074	0.0118	0.3798	0.0103	0.0317	0	0	0.0424	0	0.0105	0	0
Deep Small fish	0	0.0155	0.0638	0.003	0.0048	0	0.0078	0.0103	0	0.0067	0.001	0
Shallow Lethrinids	0.0067	0	0.0115	0	0	0	0	0	0	0	0	0
Shallow Lutjanids	0.0124	0	0.0302	0	0	0	0	0	0	0	0	0
Shallow Large fish	0	0	0.0079	0.0027	0.0063	0	0	Ő	0	0.0001	0	0
Shallow Medium fish	0	0	0.0754	0.0134	0.1259	0	0.018	0	0	0.0059	0.0103	0
Shallow Small fish	0	0.0002	0.0134	0.0134	0.1233	0	0.010	0	0	0.0055	0.0103	0
						-		-	-		-	-
Sponges Cup < 25cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Cup 25-50cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Cup 50-100 cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Cup > 100 cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Massive <25cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Massive 25-50cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Massive 50-100 cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Massive > 100 cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Erect < 25cm	0	0	0	0	0	0.0333	0	Ő	0	0	0.0684	0.07
Sponges Erect 25-50cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Erect 20-30cm Sponges Erect 50-100 cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
Sponges Erect >100 cm	0	0	0	0	0	0.0333	0	0	0	0	0.0684	0.07
	-	-	-	-	-		-	-	-	-		
Soft coral Fans < 25 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Fans 25-50 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Fans 50-100 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Fans > 100 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Massive <25 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Massive 25-50 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Massive 50-100 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Massive > 100 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Whip <25 cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Whip 25-100cm	0	0	0	0	0	0	0	0	0	0	0	0
Soft coral Whip 50-100cm	0	0	0	0	0	0	0	Ő	Ő	0	0	0
		-		_	_						-	_
Soft coral Whip > 100cm	0	0	0	0	0	0	0	0	0	0	0	0
Hard corals	0	0	0	0	0	0	0	0	0	0	0	0
Cuttlefish & Squids	0.587	0	0	0.2623	0.792	0.0105	0.3144	0.339	0	0.2943	0.114	0
Octopus	0	0.0161	0	0	0	0	0.0299	0.0118	0	0.0179	0.0081	0.013
Bryozoa	0	0	0	0	0	0	0	0	0	0	0	0
Hydroids	0	0	0	0	0	0	0	0	0	0	0	0
Ascidians	0	0	0	0	0	0	0	0	0	0	0.0228	0
Gastropods and Scaphopods	0	0.3386	0	0.022	0.0092	0	0.3168	0.025	0	0.0836	0.0121	0.036
Bivalves	0	0.004	0	0.022	0.0002	0	0.0100	0.1854	0	0.0000	0.0121	0.000
	0	0.004	0	0.0213	0	0.001	0.0125	0.1654	0.0433	0	0.001	0.004
Prawns & shrimps												
Crabs	0	0.0201	0	0.0393	0.0145	0	0.1578	0.0128	0	0	0.002	0.00
Crustaceans others	0.0249	0.1386	0	0.0078	0.0072	0	0.122	0.0906	0.0454	0.0219	0.0005	0.02
Echinoids	0	0.1841	0	0	0	0	0	0	0	0	0	0
Asteroids	0	0.2302	0	0	0	0	0	0	0	0	0	0
Crinoids	0	0	0	0	0	0	0	0	0	0	0	0
Holothurians	0	0.0408	0	0	0	0	0	0.0062	0	0	0.0023	0.00
Ophiuroids	0	0	0	0	0	0	0	0	0	0	0.0006	0
Ophiuroids "basket stars"	0	0	0	0	0	0	0	0	0	0	0	0
Seapen < 50cm	0	0	0	0	0	0.0071	0	0	0	0	0	0
Seapen > 50cm	0	0	0	0	0	0.004	0	0	0	0	0	Ŭ
Worms	0	0	0	0	0	0.004	0	0	0.011	0	0	0.012
Anemone / Zoanthids	0	0	0	0	0	0	0	0	0.011	0	0	0.012
												0
Large Zooplankton	0	0	0	0.412	0	0	0	0	0	0	0	
Small Zooplankton	0	0	0	0	0	0	0	0	0	0	0	0
Jellyfish	0	0	0	0.206	0	0.2621	0	0	0	0	0	0
Microbial heterotrophs	0	0	0	0	0	0	0	0	0	0	0	0
Algae	0	0	0	0	0	0.0538	0	0	0.7502	0	0	0
Seagrass	0	0	0	0	0	0.2621	0	0	0	0	0	0
Large Phytoplankton	0	0	0	0	0	0	0	0	0	0	0	0
Small Phytoplankton	0	0	0	0	0	0	0	0	0	0	0	Ŭ
Benthic Phytoplankton	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
DOC		U	U	0	0	0	0	0	0	U U	0	U
DOC							0	0	0		0	0
DOC Detritus Import	0	0	0	0	0	0	0	0	0	0	0	0

13	14	15	16	17	18	19	20	21	22	23	24
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.2195956	0	0	0	0	0	0	0	0	0
0	0	0.1881409	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0285091	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0.0027	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0.0001	0	0	0	0	0	0	0	0	0	0	0
0	0.005708	0.0068201	0	0	0	0	0	0	0	0	0
0	0	0.014161	0	0	0	0	0	0	0	0	0
0	0.001661	0	0	0	0	0	0	0	0	0	0
0.1159	0.166146	0.0164893	0	0	0	0	0	0	0	0	0
0.1100	7.17E-05	1.00E-05	1.00E-05	0	0	0	0	0	0	0	Ő
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
					0					-	0
0	0	0	0.0624762	0.0729		0	0	0	0	0	
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
Ŭ	0	0	0.0624762	0.0729	0	0	0	0	0	0	Ő
0	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
Ő	0	0	0.0624762	0.0729	0	0	0	0	0	0	0
0	0	0	0.0024102	0.0123	0	0	0	0	0	0	0
										0	
0	0	0	0	0	0	0	0	0	0	-	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
Ū.	0	0	0	0	0	0	0	0	0	0	0
ŏ	0	0	0	0	0 0	0	0	0	0 0	0	ō
ŏ	0	0	0	0	0	0	0	0	0	0	0
0.2904	0.281262	0.4248238	0.0481067	0	0	0	0	0	0	0	0
0.2304	0.201202	0.0411548	0.0080414	0.0243	0	0	0	0	0	0	0
0.0172	0.000027	0.0411548	0.0000414	0.0243	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0.0208254	0	0	0	0	0	0	0	0
-	-	-		-			-				
0.3208	0.035205	0.0328385	0.0421596	0.0083	0	0	0	0	0	0	0
0	0.096008	0	0	0	0	0	0	0	0	0	0
0.0081	0.164958	0.0016373	0.0023084	0.0143	0	0	0	0	0	0	0
0.1254	0.123431	0.0149482	0.0036493	0.0053	0	0	0	0	0	0	0
0.1181	0.117256	0.0108714	0.0429335	0.0494	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0.002267	0	0.0009637	0.0125	0	0	0	0	0	0	0
0	0	0	0.0010012	0	0	0	0	0	0	0	0
0	0	0	0.0001084	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0.0013	0	0	0	0.0117	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
Ō	0	0	0	0	0.4	0.4	0.4	0.4	0.4	0.4	0.
ŏ	0	0 0	0	0	0	0	0	0	0	0	0
Ő	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.3	0.3	0.3	0.3	0.3	0.3	0.3
0	0	0	0	0	0.3	0.3	0.3	0.3	0.3	0.3	0.
	0	0	0	0		0.1					
0		0			0.1		0.1	0.1	0.1	0.1	0.
0		0	0.0001770			0					
0	0	0	0.0801778	0	0	0	0	0	0	0	0
		0 0 1	0.0801778 0 1	0 0 1	0 0.2 1	0 0.2 1	0 0.2 1	0 0.2 1	0 0.2 1	0 0.2 1	0.

	25	26	27	28	29	30	31	32	33	34	35	36
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9 10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	Ő	0	Ő	0	0	0	Ő	0
15	0	0	0	0	0	0	0	0	0	0	0	0
16	Ū.	0	Ū.	0	Ū.	0	Ő	0	0	0	Ū.	0
17	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0	0
30 31	0	0	0	0	0	0	0	0	0	0	0	0
31 32	0	0	0	0	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0	0	0	0	0	0
36	0	0	0	0	0	0	0	0	0	0	0	0
37	Ū.	0	0	0	Ū.	0	0	0	0	0	Ő	0
38	0	0	0	0	0	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	0	0	0	0
41	0	0	0	0	0	0	0	0	0	0	0	0
42	0	0	0	0	0	0	0	0	0	0	0	0
43	0	0	0	0	0	0	0	0	0	0	0	0
44	0	0	0	0	0	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0	0	0	0	0	0
46	0	0	0	0	0	0	0	0	0	0	0	0
47	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0	0	0	0	0	0
49	0	0	0	0	0	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0	0	0	0	0	0
51	0	0	0	0	0	0	0	0	0	0	0	0
52	Ő	Ő	0	0	0	0	0	0	0	0	0	0
53	0	0	0	0	Ő	0	0	0	0	0	0	0
54	0	0	0	0	Ő	0	0	0	0	0	0	0
55	0	0	0	0	Ő	0	0	0	0	0	0	0
56	0	0	0	0	0	0	0	0	0	0	0	0
57	0	0	0	0	0	0	0	0	0	0	0	0
58	0	0	0	0	Ő	0	Ő	Ő	Ő	0	0	0
59	0	0	0	0	0	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0	0	0	0	0	0
61	0	0	0	0	0	0	0	0	0	0	0	0
62	0	0	0	0	0	0	0	0	0	0	0	0
63	0	0	0	0	0	0.0507	0.1	0.1	0.1	0.1	0.1	0.1
64	0	0	0	0	0	0.2028	0.4	0.4	0.4	0.4	0.4	0.4
65	0	0	0	0	0	0.2020	0.4	0.4	0.4	0.4	0.4	0.4
66	0.4	0.4	0.4	0.4	0.4	0.2028	0	0	0	0	0	0
67	0.4	0.4	0.4	0.4	0.4	0.2020	0	0	0	0	0	0
68	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0.1014	0.2	0.2	0.2	0.2	0.2	0.2
		0.3	0.3	0.3	0.3	0.1521	0.2	0.2	0.2	0.2	0.2	0.2
69	0.2		0.3	0.3	0.3	0.1521	0.3	0.3	0.3	0.3	0.3	0.3
69 70	0.3				0							
69 70 71	0	0			0.1	0.1	0	0		0	0	
69 70 71 72	0 0.1	0.1	0.1	0.1	0.1	0.1	0	0	0	0	0	0
69 70 71	0 0.1 0	0.1 0	0.1 0	0.1 0	0	0	0	0	0	0	0	0
69 70 71 72	0 0.1	0.1	0.1	0.1								

	37	38	39	40	41	42	43	44	45	46	47	48
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6 7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	Ő	0	0	0	0	0	0	0	Ū.	0
12	0	0	0	0	0	0	0.1077	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0.0003	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0.006	0.0056	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22 23	0	0	0	0	0	0	0	0	0	0	0	0
23 24	0	0	0	0	0	0	0	0	0	0	0	0
24 25	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0	0	0	0	0	0
36	0	0	0	0	0	0	0	0	0	0	0	0
37	0	0	0	0	0	0	0	0	0	0	0	0
38 39	0	0	0	0	0	0	0	0	0	0	0	0
35 40	0	0	0	0	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	0	0	0	0
42	0	Ū.	0	Ū.	Ū.	Ő	Ū.	0	Ū.	Ū.	Ũ	0
43	0	0	0	0	0	0	0	0	0	0	0	0
44	0	0	0	0	0	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0	0	0	0	0	0
46	0	0	0	0	0	0	0	0	0	0	0	0
47	0	0	0	0	0	0	0	0	0	0	0	0
48	0	0	0	0	0	0	0.0292	0.3214	0	0	0	0
49	0	0	0	0	0	0	0.0324	0.0425	0	0	0	0
50	0	0	0	0	0	0	0	0.1089	0	0	0	0
51	0	0	0	0	0	0	0.1426	0.0998	0	0	0	0
52 53	0	0	0	0	0	0	0 1924	0.0599	0	0	0	0.0051
53 54	0	0	0	0	0	0	0.1924	0.0717 0.1667	0	0	0	0
54 55	0	0	0	0	0	0	0.2727	0.0041	0	0	0	0
55 56	0	0	0	0	0	0	0.0001	0.0657	0	0	0	0
57	0	0	0	0	0	0	0.0653	0.0097	0	0	0	0.0121
58	0	0	0	0	0	Ő	0.0699	0.0436	Ő	0	0	0.0045
59	Ū.	Ū.	0	0	0	Ő	0	0	Ő	Ū.	Ő	0
60	0	0	0	0	0	0	0	0	0	0	0	0
61	0	0	0	0	0	0	0	0	0	0	0	0.0102
62	0	0	0	0	0	0	0	0	0	0	0	0
63	0.1	0.1	0.1	0.1	0.1	0.1	0	0	0.3	0.7	0	0
64	0.4	0.4	0.4	0.4	0.4	0.4	0	0	0.2	0.1	0	0
65	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0.2	0
66	0	0	0	0	0	0	0	0	0	0	0	0.3998
66 67		0	0	0	0	0	0	0	0	0	0	0.1
66 67 68	0		0.2	0.2	0.2	0.2	0	0	0.3	0.1	0	0
66 67 68 69	0 0.2	0.2		0.0		0.3	0	0	0	0	0.7	0
66 67 68 69 70	0 0.2 0.3	0.2 0.3	0.3	0.3	0.3							
66 67 68 69 70 71	0 0.2 0.3 0	0.2 0.3 0	0.3 0	0	0	0	0	0	0.2	0.1	0.1	0.1
66 67 68 69 70 71 72	0 0.2 0.3 0	0.2 0.3 0	0.3 0 0	0	0	0	0	0	0.2 0	0.1 0	0.1 0	0.1
66 67 68 69 70 71	0 0.2 0.3 0 0 0	0.2 0.3 0 0 0	0.3 0 0	0 0 0	0 0 0	0 0 0	000000000000000000000000000000000000000	0 0	0.2 0 0	0.1 0 0	0.1 0 0	0.1 0.0496 0.1599
66 67 68 69 70 71 72	0 0.2 0.3 0	0.2 0.3 0	0.3 0 0	0	0	0	0	0	0.2 0	0.1 0	0.1 0	0.1

49 0	50 0	51 0	52 0	53 0	54 0	55 0	56 0	57 0	58 0	59 0	60 0	61 0	62 0	63 0	64 0	65 0	66 0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0.0536	0	0	0.03	0
0	Ő	õ	0	Ő	0	õ	0	0	õ	ŏ	Ő	0	0	n n	ñ	0.00	ŏ
0	0	0	0	0	0	Ő	0	0	Ő	0	0	0	0	0	0	0	ŏ
0	0	0	0	0	0	Ō	0	0	0	Ū.	Ū.	0	0	0	0	0	0
0	0	0	0	0	0	Ū.	0	0	0	Ū.	Ū.	0	0	0	0	0	Ő
0	0	0	0	0	0	0	0	0	0	0	0	0	0.0536	0	0	0.1	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0301	0.0239	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0.0298	0.0237	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
														-	-	-	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	-			0	0	0	0	0	0	0	0	0	0	0	(
			0	0	0												
0	0	0.12	0.0754	0	0.3163	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0.0898	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0.0401	0.0149	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	0	0.0001	0	0	0	0	0	0	0	0	1
0	0	0.0111	0	0	0	0	0	0	0	0	0	0	0	0	Ū.	0	i
0	0	0.0988	0.0737	0	0.3129	Ő	0	0	0	0	0	0	0	0	0	0	i
							0				0						
0	0	0.0109	0.0108	0	0	0	-	0	0	0	-	0	0	0	0	0	1
0	0	0	0	0	0	0	0.1111	0	0	0	0	0	0	0	0	0	- 1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0.0162	0.0108	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0.0108	0	0.1809	0	0	0	0	0	0	0	0	0	0	0	1
Ő	Ő	0	0.0009	Ő	0.0606	ŏ	0	0	Ő	0	0	0	0	0	Ő	0	i
0	0	0.0119		0	0.0808	0	0	0	0	0	0	0	0	0	0	0	
			0.0141										-		-	-	
0	0	0	0.0014	0	0.0181	0	0	0	0	0	0	0	0	0	0	0	1
0.5714	0	0	0	0	0	0.7	0	0.0625	0.8	0	0	0	0.7143	0.0099	0	0.62	- 1
0.2857	0	0	0	0	0	0.1	0	0	0	0	0	0	0.1786	0.495	0.01	0.2	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
0	0.1257	0	0.1894	0.6	0	Ū.	0	0	0	0	0	0.2222	0	0	0	0	i
0	0	0	0.0478	0.1	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0.2	0	0	0.2	0.3	0.3	0	0	0.495	0.09	0.05	- 1
0.1429	0	0	0	0	0	0	0	0	0	0.4	0.4	0	0	0	0.9	0	- 1
0	0.1257	0	0	0.1	0	0	0.2222	0.0625	0	0	0	0.1111	0	0	0	0	1
0	0.0711	0	0	0.05	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0.3772	0.3006	0.2392	0.00	0	0	0.6667	0.8749	0	0.3	0.3	0.6667	0	0	0	0	0
	0.0112		0.2332	0.05	0	0	0.0001	0.0143	0	0.3	0.3	0.0007	0	0	0	0	0
0	0.3003	0															

Group name					E-111 E		_
	Pilbara Demersal Trawl Scalefish	Pilbara Trap Managed Fishery	Pilbara Line Managed Fishery	Nickol Prawn Managed Fishery	Pilbara Developing Crab Fishery	Recreational Near- shore beach	Total
	t km²	t km ⁻²	t km ⁻²	t km²	t km²	t km ⁻²	t km²
Coastal sharks	0	0	0	0	0	0	0
Rays	0	0	0	0	0	0	0
Lizardfish	0	0	0	0	0	0	0
Carangids San analysis	0	0	0	0	0 0	1.00E-05 0	1.00E-05 0
Sea snakes Sea turtles	0	0	0	0	0	0	0
Deep Lethrinids	0.0107	0.00346	0.000902	ő	0 0	ő	0.015062
Deep Lutjanids	0.01	0.00325	0.000848	ŏ	ő	ő	0.014098
Mullids	0	0	0	0	0	1.00E-05	1.00E-05
Deep Large fish	0.0094	0.00306	0.000798	0	0	0	0.013258
Deep Medium fish	0.00336	0.00109	0.000284	0	0	0	0.004734
Deep Small fish	0.00273	0.000884	2.30E-05	0	0	0	0.003637
Shallow Lethrinids Shallow Lutjanids	0.00266 0.0054	0.000864 0.00175	0.000225 0.000457	0	0 0	2.00E-05 2.00E-05	0.003769 0.007627
Shallow Large fish	0.000531	0.000172	4.50E-05	0	0	0.0002	0.000948
Shallow Medium fish	0.00429	0.00139	0.000363	ő	0 0	1.00E-05	0.006053
Shallow Small fish	0.00177	0.000572	0.000149	Ő	0	1.00E-05	0.002501
Sponges Cup <25cm	0	0	0	0	0	0	0
Sponges Cup 25-50cm	0	0	0	0	0	0	0
Sponges Cup 50-100 cm	0	0	0	0	0	0	0
Sponges Cup >100 cm	0	0	0	0	0	0	0
Sponges Massive <25cm	0	0	0	0	0	0	0
Sponges Massive 25-50cm	0	0	0 0	0	0 0	0	0
Sponges Massive 50-100 cm Sponges Massive >100 cm	0	0	0	0	0	0	0
Sponges Massive > 100 cm Sponges Erect < 25cm	0	0	0	0	0	0	0
Sponges Erect 25-50cm	ő	õ	Ő	Ő	ő	Ő	0
Sponges Erect 50-100 cm	0	0	0	0	0	0	0
Sponges Erect >100 cm	0	0	0	0	0	0	0
Soft coral Fans <25 cm	0	0	0	0	0	0	0
Soft coral Fans 25-50 cm	0	0	0	0	0	0	0
Soft coral Fans 50-100 cm	0	0	0	0	0	0	0
Soft coral Fans > 100 cm Soft coral Massive <25 cm	0	0	0	0	0 0	0	0
Soft coral Massive 25-50 cm	0	0	0	0	0	0	0
Soft coral Massive 50-100 cm	ŏ	ŏ	ő	ŏ	ő	ő	0 0
Soft coral Massive >100 cm	0	0	0	0	0	0	0
Soft coral Whip <25 cm	0	0	0	0	0	0	0
Soft coral Whip 25-100cm	0	0	0	0	0	0	0
Soft coral Whip 50-100cm	0	0	0	0	0	0	0
	D'11 D 1	5.W T	E 211 1.1		D'II D I I		
Group name	Pilbara Demersal Trawl Scalefish	Pilbara Trap Managed Fishery	Pilbara Line Managed Fishery		Pilbara Developing Crab Fishery	shore beach	Total
Group name	Trawl Scalefish t [.] km ⁻²	Managed Fishery t [.] km ⁻²	Managed Fishery t [.] km ^{.2}	Managed Fishery t [.] km ^{.2}	Crab Fishery t [.] km ^{.2}	shore beach t [.] km ⁻²	t [,] km²
Group name Soft coral Whip <25 cm	Trawl Scalefish t [.] km ^{.2} 0	Managed Fishery t [.] km ^{.2} 0	Managed Fishery t [.] km ⁻² 0	Managed Fishery t [.] km ⁻² 0	Crab Fishery t [,] km ⁻² 0	shore beach t [.] km ⁻² 0	t km² O
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm	Trawl Scalefish t [.] km ⁻²	Managed Fishery t [.] km ⁻²	Managed Fishery t [.] km ^{.2}	Managed Fishery t [.] km ^{.2}	Crab Fishery t [.] km ^{.2}	shore beach t [.] km ⁻²	t [,] km²
Group name Soft coral Whip <25 cm	Trawl Scalefish t [.] km ⁻² 0 0	Managed Fishery t [.] km ^{.2} 0 0	Managed Fishery t [.] km ⁻² 0 0	Managed Fishery t [.] km ⁻² 0 0	Crab Fishery t [,] km ⁻² 0 0	shore beach t [.] km ^{.2} 0 0	t [.] km ^{.2} 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm	Trawl Scalefish trkm ⁻² 0 0 0	Managed Fishery t km² 0 0 0 0	Managed Fishery t [.] km ⁻² 0 0 0	Managed Fishery t [.] km ⁻² 0 0 0	Crab Fishery t [.] km ⁻² 0 0 0	shore beach t: km ⁻² 0 0 0	t: km*² 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip > 100cm	Trawl Scalefish t⊧km ⁻² 0 0 0 0	Managed Fishery t km ⁻² 0 0 0 0	Managed Fishery t km ⁻² 0 0 0 0	Managed Fishery t [.] km ^{.2} 0 0 0 0	Crab Fishery trikm ² 0 0 0 0 0	shore beach t [.] km ⁻² 0 0 0 0	t [,] km ⁻² 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip > 100cm Hard corals	Trawl Scalefish t km² 0 0 0 0 0	Managed Fishery t km ⁻² 0 0 0 0 0	Managed Fishery t: km²² 0 0 0 0 0	Managed Fishery t km²² 0 0 0 0 0	Crab Fishery t km²² 0 0 0 0 0	shore beach t [.] km²² 0 0 0 0 0	t [.] km ⁻² 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip > 100cm Hard corals Cuttlefish & Squids Octopus Bryozoa	Trawl Scalefish t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km*2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km ⁻² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach ► km²² 0 0 0 0 0 0 0 0 0 0 0	t km ⁺² 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip > 100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids	Trawl Scalefish t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km ⁻² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	t km² 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 5-100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians	Trawl Scalefish t km²² 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0	t km² 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip > 100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods	Trawl Scalefish t km²² 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach > km²² 0 0 0 0 0 0 0 0 0 0 0 0 0	t km² 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip > 100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves	Trawl Scalefish t km²² 0 0 0 0 0 0 0 0 0	Managed Fishery t km*2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach t km²² 0 0 0 0 0 0 0 0 0 0 0 0 0	t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Hard corals Cuttlefish & Squids Detopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps	Trawl Scalefish t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km*2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach km² 0 0 0 0 0 0 0 0 0 0 0 0 0	€ km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip > 100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves	Trawl Scalefish t km²² 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Ard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km²² 0 0 0 0 0 0 0 0 0 0 0 0	shore beach ► km²² 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ⁴ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs	Trawl Scalefish t km²² 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	€ km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip > 100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids	Trawl Scalefish	Managed Fishery t km*2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach	t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km*2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip > 100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Holothurians	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km²² 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 km ⁴ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Detopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Holothurians Dphiuroids	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Assidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crunoids Holothurians Ophiuroids Data Stars" Seapen > 50cm Seapen > 50cm	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km²² 0 0 0 0 0 0 0 0 0 0 0 0	shore beach km² 0 0 0 0 0 0 0 0 0 0 0 0 0	6 km ⁴ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip 25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Detopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Dehiuroids Dehiuroids Dehiuroids Dehiuroids Seapen < 50cm Worms	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ⁴ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip 25:100cm Soft coral Whip 25:100cm Soft coral Whip 25:100cm Hard corals Cuttlefish & Squids Cuttlefish & Squids Cuttlefish & Squids Cuttlefish & Squids Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Unitorids Dphiuroids Dphiuroids Dephiuroids Seapen > 50cm Xorms Anemone / Zoanthids	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Assidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Crabs Crabs Crabs Crabs Secons others Echinoids Holothurians Ophiuroids Basket stars" Seapen < 50cm Vorms Anemonel Zoanthids Large Zooplankton	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 km ⁴ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Detopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Holothurians Ophiuroids Dahiuroids Dahiuroids Seapen < 50cm Worms Anemone / Zoanthids Large Zooplankton Small Zooplankton	Trawl Scalefish t km*2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 50:00cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Holothurians Cphiuroids Dehiuroids Dehiuroids Seapen < 50cm Seapen < 50cm Anemone / Zoanthids Large Zooplankton Jellyfish	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 5:00cm Hard corals Cuttlefish & Squids Cuttlefish & Squids Cuttlefish & Squids Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Unitarians Ophiuroids Dophiuroids Seapen > 50cm Worms Anemone / Zoanthids Large Zooplankton Small Zooplankton Small Zooplankton Sitelyish Microbial heterotrophs	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery k km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E km² 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Detopus Bryozoa Hydroids Assidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Holothurians Dphiuroids Dahiuroids Seapen > 50cm Vorms Anemone / Zoanthids Large Zooplankton Small Zooplankton Small Zooplankton Sealpon Sida	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery km² 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach km ⁻² 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Cutpus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Asteroids Chordis Dehiuroids Dehiuroids Dehiuroids Cabse Com Seapen < 50cm Worms Anemone/ Zoanthids Large Zooplankton Senall Zooplankton Seliptish Microbial heterotrophs Algae Seagrass	Trawl Scalefish t km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t.km ² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km² 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 50:00cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Crinoids Crinoids Dehiuroids Dehiuroids Seapen < 50cm Small Zooplankton Small Zooplankton Sliyfish Microbial heterotrophs Algae Seagrass Large Phytoplankton	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach km ⁻² 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Dctopus Bryozoa Hydroids Assidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Crabs Crabs Bivalves Prawns & shrimps Crabs Crabs Crabs Crabs Crabs Crabs Bivalves Prawns Crabs Bivalves Prawns Crabs Bivalves Bivalves Crabs Crabs Bivalves Biv	Trawl Scalefish t km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 25:00cm Soft coral Whip 50:00cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Crinoids Chordis "basket stars" Seapen < 50cm Small Zooplankton Small Zooplankton Sliptifis Microbial heterotrophs Algae Seagrass Large Phytoplankton	Trawl Scalefish	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery	Managed Fishery t-km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach E km²² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 km ² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Group name Soft coral Whip <25 cm Soft coral Whip 25-100cm Soft coral Whip 50-100cm Soft coral Whip 50-100cm Hard corals Cuttlefish & Squids Octopus Bryozoa Hydroids Ascidians Gastropods and Scaphopods Bivalves Prawns & shrimps Crabs Crustaceans others Echinoids Asteroids Crinoids Holothurians Ophiuroids Dahiuroids Dahiuroids Seapen < 50cm Worms Anemone / Zoanthids Large Zooplankton Small Zhydoplankton Benthic Phytoplankton Benthic Phytoplankton Seathics Cashino Seapens Seagrass Carge Scagens Carge Scagens Carge Scagens Carge Phytoplankton Carge Scagens Carge Scagens Carge Scagens Carge Scagens Carge Scagens Carge Phytoplankton Carge Scagens Carge Scagens Carge Scagens Carge Scagens Carge Scagens Carge Phytoplankton Carge Scagens Carge Scagens Carge Phytoplankton Carge Scagens Carge Scagens Carge Scagens Carge Phytoplankton Carge Scagens Cargens Carge Scagens Cargens Cargen	Trawl Scalefish t km*2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery km² 0 0 0 0 0 0 0 0 0 0 0 0 0	Managed Fishery t-km² 0	Crab Fishery t km² 0 0 0 0 0 0 0 0 0 0 0 0 0	shore beach km² 0	t km*2 0 0

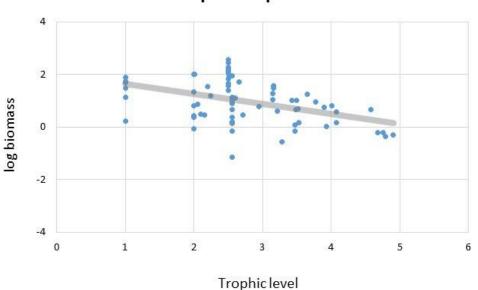
Table 30. Mean commercial and recreational catch (t/km²) from 2014 to 2016 estimated for the EwE NWS model domain based on data published by Western Australia DPIRD (Former Department of Fisheries).

7.3.7 Pre-balance diagnostics of the NWS model (PREBAL)

In accordance with Heymans et al. (2016), we analysed the performance of the NWS model by running a set of pre-balanced (PREBAL) diagnostics routine. These diagnostics are based on biological and fisheries principles and it is recommended to conduct them before balance the model (Link, 2010; Heymans et al., 2016). These diagnostics, including the slopes of biomass ratios, vital rates, total production and consumption based on trophic levels, are based on biological and fisheries principles and they are recommended to check for thermodynamic and ecological principles that the model should be in agreement as proposed by Heymans et al. (2016).

The NWS model has been evaluated for the quality of the input data through the following PREBAL diagnostics:

a. *Biomass per trophic level:* The PREBAL criteria include the distribution of biomass per trophic level. It is expected that the slope of the biomass (on a long scale) decline by 5-10% across all the taxa arrayed by trophic level (Link, 2010). The PREBAL-NWS displayed a declining slope of the biomass (Figure 184). Values above and below the slope-line were checked for data integrity before initiating the mass-balance of the model. The biomass estimates of these groups were checked before the mass-balancing.


b. *Respiration/Assimilation Biomass (RA/AS) <1.0:* the proportion of biomass lost through respiration in the model (in EwE respiration is used to balance energy fluxes) cannot be higher than the biomass of food assimilated. As a rule, r-selected species (short life spans, lower trophic levels) are more likely to invest a large energy intake into growth and reproduction resulting in an RA/AS ratio below 1.0. In contrast, k-selected species (long-life spans, higher trophic levels) are expected to invest a relatively small proportion of energy intake in somatic and gonadal tissue production, are expected to have ratios close to 1.0. In the PREBAL-NWS model the higher values of RA/AS ratios were displayed by the higher trophic groups (Coastal sharks, rays, lizardfish, sea snakes, deep large fish, Lethrinids and Lutjanids), and as expected, values of RA/AS lower than 1.0 were showed by the groups within trophic level of two and three (Figure 185).

c. *Annual Production/Biomass (P/B):* In the model, the instantaneous mortality equals total production over mean biomass (Christensen and Walters, 2004), this means that total morality (Z) = (production/biomass) = P/B. As expected, the distribution of the ratios of P/B in the model has a negative slope (Figure 186). This outcome was expected because many lower trophic level groups (r-selected species) have short life spans characterized by higher mortality rates.

d. *Production to Consumption ratio (P/Q) or the gross food conversion:* P/Q in the model indicates that a group cannot produce more than a fraction of what it has eaten, based on the 2nd law of thermodynamics (Link, 2010). Because consumption is expected to be between two to ten times higher than production, in most cases, P/Q ratios will range

between 0.05 to 0.5 (except for fast growing organisms and corals) as shown in Figure 187. Most of the P/Q values of the 66 consumer groups in the model were within the range of 0.05 to 0.5 (except for Bryozoa and hard corals) (Figure 187). Groups with P/Q values higher than 0.3 were checked again their input values such as biomasses, mortalities, consumption, predation rates (based on diet matrix) before initiate the balance of the model.

These PREBALs diagnostics are only meant to be the first check of the model before beginning the mass-balance process where further parameterization of some groups was conducted. Overall, the performance of the PREBAL diagnostics indicated that our prebalanced model was in general thermodynamically consistent.

Biomass per trophic level

Figure 184. PREBAL diagnostics of the NWS model showing the distribution of biomass per trophic level

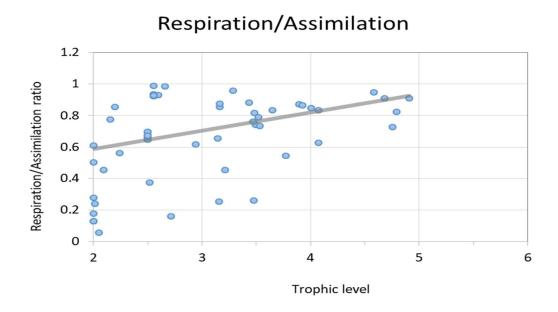


Figure 185. PREBAL of the NWS model showing Respiration to Assimilation ratio (RA/AS) for all nonproducer groups. It is expected that RA/AS is closer to 1 for higher trophic groups level groups.

Figure 186. Distribution of the Production / Biomass ratios by trophic level of the NWS model. The negative slope displayed is expected as lower trophic groups have in general higher mortality rates.

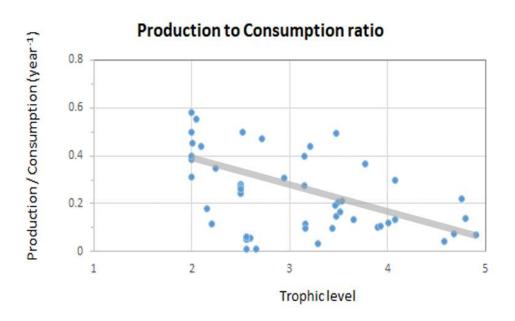


Figure 187. Distribution of the ratios of Production to Consumption (P/Q) values predicted by the model. It is expected that consumption must be between 2 to 10 higher than production.

7.3.8 Balancing the NWS model

Once the basic EwE parameters have been entered and the PREBAL diagnostic verified, the model requires mass-balancing to maintain the laws thermodynamics (Christensen et al., 2004). During the balancing of the model, we used the Ecotrophic Efficiency (EE) as a measure of the proportion of production that is utilized in the system by predation or fishing. EE cannot exceed 1.0 (it is not possible to consume more than is produced). As a general rule (Heymans et al., 2016), EE values near to 1.0 are expected for groups whose production is consumed by predator or removed by the fishery while values near to 0.0 are expected for groups with low predation rates (e.g. top predators like sharks) or not targeted by a fishery. Checks on EE values, and thermodynamic and ecological general rules in the PREBAL-NWS were used to highlight groups in the pre-balanced model that need to be adjusted within biologically plausible limits to achieve mass-balance of the flows in the foodweb. We manually reduced predation mortality rates of groups with unrealistic EEs (worms, crustaceans others, bivalves, shallow and deep large fishes, among others) as suggested by Heymans et al. (2016). Table 31 presents the unrealistic EE generated during the first run of the PREBAL model, showing approximately 27% of the groups were out of balance (20 out of 73) are represented by fish and invertebrate groups. The model was balanced using a series of iterative steps. In all cases, in the first attempt to balance the model, we examined values of the ecotrophic efficiency (EE) that exceed 1.0 for some functional groups as presented in Table 28. The model was balanced manually to ensure that changes to the input parameters were kept within biological reasonable limits. The first step was to reduce the predation on

the groups that were out of balance but maintaining the original values of biomass for groups with local biomass estimates. The second step was to adjust consumption rates (Q/B) and production rates (P/B) to achieve mass-balance, where changes of less than 10% were applied to those groups out of balance. Finally, we minimized cannibalism within groups (i.e. sharks) and liberate this energy to other groups (following Christensen et al., 2008). It is important to mention that the process required to build the NWS EwE model is essentially open-ended. The parameters used in the model have been revised and there is a possibility that new estimates along the project could replace some of the basic input parameters. The basic input parameters of the mass-balanced NWS model are presented in Table 28.

Group name	Ecotrophic efficiency
Worms	76.1
Shallow large fishes	46.1
Shallow Medium fishes	33.7
Mullids	18.6
Deep large fish	13.5
Small large fish	11.4
Crustaceans others	10.4
Deep Lethrinds	9.8
Crabs	8.7
Prawns & shrimps	6.4
Octopus	3.5
Gastropods & Scaphopods	3.5
Seapen <50cm	2.3
Deep Lutjanids	2.1
Seapen >50cm	2.1
Holoturians	2.0
Deep small fishes	2.0
Ophiuroids	1.7
Ophiuroids "basket stars"	1.5
Carangids	1.3

Table 31. Values of Ecotrophic Efficiency (EE) higher than 1 estimated by EwE for the NWS model. Values of EE>1 are unrealistic and they were adjusted manually by reducing predation rates on the diet matrix of these groups.

7.3.9 Network analysis

We used routines from the network analysis proposed by Ulanowicz (1986) and Ulanowicz and Puccia (1990) such as the mixed trophic impact (MTI) and energy transfer within the system. MTI analysis was used to assess the direct and indirect trophic interactions among compartments, including impacts of fishery practices throughout the NWS (Ulanowicz and Puccia, 1990; Christensen et al., 2005). MTI evaluates the effect of small increases in the biomass of one group on the biomass of the other groups, and thus provides a form of sensitivity analysis. The MTI included the 73 groups in the model. To present graphically the MTI results, a selected group of 33 groups (top predators, finfishes, target species, sponges and other invertebrates, zooplankton and phytoplankton) were used to represent the food web. Also, to explore the ecological role played by the groups within the NWS, we estimate a keystone species index (KSi) as proposed by Libralato et al. (2006): $KS_i = \log[\varepsilon_i * (1-p_i)]$

where $\varepsilon_{i=}$ overall effect of group *i* of the model on other groups calculated by the MTI, and p_i represents the contribution of biomass from species i or functional group *i* with respect to the total biomass of the NWS food web. The network analysis (Ulanowicz, 1986) allowed us to estimate these ecosystem indices: a) total system throughput, b) mean transfer efficiency (%) between trophic levels, c) Finn's cycling index (FCI) (Finn, 1980), d) Finn's mean path length (FML) (Finn, 1980), e) connectance index and f) Omnivory index. The estimated net primary production, phytoplankton and zooplankton biomasses, total catches, mean trophic level of the catch, gross efficiency, the primary production required to sustain the fisheries and total biomass (excluding detritus), system overhead were also calculated (Christensen et al., 2005).

7.3.10 Simulations of temporal dynamics

Ecosim is time dynamic simulation module of EwE developed for policy exploration (Christensen and Walters, 2004). Biomass dynamics are described as:

$$\frac{dB_i}{dt} = g_i \sum_{j} \text{Qji} - \sum_{j} \text{Qij} + I_i - (M_i + F_i + e_i)B_i \quad (2)$$

where $dB_i/dt = change$ in biomass of Group i; gi = net growth efficiency; $Q_{ji} = consumption$ of Group *j* by Group *i*; Q_{ij} is the consumption of Group *i* by Group *j*; $I_i = immigration of Group$ *i*;*Mi* $and <math>F_i$ are the natural and fishing mortality rates of Group *i*, respectively; e_i is the emigration of Group *i*; and B = biomass of Group *i*.

The biomass flows between groups are calculated in Ecosim by the 'foraging arena' concept (Christensen and Walters, 2004), in which the biomass of one group is divided into components that are vulnerable and invulnerable to predation. The maximum mortality rate that a predator can exert on a prey is determined by the vulnerability (v) parameter in Ecosim. High values of v (top-down control with v values >3) mean that predator consumption can control biomass, whereas a low value of v means prey biomass controls predator biomass (bottom-up control with v values <3).

The possible effect of related fishing on the biomass of the major groups in the system was evaluated in Ecosim by simulating the two scenarios to investigate:

1. Impact of fishing on the system by reducing the current fishing effort to zero and then simulating forward for 20 years.

2. Impact of fishing on the system by increasing current fishing effort 100% and projecting 20 years.

3. Ecological role of keystone groups in the system (Lizardfish, cuttlefish, Asteroids, and "Large Deep Fish") by reducing 90% their biomass and projecting them over 20 years.

4. Ecological role of habitat-forming species by reducing 50% the biomass of sponges, corals and seagrass in the system and run the food web model for 20 years.

5. Business as usual by keeping all fishing efforts as 2016-17 and run the food web model for 20 years.

Table 32 presents the duration and rationale of the five scenarios tested.

	Scenario	Rationale		
	1. BUA (Business as Usual): keep all fishing efforts at 2016-17 levels	Long-term effects of commercial fishing		
Fishing pressure	2. Reduce all current fishing effort to zero and then simulate forward for 20 years	Long-term effects of commercial fishing		
	3. Current fishing pressure doubled for 10 years ("stress" period) and then, fishing pressure is returned to initial state for a further 10 years ("recovery" period)	Recovery time from fishing		
Ecology	4. Reduction of 90% biomass of keystone groups (Lizardfish, cuttlefish, Asteroids, large deep fish)	Ecological role of structuring groups (top- down control)		
Habitat modification	5. Reduction 50% of habitat-forming species (sponges, corals, seagrass)	Ecological role		

Table 32. Description of the baseline, fishing and ecological scenarios used to explore the dynamics of the NWS system.

7.3.11 Model Indicators

The EwE foodweb of the NWS includes 71 living functional groups (and two detritus groups), which represent one or more species. A smaller number of indicators is needed to simplify our understanding of the overall system response to model dynamic scenarios. Six types of indicators were used to summarise and highlight the outputs of the foodweb model (see Table 38 for details). These are the six indicators used:

1. **Meta groups:** a combination of functional groups in the foodweb model. These included:

a. Target species: Carangids, Lethrinids, Lutjanids, prawns and Shrimps

b. Fish trophic level 2 to 3: small and medium fish in shallow and deep waters

2. **Keystone groups:** defined as "relative low biomass species with a structuring role in the food web" (Libralato et al., 2006) and identified by EwE. Here, a Keystone species in the

NWS food web are defined as structuring species by processes associated with predation (top-down forces):

- a. Lizardfish
- b. Cuttlefish and squids
- c. Sharks
- d. Asteroids

3. **Charismatic species:** specific functional groups in EwE food web which hold a particular social or ecological value (i.e. high conservation):

- a. Sea snakes
- b. Sea turtles

4. **Habitat forming groups:** functional groups which define habitats such as sponges, corals

5. Other invertebrates. A combination of functional groups representing all other invertebrates not listed above.

6. **Ecosystem level indicators:** selected to reflect the state of the overall food web rather of some of its components. These include:

- a. Total biomass
- b. Total catch

c. Kempton Diversity Index (Q) for food webs: This Index has been designed to measure species in the middle of the abundance distribution of these kind of models (Kempton and Taylor, 1976).

7.4 Results

7.4.1 Energy and mass flows

After the PREBAL analysis and tuning, the NWS model was used to calculate the trophic level (TL) aggregation for the 71 living groups, showing that the system spans in more than four trophic levels (Figure 188). The foodweb diagram of this ecosystem, including size proportional biomasses and trophic links is presented in Figure 188. The top predators were represented coastal sharks (e.g. *Carcharhinus coatesi, Loxodon macrorhinus*), lizardfish (e.g. *Synodus dermatogenys, S. hoshinonis, S. indicus*), sea snakes (*Aipysurus eydouxii, A. laevis, Acalyptophis peronii*), and some large fish (e.g. *Shyraena putnamae, Rachycentron canadum*) (Figure 188). Around 70% of the number of functional groups occurred at trophic level lower than 3.5, suggesting that the NWS is dominated by lower trophic groups (Figure 189).

We used the network analysis proposed by Ulanowics (1986) to quantify ecosystem attributes and functioning of the NWS. The network analysis built in EwE does not produce dynamic results and cannot predict how the biomass would change with time. However, this analysis provides valuable information about the structure of the NWS system, by providing a snapshot, underlining which parts of this ecosystem play a major role. An important attribute of the system is the distribution of the total biomass by trophic level. It provides a baseline against which future changes can be measured. For example, it could be used to evaluate possible changes of detecting loss in biomass of top predators in the NWS (e.g. sharks, lizard fish, sea snakes).

Figure 189 presents the distribution of the total biomass by trophic level in the NWS, where more than 60% of the total biomass in the system was located within the first two trophic levels (primary producers, filter feeders, herbivores and most invertebrates), suggesting that the NWS system is mainly dominated by lower trophic levels. The highest contribution to the total biomass in the model was from filter feeders and soft corals, comprising about 69% of the total biomass in the system. Trophic level 2 to 2.9, which includes sponges, corals, ascidians, gastropods, holothuroids, ophiuroids, and sea pen, comprised about 76% of the total biomass in the system (2,654 t/km²), showing the dominance of benthic groups in this foodweb.

The myriad of trophic interactions, mass and energy flows in the NWS system showed that the mean transfer efficiency for the system originating from primary producers and detritus was $16.7\% \pm 4.8\%$. The total estimated energy flow from primary producers (TLI) to TLII (mainly invertebrates) was 22,697 t· km⁻² year ⁻¹, where 70% was primary producers (15,912 t· km⁻² year ⁻¹) and 29.8% from detritus (6,785 912 t· km⁻² year ⁻¹). The overall detritivore: herbivore ratio for the four TLs in the system was 0.66, suggesting that herbivory is more important than detritivory in the NWS (Figure 190). The total energy throughput in the system was 60,006 t· km⁻² year ⁻¹ from which 47% (28,269 t· km⁻² year ⁻¹) was consumed by predators at TL I, indicating a strong trophic interaction between primary producers (TL I) and benthic invertebrates and fish within TL II. The total energy consumed by predation declined from TL II to TL IV (Figure 190), where 20% of the total system throughput (12,357 t· km⁻² year ⁻¹), which it is lower than that from predation on TL I (47%). The mean trophic efficiency in the NWS ecosystem was 13%.

7.4.2 Mixed Trophic Impact analysis

Results of this routine highlighted the importance of lower trophic groups, particularly invertebrates such as cuttlefish, squids, prawns, and crabs (Figure 191). Detritus, DOM and microbial heterotrophs has a positive impact on most of the lower trophic groups, emphasizing its importance as a component in the base of this food web. Among the fish groups, the "Lizardfish" group (i.e. *Synodus dermatogenys, S. hoshinonis,* S. indicus) and "Deep large fish" (i.e. Barracuda, Sphyrnidae) had a large negative impact on prey groups, including turtles and finfish target species (i.e. Emperors, *Lethrinus* spp; Snappers, *Lutjanus* spp). In this trophic analysis, habitat-forming species such as sponges, and corals showed a

modest positive impact on the food web (Figure 191) as they are not an important source of food rather by providing refuge from predators.

7.4.3 Keystone groups

The Keystone index calculated based on the relative total impacts (RTI) according to the Valls et al. (2015) methodology were highest for Lizardfish (RTI = 1.02), Cuttlefish & Squids (RTI=0.78), Sharks (RTI= 0.74) and Asteroids (RTI=0.71) as shown in Figure 192. These groups also showed the highest Keystone index values as calculated by the Libralato et al. (2006) methodology. The groups of Asteroids and Gastropods/Scaphopods had high RTI values (0.53 and 0.42, respectively), but they had a higher biomass than Lizardfish, Cuttlefish, and Sharks indicating an important role as prey and therefore may be defined as habitat structure forming groups (sponges, corals and seagrass) in this foodweb from top down forces associated with predation.

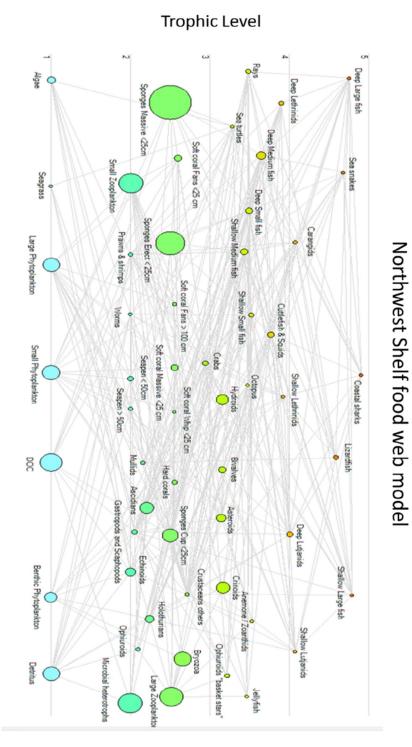


Figure 188. Food web diagram of the NWS ecosystem. Functional groups are indicated in circles with size proportional to their biomass. Colour of the circles represents the trophic level. The trophic links among groups are indicated by grey lines.

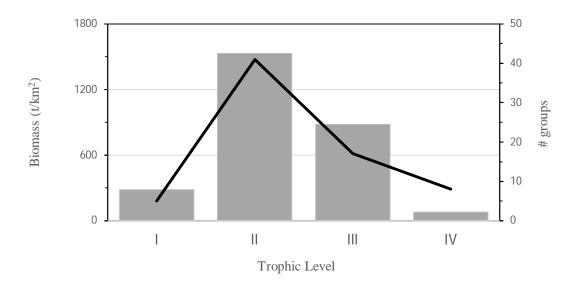


Figure 189. Distribution of total biomass (t/km²) by trophic level in the NWS model (grey bars). The black line represents the trophic aggregation of the 71 living groups, shows that the system is largely controlled by lower trophic levels.

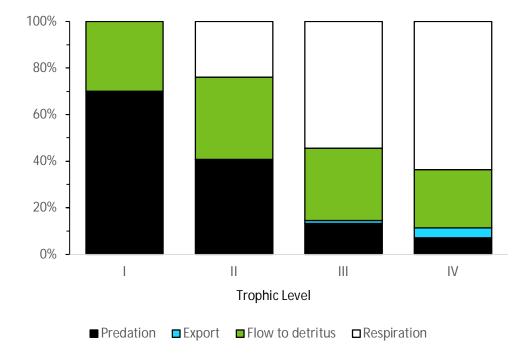


Figure 190. The proportion of the main energy flows (%) for each trophic level in the NWS model

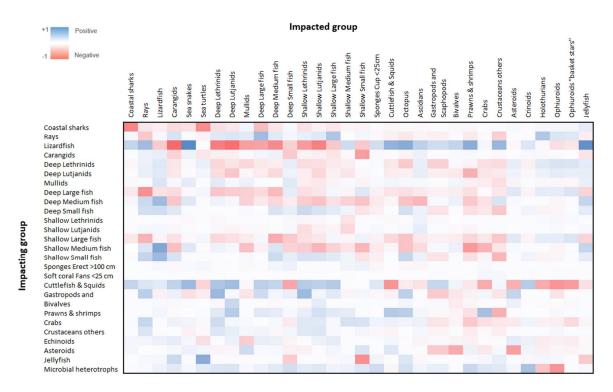
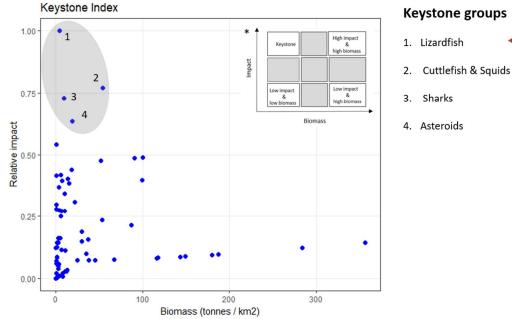
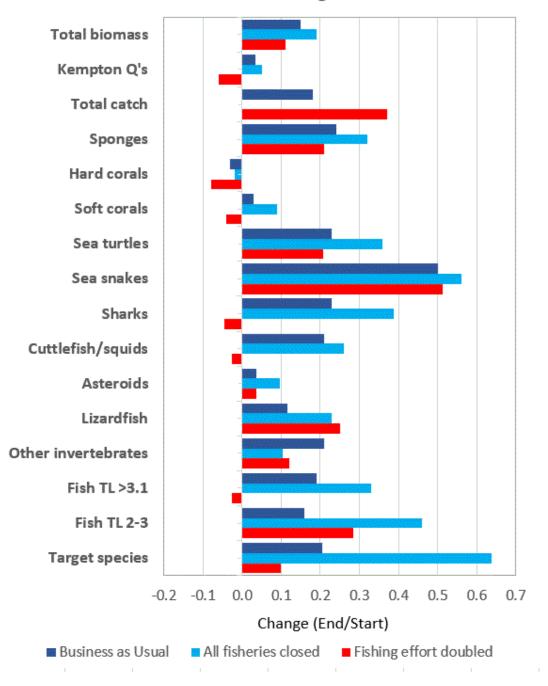



Figure 191. The mixed trophic impact analysis for selected groups of the NWS model. Negative impacts are shown in red colour, positive impacts in blue and no impacts in white. Intensity of the colour is proportional to the degree of the trophic impacts.

Keystone groups


Figure 192. Relationship between relative total impact and relative biomass of the functional groups used to define the Keystone groups in the NWS model (right). * Conceptual identification of Keystone species (Valls et al., 2015).

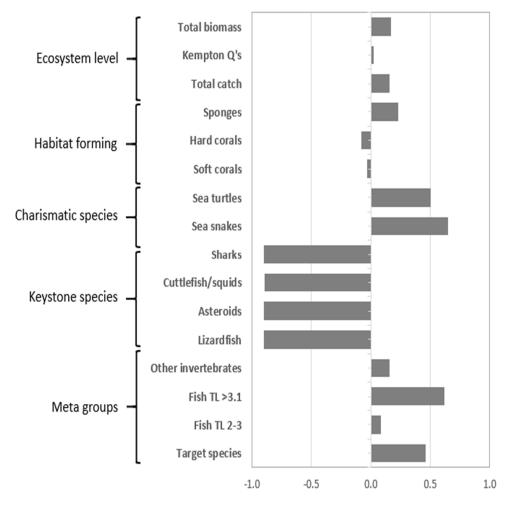
7.4.4 Temporal dynamic simulations: the impact of fishing

The effect of fishing on the food web was explored using a set of scenarios as presented in Table 32. Results from Scenario 1 "Business as Usual" (where all fishing efforts were kept as 2016/17 for 20 years) showed a modest change in the biomass of target species with a mean increment of 19% respectively to the biomass estimated in 2017 for these groups (Figure 193). The Sea Snakes group showed the largest change in the system by increasing 36% its biomass and "Hard Corals" was the only group that declined (2%) under this scenario as shown in Figure 193. Overall, most of the group indicators increased between 5% and 20% over the 20-year period simulated (Figure 193). The results suggest that fishing for 20 years under this fishing effort resulted in the model that both the total biomass and overall diversity (measured by Kempton Q's Index) in the system increased 19% and 4%, respectively (Figure 193). The simulated biomass changes for all the groups in this scenario are presented in Table 33.

Results from scenario 2 "No fishing" (close all commercial fisheries in the system and simulate effects for 20-year period) suggested significant changes in the abundance of target groups with a mean increment of 64% of their biomass compared with that estimated in 2017 (Figure 193). Also, an important increment in the biomass (47%) of large finfish groups, associated with predator species, was found in the simulations of this scenario (Figure 193). As result of the indirect trophic interactions, the abundance of small "other invertebrates" group showed a modest increment of its biomass (11%). The results of this scenario suggest that closing of commercial fishing could impact positively on non-target species such as turtles and sharks (Figure 193). Total biomass and diversity of the whole system increased 18% and 6% after 20 years, respectively (Figure 193). The simulated biomass changes for all the groups under these conditions are presented in Table 34.

Results from Scenario 3 "Recovery time from fishing" (simulated increment of fishing pressure doubled for 10 years – "stress period"- and then, fishing effort is returned to initial state for a further 10 years – "recovery period") suggested small increments in the abundance of target groups (mean = 9%) after the "recovery time" of 10 years (Figure 193). Important reductions (up to 10%) in the biomass of groups such as "Hard corals", "Sharks", "Cuttlefish & Squid" and "Fish Trophic Level >3.1" were predicted by the model (Figure 193). Total biomass was predicted by the model to increase 11% and the diversity of the system (measured by Kempton Q's Index) to declined 7% to that estimated in 2017 (Figure 193). The simulated biomass changes for all the groups under these conditions are presented in Table 35.

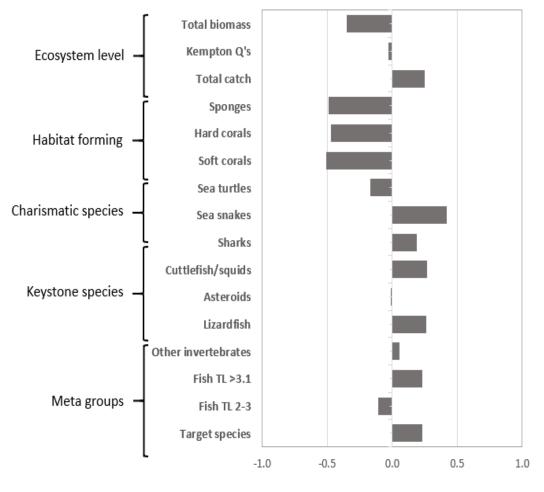
Fishing scenarios


Figure 193. Proportion of change in the biomass of the indicators of the NWS after 20 years of simulation under different fishing scenarios. Details of these scenarios are presented in Table 32.

7.4.5 Temporal dynamic simulations: the role of Keystone and habitat-forming groups

The ecological role of keystone groups was explored in the model by reducing 90% the biomass of the top four Keystones groups (as defined in methods.) over a 20-year period. Results of this scenario predicted significant changes in the abundance of "Target species" and "Fish TL >3.1" groups with an increment of 48% and 61% in their biomasses, respectively (Figure 194). Some indirect trophic impacts from the reduction of top predators were detected by a reduction of 2% of small fish (prey of larger fish) located within trophic level 2 to 3 (Figure 194). No major changes in the diversity of the system (<2%) were predicted by the model. The simulated biomass changes for all the groups under these conditions are presented in Table 36.

Results from Scenario 5 "Role of habitat-forming species" (reduction 50% in the biomass of habitat-forming species such as "Sponges", " Corals", "Seagrass") predicted an important changes in the abundance of turtles and small fishes ("Fish TL 2-3" group) with a loss of 21% and 16% in their biomasses, respectively (Figure 195). The total biomass and diversity of the system were also negatively impacted by the loss of habitat-forming species. The system loss 27% in its biomass and 2% in its diversity after 20 years (Figure 195). The simulated biomass changes for all the groups under these conditions are presented in Table 37.


The results of the EwE NWS model development and selected scenarios have been summarized and presented in the Pilbara Symposium (13 July 2019; Fremantle Western Australia).

Scenario 4: Keystone species decreased by 90%

Change after 20 years (End/Start)

Figure 194. Proportion of change in the biomass of the indicators of the NWS model after 20 years of reducing 90% the biomass of keystone groups ("Lizardfish", "Cuttlefish/Squid", "Asteroids" and "Large deep fish". See Table 32 for details.

Scenario 5: Reduction of 50% of biomass of habitat forming species biomass

Change after 20 years (End/Start)

Figure 195. Proportion of changes in the biomass of the indicator groups of the NWS model after 20 years of reducing 50% the biomass of habitat-forming groups sponges, corals, seagrass). See Table 32 for details of this scenario.

Table 33. Results from Ecosim Scenario # 1 Business as Usual. All fishing efforts were kelp at the same level as 2017 and run it over 20 years

_	A			D: (F (C)
1	Group name Coastal sharks	0.513	0.631	Biomass (E/S) 1.230
2	Rays	4.795	5.938	1.238
3	Lizardfish	4.688	5.417	1.155
4	Carangids	3.832	4.079	1.064
5	Sea snakes	0.630	0.950	1.508
6	Sea turtles	0.266	0.327	1.230
7	Deep Lethrinids	5.936	7.668	1.292
8	Deep Lutjanids	6.903	8.720	1.263
9	Mullids	2.917	2.396	0.821
	Deep Large fish	0.629	0.839	1.333
	Deep Medium fish Deep Small fish	18.080 10.040	19.473 11.004	1.077 1.096
	Shallow Lethrinids	1.089	1.535	1.409
	Shallow Lutjanids	1.509	2.042	1.353
	Shallow Large fish	0.433	0.591	1.365
	Shallow Medium fish	10.573	12.993	1.229
17	Shallow Small fish	4.931	5.043	1.023
18	Sponges Cup <25cm	55.376	67.270	1.215
19	Sponges Cup 25-50cm	144.632	178.777	1.236
	Sponges Cup 50-100 cm	81.440	101.669	1.248
	Sponges Cup >100 cm	45.082	55.489	1.231
	Sponges Massive <25cm	438.618	544.373	1.241
	Sponges Massive 25-50cm	346.962	435.529	1.255
	Sponges Massive 50-100 cm Sponges Massive >100 cm	180.829 215.725	228.134 277.760	1.262 1.288
	Sponges Erect < 25cm	176.702	218.695	1.238
	Sponges Erect 25-50cm	228.333	286.219	1.254
	Sponges Erect 50-100 cm	140.744	177.203	1.259
	Sponges Erect >100 cm	29.896	34.904	1.167
30	Soft coral Fans <25 cm	13.772	14.884	1.081
31	Soft coral Fans 25-50 cm	13.484	12.075	0.896
	Soft coral Fans 50-100 cm	8.430	7.556	0.896
	Soft coral Fans > 100 cm	2.407	2.159	0.897
	Soft coral Massive <25 cm	11.299	10.113	0.895
	Soft coral Massive 25-50 cm	87.067	77.970	0.896
	Soft coral Massive 50-100 cm Soft coral Massive >100 cm	4.767	4.272 0.064	0.896
	Soft coral Whip <25 cm	0.071 0.690	0.616	0.897 0.893
	Soft coral Whip 25-100cm	1.598	1.427	0.893
	Soft coral Whip 50-100cm	1.435	1.282	0.893
	Soft coral Whip > 100cm	1.334	1.193	0.894
42	Hard corals	7.730	7.516	0.972
	Cuttlefish & Squids	10.302	12.384	1.202
	Octopus	1.515	1.832	1.209
	Bryozoa	53.320	51.655	0.969
	Hydroids	30.279	28.776	0.950
	Ascidians	39.954	37.658	0.943
	Gastropods and Scaphopods	8.924	9.781	1.096
	Bivalves Prawns & shrimps	11.249 3.617	9.847 4.259	0.875 1.178
	Crabs	7.994	4.259	1.473
	Crustaceans others	3.621	4.994	1.379
	Echinoids	22.820	23.233	1.018
	Asteroids	20.871	21.631	1.036
	Crinoids	37.158	34.971	0.941
56	Holothurians	18.287	28.011	1.532
57	Ophiuroids	5.474	6.757	1.234
	Ophiuroids "basket stars"	3.843	3.274	0.852
	Seapen < 50cm	8.171	9.756	1.194
	Seapen > 50cm	3.435	4.045	1.178
	Worms Anemone / Zoanthids	1.383	1.618	1.170
	Large Zooplankton	1.496 91.621	1.662 88.870	1.111 0.970
	Small Zooplankton	100.405	89.701	0.893
	Jellyfish	0.694	0.843	1.215
	Microbial heterotrophs	185.074	145.556	0.786
	Algae	13.164	13.492	1.025
68	Seagrass	1.614	1.570	0.973
	Large Phytoplankton	51.509	53.326	1.035
	Small Phytoplankton	54.636	50.508	0.924
71	Benthic Phytoplankton	29.476	28.388	0.963

Table 34. Results from Ecosim Scenario 2 where all fisheries are closed, and the system is projected over 20 years

1	Group name Coastal sharks	Biomass (start) 0.513	Biomass (end) 0.711	Biomass (E/S) 1.386
2	Ravs	4.793	5.705	1.190
3	Lizardfish	4.687	5.793	1.236
4	Carangids	3.832	4.514	1.178
5	Sea snakes	0.630	0.987	1.568
6	Sea turtles	0.266	0.361	1.357
7	Deep Lethrinids	5.943	8.088	1.361
8	Deep Lutjanids	6.909	9.286	1.344
9 10	Mullids Doop Largo fish	2.917 0.635	2.702 0.842	0.926 1.325
11	Deep Large fish Deep Medium fish	18.083	25.568	1.325
	Deep Small fish	10.043	15.946	1.588
13	Shallow Lethrinids	1.091	1.574	1.442
14	Shallow Lutjanids	1.513	2.259	1.493
15		0.434	0.578	1.333
16	Shallow Medium fish	10.574	14.821	1.402
17 18	Shallow Small fish	4.931	7.110	1.442
10	Sponges Cup <25cm Sponges Cup 25-50cm	55.375 144.631	67.342 184.071	1.216 1.273
20	Sponges Cup 50-100 cm	81.439	102.418	1.258
21	Sponges Cup >100 cm	45.081	54.266	1.204
22	Sponges Massive <25cm	438.618	567.472	1.294
23	Sponges Massive 25-50cm	346.961	451.127	1.300
24	Sponges Massive 50-100 cm	180.828	233.868	1.293
25	1 0	215.724	283.159	1.313
	Sponges Erect < 25cm	176.701	225.921	1.279
27 28	Sponges Erect 25-50cm Sponges Erect 50-100 cm	228.332 140.743	295.270 180.897	1.293 1.285
20	Sponges Erect >100 cm	29.895	33.606	1.124
30	Soft coral Fans <25 cm	13.772	15.421	1.120
31	Soft coral Fans 25-50 cm	13.484	12.357	0.916
32	Soft coral Fans 50-100 cm	8.430	7.727	0.917
33	Soft coral Fans > 100 cm	2.407	2.206	0.917
34	Soft coral Massive <25 cm	11.299	10.354	0.916
35	Soft coral Massive 25-50 cm	87.067	79.791	0.916
36 37	Soft coral Massive 50-100 cm Soft coral Massive >100 cm	4.767 0.071	4.369 0.065	0.917 0.917
38	Soft coral Whip <25 cm	0.690	0.632	0.916
39	Soft coral Whip 25-100cm	1.598	1.464	0.916
40		1.435	1.315	0.916
41	Soft coral Whip > 100cm	1.334	1.223	0.916
	Hard corals	7.730	7.699	0.996
43	Cuttlefish & Squids	10.297	13.004	1.263
44 45	Octopus Bryozoa	1.514 53.320	1.638 51.768	1.082 0.971
45	Hydroids	30.279	29.815	0.985
47	Ascidians	39.954	39.509	0.989
48	Gastropods and Scaphopods	8.922	9.326	1.045
49	Bivalves	11.247	9.816	0.873
50	Prawns & shrimps	3.616	3.949	1.092
51	Crabs	7.994	10.900	1.364
52 53	Crustaceans others Echinoids	3.619	4.342 23.584	1.200 1.033
53 54	Asteroids	22.822 20.873	23.584	1.033
55	Crinoids	37.158	36.007	0.969
56	Holothurians	18.288	28.361	1.551
57	Ophiuroids	5.475	7.014	1.281
58	Ophiuroids "basket stars"	3.844	3.672	0.955
59	Seapen < 50cm	8.170	9.056	1.108
60 61		3.434	3.813	1.110
61 62		1.383 1.496	1.602 1.648	1.158 1.102
63		91.621	89.496	0.977
64	Small Zooplankton	100.405	92.418	0.920
65		0.694	0.782	1.126
66	•	185.075	158.766	0.858
67	Algae	13.164	13.577	1.031
68	5	1.614	1.627	1.008
69 70	Large Phytoplankton Small Phytoplankton	51.509 54.636	52.946 51.216	1.028 0.937
70	Benthic Phytoplankton	29.477	28.749	0.937

Table 35. Results from Ecosim Scenario 3 where fishing effort is doubled over 20 years

1	Group name Coastal sharks	0.513	Biomass (end) 0.490	0.954
2	Rays	4.795	5.947	1.240
3	Lizardfish	4.688	5.872	1.252
4	Carangids	3.832	4.078	1.064
5	Sea snakes	0.630	0.952	1.511
6	Sea turtles	0.266	0.321	1.207
7	Deep Lethrinids	5.936	5.364	0.904
8	Deep Lutjanids	6.903	6.217	0.901
9	Mullids	2.917	3.395	1.164
	Deep Large fish Deep Medium fish	0.629 18.080	0.604 21.462	0.959 1.187
	Deep Small fish	10.040	15.001	1.494
	Shallow Lethrinids	1.089	1.134	1.041
	Shallow Lutjanids	1.509	1.640	1.087
15	Shallow Large fish	0.433	0.429	0.991
16	Shallow Medium fish	10.573	12.994	1.229
	Shallow Small fish	4.931	6.043	1.226
	Sponges Cup <25cm	55.377	67.272	1.215
	Sponges Cup 25-50cm	144.632	178.777	1.236
	Sponges Cup 50-100 cm	81.440	101.670	1.248
	Sponges Cup >100 cm Sponges Massive <25cm	45.082 438.618	55.492 544.366	1.231 1.241
	Sponges Massive 25-50cm	346.962	435.524	1.241
	Sponges Massive 50-100 cm	180.829	228.134	1.262
	Sponges Massive >100 cm	215.725	277.759	1.288
	Sponges Erect < 25cm	176.702	218.694	1.238
27	Sponges Erect 25-50cm	228.333	286.217	1.254
	Sponges Erect 50-100 cm	140.744	177.203	1.259
	Sponges Erect >100 cm	29.896	34.907	1.168
	Soft coral Fans <25 cm	13.772	14.884	1.081
	Soft coral Fans 25-50 cm Soft coral Fans 50-100 cm	13.484	12.075	0.896
	Soft coral Fans > 100 cm	8.430 2.407	7.556 2.159	0.896 0.897
	Soft coral Massive <25 cm	11.299	10.113	0.895
	Soft coral Massive 25-50 cm	87.067	77.970	0.896
	Soft coral Massive 50-100 cm	4.767	4.272	0.896
37	Soft coral Massive >100 cm	0.071	0.064	0.897
	Soft coral Whip <25 cm	0.690	0.616	0.893
	Soft coral Whip 25-100cm	1.598	1.427	0.893
	Soft coral Whip 50-100cm	1.435	1.282	0.893
	Soft coral Whip > 100cm	1.334	1.193	0.894
	Hard corals Cuttlefish & Squids	7.730 10.302	7.161 10.026	0.926 0.973
	Octopus	1.515	1.832	1.210
	Bryozoa	53.320	51.654	0.969
	Hydroids	30.279	28.775	0.950
47	Ascidians	39.954	37.657	0.943
48	Gastropods and Scaphopods	8.924	9.783	1.096
	Bivalves	11.249	9.850	0.876
	Prawns & shrimps	3.617	4.261	1.178
	Crabs	7.994	11.780	1.474
	Crustaceans others	3.621	4.995	1.380
	Echinoids Asteroids	22.820 20.871	23.231 21.630	1.018 1.036
	Crinoids	37.158	34.971	0.941
	Holothurians	18.287	28.006	1.531
	Ophiuroids	5.474	6.756	1.234
	Ophiuroids "basket stars"	3.843	3.273	0.852
	Seapen < 50cm	8.171	9.757	1.194
	Seapen > 50cm	3.435	4.046	1.178
	Worms	1.383	1.618	1.170
	Anemone / Zoanthids	1.496	1.662	1.111
	Large Zooplankton Small Zooplankton	91.621 100.405	88.869 89.701	0.970 0.893
	Jellyfish	0.694	0.844	1.215
	Microbial heterotrophs	185.074	145.553	0.786
	Algae	13.164	13.493	1.025
	Seagrass	1.614	1.570	0.973
	Large Phytoplankton	51.509	53.327	1.035
	Small Phytoplankton	54.636	50.508	0.924
71	Benthic Phytoplankton	29.476	28.388	0.963

Table 36. Results from Ecosim Scenario 4 where biomass of Keystone groups was reduced by 90% over 20 years

	Group name	Biomass (start)	Biomass (end)	Biomass (E/S)
1	Coastal sharks	0.523	0.057	0.109
2	Rays	4.690	5.787	1.234
3	Lizardfish	4.880	0.481	0.099
4	Carangids	3.781	5.829	1.542
5	Sea snakes	0.619	1.023	1.654
6	Sea turtles	0.266	0.400	1.503
7	Deep Lethrinids	5.782	7.115	1.231
8	Deep Lutjanids	6.807	9.598	1.410
9 10	Mullids	3.000	2.604 0.884	0.868
11	Deep Large fish Deep Medium fish	17.930	16.029	0.894
12	Deep Small fish	9.047	11.840	1.309
13	Shallow Lethrinids	1.062	1.926	1.814
14	Shallow Lutjanids	1.480	1.951	1.318
15	Shallow Large fish	0.417	0.737	1.765
16	Shallow Medium fish	10.508	11.009	1.048
17	Shallow Small fish	4.871	5.314	1.091
18	Sponges Cup <25cm	55.730	67.319	1.208
19	Sponges Cup 25-50cm	145.037	176.847	1.219
20	Sponges Cup 50-100 cm	81.803	101.249	1.238
21 22	Sponges Cup >100 cm	45.419	56.295	1.239
22	Sponges Massive <25cm Sponges Massive 25-50cm	439.184 347.469	536.741 429.724	1.222 1.237
23	Sponges Massive 25-50cm Sponges Massive 50-100 cm	181.244	225.626	1.245
25	Sponges Massive >100 cm	216.147	274.751	1.271
26	Sponges Erect < 25cm	177.125	216.125	1.220
27	Sponges Erect 25-50cm	228.777	282.713	1.236
28	Sponges Erect 50-100 cm	141.139	175.503	1.243
29	Sponges Erect >100 cm	30.228	36.049	1.193
30	Soft coral Fans <25 cm	13.890	14.893	1.072
31	Soft coral Fans 25-50 cm	13.485	12.030	0.892
32	Soft coral Fans 50-100 cm	8.431	7.528	0.893
33	Soft coral Fans > 100 cm	2.407	2.151	0.894
34 35	Soft coral Massive <25 cm Soft coral Massive 25-50 cm	11.300 87.075	10.075 77.680	0.892
36	Soft coral Massive 50-100 cm	4.767	4.256	0.893
37	Soft coral Massive >100 cm	0.071	0.064	0.894
38	Soft coral Whip <25 cm	0.690	0.613	0.889
39	Soft coral Whip 25-100cm	1.598	1.421	0.890
40	Soft coral Whip 50-100cm	1.436	1.278	0.890
41	Soft coral Whip > 100cm	1.334	1.188	0.891
42	Hard corals	7.730	7.142	0.924
43	Cuttlefish & Squids	12.103	1.277	0.106
44	Octopus	1.355	1.496	1.104
45	Bryozoa	53.333	51.765	0.971
46	Hydroids	30.374	28.872	0.951
47 48	Ascidians Gastropods and Scaphopods	39.997 8.915	37.398 6.006	0.935
40	Bivalves	10.548	11.382	1.079
50	Prawns & shrimps	3.801	7.352	1.934
51	Crabs	6.869	9.965	1.451
52	Crustaceans others	3.669	7.116	1.939
53	Echinoids	21.691	22.511	1.038
54	Asteroids	21.574	2.157	0.100
55	Crinoids	37.217	39.273	1.055
56	Holothurians	17.428	18.711	1.074
57	Ophiuroids	4.948	6.297	1.273
58	Ophiuroids "basket stars"	3.475	4.797 9.605	1.380
59 60	Seapen < 50cm Seapen > 50cm	7.507	4.000	1.279 1.244
61	Worms	1.408	1.837	1.305
62	Anemone / Zoanthids	1.398	1.561	1.117
63	Large Zooplankton	91.942	88.998	0.968
64	Small Zooplankton	100.303	89.535	0.893
65	Jellyfish	0.693	0.851	1.228
66	Microbial heterotrophs	185.235	144.320	0.779
67	Algae	13.965	13.917	0.997
68	Seagrass	1.713	1.632	0.953
69	Large Phytoplankton	51.469	53.303	1.036
70	Small Phytoplankton	54.656	50.511	0.924
71	Benthic Phytoplankton	29.733	28.685	0.965

	Group name	Biomass (start)	Biomass (end)	Biomass (E/S)
1	Coastal sharks	0.513	0.615	1.198
2	Rays	4.770	5.299	1.111
3	Lizardfish	4.682	5.943	1.269
4	Carangids	3.826	4.037	1.055
5	Sea snakes	0.630	0.898	1.426
6	Sea turtles	0.260	0.216	0.832
7	Deep Lethrinids	5.894	7.180	1.218
8	Deep Lutjanids	6.893	8.544	1.239
9 10	Mullids	2.964	2.576	0.869
11	Deep Large fish Deep Medium fish	0.628 18.518	0.772 16.143	1.229 0.872
12	Deep Small fish	10.712	9.627	0.899
13	Shallow Lethrinids	1.080	1.422	1.317
14	Shallow Lutjanids	1.507	1.997	1.325
15	Shallow Large fish	0.433	0.535	1.236
16	Shallow Medium fish	10.809	10.265	0.950
17	Shallow Small fish	5.203	4.475	0.860
18	Sponges Cup <25cm	54.467	37.871	0.695
19	Sponges Cup 25-50cm	143.853	71.607	0.498
20	Sponges Cup 50-100 cm	80.557	45.524	0.565
21	Sponges Cup >100 cm	44.152	22.043	0.499
22	Sponges Massive <25cm	438.302	235.424	0.537
23 24	Sponges Massive 25-50cm Sponges Massive 50-100 cm	346.478 178.112	148.395 91.785	0.428 0.515
25	Sponges Massive >100 cm	215.011	107.314	0.499
26	Sponges Erect < 25cm	175.973	83.896	0.477
27	Sponges Erect 25-50cm	227.670	116.958	0.514
28	Sponges Erect 50-100 cm	139.945	78.467	0.561
29	Sponges Erect >100 cm	28.959	15.864	0.548
30	Soft coral Fans <25 cm	13.595	6.115	0.450
31	Soft coral Fans 25-50 cm	13.489	6.133	0.455
32	Soft coral Fans 50-100 cm	8.434	4.595	0.545
33	Soft coral Fans > 100 cm	2.408	1.217	0.506
34	Soft coral Massive <25 cm	11.304	5.160	0.456
35	Soft coral Massive 25-50 cm	87.104	48.348	0.555
36	Soft coral Massive 50-100 cm		2.294	0.481
37	Soft coral Massive >100 cm	0.071	0.034	0.480
38 39	Soft coral Whip <25 cm Soft coral Whip 25-100cm	0.690 1.598	0.378 0.743	0.548 0.465
40	Soft coral Whip 50-100cm	1.436	0.629	0.485
41	Soft coral Whip > 100cm	1.335	0.720	0.539
42	Hard corals	7.730	3.202	0.414
43	Cuttlefish & Squids	10.262	13.065	1.273
44	Octopus	1.460	1.818	1.245
45	Bryozoa	53.326	51.758	0.971
46	Hydroids	30.303	28.246	0.932
47	Ascidians	40.056	38.571	0.963
48	Gastropods and Scaphopods	8.291	9.224	1.113
49	Bivalves	11.275	9.594	0.851
50	Prawns & shrimps	3.631	4.404	1.213
51 52	Crabs Crustaceans others	8.233	6.935	0.842
52	Echinoids	3.641 21.679	2.337 21.728	0.642
54	Asteroids	20.216	20.156	0.997
55	Crinoids	37.173	34.447	0.927
56	Holothurians	18.281	28.971	1.585
57	Ophiuroids	5.480	6.930	1.264
58	Ophiuroids "basket stars"	3.848	3.205	0.833
59	Seapen < 50cm	8.195	10.059	1.227
60	Seapen > 50cm	3.443	4.162	1.209
61	Worms	1.394	1.673	1.200
62	Anemone / Zoanthids	1.501	1.650	1.099
63	Large Zooplankton	91.715	87.937	0.959
64	Small Zooplankton	100.531	88.507	0.880
65	Jellyfish Missechiel heteroteenhe	0.693	0.840	1.213
66 67	Microbial heterotrophs	186.242	146.719	0.788
67	Algae Seagrass	13.556	13.971 0.360	1.031
68 69	Seagrass Large Phytoplankton	0.730 51.492	53.538	0.493
70	Small Phytoplankton	54.695	50.045	0.915
71	Benthic Phytoplankton	29.587	28.054	0.948
	, p.a			

Table 37. Results from Scenario 5 where the biomass of habitat-forming species (sponges, corals, seagrass) were reduced 50% over 20 years.

Table 38. The five model indicators (Metagroups, Keystone, Charismatic, Habitat forming and Invertebrates) species, used to classify the functional groups of the NWS model.

Model Indicator	Functional group	Trophic Level
Keystone groups	Coastal sharks Lizardfish	4.91
keystone groups		4.58 3.77
	Cuttlefish & Squids Asteroids	3.15
	Rays	3.48
	Carangids	4.07
	Sea turtles	3.29
	Deep Lethrinids	3.89
	Deep Lutjanids	4.01
Metagroups	Mullids	2.16
	Deep Large fish	4.75
	Deep Medium fish	3.65
	Deep Small fish	3.49
	Shallow Lethrinids	3.93
	Shallow Lutjanids	4.07
	Shallow Large fish	4.79
	Shallow Medium fish Shallow Small fish	3.43 3.52
	Prawns & shrimps	2.00
Charismatic species	Sea snakes	4.68
	Sea turtles	3.29
	Sponges Cup <25cm	2.50
	Sponges Cup 25-50cm	2.50
	Sponges Cup 50-100 cm	2.50
	Sponges Cup >100 cm	2.50 2.50
	Sponges Massive <25cm Sponges Massive 25-50cn	
	Sponges Massive 50-100	
Habitat forming	Sponges Massive >100 cn	
, i i i i i i i i i i i i i i i i i i i	Sponges Erect < 25cm	2.50
	Sponges Erect 25-50cm	2.50
	Sponges Erect 50-100 cn	
	Sponges Erect >100 cm	2.50
	Soft coral Fans <25 cm	2.60
	Soft coral Fans 25-50 cm Soft coral Fans 50-100 cn	2.56 2.56
	Soft coral Fans > 100 cm	2.56
	Soft coral Massive <25 cr	2.56
	Soft coral Massive 25-50	2.56
	Soft coral Massive 50-100	2.56
	Soft coral Massive >100 c	2.56
	Soft coral Whip <25 cm	2.56
	Soft coral Whip 25-100cn	
	Soft coral Whip 50-100cn Soft coral Whip > 100cm	2.56
	Hard corals	2.56
	Seagrass	1.00
	Octopus	3.48
	Bryozoa	2.66
	Hydroids	3.16
	Ascidians	2.20
	Gastropods and Scaphopc Bivalves	2.05 3.15
	Crabs	2.94
	Crustaceans others	2.74
	Echinoids	2.00
Invertebrates	Asteroids	3.15
	Crinoids	3.16
	Holothurians	2.24
	Ophiuroids Ophiuroids "basket stars"	2.09
	Ophiuroids "basket stars" Seapen < 50cm	3.21 2.00
	Seapen > 50cm	2.00
	Worms	2.00
	Anemone / Zoanthids	3.53
	Large Zooplankton	2.52
	Small Zooplankton	2.01
	Jellyfish	3.47
	Microbial heterotrophs	2.00
	Algae	1.00
	Seagrass	1.00
	Large Phytoplankton	1 00
	Large Phytoplankton Small Phytoplankton	1.00 1.00

7.5 Discussion

The first steps in answering key questions about the structure and functioning of the NWS was the construction of the dynamic Ecopath with Ecosim model for the present-day conditions (2017). The model describes the energy and mass fluxes, the trophic interactions of predators, prey and fisheries. One of the values of the Ecopath model (snapshot of the food web) is to characterize the NWS by a greater benthic than water productivity and the dominance in biomass of lower trophic level benthic consumers in the ecosystem. Also, the model identified the ecological role of keystone groups defined as structuring species by processes associated with predation (top-down forces). The network of species connections within the food web is useful for a better understanding of ecological roles of target finfish species (lethrinids, lutjanids) and charismatic species (e.g. turtles, sea snakes) in the NWS. This network analysis gives a set of nodes and their linkages to identify trophic patterns from prey and predator perspectives.

The model synthesizes the biological data of the 100 sites sampled (using fish trawls and epibenthic sleds) in 2017 on board the R/V Investigator to assembled abundance, biomass and size/age composition of the demersal fish community and epibenthic habitat forming invertebrates (e.g. sponges and corals) in the region. Results from the Ecopath model showed that the NWS Shelf is dominated by lower trophic groups (70% of the functional groups occurred at trophic level lower than 3.5), but some minor top-down trophic interactions associated with Lizardfish and other predators were identified. The estimates of ecosystem attributes, including mass fluxes, depend on the quality of the data of the input parameters (Plaganyi et al., 2004).

The quality of the data used in the model was estimated thorough the Pedigree Index, which estimates how much data comes from the model domain (Heymans et al., 2016). The overall Pedigree Index for the NWS model was 0.73, a high value compared with those estimated to other similar shelf Ecopath models in Australia (Gribble, 2003; Bulma, 2006) and to other 150 Ecopath models worldwide (0.16 - 0.71; Morissette et al., 2006). The major uncertainties in the input data were for biological information of some pelagic groups (e.g. lutjanids, mullids,) and benthic species (e.g. sea pens, holothurians, crabs). Addressing these knowledge gaps with more and better biological data would enhance the predictions and results of our models for understanding the NWS.

The mean transfer efficiency in the NWS ecosystem mode was 13%, a value that is close to the average transfer efficiency often assumed for aquatic ecosystems (Christensen and Walters, 2004). The Mixed trophic impacts analysis showed the importance of lower trophic groups, particularly invertebrates such cuttlefish, prawns, crabs and gastropods as an important food source to higher trophic levels. Detritus, DOC and microbial heterotrophs has a positive impact on most of the lower trophic groups, emphasizing its importance as a component in the base of this food web. Analysis of the relative trophic impacts on the system highlighted that "Lizardfish" group (i.e. *Synodus dermatogenys, S. hoshinonis, S. indicus*) and "Deep large fish" (i.e. Barracuda, Sphyrnidae) had a large negative impact on prey groups, including turtles and finfish target species, indicating that they are potential

Keystone species. In this trophic analysis, habitat-forming species such as sponges, and corals showed a modest positive impact on the food web (Figure 187) as they are not an important source of food rather by providing refuge from predators. There is evidence that abundance of sponges on tropical ecosystems are positively correlates with tropical reef fish species richness, biomass, abundance and trophic structure (Seemann et al., 2018). The results from this study are likely to underestimate the sensitivity of the NWS to changes in the biomass of habitat-forming species, mainly sponges and corals, because the spatial dynamics associated with habitat utilisation and habitat quality were not explored in this study. To assess the importance of increased protection from sponges and corals (enhancing the survival of fish and crustacean species) is recommended to develop a spatial dynamic ecosystem model (Ecospace) for this system.

The total biomass harvested by fisheries in the NWS system was low (0.078 t· km⁻²), but the mean trophic level of the catch was high (3.61), markedly higher than the average estimate of catch trophic level for global coast and reef system worldwide of 2.54 (Pauly et al., 1998). Those findings are similar to those from the same region in 2006 (Bulman, 2006). The high trophic level of the catch suggested that the fisheries operating in the NWS are highly selective, targeting finfishes at the top of the foodweb. Fisheries in the current system have a direct impact on the population of target species, and an indirect impact on non-target species as shown from by results of the mixed trophic impacts analyses and the Ecosim predictions. The fishing pressure in the system is low, the five fleets operating in 2017 removed less 0.1% of the total biomass. The dynamic simulations of the fishing scenarios (Ecosim model) identified important top-down interactions resulting from reductions in fishing mortalities of fishes at the top of the food web e.g. sharks, Lizardfish, Lutjanids. The fisheries in the system have a direct impact on the abundance of target species, and an indirect impact on non-target groups (mainly small fishes and invertebrates). For example, the Ecosim simulation of closing all fisheries over 20 years resulted in an estimated 64% more biomass of target species and 18% increase in the overall biomass of the system. This scenario revealed interesting consequence top-down interactions with an increased in predation rates from target finfishes (Lethrinids, Carangids, Lutjanids) on lower trophic level fish species (Fish TL 2-3), resulting in some indirect positive impacts (increase in biomass) on invertebrates. It has been documented that fisheries have the potential to change the structure and function of ecosystem by removing top predators (Pauly et al., 1998; Heymans et al., 2016)

The temporal ecosystem model developed in this study integrates the data available in the NWS and it provides a summary of our current knowledge of the biomass, consumption, production food web and trophic flows in the region. The model is a tool for testing hypotheses with respect to trophic and non-trophic interactions of different species and fishing pressures. This study has shown the complexity of the NWS, pointing out the relevance of the lower trophic groups and habitat forming species (e.g. sponges, corals). This is particularly important because understanding the processes and interactions within the system, including the role of low and high trophic level groups and impact of fishing can promote and support plans for conservation and management. Both science and

management should examine pathways of cumulative effects for a more robust support of decision-making actions aimed at maintaining resources and ecosystem services.

7.5.1 Conclusion

The model developed in this study integrates the data available in the region and it provides a summary of our current knowledge of the biomass, consumption, production food web and trophic flows in the NWS ecosystem. This modelling work highlighted the complexity of NWS ecology, clarified the role of lower trophic groups in food web support, and demonstrated ecological impacts of different fishing impact scenarios.

This study has shown the complexity of the NWS, pointing out the relevance of the lower trophic groups and habitat forming species (e.g. sponges, corals and seagrass). This is particularly important because understanding the processes and interactions within the system, including the role of low and high trophic level groups and impact of fishing can promote and support plans for conservation and management

Uncertainty around model parameters is one of the major limitations in the predictions made by the EwE model. The sensitivity analysis indicated that the NWS model was sensitive to changes in the biomass of lower trophic levels (e.g. prawns, gastropods, crustaceans, octopus) and to a lesser extent, changes in top predators (e.g. large finfish species). Hence, obtaining more and better information of abundance for benthic producers is a critical aspect for the future.

Appendix A Detailed description of survey design and methodology

A.1 Study design and site selection methodology

A.1.1 Data sources

A series of existing data sources were compiled in order to carry out a comprehensive spatial stratification of the study area:

Historical trawl fishing effort

Trawl effort data for the Taiwanese pair-trawl fleet was originally sourced from AFMA logbook data compilation. This contains trawl records from foreign trawlers that had been collated in the "AFZIS" data base between 1974 and 1987, and in the "radio-reporting" database (1979–1990). Prior to 1979, trawl effort had been reported on 30-minute grid cells, whereas from 1979 onwards trawl effort was reported as trawl start and end positions with trawl durations, although the resolution and quality of these positions was variable (noting also that these were prior to GPS). The start–end positions and duration data from 1979 to 1987 were linear-interpolated, then gridded and aggregated at 0.01 degree by Franzis Althaus (CSIRO O&A Hobart). However, while this resolution was satisfactory for other AFMA fisheries following implementation of GPS, it was too fine for the historical Taiwanese pair-trawl effort data. Hence, these data were aggregated further to 0.05 degrees and averaged for the period 1979–1985 inclusive.

Recent trawl fishing effort (Pilbara Fish Trawl Fishery)

Trawl effort data for the domestic Pilbara Fish Trawl fleet (otter trawls) were provided by DPIRD and originally compiled from vessel logbook data, for the period from 2005 when shot-by-shot effort data became available, and 2016. The start–end positions and tow durations of the individual trawls were linear-interpolated then gridded and aggregated at 0.01 degree. For the purposes of the survey design, these data were averaged to give the mean annual effort in hours per grid cell. The hours of effort were re-scaled to swept area, by multiplying by average trawl-speed and swept-width between the doors, then divided by grid-cell area to give swept area ratio.

Environmental data

A range of mapped environmental data layers had been collated by a previous project (originally the CERF Marine Biodiversity Hub) and progressively updated by a series of subsequent projects, most recently FRDC 2016-039. These environmental layers included: bathymetry DEM (depth, slope, aspect, terrain topography membership); sediments (%mud, sand, gravel, carbonate); seabed shear-stress; bottom-water attributes (temperature, salinity, O₂, NO₃, PO₄, Si); ocean colour derived variables (e.g. SST, Chl k490, PAR, NPP, epoc & b_irr); with seasonal ranges where applicable — a total of 40 variables. The layers were all gridded at 0.01 d and mapped for the entire EEZ; subsequently subsetted to the Pilbara NWS study area.

Biological survey data

Biological data from historical NWS Effects of Trawling (EoT) Project surveys from 1982 to 1997 were used in analyses to quantify relationships between biological composition and environmental gradients, as well as both historical and recent trawl effort.

A random-stratified sampling design was implemented in 1982 (Sainsbury 1987) and maintained consistently through to the 1997 survey. The design was based on 19 strata representing: three spatial areas (Legendre, Hedland, Barrow, see Figure 159); depth (shallow, middle, deep); and substratum type (shelly sand, sand, silty sand, undefined). The random sampling in 1982 and 1983 was restricted to the Legendre and Hedland regions – strata 1-16 (Figure 159). In 2017, the sampling area was restricted to the central zone of the NWS and new strata were defined (see Chapter 4).

These surveys conducted trawl sampling, using a McKenna trawl on two RV *Southern Surveyor* voyages (SS199508: 108 stations; SS199707: 106 stations), and Frank & Bryce trawls on 11 FRV *Soela* voyages (SO198205 to SO198805: 1096 stations) and two RV *Southern Surveyor* voyages (SS199002: 133 stations; SS199104: 101 stations). Identification and quantification of these trawl samples focussed primarily on fishes, with some identification of discrete invertebrates at high taxonomic levels. Sponges were quantified at the phylum level only on the two McKenna trawl voyages.

On most voyages (10 of 15), a 35 mm still film camera was fitted to the headline of many trawls and provided images of sessile benthos on the seabed ahead of the trawl net. Photos were available for 583 stations (of a total of 1544 trawls) and typically about 80 photos were available for each, although this ranged widely. The imagery of the 10 voyages was annotated in a series of annotation efforts over the years using protocols outlined in an internal report by Troje & Campbell (1989), and early annotation data were used in analyses presented by Sainsbury (1991) and Sainsbury et al (1997). In short, the photos were annotated for features, topography and sediment type categories and for counts of three size-classes of benthos: large (>25cm) and small (5 – 25cm) (Apx A Table 1). The two larger classes were further identified into broad taxa and 12 morpho-types: sponges (lump, cup, branched, flat, finger); Coral (soft coral, gorgonian, sea pen, whip); hydroids (fluffy, stringy); Crinoid; and unknown (Apx A Table 1) (Troje & Campbell 1989). The last annotator – Franzis Althaus (CSIRO O&A) compiled, documented and databased the final data set in a CSIRO ORACLE database under the NWSJEMS project (NWSJEMS 2007).

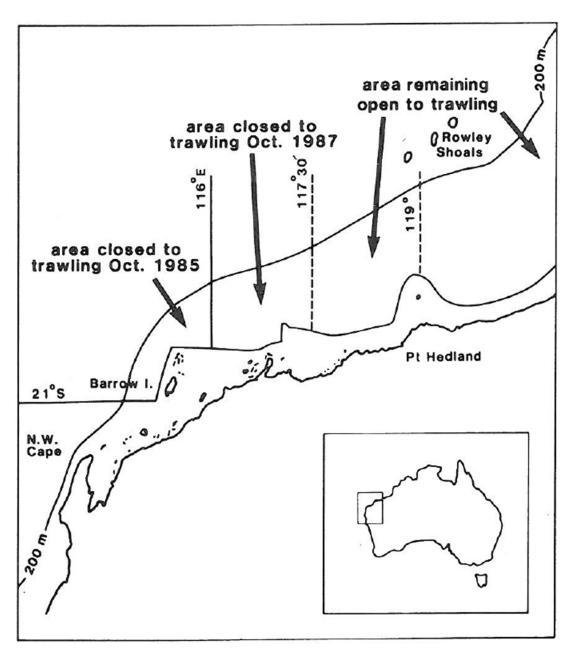
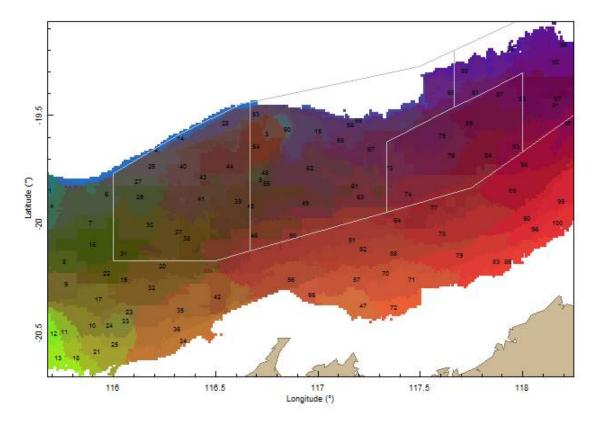


Figure showing the spatial strata used in the 1982 to 1997 voyages (from Sainsbury 1991). The three areas indicated by the bolded arrows reflect the zoning areas for the experimental adaptive management experiment conducted between 1986 and 1991 (see Sainsbury et al. 1997). In this current study we have referred to these three areas from west to east as the Barrow, Legendre and Hedland subregions.

Determination of sampling strata for 2017 voyage

For the 15 voyages between 1982 and 1997 a random stratified sampling approach across a broad area of the NWS was used as described above. For the 2017 study, we had a single voyage and we elected to use a different method based around stratifying a smaller, central part of the original study area into 100 spatial areas using a much more extensive set of physical, chemical and biological attributes than were available in the earlier study. The 2017 survey was designed to resample areas that had been subject to high levels of pair-trawling but then closed and remained


untrawled — as well as other trawl contrasts, and environmental gradients that may influence benthos distributions. The trawling effort level contrasts for both historical and recent trawl effort included zero/low, low/medium, medium/high and high. Areas in the higher trawl effort categories were relatively rare, particularly for the recent effort and especially the high-historical and highrecent combination, but all contrasts were allocated at least a minimum number of stations. To enable stratification to account for important environmental gradients, analyses were conducted to quantify the influence of multiple variables on the abundance composition of demersal communities. The study area was first stratified by the trawl-effort contrasts, and each combination was stratified by important environmental gradients and clustered into a number of groups corresponding to the required number of stations for each contrast. Stations were then selected from each cluster group, prioritising locations previously sampled by earlier surveys that had recorded catches of benthos, otherwise the most central cell for each cluster was selected. Further, offshore oil and gas infrastructure have navigation exclusion zones, which had to be excluded from selection for sampling.

The biological, environmental and trawl effort data were analysed using R package gradientForest (Ellis et al. 2012) to quantify the magnitude and shape of relationships between biological composition and gradients in the environment. These compositional turnover curves were used to transform the multi-dimensional environmental space of the study area (i.e. the mapped environmental variables) to a multi-dimensional biological space where increasing distance between points reflects increasing differences in biological composition as associated with the environmental gradients. The biological space provides the basis of the stratification of the study. For example, if a representative sampling of the region's biodiversity was desired, then simply clustering the biological space into a number of groups equal to the expected number of stations would provide a suitable stratification.

However, in this study, the primary objective was to quantify the extent of recovery in sessile benthos and fish populations. Hence, a key contrast (or strata) was in areas that had been trawled heavily by the Taiwanese and later untrawled following the cessation of foreign trawl fishing. Other important contrasts were between such areas and those areas that continued to be trawled by the domestic fishery, as well as those areas that were not fished by either fleets. Thus, the first step was to establish the effort contrasts and then determine the number of stations to be sampled in each. This process included excluding areas which could not be sampled due to obstacles including the intensive array of undersea communications cables, oil and gas pipes and well heads.

The trawl effort intensity (average annual grid swept ratio: F-ratio) of both the historical and recent fishing was divided into categories representing zero, low, medium and high potential impact on benthos (i.e. F-ratio = [0, 0.01] [0.01, 0.5] [0.5, 1.0] [1.0, 2.0]) and the entire study grid of 24,371 cells was assigned into one of 16 possible categories. Three categories did not exist (i.e. historical= zero with recent=low, medium or high) and some categories were rare (i.e. recent=medium or high; historical=high). The total number of stations planned in the survey was 100 and these were initially distributed in proportion to the number of grid cells in each category to the power of ¼, with some subsequent adjustment of allocation to ensure a minimum of three and to up-weight the key contrast of high historical and zero recent effort.

The second step was to cluster each effort category into a number of groups corresponding to the number of sites to be allocated, where clustering was based on the transformed biological space described above. These cluster groups within effort categories provided the strata for the survey. Within each strata, the medoid grid cell was identified as a candidate most typical site, where the medoid is defined as the cell having the minimum sum of distances (in biological space) to all other cells in the same strata.

Map of initial clustering of the transformed biological space, representing a first-order stratification — number 1-100 indicates medoid grid-cells, which could provide sampling stations representative of the environmental gradients.

A.1.2 Site selection

Site selection principles and rules

Having established the 0.01 degree (1111 m) grid extent for the study and determined which grid cells comprised each of the 100 strata — and the position of the medoid in each strata (as described above) — a series of rules were applied to select the actual sites to be sampled. These rules were established to enable, where possible, comparison with historical scientific trawl data collected in 1963 and 1964 (Masuda et al. 1964; Suzuki et al. 1964) and between 1982 and 1997 by CSIRO (Sainsbury 1987 [which also includes a summary of Japanese and other surveys on the NWS]; Althaus et al. 2006; Fulton et al. 2006). Firstly, if the start position for an Oshoru Maru trawl fell within the strata, it was selected as the site. If there was no corresponding Oshoru Maru site, the midpoint of the closest to medoid RV *Southern Surveyor* 1995 or 1997 trawl that fell within the strata was chosen. Priority was given to these three voyages because they had collected quantitative biomass data on sponge catches in trawls. If no SS1995 or SS1997 voyage trawl fell within the strata, the midpoint of the closest to medoid other CSIRO 1982-1997 voyage trawl for which headline camera photos of benthos were collected at the site (subject to a minimum of 40 photos) were selected. If there were no historic research trawls in the strata then the medoid cell was selected as the site.

By this process, 100 sites were selected for the study. Following this, and immediately prior to the voyage, a feasibility/risk assessment was undertaken by Bridge Officers from the RV *Investigator*

resulting in 6 of the original 100 sites being ruled invalid. These were moved sufficiently to avoid the obstacle by 1 nm but always remained within the same strata. Only one other site was moved. Site 6 was moved 3.4 nm south of its original position to match a historical research trawl (SO1983_04_64) inside the Dampier MP while remaining within the same strata.

Tow transect selection

Where possible, the selected sites were treated as the midpoint of the trawl transect. The primary consideration in trawl and sled transect selection was to remain within strata. The trawl and sled transects were selected blind to the substrate type and bottom topography. Once a transect was selected it was swath mapped at 70–100 kHz using a Kongsberg EM710 multibeam acoustic swath mapper so that any trawl hazards could be assessed before deploying the net. Any sharp changes in depths on hard bottom which indicated ledges greater than 1 m depth change in 10 m transect length were avoided (to minimise chance of net damage and camera loss) by changing the transect bearing. In general, tow direction was dictated by wind direction with most trawl and sled tows done with the ship heading into the wind. Some latitude around this, particularly when winds were light, provided flexibility to avoid hazards (a 1 nm buffer was maintained around pipelines, abandoned well heads and drill holes) and remain in small strata or strata with complex shapes. In a few cases a curved or dog-legged trawl line had to be set to avoid oil and gas infrastructure hazards and remain within strata. All other tows were straight.

A.2 Trawl and sled operations and gear configuration

A.2.1 Trawl design, set up and operation

Trawl headline camera

The trawl headline camera consisted of a Canon M5 mirrorless camera and a Quantum QFlash Trio QF8 flash in waterproof housings mounted on a sturdy acrylic and stainless steel frame. Two laser beams fixed at 25 cm apart were added to provide a scale to all photographs. Photograph interval was set at 4 seconds equating to every 4.6 m at 3 knots. Depth activation/deactivation was programmed into the camera to avoid excessive memory or battery use during net streaming. A GoPro 5 video camera in a Nimar housing rated to 200 m was also fixed to the camera frame. Additional floats were added to the trawl headline to compensate for the mass of the camera.

Trawl set up and operation

The CSIRO Semi V Wing trawl net (McKenna trawl net) was used for all trawls. Trawl navigation lines were established, consisting of a 2 km lead in to an on-bottom position and a 4 km trawl track. On approach to the trawl line, the cod-end was paid out at 5–6 knots and when the net was off the drum the trawl headline camera frame was attached to the trawl headline with shackles along with the Marport sensors. The camera was turned on, the net was then paid out and the trawl doors attached. Depending on water depth, the net was towed with doors fixed until approximately 600 m from the on-bottom position and then with the vessel slowed to 4–5 knots, 50 m of wire was paid out. At a point calculated based on vessel speed and depth, wire was then paid out at a wire:depth ratio of 3.5:1.

Figure showing trawl headline camera

As the net did not have its own USBL system, the following provides an estimate of the position of the doors and net relative to the vessel position. The length of the back chains from boards (15 m), sweep length (90 m) and bridles (45 m) gives a total of 150 m, which when the doors are fully spread equates to approximately 140 m from the centre of the footrope to an imaginary line between the two boards. The position of the doors relative to the ship's position was calculated using Pythagorean Theorem with the depth and amount of wire out as two sides of a right-angle triangle and accocunting for the distance from the stern to the ship's GPS (60 m). No attempt was made to compensate for the spread of the two winch wires which are 9 m apart at the stern and may be as much as 100 m apart at the doors. For example, in 80 m depth with 270 m of wire out, this was a distance of 318 m. When added to the distance between the boards and the net of 140 m (see above), this total distance (458 m in the above example) was recorded in the ship's event logger as the layback distance from the ship's position (ship's GPS) to the centre of the net headline with the boards fully spread. The ship's position was recorded in the ship's event logger at three times on each trawl: the time when the doors touched the bottom, the time the boards were fully spread, and at the time the boards lifted from the bottom. The timing of each of these events was provided using a Marport net monitoring system (see below). The above records make it possible to estimate the position of the boards and the net relative to the ship's position at each important phase of the fishing operation.

With the boards fully spread at approximately 90 m (range 80 m–100 m) and the net width at fishing about 19 m wide (as it bows back from it's full length of 26 m), the effective fishing swept width will be about 90 m for fish and about 19 m for benthic invertebrates. Of the 100 sites trawled, major net tearing occurred at only one site (Site W3), however, the catch was regarded as representative and quantitatively valid. There were compromised trawls (net tangle) at three sites, but two of these were repeated on an adjacent line offset by 200 m leaving only the catch at site W29 regarded as invalid.

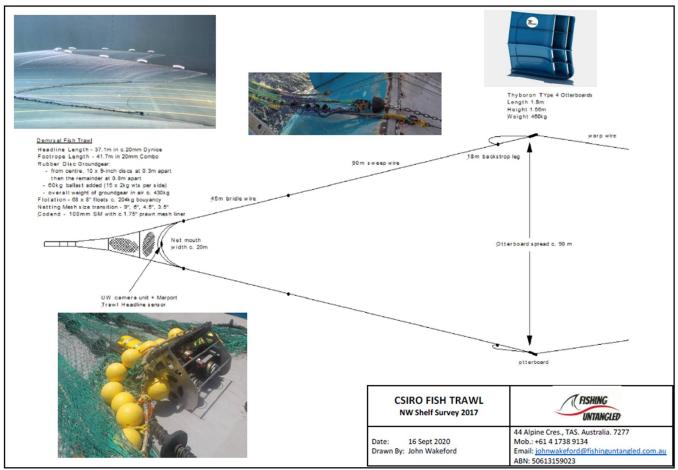


Figure showing configuration of McKenna trawl net as used on IV2017_05

Trawl net monitoring system

A Marport net monitoring system with acoustic sensors on both doors and the centre of the net headline provided a measure of board spread and net headline height above the seabed.

A.2.2 Sled design, set up and operation

The epibenthic sled was the same as used on previous surveys on other vessels in the Kimberley and the Pilbara (e.g. Fry et al. 2008; Pitcher et al. 2016). This consised of a galvanised steel frame with an opening, measuring 1.5 m wide by 0.5 m high, and 20 mm steel mesh base, top and sides with a depth of 1.0 m. A heavy nylon codend (18 mm square mesh, 30 mm stretched) was attached to the back of the sled to collect the sample. The length of the chain bridle on each side was 1.0 m. A GoPro 5 video camera in a Nimar housing rated to 200 m and lighted by a Keldan video light was mounted inside the sled to check that the sled was fishing effectively.

A sled line was plotted central and parallel to the planned trawl line, offset by 100 to ensure the trawl and sled did not overlap each other. The vessel approached the start of the sled line at 2 knots before slowing to 1 knot as the sled was lowered (at 60 m per minute) and maintained this speed for the duration of the tow.

Trawl and sled distance and duration

Trawl transects were 30 minutes in duration at 3 knots speed over ground (usually about 2,800–3,000 m depending on average speed of tow). Sleds were initially run for 200 m at 1 knot, but after only light catches were obtained in the first few sites, this was increased to 400 m at 1 knot.

A.3 Handling of trawl and sled catches, sorting and vouchering

A.3.1 Trawl catch handling and invertebrate sorting and vouchering

The codend was emptied into between one and four 600-800 L "mega bins", containing AQUI-S fish anaesthetic at a concentration of 100–150 mg/L in sea water, on the after deck near the stern ramp and then wheeled under cover of either the sheltered science area or a canvas gazebo on the starboard side of the after deck. Sponges and large fans were separated from fish which were allowed time to anaesthetise (usually about 20 minutes). During this time, sponges and octocoral soft corals were sorted into morphotypes (massive, cup, erect for sponges and whips, fans, dendronephthid) and size categories (< 25 cm, 25–50 cm, 50–100 cm, > 100 cm). Counts and weights of each combination of morphotype and size category were recorded. Weights and counts of some soft coral and sponge species that were particularly abundant in some sites were estimated by averaging numbers and weights of the individuals contained in three of the sorting bins and multiplying this by the total number of full bins. In other cases, where individuals of certain species (e.g. sponge species of Callyspongia, Amphimedon, Chondropsis) were extremely fragmented but still recognisable, the number of individuals was estimated by dividing the total weight by individual weight of complete individuals found among the catch. Any fragments broken from main colonies of sponges and soft corals were weighed together (not separated into morphotypes). Other invertebrates were sorted from the catch then into groups with bulk weights and counts recorded. Cephalopods were anaesthetised in a solution of magnesium chloride mixed at a concentration of 58.5 g/L MgCl₂ in sea water. The taxonomic level of these groups varied according to abundance and the amount of material to be sorted, but as a minimum the following groups were separated: anthozoans, bryozoa, hydroids, colonial ascidians, solitary ascidians, asteroids, ophiuroids, echinoids, crinoids, holothuroids, bivalves, gastropods, squid, cuttlefish, octopus, crabs and shrimps. Vouchers of all crustaceans, echinoderms and molluscs were retained and vouchers of the most abundant sponges and octocorals were retained. In the case of sites which fell within the Dampier and Montebello MPs, an attempt was made to voucher all sponge and octocoral species collected. At other sites, vouchers of selected specimens from unknown species and those selected for chemistry studies were also kept. All counts and weights were entered into the catch database. During the sorting process photographs were taken of the catch. Some of the individual voucher specimens were photographed separately. Most sponges and soft corals separated for vouchering were assigned a unique barcode and photographed individually. A representative fragment of the specimen was preserved in alcohol, but in few cases the whole specimen was preserved frozen. Some specimens or fragments of specimens were retained frozen for biological analyses (e.g. stable isotopes) and linked to the preserved voucher (if any) in the database.

A.3.2 Sled catch handling, sorting and vouchering

Sled catches were much smaller with the codend was emptied into 60 L tubs and baskets on the back deck. Invertebrates were sorted, counted, weighed, photographed and vouchered as described above for trawls. Large sponges and baskets of sponges and other biota were weighed on a motion compensating POLS P-15/S-210 electronic balance (±20 g accuracy) or a Mettler spring balance. Small and individual invertebrates were weighed on a motion compensating Marel M1100 balance (0.5 g accuracy). Fish were only captured by sleds incidentally and were counted and weighed collectively and frozen for later identification and individual vouchering. Some specimens were retained frozen for biological analyses (e.g. stable isotopes). Where captured alive, fish were anaesthetised in concentrations of AQUI-S as described above, but in smaller containers.

A.3.3 Trawl-caught fish and Pharaoh Cuttlefish (Sepia pharaonis)

All trawl-caught fish were sorted to species, identified and a count and bulk weight of each species was obtained using a motion compensating POLS P-15/S-185 electronic balance (±20 g accuracy). Length and weight of up to 100 fish of each species from each trawl catch were taken using motion compensating scales (Marel M1100, ±2 g accuracy) and electronic fish measuring boards which logged directly into the catch database. Once a total of 500 individual length and weight measurements had been taken, the length of an additional 100 fish from each species in each trawl catch were taken. Large elasmobranchs (> 1 m) were released alive after measuring and tissue samples were taken from either the disc margin, dorsal or caudal fin. Individual lengths and weights of Pharaoh Cuttlefish (Sepia pharaonis) were also made. Batches of very small fish species were individually reweighed on the more accurate Marel balance to improve precision of length-weight relationships. For some commercially significant species, additional data from a subset of the total catch on reproductive state (macroscopic scale) were recorded and histological samples taken from Pearl Perch (Glaucosoma buergeri), Coral Trout (Plectropomus maculatus) and Yellow Spot Rock Cod (Epinephelus areolatus). Otoliths (approx. 2500) were retained from over 20 species and guts were also retained from a subset of these fish. Some specimens (or tissue) were retained frozen for molecular analyses and/or other biological analyses (e.g. stable isotopes).

Representatives of the majority of fish species were retained as taxonomic voucher specimens for the CSIRO Australian National Fish Collection (ANFC, Hobart). However, almost all large (> 1 m) sharks and rays landed alive were fin-clipped and released. One large specimen of an unidentified stingray (*Urogymnus* sp.) was retained as a voucher specimen due to doubt about its identity. It was later identified as the Porcupine Ray (*U. asperrimus*).

A.3.4 Trawl caught reptiles

The trawl captured four turtles and 59 sea snakes. Turtles were photographed to enable identification and returned quickly to the water alive. Sea snakes were photographed, measured (total length) and weighed (\pm 20 g accuracy) and a tissue sample taken from the tail for molecular analysis and frozen. Those captured alive were then released (55), those that were dead (four) were retained and frozen.

A.3.5 Collecting and animal ethics permits

Sampling and methods of handling fish and other animals was carried out in accordance with CSIRO Wildlife and Large Animal - Animal Ethics Committee approval 2017_17, the Australian Fisheries Management Authority scientific permit 1003509, Australian Department of National Parks permits E2017-0134 and AU-COM2017-378, and the Western Australian Department of Biodiversity, Conservation and Attractions permit number 08-0011252-1.

A.4 Other sampling and equipment used

A.4.1 Tow video camera

In order to characterise the seabed before and after trawling, a live wire real-time view tow video camera was deployed along the trawl line at some sites. The tow video system consisted of a large tow body with Canon 1DX digital still camera and a Canon C300 video camera in housings rated to 3000 m depth. Lighting for both video and stills was provided by four Deep Sea Power and Light 3150 Sealite video lights. A forward-looking Hitachi video camera, long-range altimeter (Kongsberg Mesotech 1007D) and Druck PMP 5074 pressure sensor assisted the on-board winch operator to keep the camera above the seabed and avoid obstacles ahead of the camera as the vessel moved at 2.5 knots.

A.4.2 Zooplankton sampling

Zooplankton was collected at each site with oblique bongo net tows (50 cm diameter) with 100 μ m mesh nets. The net was towed from 5–10 m off the bottom to the surface. All tows were done at night. Samples for biomass and species composition were preserved in 5% formalin. Samples for stable isotopes were size fractionated onboard (100–150, 150–250, 250–355, 355–1,000, 1,000–3,000 and 3,000 micron) and stored in -20°C.

A.4.3 Grab Sampling

A Smith McIntyre Grab was deployed at each site on the sled line to sample for chl-*a*, stable isotopes and sediment grain size. Three syringe core subsamples of 0–2 cm depth and 2–5 cm depth were taken for chl-*a* analyses and stored in -80°C. One syringe core sample of 0–5 cm depth was taken for stable isotopes and stored in -20°C. A 1 L scoop sample was taken for sediment grain size and stored in -20°C.

A.4.4 CTD and water column sampling

Water samples at 70 sites were collected using a 36 x 12 L Niskin bottle rosette with profiles of conductivity and temperature (Seabird SBE 9/11 dual-sensor unit), PAR (400–700 nm; Biospherical Instruments QCP-2300), fluorescence (Chelsea Instruments AquatrackaTM fluorometer), transmission (Wetlabs C–StarTM), DO (Seabird 43 series optode) and nitrate (Satlanic ISUS sensor) determined concurrently. Water samples at each site were collected from between 3 and 6 nominal depths (surface [~ 3 m], 10 m, 25 m, 50 m, the chlorophyll maximum, where present, and 5 m from bottom) and analysed for DO, salinity, nutrients, chl-*a* (size fractionated), phytoplankton community structure, particulate organic carbon and particulate nitrogen, and environmental DNA.

Replicate 10 mL water samples of unfiltered seawater from each depth were analysed for dissolved inorganic nutrients (nitrate + nitrite [hereafter nitrate], ammonia, phosphate and silicate) by segmented flow injection analysis (Seal AA3HR auto-analyser), with detection by absorbance at specific wavelengths for silicate [CSIRO Method 1 V01 - Molybdate], nitrate [CSIRO Method 3 V01] and phosphate [CSIRO Method 2 V01], and by fluorescence for ammonia (Watson et al., 2005). Detection limits were 0.02 μ M for all inorganic nutrient species, with a standard error of < 0.7%.

One L of seawater from each depth was vacuum-filtered onto a Whatman 25 mm diameter GF/F filter (nominal pore size of 0.7 μ m) and analysed for chl-*a* and phaeopigment (represents the total chl-*a* fraction). A further 2 L of sample was filtered onto a 25 mm diameter, 5 μ m Nitex mesh and analysed for chl-*a* and phaeopigment (the > 5 μ m fraction). Filters and screens were stored in liquid nitrogen until analysis. Pigments were extracted in 90% acetone overnight and analysed using a calibrated Turner Designs model 10AU fluorometer and the acidification technique of Parsons et al. (1989). The < 5 μ m fraction was calculated as the difference between the total and > 5 μ m fractions.

Suspended particulate matter (SPM) samples were collected from surface and chlorophyll maximum or the bottom (if no chlorophyll maximum was present) from each of the CTD casts. Four L of sample water was vacuum-filtered onto a pre-weighed glass fibre filter (47 mm, 0.7 µm, Whatman GF/F) and stored in cool, dark conditions until analysis.

Four L of the surface water sample and chlorophyll maximum or the bottom (if no chlorophyll maximum was present) were filtered onto a 25 mm, 0.7 μ m, Whatman GF/F and stored in liquid nitrogen until analysis. Phytoplankton pigments were extracted and analysed by High Performance Liquid Chromatography (HPLC) with a Waters-Alliance system following the protocol detailed in Hooker et al., (2009).

At each CTD cast site, 3 x 1 L replicates of sample water collected 5 m from the bottom were filtered onto a 47 mm, 0.22 or 0.45 µm Pall membrane filter using a peristaltic pump to collect samples for environmental DNA of fishes. When analysed, this was compared directly with the fish catch species diversity from the demersal trawls.

A.4.5 Turbulence profiles

In order to measure the micro-scale turbulence, the Vertical Micro-structure Profiles (VMP-250) with two shear probes and one FP07 thermistor was deployed at 73 sites. The instrument was powered by an internal polymer lithium-ion battery of nominally 14.8 V and 2.2 Ah capacity. Brushes required to achieve the desired fall rate between 0.4–0.9 m/s. The instrument was turned on by attaching a magnet to the front bulkhead and waiting for confirmation that the LED was 'ON'. The instrument was then lowered to below the sea surface, ensuring enough slack in the deployment rope to allow a free-fall, but ensuring the total rope length was less than the actual depth. The instrument was released and when the rope was taut, the instrument was recovered to the sea surface. This was repeated to obtain three profiles at each site. When the instrument was back on deck, the power was turned off and returned to the workroom, connected to the computer, and data downloaded.

A.5 Analyses of trawl headline camera images

Images of the seabed were selected between the on-bottom and off-bottom times of the trawl. For most trawls this was a distance of about 2 km (covered in 30 minutes). Every fifth image was selected for analysis (1 image/~ 22 m) and the benthic composition and abundance were obtained by scoring points overlaid on each benthic invertebrate visible on the image using TransectMeasure software (www.seagis.com.au). For each image, the type of substrate was recorded and the underlying taxon was identified as per the classification in the table below for each superimposed point, by a trained analyst with access to a range of appropriate reference resources. These classifications and scoring criteria were the same as those used for previous research carried out on the NWS (Sainsbury 1988; 1991). Benthic invertebrates present in the corners of the images and/or not entirely showing on the images were not scored. The output containing all scored points per image was then exported as a text file for each site and all text files were combined into an Excel spreadsheet for comparison. For the analyses presented in this report no attempt was made to correct for variation in frame (image) area caused by differences in the distance of the camera from the bottom and angle of camera view. In the absence of correcting for these factors, the data scored from the images can be used for qualitative comparisons of habitat type as is done in this report rather than guantitative comparisons of biota density. Fish are shown in the table below but were not scored in images.

Category	Description
Boundary	Marked change in either topography or sediment type within the frame
Ridge	A hill in the frame
Furrow	Ditch present
Pothole	Holes present (e.g. large feeding marks of fish)
Flat	Bottom is either flat or only irregularly pockmarked by fish feeding
Rock	Large individual rock(s), different to rubble
Fine_Ripple	Regular ripples: > 4 ripples per 1 m
Large_Ripple	Large ripples: 1–4 ripples per 1 m
V_LG_Ripple	Very large ripples: < 1 ripple per 1 m
Silt	Clouds of sediment kicked up by the gear can be seen in the photo
Fine_Sand	Grains can be distinguished up to the 1 m mark (second row of grid)
Coarse_Sand	Grains can be distinguished up to the 1.5 m mark (third row of grid)
Rubble	Sediment coarser than gravel
LG_Lump	Number of large lump shaped objects; mostly sponge (> 25 cm)
LG_Cup	Number of large cup shaped sponges (> 25 cm)
LG_Branch	Number of large branched/erected sponges (in 3D) not interlacing (> 25 cm)
LG_Flat	Number of large fan shaped or convoluted objects (in 2D); mostly sponge (> 25 cm)
LG_Alcyon	Number of large cauliflower-shaped, fleshy looking organisms (alcyonarians > 25 cm)
LG_Gorgon	Number of large fan shaped or convoluted objects; lacy, brittle looking organisms (gorgonians > 25 cm)
LG_Seapen	Number of large whitish/yellow, often ghostly objects; sometimes shaped like a quill, or a stalk with a ball at the base (> 25 cm)
LG_Whip	Number of large whitish or reddish long 'sticks'; may spiral at the end (> 25 cm)

Apx Table 1 North West Shelf benthic image classification categories. For origin of this classification method see text sections above and Troje and Campbell (1989).

	Number of large stringy objects, ghostly greenish/brown long stemmed objects
LG_Hydro	resembling feathers; often circular scouring at the base (mostly hydroids > 25 cm)
Lo_Hydro	Number of large crinoids; several stick-like arms coming from a central base (> 25
LG_Crino	cm)
LG_Others	Number of large objects not fitting in the rest of the large categories (> 25 cm)
Mini Abund	Abundance of small organisms < 5 cm (Grouping categories ranked 1:1–4 items; 2:
(<5 cm)	5–7 items; 3: 8 or more items)
SM_Lump	Number of small lump shaped objects; mostly sponge (5–25 cm)
SM_Cup	Number of small cup shaped sponges (5–25 cm)
SM_Branch	Number of small branched/erected sponges (in 3D) not interlacing (5–25 cm)
	Number of small fan shaped or convoluted objects (in 2D); mostly sponge (5-25
SM_Flat	cm)
	Number of small cauliflower-shaped, fleshy looking organisms (alcyonarians: 5–25
SM_Alcyon	cm)
	Number of small fan shaped or convoluted objects; lacy, brittle looking organisms
SM_Gorgon	(gorgonians: 5–25 cm)
CN 4 C	Number of small whitish/yellow, often ghostly objects; sometimes shaped like a
SM_Seapen	quill, or a stalk with a ball at the base (5–25 cm)
SM_Whip	Number of small whitish or reddish long 'sticks'; may spiral at the end (5–25 cm)
	Number of small stringy objects, ghostly greenish/brown long stemmed objects resembling feathers; often circular scouring at the base (mostly hydroids: 5–25
SM_Hydro	cm)
Sivi_riyuro	Number of small crinoids; several stick-like arms coming from a central base (5–25
SM_Crino	cm)
SM_Others	Number of small objects not fitting in the rest of the large categories (5–25 cm)
Coral trout	Presence of Coral trout
Lizard	Presence of Lizardfish
Lethrinid	Presence of Lethrinidae species
Lutjanid	Presence of Lutjanidae species
Big red fish	Presence of Big red fish (Lutjanus sebae)
Nemipterid	Presence of Nemipteridae species
Trigg	Presence of Triggerfish
Shark and	
Ray	Presence of Shark(s) and Ray(s)
Squirrel fish	Presence of Squirrelfish
Cuttle	Presence of Cuttlefish
Squid	Presence of Squid

Appendix B Detailed list of operations by date, site and gear type during the RV *Investigator* voyage in 2017 (INV2017_05)

B.1 List of operations

The details of each operation at each site surveyed during the 2017 RV *Investigator* voyage are given in the table below.

Operation	Station name	Date	Time (UTC)	Туре	Depth (m)	Equipment
1	0	11-Oct-17	6:08	Catch	50	McKenna demersal fish trawl nets
2	OM20	11-Oct-17	13:09	Catch	50	McKenna demersal fish trawl nets
3	W74	12-Oct-17	4:48	Catch	85	McKenna demersal fish trawl nets
4	W74	12-Oct-17	6:28	CTD Cast	76	CTD - Seabird 911 with 36 Bottle Rosette
5	W74	12-Oct-17	6:51	Turbulence probe	76	VMP Microstructure profiler
6	W88	12-Oct-17	8:54	Catch	84	McKenna demersal fish trawl nets
7	W67	12-Oct-17	11:30	Benthos	74	WHOI epibenthic Biological sled
8	W67	12-Oct-17	12:52	Sediment Grab	74	Smith McIntyre grab
9	W67	12-Oct-17	13:18	Plankton		Bongo Nets
10	W57	12-0ct-17	14:44	Benthos	76	WHOI epibenthic Biological sled
11	W57	12-0ct-17	15:28	Sediment Grab	76	Smith McIntyre grab
12	W88	12-Oct-17	17:01	Benthos	80	WHOI epibenthic Biological sled
13	W88	12-Oct-17	17:47	Sediment Grab	80	Smith McIntyre grab
14	W74	12-Oct-17	18:41	Benthos	82	WHOI epibenthic Biological sled
15	W74	12-Oct-17	19:15	Sediment Grab	80	Smith McIntyre grab
16	W74	12-Oct-17	19:47	Plankton		Bongo Nets
17	W67	12-Oct-17	21:48	Catch		McKenna demersal fish trawl nets
18	W67	13-Oct-17	0:00	CTD Cast	73	CTD - Seabird 911 with 36 Bottle Rosette
19	W67	13-Oct-17	0:35	Turbulence probe	73	VMP Microstructure profiler
20	W57	13-Oct-17	2:00	Catch	76	McKenna demersal fish trawl nets
21	W57	13-Oct-17	3:12	CTD Cast	74	CTD - Seabird 911 with 36 Bottle Rosette
22	W57	13-Oct-17	3:28	Turbulence probe	74	VMP Microstructure profiler
23	W36	13-Oct-17	5:45	Catch	73	McKenna demersal fish trawl nets
24	W25	13-Oct-17	8:55	Catch		McKenna demersal fish trawl nets
25	W25	13-Oct-17	10:08	CTD Cast		CTD - Seabird 911 with 36 Bottle Rosette
26	W25	13-Oct-17	10:30	Turbulence probe	43	VMP Microstructure profiler
27	W25	13-Oct-17	11:01	Benthos	52	WHOI epibenthic Biological sled
28	W25	13-Oct-17	11:32	Sediment Grab		Smith McIntyre grab
29	W25	13-Oct-17	12:09	Plankton		Bongo Nets
30	W36	13-Oct-17	13:50	Plankton		Bongo Nets
31	W36	13-Oct-17	14:15	Benthos		WHOI epibenthic Biological sled
32	W36	13-Oct-17	14:44	Sediment Grab		Smith McIntyre grab
33	W24	13-Oct-17	16:58	Benthos		WHOI epibenthic Biological sled
34	W24	13-Oct-17	17:47	Sediment Grab		Smith McIntyre grab
35	W24	13-Oct-17	17:59	Plankton		Bongo Nets
36	W11	13-Oct-17	18:40	Plankton	39	Bongo Nets

Apx Table 2 Sampling gear and instrument deployments undertaken on the RV *Investigator* voyage INV2017_05.

37	W11	13-Oct-17	19:30	Benthos	36	WHOI epibenthic Biological sled
38	W11	13-Oct-17	21:01	Sediment Grab	36	Smith McIntyre grab
39	W11	13-Oct-17	22:00	Catch	38	McKenna demersal fish trawl nets
40	W11	14-Oct-17	0:15	CTD Cast	37	CTD - Seabird 911 with 36 Bottle Rosette
41	W11	14-Oct-17	0:45	Turbulence probe	35	VMP Microstructure profiler
42	W24	14-Oct-17	0:56	Catch		McKenna demersal fish trawl nets
43	W23	14-Oct-17	5:03	Catch	63	McKenna demersal fish trawl nets
43	W56	14-Oct-17 14-Oct-17	8:04	Catch	60	McKenna demersal fish trawl nets
44	W56	14-Oct-17 14-Oct-17	9:44	CTD Cast	00	CTD - Seabird 911 with 36 Bottle Rosette
45	W56	14-0ct-17 14-0ct-17	10:13	Turbulence probe		VMP Microstructure profiler
40	W56			Sediment Grab	(0	Smith McIntyre grab
-		14-Oct-17	10:24		60	, ,
48	W56	14-Oct-17	10:33	Plankton		Bongo Nets
49	W56	14-Oct-17	11:04	Benthos		WHOI epibenthic Biological sled
50	W21	14-Oct-17	13:44	Benthos		WHOI epibenthic Biological sled
51	W21	14-Oct-17	14:19	Sediment Grab		Smith McIntyre grab
52	W21	14-Oct-17	14:37	Plankton		Bongo Nets
53	W52	14-Oct-17	16:12	Plankton		Bongo Nets
54	W52	14-Oct-17	16:52	Benthos		WHOI epibenthic Biological sled
55	W52	14-Oct-17	17:14	Sediment Grab		Smith McIntyre grab
56	W54	14-Oct-17	18:18	Benthos	70	WHOI epibenthic Biological sled
57	W54	14-Oct-17	19:00	Sediment Grab	70	Smith McIntyre grab
58	W54	14-Oct-17	19:22	Plankton	70	Bongo Nets
59	W54	14-Oct-17	21:54	Catch	70	McKenna demersal fish trawl nets
60	W21	15-Oct-17	0:49	Catch	60	McKenna demersal fish trawl nets
61	W21	15-Oct-17	2:12	CTD Cast	55	CTD - Seabird 911 with 36 Bottle Rosette
62	W21	15-Oct-17	2:52	Turbulence probe	55	VMP Microstructure profiler
63	W52	15-Oct-17	4:22	Catch	67	McKenna demersal fish trawl nets
64	W52	15-Oct-17 15-Oct-17	5:41	CTD Cast	07	CTD - Seabird 911 with 36 Bottle Rosette
65	W52	15-Oct-17 15-Oct-17	5:57			VMP Microstructure profiler
66	W52	15-0ct-17 15-0ct-17	6:59	Turbulence probe Catch		McKenna demersal fish trawl nets
	W53 W53					CTD - Seabird 911 with 36 Bottle Rosette
67		15-Oct-17	8:38	CTD Cast		
68	W53	15-Oct-17	9:01	Turbulence probe		VMP Microstructure profiler
69	W53	15-Oct-17	9:39	Sediment Grab	75	Smith McIntyre grab
70	W53	15-Oct-17	9:50	Benthos		WHOI epibenthic Biological sled
71	W53	15-Oct-17	10:43	Plankton		Bongo Nets
72	W55	15-Oct-17	11:00	Plankton		Bongo Nets
73	W55	15-Oct-17	11:44	Benthos		WHOI epibenthic Biological sled
74	W55	15-Oct-17	12:15	Sediment Grab		Smith McIntyre grab
75	W33	15-Oct-17	15:02	Benthos		WHOI epibenthic Biological sled
76	W33	15-Oct-17	15:45	Sediment Grab		Smith McIntyre grab
77	W33	15-Oct-17	16:00	Plankton		Bongo Nets
78	W33	15-Oct-17	16:39	CTD Cast	1	CTD - Seabird 911 with 36 Bottle Rosette
79	W35	15-Oct-17	18:33	Plankton	90	Bongo Nets
80	W35	15-Oct-17	19:00	Benthos	92	WHOI epibenthic Biological sled
81	W35	15-Oct-17	20:16	Sediment Grab	91	Smith McIntyre grab
82	W35	15-Oct-17	20:37	Benthos	92	WHOI epibenthic Biological sled
83	W35	15-Oct-17	21:05	Plankton	91	Bongo Nets
84	W35	15-Oct-17 15-Oct-17	21:03	Catch	1164	McKenna demersal fish trawl nets
85	W33	16-Oct-17	1:01	Catch	95	McKenna demersal fish trawl nets
86	W33	16-Oct-17 16-Oct-17	1:57	CTD Cast	94	CTD - Seabird 911 with 36 Bottle Rosette
80	W33 W33	16-0ct-17 16-0ct-17			94	
		16-Oct-17 16-Oct-17	2:44	Turbulence probe		VMP Microstructure profiler McKenna demersal fish trawl nets
88	W39		4:11	Catch	46	
89	W39	16-Oct-17	5:32	CTD Cast	86	CTD - Seabird 911 with 36 Bottle Rosette
90	W39	16-Oct-17	5:59	Turbulence probe	86	VMP Microstructure profiler
91	W55	16-Oct-17	7:00	Catch	70	McKenna demersal fish trawl nets
92	W55	16-Oct-17	8:20	CTD Cast		CTD - Seabird 911 with 36 Bottle Rosette
93	W55	16-Oct-17	8:48	Turbulence probe		VMP Microstructure profiler
94	W66	16-Oct-17	11:14	Benthos		WHOI epibenthic Biological sled
95	W66	16-Oct-17	12:17	Sediment Grab		Smith McIntyre grab

96	W66	16-Oct-17	12:41	Plankton	İ	Bongo Nets
97	W39	16-Oct-17	15:15	Plankton		Bongo Nets
98	W39	16-Oct-17	15:32	Benthos		WHOI epibenthic Biological sled
99	W39	16-Oct-17	16:18	Sediment Grab		Smith McIntyre grab
100	W34	16-Oct-17	17:51	Benthos	-	WHOI epibenthic Biological sled
100	W34	16-Oct-17 16-Oct-17	18:25	Sediment Grab		Smith McIntyre grab
101	W34	16-Oct-17 16-Oct-17	18:35	Plankton		Bongo Nets
	W34			CTD Cast		CTD - Seabird 911 with 36 Bottle Rosette
103		16-Oct-17	19:59			
104	W73	16-Oct-17	20:00	Plankton	86	Bongo Nets
105	W73	16-Oct-17	21:11	Benthos	80	WHOI epibenthic Biological sled
106	W73	16-Oct-17	21:55	Sediment Grab	79	Smith McIntyre grab
107	W73	16-Oct-17	22:44	Catch Failed	60	McKenna demersal fish trawl nets
108	W73	17-Oct-17	0:26	Catch	86	McKenna demersal fish trawl nets
109	W34	17-Oct-17	1:52	Catch	89	McKenna demersal fish trawl nets
110	W66	17-Oct-17	5:15	Catch	75	McKenna demersal fish trawl nets
111	W65	17-Oct-17	8:11	Catch	61	McKenna demersal fish trawl nets
112	W65	17-Oct-17	10:02	Turbulence probe		VMP Microstructure profiler
113	W65	17-Oct-17	10:14	CTD Cast		CTD - Seabird 911 with 36 Bottle Rosette
114	W65	17-Oct-17	11:06	Benthos		WHOI epibenthic Biological sled
115	W65	17-Oct-17	11:26	Sediment Grab		Smith McIntyre grab
115	W65	17-Oct-17	11:55	Plankton		Bongo Nets
110	W03	17-Oct-17 17-Oct-17	14:24	Plankton		Bongo Nets
117	W22	17-Oct-17 17-Oct-17	14:53	Benthos		WHOI epibenthic Biological sled
110	W22	17-Oct-17	14:53	Sediment Grab		
					-	Smith McIntyre grab
120	W9	17-Oct-17	17:30	Benthos		WHOI epibenthic Biological sled
121	W9	17-Oct-17	18:07	Sediment Grab		Smith McIntyre grab
122	W9	17-Oct-17	18:19	Plankton		Bongo Nets
123	W10	17-Oct-17	19:54	Plankton	30	Bongo Nets
124	W10	17-Oct-17	20:08	Benthos	31	WHOI epibenthic Biological sled
125	W10	17-Oct-17	20:38	Sediment Grab	32	Smith McIntyre grab
126	W10	17-Oct-17	22:02	Catch	33	McKenna demersal fish trawl nets
127	W9	18-Oct-17	0:33	Catch	39	McKenna demersal fish trawl nets
128	W9	18-Oct-17	1:36	CTD Cast	40	CTD - Seabird 911 with 36 Bottle Rosette
129	W9	18-Oct-17	1:53	Turbulence probe	40	VMP Microstructure profiler
130	W22	18-Oct-17	4:07	Catch	50	McKenna demersal fish trawl nets
131	W22	18-Oct-17	4:58	CTD Cast	49	CTD - Seabird 911 with 36 Bottle Rosette
132	W22	18-Oct-17	5:34	Turbulence probe	57	VMP Microstructure profiler
133	W45	18-Oct-17	7:45	Catch	57	McKenna demersal fish trawl nets
133	W45	18-Oct-17	8:57	CTD Cast	57	CTD - Seabird 911 with 36 Bottle Rosette
134	W45	18-Oct-17 18-Oct-17	9:20	Turbulence probe	57	VMP Microstructure profiler
				1		
136	W45	18-Oct-17	9:56	Benthos	65	WHOI epibenthic Biological sled
137	W45	18-Oct-17	10:26	Sediment Grab	61	Smith McIntyre grab
138	W45	18-Oct-17	11:03	Plankton	61	Bongo Nets
139	W42	18-Oct-17	12:17	Plankton	61	Bongo Nets
140	W42	18-Oct-17	12:42	Benthos	61	WHOI epibenthic Biological sled
141	W42	18-Oct-17	13:18	Sediment Grab	62	Smith McIntyre grab
142	W64	18-Oct-17	15:25	Benthos	71	WHOI epibenthic Biological sled
143	W64	18-Oct-17	15:54	Sediment Grab	70	Smith McIntyre grab
144	W64	18-Oct-17	16:02	Plankton	57	Bongo Nets
145	W30	18-Oct-17	17:57	Plankton	56	Bongo Nets
146	W30	18-Oct-17	18:26	Benthos	56	WHOI epibenthic Biological sled
147	W30	18-Oct-17	19:09	Sediment Grab	56	Smith McIntyre grab
148	W30	18-Oct-17	19:13	CTD Cast	56	CTD - Seabird 911 with 36 Bottle Rosette
140	W42	18-Oct-17	21:46	Catch	59	McKenna demersal fish trawl nets
147	W64	19-Oct-17	1:15	Catch	70	McKenna demersal fish trawl nets
151	W64	19-Oct-17	2:28	CTD Cast	70	CTD - Seabird 911 with 36 Bottle Rosette
152	W64	19-Oct-17	2:49	Turbulence probe	69	VMP Microstructure profiler
153	W30	19-Oct-17	4:15	Catch	57	McKenna demersal fish trawl nets
154	W30	19-Oct-17	5:26	CTD Cast	57	CTD - Seabird 911 with 36 Bottle Rosette

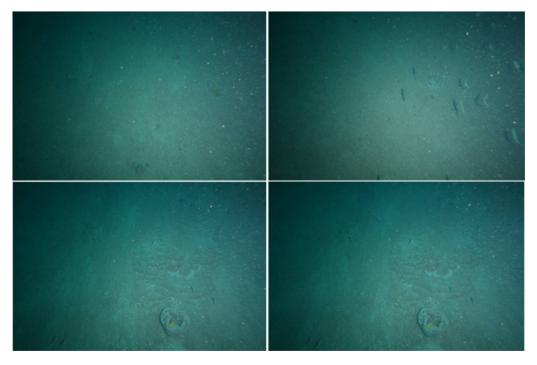
155	W30	19-Oct-17	5:59	Turbulence probe	56	VMP Microstructure profiler
156	W7	19-Oct-17	6:03	Catch	44	McKenna demersal fish trawl nets
157	W7	19-Oct-17	8:41	CTD Cast	44	CTD - Seabird 911 with 36 Bottle Rosette
158	W7	19-Oct-17	9:02	Turbulence probe	44	VMP Microstructure profiler
159	W7	19-Oct-17	10:36	Benthos	46	WHOI epibenthic Biological sled
160	W7	19-Oct-17	10:55	Sediment Grab	46	Smith McIntyre grab
160	W7	19-Oct-17	11:10	Plankton	46	Bongo Nets
161	W4	19-Oct-17	13:23	Plankton	34	Bongo Nets
162	W4	19-0ct-17 19-0ct-17	13:23	Benthos	34	WHOI epibenthic Biological sled
	W4				32	
164		19-Oct-17	14:43	Sediment Grab		Smith McIntyre grab
165	W6	19-Oct-17	16:49	Benthos	30	WHOI epibenthic Biological sled
166	W6	19-Oct-17	17:13	Sediment Grab	30	Smith McIntyre grab
167	W6	19-Oct-17	17:32	Plankton	30	Bongo Nets
168	W5	19-Oct-17	19:35	Plankton	38	Bongo Nets
169	W5	19-Oct-17	20:12	Benthos	38	WHOI epibenthic Biological sled
170	W5	19-Oct-17	20:41	Sediment Grab	37	Smith McIntyre grab
171	W5	19-Oct-17	21:58	Catch	65	McKenna demersal fish trawl nets
172	W6	20-Oct-17	0:46	CTD Cast	31	CTD - Seabird 911 with 36 Bottle Rosette
173	W6	20-Oct-17	1:02	Turbulence probe	31	VMP Microstructure profiler
174	W6	20-Oct-17	1:40	Catch	64	McKenna demersal fish trawl nets
175	W4	20-Oct-17	4:19	CTD Cast	33	CTD - Seabird 911 with 36 Bottle Rosette
176	W4	20-Oct-17	4:35	Turbulence probe	33	VMP Microstructure profiler
177	W4	20-Oct-17	5:24	Catch	57	McKenna demersal fish trawl nets
178	W8	20-Oct-17	8:14	CTD Cast	35	CTD - Seabird 911 with 36 Bottle Rosette
179	W8	20-Oct-17	8:27	Turbulence probe	35	VMP Microstructure profiler
180	W71	20-Oct-17	11:12	Plankton	63	Bongo Nets
181	W71	20-Oct-17	11:44	Benthos	71	WHOI epibenthic Biological sled
182	W71	20-Oct-17	12:07	Sediment Grab	71	Smith McIntyre grab
183	W87	20-Oct-17	14:08	Benthos	71	WHOI epibenthic Biological sled
184	W87	20-Oct-17	14:36	Sediment Grab	71	Smith McIntyre grab
185	W87	20-Oct-17	15:02	Plankton	71	Bongo Nets
186	W63	20-Oct-17	16:17	Plankton	75	Bongo Nets
180	W63	20-Oct-17	16:30	Benthos	73	WHOI epibenthic Biological sled
188	W63	20-Oct-17	17:14	Sediment Grab	74	Smith McIntyre grab
189	W03	20-Oct-17 20-Oct-17	17:14	Benthos	59	WHOI epibenthic Biological sled
189	W72	20-0ct-17 20-0ct-17	18:44	Sediment Grab	59	Smith McIntyre grab
191	W72	20-Oct-17	19:31	Plankton	58	Bongo Nets
192	W71	20-Oct-17	21:45	Catch	62	McKenna demersal fish trawl nets
193	W87	20-Oct-17	23:44	Catch	56	McKenna demersal fish trawl nets
194	W87	21-Oct-17	2:31	CTD Cast	70	CTD - Seabird 911 with 36 Bottle Rosette
195	W63	21-Oct-17	4:38	Catch	73	McKenna demersal fish trawl nets
196	W63	21-Oct-17	5:42	CTD Cast	73	CTD - Seabird 911 with 36 Bottle Rosette
197	W63	21-Oct-17	6:07	Turbulence probe	72	VMP Microstructure profiler
198	W72	21-Oct-17	7:54	Catch	47	McKenna demersal fish trawl nets
199	W72	21-Oct-17	8:58	CTD Cast	55	CTD - Seabird 911 with 36 Bottle Rosette
200	W72	21-Oct-17	9:18	Turbulence probe	59	VMP Microstructure profiler
201	W60	21-Oct-17	11:25	Benthos	66	WHOI epibenthic Biological sled
202	W60	21-Oct-17	11:48	Sediment Grab	66	Smith McIntyre grab
203	W60	21-Oct-17	12:11	Turbulence probe	65	VMP Microstructure profiler
204	W60	21-Oct-17	12:27	Plankton	65	Bongo Nets
205	W76	21-Oct-17	13:25	Plankton	60	Bongo Nets
206	W76	21-Oct-17	13:48	Benthos	61	WHOI epibenthic Biological sled
207	W76	21-Oct-17	14:05	Turbulence probe	62	VMP Microstructure profiler
208	W76	21-Oct-17	14:25	Sediment Grab	62	Smith McIntyre grab
209	W86	21-Oct-17	16:06	Benthos	67	WHOI epibenthic Biological sled
210	W86	21-Oct-17	16:28	Sediment Grab	67	Smith McIntyre grab
210	W86	21-Oct-17	16:20	Turbulence probe	68	VMP Microstructure profiler
211	W86	21-Oct-17	16:59	Plankton	68	Bongo Nets
212	W85	21-Oct-17 21-Oct-17	18:57	Plankton	63	Bongo Nets
213	**05	21 001-17	10.37	riankton	03	Dongo Noto

214	W85	21-Oct-17	19:14	Turbulence probe	59	VMP Microstructure profiler
215	W85	21-0ct-17	19:33	Benthos	62	WHOI epibenthic Biological sled
216	W85	21-0ct-17	20:17	Sediment Grab	64	Smith McIntyre grab
210	W85	21-Oct-17	20:29	CTD Cast	64	CTD - Seabird 911 with 36 Bottle Rosette
217	W85	21-Oct-17	20:27	Turbulence probe	64	VMP Microstructure profiler
210	W85	21-Oct-17	22:02	Catch	47	McKenna demersal fish trawl nets
217	W85	21-Oct-17 21-Oct-17	22:02	CTD Cast	64	CTD - Seabird 911 with 36 Bottle Rosette
	W85					
221		22-Oct-17	0:02	Turbulence probe	64	VMP Microstructure profiler
222	W86	22-Oct-17	2:06	Catch	49	McKenna demersal fish trawl nets
223	W76	22-Oct-17	4:08	CTD Cast	60	CTD - Seabird 911 with 36 Bottle Rosette
224	W76	22-Oct-17	4:43	Turbulence probe	60	VMP Microstructure profiler
225	W76	22-Oct-17	4:43	CTD Cast	60	CTD - Seabird 911 with 36 Bottle Rosette
226	W76	22-Oct-17	5:06	Catch	51	McKenna demersal fish trawl nets
227	W60	22-Oct-17	7:50	Catch	54	McKenna demersal fish trawl nets
228	W60	22-Oct-17	9:05	CTD Cast	61	CTD - Seabird 911 with 36 Bottle Rosette
229	W60	22-Oct-17	9:49	Turbulence probe	61	VMP Microstructure profiler
230	W69	22-Oct-17	11:44	Benthos	54	WHOI epibenthic Biological sled
231	W69	22-Oct-17	12:13	Sediment Grab	58	Smith McIntyre grab
232	W69	22-Oct-17	12:14	Turbulence probe	58	VMP Microstructure profiler
233	W69	22-Oct-17	12:35	Plankton	55	Bongo Nets
234	W44	22-Oct-17	14:14	Plankton	63	Bongo Nets
235	W44	22-Oct-17	14:25	Benthos	63	WHOI epibenthic Biological sled
236	W44	22-0ct-17	14:51	Turbulence probe	64	VMP Microstructure profiler
230	W44	22-0ct-17	15:08	Sediment Grab	64	Smith McIntyre grab
237	W77	22-Oct-17 22-Oct-17	16:43	Benthos	66	WHOI epibenthic Biological sled
238	W77	22-0ct-17 22-0ct-17	10:43	Sediment Grab	66	
						Smith McIntyre grab
240	W77	22-Oct-17	17:26	Turbulence probe	66	VMP Microstructure profiler
241	W77	22-Oct-17	17:41	Plankton	65	Bongo Nets
242	W40	22-Oct-17	18:54	Plankton	66	Bongo Nets
243	W40	22-Oct-17	19:16	Benthos	65	WHOI epibenthic Biological sled
244	W40	22-Oct-17	19:44	Sediment Grab	65	Smith McIntyre grab
245	W40	22-Oct-17	19:51	Turbulence probe	65	VMP Microstructure profiler
246	W69	22-Oct-17	22:07	Catch	54	McKenna demersal fish trawl nets
247	W69	22-Oct-17	23:49	CTD Cast	60	CTD - Seabird 911 with 36 Bottle Rosette
248	W69	23-Oct-17	0:27	Turbulence probe	60	VMP Microstructure profiler
249	W44	23-Oct-17	1:48	Catch	55	McKenna demersal fish trawl nets
250	W44	23-Oct-17	2:47	CTD Cast	66	CTD - Seabird 911 with 36 Bottle Rosette
251	W44	23-Oct-17	3:19	Turbulence probe	66	VMP Microstructure profiler
252	W77	23-Oct-17	4:08	Catch	55	McKenna demersal fish trawl nets
253	W77	23-Oct-17	5:17	CTD Cast	66	CTD - Seabird 911 with 36 Bottle Rosette
253	W77	23-Oct-17	5:46	Turbulence probe	66	VMP Microstructure profiler
255	W92	23-Oct-17	10:31	Turbulence probe	62	VMP Microstructure profiler
	W92			-		Γ
256	W92 W92	23-Oct-17	11:01	Benthos Sodimont Crob	62	WHOI epibenthic Biological sled
257		23-Oct-17	11:22	Sediment Grab	62	Smith McIntyre grab
258	W92	23-Oct-17	11:43	Plankton	62	Bongo Nets
259	W62	23-Oct-17	13:26	Plankton	59	Bongo Nets
260	W62	23-Oct-17	13:51	Benthos	59	WHOI epibenthic Biological sled
261	W62	23-Oct-17	14:10	Sediment Grab	59	Smith McIntyre grab
262	W62	23-Oct-17	14:23	Turbulence probe	59	VMP Microstructure profiler
263	W20	23-Oct-17	16:34	Benthos	49	WHOI epibenthic Biological sled
264	W20	23-Oct-17	17:02	Sediment Grab	49	Smith McIntyre grab
265	W20	23-Oct-17	17:09	Turbulence probe	49	VMP Microstructure profiler
266	W20	23-Oct-17	17:26	Plankton	49	Bongo Nets
267	W8	23-Oct-17	18:51	Turbulence probe	37	VMP Microstructure profiler
268	W8	23-Oct-17	19:01	Plankton	37	Bongo Nets
269	W8	23-Oct-17	19:19	Benthos	37	WHOI epibenthic Biological sled
207	W8	23-Oct-17	19:42	Sediment Grab	36	Smith McIntyre grab
270	W8	23-Oct-17	21:27	Catch	30	McKenna demersal fish trawl nets
271	W20	23-Oct-17 24-Oct-17	0:18	Catch	46	McKenna demersal fish trawl nets
212	VV20	27-061-17	0.10	Gaton	40	

273	W20	24-Oct-17	1:50	CTD Cast	46	CTD - Seabird 911 with 36 Bottle Rosette
273	W20	24-Oct-17	2:10	Turbulence probe	47	VMP Microstructure profiler
275	W62	24-Oct-17	3:31	Catch	58	McKenna demersal fish trawl nets
276	W62	24-Oct-17	4:39	CTD Cast	58	CTD - Seabird 911 with 36 Bottle Rosette
270	W62	24-Oct-17	5:14	Turbulence probe	58	VMP Microstructure profiler
278	W92	24-Oct-17	6:36	Catch	64	McKenna demersal fish trawl nets
270	W92	24-Oct-17	7:44	CTD Cast	62	CTD - Seabird 911 with 36 Bottle Rosette
279	W92	24-0ct-17 24-0ct-17	8:15	Turbulence probe	62	
	W84			Benthos		VMP Microstructure profiler WHOI epibenthic Biological sled
281		24-Oct-17	10:41		56	
282	W84	24-Oct-17	11:18	Sediment Grab	56	Smith McIntyre grab
283	W84	24-Oct-17	11:30	Plankton	56	Bongo Nets
284	W90	24-Oct-17	12:27	Plankton	58	Bongo Nets
285	W90	24-Oct-17	12:38	Benthos	56	WHOI epibenthic Biological sled
286	W90	24-Oct-17	13:21	Sediment Grab	56	Smith McIntyre grab
287	W100	24-Oct-17	15:10	Benthos	56	WHOI epibenthic Biological sled
288	W100	24-Oct-17	15:37	Sediment Grab	57	Smith McIntyre grab
289	W100	24-Oct-17	15:49	Plankton	57	Bongo Nets
290	W19	24-Oct-17	17:52	Plankton	44	Bongo Nets
291	W19	24-Oct-17	18:01	Benthos	44	WHOI epibenthic Biological sled
292	W19	24-Oct-17	18:36	Sediment Grab	43	Smith McIntyre grab
293	W51	24-Oct-17	20:20	Benthos	52	WHOI epibenthic Biological sled
294	W51	24-Oct-17	21:19	Plankton	51	Bongo Nets
295	W51	24-Oct-17	21:21	Sediment Grab	52	Smith McIntyre grab
296	W51	24-Oct-17	21:56	Catch	51	McKenna demersal fish trawl nets
297	W19	25-Oct-17	0:16	Catch	40	McKenna demersal fish trawl nets
298	W100	25-Oct-17	4:52	Catch	56	McKenna demersal fish trawl nets
299	W100	25-Oct-17	6:43	CTD Cast	56	CTD - Seabird 911 with 36 Bottle Rosette
300	W100	25-Oct-17	7:13	Turbulence probe	56	VMP Microstructure profiler
300	W100	25-Oct-17 25-Oct-17	8:03	Catch	57	McKenna demersal fish trawl nets
301	W84	25-0ct-17 25-0ct-17	10:17	CTD Cast	57	CTD - Seabird 911 with 36 Bottle Rosette
302	W84	25-Oct-17 25-Oct-17			55	VMP Microstructure profiler
	W91		10:22 12:20	Turbulence probe		
304		25-Oct-17		Benthos	62	WHOI epibenthic Biological sled
305	W91	25-Oct-17	12:46	Sediment Grab	63	Smith McIntyre grab
306	W91	25-Oct-17	13:08	Turbulence probe	63	VMP Microstructure profiler
307	W91	25-Oct-17	13:23	Plankton	63	Bongo Nets
308	W91	25-Oct-17	14:05	Video	63	Deep Towed Camera System
309	W93	25-Oct-17	16:06	Plankton	66	Bongo Nets
310	W93	25-Oct-17	16:38	Benthos	66	WHOI epibenthic Biological sled
311	W93	25-Oct-17	16:58	Sediment Grab	66	Smith McIntyre grab
312	W93	25-Oct-17	17:13	Turbulence probe	66	VMP Microstructure profiler
313	W96	25-Oct-17	18:36	Benthos	64	WHOI epibenthic Biological sled
314	W96	25-Oct-17	19:07	Sediment Grab	62	Smith McIntyre grab
315	W96	25-Oct-17	19:31	Turbulence probe	62	VMP Microstructure profiler
316	W96	25-Oct-17	19:31	Plankton	62	Bongo Nets
317	W95	25-Oct-17	21:09	Plankton	61	Bongo Nets
318	W95	25-Oct-17	21:14	Benthos	61	WHOI epibenthic Biological sled
319	W95	25-Oct-17	22:27	Catch	59	McKenna demersal fish trawl nets
320	W95	26-Oct-17	0:07	CTD Cast	62	CTD - Seabird 911 with 36 Bottle Rosette
323	W95	26-Oct-17	0:31	Turbulence probe	62	VMP Microstructure profiler
322	W95	26-Oct-17	0:48	Sediment Grab	61	Smith McIntyre grab
322	W91	26-Oct-17	1:32	Catch	62	McKenna demersal fish trawl nets
323	W91	26-Oct-17	2:51	Turbulence probe	62	VMP Microstructure profiler
324	W93	26-Oct-17 26-Oct-17	4:09	Catch	80	McKenna demersal fish trawl nets
325	W93 W40	26-0ct-17 26-0ct-17	6:39	Catch	80 79	McKenna demersal fish trawl nets
327	W40	26-Oct-17	8:11	CTD Cast	68	CTD - Seabird 911 with 36 Bottle Rosette
328	W40	26-Oct-17	8:25	Turbulence probe	67	VMP Microstructure profiler
329	W70	26-Oct-17	10:55	Benthos	58	WHOI epibenthic Biological sled
	W70	26-Oct-17	11:26	Sediment Grab	56	Smith McIntyre grab
330 331	W70	26-Oct-17	11:40	Plankton	57	Bongo Nets

332	W61	26-Oct-17	14:15	Benthos	64	WHOI epibenthic Biological sled
332	W61	26-Oct-17	14:39	Sediment Grab	64	Smith McIntyre grab
333	W61	26-Oct-17	14:37	Plankton	65	Bongo Nets
334	W01 W28	26-Oct-17 26-Oct-17	14:47	Plankton	64	Bongo Nets
335	W28	26-Oct-17	16:37	Benthos	64	WHOI epibenthic Biological sled
330	W28	26-Oct-17	17:08	Sediment Grab	64	Smith McIntyre grab
337	W28	26-Oct-17	17:00	Benthos	63	WHOI epibenthic Biological sled
330	W41					
	W41	26-Oct-17	18:43	Sediment Grab Plankton	63	Smith McIntyre grab
340		26-Oct-17	18:55		63	Bongo Nets
341	W31	26-Oct-17	20:52	Benthos	57	WHOI epibenthic Biological sled
342	W31	26-Oct-17	21:21	Sediment Grab	57	Smith McIntyre grab
343	W31	26-Oct-17	21:49	Catch	80	McKenna demersal fish trawl nets
344	W41	27-Oct-17	0:14	Catch	80	McKenna demersal fish trawl nets
345	W41	27-Oct-17	1:29	CTD Cast	62	CTD - Seabird 911 with 36 Bottle Rosette
346	W41	27-Oct-17	1:50	Turbulence probe	62	VMP Microstructure profiler
347	W28	27-Oct-17	2:42	Catch	80	McKenna demersal fish trawl nets
348	W28	27-Oct-17	4:02	CTD Cast	64	CTD - Seabird 911 with 36 Bottle Rosette
349	W28	27-Oct-17	4:35	Turbulence probe	65	VMP Microstructure profiler
350	W61	27-Oct-17	5:00	Catch	81	McKenna demersal fish trawl nets
351	W61	27-Oct-17	6:15	CTD Cast	66	CTD - Seabird 911 with 36 Bottle Rosette
352	W61	27-Oct-17	6:45	Turbulence probe	66	VMP Microstructure profiler
353	W12	27-Oct-17	11:55	Benthos	104	WHOI epibenthic Biological sled
354	W12	27-Oct-17	12:43	Sediment Grab	100	Smith McIntyre grab
355	W12	27-Oct-17	12:55	Turbulence probe	100	VMP Microstructure profiler
356	W12	27-Oct-17	13:21	Plankton	100	Bongo Nets
357	W26	27-Oct-17	14:55	Plankton	115	Bongo Nets
358	W26	27-Oct-17	15:24	Benthos	103	WHOI epibenthic Biological sled
359	W26	27-Oct-17	15:57	Sediment Grab	83	Smith McIntyre grab
360	W26	27-Oct-17	16:04	Turbulence probe	94	VMP Microstructure profiler
361	W29	27-Oct-17	17:56	Benthos	84	WHOI epibenthic Biological sled
362	W29	27-Oct-17	18:24	Sediment Grab	81	Smith McIntyre grab
363	W29	27-Oct-17	18:34	Turbulence probe	81	VMP Microstructure profiler
364	W29	28-Oct-17	6:48	Plankton	80	Bongo Nets
365	W32	27-Oct-17	19:56	Plankton	69	Bongo Nets
366	W32	27-Oct-17	20:16	Benthos	69	WHOI epibenthic Biological sled
367	W32	27-Oct-17	20:36	Sediment Grab	70	Smith McIntyre grab
368	W32	27-Oct-17	20:00	Turbulence probe	70	VMP Microstructure profiler
369	W32	27-Oct-17	20:47	Catch	81	McKenna demersal fish trawl nets
370	W29	27 Oct 17 28-Oct-17	0:16	CTD Cast	103	CTD - Seabird 911 with 36 Bottle Rosette
370	W29	28-Oct-17 28-Oct-17	0:10	Turbulence probe	103	VMP Microstructure profiler
371	W29	28-Oct-17	1:21	Catch Failed	60	McKenna demersal fish trawl nets
372	W29 W26	28-0ct-17 28-0ct-17	3:39	Catch	80	McKenna demersal fish trawl nets
	W26	28-0ct-17 28-0ct-17		CTD Cast		CTD - Seabird 911 with 36 Bottle Rosette
374	W26 W26		4:59		84	
375		28-Oct-17	5:45	Turbulence probe	85	VMP Microstructure profiler
376	W12	28-Oct-17	6:19	Catch	82	McKenna demersal fish trawl nets
377	W12	28-Oct-17	7:52	CTD Cast	95	CTD - Seabird 911 with 36 Bottle Rosette
378	W12	28-Oct-17	8:19	Turbulence probe	95	VMP Microstructure profiler
379	W27	28-Oct-17	10:55	Benthos	72	WHOI epibenthic Biological sled
380	W27	28-Oct-17	11:25	Sediment Grab	72	Smith McIntyre grab
381	W27	28-Oct-17	11:35	Turbulence probe	71	VMP Microstructure profiler
382	W27	28-Oct-17	12:02	Plankton	72	Bongo Nets
383	W37	28-Oct-17	14:02	Plankton	83	Bongo Nets
384	W37	28-Oct-17	14:23	Benthos	80	WHOI epibenthic Biological sled
385	W37	28-Oct-17	14:51	Sediment Grab	80	Smith McIntyre grab
386	W37	28-Oct-17	14:53	Turbulence probe	80	VMP Microstructure profiler
387	W38	28-Oct-17	16:33	Benthos	74	WHOI epibenthic Biological sled
0.00	W38	28-Oct-17	16:59	Sediment Grab	74	Smith McIntyre grab
388	VV 30	20 000 17	10.57			
388	W38	28-Oct-17	17:12	Turbulence probe	74	VMP Microstructure profiler

391	W38	28-Oct-17	17:48	Turbulence probe	75	VMP Microstructure profiler
392	W96	28-Oct-17	20:47	Turbulence probe	63	VMP Microstructure profiler
393	W96	28-Oct-17	20:47	CTD Cast	63	CTD - Seabird 911 with 36 Bottle Rosette
393	W96	28-Oct-17 28-Oct-17	21:59	Catch	57	McKenna demersal fish trawl nets
394	W38	29-Oct-17	1:23	Catch	79	McKenna demersal fish trawl nets
395	W38	29-0ct-17 29-0ct-17		CTD Cast	74	CTD - Seabird 911 with 36 Bottle Rosette
396	W38		2:56			
		29-Oct-17	3:14	Turbulence probe	74	VMP Microstructure profiler
398	W27	29-Oct-17	4:36	Catch	57	McKenna demersal fish trawl nets
399	W37	29-Oct-17	7:37	Catch	58	McKenna demersal fish trawl nets
400	W37	29-Oct-17	9:15	CTD Cast	80	CTD - Seabird 911 with 36 Bottle Rosette
401	W37	29-Oct-17	9:17	Turbulence probe	80	VMP Microstructure profiler
402	W43	29-Oct-17	10:53	Benthos	78	WHOI epibenthic Biological sled
403	W43	29-Oct-17	11:19	Sediment Grab	79	Smith McIntyre grab
404	W43	29-Oct-17	11:28	Plankton	79	Bongo Nets
405	W68	29-Oct-17	13:47	Plankton	75	Bongo Nets
406	W68	29-Oct-17	14:07	Benthos	74	WHOI epibenthic Biological sled
407	W68	29-Oct-17	14:32	Sediment Grab	74	Smith McIntyre grab
408	W89	29-Oct-17	16:41	Benthos	61	WHOI epibenthic Biological sled
409	W89	29-Oct-17	17:12	Sediment Grab	62	Smith McIntyre grab
410	W89	29-Oct-17	17:20	Plankton	62	Bongo Nets
411	W59	29-Oct-17	18:21	Benthos	60	WHOI epibenthic Biological sled
412	W59	29-Oct-17	18:54	Sediment Grab	60	Smith McIntyre grab
413	W90	29-Oct-17	19:57	Video	57	Deep Towed Camera System
414	W90	29-Oct-17	21:43	Catch	57	McKenna demersal fish trawl nets
415	W89	30-Oct-17	0:08	CTD Cast	58	CTD - Seabird 911 with 36 Bottle Rosette
415	W89	30-Oct-17 30-Oct-17	0:35	Turbulence probe	59	VMP Microstructure profiler
410	W89	30-Oct-17 30-Oct-17	1:48	Catch	58	McKenna demersal fish trawl nets
418	W59	30-Oct-17	4:05	Catch	59	McKenna demersal fish trawl nets
419	W59	30-Oct-17	5:21	CTD Cast	58	CTD - Seabird 911 with 36 Bottle Rosette
420	W59	30-Oct-17	5:33	Turbulence probe	59	VMP Microstructure profiler
421	W70	30-Oct-17	7:11	Catch	55	McKenna demersal fish trawl nets
422	W70	30-Oct-17	8:25	CTD Cast	55	CTD - Seabird 911 with 36 Bottle Rosette
423	W70	30-Oct-17	8:51	Turbulence probe	57	VMP Microstructure profiler
424	W90	30-Oct-17	9:28	Video	57	Deep Towed Camera System
425	W59	30-Oct-17	11:44	Plankton	60	Bongo Nets
426	W75	30-Oct-17	13:03	Plankton	60	Bongo Nets
427	W75	30-Oct-17	13:20	Benthos	60	WHOI epibenthic Biological sled
428	W75	30-Oct-17	13:44	Sediment Grab	59	Smith McIntyre grab
429	W75	30-Oct-17	13:56	Turbulence probe	59	VMP Microstructure profiler
430	W94	30-Oct-17	15:30	Benthos	61	WHOI epibenthic Biological sled
431	W94	30-Oct-17	15:58	Sediment Grab	61	Smith McIntyre grab
432	W94	30-Oct-17	16:09	Turbulence probe	61	VMP Microstructure profiler
433	W94	30-Oct-17	16:19	Catch	60	Bongo Nets
434	W58	30-Oct-17	18:17	Plankton	71	Bongo Nets
435	W58	30-Oct-17	18:37	Benthos	72	WHOI epibenthic Biological sled
436	W58	30-Oct-17	19:00	Sediment Grab	74	Smith McIntyre grab
430	W48	30-Oct-17	20:56	Benthos	74	WHOI epibenthic Biological sled
437	W48	30-Oct-17 30-Oct-17	20:30	Benthos	74	Smith McIntyre grab
438	W48	30-Oct-17 30-Oct-17	21:21	Catch	73	McKenna demersal fish trawl nets
		30-0ct-17 31-0ct-17				
440	W58 W58		0:35	Catch	73	McKenna demersal fish trawl nets
441		31-Oct-17	1:43	Plankton	82	Bongo Nets
442	W58	31-Oct-17	2:36	CTD Cast	71	CTD - Seabird 911 with 36 Bottle Rosette
443	W58	31-Oct-17	2:52	Turbulence probe	71	VMP Microstructure profiler
444	W68	31-Oct-17	3:53	Catch	73	McKenna demersal fish trawl nets
445	W68	31-Oct-17	5:16	CTD Cast	73	CTD - Seabird 911 with 36 Bottle Rosette
				Turbulance probe	70	VIND Microstructure profiler
446	W68	31-Oct-17	5:39	Turbulence probe	73	VMP Microstructure profiler
	W68 W43	31-Oct-17 31-Oct-17	5:39 7:09	Catch	73	McKenna demersal fish trawl nets
446						


450	W47	31-Oct-17	11:18	Catch	78	WHOI epibenthic Biological sled
450	W47	31-Oct-17 31-Oct-17	12:05	Catch	78	Smith McIntyre grab
	-				-	
452	W47	31-Oct-17	12:24	Plankton	78	Bongo Nets
453	W13	31-Oct-17	14:02	Plankton	81	Bongo Nets
454	W13	31-Oct-17	14:24	Benthos	83	WHOI epibenthic Biological sled
455	W13	31-Oct-17	14:46	Benthos	81	Smith McIntyre grab
456	W46	31-Oct-17	16:16	Benthos	83	WHOI epibenthic Biological sled
457	W46	31-Oct-17	16:44	Benthos	84	Smith McIntyre grab
458	W46	31-Oct-17	16:56	Plankton	84	Bongo Nets
459	W48	31-Oct-17	18:26	Plankton	74	Bongo Nets
460	W78	31-Oct-17	19:51	Plankton	73	Bongo Nets
461	W78	31-Oct-17	20:06	Benthos	72	WHOI epibenthic Biological sled
462	W78	31-Oct-17	20:32	Benthos	72	Smith McIntyre grab
463	W78	31-Oct-17	21:38	Catch	72	McKenna demersal fish trawl nets
464	W46	1-Nov-17	0:35	Catch	84	McKenna demersal fish trawl nets
465	W46	1-Nov-17	1:54	Catch	83	CTD - Seabird 911 with 36 Bottle Rosette
466	W46	1-Nov-17	2:14	Turbulence probe	84	VMP Microstructure profiler
467	W13	1-Nov-17	4:05	Catch	80	McKenna demersal fish trawl nets
468	W13	1-Nov-17	5:14	CTD Cast	81	CTD - Seabird 911 with 36 Bottle Rosette
469	W13	1-Nov-17	5:40	Turbulence probe	81	VMP Microstructure profiler
409	W13 W47	1-Nov-17	6:52	Catch	76	McKenna demersal fish trawl nets
470	W47	1-Nov-17	7:54	Catch	76	CTD - Seabird 911 with 36 Bottle Rosette
471	W47	1-Nov-17	8:27		76	
				Turbulence probe		VMP Microstructure profiler
473	W79	1-Nov-17	10:49	Benthos	70	WHOI epibenthic Biological sled
474	W79	1-Nov-17	11:15	Benthos	67	Smith McIntyre grab
475	W79	1-Nov-17	11:25	Turbulence probe	67	VMP Microstructure profiler
476	W79	1-Nov-17	11:46	Plankton	69	Bongo Nets
477	W80	1-Nov-17	12:28	Plankton	67	Bongo Nets
478	W80	1-Nov-17	12:40	Catch	67	WHOI epibenthic Biological sled
479	W80	1-Nov-17	13:17	Benthos	68	Smith McIntyre grab
480	W80	1-Nov-17	13:26	Turbulence probe	68	VMP Microstructure profiler
481	W83	1-Nov-17	15:29	Catch	62	WHOI epibenthic Biological sled
482	W83	1-Nov-17	15:53	Benthos	62	Smith McIntyre grab
483	W83	1-Nov-17	16:03	Turbulence probe	62	VMP Microstructure profiler
484	W83	1-Nov-17	16:13	Plankton	62	Bongo Nets
485	W81	1-Nov-17	17:48	Catch	60	Bongo Nets
486	W81	1-Nov-17	18:05	Benthos	61	WHOI epibenthic Biological sled
487	W81	1-Nov-17	18:30	Catch	61	Smith McIntyre grab
488	W81	1-Nov-17	18:34	Catch	61	VMP Microstructure profiler
489	W82	1-Nov-17	19:50	Catch	59	WHOI epibenthic Biological sled
407	W82	1-Nov-17	20:13	Benthos	59	Smith McIntyre grab
490	W82	1-Nov-17 1-Nov-17	20:13	Plankton	59	Bongo Nets
						VMP Microstructure profiler
492	W82	1-Nov-17	21:01	Turbulence probe	60	•
493	W82	1-Nov-17	21:46	Catch	60	McKenna demersal fish trawl nets
494	W81	1-Nov-17	23:31	CTD Cast	66	CTD - Seabird 911 with 36 Bottle Rosette
495	W81	1-Nov-17	23:49	Turbulence probe	66	VMP Microstructure profiler
496	W81	2-Nov-17	0:26	Catch Failed	60	McKenna demersal fish trawl nets
497	W81	2-Nov-17	2:19	Catch	63	McKenna demersal fish trawl nets
498	W80	2-Nov-17	4:40	Catch	65	McKenna demersal fish trawl nets
499	W80	2-Nov-17	5:47	Catch	65	VMP Microstructure profiler
500	W79	2-Nov-17	6:33	Catch	66	McKenna demersal fish trawl nets
501	W79	2-Nov-17	7:49	Catch	68	CTD - Seabird 911 with 36 Bottle Rosette
502	W79	2-Nov-17	8:10	Catch	68	VMP Microstructure profiler
503	W50	2-Nov-17	11:41	Photo	55	Deep Towed Camera System
504	W50	2-Nov-17	12:48	Benthos	55	WHOI epibenthic Biological sled
505	W50	2-Nov-17	13:15	Benthos	55	Smith McIntyre grab
505	W50	2-Nov-17 2-Nov-17	13:13	Plankton	55	Bongo Nets
500	W97	2-Nov-17 2-Nov-17	14:27	Catch	56	Bongo Nets
507	W97	2-Nov-17 2-Nov-17			56	WHOI epibenthic Biological sled
508	VV7/	2-INOV-17	14:44	Benthos	0C	

509	W97	2-Nov-17	15:09	Benthos	55	Smith McIntyre grab
510	W98	2-Nov-17	16:12	Catch	57	WHOI epibenthic Biological sled
511	W98	2-Nov-17	16:50	Catch	56	Smith McIntyre grab
512	W98	2-Nov-17	17:02	Catch	56	Bongo Nets
513	W99	2-Nov-17	18:01	Plankton	55	Bongo Nets
514	W99	2-Nov-17	18:19	Benthos	55	WHOI epibenthic Biological sled
515	W99	2-Nov-17	18:45	Catch	54	Smith McIntyre grab
515	W75	2-Nov-17	20:21	Catch	59	WHOI epibenthic Biological sled
510	W75	2-Nov-17 2-Nov-17	20.21	Catch	57	CTD - Seabird 911 with 36 Bottle Rosette
						McKenna demersal fish trawl nets
518	W75	2-Nov-17	21:36	Catch	57	
519	W94	2-Nov-17	23:57	Catch	61	McKenna demersal fish trawl nets
520	W94	3-Nov-17	2:03	CTD Cast	57	CTD - Seabird 911 with 36 Bottle Rosette
521	W94	3-Nov-17	2:23	Turbulence probe	60	VMP Microstructure profiler
522	W83	3-Nov-17	2:54	Catch	61	McKenna demersal fish trawl nets
523	W83	3-Nov-17	4:12	CTD Cast	63	CTD - Seabird 911 with 36 Bottle Rosette
524	W83	3-Nov-17	4:40	Turbulence probe	60	VMP Microstructure profiler
525	W99	3-Nov-17	5:08	Catch	54	McKenna demersal fish trawl nets
526	W98	3-Nov-17	7:13	Catch	48	McKenna demersal fish trawl nets
527	W98	3-Nov-17	8:52	CTD Cast	53	CTD - Seabird 911 with 36 Bottle Rosette
528	W98	3-Nov-17	9:12	Turbulence probe	53	VMP Microstructure profiler
529	W17	3-Nov-17	11:41	Catch	47	WHOI epibenthic Biological sled
530	W17	3-Nov-17	12:09	Catch	48	Smith McIntyre grab
531	W17	3-Nov-17	12:23	Catch	47	Bongo Nets
531	W3	3-Nov-17	14:57	Plankton	36	Bongo Nets
533	W3	3-Nov-17	14:37	Benthos	30	WHOI epibenthic Biological sled
	W3 W3		15:06		35	
534		3-Nov-17		Benthos		Smith McIntyre grab
535	W18	3-Nov-17	18:26	Benthos	38	WHOI epibenthic Biological sled
536	W18	3-Nov-17	18:53	Benthos	38	Smith McIntyre grab
537	W18	3-Nov-17	19:02	Catch	37	Bongo Nets
538	W17	3-Nov-17	20:34	Video	46	Deep Towed Camera System
539	W17	3-Nov-17	21:55	Catch	45	McKenna demersal fish trawl nets
540	W18	4-Nov-17	0:50	CTD Cast	37	CTD - Seabird 911 with 36 Bottle Rosette
541	W18	4-Nov-17	1:07	Turbulence probe	37	VMP Microstructure profiler
542	W18	4-Nov-17	1:20	Catch Failed	42	McKenna demersal fish trawl nets
543	W18	4-Nov-17	3:13	Catch	37	McKenna demersal fish trawl nets
544	W97	4-Nov-17	6:23	Catch	52	McKenna demersal fish trawl nets
545	W50	4-Nov-17	8:07	Catch	54	McKenna demersal fish trawl nets
546	W17	4-Nov-17	10:37	Catch	46	Deep Towed Camera System
547	W3	4-Nov-17	12:39	Photo	35	Deep Towed Camera System
548	W2	4-Nov-17	15:24	Benthos	36	WHOI epibenthic Biological sled
540	W2	4-Nov-17	16:04	Sediment Grab	30	Smith McIntyre grab
550	W2	4-Nov-17 4-Nov-17				
			16:18	Plankton	35	Bongo Nets
551	W15	4-Nov-17	17:50	Plankton	32	Bongo Nets
552	W15	4-Nov-17	18:04	Catch	30	WHOI epibenthic Biological sled
553	W15	4-Nov-17	18:29	Benthos	30	Smith McIntyre grab
554	W1	4-Nov-17	20:41	Catch	34	WHOI epibenthic Biological sled
555	W1	4-Nov-17	21:51	Benthos	38	Smith McIntyre grab
556	W1	4-Nov-17	22:02	Catch	36	McKenna demersal fish trawl nets
557	W15	4-Nov-17	23:49	Catch	33	McKenna demersal fish trawl nets
558	W15	5-Nov-17	2:30	CTD Cast	33	CTD - Seabird 911 with 36 Bottle Rosette
559	W15	5-Nov-17	2:39	Turbulence probe	35	VMP Microstructure profiler
560	W2	5-Nov-17	3:05	Catch	36	McKenna demersal fish trawl nets
561	W2	5-Nov-17	5:04	CTD Cast	35	CTD - Seabird 911 with 36 Bottle Rosette
562	W2	5-Nov-17	6:03	Turbulence probe	35	VMP Microstructure profiler
563	W3	5-Nov-17	6:05	CTD Cast	35	CTD - Seabird 911 with 36 Bottle Rosette
564	W3 W3	5-Nov-17	7:01	Turbulence probe	33	VMP Microstructure profiler
	W3 W16	5-Nov-17 5-Nov-17	10:34	Benthos	43	WHOI epibenthic Biological sled
565	W16 W16					
566		5-Nov-17	11:32	Benthos	43	Smith McIntyre grab
567	W16	5-Nov-17	11:45	Plankton	43	Bongo Nets

568	W16	5-Nov-17	12:28	Catch	45	Deep Towed Camera System
569	W14	5-Nov-17	15:23	Catch	51	Deep Towed Camera System
570	W14	5-Nov-17	16:30	Catch	50	Bongo Nets
571	W14	5-Nov-17	17:07	Benthos	50	WHOI epibenthic Biological sled
572	W14	5-Nov-17	17:44	Catch	50	Smith McIntyre grab
573	W49	5-Nov-17	19:10	Benthos	61	WHOI epibenthic Biological sled
574	W49	5-Nov-17	19:35	Catch	61	Smith McIntyre grab
575	W49	5-Nov-17	19:42	Catch	61	Bongo Nets
576	W49	5-Nov-17	20:09	CTD Cast	59	CTD - Seabird 911 with 36 Bottle Rosette
577	W49	5-Nov-17	20:40	Catch	61	VMP Microstructure profiler
578	W49	5-Nov-17	21:56	Catch	57	McKenna demersal fish trawl nets
579	W14	5-Nov-17	23:32	Catch	45	McKenna demersal fish trawl nets
580	W16	6-Nov-17	2:42	Catch	37	McKenna demersal fish trawl nets
581	W3	6-Nov-17	4:54	Catch	37	McKenna demersal fish trawl nets
582	W3	6-Nov-17	6:54	Video	31	Deep Towed Camera System
583	W16	6-Nov-17	10:54	Video	43	Deep Towed Camera System
584	W14	6-Nov-17	12:41	Catch	49	Deep Towed Camera System

Appendix C Representative seabed images typical of each site surveyed during the RV *Investigator* voyage in 2017 (INV2017_05)

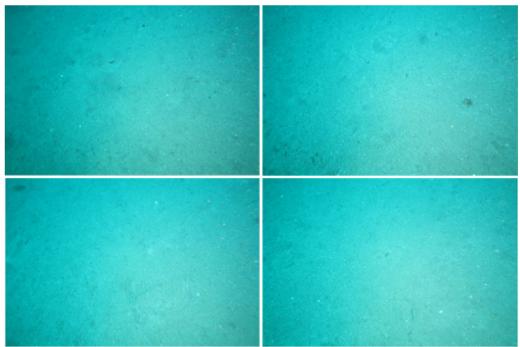
C.1 Sites inshore of the commercial trawl fishery (including within the Dampier MP)

Appx Figure 1. Site W1 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2926, subset 2 – IMG_2896, subset 3 – IMG_3001, subset 4 – IMG_3261. Red dots indicate biota/substrate scored in each image.

Appx Figure 2. Site W2 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2884, subset 2 – IMG_3035, subset 3 – IMG_3220, subset 4 – IMG_3426. Red dots indicate biota/substrate scored in each image

Appx Figure 3. Site W3 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_3556, subset 2 – IMG_3656, subset 3 – IMG_3746, subset 4 – IMG_3957. Red dots indicate biota/substrate scored in each image

Appx Figure 4. Site W4 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2888, subset 2 – IMG_2998, subset 3 – IMG_3158, subset 4 – IMG_3313. Red dots indicate biota/substrate scored in each image


Appx Figure 5. Site W5 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2054, subset 2 – IMG_2114, subset 3 – IMG_2369, subset 4 – IMG_2414. Red dots indicate biota/substrate scored in each image.

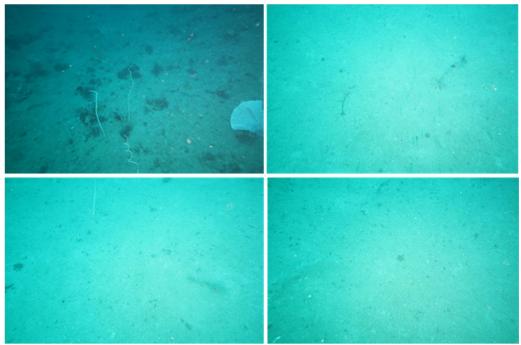
Appx Figure 6. Site W6 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2880, subset 2 – IMG_3112, subset 3 – IMG_3296, subset 4 – IMG_3442. Red dots indicate biota/substrate scored in each image.

Appx Figure 7. Site W8 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2866, subset 2 – IMG_3011, subset 3 – IMG_3267, subset 4 – IMG_3403. Red dots indicate biota/substrate scored in each image.

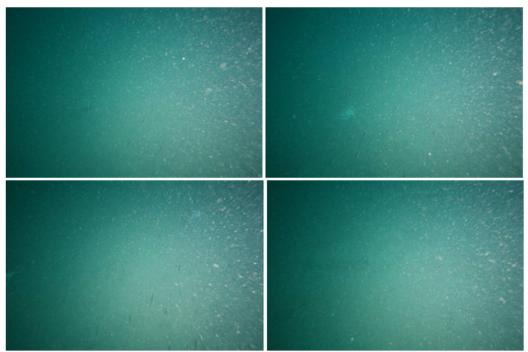
Appx Figure 8. Site W9 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1867, subset 2 – IMG_2163, subset 3 – IMG_2208, subset 4 – IMG_2328. Red dots indicate biota/substrate scored in each image.

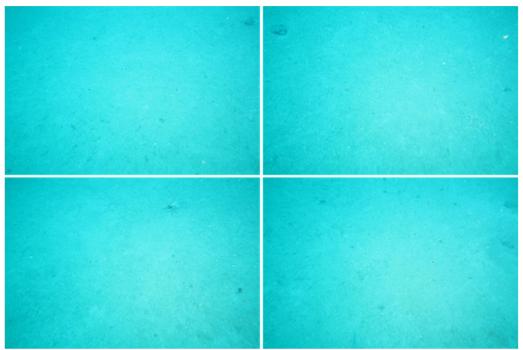
Appx Figure 9. Site W10 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1876, subset 2 – IMG_2001, subset 3 – IMG_2235, subset 4 – IMG_2370. Red dots indicate biota/substrate scored in each image.

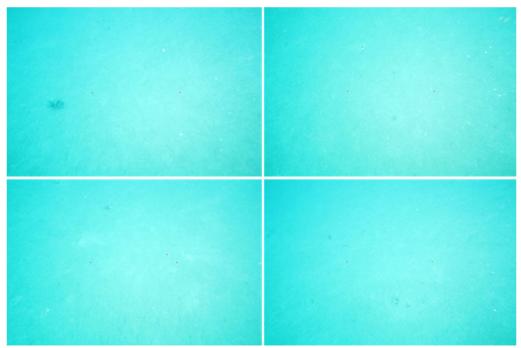
Appx Figure 10. Site W11 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0353, subset 2 – IMG_0493, subset 3 – IMG_0673, subset 4 – IMG_0738. Red dots indicate biota/substrate scored in each image.


Appx Figure 11. Site W15 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2883, subset 2 – IMG_3029, subset 3 – IMG_3104, subset 4 – IMG_3300. Red dots indicate biota/substrate scored in each image.

Appx Figure 12. Site W16 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_3647, subset 2 – IMG_3807, subset 3 – IMG_3992, subset 4 – IMG_4062. Red dots indicate biota/substrate scored in each image.


Appx Figure 13. Site W17 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2845, subset 2 – IMG_3000, subset 3 – IMG_3210, subset 4 – IMG_3325. Red dots indicate biota/substrate scored in each image.


Appx Figure 14. Site W18 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2809, subset 2 – IMG_2920, subset 3 – IMG_3085, subset 4 – IMG_3375. Red dots indicate biota/substrate scored in each image.


Appx Figure 15. Site W19 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0086, subset 2 – IMG_0266, subset 3 – IMG_0416, subset 4 – IMG_0581. Red dots indicate biota/substrate scored in each image.

Appx Figure 16. Site W20 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2943, subset 2 – IMG_3018, subset 3 – IMG_3213, subset 4 – IMG_3443. Red dots indicate biota/substrate scored in each image.

Appx Figure 17. Site W22 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1880, subset 2 – IMG_2076, subset 3 – IMG_2261, subset 4 – IMG_2392. Red dots indicate biota/substrate scored in each image.

Appx Figure 18. Site W24 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1057, subset 2 – IMG_1202, subset 3 – IMG_1322, subset 4 – IMG_1442. Red dots indicate biota/substrate scored in each image.

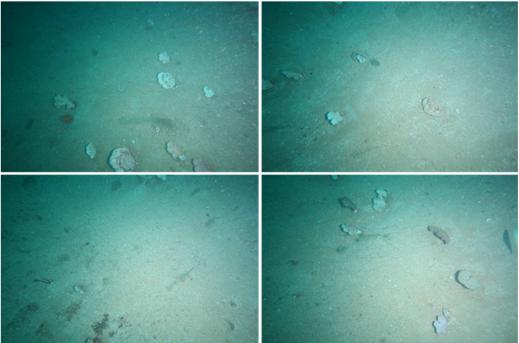
Appx Figure 19. Site W25 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1884, subset 2 – IMG_2049, subset 3 – IMG_2209, subset 4 – IMG_2364. Red dots indicate biota/substrate scored in each image.

Appx Figure 20. Site W51 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0174, subset 2 – IMG_0299, subset 3 – IMG_0420, subset 4 – IMG_0615. Red dots indicate biota/substrate scored in each image.

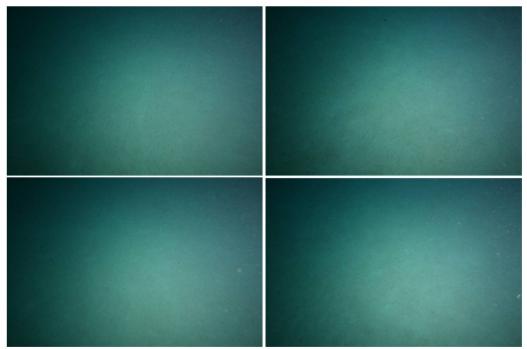
Appx Figure 21. Site W98 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_3724, subset 2 – IMG_3874, subset 3 – IMG_3974, subset 4 – IMG_4104. Red dots indicate biota/substrate scored in each image.



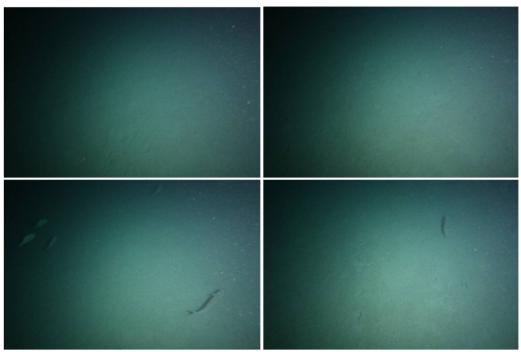
Appx Figure 22. Site W99 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2867, subset 2 – IMG_3007, subset 3 – IMG_3197, subset 4 – IMG_3372. Red dots indicate biota/substrate scored in each image.

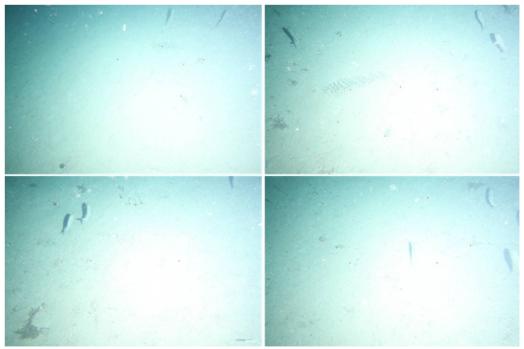


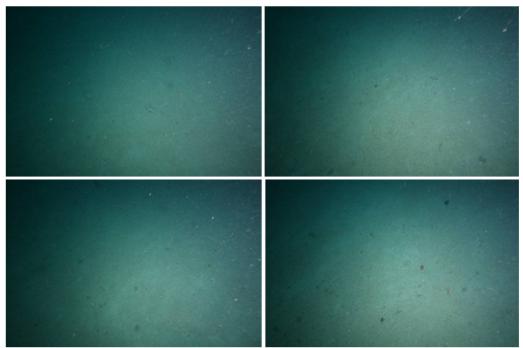
Appx Figure 23. Site W100 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0049, subset 2 – IMG_0209, subset 3 – IMG_0420, subset 4 – IMG_0576. Red dots indicate biota/substrate scored in each image.

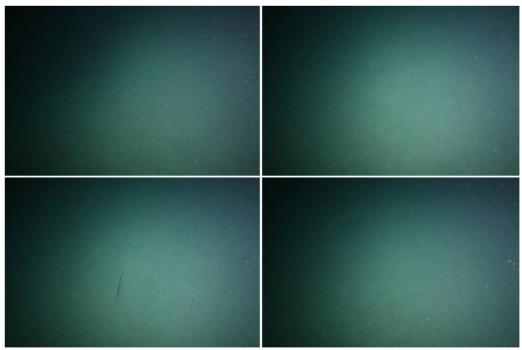

C.2 Sites west of the commercial trawl fishery (including within the Montebello MP).

Appx Figure 24. Site W13 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2866, subset 2 – IMG_3031, subset 3 – IMG_3186, subset 4 – IMG_3356. Red dots indicate biota/substrate scored in each image.


Appx Figure 25. Site W14 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_3616, subset 2 – IMG_3736, subset 3 – IMG_3921, subset 4 – IMG_4021. Red dots indicate biota/substrate scored in each image.


Appx Figure 26. Site W46 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2940, subset 2 – IMG_3055, subset 3 – IMG_3215, subset 4 – IMG_3355. Red dots indicate biota/substrate scored in each image.


Appx Figure 27. Site W47 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2847, subset 2 – IMG_2992, subset 3 – IMG_3097, subset 4 – IMG_3262. Red dots indicate biota/substrate scored in each image.


Appx Figure 28. Site W48 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2880, subset 2 – IMG_2995, subset 3 – IMG_3135, subset 4 – IMG_3310. Red dots indicate biota/substrate scored in each image.

Appx Figure 29. Site W49 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2915, subset 2 – IMG_3070, subset 3 – IMG_3145, subset 4 – IMG_3351. Red dots indicate biota/substrate scored in each image.

Appx Figure 30. Site W50 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_3831, subset 2 – IMG_3956, subset 3 – IMG_4071, subset 4 – IMG_4201. Red dots indicate biota/substrate scored in each image.

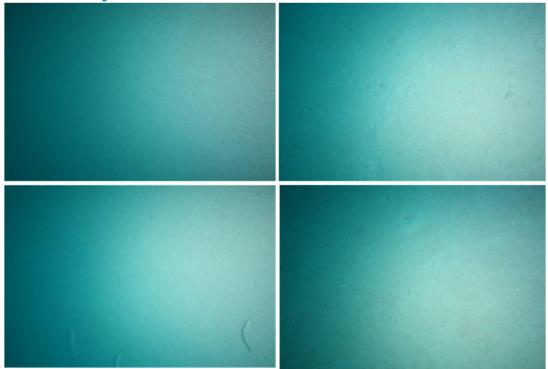
Appx Figure 31. Site W78 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2853, subset 2 – IMG_2988, subset 3 – IMG_3133, subset 4 – IMG_3278. Red dots indicate biota/substrate scored in each image.

Appx Figure 32. Site W79 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2944, subset 2 – IMG_3074, subset 3 – IMG_3234, subset 4 – IMG_3389. Red dots indicate biota/substrate scored in each image.

Appx Figure 33. Site W80 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2891, subset 2 – IMG_3116, subset 3 – IMG_3262, subset 4 – IMG_3438. Red dots indicate biota/substrate scored in each image.

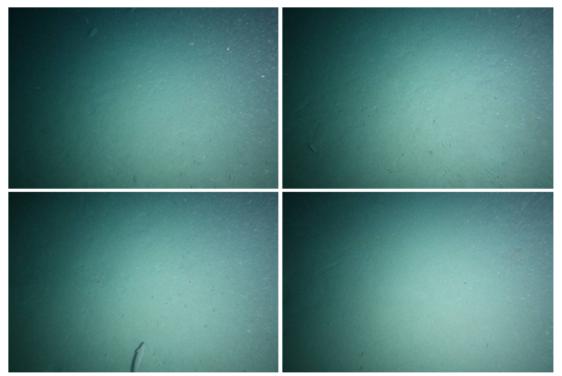
Appx Figure 34. Site W81 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2905, subset 2 – IMG_3030, subset 3 – IMG_3155, subset 4 – IMG_3315. Red dots indicate biota/substrate scored in each image.

Appx Figure 35. Site W82 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2814, subset 2 – IMG_2979, subset 3 – IMG_3104, subset 4 – IMG_3262. Red dots indicate biota/substrate scored in each image.



Appx Figure 36. Site W97 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2881, subset 2 – IMG_2986, subset 3 – IMG_3191, subset 4 – IMG_3387. Red dots indicate biota/substrate scored in each image.

C.3 Sites in the Pilbara Fish Trawl Fishery Area 1 (including PFTF Area6)

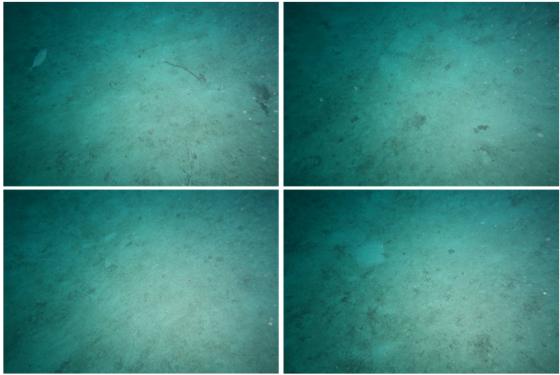

Appx Figure 37. Site W12 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0201, subset 2 – IMG_0341, subset 3 – IMG_0507, subset 4 – IMG_0647. Red dots indicate biota/substrate scored in each image.

Appx Figure 38. Site W27 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0206, subset 2 – IMG_0347, subset 3 – IMG_0522, subset 4 – IMG_0662. Red dots indicate biota/substrate scored in each image.

Appx Figure 39. Site W28 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0058, subset 2 – IMG_0203, subset 3 – IMG_0383, subset 4 – IMG_0608. Red dots indicate biota/substrate scored in each image.

Appx Figure 40. Site W37 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2899, subset 2 – IMG_3079, subset 3 – IMG_3244, subset 4 – IMG_3359. Red dots indicate biota/substrate scored in each image.

Appx Figure 41. Site W38 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2861, subset 2 – IMG_2986, subset 3 – IMG_3141, subset 4 – IMG_3271. Red dots indicate biota/substrate scored in each image.


Appx Figure 42. Site W40 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2867, subset 2 – IMG_2977, subset 3 – IMG_3157, subset 4 – IMG_3322. Red dots indicate biota/substrate scored in each image.


Appx Figure 43. Site W41 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2911, subset 2 – IMG_3097, subset 3 – IMG_3217, subset 4 – IMG_3342. Red dots indicate biota/substrate scored in each image.

Appx Figure 44. Site W43 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1028, subset 2 – IMG_1193, subset 3 – IMG_1313, subset 4 – IMG_1483. Red dots indicate biota/substrate scored in each image.

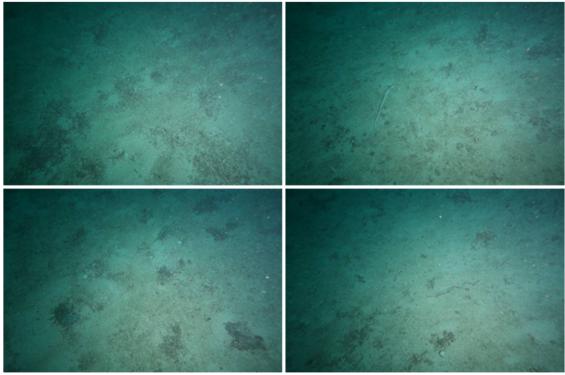
Appx Figure 45. Site W44 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2982, subset 2 – IMG_3167, subset 3 – IMG_3277, subset 4 – IMG_3442. Red dots indicate biota/substrate scored in each image.

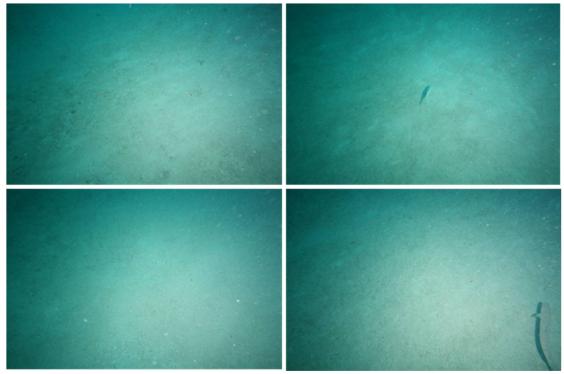
Appx Figure 46. Site W58 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2810, subset 2 – IMG_2925, subset 3 – IMG_3140, subset 4 – IMG_3305. Red dots indicate biota/substrate scored in each image.

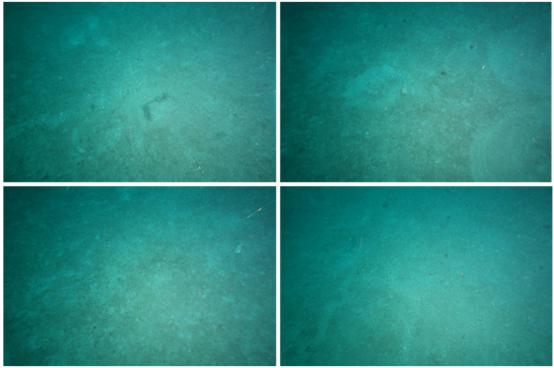
Appx Figure 47. Site W59 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2794, subset 2 – IMG_2974, subset 3 – IMG_3104, subset 4 – IMG_3289. Red dots indicate biota/substrate scored in each image.

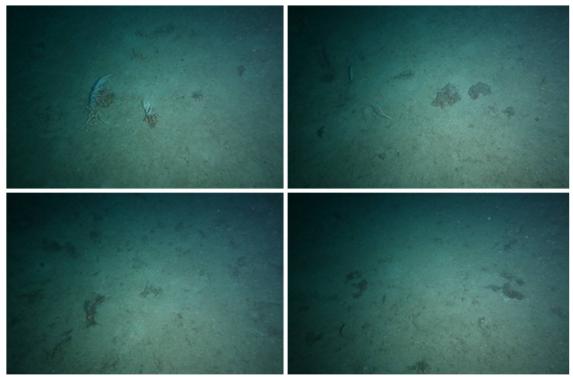

Appx Figure 48. Site W61 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0106, subset 2 – IMG_0236, subset 3 – IMG_0376, subset 4 – IMG_0506. Red dots indicate biota/substrate scored in each image.

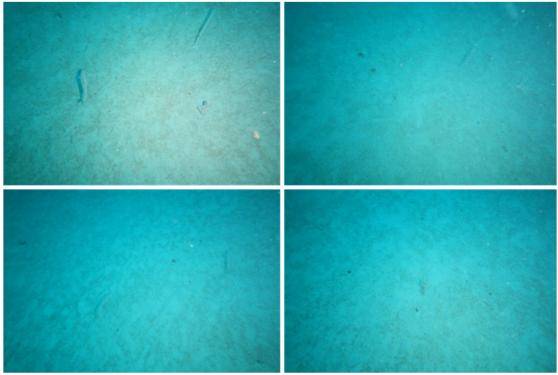
Appx Figure 49. Site W68 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0079, subset 2 – IMG_0254, subset 3 – IMG_0390, subset 4 – IMG_0590. Red dots indicate biota/substrate scored in each image.


Appx Figure 50. Site W69 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2782, subset 2 – IMG_2923, subset 3 – IMG_3089, subset 4 – IMG_3245. Red dots indicate biota/substrate scored in each image.


Appx Figure 51. Site W70 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2820, subset 2 – IMG_3026, subset 3 – IMG_3183, subset 4 – IMG_3329. Red dots indicate biota/substrate scored in each image.


Appx Figure 52. Site W75 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2782, subset 2 – IMG_2942, subset 3 – IMG_3082, subset 4 – IMG_3353. Red dots indicate biota/substrate scored in each image.


Appx Figure 53. Site W76 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0159, subset 2 – IMG_0294, subset 3 – IMG_0464, subset 4 – IMG_0634. Red dots indicate biota/substrate scored in each image.


Appx Figure 54. Site W77 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0074, subset 2 – IMG_0209, subset 3 – IMG_0369, subset 4 – IMG_0524. Red dots indicate biota/substrate scored in each image.


Appx Figure 55. Site W83 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2824, subset 2 – IMG_2874, subset 3 – IMG_2944, subset 4 – IMG_2994. Red dots indicate biota/substrate scored in each image.

Appx Figure 56. Site W84 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2824, subset 2 – IMG_3075, subset 3 – IMG_3165, subset 4 – IMG_3295. Red dots indicate biota/substrate scored in each image.

Appx Figure 57. Site W89 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0029, subset 2 – IMG_0194, subset 3 – IMG_0249, subset 4 – IMG_0364. Red dots indicate biota/substrate scored in each image.

Appx Figure 58. Site W90 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2811, subset 2 – IMG_2936, subset 3 – IMG_3091, subset 4 – IMG_3303. Red dots indicate biota/substrate scored in each image.

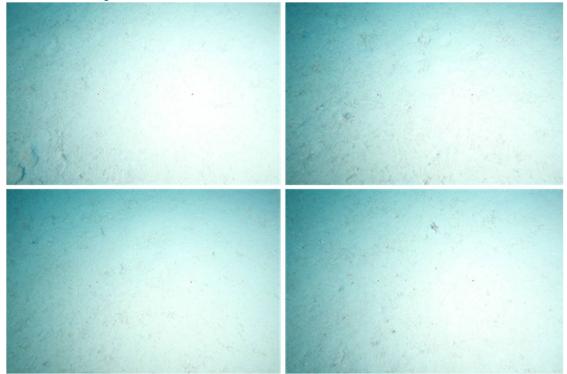
Appx Figure 59. Site W91 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2890, subset 2 – IMG_2966, subset 3 – IMG_3108, subset 4 – IMG_3354. Red dots indicate biota/substrate scored in each image.

Appx Figure 60. Site W92 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0071, subset 2 – IMG_0227, subset 3 – IMG_0382, subset 4 – IMG_0558. Red dots indicate biota/substrate scored in each image.

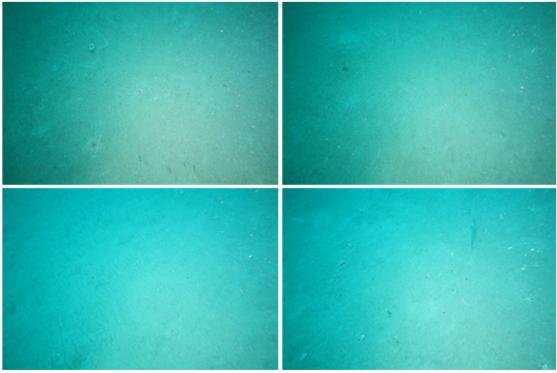
Appx Figure 61. Site W93 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2771, subset 2 – IMG_2927, subset 3 – IMG_3058, subset 4 – IMG_3229. Red dots indicate biota/substrate scored in each image.

Appx Figure 62. Site W94 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2848, subset 2 – IMG_2978, subset 3 – IMG_3118, subset 4 – IMG_3289. Red dots indicate biota/substrate scored in each image.

Appx Figure 63. Site W95 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2819, subset 2 – IMG_3004, subset 3 – IMG_3176, subset 4 – IMG_3306. Red dots indicate biota/substrate scored in each image.



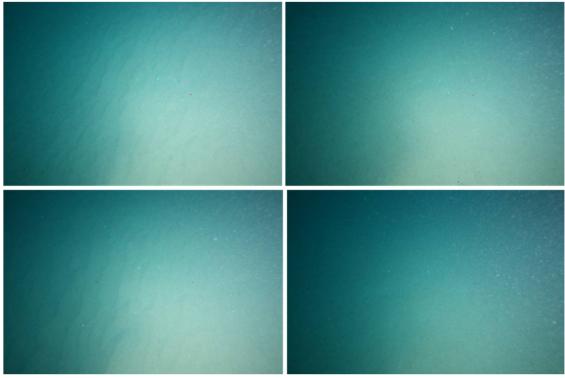
Appx Figure 64. Site W96 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2789, subset 2 – IMG_2919, subset 3 – IMG_3114, subset 4 – IMG_3239. Red dots indicate biota/substrate scored in each image.


C.4 Sites in Pibara Fish Trawl Fishery Area 2

Appx Figure 65. Site W26 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0119, subset 2 – IMG_0249, subset 3 – IMG_0415, subset 4 – IMG_0525. Red dots indicate biota/substrate scored in each image.

Appx Figure 66. Site W29 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2885, subset 2 – IMG_2975, subset 3 – IMG_3110, subset 4 – IMG_3240. Red dots indicate biota/substrate scored in each image.

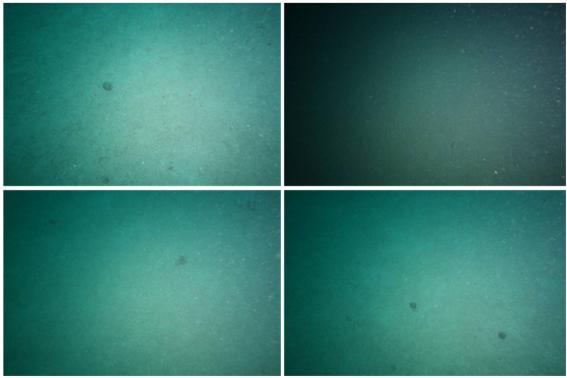
Appx Figure 67. Site W30 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0044, subset 2 – IMG_0190, subset 3 – IMG_0395, subset 4 – IMG_0556. Red dots indicate biota/substrate scored in each image.

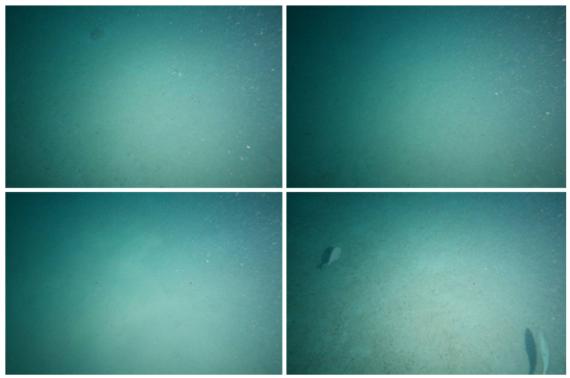

Appx Figure 68. Site W31 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2830, subset 2 – IMG_2976, subset 3 – IMG_3081, subset 4 – IMG_3231. Red dots indicate biota/substrate scored in each image.

Appx Figure 69. Site W32 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2826, subset 2 – IMG_3037, subset 3 – IMG_3192, subset 4 – IMG_3289. Red dots indicate biota/substrate scored in each image.

Appx Figure 70. Site W33 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2882, subset 2 – IMG_3007, subset 3 – IMG_3127, subset 4 – IMG_3307. Red dots indicate biota/substrate scored in each image.

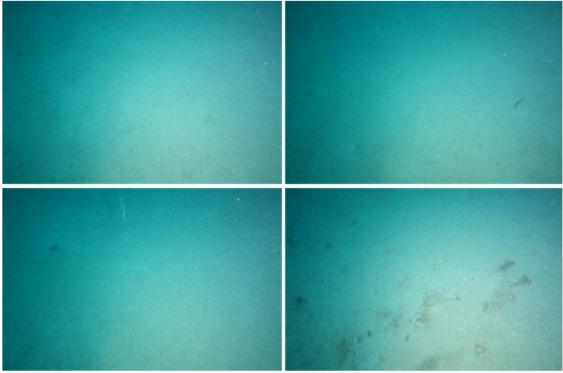
Appx Figure 71. Site W34 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_3766, subset 2 – IMG_3897, subset 3 – IMG_4007, subset 4 – IMG_4247. Red dots indicate biota/substrate scored in each image.

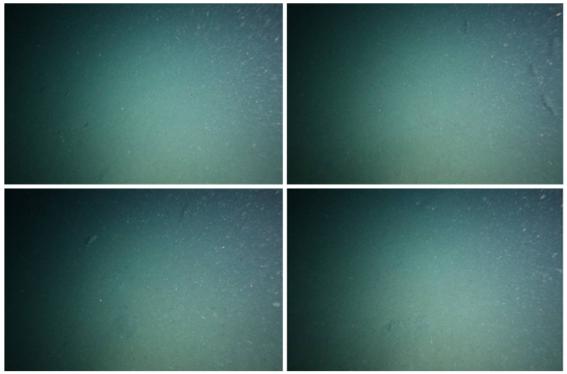

Appx Figure 72. Site W42 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1762, subset 2 – IMG_2007, subset 3 – IMG_2117, subset 4 – IMG_2332. Red dots indicate biota/substrate scored in each image.


Appx Figure 73. Site W45 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1963, subset 2 – IMG_2148, subset 3 – IMG_2298, subset 4 – IMG_2433. Red dots indicate biota/substrate scored in each image.

Appx Figure 74. Site W60 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2821, subset 2 – IMG_2963, subset 3 – IMG_3130, subset 4 – IMG_3215. Red dots indicate biota/substrate scored in each image.

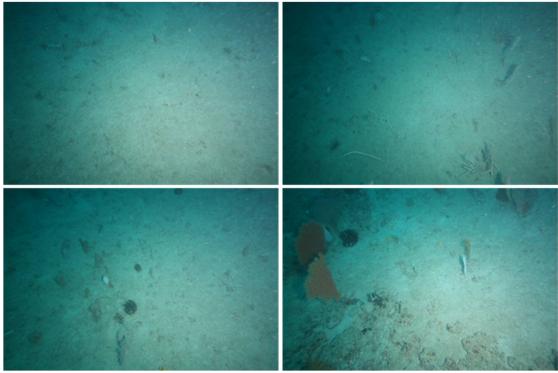
Appx Figure 75. Site W62 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0099, subset 2 – IMG_0254, subset 3 – IMG_0434, subset 4 – IMG_0584. Red dots indicate biota/substrate scored in each image.

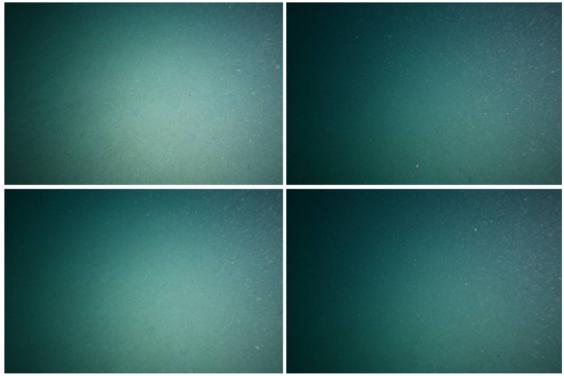

Appx Figure 76. Site W63 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0072, subset 2 – IMG_0223, subset 3 – IMG_0380, subset 4 – IMG_0562. Red dots indicate biota/substrate scored in each image.


Appx Figure 77. Site W64 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1760, subset 2 – IMG_1910, subset 3 – IMG_2072, subset 4 – IMG_2237. Red dots indicate biota/substrate scored in each image.

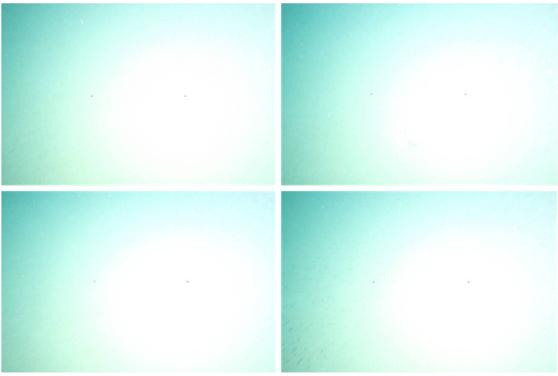
Appx Figure 78. Site W65 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1872, subset 2 – IMG_2018, subset 3 – IMG_2168, subset 4 – IMG_2298. Red dots indicate biota/substrate scored in each image.

Appx Figure 79. Site W66 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1875, subset 2 – IMG_2040, subset 3 – IMG_2185, subset 4 – IMG_2305. Red dots indicate biota/substrate scored in each image.

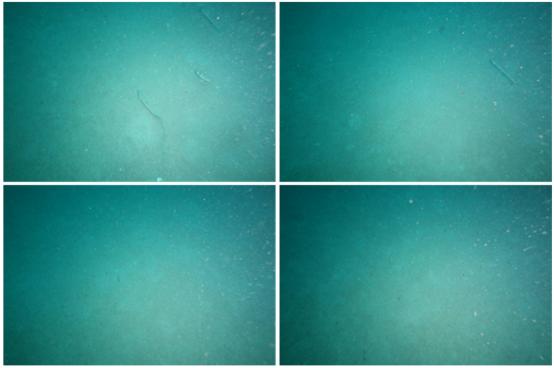

Appx Figure 80. Site W71 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2842, subset 2 – IMG_2982, subset 3 – IMG_3172, subset 4 – IMG_3297. Red dots indicate biota/substrate scored in each image.


Appx Figure 81. Site W72 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2807, subset 2 – IMG_2982, subset 3 – IMG_3144, subset 4 – IMG_3264. Red dots indicate biota/substrate scored in each image.

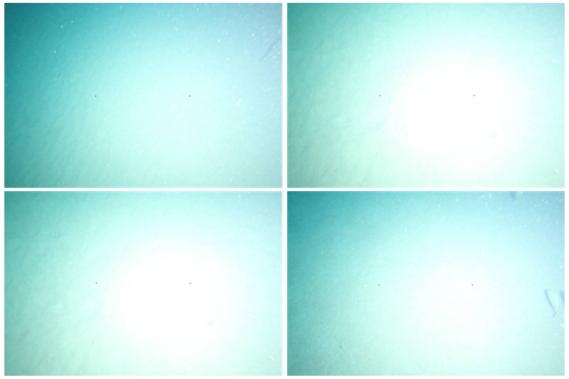
Appx Figure 82. Site W73 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2950, subset 2 – IMG_3065, subset 3 – IMG_3190, subset 4 – IMG_3331. Red dots indicate biota/substrate scored in each image.

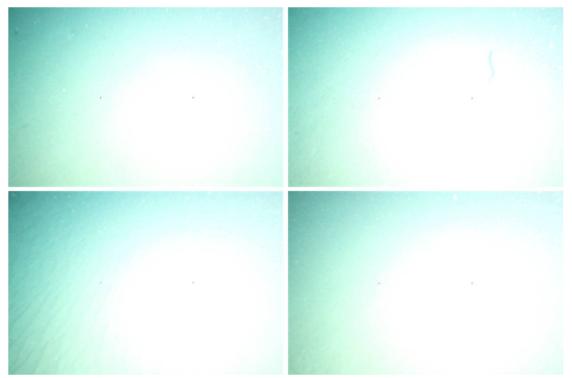


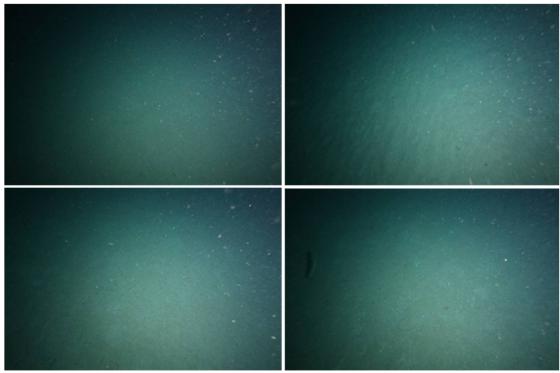
Appx Figure 83. Site W86 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2819, subset 2 – IMG_2959, subset 3 – IMG_3069, subset 4 – IMG_3251. Red dots indicate biota/substrate scored in each image.

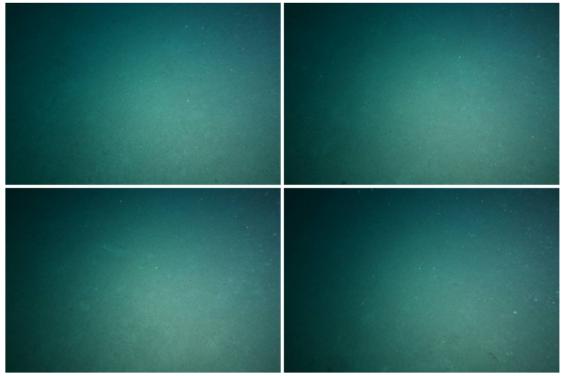


Appx Figure 84. Site W87 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_2797, subset 2 – IMG_2947, subset 3 – IMG_3102, subset 4 – IMG_3267. Red dots indicate biota/substrate scored in each image.


C.5 Sites in Pilbara Fish Trawl Fishery Area 3 (currently closed to fishing)


Appx Figure 85. Site W21 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0948, subset 2 – IMG_1123, subset 3 – IMG_1238, subset 4 – IMG_1408. Red dots indicate biota/substrate scored in each image.


Appx Figure 86. Site W23 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0955, subset 2 – IMG_1090, subset 3 – IMG_1270, subset 4 – IMG_1421. Red dots indicate biota/substrate scored in each image.


Appx Figure 87. Site W52 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1848, subset 2 – IMG_2003, subset 3 – IMG_2218, subset 4 – IMG_2348. Red dots indicate biota/substrate scored in each image.

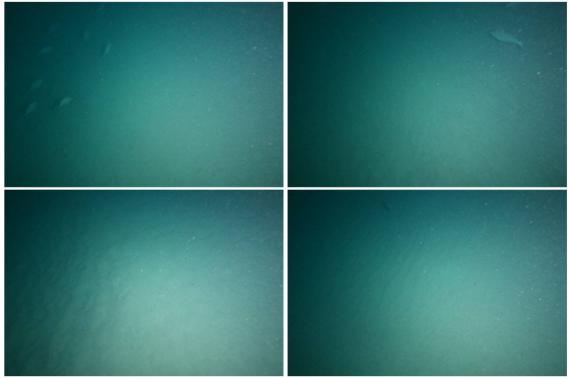
Appx Figure 88. Site W53 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1858, subset 2 – IMG_2093, subset 3 – IMG_2283, subset 4 – IMG_2404. Red dots indicate biota/substrate scored in each image.


Appx Figure 89. Site W54 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0770, subset 2 – IMG_0901, subset 3 – IMG_1067, subset 4 – IMG_1242. Red dots indicate biota/substrate scored in each image.

Appx Figure 90. Site W55 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1890, subset 2 – IMG_2045, subset 3 – IMG_2220, subset 4 – IMG_2365. Red dots indicate biota/substrate scored in each image.

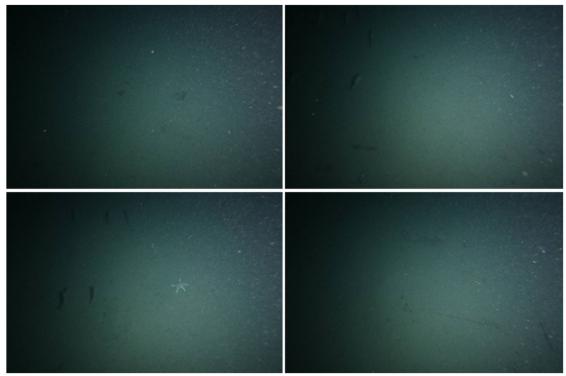
Appx Figure 91. Site W56 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1976, subset 2 – IMG_2141, subset 3 – IMG_2291, subset 4 – IMG_2427. Red dots indicate biota/substrate scored in each image.

Appx Figure 92. Site W57 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1260, subset 2 – IMG_1370, subset 3 – IMG_1480, subset 4 – IMG_1601. Red dots indicate biota/substrate scored in each image.


C.6 Sites in Pilbara Fish Trawl Fishery Area 4

Appx Figure 93. Site W35 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1879, subset 2 – IMG_2024, subset 3 – IMG_2199, subset 4 – IMG_2349. Red dots indicate biota/substrate scored in each image.

Appx Figure 94. Site W36 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0924, subset 2 – IMG_1034, subset 3 – IMG_1194, subset 4 – IMG_1334. Red dots indicate biota/substrate scored in each image.


Appx Figure 95. Site W39 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1943, subset 2 – IMG_2118, subset 3 – IMG_2264, subset 4 – IMG_2409. Red dots indicate biota/substrate scored in each image.

Appx Figure 96. Site W67 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0757, subset 2 – IMG_0847, subset 3 – IMG_0917, subset 4 – IMG_1042. Red dots indicate biota/substrate scored in each image.

Appx Figure 97. Site W74 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_0787, subset 2 – IMG_0892, subset 3 – IMG_0947, subset 4 – IMG_1052. Red dots indicate biota/substrate scored in each image.

Appx Figure 98. Site W88 seabed images typical of each quartile subset of transect. From top left, subset 1 – IMG_1234, subset 2 – IMG_1359, subset 3 – IMG_1419, subset 4 – IMG_1539. Red dots indicate biota/substrate scored in each image

Appendix D Full Species list of fish caught on the NWS on the RV *Investigator* voyage in 2017 (INV2017_05)

D.1 Fish species listing

The full list of species collected in all 103 sites during the 2017 RV *Investigator* voyage (INV2017_05) is presented in the table below.

Apx Table 3 Full Species list of fish caught on the NWS on the RV Investigator voyage INV2017-05.

CLASS	ORDER	FAMILY	SCIENTIFIC NAME	AUTHORITY
ELASMOBRANCHII	Orectolobiformes	Hemiscylliidae	Chiloscyllium punctatum	Müller & Henle, 1838
ELASMOBRANCHII	Orectolobiformes	Stegostomatidae	Stegostoma tigrinum	(Forster, 1781)
ELASMOBRANCHII	Carcharhiniformes	Scyliorhinidae	Atelomycterus fasciatus	Compagno & Stevens, 1993
ELASMOBRANCHII	Carcharhiniformes	Carcharhinidae	Carcharhinus coatesi	(Whitley, 1939)
ELASMOBRANCHII	Carcharhiniformes	Carcharhinidae	Carcharhinus plumbeus	(Nardo, 1827)
ELASMOBRANCHII	Carcharhiniformes	Carcharhinidae	Loxodon macrorhinus	Müller & Henle, 1839
ELASMOBRANCHII	Carcharhiniformes	Carcharhinidae	Rhizoprionodon acutus	(Rüppell, 1837)
ELASMOBRANCHII	Carcharhiniformes	Hemigaleidae	Hemigaleus australiensis	White, Last & Compagno, 2005
ELASMOBRANCHII	Carcharhiniformes	Hemigaleidae	Hemipristis elongata	(Klunzinger, 1871)
ELASMOBRANCHII	Rhinopristiformes	Rhinidae	Rhynchobatus australiae	Whitley, 1939
ELASMOBRANCHII	Rhinopristiformes	Rhinidae	Rhynchobatus palpebratus	Compagno & Last, 2008
ELASMOBRANCHII	Rhinopristiformes	Trygonorrhinidae	Aptychotrema vincentiana	(Haacke, 1885)
ELASMOBRANCHII	Rhinopristiformes	Rhinobatidae	Rhinobatos sainsburyi	Last, 2004
ELASMOBRANCHII	Rhinopristiformes	Glaucostegidae	Glaucostegus typus	(Bennett, 1830)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Himantura australis	Last, White & Naylor, 2016
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Himantura leoparda	Manjaji-Matsumoto & Last, 2008
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Maculabatis astra	(Last, Manjaji- Matsumoto & Pogonoski, 2008)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Megatrygon microps	(Annandale, 1908)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Neotrygon australiae	Last, White & Séret, 2016
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Neotrygon leylandi	(Last, 1987)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Pastinachus ater	(Macleay, 1883)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Pateobatis fai	(Jordan & Seale, 1906)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Pateobatis jenkinsii	(Annandale, 1909)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Taeniurops meyeni	(Müller & Henle, 1841)
ELASMOBRANCHII	Myliobatiformes	Dasyatidae	Urogymnus asperrimus	(Bloch & Schneider, 1801)
ELASMOBRANCHII	Myliobatiformes	Gymnuridae	Gymnura australis	(Ramsay & Ogilby, 1886)
ELASMOBRANCHII	Myliobatiformes	Myliobatidae	Aetomylaeus vespertilio	(Bleeker, 1852)
ACTINOPTERYGII	Anguilliformes	Unknown	Unidentified Anguilliform larvae	N/A

ACTINOPTERYGII	Anguilliformes	Muraenidae	Gymnothorax cribroris cf.	Whitley, 1932			
ACTINOPTERYGII	Anguilliformes	Muraenidae	Gymnothorax mccoskeri	Smith & Böhlke, 1997			
ACTINOPTERYGII	Anguilliformes	Muraenidae	Gymnothorax moluccensis	(Bleeker, 1864)			
ACTINOPTERYGII	Anguilliformes	Muraenidae	Gymnothorax mucifer	Snyder, 1904			
ACTINOPTERYGII	Anguilliformes	Muraenidae	Gymnothorax pseudothyrsoideus	(Bleeker, 1852)			
ACTINOPTERYGII	Anguilliformes	Muraenidae	Gymnothorax thyrsoideus	(Richardson, 1845)			
ACTINOPTERYGII	Anguilliformes	Muraenidae	Gymnothorax undulatus	(Lacépède, 1803)			
ACTINOPTERYGII	Anguilliformes	Congridae	Ariosoma meeki cf.	(Jordan & Snyder 1900)			
ACTINOPTERYGII	Anguilliformes	Congridae	Ariosoma scheelei cf.	(Strömman, 1896)			
ACTINOPTERYGII	Anguilliformes	Congridae	Ariosoma sp.	N/A			
ACTINOPTERYGII	Anguilliformes	Ophichthidae	Apterichtus nariculus cf.	McCosker & Hibino 201			
ACTINOPTERYGII	Anguilliformes	Ophichthidae	Callechelys marmorata	(Bleeker 1854)			
ACTINOPTERYGII	Anguilliformes	Ophichthidae	Scolecenchelys gymnota	(Bleeker, 1857)			
ACTINOPTERYGII	Clupeiformes	Clupeidae	Amblygaster sirm	(Walbaum, 1792)			
ACTINOPTERYGII	Clupeiformes	Engraulidae	Engraulis sp.	N/A			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Saurida argentea	Macleay 1881			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Saurida filamentosa cf.	Ogilby, 1910			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Saurida grandisquamis	(Günther, 1864)			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Saurida undosquamis	(Richardson, 1848)			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Saurida sp.	N/A			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Synodus dermatogenys	Fowler, 1912			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Synodus hoshinonis	Tanaka, 1917			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Synodus indicus	(Day, 1873)			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Synodus jaculum	Russell & Cressey, 1979			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Synodus sageneus	Waite, 1905			
ACTINOPTERYGII	Aulopiformes	Synodontidae	Trachinocephalus trachinus	(Temminck & Schlegel, 1846)			
ACTINOPTERYGII	Siluriformes	Ariidae	Netuma thalassina cf.	(Rüppell, 1837)			
ACTINOPTERYGII	Siluriformes	Plotosidae	Euristhmus sandrae	Murdy & Ferraris, 2006			
ACTINOPTERYGII	Siluriformes	Plotosidae	Paraplotosus butleri	Allen, 1998			
ACTINOPTERYGII	Batrachoidiformes	Batrachoididae	Batrachomoeus dahli	(Rendahl, 1922)			
ACTINOPTERYGII	Batrachoidiformes	Batrachoididae	Halophryne diemensis	(Lesueur, 1824)			
ACTINOPTERYGII	Batrachoidiformes	Batrachoididae	Halophryne ocellatus	Hutchins, 1974			
ACTINOPTERYGII	Lophiiformes	Lophiidae	Lophiomus setigerus	(Vahl, 1797)			
ACTINOPTERYGII	Lophiiformes	Antennariidae	Antennarius commerson	(Latreille, 1804)			
ACTINOPTERYGII	Lophiiformes	Antennariidae	Antennarius striatus	(Shaw, 1794)			
ACTINOPTERYGII	Lophiiformes	Antennariidae	Tathicarpus butleri	Ogilby, 1907			
ACTINOPTERYGII	Lophiiformes	Tetrabrachiidae	Tetrabrachium ocellatum	Günther, 1880			
ACTINOPTERYGII	Lophiiformes	Ogcocephalidae	Halieutaea indica	Annandale & Jenkins, 1910			
ACTINOPTERYGII	Gadiformes	Bregmacerotidae	Bregmaceros sp.	N/A			
ACTINOPTERYGII	Ophidiiformes	Ophidiidae	Ophidion sp.	N/A			
ACTINOPTERYGII	Ophidiiformes	Carapidae	Carapus mourlani	(Petit, 1934)			
ACTINOPTERYGII	Ophidiiformes	Carapidae	Encheliophus gracilis	(Bleeker, 1856)			
ACTINOPTERYGII	Ophidiiformes	Carapidae	Onuxodon fowleri	(Smith 1955)			
ACTINOPTERYGII	Beryciformes	Holocentridae	Myripristis botche	Cuvier, 1829			
ACTINOPTERYGII	Beryciformes	Holocentridae	Sargocentron rubrum	(Forsskål, 1775)			
ACTINOPTERYGII	Lampriformes	Veliferidae	Velifer hypselopterus cf.	Bleeker 1879			
ACTINOPTERYGII	Syngnathiformes	Fistulariidae	Fistularia commersonii	Rüppell, 1838			
ACTINOPTERYGII	Syngnathiformes	Fistulariidae	Fistularia petimba	Lacépède, 1803			

ACTINOPTERYGII	Syngnathiformes	Centriscidae	Centriscus cristatus	Linnaeus, 1758
ACTINOPTERYGII	Syngnathiformes	Solenostomidae	Solenostomus cyanopterus	Bleeker, 1854
ANTINODTEDVOU	Commental life and a second	Comments is the second	Syngnathidae (unidentified	
ACTINOPTERYGI	Syngnathiformes	Syngnathidae	juvenile)	N/A
ACTINOPTERYGI	Syngnathiformes	Syngnathidae	Halicampus grayi	Kaup, 1856
ACTINOPTERYGII	Syngnathiformes	Syngnathidae	Hippocampus angustus	Günther, 1870
ACTINOPTERYGII	Syngnathiformes	Syngnathidae	Hippocampus spinosissimus	Weber, 1913
ACTINOPTERYGII	Syngnathiformes	Syngnathidae	Hippocampus zebra	Whitley, 1964
ACTINOPTERYGII	Syngnathiformes	Syngnathidae	Solegnathus sp. 2	[of Kuiter, 2000]
ACTINOPTERYGII	Syngnathiformes	Dactylopteridae	Dactyloptena macracanthus	(Bleeker, 1854)
ACTINOPTERYGII	Syngnathiformes	Dactylopteridae	Dactyloptena orientalis	(Cuvier, 1829)
ACTINOPTERYGII	Syngnathiformes	Dactylopteridae	Dactyloptena papilio	Ogilby, 1910
ACTINOPTERYGII	Syngnathiformes	Pegasidae	Eurypegasus draconis	(Linnaeus, 1766) (Bloch & Schneider,
ACTINOPTERYGII	Scorpaeniformes	Apistidae	Apistus carinatus	1801)
ACTINOPTERYGII	Scorpaeniformes	Scorpaenidae	Dendrochirus brachypterus	(Cuvier, 1829)
ACTINOPTERYGII	Scorpaeniformes	Scorpaenidae	Dendrochirus zebra	(Cuvier, 1829)
ACTINODTEDVOU	Coorpoortiformer	Coorpoortidos	Ptoroion on	Matsunuma, in
ACTINOPTERYGI	Scorpaeniformes	Scorpaenidae	Pterois n. sp.	preparation
ACTINOPTERYGI	Scorpaeniformes	Scorpaenidae	Pterois russelii	Bennett, 1831
ACTINOPTERYGI	Scorpaeniformes	Scorpaenidae	Pterois volitans	(Linnaeus 1758)
ACTINOPTERYGI	Scorpaeniformes	Scorpaenidae	Neomerinthe erostris	(Alcock, 1896)
ACTINOPTERYGI	Scorpaeniformes	Scorpaenidae	Pteroidichthys amboinensis	Bleeker, 1856
ACTINOPTERYGII	Scorpaeniformes	Scorpaenidae	Pteroidichthys noronhai	(Fowler, 1938) Wibowo & Motomura,
ACTINOPTERYGII	Scorpaeniformes	Scorpaenidae	<i>Scorpaena</i> n. sp.	in preparation.
ACTINOPTERYGII	Scorpaeniformes	Scorpaenidae	Scorpaenodes smithi	Eschmeyer & Rama-Rao, 1972
ACTINOPTERYGII	Scorpaeniformes	Scorpaenidae	Scorpaenopsis neglecta	Heckel, 1837
ACTINOPTERYGII	Scorpaeniformes	Scorpaenidae	Scorpaenopsis venosa	(Cuvier, 1829)
ACTINOPTERYGII	Scorpaeniformes	Tetrarogidae	Cottapistus cottoides	(Linnaeus, 1758)
ACTINOPTERYGII	Scorpaeniformes	Tetrarogidae	Liocranium pleurostigma	(Weber, 1913)
ACTINOPTERYGII	Scorpaeniformes	Tetrarogidae	Richardsonicthys leucogaster	(Richardson, 1848)
ACTINOPTERYGII	Scorpaeniformes	Synanceiidae	Erosa erosa	(Langsdorf, 1829)
ACTINOPTERYGII	Scorpaeniformes	Synanceiidae	Inimicus didactylus	(Pallas, 1769)
ACTINOPTERYGII	Scorpaeniformes	Synanceiidae	Inimicus sinensis	(Valenciennes, 1833)
ACTINOPTERYGII	Scorpaeniformes	Synanceiidae	Minous roseus	Matsunuma & Motomura 2018
ACTINOPTERYGII	Scorpaeniformes	Triglidae	Lepidotrigla japonica cf.	(Bleeker, 1857)
				[of Gomon, pers.
ACTINOPTERYGI	Scorpaeniformes	Triglidae	Lepidotrigla sp. (long fin west)	comm.]
ACTINOPTERYGI	Scorpaeniformes	Aploactinidae	Paraploactis kagoshimensis cf.	(Ishikawa 1904)
ACTINOPTERYGI	Scorpaeniformes	Platycephalidae	Cymbacephalus bosschei	(Bleeker, 1860)
ACTINOPTERYGI	Scorpaeniformes	Platycephalidae	Cymbacephalus nematophthalmus	(Günther, 1860)
ACTINOPTERYGI	Scorpaeniformes	Platycephalidae	Inegocia japonica	(Cuvier, 1829)
ACTINOPTERYGI	Scorpaeniformes	Platycephalidae	Onigocia grandisquama	(Regan, 1908)
ACTINOPTERYGI	Scorpaeniformes	Platycephalidae	Onigocia sp.	N/A
ACTINOPTERYGI	Scorpaeniformes	Platycephalidae	Platycephalus endrachtensis	Quoy & Gaimard, 1825
ACTINOPTERYGII	Scorpaeniformes	Platycephalidae	Platycephalus westraliae	(Whitley, 1938)
ACTINOPTERYGII	Scorpaeniformes	Platycephalidae	Rogadius patriciae	Кпарр, 1987
ACTINOPTERYGII	Scorpaeniformes	Platycephalidae	Rogadius pristiger	(Cuvier, 1829)
ACTINOPTERYGII	Scorpaeniformes	Platycephalidae	Rogadius tuberculatus	(Cuvier, 1829)
ACTINOPTERYGII	Scorpaeniformes	Platycephalidae	Thysanophrys chiltonae	Schultz, 1966

ACTINOPTERYGII	Perciformes	Serranidae	Cephalopholis boenak	(Bloch, 1790)
ACTINOPTERYGII	Perciformes	Serranidae	Cephalopholis sonnerati	(Valenciennes, 1828)
ACTINOPTERYGII	Perciformes	Serranidae	Chromileptes altivelis cf.	(Valenciennes, 1828)
ACTINOPTERYGII	Perciformes	Serranidae	Diploprion bifasciatum	Cuvier, 1828
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus amblycephalus	(Bleeker, 1857)
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus areolatus	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus bilobatus	Randall & Allen, 1987
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus coioides	(Hamilton, 1822)
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus fasciatus	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus multinotatus	(Peters, 1876)
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus rivulatus	(Valenciennes, 1830)
ACTINOPTERYGII	Perciformes	Serranidae	Epinephelus sexfasciatus	(Valenciennes, 1828)
ACTINOPTERYGII	Perciformes	Serranidae	Plectranthias n. sp.	Gill, Pogonoski, Moore & Johnson, in preparation
ACTINOPTERYGII	Perciformes	Serranidae	Plectropomus maculatus	(Bloch, 1790)
ACTINOPTERYGII	Perciformes	Serranidae	Pseudanthias rubrizonatus	(Randall, 1983)
ACTINOPTERYGII	Perciformes	Serranidae	Tosana sp.	Gill et al in preparation
ACTINOPTERYGII	Perciformes	Pseudochromidae	Congrogadus spinifer	(Borodin, 1933)
ACTINOPTERYGII	Perciformes	Pseudochromidae	Pseudochromis howsoni	Allen, 1995
ACTINOPTERYGII	Perciformes	Pseudochromidae	Pseudochromis quinquedentatus	McCulloch, 1926
ACTINOPTERYGII	Perciformes	Pseudochromidae	Pseudochromis reticulatus	Gill & Woodland, 1992
ACTINOPTERYGII	Perciformes	Glaucosomatidae	Glaucosoma buergeri	Richardson, 1845
ACTINOPTERYGII	Perciformes	Glaucosomatidae	Glaucosoma magnificum	(Ogilby, 1915)
ACTINOPTERYGII	Perciformes	Terapontidae	Terapon jarbua	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Priacanthidae	Priacanthus hamrur	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Priacanthidae	Priacanthus tayenus	Richardson, 1846
ACTINOPTERYGII	Perciformes	Apogonidae	Apogonichthyoides atripes	(Ogilby, 1911)
ACTINOPTERYGII	Perciformes	Apogonidae	Apogonichthyoides brevicaudatus	(Weber, 1909)
ACTINOPTERYGII	Perciformes	Apogonidae	Apogonichthyoides umbratilis	Fraser & Allen, 2010
ACTINOPTERYGII	Perciformes	Apogonidae	Apogonichthyoides sp.	N/A
ACTINOPTERYGII	Perciformes	Apogonidae	Gymnapogon velum	Fraser, 2019
ACTINOPTERYGII	Perciformes	Apogonidae	Gymnapogon sp.	N/A
ACTINOPTERYGII	Perciformes	Apogonidae	Jaydia argyrogaster	(Weber, 1909)
ACTINOPTERYGII	Perciformes	Apogonidae	Jaydia smithi	(Kotthaus 1970)
ACTINOPTERYGII	Perciformes	Apogonidae	Ostorhinchus cavitensis	(Jordan & Seale, 1907)
ACTINOPTERYGII	Perciformes	Apogonidae	Ostorhinchus fasciatus	(White, 1790)
ACTINOPTERYGII	Perciformes	Apogonidae	Ostorhinchus monospilus cf.	(Fraser, Randall & Allen, 2002)
ACTINOPTERYGII	Perciformes	Apogonidae	Ostorhinchus semilineatus	(Temminck & Schlegel, 1843)
ACTINOPTERYGII	Perciformes	Apogonidae	Ostorhinchus septemstriatus	(Günther, 1880)
ACTINOPTERYGII	Perciformes	Apogonidae	Ostorhinchus sp. 2	[of Sainsbury et al 1985]
ACTINOPTERYGII	Perciformes	Apogonidae	Pristiapogon fraenatus	(Valenciennes, 1832)
ACTINOPTERYGII	Perciformes	Apogonidae	Pseudamia gelatinosa	Smith 1956
ACTINOPTERYGII	Perciformes	Apogonidae	Rhabdamia gracilis	(Bleeker, 1856)
ACTINOPTERYGII	Perciformes	Apogonidae	Siphamia tubifer	Weber, 1909
ACTINOPTERYGII	Perciformes	Sillaginidae	Sillago ingenuua	МсКау, 1985
ACTINOPTERYGII	Perciformes	Rachycentridae	Rachycentron canadum	(Linnaeus, 1766)
ACTINOPTERYGII	Perciformes	Echeneidae	Echeneis naucrates	Linnaeus, 1758
ACTINOPTERYGII	Perciformes	Carangidae	Alectis ciliaris	(Bloch, 1787)

ACTINOPTERYGII	Perciformes	Carangidae	Alepes apercna	Grant, 1987
ACTINOPTERYGII	Perciformes	Carangidae	Atule mate	(Cuvier, 1833)
ACTINOPTERYGII	Perciformes	Carangidae	Carangoides caeruleopinnatus	(Rüppell, 1830)
ACTINOPTERYGII	Perciformes	Carangidae	Carangoides chrysophrys	(Cuvier, 1833)
ACTINOPTERYGII	Perciformes	Carangidae	Carangoides equula	(Temminck & Schlegel, 1844)
ACTINOPTERYGII	Perciformes	Carangidae	Carangoides fulvoguttatus	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Carangidae	Carangoides gymnostethus	(Cuvier, 1833)
ACTINOPTERYGII	Perciformes	Carangidae	Carangoides malabaricus	(Bloch & Schneider, 1801)
ACTINOPTERTOI	Ferciformes	Carangidae		
ACTINOPTERYGII	Perciformes	Carangidae	Caranx ignobilis	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Carangidae	Decapterus macrosoma	Bleeker, 1851
ACTINOPTERYGII	Perciformes	Carangidae	Decapterus russelli	(Rüppell, 1830)
ACTINOPTERYGII	Perciformes	Carangidae	Gnathanodon speciosus	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Carangidae	Parastromateus niger	(Bloch, 1795)
ACTINOPTERYGII	Perciformes	Carangidae	Scomberoides tol	(Cuvier, 1832)
ACTINOPTERYGII	Perciformes	Carangidae	Selar crumenophthalmus	(Bloch, 1793)
ACTINOPTERYGII	Perciformes	Carangidae	Selaroides leptolepis	(Cuvier, 1833)
ACTINOPTERYGII	Perciformes	Carangidae	Seriolina nigrofasciata	(Rüppell, 1829)
ACTINOPTERYGII	Perciformes	Carangidae	Ulua mentalis	(Cuvier, 1833)
ACTINOPTERYGII	Perciformes	Leiognathidae	Aurigequula longispina	(Valenciennes, 1835)
ACTINOPTERYGII	Perciformes	Leiognathidae	Equulites elongatus	(Günther, 1874)
ACTINOPTERYGII	Perciformes	Leiognathidae	Photopectoralis sp.	N/A
ACTINOPTERYGII	Perciformes	Bramidae	Brama pauciradiata	Fujita & Last, 1995
ACTINOPTERYGII	Perciformes	Caesionidae	Dipterygonotus balteatus	(Valenciennes, 1830)
ACTINOPTERYGII	Perciformes	Caesionidae	Pterocaesio chrysozona	(Cuvier, 1830)
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus argentimaculatus	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus carponotatus	(Richardson, 1842)
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus erythropterus	Bloch, 1790
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus lemniscatus	(Valenciennes, 1828)
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus lutjanus	Bloch, 1790
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus malabaricus	(Bloch & Schneider, 1801)
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus russellii	(Bleeker, 1849)
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus sebae	(Cuvier, 1828)
ACTINOPTERYGII	Perciformes	Lutjanidae	Lutjanus vitta	(Quoy & Gaimard, 1824)
ACTINOPTERYGII	Perciformes	Lutjanidae	Pristipomoides multidens	(Day, 1871)
ACTINOPTERYGII	Perciformes	Lutjanidae	Pristipomoides typus	Bleeker, 1852
ACTINOPTERYGII	Perciformes	Lutjanidae	Symphorus nematophorus	(Bleeker, 1860)
ACTINOPTERYGII	Perciformes	Nemipteridae	Nemipterus bathybius	Snyder 1911
ACTINOPTERYGII	Perciformes	Nemipteridae	Nemipterus celebicus	(Bleeker, 1854)
ACTINOPTERYGII	Perciformes	Nemipteridae	Nemipterus furcosus	(Valenciennes, 1830)
ACTINOPTERYGII	Perciformes	Nemipteridae	Nemipterus nematopus	(Bleeker, 1851)
ACTINOPTERYGII	Perciformes	Nemipteridae	Nemipterus peronii	(Valenciennes, 1830)
ACTINOPTERYGII	Perciformes	Nemipteridae	Nemipterus virgatus	Houttuyn, 1782)
ACTINOPTERYGII	Perciformes	Nemipteridae	Nemipterus zysron	(Bleeker, 1856)
ACTINOPTERYGII	Perciformes	Nemipteridae	Parascolopsis tanyactis	Russell, 1986
ACTINOPTERYGII	Perciformes	Nemipteridae	Pentapodus nagasakiensis	(Tanaka, 1915)
ACTINOPTERYGII	Perciformes	Nemipteridae	Pentapodus porosus	(Valenciennes, 1830)

ACTINOPTERYGII	Perciformes	Nemipteridae	Scolopsis meridiana	Nakamura, Russell, Moore & Motomura, 2018		
ACTINOPTERYGII	Perciformes	Nemipteridae	Scolopsis monogramma	(Kuhl & van Hasselt, 1830)		
ACTINOPTERYGII	Perciformes	Gerreidae	Pentaprion longimanus	(Cantor, 1850)		
ACTINOPTERYGII	Perciformes	Haemulidae	Diagramma pictum	(Thunberg, 1792)		
ACTINOPTERYGII	Perciformes	Haemulidae	Plectorhinchus gibbosus	(Lacépède, 1802)		
ACTINOPTERYGII	Perciformes	Haemulidae	Pomadasys kaakan	(Cuvier, 1830)		
ACTINOPTERYGII	Perciformes	Lethrinidae	Gymnocranius elongatus	Senta, 1973		
ACTINOPTERYGII	Perciformes	Lethrinidae	Gymnocranius grandoculis	(Valenciennes, 1830)		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus genivittatus	Valenciennes, 1830		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus laticaudis	Alleyne & Macleay, 1877		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus lentjan	(Lacépède, 1802)		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus nebulosus	(Forsskål, 1775)		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus olivaceus	Valenciennes, 1830		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus punctulatus	Macleay, 1878		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus ravus	Carpenter & Randall, 2003		
ACTINOPTERYGII	Perciformes	Lethrinidae	Lethrinus variegatus	Valenciennes, 1830		
ACTINOPTERYGII	Perciformes	Sparidae	Argyrops bleekeri	Oshima, 1927		
ACTINOPTERYGII	Perciformes	Mullidae	Parupeneus chrysopleuron	(Temminck & Schlegel, 1843)		
ACTINOPTERYGI	Perciformes	Mullidae	Parupeneus heptacanthus	(Lacépède, 1802)		
ACTINOPTERYGI	Perciformes	Mullidae	Parupeneus indicus	(Shaw, 1803)		
ACTINOPTERYGI	Perciformes	Mullidae	Upeneus australiae	Kim & Nakaya, 2002		
ACTINOPTERYGI	Perciformes	Mullidae	Upeneus guttatus	(Day, 1868)		
ACTINOFTERTOI	Fercifornies	Mullidae		(Day, 1000)		
ACTINOPTERYGII	Perciformes	Mullidae	Upeneus margarethae	Uiblein & Heemstra, 2010		
ACTINOPTERYGII	Perciformes	Mullidae	Upeneus tragula	Richardson, 1846		
ACTINOPTERYGII	Perciformes	Pempherididae	Parapriacanthus ransonneti cf.	Steindachner, 1870		
ACTINOPTERYGII	Perciformes	Ephippidae	Platax batavianus	Cuvier, 1831		
ACTINOPTERYGII	Perciformes	Ephippidae	Platax pinnatus	(Linnaeus, 1758)		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Chaetodon assarius	Waite, 1905		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Chaetodon aureofasciatus	Macleay, 1878		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Chelmon marginalis	Richardson, 1842		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Coradion altivelis	McCulloch, 1916		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Coradion chrysozonus	(Cuvier, 1831)		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Heniochus acuminatus	(Linnaeus, 1758)		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Heniochus diphreutes	Jordan, 1903		
ACTINOPTERYGII	Perciformes	Chaetodontidae	Parachaetodon ocellatus	(Cuvier, 1831)		
ACTINOPTERYGII	Perciformes	Pomacanthidae	Chaetodontoplus duboulayi	(Günther, 1867)		
ACTINOPTERYGII	Perciformes	Pomacanthidae	Chaetodontoplus personifer	(McCulloch, 1914)		
ACTINOPTERYGII	Perciformes	Pomacanthidae	Pomacanthus imperator	(Bloch, 1787)		
ACTINOPTERYGII	Perciformes	Pomacanthidae	Pomacanthus sexstriatus	(Cuvier, 1831)		
ACTINOPTERYGII	Perciformes	Pomacentridae	Amblypomacentrus breviceps	(Schlegel & Müller, 1839)		
ACTINOPTERYGII	Perciformes	Pomacentridae	Chromis fumea	(Tanaka, 1917)		
ACTINOPTERYGII	Perciformes	Pomacentridae	Neopomacentrus cyanomos	(Bleeker, 1856)		
ACTINOPTERYGII	Perciformes	Pomacentridae	Pomacentrus nagasakiensis	Tanaka 1917		
ACTINOPTERYGII	Perciformes	Pomacentridae	Pristotis obtusirostris	(Günther, 1862)		

formes fo	Cirrhitidae Cirrhitidae Sphyraenidae Sphyraenidae Sphyraenidae Sphyraenidae Labridae Pinguipedidae	Cirrhitichthys aprinus cf. Cyprinocirrhites polyactis Sphyraena forsteri Sphyraena jello Sphyraena putnamae Anampses lennardi Bodianus solatus Choerodon cauteroma Choerodon conteroma Choerodon schoenleinii Choerodon sugillatum Choerodon sugillatum Choerodon vitta Choerodon vitta Choerodon vitta Labroides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban Parapercis alboguttata	(Cuvier, 1829) (Bleeker, 1874) Cuvier, 1829 Cuvier, 1829 Jordan & Seale, 1905 Scott, 1959 Gomon, 2006 Gomon, 2006 Gomon & Allen, 1987 (Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes fo	Sphyraenidae Sphyraenidae Sphyraenidae Sphyraenidae Labridae Scaridae Pinguipedidae	Sphyraena forsteri Sphyraena jello Sphyraena putnamae Anampses lennardi Bodianus solatus Choerodon cauteroma Choerodon cephalotes Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Cuvier, 1829 Cuvier, 1829 Jordan & Seale, 1905 Scott, 1959 Gomon, 2006 Gomon & Allen, 1987 (Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes fo	Sphyraenidae Sphyraenidae Sphyraenidae Labridae	Sphyraena jello Sphyraena putnamae Sphyraena putnamae Anampses lennardi Bodianus solatus Choerodon cauteroma Choerodon cephalotes Choerodon monostigma Choerodon schoenleinii Choerodon vitta Choerodon vitta Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Cuvier, 1829 Jordan & Seale, 1905 Scott, 1959 Gomon, 2006 Gomon & Allen, 1987 (Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes fo	Sphyraenidae Labridae	Sphyraena putnamae Sphyraena putnamae Anampses lennardi Bodianus solatus Choerodon cauteroma Choerodon cephalotes Choerodon monostigma Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Jordan & Seale, 1905 Scott, 1959 Gomon, 2006 Gomon & Allen, 1987 (Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes fo	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Anampses lennardi Bodianus solatus Choerodon cauteroma Choerodon cephalotes Choerodon monostigma Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Scott, 1959 Gomon, 2006 Gomon & Allen, 1987 (Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes fo	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Bodianus solatus Choerodon cauteroma Choerodon cephalotes Choerodon monostigma Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Gomon, 2006 Gomon & Allen, 1987 (Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes fo	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Choerodon cauteroma Choerodon cephalotes Choerodon monostigma Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Gomon & Allen, 1987 (Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes fo	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Choerodon cephalotes Choerodon monostigma Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	(Castelnau, 1875) Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Choerodon monostigma Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Ogilby, 1910 (Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Choerodon schoenleinii Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	(Valenciennes, 1839) Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Choerodon sugillatum Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Gomon, 1987 Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes formes formes formes formes formes formes formes	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae	Choerodon vitta Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Ogilby, 1910 Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes formes formes formes formes formes formes	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae Pinguipedidae	Coris pictoides Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Randall & Kuiter, 1982 Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes formes formes formes formes formes	Labridae Labridae Labridae Labridae Labridae Labridae Labridae Scaridae Pinguipedidae	Iniistius opalus Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	Fukui, 2018 N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes formes formes formes formes	Labridae Labridae Labridae Labridae Labridae Labridae Scaridae Pinguipedidae	Iniistius sp. (damaged) Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	N/A (Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes formes formes formes	Labridae Labridae Labridae Labridae Labridae Scaridae Pinguipedidae	Labroides dimidiatus Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	(Valenciennes, 1839) (Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes formes formes	Labridae Labridae Labridae Labridae Scaridae Pinguipedidae	Leptojulis cyanopleura Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	(Bleeker, 1853) (Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes formes	Labridae Labridae Labridae Scaridae Pinguipedidae	Oxycheilinus orientalis Stethojulis interrupta Suezichthys soelae Scarus ghobban	(Günther, 1862) (Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes formes	Labridae Labridae Scaridae Pinguipedidae	Stethojulis interrupta Suezichthys soelae Scarus ghobban	(Bleeker, 1851) Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes	Labridae Scaridae Pinguipedidae	Suezichthys soelae Scarus ghobban	Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes formes formes	Scaridae Pinguipedidae	Suezichthys soelae Scarus ghobban	Russell, 1985 Forsskål, 1775 (Günther, 1872)
formes formes	Pinguipedidae		(Günther, 1872)
formes formes	Pinguipedidae		(Günther, 1872)
formes	- ·		
		Parapercis nebulosa	(Quoy & Gaimard, 1825
formes	Pinguipedidae	Parapercis rubromaculata	Ho, Chang & Shao, 201
formes	Pinguipedidae	Parapercis snyderi	Jordan & Starks, 1905
formes	Pinguipedidae	Parapercis xanthozona	(Bleeker, 1849)
formes	Uranoscopidae	Ichthyscopus insperatus	Mees, 1960
	•		Temminck & Schlegel,
formes	Uranoscopidae	Uranoscopus bicinctus cf.	1843
formes	Uranoscopidae	Uranoscopus cognatus	Cantor, 1849
formes	Champsodontidae	Champsodon vorax cf.	Günther, 1867
formes	Blenniidae	Xiphasia setifer	Swainson, 1839
formes	Ammodytidae	Bleekeria sp.	N/A
formes	Callionymidae	Callionymus australis	Fricke, 1983
formes	Callionymidae	Dactylopus dactylopus	(Valenciennes, 1837)
formes	Gobiidae	Gobiidae - undifferentiated	N/A
		Bathygobius sp.	(Hoese, in preparation.
	Gobiidae	Eviota sp.	N/A
	Gobiidae	Larsonella sp.	N/A
	Gobiidae	Lubricogiobius ornatus	Fourmanoir, 1966
	Gobiidae	Pleurosicya boldinghi	Weber, 1913
formes	Gobiidae	Priolepis cincta	(Regan, 1908)
formes	Gobiidae	Priolepis nuchifasciata	(Günther, 1873)
	Gobiidae	Priolepis profunda	(Weber, 1909) Winterbottom & Hoese
formes	Gobiidae	Sueviota larsonae cf.	1988
			Randall & Hoese 1985
	formes	formes Gobiidae formes Gobiidae formes Gobiidae formes Gobiidae formes Gobiidae formes Gobiidae formes Gobiidae formes Gobiidae formes Gobiidae	formesGobiidaeBathygobius sp.formesGobiidaeEviota sp.formesGobiidaeLarsonella sp.formesGobiidaeLubricogiobius ornatusformesGobiidaePleurosicya boldinghiformesGobiidaePriolepis cinctaformesGobiidaePriolepis nuchifasciataformesGobiidaePriolepis profunda

ACTINOPTERYGII	Perciformes	Acanthuridae	Acanthurus mata	Cuvier, 1829
ACTINOPTERYGII	Perciformes	Acanthuridae	Naso fageni	Morrow, 1954
ACTINOPTERYGII	Perciformes	Acanthuridae	Naso reticulatus	Randall, 2001
ACTINOPTERYGII	Perciformes	Acanthuridae	Naso unicornis	(Forsskål, 1775)
ACTINOPTERYGII	Perciformes	Siganidae	Siganus fuscescens	(Houttuyn, 1782)
ACTINOPTERYGII	Perciformes	Scombridae	Cybiosarda elegans	(Whitley, 1935)
ACTINOPTERYGII	Perciformes	Scombridae	Rastrelliger kanagurta	(Cuvier, 1816)
ACTINOPTERYGII	Perciformes	Scombridae	Scomberomorus queenslandicus	Munro, 1943
ACTINOPTERYGII	Perciformes	Trichiuridae	Trichiurus lepturus cf.	Linnaeus, 1758
ACTINOPTERYGII	Pleuronectiformes	Psettodidae	Psettodes erumei	(Bloch & Schneider, 1801)
ACTINOPTERYGII	Pleuronectiformes	Bothidae	Asterorhombus intermedius cf.	(Bleeker, 1866)
ACTINOPTERYGII	Pleuronectiformes	Bothidae	Asterorhombus sp.	N/A
ACTINOPTERYGII	Pleuronectiformes	Bothidae	Crossorhombus azureus	(Alcock, 1889)
ACTINOPTERYGII	Pleuronectiformes	Bothidae	Engyprosopon grandisquama	(Temminck & Schlegel, 1846)
	Pleuronectiformes	Bothidae	Engyprosopon sp.	N/A
ACTINOPTERYGI	Pleuronectiformes	Bothidae	Grammatobothus pennatus	(Ogilby, 1913)
ACTINOPTERYGI	Pleuronectiformes	Bothidae	Grammatobothus polyophthalmus	(Bleeker, 1866)
ACTINOPTERYGI	Pleuronectiformes	Bothidae	Parabothus sp. (juvenile)	N/A
ACTINOPTERYGI	Pleuronectiformes	Bothidae	Psettina variegata cf.	(Fowler, 1933)
ACTINOPTERYGI	Pleuronectiformes	Paralichthyidae	Pseudorhombus argus	Weber, 1913
ACTINOPTERYGI	Pleuronectiformes	Paralichthyidae	Pseudorhombus argus	(Hamilton, 1822)
ACTINOPTERYGI	Pleuronectiformes	Paralichthyidae	Pseudorhombus diplospilus	Norman, 1926
ACTINOPTERYGI	Pleuronectiformes	Paralichthyidae	Pseudorhombus dupliciocellatus	Regan, 1905
ACTINOPTERYGI	Pleuronectiformes	Paralichthyidae	Pseudorhombus elevatus	Ogilby, 1912
ACTINOPTERYGI	Pleuronectiformes	Paralichthyidae	Pseudorhombus jenynsii	(Bleeker, 1855)
ACTINOPTERYGI	Pleuronectiformes	Paralichthyidae	Pseudorhombus quinquocellatus	Weber & de Beaufort, 1929
ACTINOPTERYGII	Pleuronectiformes	Paralichthyidae	Pseudorhombus spinosus	McCulloch, 1914
ACTINOPTERYGII	Pleuronectiformes	Pleuronectidae	Samaris cristatus	Gray, 1831
ACTINOPTERYGII	Pleuronectiformes	Soleidae	Aseraggodes melanospilus	(Bleeker, 1854)
ACTINOPTERYGII	Tetraodontiformes	Triacanthidae	Trixiphichthys weberi	(Chaudhuri, 1910)
ACTINOPTERYGII	Tetraodontiformes	Balistidae	Abalistes stellatus	(Anonymous, 1798)
ACTINODTEDVCI			Decudobalistos fuegue	(Bloch & Schneider
ACTINOPTERYGI	Tetraodontiformes	Balistidae Balistidae	Pseudobalistes fuscus	1801)
ACTINOPTERYGI	Tetraodontiformes		Sufflamen fraenatum	(Latreille, 1804)
ACTINOPTERYGII ACTINOPTERYGII	Tetraodontiformes Tetraodontiformes	Balistidae Monacanthidae	Xanthichthys lineopunctatus Aluterus monoceros	(Hollard, 1854) (Linnaeus, 1758)
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Anacanthus barbatus	
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Brachaluteres taylori	Gray, 1831 Woods, 1966
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Cantherhines fronticinctus	(Günther, 1866)
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Chaetodermis penicilligerus	(Cuvier, 1817)
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Eubalichthys caeruleoguttatus	Hutchins, 1977
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Monacanthus chinensis	(Osbeck, 1765)
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Paramonacanthus choirocephalus	(Bleeker, 1852)
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Paramonacanthus filicauda	(Günther, 1880)
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Paramonacanthus pusillus	(Rüppell, 1829)
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Paramonacanthus spp.	N/A
ACTINOPTERYGI	Tetraodontiformes	Monacanthidae	Paramonacanthus spp. Pseudomonacanthus elongatus	Fraser-Brunner, 1940
			Ŭ	
ACTINOPTERYGII	Tetraodontiformes	Monacanthidae	Pseudomonacanthus peroni	(Hollard, 1854)

ACTINOPTERYGII	Tetraodontiformes	Ostraciidae	Lactoria cornuta	(Linnaeus, 1758)
ACTINOPTERYGII	Tetraodontiformes	Ostraciidae	Lactoria diaphana	(Bloch & Schneider, 1801)
ACTINOPTERYGII	Tetraodontiformes	Ostraciidae	Lactoria fornasini	(Bianconi, 1846)
ACTINOPTERYGII	Tetraodontiformes	Ostraciidae	Ostracion cubicus	Linnaeus, 1758
ACTINOPTERYGII	Tetraodontiformes	Ostraciidae	Ostracion nasus	Bloch, 1785
ACTINOPTERYGII	Tetraodontiformes	Ostraciidae	Ostracion rhinorhynchus	Bleeker, 1852
ACTINOPTERYGII	Tetraodontiformes	Ostraciidae	Tetrosomus gibbosus	(Linnaeus, 1758)
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Arothron hispidus	(Linnaeus, 1758)
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Canthigaster cyanospilota	Randall, Williams & Rocha 2008
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Canthigaster rivulata	(Temminck & Schlegel, 1850)
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Feroxodon multistriatus	(Richardson, 1854)
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Lagocephalus lunaris	(Bloch & Schneider, 1801)
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Lagocephalus sceleratus	(Gmelin, 1789)
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Lagocephalus suezensis	Clark & Gohar, 1953
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Torquigener pallimaculatus	Hardy, 1983
ACTINOPTERYGII	Tetraodontiformes	Tetraodontidae	Torquigener parcuspinus	Hardy, 1983
ACTINOPTERYGII	Tetraodontiformes	Diodontidae	Cyclichthys orbicularis	(Bloch, 1785)
ACTINOPTERYGII	Tetraodontiformes	Diodontidae	Diodon holocanthus	Linnaeus, 1758
ACTINOPTERYGII	Tetraodontiformes	Diodontidae	Lophodiodon calori	(Bianconi, 1854)
ACTINOPTERYGII	Tetraodontiformes	Diodontidae	Tragulichthys jaculiferus	(Cuvier, 1818)

Appendix E Data tables giving site locations referred to in this report

E.1 Data tables giving site locations referred to in this report

In various parts of the report maps and graphs refer to sample sites. The tables below provide the GPS coordinates for each site.

Apx Table 4 Sites sampled during the 2017 *Investigator* voyage (INV2017_05). 'Net on bottom': net in contact with seabed. 'Net open': doors spread and towed net fishing effectively. 'Net off bottom': net left seabed and no longer fishing effectively. 'Net spread': average width of doors when net is fishing. 'Net layback': distance between stern of vessel and net. See Appendix A for full details on trawl methods.

Site	Operation number	Start depth (m)	Net onbotto m lat (deg)	Net onbotto m long (deg)	Net open lat (deg)	Net open long (deg)	Net offbotto m lat (deg)	Net offbotto m long (deg)	Bottom distanc e towed (m)	Net sprea d (m)	Net layback from vessel (m)
W1	556	27.1	-20.527	115.760	-20.561	115.760	-20.556	115.760	3203.8	76.2	357.5
W2	560	29.3	-20.571	116.035	-20.571	116.070	-20.571	116.065	3208.4	76.1	357.4
W3	581	28.1	-20.560	116.125	-20.560	116.159	-20.560	116.154	3030.0	76.1	357.3
W4	177	23.0	-20.352	117.218	-20.376	117.193	-20.372	117.197	3129.9	77.8	366.7
W5	171	31.3	-20.190	117.377	-20.203	117.345	-20.201	117.350	3052.3	78.2	367.5
W6	174	24.5	-20.334	117.365	-20.357	117.341	-20.354	117.344	3127.8	74.4	350.1
W7	156	37.9	-20.133	117.181	-20.133	117.216	-20.133	117.211	3108.2	82.8	391.0
W8	271	27.7	-20.310	116.990	-20.310	116.951	-20.310	116.956	3566.1	78.1	367.2
W9	127	31.8	-20.148	117.732	-20.165	117.700	-20.163	117.705	3293.6	80.1	376.6
W10	126	26.6	-20.151	117.936	-20.168	117.906	-20.166	117.910	3181.7	73.1	342.2
W11	39	28.5	-19.894	118.216	-19.926	118.204	-19.922	118.206	3330.7	76.1	357.2
W12	376	93.4	-19.465	116.566	-19.489	116.537	-19.483	116.544	3089.0	112.5	536.5
W13	467	73.6	-19.905	115.786	-19.929	115.759	-19.924	115.765	3100.0	100.2	469.7
W14	579	41.5	-20.346	115.757	-20.348	115.723	-20.348	115.729	2984.7	83.2	390.2
W15	557	25.8	-20.621	115.924	-20.624	115.889	-20.624	115.894	3170.7	74.3	348.7
W16	580	37.4	-20.413	115.859	-20.437	115.832	-20.433	115.836	3285.5	82.2	385.8
W17	539	38.7	-20.334	116.120	-20.364	116.102	-20.359	116.105	3266.8	82.2	385.6
W18abort	542	32.7	-20.494	116.033	-20.505	116.010	-20.503	116.015	2103.0	78.1	366.2
W18redo	543	31.5	-20.497	116.023	-20.514	115.990	-20.511	115.995	3336.9	78.2	366.8
W19	297	33.5	-20.382	116.283	-20.407	116.257	-20.404	116.261	3314.1	79.1	371.0
W20	272	39.5	-20.185	116.876	-20.211	116.849	-20.207	116.853	3401.9	84.1	395.6
W21	60	49.1	-19.831	117.736	-19.848	117.705	-19.846	117.710	3160.2	86.0	403.6
W22	130	42.2	-20.042	117.454	-20.058	117.425	-20.055	117.430	2896.1	84.1	394.9
W23	43	55.9	-19.607	118.013	-19.623	117.984	-19.621	117.989	2953.2	88.3	412.7
W24	42	33.7	-19.727	118.239	-19.753	118.229	-19.748	118.231	2480.9	76.0	355.9

W25	24	44.3	-19.676	118.226	-19.710	118.213	-19.704	118.215	3294.7	86.2	404.8
W25	373	96.4	-19.070	116.703	-19.710	116.677	-19.704	116.684	2723.6	115.9	562.3
W20	373	64.5	-19.687	116.341	-19.720	116.331	-19.713	116.333	3028.8	96.4	460.9
W28	347	56.4	-19.667	116.551	-19.691	116.525	-19.687	116.529	3117.2	92.1	432.5
W29	372	71.4	-19.455	116.777	-19.477	116.745	-19.473	116.751	3358.2	102.3	481.8
W30	153	50.8	-20.000	117.046	-20.000	117.080	-20.000	117.074	2966.7	87.2	408.6
W31	343	49.2	-19.541	116.746	-19.571	116.723	-19.566	116.727	3407.2	90.2	424.3
W32	369	64.7	-19.490	116.811	-19.512	116.788	-19.507	116.793	2657.2	99.4	471.3
W33	85	86.8	-19.304	117.622	-19.320	117.592	-19.316	117.599	2761.1	109.1	512.7
W34	109	82.4	-19.426	117.567	-19.442	117.537	-19.439	117.544	2776.1	106.0	497.9
W35	84	85.8	-19.234	117.915	-19.252	117.883	-19.248	117.890	2994.6	106.0	496.6
W36	23	64.8	-19.426	118.150	-19.457	118.136	-19.451	118.139	2965.6	96.1	450.9
W37	399	72.8	-19.705	116.150	-19.731	116.122	-19.726	116.128	3226.9	100.2	470.2
W38	395	67.0	-19.819	116.249	-19.825	116.213	-19.824	116.220	3106.4	98.1	460.8
W39	88	79.8	-19.373	117.715	-19.393	117.687	-19.388	117.694	2780.3	105.9	499.0
W40	326	60.1	-19.799	116.467	-19.806	116.432	-19.804	116.439	2977.7	96.2	452.4
W41	344	54.7	-19.634	116.577	-19.654	116.548	-19.651	116.553	3091.6	91.2	428.1
W42	149	52.2	-19.876	117.314	-19.902	117.290	-19.897	117.294	3125.8	86.3	412.8
W43	447	72.6	-19.775	116.044	-19.781	116.010	-19.782	116.017	2927.3	101.1	474.9
W44	249	56.8	-19.789	116.561	-19.808	116.528	-19.805	116.534	3297.4	92.2	432.4
W45	133	56.5	-19.784	117.295	-19.809	117.271	-19.804	117.276	3044.1	91.8	432.0
W46	464	77.7	-19.896	115.705	-19.919	115.680	-19.914	115.686	2861.2	104.2	488.9
W47	470	69.8	-19.933	115.838	-19.959	115.810	-19.954	115.815	3287.2	99.2	465.1
W48	439	66.2	-19.989	115.894	-20.015	115.869	-20.010	115.874	3115.5	97.1	455.7
W49	578	53.0	-20.199	115.789	-20.205	115.752	-20.204	115.758	3283.2	89.2	418.2
W50	545	46.2	-20.253	115.976	-20.253	115.941	-20.253	115.947	3106.8	87.2	409.7
W51	296	44.0	-20.195	116.452	-20.221	116.425	-20.217	116.429	3429.3	86.2	404.7
W52	63	58.8	-19.674	117.632	-19.691	117.600	-19.688	117.605	3192.2	92.1	431.4
W53	66	67.0	-19.499	117.649	-19.516	117.618	-19.513	117.624	2984.9	96.2	450.9
W54	59	63.2	-19.608	117.650	-19.625	117.618	-19.621	117.625	3027.6	94.1	441.2
W55	91	65.2	-19.489	117.686	-19.505	117.657	-19.502	117.662	2870.4	94.1	440.7
W56	44	52.4	-19.704	117.841	-19.720	117.811	-19.717	117.816	3003.9	86.2	402.8
W57	20	67.8	-19.384	117.936	-19.418	117.923	-19.413	117.925	3383.4	96.2	450.4
W58	440	64.9	-19.946	116.055	-19.970	116.029	-19.965	116.035	3006.2	98.2	461.5
W59	418	52.2	-20.059	116.261	-20.083	116.236	-20.079	116.241	3042.9	90.1	423.4
W60	227	58.5	-19.791	116.726	-19.813	116.697	-19.809	116.703	3160.5	94.2	442.6
W61	350	57.9	-19.701	116.523	-19.726	116.497	-19.721	116.502	3145.0	93.1	437.6
W62	275	51.9	-20.050	116.751	-20.073	116.726	-20.069	116.731	3006.9	89.2	418.3
W63	195	67.1	-19.796	116.826	-19.821	116.799	-19.816	116.805	3115.2	98.2	461.2
W64	150	62.9	-19.789	117.095	-19.814	117.069	-19.809	117.074	3214.4	94.1	441.1
W65	111	54.2	-19.871	117.268	-19.889	117.235	-19.886	117.240	3376.9	86.1	402.2
W66	110	66.3	-19.588	117.322	-19.606	117.290	-19.602	117.296	3200.6	98.1	461.4
W67	17	67.6	-19.381	118.041	-19.412	118.029	-19.407	118.031	2977.6	96.2	450.7
W68	444	66.5	-19.865	116.143	-19.887	116.116	-19.883	116.121	2983.4	99.2	466.1
W69	246	49.8	-19.739	116.655	-19.767	116.631	-19.763	116.634	3330.9	87.2	408.5
W70	421	50.7	-20.025	116.400	-20.055	116.385	-20.049	116.387	3039.4	91.1	428.9
W71	192	54.5	-19.967	116.794	-19.992	116.768	-19.988	116.772	3253.4	88.2	412.5
W72	198	51.2	-19.746	116.728	-19.769	116.699	-19.765	116.704	3274.7	89.1	418.6

W73abort	107	72.2	-19.473	117.592	-19.483	117.573	-19.480	117.579	1567.2	79.3	500.6
W73redo	108	72.8	-19.476	117.586	-19.493	117.555	-19.490	117.561	3023.2	103.1	485.2
W74	3	70.4	-19.338	118.217	-19.362	118.207	-19.357	118.209	2265.2	92.1	429.9
W75	518	52.8	-20.104	116.196	-20.135	116.180	-20.130	116.182	3147.4	89.1	418.2
W76	226	55.1	-19.797	116.651	-19.807	116.614	-19.806	116.621	3308.5	92.1	433.2
W77	252	58.6	-19.784	116.509	-19.796	116.472	-19.794	116.479	3309.2	92.2	432.0
W78	463	65.5	-20.048	115.797	-20.072	115.822	-20.067	115.817	2949.5	98.1	461.2
W79	500	60.1	-20.101	115.928	-20.099	115.893	-20.099	115.899	3046.3	92.2	431.7
W80	498	59.0	-20.110	115.949	-20.110	115.914	-20.110	115.921	2884.0	94.1	442.2
W81abort	496	55.3	-20.180	115.954	-20.180	115.919	-20.180	115.926	2964.7	90.2	422.7
W81redo	497	55.4	-20.178	115.952	-20.178	115.918	-20.178	115.925	2808.6	92.1	432.9
W82	493	52.5	-20.194	115.961	-20.204	115.926	-20.202	115.932	3208.7	89.2	418.1
W83	522	55.3	-20.130	116.063	-20.130	116.027	-20.130	116.034	3052.3	90.2	422.8
W84	301	50.0	-20.056	116.363	-20.071	116.330	-20.069	116.336	3192.4	86.1	403.4
W85	219	55.1	-19.915	116.696	-19.939	116.670	-19.935	116.675	3153.2	90.1	422.3
W86	222	56.0	-19.827	116.735	-19.850	116.709	-19.846	116.714	3049.6	93.1	437.8
W87	193	63.4	-19.841	116.905	-19.865	116.879	-19.861	116.884	3131.0	94.2	441.1
W88	6	71.3	-19.325	118.125	-19.356	118.114	-19.350	118.116	2933.0	96.2	449.5
W89	417	54.1	-20.092	116.176	-20.102	116.143	-20.100	116.149	3000.6	89.1	417.6
W90	414	50.5	-20.034	116.378	-20.056	116.353	-20.052	116.357	2987.3	89.2	418.7
W91	323	55.8	-19.984	116.624	-20.010	116.601	-20.005	116.606	3053.4	92.1	432.6
W92	278	56.5	-19.945	116.554	-19.976	116.545	-19.970	116.547	2923.9	94.2	443.0
W93	325	58.5	-19.936	116.665	-19.960	116.639	-19.956	116.644	3113.0	90.3	429.9
W94	519	54.8	-20.106	116.174	-20.119	116.142	-20.117	116.148	3032.1	91.1	427.9
W95	319	54.3	-19.922	116.628	-19.947	116.603	-19.942	116.608	3173.5	91.2	428.2
W96	394	55.2	-19.826	116.655	-19.838	116.617	-19.833	116.625	3311.7	93.2	438.2
W97	544	46.4	-20.238	116.003	-20.263	115.976	-20.259	115.980	3243.5	87.1	409.5
W98	526	48.1	-20.210	116.025	-20.226	115.995	-20.223	116.000	3024.7	85.1	398.6
W99	525	47.9	-20.220	116.062	-20.220	116.026	-20.220	116.032	3169.5	86.2	404.0
W100	298	49.5	-20.171	116.338	-20.169	116.368	-20.168	116.362	2527.1	89.2	419.1
W0	1	41.7	-18.324	121.469	-18.341	121.446	-18.337	121.451	2365.5	77.6	404.9
OM20	2	43.3	-18.704	121.038	-18.726	121.007	-18.723	121.011	3539.1	86.1	404.9

Apx Table 5 GPS co-ordinates for historical sites surveyed during CSIRO 1982–1997 surveys. F&B is the Frank and Bryce design demersal trawl net, McK is the McKenn design demersal trawl net.

			Long.				Depth Start
Year	Gear	STN_KEY	Start	Lat. Start	Long. End	Lat. End	(m)
1983	F&B	83033			117.99500	-20.13333	28
1983	F&B	83036			117.57500	-19.84167	54
1983	F&B	830341	116.36333	-19.69167	116.36333	-19.68333	64
1983	F&B	830344	116.05833	-20.36833	116.07000	-20.38333	40
1983	F&B	830347	116.35167	-20.00000	116.35500	-20.02000	54
1983	F&B	830348	116.60500	-20.18500	116.61167	-20.22000	51
1983	F&B	830350	116.61167	-20.29500	116.57833	-20.29333	40
1983	F&B	830351	116.76667	-20.26667	116.78667	-20.26167	42
1983	F&B	830353	116.77000	-20.00167	116.75833	-19.96000	58
1983	F&B	830354	116.79667	-19.82000	116.80167	-19.78667	68
1983	F&B	830355	116.82500	-19.71667	116.83500	-19.69500	58
1983	F&B	830358	117.35000	-20.10000	117.34167	-20.12500	42
1983	F&B	830362	117.37000	-20.33833	117.39167	-20.32667	29
1983	F&B	830363	117.65500	-20.19500	117.67500	-20.17667	32
1983	F&B	830364	117.69167	-20.20333	117.66167	-20.20500	31
1983	F&B	830367	117.63000	-19.50833	117.62167	-19.50833	68
1983	F&B	830368	117.80000	-19.58500	117.79167	-19.55833	62
1983	F&B	830369	117.70167	-19.71667	117.68000	-19.73000	60
1983	F&B	830418	118.21333	-19.37500	118.24000	-19.38000	68
1983	F&B	830419	118.16000	-19.34667	118.14500	-19.36000	72
1983	F&B	830420	118.15333	-19.19667	118.13500	-19.16000	84
1983	F&B	830423	117.92500	-19.39333	117.94333	-19.40667	68
1983	F&B	830426	117.95167	-20.15000	117.92667	-20.16833	28
1983	F&B	830427	117.80667	-20.12000	117.82167	-20.13167	33
1983	F&B	830428	117.86167	-20.04500	117.85000	-20.06000	36
1983	F&B	830429	117.71167	-19.96333	117.69167	-19.96667	44
1983	F&B	830433	117.45333	-20.06833	117.48167	-20.06667	44
1983	F&B	830434	117.24667	-20.20000	117.21333	-20.20000	39
1983	F&B	830435	117.26667	-20.21333	117.25000	-20.23667	36
1983	F&B	830436	117.35333	-20.35833	117.35167	-20.33500	28
1983	F&B	830437	117.21667	-20.32000	117.23167	-20.33333	28
1983	F&B	830438	117.17167	-20.31333	117.18000	-20.33667	28
1983	F&B	830440	117.35500	-19.66833	117.32667	-19.65667	66
1983	F&B	830441	117.20667	-19.75500	117.21833	-19.77667	66
1983	F&B	830442	117.11500	-19.71167	117.10000	-19.73167	68
1983	F&B	830444	116.94500	-19.93000	116.97000	-19.92000	59
1983	F&B	830445	117.01167	-20.03167	116.99667	-20.04333	50
1983	F&B	830448	117.06500	-20.16500	117.04667	-20.18333	42
1983	F&B	830450	116.79667	-20.05667	116.81000	-20.08167	52
1983	F&B	830451	116.80500	-20.13167	116.79333	-20.14333	52
1983	F&B	830452	116.70000	-20.25500	116.71667	-20.24000	40
1983	F&B	830453	116.70333	-20.26833	116.72000	-20.25333	38

							l
1983	F&B	830455	116.63000	-19.82833	116.60000	-19.82833	58
1983	F&B	830456	116.52333	-19.74833	116.54667	-19.74167	61
1983	F&B	830457	116.75333	-19.70167	116.76833	-19.71500	56
1983	F&B	830458	116.80000	-19.71000	116.76333	-19.71833	58
1983	F&B	830467	116.11833	-20.05833	116.11667	-20.09000	67
1983	F&B	830469	116.00000	-20.45667	116.00333	-20.47833	38
1983	F&B	830482	117.56833	-19.42000	117.55500	-19.43333	82
1986	F&B	86063			117.80667	-20.17333	27
1986	F&B	86065			117.78167	-20.06833	33
1986	F&B	86067			117.56833	-20.02167	41
1986	F&B	86068			117.44500	-20.04667	42
1986	F&B	860610	117.84500	-20.07167	117.86667	-20.08833	36
1986	F&B	860611	117.72333	-20.01333	117.74167	-19.99667	42
1986	F&B	860613	117.29167	-20.34667	117.27000	-20.35000	24
1986	F&B	860614	117.21833	-20.18500	117.24000	-20.19500	37
1986	F&B	860615	117.17333	-20.17167	117.21333	-20.17167	40
1986	F&B	860629	115.79667	-19.90000	115.79333	-19.92000	74
1986	F&B	860631	115.82500	-19.86000	115.84833	-19.85667	76
1986	F&B	860633	115.96000	-19.86333	115.96500	-19.82500	72
1986	F&B	860644	116.10333	-20.02833	116.10000	-20.05000	60
1986	F&B	860645	116.45000	-20.30333	116.42500	-20.30333	40
1986	F&B	860646	116.66167	-20.26500	116.65500	-20.29000	39
1986	F&B	860647	116.71333	-20.14500	116.72833	-20.12667	47
1986	F&B	860649	116.64000	-20.32167	116.61167	-20.33500	36
1986	F&B	860659	116.19167	-20.31667	116.16000	-20.30833	39
1986	F&B	860661	116.28000	-20.25833	116.30500	-20.25167	41
1986	F&B	860662	116.31000	-20.26500	116.33000	-20.23833	40
1986	F&B	860663	116.25500	-20.07000	116.21333	-20.07833	50
1986	F&B	860664	116.44833	-20.21833	116.44667	-20.24500	44
1986	F&B	860665	116.52667	-20.20667	116.53000	-20.18000	43
1986	F&B	860666	116.54000	-20.16833	116.54667	-20.14333	48
1986	F&B	860668	116.88333	-19.95500	116.90500	-19.94500	52
1986	F&B	860670	117.82333	-19.75833	117.84333	-19.76500	52
1986	F&B	860671	117.87000	-19.56667	117.84833	-19.57333	60
1986	F&B	860672	118.00000	-19.41833	118.02667	-19.40500	68
1986	F&B	860673	118.12000	-19.45333	118.15167	-19.44833	65
1986	F&B	860674	117.90500	-19.22000	117.87833	-19.21833	82
1986	F&B	860686	117.15000	-19.66500	117.17167	-19.68667	70
1986	F&B	860687	117.15833	-19.69833	117.17667	-19.67000	70
1986	F&B	860690	116.44500	-19.79333	116.46667	-19.79833	60
1986	F&B	860693	116.62167	-19.79667	116.64500	-19.80167	58
1986	F&B	860695	116.60333	-20.00833	116.61167	-19.98500	57
1986	F&B	8606100	116.64667	-19.80500	116.67167	-19.81500	56
1986	F&B	8606102	116.34500	-19.77167	116.37500	-19.76167	64
1986	F&B	8606102	116.50833	-19.52167	116.48833	-19.51667	88
1986	F&B	8606133	118.11833	-19.27000	118.09333	-19.26333	67
1986	F&B	8606139	118.17667	-19.85333	118.20333	-19.86500	32
1987	F&B	87073	110.17007	-17.00000	118.19500	-19.80300	25
170/	IQD	01013	1	1	110.17300	-20.02333	20

1987 F&B 870710 117.36500 -20.22833 117.3667 -20.24500 33 1987 F&B 870711 117.25000 -20.06633 117.39000 -20.18500 34 1987 F&B 870713 117.29000 -20.06833 117.29303 -20.07667 44 1987 F&B 870714 117.29000 -20.01667 117.0900 -20.16833 40 1987 F&B 870719 116.491333 -20.1167 116.92833 -20.1833 46 1987 F&B 870710 116.78667 -20.21833 116.80167 -20.2433 42 1987 F&B 870720 116.78667 -20.21833 118.24607 -19.45500 65 1987 F&B 870761 116.24833 -19.45333 112.7333 -19.72333 54 1987 F&B 870761 116.22333 -20.29333 116.42833 -20.29333 41 1987 F&B 870761 116.52333 -20.2516	1987	F&B	87077			117.77167	-20.01667	40
1987 F&B 870711 117.35000 -20.19667 117.38000 -20.018500 34 1987 F&B 870712 117.29500 -20.06833 117.29333 -20.09667 44 1987 F&B 870713 117.29500 -20.01167 117.30000 -20.03500 48 1987 F&B 870714 117.25833 -19.8533 117.25000 -20.16833 40 1987 F&B 870719 116.84500 -20.18333 116.80167 -20.21833 46 1987 F&B 870720 118.24607 -20.21833 116.80167 -20.24333 42 1987 F&B 870720 118.24833 -19.46333 118.24167 -19.45333 42 1987 F&B 870752 117.72500 -19.3167 117.71500 -19.33833 85 1987 F&B 870761 116.52333 -20.20160 116.42833 -20.21500 46 1987 F&B 870761 116.5333 -19.8				117 24500	20 22022			
1987 F&B 870712 117.29500 -20.06833 117.29333 -20.09667 44 1987 F&B 870713 117.28000 -20.01167 117.30000 -20.03500 48 1987 F&B 870714 117.25833 -19.85833 117.25000 -20.05833 40 1987 F&B 870718 116.91333 -20.115333 46 1987 F&B 870720 116.78667 -20.21833 116.8333 -20.15333 42 1987 F&B 870730 118.24833 -19.45333 112.0167 -19.45500 65 1987 F&B 870752 117.67333 -19.7333 117.6733 -19.72333 54 1987 F&B 870761 116.22333 -20.29833 116 -19.48500 65 1987 F&B 870761 116.52333 -20.2160 146 1933 -20.1501 46 1987 F&B 870761 116.56333 -20.2160 19.7167 5								
1987 F&B 870713 117.28000 -20.01167 117.3000 20.03500 48 1987 F&B 870714 117.25833 -19.85833 117.25000 -20.16833 40 1987 F&B 870719 116.91333 -20.13600 -20.15333 46 1987 F&B 870719 116.84500 -20.1833 116.8333 -20.13833 47 1987 F&B 870720 118.7600 -20.21833 116.80167 -20.24333 42 1987 F&B 870720 118.24833 -19.45333 117.67333 -19.72333 54 1987 F&B 870761 116.22333 -20.29833 116.42833 -20.29333 41 1987 F&B 870761 116.62333 -20.2300 116.42833 -20.29133 41 1987 F&B 870761 116.5233 -20.2300 116.42833 -20.25150 46 1987 F&B 870780 116.76167 -19.7000 116.7667 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1987 F&B 870714 117.25833 -19.85833 117.25000 -19.89500 56 1987 F&B 870717 117.04500 -20.16833 40 1987 F&B 870718 116.91333 -20.13167 116.92833 -20.13333 46 1987 F&B 870719 116.84600 -20.10833 116.80167 -20.24333 42 1987 F&B 870720 116.78667 -20.21833 118.24667 -19.65333 42 1987 F&B 870759 117.67333 -19.75333 117.67333 -19.7333 54 1987 F&B 870761 116.24333 -20.29833 116.42833 -20.29333 41 1987 F&B 870767 116.55333 -20.21663 -20.29333 41 1987 F&B 870761 116.56333 -20.21663 -20.21665 54 1987 F&B 870761 116.56333 -20.21667 57 1987 F&B 870								
1987 F&B 870717 117.04500 -20.16833 40 1987 F&B 870718 116.91333 -20.13167 116.92833 -20.15333 46 1987 F&B 870719 116.84500 -20.1833 116.83333 -20.13833 47 1987 F&B 870720 118.26000 -19.63167 118.24667 -19.65333 42 1987 F&B 870720 118.26000 -19.63167 118.24667 -19.45333 54 1987 F&B 870752 117.72500 -19.31167 117.71500 -19.33833 85 1987 F&B 870764 116.40167 -20.29833 116.42833 -20.21500 46 1987 F&B 870767 116.56333 -20.05167 116.642833 -20.21500 46 1987 F&B 870767 116.56333 -19.8000 116.42833 -20.21507 57 1987 F&B 870775 116.56333 -19.80000 16.5533 -19.80								
1987 F&B 870718 116.91333 -20.13167 116.92833 -20.15333 46 1987 F&B 870719 116.84500 -20.10833 116.83333 -20.13833 47 1987 F&B 870720 116.78667 -20.21833 116.80167 -20.24333 42 1987 F&B 870730 118.26000 -19.63167 118.24667 -19.65333 42 1987 F&B 870750 117.7500 -19.31167 117.71500 -19.33833 55 1987 F&B 870762 117.72500 -19.31167 117.71500 -19.33833 54 1987 F&B 870767 116.22333 -20.2000 116.42833 -20.21500 46 1987 F&B 870776 116.5633 -19.81000 116.24833 -20.21507 57 1987 F&B 870780 116.67167 -19.70000 116.74333 -19.67667 57 1987 F&B 870794 116.51633 -19.87								
1987 F&B 870719 116.84500 -20.10833 116.83333 -20.13833 47 1987 F&B 870720 116.78667 -20.21833 116.80167 -20.24333 42 1987 F&B 870730 118.24607 -19.65333 42 1987 F&B 870759 117.67333 -19.72333 54 1987 F&B 870762 117.72500 -19.31167 117.71500 -19.33833 85 1987 F&B 870764 116.640167 -20.29833 116.42833 -20.29333 41 1987 F&B 870767 116.55333 -20.20167 16.46033 -20.2167 59 1987 F&B 870776 116.56333 -19.8000 16.47433 -19.7167 59 1987 F&B 870781 116.56333 -19.87633 -19.6667 53 1987 F&B 870790 116.67167 -19.51500 116.64000 -19.52167 59 1987 F								
1987 F&B 870720 116.78667 -20.21833 116.80167 -20.24333 42 1987 F&B 870728 118.26000 -19.63167 118.24667 -19.65333 42 1987 F&B 870730 118.24833 -19.46333 118.26167 -19.48500 65 1987 F&B 870762 117.72500 -19.31167 117.71500 -19.23333 54 1987 F&B 870764 116.40167 -20.29833 116.24833 -20.29333 41 1987 F&B 870767 116.5333 -20.20300 116.48333 -20.29333 41 1987 F&B 870775 116.51333 -19.82000 116.48333 -20.29333 41 1987 F&B 870776 116.56333 -19.8000 116.48333 -19.7667 57 1987 F&B 870791 116.67167 -19.70000 116.71500 -19.89000 68 1987 F&B 870791 115.86500 116.24								
1987 F&B 870728 118.26000 -19.63167 118.24667 -19.65333 42 1987 F&B 870730 118.24833 -19.46333 118.26167 -19.48500 65 1987 F&B 870759 117.67333 -19.75333 117.67333 -19.72333 54 1987 F&B 870764 116.40167 -20.29833 116.42833 -20.21500 46 1987 F&B 870767 116.58333 -20.205167 146 1987 F&B 870775 116.51333 -19.82000 116.49333 -19.71667 57 1987 F&B 870780 116.56333 -19.8200 116.64333 -19.77667 57 1987 F&B 870780 116.56500 -19.69667 116.54333 -19.87667 57 1987 F&B 870794 116.14000 -19.85500 116.71500 -19.91333 64 1987 F&B 870791 115.89667 -20.5167 115.73667 -20								
1987 F&B 870730 118.24833 -19.46333 118.26167 -19.48500 65 1987 F&B 870759 117.67333 -19.75333 117.67333 -19.72333 54 1987 F&B 870762 117.72500 -19.31167 117.71500 -19.33833 85 1987 F&B 870764 116.40167 -20.29833 116.42833 -20.21500 46 1987 F&B 870767 116.5333 -20.2000 116.42833 -20.21500 46 1987 F&B 870769 116.56333 -20.05167 54 1987 F&B 870776 116.56333 -19.8200 116.47433 -20.05167 57 1987 F&B 870780 116.67167 -19.51500 116.64333 19.67667 57 1987 F&B 870791 116.5633 -19.87500 116.97667 57 1987 F&B 870781 116.6500 -19.85150 116.64033 -19.91333 64								
1987 F&B 870759 117.67333 -19.75333 117.67333 -19.72333 54 1987 F&B 870762 117.72500 -19.31167 117.71500 -19.33833 85 1987 F&B 870764 116.40167 -20.29833 116.42833 -20.21500 46 1987 F&B 870767 116.52333 -20.23000 116.42833 -20.21500 46 1987 F&B 870769 116.56333 -20.2500 116.49333 -19.79167 59 1987 F&B 870775 116.56333 -19.8000 116.74500 -19.68667 53 1987 F&B 870780 116.67167 -19.7000 116.74500 -19.68667 57 1987 F&B 870794 116.14000 -19.86500 116.1500 -19.8900 68 1987 F&B 870797 115.8967 -20.59667 115.87500 -20.66167 22 1987 F&B 870797 115.89667 -20.5167<								
1987 F&B 870762 117.72500 -19.31167 117.71500 -19.33833 85 1987 F&B 870764 116.40167 -20.29833 116.42833 -20.23030 41 1987 F&B 870767 116.22333 -20.23000 116.24833 -20.21500 46 1987 F&B 870769 116.58333 -20.05167 116.60833 -20.05167 54 1987 F&B 87076 116.56333 -19.82000 116.49333 -19.79167 59 1987 F&B 870780 116.56500 -19.69667 116.54333 -19.67667 57 1987 F&B 870794 116.14000 -19.86500 116.1500 -19.80900 68 1987 F&B 87079 115.6967 -20.59667 115.87500 -20.66167 22 1987 F&B 870797 115.89667 -20.59667 115.87500 -20.66167 22 1987 F&B 8707198 115.8167 -20.201								
1987 F&B 870764 116.40167 -20.29833 116.42833 -20.29333 41 1987 F&B 870767 116.22333 -20.21500 146 1987 F&B 870769 116.58333 -20.05167 116.60833 -20.05167 54 1987 F&B 870775 116.51333 -19.8000 116.49333 -19.79167 59 1987 F&B 870776 116.56333 -19.8000 116.55000 -19.77667 57 1987 F&B 870781 116.56500 -19.69667 116.54333 -19.67667 57 1987 F&B 870794 116.14000 -19.86500 116.11500 -19.89000 68 1987 F&B 870795 116.25333 -19.87833 116.24667 -19.91333 64 1987 F&B 870797 115.89667 -20.59667 115.87500 -20.6333 30 1987 F&B 870799 115.69167 -20.40500 115.69333 -20.4								
1987 F&B 870767 116.22333 -20.23000 116.24833 -20.21500 46 1987 F&B 870769 116.58333 -20.05167 116.60833 -20.05167 54 1987 F&B 870775 116.51333 -19.82000 116.49333 -19.79167 59 1987 F&B 870776 116.56333 -19.81000 116.55000 -19.7667 57 1987 F&B 870780 116.76167 -19.70000 116.44000 -19.86667 53 1987 F&B 870790 116.67167 -19.51500 116.64000 -19.87000 68 1987 F&B 870794 116.14000 -19.86500 116.11500 -19.89000 68 1987 F&B 870795 115.70833 -20.66500 115.73667 -20.66167 22 1987 F&B 870799 115.89667 -20.59667 115.87500 -20.43333 37 1987 F&B 870799 115.69167 -20.								
1987F&B870769116.58333-20.05167116.60833-20.05167541987F&B870775116.51333-19.82000116.49333-19.79167591987F&B870760116.56333-19.81000116.55000-19.7667571987F&B870780116.76167-19.70000116.74500-19.68667531987F&B870790116.67167-19.51500116.64000-19.52167591987F&B870794116.14000-19.86500116.11500-19.89000681987F&B870795116.25333-19.87833116.24667-19.91333641987F&B870796115.70833-20.66500115.73667-20.66167221987F&B870798115.89667-20.59667115.87500-20.60333301987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.79667-19.92000115.78500-19.93000751987F&B8707121115.9000-20.45833115.90667-20.18833-661987F&B8707121115.69167-20.29000115.78500-19.8333781987F&B8707123115.8500-19.87167115.85333-19.83667761987F&B8707123115.8500-19.8233117.52500-20.10833661987F&B8707123115.8500<	1987	F&B	870764	116.40167	-20.29833	116.42833	-20.29333	
1987 F&B 870775 116.51333 -19.82000 116.49333 -19.79167 59 1987 F&B 870776 116.56333 -19.81000 116.55000 -19.77667 57 1987 F&B 870780 116.76167 -19.70000 116.74500 -19.68667 53 1987 F&B 870781 116.56500 -19.69667 116.54333 -19.7667 57 1987 F&B 870790 116.67167 -19.51500 116.64000 -19.52167 59 1987 F&B 870791 116.67167 -19.51500 116.64000 -19.52167 59 1987 F&B 870795 116.25333 -19.87803 116.24667 -19.91333 64 1987 F&B 870797 115.89667 -20.5667 115.87500 -20.60333 30 1987 F&B 870799 115.69167 -20.40500 115.69333 -20.43667 34 1987 F&B 8707100 115.9000 -20.4	1987	F&B		116.22333	-20.23000	116.24833		46
1987 F&B 870776 116.56333 -19.81000 116.55000 -19.77667 57 1987 F&B 870780 116.76167 -19.70000 116.74500 -19.68667 53 1987 F&B 870781 116.56500 -19.69667 116.54333 -19.67667 57 1987 F&B 870790 116.67167 -19.51500 116.64000 -19.89000 68 1987 F&B 870795 116.25333 -19.87833 116.24667 -19.91333 64 1987 F&B 870795 115.70833 -20.6500 115.73667 -20.66167 22 1987 F&B 870797 115.89667 -20.51167 115.97167 -20.40333 30 1987 F&B 870799 115.69167 -20.40500 115.69333 -20.43333 37 1987 F&B 8707109 115.75667 -19.92000 115.78500 -19.93000 75 1987 F&B 8707113 115.85167 -2	1987	F&B	870769	116.58333	-20.05167	116.60833	-20.05167	54
1987F&B870780116.76167-19.70000116.74500-19.68667531987F&B870781116.56500-19.69667116.54333-19.67667571987F&B870790116.67167-19.51500116.64000-19.52167591987F&B870794116.14000-19.86500116.11500-19.89000681987F&B870795116.25333-19.87833116.24667-19.91333641987F&B870796115.70833-20.6500115.73667-20.66167221987F&B870798115.89667-20.59667115.87500-20.60333301987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.76667-19.92000115.78500-19.93000751987F&B870713115.85167-20.29000115.84833-20.25833441987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707121115.99000-20.11333115.72500-20.10833661987F&B8707123115.81500-19.87167115.85333-19.88667761987F&B8707123115.81500-19.87167115.85333-19.88667761987F&B8707123115.81500-19.87167115.85333-19.88667761987F&B8707131117.	1987	F&B	870775	116.51333	-19.82000	116.49333	-19.79167	59
1987F&B870781116.56500-19.69667116.54333-19.67667571987F&B870790116.67167-19.51500116.64000-19.52167591987F&B870794116.14000-19.86500116.11500-19.89000681987F&B870795116.25333-19.87833116.24667-19.91333641987F&B870796115.70833-20.66500115.73667-20.66167221987F&B870797115.89667-20.59667115.87500-20.60333301987F&B870798115.69167-20.40500115.69333-20.43333371987F&B870710115.9000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707109115.75667-19.92000115.84833-20.25833441987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707121115.8900-20.01667115.85333-19.88833781987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707123115.8000-20.02000116.95500-20.03500501987F&B8707131117.4	1987	F&B	870776	116.56333	-19.81000	116.55000	-19.77667	57
1987F&B870790116.67167-19.51500116.64000-19.52167591987F&B870794116.14000-19.86500116.11500-19.89000681987F&B870795116.25333-19.87833116.24667-19.91333641987F&B870796115.70833-20.66500115.73667-20.66167221987F&B870797115.89667-20.59667115.87500-20.60333301987F&B870798115.69167-20.40500115.69333-20.43333371987F&B870709115.69167-20.40500115.69333-20.43333371987F&B8707100115.9000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707121115.99000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.85333-19.88833781987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707121115.99000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.	1987	F&B	870780	116.76167	-19.70000	116.74500	-19.68667	53
1987F&B870794116.14000-19.86500116.11500-19.89000681987F&B870795116.25333-19.87833116.24667-19.91333641987F&B870796115.70833-20.66500115.73667-20.60167221987F&B870797115.89667-20.59667115.87500-20.60333301987F&B870798115.88167-20.51167115.91167-20.50167341987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.90000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707123115.9000-20.11333115.72500-20.10833661987F&B8707123115.81500-19.87167115.85333-19.88833781987F&B8707123115.81500-19.8233117.52500-20.03500501987F&B8707121116.98000-20.02000116.95500-20.03500501987F&B8707123115.81500-19.8233117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88059117.93167-20.0066738	1987	F&B	870781	116.56500	-19.69667	116.54333	-19.67667	57
1987F&B870795116.25333-19.87833116.24667-19.91333641987F&B870796115.70833-20.66500115.73667-20.60167221987F&B870797115.89667-20.59667115.87500-20.60333301987F&B870798115.88167-20.51167115.91167-20.50167341987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.90000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707121115.9000-20.01667115.87500-20.01500611987F&B8707123115.81500-19.87167115.85333-19.88637761987F&B8707123115.81500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B880510117.92500-20.06333117.94500-20.0933335 <td>1987</td> <td>F&B</td> <td>870790</td> <td>116.67167</td> <td>-19.51500</td> <td>116.64000</td> <td>-19.52167</td> <td>59</td>	1987	F&B	870790	116.67167	-19.51500	116.64000	-19.52167	59
1987F&B870796115.70833-20.66500115.73667-20.66167221987F&B870797115.89667-20.59667115.87500-20.60333301987F&B870798115.88167-20.51167115.91167-20.50167341987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.90000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.85333-19.88833781987F&B8707123115.81500-19.87167115.85333-19.88667761987F&B8707125115.88500-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88057117.9333-19.85607441988F&B88058117.90333119.88500441988F&B880510117.92500-20.06333117.94500-20.07933351988F&B880517117.32667-20.10833411988F&B	1987	F&B	870794	116.14000	-19.86500	116.11500	-19.89000	68
1987F&B870797115.89667-20.59667115.87500-20.60333301987F&B870798115.88167-20.51167115.91167-20.50167341987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.90000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.88667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88057117.92500-20.06333117.97833-19.75167521988F&B88058117.90333-19.88500441988F&B880510117.92500-20.06333117.94500-20.07833351988F&B880517117.35667-20.10167117	1987	F&B	870795	116.25333	-19.87833	116.24667	-19.91333	64
1987F&B870798115.88167-20.51167115.91167-20.50167341987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.90000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707128115.98500-20.02000116.95500-20.03500501987F&B8707131117.49500-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.90333-19.75167521988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880517117.2500-20.13167117.51000-20.1583335 </td <td>1987</td> <td>F&B</td> <td>870796</td> <td>115.70833</td> <td>-20.66500</td> <td>115.73667</td> <td>-20.66167</td> <td>22</td>	1987	F&B	870796	115.70833	-20.66500	115.73667	-20.66167	22
1987F&B870799115.69167-20.40500115.69333-20.43333371987F&B8707100115.90000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707131117.49500-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B880510117.92500-20.06333117.94500-20.07833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.1583335<	1987	F&B	870797	115.89667	-20.59667	115.87500	-20.60333	30
1987F&B8707100115.90000-20.45833115.90667-20.48667341987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88050117.92500-20.06333117.94500-20.07833341988F&B880510117.92500-20.01633117.94500-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.1583335 </td <td>1987</td> <td>F&B</td> <td>870798</td> <td>115.88167</td> <td>-20.51167</td> <td>115.91167</td> <td>-20.50167</td> <td>34</td>	1987	F&B	870798	115.88167	-20.51167	115.91167	-20.50167	34
1987F&B8707109115.75667-19.92000115.78500-19.93000751987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88059117.90333-19.88500441988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880517117.35667-20.10167117.41333-20.02500451988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B	1987	F&B	870799	115.69167	-20.40500	115.69333	-20.43333	37
1987F&B8707113115.85167-20.29000115.84833-20.25833441987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88058117.90333-19.75167521988F&B88059117.90333119.88500441988F&B880510117.92500-20.06333117.94500-20.07833351988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041	1987	F&B	8707100	115.90000	-20.45833	115.90667	-20.48667	34
1987F&B8707117115.69000-20.11333115.72500-20.10833661987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880517117.42833-20.02833117.41333-20.02500451988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880519117.70833-19.99833117.71000-20.0500041	1987	F&B	8707109	115.75667	-19.92000	115.78500	-19.93000	75
1987F&B8707121115.99000-20.01667115.95667-20.01500611987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.07333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880519117.70833-19.99833117.71000-20.0500041	1987	F&B	8707113	115.85167	-20.29000	115.84833	-20.25833	44
1987F&B8707123115.81500-19.87167115.81500-19.88833781987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.07333351988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880519117.70833-19.99833117.71000-20.0500041	1987	F&B	8707117	115.69000	-20.11333	115.72500	-20.10833	66
1987F&B8707125115.88500-19.84667115.85333-19.83667761987F&B8707128116.98000-20.02000116.95500-20.03500501987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880519117.70833-19.99833117.71000-20.0500041	1987	F&B	8707121	115.99000	-20.01667	115.95667	-20.01500	61
1987 F&B 8707128 116.98000 -20.02000 116.95500 -20.03500 50 1987 F&B 8707131 117.49500 -19.32833 117.52500 -19.34167 91 1988 F&B 88054 118.21667 -19.81000 35 1988 F&B 88057 117.79833 -19.75167 52 1988 F&B 88058 117.90333 -19.88500 44 1988 F&B 88059 117.93167 -20.00667 38 1988 F&B 880510 117.92500 -20.06333 117.94500 -20.09333 35 1988 F&B 880510 117.92500 -20.06333 117.94500 -20.09333 35 1988 F&B 880514 116.89167 -20.30000 116.90000 -20.27833 34 1988 F&B 880517 117.35667 -20.10167 117.32667 -20.10833 41 1988 F&B 880518 117.42833 -20.028	1987	F&B	8707123	115.81500	-19.87167	115.81500	-19.88833	78
1987F&B8707131117.49500-19.32833117.52500-19.34167911988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041	1987	F&B	8707125	115.88500	-19.84667	115.85333	-19.83667	76
1988F&B88054118.21667-19.81000351988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041	1987	F&B	8707128	116.98000	-20.02000	116.95500	-20.03500	50
1988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041		F&B	8707131		-19.32833	117.52500	-19.34167	91
1988F&B88057117.79833-19.75167521988F&B88058117.90333-19.88500441988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041	1988	F&B	88054			118.21667	-19.81000	35
1988F&B88059117.93167-20.00667381988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041	1988		88057			117.79833	-19.75167	
1988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041	1988	F&B	88058			117.90333	-19.88500	44
1988F&B880510117.92500-20.06333117.94500-20.09333351988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041	1988	F&B	88059			117.93167	-20.00667	38
1988F&B880514116.89167-20.30000116.90000-20.27833341988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041				117.92500	-20.06333			
1988F&B880517117.35667-20.10167117.32667-20.10833411988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041								34
1988F&B880518117.42833-20.02833117.41333-20.02500451988F&B880519117.51000-20.13167117.51000-20.15833351988F&B880520117.70833-19.99833117.71000-20.0500041								
1988 F&B 880519 117.51000 -20.13167 117.51000 -20.15833 35 1988 F&B 880520 117.70833 -19.99833 117.71000 -20.05000 41								
1988 F&B 880520 117.70833 -19.99833 117.71000 -20.05000 41								
1988 F&B 880521 117.73833 -20.21667 117.68333 -20.20167 29	1988	F&B						29

1000	ΓøD	880537	118.02167	10 40222	110 01222	10 40222	47
1988	F&B			-19.48333	118.01333	-19.48333	67
1988	F&B	880541	117.06167	-20.01667	117.06833	-20.05333	50
1988	F&B	880542	117.01333	-19.91667	117.01167	-19.94500	58
1988	F&B	880543	117.31500	-19.87833	117.36500	-19.83500	57
1988	F&B	880544	117.31167	-19.81333	117.34500	-19.77667	61
1988	F&B	880545	117.47000	-19.75333	117.49333	-19.76333	60
1988	F&B	880546	117.26667	-19.72833	117.23833	-19.72333	64
1988	F&B	880547	116.46833	-20.39833	116.44000	-20.39500	37
1988	F&B	880548	116.42333	-20.39000	116.44500	-20.36333	38
1988	F&B	880549	116.50000	-20.21667	116.49500	-20.24167	47
1988	F&B	880552	116.79500	-20.15833	116.78833	-20.19333	43
1988	F&B	880553	116.11000	-20.49833	116.07500	-20.49833	30
1988	F&B	880554	116.14833	-20.55333	116.11833	-20.56167	30
1988	F&B	880556	116.07000	-20.55667	116.09000	-20.52500	31
1988	F&B	880557	115.88167	-20.65833	115.85500	-20.67000	22
1988	F&B	880558	115.85500	-20.68333	115.86333	-20.65333	22
1988	F&B	880560	115.71833	-20.51500	115.71000	-20.47000	34
1988	F&B	880561	115.90833	-20.32833	115.93167	-20.35667	44
1988	F&B	880562	115.93500	-20.28000	115.90833	-20.29167	49
1988	F&B	880563	116.22000	-20.15000	116.24500	-20.12000	53
1988	F&B	880564	116.18167	-20.07667	116.15833	-20.09667	53
1988	F&B	880572	116.54000	-20.10000	116.56833	-20.08333	51
1988	F&B	880573	116.59667	-19.93667	116.59833	-19.95667	55
1988	F&B	880575	116.89500	-19.67000	116.90333	-19.69333	75
1988	F&B	880576	116.91167	-19.81000	116.94000	-19.82833	64
1988	F&B	880577	117.15833	-20.03833	117.18500	-20.05333	47
1988	F&B	880599	118.10167	-19.23500	118.07667	-19.21000	84
1988	F&B	8805101	118.10667	-19.32167	118.14000	-19.35500	76
1988	F&B	8805102	118.11167	-19.33333	118.10667	-19.29333	74
1988	F&B	8805110	117.55833	-19.31333	117.52500	-19.32500	90
1988	F&B	8805114	117.35667	-19.48667	117.33500	-19.48500	80
1988	F&B	8805149	115.95167	-19.89500	115.92500	-19.90333	71
1989	F&B	890416	118.07700	-20.01500	118.11500	-20.00333	34
1989	F&B	890418	117.88700	-19.91200	117.90500	-19.96167	43
1989	F&B	890419	117.68000	-19.94500	117.71333	-19.91333	50
1989	F&B	890421	117.87200	-20.12700	117.83667	-20.14333	35
1989	F&B	890435	116.16167	-19.86167	116.17667	-19.89667	73
1989	F&B	890441	116.50000	-20.30667	116.48333	-20.33333	43
1989	F&B	890457	118.05167	-19.22333	118.00833	-19.23667	85
1989	F&B	890466	117.24833	-19.66667	117.25167	-19.62500	71
1989	F&B	890467	117.15667	-19.62167	117.19833	-19.61000	76
1989	F&B	890469	117.00333	-19.67333	117.02833	-19.69000	72
1989	F&B	890470	117.11000	-19.86333	117.10833	-19.89500	60
1989	F&B	890471	117.01500	-19.81500	116.99833	-19.76833	64
1989	F&B	890476	116.95333	-19.80167	116.97667	-19.83500	67
1989	F&B	890477	116.80667	-19.70833	116.83500	-19.73667	72
1989	F&B	890499	115.85333	-19.90000	115.80667	-19.89500	75
1989	F&B	8904115	117.70500	-19.30000	117.74500	-19.29667	89

1989	F&B	8904119	117.90333	-19.55333	117.89500	-19.58333	63
1989	F&B	8904120	117.91500	-19.60000	117.89000	-19.56500	60
1989	F&B	8904121	118.09500	-19.46667	118.07667	-19.50000	68
1989	F&B	8904122	118.15000	-19.31833	118.11667	-19.33667	78
1989	F&B	8904125	118.20000	-19.24833	118.16167	-19.24667	81
1990	F&B	90025	110.20000	17.24033	118.23667	-19.97833	22
1990	F&B	90023			117.99000	-19.99167	33
1990	F&B	90028			117.87500	-19.96333	40
1990	F&B	900210	117.64000	-20.03667	117.61500	-20.06500	40
1990	F&B	900210	117.37167	-20.00500	117.34833	-20.01667	46
1990	F&B	900212	117.36833	-20.08667	117.37667	-20.10833	40
1990	F&B	900212	117.30000	-20.10000	117.27000	-20.09333	40
1990	F&B	900213	117.24667	-20.18833	117.26833	-20.17833	39
1990	F&B	900223	116.98833	-19.89500	116.96833	-19.88333	60
1990	F&B	900224	116.57000	-19.77667	116.57667	-19.79667	57
1990	F&B	900224	116.60000	-19.91000	116.57333	-19.91000	57
1990	F&B	900223	116.40833	-20.11833	116.39500	-20.14167	50
1990	F&B	900229	116.26000	-20.05333	116.24500	-20.08000	54
1990	F&B	900230	116.26667	-20.05833	116.26833	-20.03000	54
1990	F&B	900231	116.24333	-20.15833	116.22333	-20.18333	51
1990	F&B	900236	116.04333	-20.57000	116.02333	-20.57333	29
1990	F&B	900238	115.80667	-20.63333	115.80667	-20.61000	27
1990	F&B	900240	115.78833	-20.40333	115.78500	-20.37833	41
1990	F&B	900241	115.75333	-20.35167	115.75000	-20.32667	43
1990	F&B	900253	117.30500	-20.09000	117.30000	-20.06000	43
1990	F&B	900254	117.36833	-20.07333	117.38500	-20.09833	43
1990	F&B	900266	118.19833	-19.53333	118.20333	-19.55833	60
1990	F&B	900267	118.07500	-19.47667	118.08833	-19.50000	66
1990	F&B	900269	118.20833	-19.32500	118.22500	-19.33833	76
1990	F&B	9002106	117.04333	-19.45500	117.02500	-19.47667	100
1990	F&B	9002107	117.00000	-19.51000	117.03833	-19.54500	78
1990	F&B	9002109	116.93833	-19.74167	116.91667	-19.72833	67
1990	F&B	9002110	116.81333	-19.73667	116.80000	-19.71333	66
1990	F&B	9002119	115.96667	-20.26667	115.97000	-20.23167	47
1990	F&B	9002123	116.03000	-19.96333	116.05333	-19.95500	66
1990	F&B	9002138	116.69000	-19.45333	116.67167	-19.47000	82
1990	F&B	9002141	116.60667	-19.55667	116.58667	-19.57500	63
1990	F&B	9002161	116.71000	-20.20667	116.73167	-20.21667	44
1990	F&B	9002162	115.92500	-20.65000	115.93167	-20.62167	26
1990	F&B	9002163	115.90667	-20.60500	115.91333	-20.62833	27
1990	F&B	9002164	115.74167	-20.60000	115.71667	-20.60667	26
1990	F&B	9002167	115.75833	-20.66333	115.78000	-20.65000	20
1990	F&B	9002168	116.01333	-20.60000	116.04333	-20.59833	26
1990	F&B	9002169	116.00667	-20.54167	116.02500	-20.52500	30
1990	F&B	9002174	117.71500	-20.05500	117.74167	-20.03667	40
1990	F&B	9002176	117.95000	-20.05500	117.96833	-20.03333	35
1991	F&B	910426	115.75833	-20.27000	115.77833	-20.28667	47
1991	F&B	910430	116.15333	-19.75000	116.12667	-19.73833	71

1001	ΓøD	010427	116 26000	20.04147	114 24222	20 02147	50
1991	F&B	910437	116.36000	-20.06167	116.34333	-20.03167	52
1991	F&B	910439	116.26000	-20.21333	116.25500	-20.24000	48
1991	F&B	910441	116.04000	-20.16833	116.04333	-20.19667	54
1991	F&B	910444	116.41500	-20.31167	116.42833	-20.33500	41
1991	F&B	910445	116.77500	-20.21500	116.80333	-20.20667	44
1991	F&B	910446	116.65833	-20.14833	116.67833	-20.16833	49
1991	F&B	910447	116.64500	-20.04167	116.63167	-20.02167	54
1991	F&B	910448	116.60167	-19.95667	116.58500	-19.94000	56
1991	F&B	910449	116.57167	-19.87500	116.59333	-19.88333	58
1991	F&B	910450	116.81667	-19.97833	116.82500	-20.00167	56
1991	F&B	910451	116.87333	-20.11000	116.89667	-20.11500	47
1991	F&B	910458	117.10333	-19.55500	117.08167	-19.56500	75
1991	F&B	910460	116.86500	-19.55167	116.89333	-19.53667	74
1991	F&B	910461	116.80833	-19.62000	116.78833	-19.63667	46
1991	F&B	910462	116.86667	-19.72667	116.87000	-19.74833	73
1991	F&B	910463	116.95333	-19.75500	116.97667	-19.76833	66
1991	F&B	910464	117.25000	-20.07167	117.22333	-20.08000	44
1991	F&B	910466	116.99667	-20.22333	117.03167	-20.23500	36
1991	F&B	910467	116.99667	-20.20167	117.00000	-20.17333	38
1991	F&B	910469	117.30167	-20.33833	117.31667	-20.31333	27
1991	F&B	910470	117.32167	-20.21000	117.33500	-20.18333	35
1991	F&B	910471	117.49833	-20.24833	117.51667	-20.24667	30
1991	F&B	910472	117.49500	-19.95667	117.48833	-19.93167	45
1991	F&B	910473	117.48333	-19.90833	117.48833	-19.89500	50
1991	F&B	910474	117.60167	-19.66167	117.61000	-19.64167	61
1991	F&B	910476	117.37333	-19.50500	117.38333	-19.48167	79
1991	F&B	910489	117.79167	-19.90667	117.77500	-19.93500	44
1991	F&B	910490	117.76667	-19.99833	117.79500	-20.00333	41
1991	F&B	910491	117.71167	-20.06000	117.73833	-20.08833	40
1991	F&B	910493	117.72500	-20.03500	117.73833	-20.00333	41
1991	F&B	910494	117.91500	-19.98000	117.92167	-19.94833	38
1991	F&B	910495	117.97667	-19.80000	118.01667	-19.80333	46
1991	F&B	910496	118.04667	-19.82500	118.04833	-19.84833	42
1995	МсК	95083			117.46167	-20.06000	42
1995	McK	95084			117.37333	-20.28000	27
1995	McK	95086			117.10500	-20.15833	43
1995	McK	950819	115.76667	-20.16167	115.79000	-20.15833	61
1995	McK	950835	116.12167	-20.35167	116.10333	-20.34167	41
1995	McK	950837	116.06500	-20.14667	116.05833	-20.12167	55
1995	McK	950839	116.06500	-20.02167	116.10000	-20.02833	59
1995	МсК	950841	116.45833	-19.70167	116.48667	-19.72167	62
1995	МсК	950842	116.50000	-19.71667	116.53333	-19.69833	60
1995	МсК	950843	116.55833	-19.66167	116.55833	-19.63333	56
1995	МсК	950844	116.66000	-19.51833	116.68333	-19.52500	64
1995	МсК	950845	116.69833	-19.67667	116.69500	-19.70500	46
1995	МсК	950847	116.77000	-19.78500	116.77000	-19.81000	65
1995	МсК	950848	116.75000	-20.06167	116.72167	-20.06833	52
1995	МсК	950849	116.54667	-20.05667	116.54667	-20.02500	56

1005	МсК	050050	11/ 55000	-19.95667	11/ 54500	10.00/77	59
1995		950850	116.55000		116.54500	-19.98667	-
1995	McK	950851	116.30333	-20.15167	116.29667	-20.17667	51
1995	McK	950854	116.49667	-20.30500	116.47333	-20.31000	40
1995	McK	950855	116.52333	-20.34833	116.55500	-20.34833	39
1995	McK	950857	116.85333	-20.20000	116.87500	-20.19000	41
1995	МсК	950865	117.24833	-19.57500	117.25667	-19.60167	74
1995	МсК	950879	117.61667	-19.30167	117.60500	-19.32667	88
1995	МсК	950880	117.57167	-19.47000	117.59000	-19.48500	80
1995	МсК	950883	118.09333	-19.71000	118.07333	-19.73167	50
1995	МсК	950884	118.10833	-19.69500	118.09167	-19.68333	52
1995	МсК	950885	118.13167	-19.66833	118.15833	-19.68333	51
1995	МсК	950886	118.17000	-19.62667	118.19667	-19.64000	56
1995	МсК	950887	118.22000	-19.74167	118.24667	-19.76667	35
1995	МсК	950894	117.93667	-20.16333	117.91167	-20.16667	25
1995	МсК	950895	117.80833	-20.23167	117.84000	-20.21833	23
1995	МсК	950896	117.83500	-20.19833	117.86167	-20.20667	28
1995	МсК	950898	118.21333	-20.01167	118.23000	-19.96667	27
1995	МсК	9508111	118.00167	-19.40333	118.05000	-19.41000	69
1997	МсК	97071			116.97333	-20.09833	44
1997	МсК	97072			117.07167	-20.00667	50
1997	МсК	97075			116.80667	-19.83000	69
1997	МсК	970712	116.75000	-19.46667	116.79000	-19.45167	72
1997	МсК	970713	116.73333	-19.53333	116.73000	-19.57000	50
1997	МсК	970714	116.66833	-19.71833	116.66167	-19.74667	49
1997	МсК	970715	116.62333	-19.74833	116.59833	-19.72833	53
1997	МсК	970726	116.35000	-19.67333	116.33167	-19.70667	67
1997	МсК	970731	115.95333	-20.16667	115.93667	-20.19167	56
1997	МсК	970732	116.14333	-20.21667	116.15333	-20.19167	50
1997	МсК	970739	115.66833	-19.91500	115.70667	-19.91167	79
1997	МсК	970753	115.84833	-20.42833	115.85333	-20.40500	38
1997	МсК	970754	115.85333	-20.53500	115.85833	-20.50833	33
1997	МсК	970755	115.70667	-20.61000	115.71833	-20.57833	25
1997	МсК	970756	116.04500	-20.51167	116.00500	-20.49667	32
1997	МсК	970758	117.21667	-20.37000	117.19500	-20.35333	23
1997	МсК	970761	117.45500	-20.06000	117.42833	-20.04333	43
1997	МсК	970762	117.32333	-20.06167	117.29000	-20.06500	42
1997	МсК	970764	116.51333	-20.25000	116.49000	-20.24500	44
1997	МсК	970765	116.26500	-20.39500	116.28500	-20.37667	38
1997	МсК	970766	116.41833	-20.38833	116.45000	-20.36167	38
1997	МсК	970767	116.56167	-20.33000	116.52667	-20.33000	37
1997	МсК	970768	117.46167	-20.03667	117.45000	-20.01667	42
1997	МсК	970781	117.60667	-19.66167	117.63333	-19.70333	64
1997	МсК	970782	117.81000	-19.62167	117.84500	-19.63167	60
1997	МсК	970783	118.00500	-19.61333	117.96667	-19.63500	57
1997	МсК	970784	117.55833	-20.16333	117.54333	-20.18333	33
1997	МсК	970785	117.69167	-20.15000	117.73000	-20.16167	32
1997	МсК	970786	117.70000	-20.10833	117.74000	-20.10333	33
1997	МсК	970787	117.84333	-20.05167	117.80833	-20.05833	35

1997	McK	970788	117.85500	-19.90833	117.81833	-19.92167	46
1997	МсК	970789	117.71167	-19.85000	117.73500	-19.82667	51
1997	МсК	9707102	117.81500	-19.71333	117.84667	-19.71333	53
1997	МсК	9707103	118.29333	-19.71000	118.08500	-19.69333	50
1997	МсК	9707104	118.14667	-19.75667	118.11667	-19.77500	43
1997	МсК	9707105	118.27167	-19.83167	118.24833	-19.83167	33
1997	МсК	9707106	118.27500	-19.94833	118.25500	-19.95500	26

Appendix F Data tables and figures of fish analyses

F.1 Fish species selected for analyses

Total species pool of 254 fish species for regional assemblage analyses showing ranked biomass, total occurrences (occ.), total weight, rank and occurrence by number of surveys. The four key genera are indicated (*).

Apx Table 6. Total species pool of 254 fish species for regional assemblage analyses showing ranked biomass, total occurrences (occ.), total weight, rank and occurrence by number of surveys. The four key genera are indicated (*).

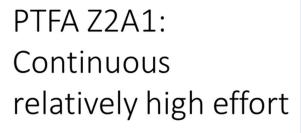
Scientific name	Common name	Family	Gen	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Surveys
Lethrinus nebulosus &		<u> </u>						-
Lethrinus sp.	Spangled emperor	Lethrinidae	*	37351904	353	12183.3	1	8
Nemipterus furcosus	Rosy Threadfin Bream	Nemipteridae	*	37347005	532	9492.88	2	8
Saurida undosquamis	Largescale Saury	Synodontidae	*	37118001	609	6970.25	3	8
Abalistes stellatus	Starry Triggerfish	Balistidae		37465011	610	6019.79	4	8
Lutjanus sebae	Red Emperor	Lutjanidae	*	37346004	328	3727.34	5	8
Diagramma pictum	Painted Sweetlips Northwest Threadfin	Haemulidae		37350003	245	3597.23	6	8
Pentapodus porosus	Bream	Nemipteridae		37347007	253	3318.23	7	8
Saurida cf filamentosa	Threadfin Saury	Synodontidae	*	37118006	262	2998.39	8	8
Upeneus moluccensis	Goldband Goatfish	Mullidae		37355003	136	2957.4	9	8
Lutjanus vitta	Brownstripe Snapper	Lutjanidae	*	37346003	369	2587.93	10	8
Lutjanus malabaricus	Saddletail Snapper	Lutjanidae	*	37346007	149	1870.41	11	8
Selaroides leptolepis Pristipomoides	Yellowstripe Scad	Carangidae		37337015	122	1789.2	12	8
multidens Parupeneus	Goldband Snapper	Lutjanidae		37346002	188	1692.42	13	8
heptacanthus	Opalescent Goatfish Rainbow Monocle	Mullidae		37355004	432	1690.54	14	8
Scolopsis monogramma	Bream	Nemipteridae		37347006	282	1643.8	15	8
Argyrops bleekeri	Frypan Bream	Sparidae		37353006	448	1634.12	16	8
Lethrinus genivittatus	Threadfin Emperor	Lethrinidae	*	37351002	152	1501.52	17	8
Priacanthus hamrur Chaetodontoplus	Lunartail Bigeye	Priacanthidae		37326005	452	1341.53	18	8
duboulayi	Scribbled Angelfish	Pomacanthidae		37365009	260	1282.03	19	8
Pentaprion longimanus	Longfin Silverbiddy	Gerreidae		37349002	194	1209.18	20	8
Rhynchobatus spp.	A wedgefish	Rhinidae		37026900	94	1195.94	21	8
Ariomma indicum	Indian Driftfish	Ariommatidae		37447007	70	1131.69	22	8
Photopectoralis bindus	Orangefin Ponyfish Yellowbelly Threadfin	Leiognathidae		37341002	146	1128.75	23	8
Nemipterus bathybius Gymnocranius	Bream	Nemipteridae	*	37347001	194	1103.39	24	8
grandoculis Epinephelus	Robinson's Seabream	Lethrinidae		37351005	37	1071.42	25	8
multinotatus	Rankin Cod	Serranidae		37311010	158	1065.35	26	8

Scientific name	Common name	Family	Gen	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Surveys
Himantura spp.		Dasyatidae		37035902	47	1046.71	27	6
Upeneus guttatus	Orange-barred goatfish	Mullidae		37355008	444	1033.63	28	8
Carangoides caeruleopinnatus	Onion Trevally	Carangidae		37337021	255	1015.36	29	8
Lutjanus argentimaculatus Lutjanus	Mangrove Jack	Lutjanidae	*	37346015	11	1009.12	30	3
quinquelineatus	Fiveline Snapper	Lutjanidae	*	37346006	15	907.21	31	3
Bathytoshia lata	Black Stingray	Dasyatidae		37035002	6	900	32	1
Priacanthus tayenus	Purplespotted Bigeye	Priacanthidae		37326003	164	897.84	33	8
Choerodon cauteroma	Bluespotted Tuskfish Celebes Threadfin	Labridae		37384005	255	894.56	34	8
Nemipterus celebicus	Bream	Nemipteridae	*	37347004	503	846.33	35	8
Taeniurops meyeni	Blotched Fantail Ray	Dasyatidae		37035017	6	835	36	2
Netuma thalassina Chaetodontoplus	Giant Sea Catfish	Ariidae		37188001	104	793.68	37	8
personifer	Yellowtail Angelfish	Pomacanthidae		37365008	368	781.99	38	8
Siganus fuscescens	Black Rabbitfish	Siganidae		37438001	189	739.07	39	8
Sargocentron rubrum	Red Squirrelfish	Holocentridae		37261001	78	704.1	40	8
Stegostoma tigrinum	Zebra Shark	Stegostomatidae		37013006	19	685.2	41	6
Platax batavianus Lutjanus sp. (in Yearsley. Last & Ward.	Humphead Batfish	Ephippidae		37362002	195	647.43	42	8
1999)	Russell's snapper	Lutjanidae	*	37346012	184	640.1	43	8
Pristotis obtusirostris	Gulf Damsel	Pomacentridae		37372001	292	625.03	44	8
Pateobatis fai	Pink Whipray	Dasyatidae		37035024	2	620	45	1
Upeneus australiae	Australian Goatfish Yellowspotted	Mullidae		37355032	136	608.66	46	8
Epinephelus areolatus	Rockcod	Serranidae		37311009	278	596.87	47	8
Pterocaesio chrysozona Pseudorhombus	Yellowband Fusilier Three Twinspot	Caesionidae		37346009	173	584.55	48	8
dupliciocellatus	Flounder	Paralichthyidae		37460004	439	583.78	49	8
Glaucosoma buergeri	Northern Pearl Perch	Glaucosomatidae		37320001	126	579.61	50	8
Acropoma japonicum	Japanese Seabass	Acropomatidae		37311167	103	558.24	51	8
Selar boops	Oxeye Scad	Carangidae		37337008	33	515.76	52	5
Scarus ghobban Gnathanodon speciosus	Bluebarred Parrotfish Golden Trevally	Scaridae Carangidae		37386001 37337012	154 24	475.47 458.21	53 54	8 4
Plectropomus maculatus	Barcheek Coral Trout	Serranidae		37311012	132	456.61	55	8
Lutjanus erythropterus	Crimson Snapper Golden Threadfin	Lutjanidae	*	37346005	60	455.04	56	8
Nemipterus virgatus	Bream	Nemipteridae	*	37347009	149	429.37	57	8
Lethrinus lentjan Carangoides	Redspot Emperor	Lethrinidae	*	37351007	64	428.31	58	8
gymnostethus	Bludger Trevally	Carangidae		37337022	256	385.54	59	8
Choerodon cephalotes Gymnocranius	Purple Tuskfish	Labridae		37384004	161	377.9	60	8
elongatus	Swallowtail Seabream	Lethrinidae	.1.	37351010	226	362.15	61	8
Saurida grandisquamis Carangoides chrysonbrys	Grey Saury	Synodontidae	*	37118016	419	358.09	62	8
chrysophrys	Longnose Trevally	Carangidae		37337011	148	353.82	63	8
Carangoides equula	Whitefin Trevally	Carangidae		37337013	206	348.08	64	8

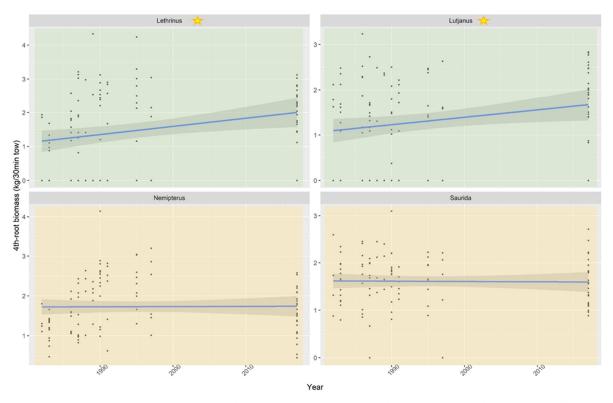
Scientific name	Common name	Family	Gen	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Surveys
	Notched Threadfin			0.0.0		(-9/	210111200	va. reje
Nemipterus peronii Hemigaleus	Bream	Nemipteridae	*	37347003	189	343.99	65	8
australiensis	Weasel Shark	Hemigaleidae		37018020	111	332.37	66	8
Epinephelus coioides Parachaetodon	Goldspotted Rockcod	Serranidae		37311007	34	314.12	67	7
ocellatus	Ocellate Butterflyfish	Chaetodontidae		37365003	399	301.79	68	8
Parupeneus indicus	Yellowspot Goatfish	Mullidae		37355005	108	295.49	69	8
Rachycentron canadum	Cobia	Rachycentridae		37335001	47	294.94	70	8
Carcharhinus plumbeus	Sandbar Shark	Carcharhinidae		37018007	11	291.47	71	2
Gymnocranius griseus	Grey Seabream	Lethrinidae		37351003	48	291.33	72	6
Maculabatis astra Pseudorhombus	Blackspotted Whipray Bigtooth Twinspot	Dasyatidae		37035020	17	277.4	73	2
diplospilus	Flounder	Paralichthyidae		37460015	287	264.6	74	8
Sphyraena putnamae Lagocephalus	Military Barracuda	Sphyraenidae		37382006	20	257.87	75	5
sceleratus	Silver Toadfish	Tetraodontidae		37467007	211	252.1	76	8
Dentex spariformis Acanthurus	Yellowback Bream	Sparidae		37353002	22	245.28	77	6
grammoptilus	Inshore Surgeonfish	Acanthuridae		37437002	117	230.37	78	8
Pomadasys kaakan	Barred Javelin	Haemulidae		37350011	3	228.81	79	1
Ostracion nasus	Shortnose Boxfish	Ostraciidae	L.	37466005	256	227.46	80	8
Lethrinus variegatus	Variegated Emperor	Lethrinidae	*	37351014	19	223.94	81	6
Pristipomoides typus Pomacanthus	Sharptooth Snapper	Lutjanidae		37346019	38	218.87	82	5
sexstriatus	Sixband Angelfish	Pomacanthidae		37365010	59	217.94	83	8
Loxodon macrorhinus	Sliteye Shark	Carcharhinidae		37018005	43	204.03	84	8
Sphyraena obtusata	Yellowtail Barracuda Blackbanded	Sphyraenidae		37382007	21	201.13	85	2
Seriolina nigrofasciata Symphorus	Amberjack	Carangidae		37337014	171	200.86	86	8
nematophorus	Chinamanfish Orangebanded	Lutjanidae		37346017	40	200.45	87	7
Coradion chrysozonus	Coralfish	Chaetodontidae		37365004	314	192.72	88	8
Rhina ancylostoma Carangoides	Shark Ray	Rhinidae		37026002	5	189.5	89	2
malabaricus	Malabar Trevally	Carangidae		37337005	58	184.66	90	5
Decapterus russelli	Indian Scad	Carangidae		37337023	78	182.87	91	6
Epinephelus maculatus	Highfin Grouper	Serranidae		37311011	137	177.51	92	7
Neotrygon australiae	Bluespotted Maskray Japanese Ding angle fick	Dasyatidae		37035004	63	174.74	93	8
Monocentris japonica	Pineapplefish	Monocentrididae		37259002	29	172.89	94	4
Choerodon schoenleinii Pseudomonacanthus peroni	Blackspot Tuskfish Potbelly Leatherjacket	Labridae Monacanthidae		37384010 37465020	28 197	170.35 168.65	95 96	5 8
Upeneus margarethae	A goatfish	Mullidae		37355038	108	158.86	90 97	6
	A goathsh Mouth Mackerel	Scombridae		37355036		150.00	97 98	2
Rastrelliger kanagurta Pastinachus ater	Cowtail Stingray	Dasyatidae		37441012	31 2	151.71	98 99	2
		-						
Trixiphichthys weberi	Blacktip Tripodfish	Triacanthidae		37464001	245	142.07	100	8
Lactoria diaphana Dactyloptena macracanthus	Roundbelly Cowfish Mottled Flying Gurnard	Ostraciidae Dactylopteridae		37466007 37308003	258 224	137.65 135.72	101 102	8 7
					224			, 1
Sphyrna mokarran	Great Hammerhead	Sphyrnidae		37019002	2	135	103	I

Scientific name	Common name	Family	Gen	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Survey
	Yellowtip Threadfin	. anny	0011	orale	000.	(19)	Diomass	ourroj
Nemipterus nematopus Tragulichthys	Bream Longspine	Nemipteridae	*	37347002	36	134.5	104	4
jaculiferus Aptychotrema	Porcupinefish Western Shovelnose	Diodontidae		37469004	101	134.38	105	8
vincentiana	Ray	Trygonorrhinidae		37027001	20	131.57	106	4
Aluterus monoceros	Unicorn Leatherjacket Yellowspotted	Monacanthidae		37465022	87	130.79	107	8
Pseudobalistes fuscus	Triggerfish	Balistidae	*	37465027	33	129.79	108	8
Lutjanus carponotatus	Stripey Snapper	Lutjanidae	^	37346011	30	127.95	109	6
Equulites elongatus	Elongate Ponyfish	Leiognathidae		37341011	194	127.72	110	2
Sufflamen fraenatum Parupeneus	Bridled Triggerfish	Balistidae		37465014	112	127.58	111	8
chrysopleuron	Rosy Goatfish	Mullidae		37355016	117	126.7	112	6
Saurida argentea	Shortfin Saury Smooth Golden	Synodontidae	*	37118005	90	126.5	113	7
Lagocephalus inermis	Toadfish	Tetraodontidae		37467008	118	126.07	114	8
Rhizoprionodon acutus	Milk Shark Australian Butterfly	Carcharhinidae		37018006	36	124.85	115	7
Gymnura australis	Ray Rough Golden	Gymnuridae		37037001	69	122.89	116	8
Lagocephalus lunaris	Toadfish	Tetraodontidae		37467012	84	121.07	117	8
Lutjanus lutjanus Pseudorhombus	Bigeye Snapper	Lutjanidae	*	37346008	27	117.4	118	3
spinosus	Spiny Flounder	Paralichthyidae		37460011	232	114.19	119	8
Neotrygon leylandi	Painted Maskray Robust Deepsea	Dasyatidae		37035013	156	110.95	120	8
Antigonia capros	Boarfish	Caproidae		37267004	5	110.84	121	2
Psettodes erumei	Australian Halibut Goldeneye	Psettodidae		37457001	163	108.14	122	8
Rhinobatos sainsburyi	Shovelnose Ray	Rhinobatidae		37027003	78	107.53	123	7
Sphyraena forsteri	Blackspot Barracuda	Sphyraenidae		37382005	45	106.48	124	6
Lactoria cornuta Glaucosoma	Longhorn Cowfish	Ostraciidae		37466004	112	106.11	125	8
magnificum	Threadfin Pearl Perch	Glaucosomatidae		37320002	39	105.51	126	7
Fistularia petimba	Rough Flutemouth	Fistulariidae		37278002	361	105.34	127	8
Lethrinus laticaudis	Grass Emperor Barred Yellowtail	Lethrinidae	*	37351006	26	98.31	128	6
Atule mate	Scad	Carangidae		37337024	33	98.05	129	5
Diploprion bifasciatum	Barred Soapfish	Grammistidae		37312002	101	94.37	130	7
Choerodon vitta	Redstripe Tuskfish	Labridae		37384006	106	89.68	131	8
Chelmon marginalis Eubalichthys	Margined Coralfish Bluespotted	Chaetodontidae		37365007	135	88.86	132	8
caeruleoguttatus Hapalogenys	Leatherjacket	Monacanthidae		37465018	119	85.85	133	6
dampieriensis Selar crumenophthalmus	A grunter bream Bigeye Scad	Haemulidae Carangidae		37350027 37337009	50 35	85.43 85.38	134 135	8
-	Digeye Juau	Bothidae			287			7
Grammatobothus spp. Priacanthus macracanthus	Spotted Bigeye	Priacanthidae		37460909 37326001	287 52	84.99 81.4	136 137	7
Echeneis naucrates	Sharksucker	Echeneidae		37336001	52 114	81.27	137	7
Albula argentea	Pacific Bonefish	Albulidae		37055001	2	80.24	139	1
Upeneus Iuzonius	Luzon Goatfish	Mullidae		37355009	55	77.5	140	7

Scientific name	Common name	Family	Gen	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Surveys
Choerodon sugillatum	Wedgetail Tuskfish	Labridae	UCH	37384009	211	73.83	141	6
Upeneus torres Carangoides	Japanese Goatfish	Mullidae		37355002	68	71.29	142	5
fulvoguttatus Lethrinus	Turrum	Carangidae		37337037	51	71.28	143	5
rubrioperculatus	Spotcheek Emperor	Lethrinidae	*	37351012	10	70.53	144	2
Lutjanus lemniscatus Trachinocephalus	Darktail Snapper	Lutjanidae	*	37346010	32	64.38	145	6
trachinus	Painted Grinner Freckled	Synodontidae		37118002	262	61.14	146	5
Diodon holocanthus	Porcupinefish	Diodontidae		37469005	35	60.48	147	6
Psenopsis humerosa	Blackspot Butterfish	Centrolophidae		37445007	38	58.94	148	5
Decapterus macarellus	Mackerel Scad	Carangidae		37337055	6	58.68	149	1
Trichiurus spp.	A hairtail	Trichiuridae		37440901	59	58.28	150	5
Lethrinus olivaceus	Longnose Emperor	Lethrinidae	*	37351004	11	57.35	151	2
Pterois volitans	Common Lionfish	Pteroidae		37287040	96	56.95	152	6
Choerodon monostigma	Darkspot Tuskfish	Labridae		37384008	99	55.91	153	6
Heniochus diphreutes	Schooling Bannerfish	Chaetodontidae		37365005	81	55.82	154	5
Mustelus spp.	Gummy shark	Triakidae		37017901	23	55.56	155	4
Terapon theraps	Largescale Grunter	Terapontidae		37321003	5	54.59	156	1
Lepidotrigla cf japonica	red spot gurnard	Triglidae		37288010	267	53.26	157	6
Sphyraena pinguis	Striped Barracuda	Sphyraenidae		37382001	37	53.23	158	5
Malakichthys levis	Smooth Seabass	Acropomatidae		37311031	7	52.89	159	2
Velifer hypselopterus	Highfin Veilfin	Veliferidae		37269002	76	49.37	160	5
Bodianus solatus	A wrasse	Labridae		37384201	55	46.62	161	5
Caranx ignobilis	Giant Trevally	Carangidae		37337027	3	46.59	162	1
Pseudorhombus argus	Peacock Flounder	Paralichthyidae		37460038	81	45.13	163	3
Carcharhinus coatesi	Whitecheek Shark	Carcharhinidae		37018009	14	44.71	164	5
Scolopsis meridiana	Redspot Monocle Bream	Nemipteridae		37347008	50	44.38	165	4
Epinephelus amblycephalus	Banded Grouper	Serranidae		37311015	19	44.18	166	4
Champsodon spp.		Champsodontidae		37401901	219	42.88	167	3
Eucrossorhinus								
dasypogon	Tasselled Wobbegong	Orectolobidae		37013011	8	42.72	168	1
Pseudorhombus arsius Lepidotrigla sp. 2 [in Sainchury et al. 1995]	Largetooth Flounder mottled red spot	Paralichthyidae		37460009	74	41.58	169	4
Sainsbury et al. 1985]	gurnard	Triglidae		37288015	97	41.31	170	4
Plectorhinchus gibbosus	Brown Sweetlips	Haemulidae		37350012	7	39.83	171	2
Feroxodon multistriatus	Ferocious Puffer	Tetraodontidae		37467010	18	39.61	172	4
Arothron stellatus Pseudomonacanthus elongatus	Starry Puffer Fourband Leatherjacket	Tetraodontidae Monacanthidae		37467014 37465029	17 49	38.61 37.64	173 174	3 4
Tetrosomus gibbosus	Humpback Turretfish Diamondscale	Ostraciidae		37466006	194	37.04	174	5
Parupeneus ciliatus	Goatfish	Mullidae		37355024	31	36.59	176	2
Pseudorhombus jenynsii Torquigener	Smalltooth Flounder Rusty-spotted	Paralichthyidae		37460002	69	34.73	177	3
pallimaculatus	Toadfish	Tetraodontidae		37467009	159	34.47	178	4
Uranoscopus cognatus	Yellowtail Stargazer	Uranoscopidae		37400008	68	34.07	179	3
Cyclichthys spilostylus	Spotbase Burrfish	Diodontidae		37469003	10	32.59	180	2

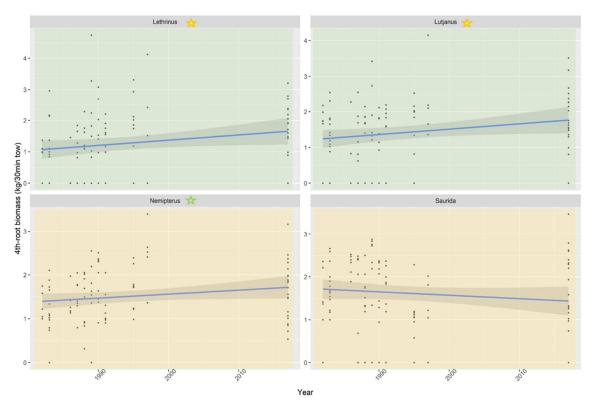

Scientific name	Common name	Family	Gen	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Survey
Decapterus macrosoma	Slender Scad	Carangidae		37337017	56	31.69	181	1
Chaetodermis penicilligerus	Tasselled Leatherjacket	Monacanthidae		37465013	93	31.61	182	3
Parascolopsis tanyactis Carangoides	Longray Monocle Bream	Nemipteridae		37347010	85	30.25	183	4
talamparoides Ostracion	Whitetongue Trevally	Carangidae		37337043	16	28.23	184	2
rhinorhynchos	Horn-nose Boxfish	Ostraciidae		37466009	16	26.95	185	3
Alepes apercna	Smallmouth Scad	Carangidae		37337010	16	26.21	186	3
Uraspis uraspis Branchiostegus	Whitemouth Trevally	Carangidae		37337020	12	25.79	187	2
sawakinensis Pseudorhombus	Freckled Tilefish	Malacanthidae		37331001	31	25.28	188	4
quinquocellatus	Five-eye Flounder	Paralichthyidae		37460025	94	24.88	189	3
Saurida longimanus	Longfin Saury	Synodontidae	*	37118014	44	24.58	190	3
Rhabdamia gracilis	Slender Cardinalfish	Apogonidae		37327022	35	24.02	191	1
Caranx bucculentus Gymnothorax cribroris	Bluespotted Trevally	Carangidae		37337016	7	23.74	192	1
cf (WA)	Sieve Moray	Muraenidae		37060002	107	23.49	193	1
Epinephelus rivulatus Dipterygonotus	Chinaman Rockcod	Serranidae		37311022	24	23.36	194	2
balteatus	Mottled Fusilier Australian Sharpnose	Caesionidae		37346013	64	22.58	195	2
Rhizoprionodon taylori Pseudorhombus	Shark	Carcharhinidae		37018024	8	21.75	196	1
elevatus Zabidius	Deep Flounder	Paralichthyidae		37460008	73	21	197	2
novemaculeatus	Shortfin Batfish	Ephippidae		37362003	6	20.35	198	1
Fistularia commersonii	Smooth Flutemouth	Fistulariidae		37278001	76	20.02	199	1
Synodus sageneus	Fishnet Lizardfish	Synodontidae		37118004	120	19.87	200	1
Lepidotrigla russelli	Smooth Gurnard	Triglidae		37288016	37	19.72	201	1
Squalus spp. Herklotsichthys	Greeneye dogfish	Squalidae		37020901	8	17.69	202	2
koningsbergeri	Largespotted Herring	Clupeidae		37085007	2	17.63	203	1
Gymnocranius satoi	spotted seabream Spotted Armour	Lethrinidae		37351023	5	17.26	204	2
Satyrichthys rieffeli	Gurnard	Peristediidae		37288019	21	17.16	205	2
Pomadasys maculatus	Blotched Javelin	Haemulidae		37350002	5	16.93	206	2
Chimaera ogilbyi	Ogilby's Ghostshark	Chimaeridae		37042001	3	16.83	207	1
Caranx tille	Tille Trevally	Carangidae		37337049	3	16.75	208	1
Pomacanthus imperator	Emperor Angelfish Largespot Flying	Pomacanthidae		37365014	22	16.68	209	1
Dactyloptena papilio	Gurnard Sharpsnout Deepsea	Dactylopteridae		37308001	61	16.62	210	1
Antigonia rubescens	Boarfish	Caproidae		37267001	12	16.5	211	1
Squatina pseudocellata	Western Angelshark	Squatinidae		37024005	7	16.49	212	1
Terapon jarbua	Crescent Grunter	Terapontidae		37321002	38	16.31	213	1
Coradion altivelis Scomberoides	Highfin Coralfish	Chaetodontidae		37365018	54	16.14	214	1
commersonnianus	Giant Queenfish Blue-and-yellow	Carangidae		37337032	5	15.99	215	1
Anampses lennardi Platycephalus westraliae	Wrasse	Labridae		37384016	56 21	15.81	216	1
westraliae	Yellowtail Flathead	Platycephalidae		37296020	21	15.58	217	1

Scientific name	Common name	Family	Gen	СААВ	Total occ.	Total catch weight (kg)	Rank by biomass	Occ. in no. Surveys
Parastromateus niger	Black Pomfret	Carangidae		37337072	19	15.54	218	3
Ostracion cubicus	Yellow Boxfish	Ostraciidae		37466013	16	15.52	219	1
Parupeneus sp. [Last]	yellow lined goatfish	Mullidae		37355006	2	15.51	220	1
Epinephelus quoyanus	Longfin Rockcod Onespine Flying	Serranidae		37311040	30	15.41	221	1
Dactyloptena peterseni	Gurnard	Dactylopteridae		37308002	25	15.39	222	2
Pterygotrigla elicryste	Dwarf Gurnard	Triglidae		37288009	39	15.36	223	1
Dactyloptena orientalis	Purple Flying Gurnard	Dactylopteridae		37308004	35	15.19	224	1
Ratabulus diversidens	Freespine Flathead	Platycephalidae		37296011	15	15.17	225	1
Urolophus westraliensis Scomberomorus	Brown Stingaree	Urolophidae		37038009	9	14.95	226	1
queenslandicus	School Mackerel	Scombridae		37441014	13	14.54	227	1
Sillago analis	Goldenline Whiting	Sillaginidae		37330003	24	14.14	228	2
Iniistius jacksonensis Engyprosopon	Keelhead Razorfish Olive Wide-eye	Labridae		37384012	81	13.56	229	1
maldivensis	Flounder	Bothidae		37460013	127	13.39	230	1
Aurigequula longispinis	Longspine Ponyfish	Leiognathidae		37341004	15	13.03	231	1
Bovitrigla leptacanthus	Bullhead Gurnard	Triglidae		37288014	9	12.84	232	1
Siganus punctatus Pentapodus	Spotted Rabbitfish Japanese Threadfin	Siganidae		37438003	7	12.35	233	1
nagasakiensis	Bream	Nemipteridae		37347012	56	12.07	234	1
Herklotsichthys lippa	Smallspotted Herring	Clupeidae		37085008	9	11.91	235	1
Lophiomus setigerus	Broadhead Goosefish	Lophiidae		37208001	32	11.02	236	1
Johnius borneensis	River Jewfish	Sciaenidae		37354007	2	11	237	1
Malakichthys elegans Epinephelus	Splendid Seabass	Acropomatidae		37311048	2	10.36	238	1
sexfasciatus Parascombrops n hiling in capita	Sixbar Grouper	Serranidae		37311017	33	9.91	239	1
philippinensis Neosebastes occidentalis	Sharptooth Seabass Orangebanded Gurnard Perch	Acropomatidae Neosebastidae		37311028 37287009	22 16	9.83 9.61	240 241	1
Anoplocapros	Gumarareren	Neosebustidue			10			
lenticularis Chiloscyllium	Whitebarred Boxfish	Ostraciidae		37466010	6	9.51	242	2
punctatum	Grey Carpetshark	Hemiscylliidae		37013008	6	9.44	243	1
Priacanthus fitchi	Deepsea Bigeye	Priacanthidae		37326011	4	9.2	244	1
Heterodontus zebra	Zebra Hornshark Fourline Striped	Heterodontidae		37007002	6	8.79	245	1
Pelates quadrilineatus	Grunter	Terapontidae		37321001	7	8.36	246	1
Ulua aurochs	Silvermouth Trevally	Carangidae		37337041	5	8.19	247	1
Gerres filamentosus	Threadfin Silverbiddy Teardrop Threadfin	Gerreidae	L.	37349003	15	8.1	248	1
Nemipterus isacanthus	Bream	Nemipteridae	*	37347019	2	7.17	249	1
Ostorhinchus fasciatus Plectorhinchus flavomaculatus	A cardinalfish]= Goldspotted Sweetlips	Apogonidae Haemulidae		37327158 37350007	36	7.02 6.99	250 251	1
Paraulopus longianalis	Yellow spotted cucumber fish	Paraulopidae		37350007	4	6.15	251	1
Heniochus acuminatus	Longfin Bannerfish	Chaetodontidae		37365011	6	5.08	252	1
	-							
Epinephelus heniochus	Threeline Rockcod	Serranidae		37311019	4	3.13	254	1


F.2 Time series analysis plots

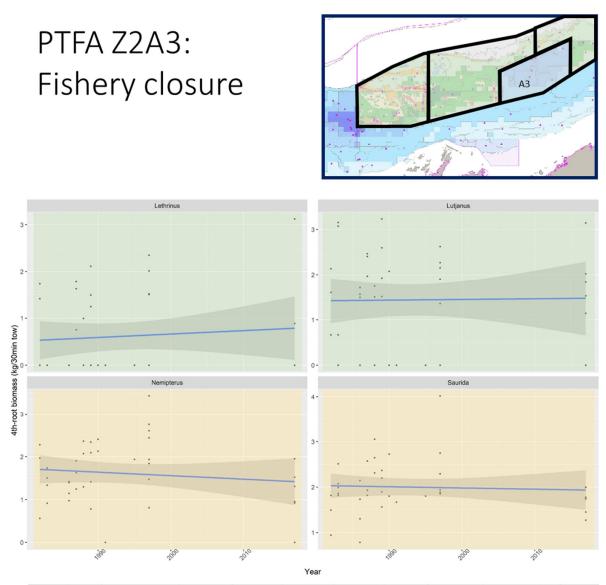
Collation of time-series plots and linear regression results of fish biomass (kg per 30 minute tow, 4th root transformed) for 4 PFTF Areas, the Barrow area and 6 TC areas for (1) Key Genera (N= 4), (2) Informative species (N=27), and (3) inner/mid-shelf assemblages (N=2).

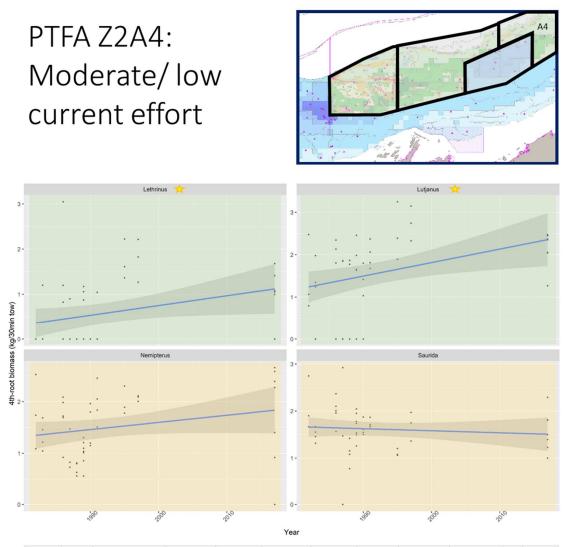
F.2.1 PTFA Areas



PTFA	trans	Genus	r_square	adj_r_s	mse	rmse	sigma	statistic	p_value	df	nobs
Z2A1	4rt	Lethrinus	0.068	0.06	1.3093	1.144	1.155	7.932	0.006	1	110
Z2A1	4rt	Lutjanus	0.048	0.04	0.8688	0.932	0.941	5.498	0.021	1	110
Z2A1	4rt	Nemipterus	0	-0.009	0.4796	0.693	0.699	0.008	0.929	1	110
Z2A1	4rt	Saurida	0	-0.009	0.314	0.56	0.565	0.024	0.878	1	110

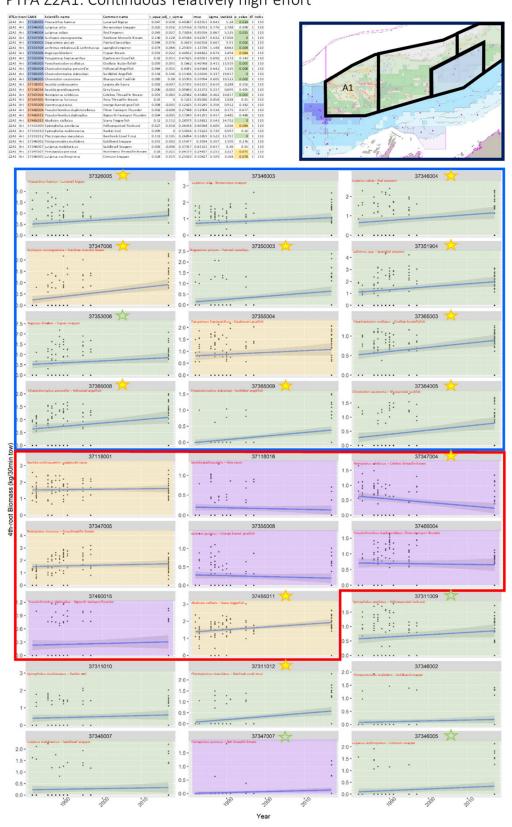
Apx Figure 1 PTFT Area 1 Key Genera (N= 4)


PTFA Z2A2: Moderate/low current effort

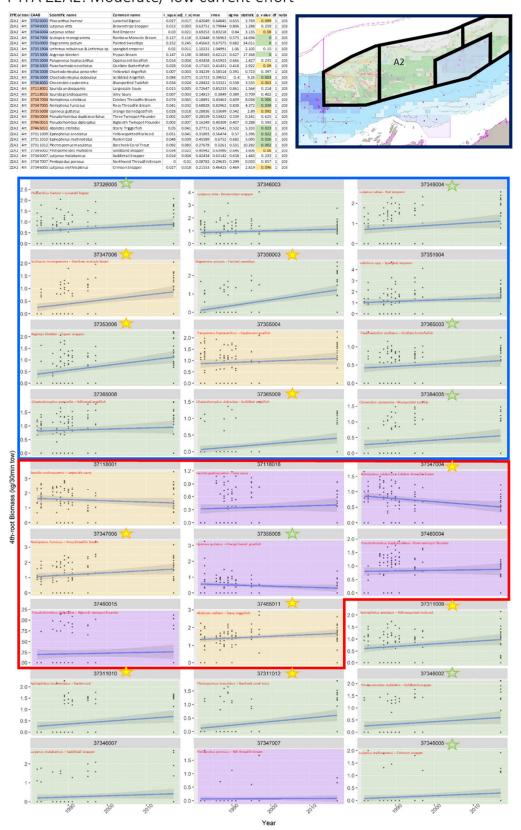

PTFA	trans	Genus	r_squar	adj_r_s	mse	rmse	sigma	statistic	p_value	df	nobs
Z2A2	4rt	Lethrinus	0.038	0.029	1.0664	1.033	1.043	4	0.048	1	103
Z2A2	4rt	Lutjanus	0.041	0.031	0.8016	0.895	0.904	4.292	0.041	1	103
Z2A2	4rt	Nemipterus	0.032	0.022	0.3839	0.62	0.626	3.305	0.072	1	103
Z2A2	4rt	Saurida	0.014	0.004	0.6709	0.819	0.827	1.451	0.231	1	103

Apx Figure 2 PTFT Area 2 Key Genera (N= 4)

PTFA	trans	Genus	r_squar	adj_r_s	mse	rmse	sigma	statistic	p_value	df	nobs
Z2A3	4rt	Lethrinus	0.009	-0.017	0.7495	0.866	0.888	0.33	0.569	1	40
Z2A3	4rt	Lutjanus	0	-0.026	1.1025	1.05	1.077	0.01	0.922	1	40
Z2A3	4rt	Nemipterus	0.016	-0.01	0.4927	0.702	0.72	0.631	0.432	1	40
Z2A3	4rt	Saurida	0.003	-0.023	0.3158	0.562	0.577	0.109	0.743	1	40


Apx Figure 3 PFTF Area 3 Key Genera (N=4)

PTFA	trans	Genus	r_squar	adj_r_s	mse	rmse	sigma	statistic	p_value	df	nobs
Z2A4	4rt	Lethrinus	0.09	0.069	0.5557	0.745	0.762	4.429	0.041	1	47
Z2A4	4rt	Lutjanus	0.141	0.122	0.7163	0.846	0.865	7.397	0.009	1	47
Z2A4	4rt	Nemipterus	0.057	0.036	0.3702	0.608	0.622	2.718	0.106	1	47
Z2A4	4rt	Saurida	0.01	-0.012	0.2297	0.479	0.49	0.435	0.513	1	47


Apx Figure 4 PFTF Area 4 Key Genera (N=4)

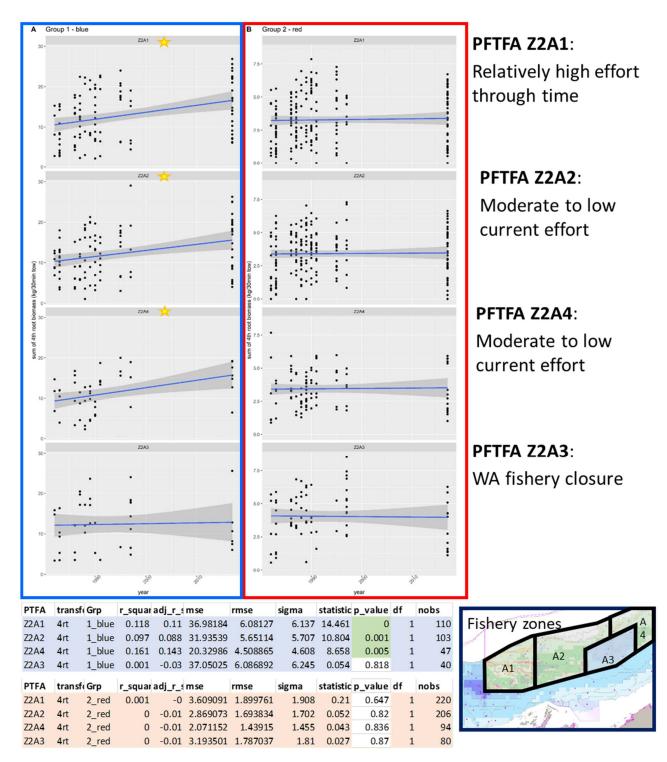
PTFA Z2A1: Continuous relatively high effort

Apx Figure 5 PFTF Area 1 Informative species (N=27)

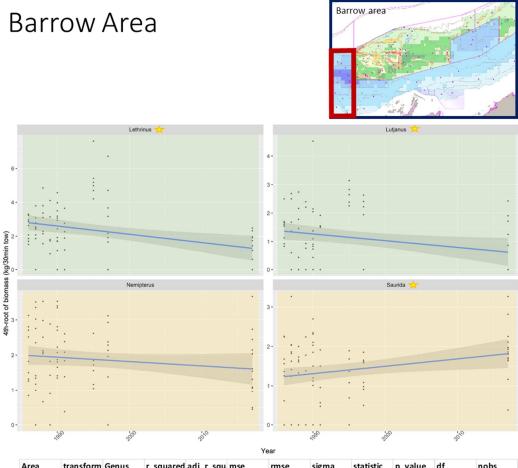
PTFA Z2A2: Moderate/ low current effort

Apx Figure 6 PFTF Area 2 Informative species (N=27)

PTFA Z2A3: Fishery closure


AAB Scientific name	Common name	r squala	dir sc m	e mse sigma statistic p value df nobs		a sufficiently and a sufficient of the
7326005 Priacanthus hamrur 7346003 Lutjanus vitta	Lunartail Bigeye Brownstripe Snapper	0.002	0.024 0	38203 0.61809 0.634 0.092 0.763 1 40 77111 0.87813 0.901 0.205 0.653 1 40	CONTRACTOR OF THE OWNER	
7346004 Lutianus sebae	RedEmperor	0.001	0.025 0	82416 0.90783 0.931 0.048 0.827 1 40 30893 0.55581 0.57 0.023 0.881 1 40		
17347006 Scolopsis monogramma 17350003 Diagramma pictum 17351904 Lethrinus nebulosus & Lethrinus sp	Painted Sweetlips	0.037	0.012 0	78086 0.88366 0.907 1.479 0.231 1 40 74946 0.86572 0.888 0.33 0.569 1 40		
7353006 Argyrops bleeken 7355004 Parupeneus heptacanthus	Frypan Bream	0.318	0.3 0	23915 0.48903 0.502 17.745 0 1 40 47916 0.69221 0.71 4.04 0.052 1 40		A3
7365003 Parachaeto don ocellatus	Ocellate Butterflyfish	0.006	0.02 0	17588 0.41938 0.43 0.225 0.638 1 40	Margan Reserved	Sector Se
7365008 Chaeto dontopius personiter 7365009 Chaeto dontopius duboulayi	Yellowtal Angelfish Scribbled Angelfish	0.09	0.066 0	28293 0.53191 0.546 3.763 0.06 1 40 19524 0.44187 0.453 0.029 0.866 1 40		
7384005 Choerodon cauteroma 7118001 Saurida undos quamis	Bluespotted Tuskfish Largescale Sauty	0.002	0.026 0	37687 0.6139 0.63 0.01 0.922 1 40 32737 0.57216 0.587 0.078 0.781 1 40	A start B	
7347004 Nemipterus celebicus	Grey Sauty Celebes Threadfin Bream	0.285	0.267	0.1712 0.41376 0.425 15.209 0 1 40	A PARTY	
7347005 Nemipterus furcosus	Rosy Threadfin Bream	0.001	0.026 0	60174 0.77572 0.796 0.022 0.884 1 40 28638 0.53534 0.549 2.109 0.155 1 40	carla inte	
7460004 Pseudo rhombus duplicioc ellatus	Three Twinspot Flounder	0.216	0.195 0	15845 0.39806 0.408 10.468 0.003 1 40	Nº CO	and a the second second
7460015 Pseudo mombus dipiospilus 17465011 Abalistes stellatus	Starry Triggerfish	0.126	0.103 0	21362 0.46219 0.474 5.478 0.025 1 40	in the	at ly all all is set
7311010 Epinephelus multinotatus	Rankin Cod	0	0.026 0	50794 0.7127 0.731 0.005 0.947 1 40		
7346002 Pristipo moldes multidens	Goldband Snapper	0.36	0.343 0	31953 0.56527 0.58 0.356 0.554 1 40 10145 0.31852 0.327 21.355 0 1 40		
7347007 Pentapodus poro sus	Northwest Threadfin Bream	0.019	0.007 0	12368 0.35168 0.361 0.721 0.401 1 40		
7346005 (Lutjanus erythropterus	Crimson Shapper	0.008	-0.018 0	21973 0.46876 0.481 0.322 0.574 1 40		
373260	05		3-	37346003		37346004 Lutjenus seber - Red emperor
			Ŭ .			•
			2-		. 2-	
					:	
			1-	1		
			0-			
37347/	06					37351904
colopsis morogramma - Rainbow moroch bram			4-9	gamma pictum - Painted savedlips		Lethninus spp - Spangled imperor
			3.		3-	
2.6					2-	
2 2 4 C			2-	4.1		
		_	1-			
			0-		. 0-	
373530	106 📩		1	37355004	3	37365003
rgyrops bloskeri – Frypan snapper		•	2.0 -	exponeus hoptacanthus - Opuloscont goatlish		Parachantodon cosllatus - Ocallate butterflyfish
		-	1.5 -	et das la	• 0.9 -	
		-	1.0 -		0.6-	
					0.3-	
			0.0		0.0-	
373650	08 2			37365009		37384005
nanoconoptus personter - Yallowsail angelfish			1.5 -	annon-optus duboutage - sunbblied angelfish		Chowodon caulanoma - Bluespottad kukšteh
1. 1 ¹					1.5 -	
· · · · · · · · · · · · · · · · · · ·			1.0 -		1.0-	
			0.5 -		0.5-	
			0.0 -			
371180	01			37118016	0.0-	37347004
urida undosquamis - Lagoscale saury •			1.25 -	urida gradisspoarnis. – Grey savry		Nemigranus calubicus - Calubies, dresad inflamam
					1.5-	
2 Mar 1			0 75 -		1.0-	
d 19 14 14		-			0.5-	
		:			0.0-	
•			0.00 -		. 0.0-	A
373470 mipteus functius - Rosytheadle breen	05		15.	37355008		37460004
			1.5 -0	weeks golden - Charge band goathd	1.5	The other second second second second
			1.0 -	· · · ·	1.0-	
		-	0.5			
1 1 1			0.5*		. 0.5-	
			0.0 -	•• •• •		
374800	15		1	37465011	-	37311009
sudohomkus dalopita - Bacoth twinspoth	ounder			talistis stallaris - Stany triggarlish		Spinisphelus anglietus - Yellowspotted rockcod
			2-		1.0-	
			1-	1.1.14	0.5 -	
		-		·	0.0-	
			0-			
373110	110			37311012		37346002
singhidus multinotaus - Rankin cod				actropomus maculatus - Barcheek conal trout	•	Pristipomoides multidens - Goldband snapper
				10 1	1.0 -	
			1.0 -	• :	0.5 -	
			0.5-		0.0-	· · · · · ·
	A-	and a	0.0 -			
373460	107 🗙			37347007	3-	37346005
danus malabaticus - Satitivust exame			0.8 -	·		Collence organization - Connon singger
ojamus malabaticus – Saddhisal wappit					2-	And the second se
rjanus malabaticus - Saddhisal erappe		:	0.0-		-	
ojanus melebatous - Saddhstal wappe		:	0.4 -			
rýmus meleketos - Sabilhol i megye		-	0.4 -		1-	
· · ·	e dia					
	THEORE INCLUSION CARACITACION CARACITACIÓN CONTRACTOR C	TRICKION Production contentiant of the control o	THEORY PLACES All Section 2014 THEORY PLACES ALL SECTION 201	STRUCT STRUCT <thstruct< th=""> <thstruct< th=""> <thstruct< td="" th<=""><td>373000 0.0100 0.0100 0.010</td><td></td></thstruct<></thstruct<></thstruct<>	373000 0.0100 0.0100 0.010	

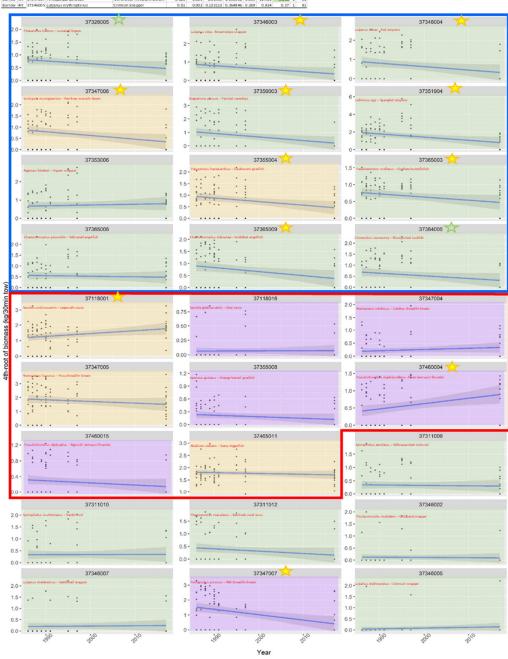
Apx Figure 7 PFTF Area 3 Informative species (N=27)


PTFA Z2A4: Moderate/ low current effort

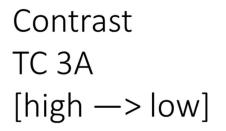
Apx Figure 8 PFTF Area 4 Informative species (N=27)

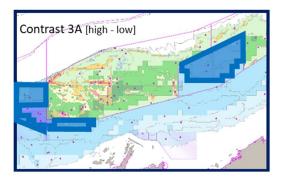
Apx Figure 9 PFTF Areas 1 to 4 Inner/mid-shelf assemblages (N=2)

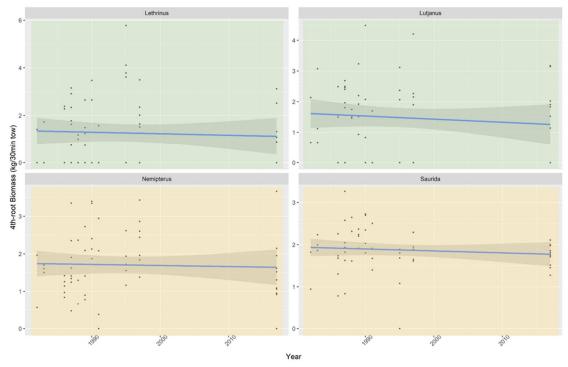
Area	transform	Genus	r_squared	adj_r_squ	mse	rmse	sigma	statistic	p_value	df	nobs
Barrow	4rt	Lethrinus	0.113	0.102	2.331829	1.527033	1.546	10.063	0.002	1	81
Barrow	4rt	Saurida	0.072	0.06	0.561084	0.749055	0.758	6.139	0.015	1	81
Barrow	4rt	Lutjanus	0.063	0.051	1.044988	1.022247	1.035	5.295	0.024	1	81
Barrow	4rt	Nemipteru	0.022	0.01	0.846882	0.920262	0.932	1.79	0.185	1	81



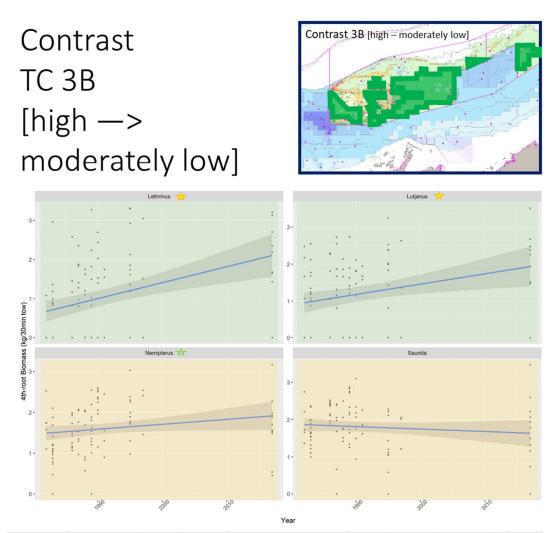
Apx Figure 11 Barrow Area Inner/mid-shelf assemblages (N=2)

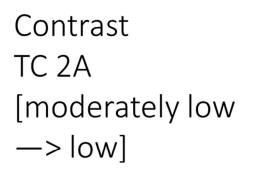

Barrow area

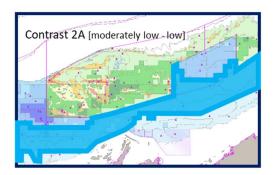

Area	tran:	CAAB	Scientific name	Common name	r_squared	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	r
Barrow	4rt	373 2600 5	Priacan thus ha mrur	Lunarta il Bigeye	0.042	0.03	0.335861	0.579535	0.587	3.491	0.065	1	
Barrow	4rt	37346003	Lutjanus vitta	Brownstripe Snapper	0.062	0.05	0.525311	0.724783	0.734	5.194	0.025	1	
Barrow	4rt	37346004	Lutjanus sebae	Red Emperor	0.052	0.04	0.722105	0.849767	0.86	4.343	0.04	1	
Barrow	4rt	37347006	Scolopsis monogramma	Rainbow Monocle Bream	0.065	0.053	0.495222	0.70372	0.713	5.475	0.022	1	
Barrow	4rt	373 5000 3	Diagramma pictum	Painted Sweetlips	0.08	0.068	1.008044	1.004014	1.017	6.871	0.011	1	
Barrow	4rt	37351904	Lethrinus nebulo sus & Lethrinus sp.	spangled e mpe ro r	0.088	0.077	1.688404	1.299386	1.316	7.661	0.007	1	
Barrow	4rt	373 5300 6	Argyrops ble ekeri	Frypan Bream	0.004	0.009	0.577075	0.759655	0.769	0.31	0.579	1	
Barrow	4rt	373 5500 4	Parupeneus he ptacanthus	Opale scent Goatfish	0.08	0.069	0.348344	0.590207	0.598	6.895	0.01	1	
Barrow	4rt	37365003	Parachaeto don ocella tus	Ocellate Butterflyfish	0.051	0.039	0.202432	0.449925	0.456	4.255	0.042	1	
Barrow	4rt	37365008	Chae to do nto plus perso nifer	Yellowtail Angelfish	0.002	0.01	0.356283	0.596895	0.604	0.183	0.67	1	
Barrow	4rt	37365009	Chae to do nto plus d'ubo ulayi	Scribbled Angelfish	0.062	0.051	0.526108	0.725333	0.734	5.256	0.025	1	
Barrow	4rt	37384005	Choerodon cauteroma	Blues potte d Tuskfish	0.038	0.026	0.459114	0.677579	0.686	3.109	0.082	1	
Barrow	4rt	371 1800 1	Saurida undosquamis	Largescale Saury	0.063	0.051	0.619463	0.78706	0.797	5.328	0.024	1	
Barrow	4rt	371 1801 6	Saurida grandisquamis	GreySaury	0	0.013	0.039603	0.199005	0.202	0.012	0.915	1	
Barrow	4rt	373 4700 4	Nemipterus celebicus	Celebes Threadfin Bream	0.016	0.004	0.167506	0.409275	0.414	1.288	0.26	1	
Barrow	4rt	373 4700 5	Nemipterus furcos us	Rosy Threadfin Bream	0.018	0.005	1.049587	1.024494	1.037	1.413	0.238	1	
Barrow	4rt	37355008	Upeneus guttatus	orange-barred goatfish	0.02	0.008	0.080076	0.282977	0.287	1.635	0.2.05	1	
Barrow	4rt	37460004	Ps eudorhom bus du plicio cellatus	Three Twinspot Flounder	0.094	0.082	0.28931	0.537875	0.545	8.185	0.005	1	
Barrow	4rt	37460015	Ps eudorhom bus dip lo spilu s	Bigtooth Twinspot Flounder	0.022	0.01	0.163456	0.4042.97	0.409	1.796	0.184	1	
Barrow	4rt	37465011	Abaliste s stellatus	Starry Triggerfish	0.01	0.002	0.129141	0.359362	0.364	0.838	0.363	1	
Barrow	4rt	373 1100 9	Epinephelus areo latus	Yellowspotted Rockcod	0.001	0.011	0.25247	0.502464	0.509	0.095	0.759	1	
Barrow	4rt	373 1101 0	Epinephelus multinotatus	Rankin Cod	0	0.013	0.402331	0.634295	0.642	0.003	0.954	1	
Barrow	4rt	373 1101 2	Plectropomus maculatus	Barcheek Cors IT rout	0.027	0.015	0.374892	0.612285	0.62	2.222	0.14	1	
Barrow	4rt	37346002	Pristipo moides multidens	Goldband Snapper	0.001	0.012	0.165771	0.40715	0.412	0.066	0.797	1	
Barrow	4rt	37346007	Lutjanus malabaricus	Sad dietail Snappe r	0.001	0.012	0.294155	0.542361	0.549	0.064	0.801	1	
Barrow	4rt	37347007	Pentapodus porosus	Northwest Threadfin Bream	0.126	0.115	1.11436	1.055632	1.069	11.401	0.001	1	
Barrow	4rt	37346005	Lutjanus eryth ropte rus	Crimson Snapper	0.01	0.002	0.133113	0.3648.46	0.369	0.814	0.37	1	

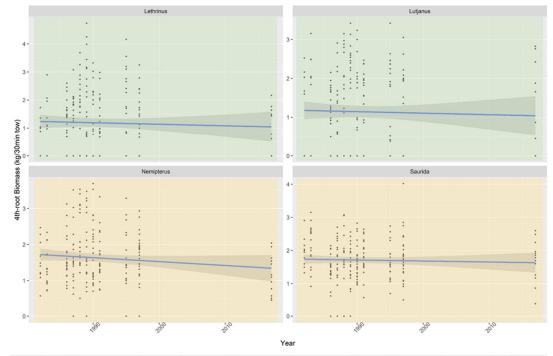


Apx Figure 12 Barrow Area Informative species (N=27)



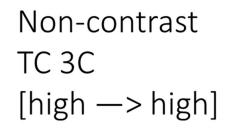

EffCo	trans	Genus	r_squa	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	nobs
3A	4rt	Lethrinus	0.003	-0.015	1.902029	1.379141	1.403	0.168	0.683	1	59
3A	4rt	Lutjanus	0.01	-0.007	1.359317	1.165897	1.186	0.585	0.448	1	59
3A	4rt	Nemipterus	0.002	-0.016	0.709871	0.842538	0.857	0.087	0.769	1	59
3A	4rt	Saurida	0.011	-0.006	0.26235	0.512201	0.521	0.629	0.431	1	59

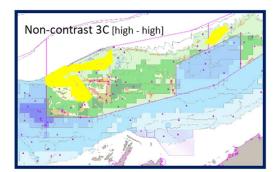

Apx Figure 13 Contrast TC 3A Key Genera (N=4)

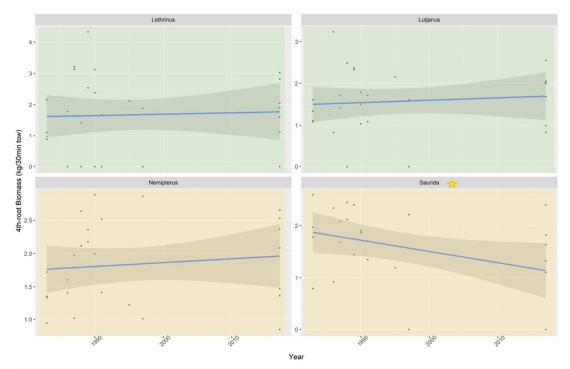


EffCo	trans	Genus	r_squa	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	nobs
3B	4rt	Lethrinus	0.153	0.143	0.935913	0.967426	0.978	16.739	0	1	95
3B	4rt	Lutjanus	0.08	0.07	0.91106	0.954495	0.965	8.092	0.005	1	95
3B	4rt	Nemipterus	0.038	0.027	0.378113	0.614909	0.621	3.644	0.059	1	95
3B	4rt	Saurida	0.011	0	0.400202	0.632615	0.639	1.021	0.315	1	95

Apx Figure 14 Contrast TC 3B Key Genera (N=4)

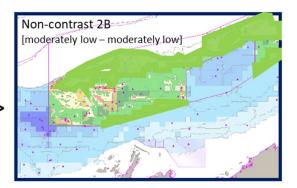


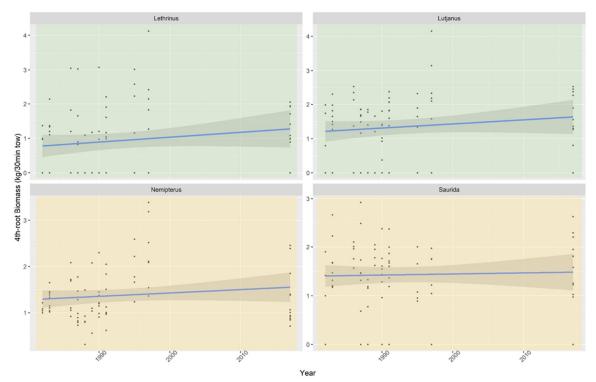




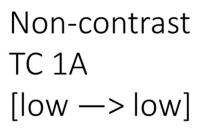
EffCo	trans	Genus	r_squa	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	nobs
2A	4rt	Lethrinus	0.001	-0.003	1.294194	1.137627	1.143	0.302	0.583	1	210
2A	4rt	Lutjanus	0.001	-0.004	1.154225	1.074349	1.08	0.171	0.68	1	210
2A	4rt	Nemipterus	0.012	0.007	0.60213	0.77597	0.78	2.503	0.115	1	210
2A	4rt	Saurida	0.001	-0.003	0.4078	0.638592	0.642	0.282	0.596	1	210

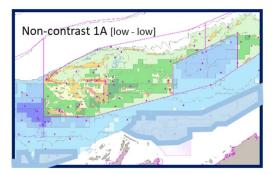
Apx Figure 15 Contrast TC 2A Key Genera (N=4)

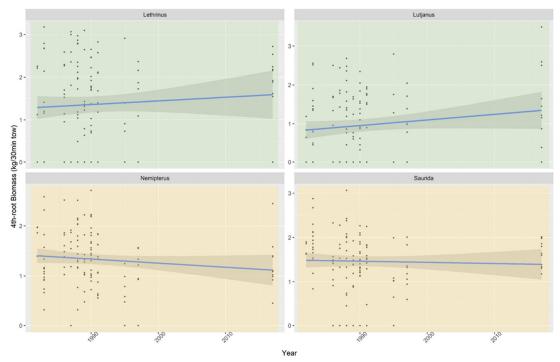




EffCo	trans	Genus	r_squa	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	nobs
3C	4rt	Lethrinus	0.002	-0.037	1.381183	1.175238	1.221	0.061	0.807	1	27
3C	4rt	Lutjanus	0.01	-0.029	0.522867	0.723095	0.751	0.262	0.613	1	27
3C	4rt	Nemipterus	0.015	-0.024	0.365882	0.604882	0.629	0.385	0.541	1	27
3C	4rt	Saurida	0.147	0.113	0.449093	0.670144	0.696	4.296	0.049	1	27

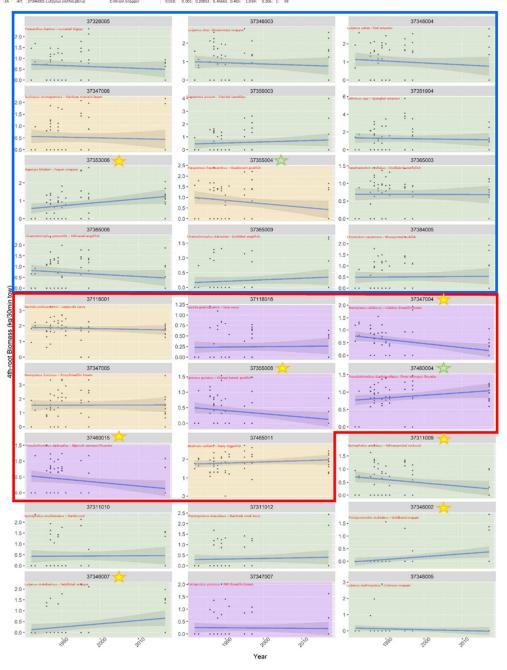

Non-contrast TC 2B [moderately low —> moderately low]





EffCo	trans	Genus	r_squa	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	nobs
2B	4rt	Lethrinus	0.024	0.011	0.968763	0.984258	0.997	1.877	0.175	1	78
2B	4rt	Lutjanus	0.02	0.007	0.827992	0.909941	0.922	1.573	0.214	1	78
2B	4rt	Nemipterus	0.018	0.006	0.339301	0.582495	0.59	1.429	0.236	1	78
2B	4rt	Saurida	0.001	-0.012	0.464314	0.681406	0.69	0.096	0.757	1	78

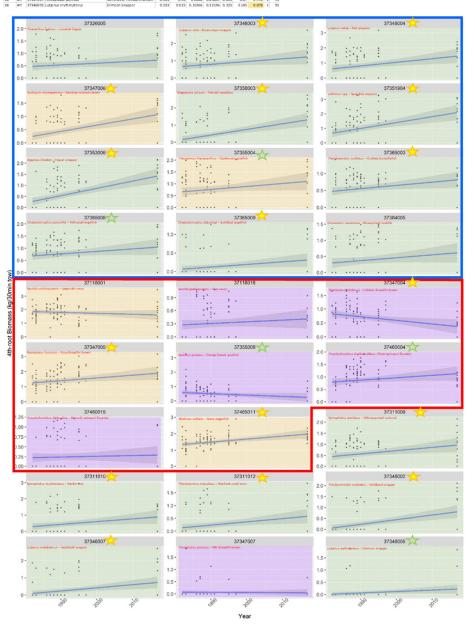
Apx Figure 17 Non-contrast TC 2B Key Genera (N=4)


EffCo	tran	Genus	r_squa	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	nobs
1A	4rt	Lethrinus	0.006	-0.003	1.045343	1.02242	1.031	0.676	0.412	1	120
1A	4rt	Lutjanus	0.022	0.014	0.750195	0.866138	0.873	2.683	0.104	1	120
1A	4rt	Nemipterus	0.018	0.009	0.306725	0.553828	0.559	2.103	0.15	1	120
1A	4rt	Saurida	0.001	-0.007	0.387816	0.622749	0.628	0.172	0.679	1	120

Apx Figure 18 Non-contrast TC 1A Key Genera (N=4)

Contrast 3A [high—> low]

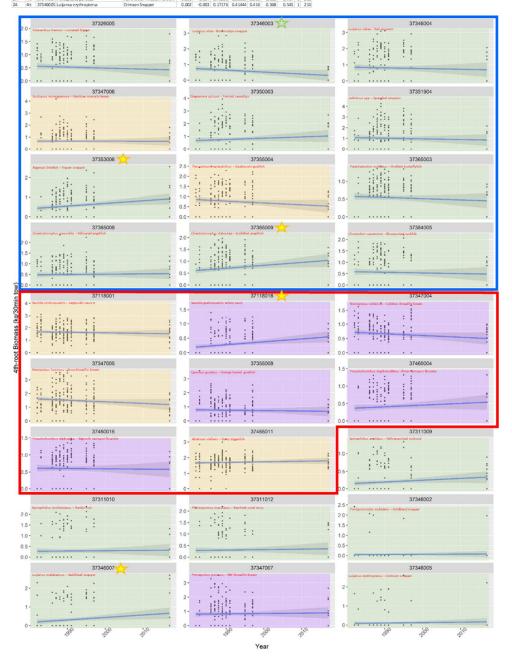
EffC or	trans	CAAB	Scientific name	Common name	r_squar	adj r sq	mse	rmse	sigma	statk tic	p_value	df	no bs
3A	4rt	37326005	Priacanthus ham rur	Lunartail Bigeye	0.013	0.005	0.43999	0.66332	0.675	0.73	0.396	1	59
3A	4rt	37346003	Lutjanus vitta	Brownstripe Snapper	0.008	0.009	0.7419	0.86134	0.876	0.471	0.495	1	59
3A	4rt	37346004	Lutjanus sebae	Red Emperor	0.017	r 0	0.89187	0.94439	0.961	0.978	0.327	1	59
3A	4rt	37347006	Scolopsis monogramma	Rainbow Monocle Bream	0.003	0.014	0.49428	0.70305	0.715	0.186	0.668	1	59
3A	4rt	37350003	Diagra mma pictum	Painted Sweetlips	0.013	0.004	0.78425	0.88558	0.901	0.753	0.389	1	59
3A.	4rt	37351904	Lethrinus nebulo sus & Lethrinus sp.	spangled emperor	0.003	0.015	1.88177	1.37178	1.396	0.146	0.704	1	59
3A	4rt	37353006	Argyrops bleekeri	Frypan Bream	0.091	0.075	0.49731	0.7052	0.717	5.683	0.02	1	59
3A	4rt	37355004	Parupeneus heptacanthus	Opalescent Goatfish	0.06	0.043	0.56042	0.74861	0.762	3.621	0.062	1	59
3A	4rt	37365003	Parachaetodon o cellatus	Ocellate Butterflyfish	0	0.017	0.2018	0.44922	0.457	0.003	0.958	1	59
3A	4rt	37365008	Chaetodo nto plus personifer	Yellowtail Angelfish	0.029	0.012	0.44384	0.66622	0.678	1.708	0.197	1	59
3A	4rt	37365009	Chaetodo nto plus duboulayi	Scribbled Angelfish	0.015	0.002	0.23157	0.48122	0.49	0.893	0.349	1	59
3A	4rt	37384005	Choero don cauteroma	Bluespotted Tuskfish	0	0.017	0.43406	0.65883	0.67	0.028	0.858	1	59
3A	4rt	37118001	Saurida und osquamis	Largescale Saury	0.009	0.009	0.32471	0.56983	0.58	0.498	0.483	1	59
3A	4rt	37118016	Saurida grandisquamis	Grey Saury	0.001	0.017	0.11672	0.34164	0.348	0.049	0.825	1	59
3A	4rt	37347004	Nemipterus celebicus	Celebes Threadfin Bream	0.141	0.126	0.22152	0.47066	0.479	9.325	0.003	1	59
3A	4rt	37347005	Nemipterus furco sus	Rosy Threadfin Bream	0	0.017	0.91758	0.9579	0.975	0.004	0.953	1	59
3A	4rt	37355008	U peneus guttatus	orange-barred goatfish	0.076	0.05	0.18687	0.43228	0.44	4.715	0.034	1	59
3A	4rt	37460004	Ps eudorhom bus duplicioc ellatus	Three Twinspot Flounder	0.054	0.038	0.13965	0.3737	0.38	3.271	0.076	1	59
3A	4rt	37460015	Ps eudorhom bus diplo spilu s	Bigtooth Twinspot Flounder	0.077	0.06	0.20426	0.45195	0.46	4.731	0.034	1	59
3A	4rt	37465011	Abalistes stellatus	Starry Triggerfish	0.024	0.007	0.23029	0.47989	0.488	1.401	0.242	1	59
3A	4rt	37311009	Epinephelus areolatus	Yellowspotted Rockcod	0.075	0.059	0.2761	0.52545	0.535	4.613	0.036	1	59
3A	4rt	37311010	Epinephelus multinotatus	Rankin Cod	0	0.017	0.53176	0.72922	0.742	0.013	0.908	1	59
3A	4rt	37311012	Plectropomusmaculatus	Barcheek Coral Trout	0.004	0.014	0.36573	0.60476	0.615	0.205	0.652	1	59
3A	4rt	37346002	Pristipomo ides multidens	Goldband Snapper	0.097	0.082	0.1552	0.39395	0.401	6.149	0.016	1	59
3A.	4rt	37346007	Lutjanus malabaricus	Saddletall Snapper	0.069	0.053	0.41658	0.64543	0.657	4.23	0.044	1	59
3A	4rt	37347007	Pe ntapo dus poros us	Northwest Threadfin Bream	0.001	0.017	0.23981	0.48971	0.498	0.041	0.841	1	59
2.0	2.00	27246005	Lutinous earthmeterus	Crimican Secondar	0.018	0.001	0.20952	0.45665	0.465	1069	0.205	1	50



Apx Figure 19 Contrast TC 3A Informative species (N=27)

Contrast 3B [high—> moderately low]

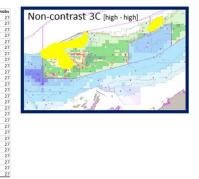
EffCor	trans	CAAB	Scientific name	Common name	r_squar	ad r sq	mse	rms e	sigma	statistic	p_value	df	nobs
38	4rt	37326005	Priacanthus ham rur	Lunarta I Bigoyo	0.016	0.005	0.31996	0.56565	0.572	1.51	0.222	1	95
38	4rt	37346003	Lutja nus vitta	Brownstripe Snapper	0.042	0.032	0.58239	0.76315	0.771	4.067	0.047	1	95
38	4rt	37346004	Lutja nus seb ae	Red Emperor	0.077	0.067	0.70147	0.83754	0.846	7.777	0.006	1	95
38	4rt	37347006	Scolopsis monogramma	Rainbow Monocle Bream	0.173	0.164	0.26801	0.5177	0.523	19.485	0	1	95
38	4rt	37350003	Diagramma pictum	Painted Sweetlips	0.188	0.179	0.47406	0.68852	0.696	21.513	0	1	95
38	4rt	37351904	Lethrinus nebulo sus & Lethrinus sp.	spangled emperor	0.155	0.146	0.91153	0.95474	0.965	17.076	0	1	95
38	4rt	37353006	Argyrops bie eke n	Frypan Bream	0.23	0.222	0.3649	0.60407	0.611	27.848	0	1	95
38	4rt	37355004	Parupe neus hep ta can thu s	Opa le scent Golatfish	0.033	0.023	0.46254	0.68011	0.687	3.223	0.076	1	95
38	4rt	37365003	Parachaeto do n ocellatus	Ocellate Butterflyfish	0.052	0.041	0.17356	0.41661	0.421	5.066	0.027	1	95
38	4rt	373650.08	Chaetodonto plus personifer	Yellowtail Angelfish	0.03	0.02	0.34115	0.58408	0.59	2.925	0.091	1	95
38	4rt	373650.09	Chaetod onto plus dub oulayi	Scribbled Ange Fish	0.045	0.035	0.10426	0.32289	0.326	4.428	0.038	1	95
38	4rt	37384005	Choe rodon cauteroma	Blues potted Tus kfish	0.028	0.017	0.28604	0.53483	0.541	2.672	0.105	1	95
38	4rt	37118001	Saurida undo squa mis	La rgescale Saury	0.011	0	0.42805	0.65425	0.661	1.044	0.31	1	95
38	4rt	37118016	Saurida grandisquamis	Grey Saury	0.01	0.001	0.15047	0.3879	0.392	0.92	0.34	1	95
38	4rt	37347004	Nemipterus celebicus	Celebes Threadfin Bream	0.076	0.066	0.20505	0.45283	0.458	7.636	0.007	1	95
38	4rt	37347005	Nemipterus furcosus	Rosy Threadfin Bream	0.052	0.042	0.60484	0.77772	0.786	5.122	0.026	1	95
38	4rt	37355008	Upeneus guttatus	orange-barred goatfish	0.03	0.02	0.29925	0.54703	0.553	2.878	0.093	1	95
38	4rt	37460004	Pse udorho mb us duplicioc ellatus	Three Twinspot Flounder	0.035	0.025	0.25611	0.50607	0.511	3.397	0.068	1	95
38	4rt	37460015	Pse udorho mb us diplo spilus	Bigtooth Twinspot Flounder	0.002	0.009	0.16538	0.40667	0.411	0.201	0.655	1	95
38	4rt	37465011	Abalistes stellatus	Starry Triggorfish	0.118	0.109	0.24699	0.49698	0.502	12.493	0.001	1	95
38	4rt	373110.09	Epinephelus areo latus	Yellows potted Rockcod	0.065	0.055	0.31582	0.56198	0.568	6.434	0.013	1	95
38	4rt	37311010	Epinephelus multinotatus	Rankin Cod	0.05	0.04	0.54584	0.73881	0.747	4.926	0.029	1	95
38	4rt		Piectio po mus maculatus	Barcheek Coral Trout	0.063	0.053		0.49333			0.014	1	95
38	4rt		Pristipomoides multidens	Goldb and Snapper	0.141	0.132		0.5282		15.25	0		95
38	4rt		Lutja nus ma la baricus	Sa ddietail Snapper	0.086	0.076		0.60001		8.754	0.004		95
38	4rt		Pentapiodus poro sus	Northwest Threadfin Bream		0.01	0.0666	0.2 5807		0.07	0.793		95

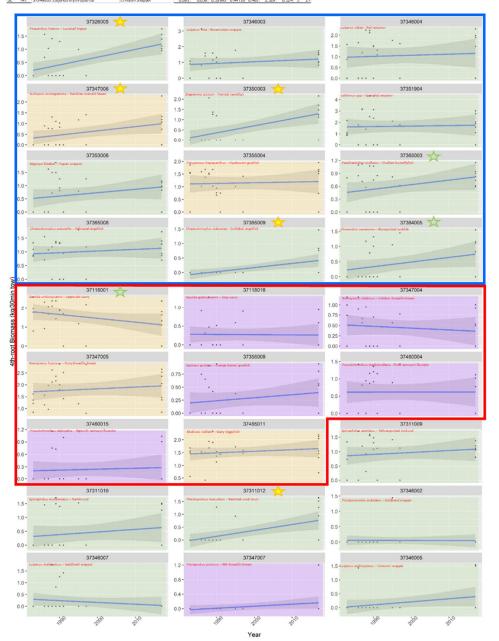


Apx Figure 20 Contrast TC 3B Informative species (N=27)

Contrast 2A [moderately low -> low]

EffCo	n tran	s CAAB	Scientific name	Common name	r_square:	adj_r_sq	mse	rmse	sigma	statistic	p_value		
2A	4rt	373 260 05	Priacanthus hamrur	Lunartail Bigeye	0.003	-0.002	0.31731	0.5633	0.566	0.602	0.439	1	210
2A	4rt	37346003	Lutjanus vitta	Brownstripe Snapper	0.016	0.012	0.57199	0.7563	0.76	3.481	0.063	1	210
2A	4rt	37346004	Lutjanus sebae	Red Emperor	0.001	-0.003	0.89522	0.94616	0.951	0.285	0.594	1	210
2A	4rt	37347006	Scolopsis monogramma	Rainbow Monocle Bream	0	-0.005	0.60508	0.77787	0.782	0.002	0.963	1	210
2A	4rt	37350003	Diagramma pictum	Painted Sweetlips	0.006	0.001	1.06318	1.0311	1.036	1.226	0.269	1	210
2A	4rt	37351904	Lethrinus nebulosus & Lethrinus sp.	spangled emperor	0.002	-0.003	1.36709	1.16923	1.175	0.369	0.544	1	210
2A	4rt	37353006	Argyraps bleeke ri	Frypan Bream	0.031	0.026	0.3541	0.59506	0.598	6.679	0.01	1	210
2A	4rt	37355004	Parupeneus heptacanthus	Opalescent Goatfish	0.011	0.006	0.47615	0.69004	0.693	2.307	0.13	1	210
2A	4rt	37365003	Parachaetodon ocellatus	Ocellate Butterflyfish	0.004	-0.001	0.20872	0.45686	0.459	0.769	0.381	1	210
2A	4rt	37365008	Chaetodortoplus personifer	Yellowtail Angelfish	0.001	-0.004	0.29491	0.54305	0.546	0.109	0.742	1	210
2A	4rt	37365009	Chaetodontoplus duboulayi	Scribbled Angelfish	0.025	0.02	0.36472	0.60392	0.607	5.296	0.022	1	210
2A	4rt	37384005	Choerodon cauteroma	Bluespotted Tuskfish	0.001	-0.004	0.44684	0.66846	0.672	0.251	0.617	1	210
2A	4rt	371 18001	Saurida undosquamis	Large scale Saury	0.003	-0.002	0.47782	0.69124	0.695	0.54	0.463	1	210
2A	4rt	37118016	Saurida grandis gua mis	Grey Saury	0.038	0.033	0.15895	0.39869	0.401	8.152	0.005	1	210
2A	4rt	37347004	Nemipterus celebicus	Celebes Threadlin Bream	0.011	0.007	0.20636	0.45427	0.456	2.376	0.125	1	210
2A	4rt	37347005	Nemipterus furcosus	Rosy Threadlin Bream	0.012	0.007	0.72491	0.85142	0.855	2.455	0.119	1	210
2A	4rt	37355008	Upeneus guttatus	orange-barred goatfish	0.001	-0.004	0.54836	0.74051	0.744	0.211	0.646	1	210
2A	4rt	37460004	Pseudomoribus dupliciocellatus	Three Twinspot Flounder	0.007	0.002	0.21388	0.46247	0.465	1.416	0.235	1	210
2A	4rt	37460015	Pseudomoribus diplospilus	Bigtooth Twinspot Flounder	0	-0.005	0.22863	0.47815	0.48	0.05	0.823	1	210
2A	4rt	37465011	Abalistes stellatus	Starry Triggerfish	0.004	-0.001	0.2069	0.45486	0.457	0.842	0.36	1	210
ZA	4rt	37311009	Epinephelus areolatus	Yellowspotted Rockcod	0.012	0.007	0.12825	0.35812	0.36	2.577	0.11	1	210
2A	4rt	37311010	Epinephelus multinotatus	Rankin Cod	0	-0.005	0.37547	0.61275	0.616	0.063	0.802	1	210
2A	4rt	37311012	Plectropomus maculatus	Barchock Coral Trout	0.001	-0.004	0.34518	0.58752	0.59	0.159	0.69	1	210
EA.	4rt	37346002	Pristipomoides multidens	Goldband Snapper	0	-0.004	0.10511	0.32421	0.326	0.085	0.771	1	210
2A	4rt	37346007	Lutjanus malabaricus	Saddletail Snapper	0.025	0.02	0.43268	0.65778	0.661	5.231	0.023	1	210
2A	4rt	37347007	Pentapodus porosus	Northwest Threadfin Bream	0.001	-0.004	0.73385	0.85665	0.861	0.113	0.737	1	210
2A	4rt	37346005	Luganus erythropterus	Crimson Snapper	0.002	-0.003	0.17176	0.41444	0.416	0.368	0.545	1	210

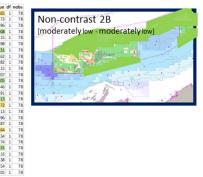




Apx Figure 21 Contrast TC 2A Informative species (N=27)

Non-contrast 3C [high —> high]

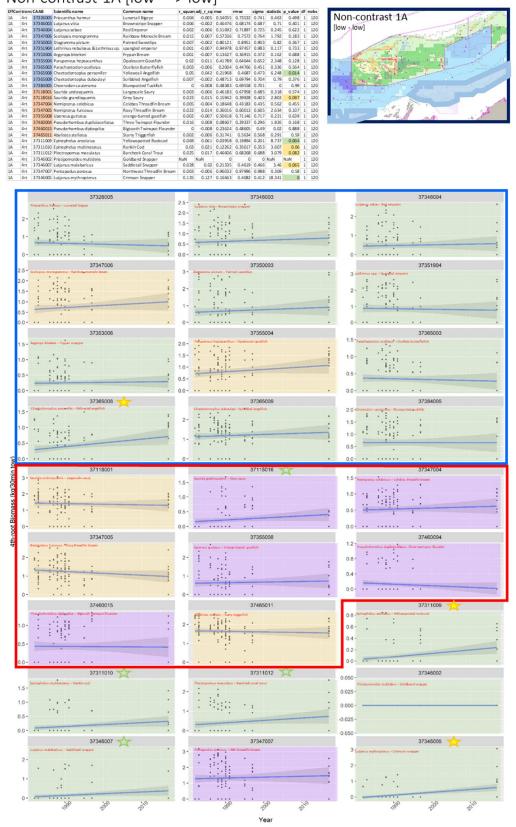
EffCon	trans	CAAB	Scientific name	Common name	r_square	adj_r_sq	mse	rmse	sigma	statistic	p_value	df	nc
3C	4rt	37326005	Priacanthus hamrur	Lunartail Bigeye	0.35	0.324	0.26621	0.51595	0.536	13.475	0.001	1	
3C	4rt	37346003	Lutjanus vitta	Brownstripe Snapper	0.031	-0.008	0.52945	0.72763	0.756	0.804	0.379	1	
3C	4rt	37346004	Lutjanus sebale	Red Emperor	0.006	-0.034	0.74258	0.86173	0.896	0.154	0.698	1	
3C	4rt	37347006	Scolopsis monogramma	Rainbow Monocle Bream	0.158	0.124	0.33538	0.57912	0.602	4.692	0.04	1	
3C	4rt	373 500 03	Diagramma pictum	Painted Sweetlips	0.337	0.31	0.39137	0.6256	0.65	12.682	0.002	1	
3C	4rt	37351904	Lethrinus nebulosus & Lethrinus sp.	spangled emperor	0.002	-0.038	1.37296	1.17173	1.218	0.058	0.812	1	
3C	4rt	373 53006	Argyrops bleekeri	Frypan Bream	0.071	0.033	0.35597	0.59663	0.62	1.898	0.18	1	
3C	4rt	37355004	Parupeneus heptacanthus	Opalescent Goatfish	0.004	-0.036	0.35225	0.59351	0.617	0.089	0.767	1	
3C	4rt	37365003	Parachaetodon ocellatus	Ocellate Butterflyfish	0.107	0.072	0.1543	0.39281	0.408	3.005	0.095	1	
3C	4rt	37365008	Chaetodontoplus personifer	Yellowtail Angelfish	0.024	-0.015	0.24151	0.49143	0.511	0.613	0.441	. 1	
3C	4rt	37365009	Chaetodontoplus duboulayi	Scribbled Angelfish	0.297	0.269	0.08062	0.28393	0.295	10.564	0.003	1	
3C	4rt	37384005	Choerodon cauteroma	Bluespotted Tuskfish	0.121	0.085	0.28577	0.53458	0.556	3.429	0.076	1	
3C	4rt	371 18001	Saurida undosquamis	Largescale Saury	0.109	0.074	0.54319	0.73702	0.766	3.064	0.092	1	
3C	4rt	371 180 16	Saurida grandisquamis	GreySaury	0	-0.04	0.14139	0.37601	0.391	0.01	0.921	1	
30	4rt	37347004	Nemipterus celebicus	Celebes Threadfin Bream	0.017	-0.023	0.18646	0.43182	0.449	0.423	0.521	1	
3C	4rt	37347005	Nemipterus furcosus	Rosy Threadfin Bream	0.022	-0.018	0.40249	0.63442	0.659	0.552	0.464	1	
3C	4rt	37355008	Upeneus guttatus	orange-barred goatfish	0.045	0.007	0.11978	0.3461	0.36	1.176	0.288	1	
3C	4rt	37460004	Pseudorhombus dupliciocellatus	Three Twinspot Flounder	0	-0.04	0.29065	0.53912	0.56	0	0.988	1	
30	4rt	37460015	Pseudorhombus diplospilus	Bigtooth Twinspot Rounder	0.005	-0.034	0.16232	0.40289	0.419	0.135	0.716	1	
3C	4rt	37465011	Abalistes stellatus	Starry Triggerfish	0.032	-0.007	0.18428	0.42928	0.445	0.83	0.371	. 1	
3C	4rt	37311009	Epinephelus areolatus	Yellowspotted Rockcod	0.026	-0.013	0.27513	0.52453	0.545	0.672	0.42	1	
3C	4rt	37311010	Epinephelus multinotatus	Rankin Cod	0.032	-0.007	0.44524	0.66726	0.693	0.827	0.372	1	
3C	4rt	37311012	Plectropomus maculatus	Barcheek CoralTrout	0.305	0.277	0.20239	0.44988	0.468	10.98	0.003	1	
3C	4rt		Pristipomoides multidens	Goldband Snapper	0	-0.04	0.07394	0.27192	0.283	0.006	0.94		
3C	4rt	37346007	Lutjanus malabaricus	Saddletail Snapper	0.042	0.003	0.22432	0.47363	0.492	1.083	0.308	1	
3C	4rt	37347007	Pentapodus porosus	Northwest Threadfin Bream	0.101	0.066	0.04666	0.21601	0.224	2.824	0.105	1	
30	Art	373460.05	Lutianus envibropterus	Crimson Snapper	0.092	0.056	0.19995	0.44716	0.465	2.529	0.124	1	



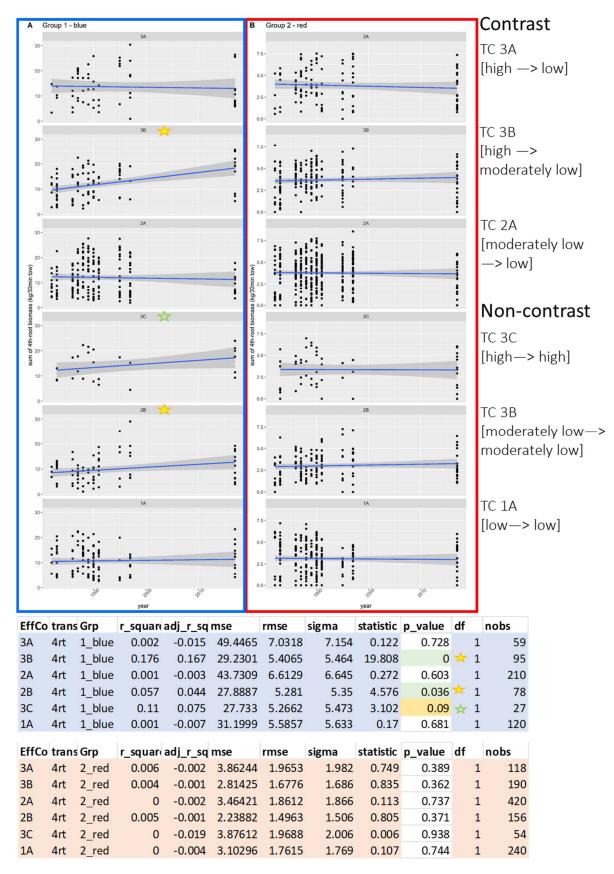
Apx Figure 22 Non-contrast TC 3C Informative species (N=27)

Non-contrast 2B [moderately low -> moderately low]

EffCon	trans	CAAB	Scientific name	Common name	r_square	adj_r_sq	mse	rmse	sigma	statistic	p_value
2B	4rt	37326005	Pria canthus hamrur	Lunartail Bigeye	0.044	0.032	0.3368	0.58034	0.588	3.512	0.065
2B	4rt	37346003	Lutjanus vitta	Brownstripe Snapper	0.004	-0.009	0.56112	0.74908	0.759	0.32	0.573
2B	4rt	37346004	Lutjanus sebae	Red Emperor	0.022	0.009	0.67132	0.81934	0.83	1.699	0.196
28	4rt	37347006	Scolopsis monogramma	Rainbow Monocle Bream	0.09	0.078	0.16181	0.40225	0.408	7.503	0.008
2B	4rt	37350003	Diagramma pictum	Painted Sweetlips	0.027	0.014	0.41468	0.64395	0.652	2.111	0.15
2B	4rt	37351904	Lethrinus nebulosus & Lethrinus sp.	spangled emperor	0.004	-0.009	0.92758	0.96311	0.976	0.281	0.598
28	4rt	37353006	Argyrops ble ekeri	Frypan Bream	0.06	0.048	0.46463	0.68163	0.691	4.844	0.031
28	4rt	37355004	Parupeneus heptacanthus	Opalescent Goatfish	0.017	0.004	0.42285	0.65027	0.659	1.277	0.262
28	4rt	37365003	Parachaetodon ocellatus	Ocellate Butterflyfish	0.007	-0.007	0.16428	0.40531	0.411	0.498	0.482
28	4rt	37365008	Chaetodontoplus personifer	Yellowtail Angelfish	0.006	-0.007	0.33635	0.57996	0.588	0.429	0.515
28	4rt	37365009	Chaetodontoplus duboulayi	Scribbled Angelfish	0.034	0.021	0.11366	0.33713	0.342	2.662	0.107
2B	4rt	37384005	Choerodon cauteroma	Buespotted Tuskfish	0.05	0.037	0.17405	0.41719	0.423	3.975	0.05
2B	4rt	37118001	Saurida undos qua mis	Largescale Saury	0	-0.013	0.56873	0.75414	0.764	0.038	0.846
28	4rt	37118016	Saurida grandisquamis	Grey Saury	0.015	0.002	0.12425	0.35249	0.357	1.131	0.291
28	4rt	37347004	Nemipterus celebicus	Celebes Threadfin Bream	0.079	0.066	0.14602	0.38213	0.387	6.481	0.013
28	4rt	37347005	Nemipterus furcosus	Rosy Thread fin Bream	0.042	0.029	0.73698	0.85848	0.87	3.321	0.072
28	4rt	37355008	Upeneus guttatus	orange-barred goatfish	0.03	0.017	0.17737	0.42115	0.427	2.338	0.13
28	4rt	37460004	Pseudorhombus dupliciocellatus	Three Twinspot Flounder	0.009	-0.004	0.23229	0,48197	0.488	0.727	0.396
2B	4rt	37460015	Pseudorhombus diplaspilus	Bigtooth Twinspot Flounder	0.01	-0.003	0.10349	0.3217	0.326	0.756	0.387
28	4rt	37465011	Abalistes stellatus	Starry Triggerfish	0.044	0.032	0.29445	0.54263	0.55	3.528	0.064
28	4rt	37311009	Epinephelus a reolatus	Yellowspotted Rockcod	0.003	-0.01	0.29544	0.54354	0.551	0.228	0.634
2B	4rt	37311010	Epinephe lus multinotatus	Rankin Cod	0.01	-0.003	0.36749	0.60621	0.614	0.801	0.374
28	4rt	37311012	Plectropomus maculatus	Barcheek Coral Trout	0.06	0.048	0.11332	0.33662	0.341	4.848	0.031
2B	4rt	37346002	Pristipomaides multidens	Goldband Snapper	0.02	0.007	0.54232	0.73643	0.746	1.557	0.216
28	4rt	37346007	Lutjanus malabaricus	Saddletail Snapper	0.003	-0.01	0.50244	0.70883	0.718	0.224	0.638
2B	4rt	37347007	Pentapodus porosus	Northwest Thread fin Bream	0.017	0.004	0.06772	0.26023	0.264	1.322	0.254
28	4rt	37346005	Lutjanus erythropterus	Crimson Snapper	0.021	0.008	0.16111	0.40138	0.407	1.636	0.205


Apx Figure 23 Non-contrast TC 2B Informative species (N=27)

Non-contrast 1A [low -> low]


EffCon	trans	CAAB	Scientific name	Common name	r_squar	adj_r_sq	mse	rm:
1A	4rt	37326005	Priacanthus hamrur	Lunartail Bigeye	0.004	-0.005	0.54055	0.
1A	4rt	37346003	Lutjanus vitta	Brownstripe Snapper	0.006	-0.002	0.46476	0.
1A	4rt	37346004	Lutjanus sebae	Red Emperor	0.002	-0.006	0.51692	0.
1A	4rt	37347006	Scolopsis monogramma	Rainbow Monocle Bream	0.015	0.007	0.57336	0
1A	4rt	37350003	Diagramma pictum	Painted Sweetlips	0.007	-0.002	0.80121	0
1A	4rt	37351904	Lethrinus nebulasus & Lethrinus sp.	spangled emperor	0.001	-0.007	0.94978	0.
1A	4rt	37353006	Argyrops bleekeri	Frypan Bream	0.001	-0.007	0.13627	0.
1A	4rt	37355004	Parupeneus heptacanthus	Opalescent Goatfish	0.02	0.011	0.41789	0.
1A	4rt	37365003	Parachaetodon ocella tus	Ocellate Butterflyfish	0.003	-0.006	0.2004	0.
1A	4rt	37365008	Chaetodontoplus personifer	Yellowtail Angelfish	0.05	0.042	0.21968	0
1A	4rt	37365009	Chaetodontoplus duboulayi	Scribbled Angelfish	0.007	-0.002	0.48713	0.
1A	4rt	37384005	Choerodon cauteroma	Bluespotted Tuskfish	0	-0.008	0.48383	0.
1A	4rt	37118001	Saurida undosquamis	Largescale Saury	0.003	-0.006	0.46183	0.
1A	4rt	37118016	Saurida grandisquamis	Grey Saury	0.023	0.015	0.15942	0.
1A	4rt	37347004	Nemipterus celebicus	Celebes Threadfin Bream	0.005	-0.004	0.18648	0.
1A	4rt	37347005	Nemipterus furcosus	RosyThreadfin Bream	0.022	0.014	0.36016	0.
1A	4rt	37355008	Upeneus guttatus	orange-barred goatfish	0.002	-0.007	0.50618	0.
1A	4rt	37460004	Pseudorhombus dupliciocellatus	Three Twinspot Flounder	0.016	0.008	0.08607	0.
1A	4rt	37460015	Pseudorhombus diplospilus	Bigtooth Twinspot Flounder	0	-0.008	0.23624	0.
1A	4rt	37465011	Abalistes stellatus	Starry Triggerfish	0.002	-0.006	0.31741	0
1A	4rt	37311009	Epinephelus areolatus	Yellowspotted Rockcod	0.069	0.061	0.03958	0.
1A	4rt	37311010	Epinephelus multinotatus	Rankin Cod	0.03	0.021	0.12262	0.
1A	4rt	37311012	Plectropomus maculatus	Barcheek Coral Trout	0.025	0.017	0.46606	0.
1A	4rt	37346002	Pristipomoides multidens	Goldband Snapper	NaN	NaN	0	
1A	4rt	37346007	Lutja nus mala baricus	Saddle tail Snapper	0.028	0.02	0.21335	0
1A	4rt	37347007	Pentapodus porosus	Northwest Threadlin Bream	0.003	-0.006	0.96032	0.
1A	4rt	37346005	Lutianus erythropterus	Crimson Snapper	0.135	0.127	0.16663	0

Non-contrast 1A

Apx Figure 24 Non-contrast TC 1A Informative species (N=27)

Apx Figure 25 Contrast and non-contrast TC Areas Inner/mid-shelf assemblages (N=2)

References

Ahrens, R. W. (2012). Foraging arena theory. Fish and Fisheries, 13: 41-59.

- Althaus, F., Woolley, K., He, X., Stephenson, P. and Little, R. (2006). The spatial distribution of commercial fishery production on Australia's North West Shelf. NWSJEMS Technical Report (CSIRO. Marine and Atmospheric Research. North West Shelf Joint Environmental Management Study) No. 10. http://www.cmar.csiro.au/nwsjems/techreports.htm
- Améziane, N., and Roux, M. (2005). Environmental control versus phylogenic fingerprint in ontogeny: The example of the development of the stalk in the genus *Guillecrinus* (stalked crinoids, Echinodermata). *Journal of Natural History*, *39*(30), 2815–2860.
 http://doi.org/10.1080/00222930500060595

Atlas of Living Australia. Available online: http://www.ala.org.au (Accessed November 2018)

- Babcock, R., Donovan, A., Collin, S. and Ochieng-Erftemeijer, C. (2017) Pilbara Marine Conservation Partnership – Final Report. Brisbane: CSIRO. ISBN 978-1-4863-1170-5
- Bayer, F.M. (1981). Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. Proceedings of the Biological Society of Washington 94: 901–947.
- Bond, T., Partridge, J.C., Taylor, M.D., Cooper, T.F. and McLean, D.L. (2018). The influence of depth and a subsea pipeline on fish assemblages and commercially fished species. PloS One, 13(11), p.e0207703.
- Branford, J. (1984). Taiwanese fisheries in the north monitoring and benefits for Australia. *Australian Fisheries* 43, 14-19.
- Breiman, L. (2001). Random Forests, Machine Learning 45: 5-32.
- Bulman, C. (2006). Trophic webs and modelling of Australia's North West Shelf. Technical Report 9. North West Shelf Joint Environment Management Study. CSIRO Marine and Atmospheric Research. CSIRO.
- Burridge C.Y., Pitcher C.R., Wassenberg T.J., Poiner I.R., Hill, B.J. (2003). Measurement of the rate of depletion of benthic fauna by prawn (shrimp) otter trawls: an experiment in the Great Barrier Reef, Australia. *Fisheries Research* 60: 237–253
- Bryce, M., Radford, B. and Fabricius, K. (2018). Soft coral and sea fan (Octocorallia) biodiversity and distribution from a multi-taxon survey (2009–2014) of the shallow, tropical Kimberley, Western Australia. Records of the Western Australian Museum, Supplement 85: 45–73. DOI: 10.18195/issn.0313- 122x.85.2018.045-073.
- CAAB (2021). Codes for Australian Aquatic Biota (CAAB). CSIRO Marine and Atmospheric Research. http://www.marine.csiro.au/data/caab/ (last visited 31/5/2021)

- Cairns, S.D. (2016). A key to the genera and species of the transversely-dividing Flabellidae (Anthozoa, Scleractinia, Flabellidae), with a guide to the literature, and the description of two new species. ZooKeys, 562 (7): 1–48.
- Cairns, S.D. and Kitahara, M.V (2012). An illustrated key to the genera and subgenera of recent azooxanthellate Scleractinia (Cnidaria, Anthozoa), with an attached glossary. ZooKeys 227: 1–47.
- Chen, J., Yu, K., Hsing, A., and Therneau, T. M. (2007). A partially linear tree-based regression model for assessing complex joint gene–gene and gene–environment effects. *Genetic Epidemiology*, 31, 238– 251.
- Christensen, V. W. (2004). Ecopath with Ecosim: methods, capabilities and limitations. *Ecological Modelling* 172: 109-139.
- Christensen, V. W. (2005). Ecopath with Ecosim: A User's Guide. Vancouver, British Columbia, Canada. Fisheries Centre Press. The University of British Columbia.
- Christensen, V. W. (2009). Ecopath with Ecosim, version 6: user guide. Vancouver, British Columbia: The University of British Columbia.
- Clark, A. H. (1931). A Monograph of the Existing Crinoids. Volume I. The Comatulids. Part 3. Superfamily Comasterida (pp. 1–816).
- Clark, A. H. (1941). A Monograph of the Existing Crinoids, Volume I. The Comatulids. Part 4a. Superfamily Mariametrida (except the Family Colobometridae) (pp. 1–603).
- Clark, A. H. (1947). A Monograph of the Existing Crinoids. Volume I. The Comatulids. Part 4b. Superfamily Mariametrida (Concluded--the Family Colobometridae) and Superfamily Tropiometrida (Except the Families Thalassometridae and Charitometridae) (pp. 1–473).
- Clark, A. H. (1950). A Monograph of the Existing Crinoids. Volume I. The Comatulids. Part 4c. Superfamily Tropiometrida (the families Thalassametridae and Charitometridae). (pp. 1–383).
- Clark, A. H., and Clark, A. M. (1967). A Monograph of the Existing Crinoids. Volume I. The Comatulids. Part 5. Suborders Oligophreata (concluded) and Macrophreata (pp. 1–860).

Clarke, K.R., Gorley, R.N. (2015). Getting started with PRIMER v7 PRIMER-E: Plymouth.

- Colléter, M. V. (2015). Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. *Ecological Modelling* 302, 42-53.
- Commonwealth of Australia (2012). Species group report card marine reptiles. Supporting the marine bioregional plan for the North-west Marine Region. Department of Sustainability, Environment, Water, Population and Communities. Australian Government. 33pages.
- Condie, S., Andrewartha, J., Mansbridge, J. and Waring, J. (2006). Modelling circulation and connectivity on Australia's North West Shelf. Technical Report 6. North West Shelf Joint Environment Management Study. CSIRO Marine and Atmospheric Research. CSIRO.
- Department of Infrastructure and Regional Development. (2014). Infrastructure and Transport to 2030. Canberra: Australian Government.

- Director of National Parks 2018, North-west Marine Parks Network Management Plan 2018, Director of National Parks, Canberra.
- Edwards, R.R.C. (1982). An assessment of the offshore demersal trawl fishery in the Arafura and Timor Seas and the Gulf of Carpentaria, within the Australian Fishing Zone. Fisheries Division, Department of Primary Production, Darwin. NT, pp.9

Edwards, R.R.C., (1983). The Taiwanese pair trawler fishery in tropical Australian waters. Fish. Res., 2:47-60.

- Ellis, N., Pantus, F. (2001). Management Strategy Modelling: Tools to evaluate trawl management strategies with respect to impacts on benthic biota within the Great Barrier Reef Marine Park area. CSIRO Marine Research, Cleveland, Australia. http://www.cmar.csiro.au/e-print/open/ellisn_2001.pdf
- Ellis, N., Pantus, F.J., Pitcher, C.R. (2014) Scaling up experimental trawl impact results to fishery management scales — a modelling approach for a 'hot time'. CJFAS 71, 1-14 https://doi.org/10.1139/cjfas-2013-0426
- Ellis, N., Smith, S.J., Pitcher, C.R. (2012) Gradient Forests: calculating importance gradients on physical predictors. *Ecology* 93:156–168 https://doi.org/10.1890/11-0252.1
- Fabricius, K. and Alderslade, P. (2001). Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science: Townsville, Queensland.
- Finn, J. (1980). Flow analysis of models of the Hubbard Brook ecosystem. *Ecology*, 562-571.
- Fromont, J. (2004). Porifera (sponges) of the Dampier Archipelago, Western Australia: habitats and distributions. Records of the Western Australian Museum Supplement No. 66: 69–100
- Fromont, J., Abdul Wahab, M. A., Gomez, O., Ekins, M., Grol, M., and Hooper, J. N. A. (2016) Patterns of sponge biodiversity in the Pilbara, northwestern Australia. Diversity 8(4), 21.
- Fromont, J., Vanderklift, M., and Kendrick, G. (2006). Marine sponges of the Dampier Archipelago, Western Australia: patterns of species distributions, abundance and diversity. Biodiversity and Conservation, 15(11), 3731-3750. DOI: 10.1007/s10531-004-1871-9.
- Fulton, E., B. Hatfield, F. Althaus and K. Sainsbury (2006) Benthic habitat dynamics and models on Australia's North West Shelf. NWSJEMS Technical Report (CSIRO. Marine and Atmospheric Research. North West Shelf Joint Environmental Management Study) No. 11. http://www.cmar.csiro.au/nwsjems/techreports.htm
- Fukui, Y. 2018. Redescription of *Iniistius jacksonensis* (Ramsay 1881) and description of *Iniistius opalus* sp. nov. from northern Australia (Perciformes: Labridae). Ichthyological Research 66 (2): 258-268. https://doi.org/10.1007/s10228-018-0673-0
- Fraser, T. H. 2019. A new species of cardinalfish from Australia (Percomorpha: Apogonidae: *Gymnapogon*). Journal of the Ocean Science Foundation 32: 89-97. https://doi.org/10.5281/zenodo.2854383
- Galbraith, R.D. (1985) Demersal Pair Trawling Trials Aquila-Poseidon February 198. Scottish Fisheries Working Paper No 685, pp. 18.

- Gaughan, D.J. and Santoro, K. (eds). (2018) Status Reports of the Fisheries and Aquatic Resources of Western Australia 2016/17: The State of the Fisheries. Department of Primary Industries and Regional Development, Western Australia.
- Gill, A. C., J. J. Pogonoski, G. I. Moore and Johnson, J.W. 2021a. Review of Australian species of *Plectranthias* Bleeker and *Selenanthias* Tanaka (Teleostei: Serranidae: Anthiadinae), with descriptions of four new species. Zootaxa 4918 (1): 1-116. https://doi.org/10.11646/zootaxa.4918.1.1
- Gill, A. C., J. J. Pogonoski, J. W. Johnson and Tea, Y.-K. 2021b. Three new species of Australian anthiadine fishes, with comments on the monophyly of *Pseudanthias* Bleeker (Teleostei: Serranidae). Zootaxa 4996 (1): 49-82. https://doi.org/10.11646/zootaxa.4996.1.2
- Gribble, N. (2003). GBR-prawn: modelling ecosystem impacts of change in fisheries management of the commercial prawn (shrimp) trawl fishery in the far northern Great Barrier Reef. *Fisheries Research*, 65: 493-506.
- Guinea, ML (2007a). Marine snakes: species profile for the north-western planning area, report for the Australian Government Department of the Environment, Water, Heritage and the Arts, Charles Darwin University, Northern Territory
- Heymans, J. C. (2016). Best practice in Ecopath with Ecosim food-web models for ecosystembasedmanagement. *Ecological Modelling*, 331, 173–184.
- Hayashi, K. I. (2007). *Lysmata dispar* sp. nov., a new shrimp from the Dampier Archipelago, Western Australia, with notes on other species of the family Hippolytidae (Crustacea: Decapoda: Caridea). *Records of the Western Australian Museum, Supplement*, 73, 85–95
- Hewitt, M. A. (2004) Crustacea (excluding Cirripedia) of the Dampier Archipelago, Western Australia. In: D.
 S. Jones (Ed), Report on the results of the Western Australian Museum/Woodside Energy Ltd.
 Partnership to explore the marine biodiversity of the Dampier Archipelago 1998–2002. Records of the Western Australian Museum, Supplement. Western Australian Museum, Perth, pp. 169–219.
- Hooper J.N.A., Van Soest R.W.M. (2002) Systema Porifera. A Guide to the Classification of Sponges. In: Hooper J.N.A., Van Soest R.W.M., Willenz P. (eds) Systema Porifera. Springer, Boston, MA
- Hooper JNA (1991) Revision of the family Raspailiidae (Porifera: Demospongiae), with description of Australian species. Invertebrate Systematics 5, 1179-1481.https://doi.org/10.1071/IT9911179
- Hooper, J. N. A., Kennedy, J. A., and Quinn, R. (2002). Biodiversity hotspots, patterns of richness and endemism, and taxonomic affinities of tropical Australian sponges (Porifera). Biodiversity and Conservation, 11, 851–885
- Hosie, A. M. and Hara, A. (2016) Description of a new species of brooding spider crab in the genus
 Paranaxia Rathbun, 1924 (Brachyura: Majoidea), from northern Australia and Indonesia. *Zootaxa*, 4127, 121–134.
- Hosie, A. M., Sampey, A., Davie, P. J. and Jones, D. S. (2015) Kimberley marine biota. Historical data: crustaceans. *Records of the Western Australian Museum, Supplement*, 84, 247–287.

- Huisman, J.M. and Borowitzka, M.A. (2003) Marine benthic flora of the Dampier Archipelago, Western
 Australia. In: Wells, F.E., Walker, D.I. and Jones, D.S. (eds). *The Marine Flora and Fauna of Dampier, Western Australia.* Western Australian Museum, Perth. pp. 291–344.
- Huisman, J.M. 2015. Algae of Australia: Marine Benthic Algae of North-western Australia, 1. Green and Brown Algae. ABRS, Canberra; CSIRO Publishing, Melbourne. viii + 320 pp.
- Huisman, J.M. 2018. *Algae of Australia: Marine Benthic Algae of North-western Australia, 2. Red Algae.* ABRS, Canberra; CSIRO Publishing, Melbourne. xii + 672 pp.
- Jernakoff, P.A. (1990). CSIRO's northern demersal finfish stock assessments: 1980 to 1989. Melbourne: Bureau of Rural Resources Information Paper No IP/6/90.
- Jones, D. and Berry, P. (2000) Crustacea of the Montebello Islands. *Survey of the Marine Fauna and Habitats of the Montebello Islands, Western Australia. Records of the Western Australian Museum, Supplement, 59,* 59–63.
- Jones, D. S. (2004) Barnacles (Cirripedia: Thoracica) of the Dampier Archipelago, Western Australia. *In:* D. S. Jones (Ed), *Report on the results of the Western Australian Museum/Woodside Energy Ltd. Partnership to explore the marine biodiversity of the Dampier Archipelago 1998–2002.Records of the Western Australian Museum, Supplement*, 66, 121–157.
- Keesing, J., Bearham, D., Bryce, M., Fromont, J., Hara, A., Hosie, A. M., Huisman, J., Kirkendale, L., Marsh, L., Moore, G., Morrison, S., Naughton, K., O'Hara, T., O'loughlin, M., Richards, Z., Snedden, Z., Strzelecki, J. and Whisson, C. (2014) Biodiversity Assessment. *In:* J. Keesing (Ed), *Marine biodiversity and ecosystem function in the King George River Region of north-western Australia*. CSIRO, Floreat, pp. 27–57.
- Keesing, J., Irvine, T. R., Alderslade, P., Clapin, G., Fromont, J., Hosie, A., Huisman, J., Phillips, J., Naughton,
 K. and Marsh, L. (2011) Marine benthic flora and fauna of Gourdon Bay and the Dampier Peninsula in the Kimberley region of north-western Australia. *Journal of the Royal Society of Western Australia*, 94, 285–301.
- Keesing, J.K. (Ed) 2014. Marine Biodiversity and Ecosystem Function in the King George River region of Northwestern Australia. *Report to the Total Corporate Foundation*. 145 pgs. CSIRO, AUSTRALIA.

Kempton R.A. and Taylor. L.R. (1976). Models and statistics for species diversity. Nature. 262:818-820.

- Kim, A.Y., Ismay, C. (2021). moderndive: Tidyverse-Friendly Introductory Linear Regression. R package version 0.5.1. https://CRAN.R-project.org/package=moderndive
- Kohtsuka, H., and Nakano, H. (2005). Development and growth of the feather star *Decametra tigrina* (Crinoidea), with emphasis on the morphological differences between adults and juveniles. *Journal of the Marine Biological Association of the United Kingdom*, *85*(6), 1503–1510.

Kuiter, R.H. (2009). Seahorses and their relatives. Seaford, Australia. Aquatic Photographics. 331pp.Kükenthal, W. (1910). Die Fauna Südwest-Australiens. Ergebnisse der Hamburger südwest-australischen Forschungsreise 1905. Gustav Fisher-Verlag, Jena.

- Langlois, T.J., Wakefield, C.B., Harvey, E.S., Boddington, D.K. and Newman, S.J. (2021). Does the benthic biota or fish assemblage within a large targeted fisheries closure differ to surrounding areas after 12 years of protection in tropical northwestern Australia? *Marine Environmental Research* 170: 105403.
- Last, P. R., White, W.T., de Carvalho, M. R., Séret, B., Stehmann, M. F. W. and Naylor, G. J. P. (2016). Rays of the world. Cornell University Press, Ithaca, USA, viii + 790 pp.
- Last, P.R. and Stevens, J.D. (2009). Sharks and rays of Australia. CSIRO, Melbourne Australia
- Liaw, A., and Wiener, M. (2002). Classification and regression by randomForest. *R News*, 2, 18–22.
- Libralato, S. C. (2006). A method for identifying keystone species in food web models. *Ecological Modelling* 195: 153-171.
- Link, J. (2010). Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: a plea for PREBAL. *Ecological Modelling* 221: 1580-1591.
- Liu, H.C., Lai, H.L., Yeh, S.Y. (1978). General review of demersal fish resources in the Sunda Shelf and the Australian waters. Acta Oceanogr. Tsiwanica, National Taiwan University, 8:109-140.
- Macpherson, E. and Robainas-Barcia, A. (2015) Species of the genus *Galathea* Fabricius, 1793 (Crustacea, Decapoda, Galatheidae) from the Indian and Pacific Oceans, with descriptions of 92 new species. *Zootaxa*, 3913, 335.
- McCosker, J. E. and Y. Hibino (2015). A review of the finless snake eels of the genus *Apterichtus* (Anguilliformes: Ophichthidae), with the description of five new species. *Zootaxa* 3941 (1): 49–78.
- McLean, D.L., Vaughan, B.I., Malseed, B.E. and Taylor, M.D. (2020). Fish-habitat associations on a subsea pipeline within an Australian Marine Park. *Marine Environmental Research* 153: p.104813.
- McLean, D., Cure, K., Wahab, M.A., Galaiduk, R., Birt, M., Vaughan, B., Colquhoun, J., Case, M., Radford, B.,
 Stowar, M. and Harries, S. (2021). A comparison of marine communities along a subsea pipeline
 with those in surrounding seabed areas. *Continental Shelf Research* 219: 104394.
- MarLIN, 2021 Metadata Record for this project? With link to NWS_EoT_FRDC_Final_Report_Chapter7_Suppl_List.xlsx
- Masuda, K., S. Nakane, S. Saito and T. Fujii (1964) Survey of trawl grounds off the north-west coast of Australia with special reference to hydrographical conditions on the grounds. Bull. Fac. Fish. Hokkaido Univ. 15–16: 77–88.
- Mazor, T., Pitcher, C.R., Ellis, N., Rochester, W., Jennings, S., Hiddink, J.G., McConnaughey, R.A., Kaiser, M.,
 Parma, A., Suuronen, P., Kangas, M. and Hilborn, R. (2017) Trawl Exposure and Protection of
 Seabed Fauna at Large Spatial Scales. *Diversity and Distributions* 23, 1280-1291
- Messing, C. G. (2001). A key to the genera of Comasteridae (Echinodermata: Crinoidea) with the description of a new genus. *Bulletin of the Biological Society of Washington*, *10*, 277–300.
- Messing, C. G., and Tay, T. S. (2016). Extant Crinoidea (Echinodermata) of Singapore. *Raffles Bulletin of Zoology, Supplement 34*, 627–658.

- Messing, C. G., Meyer, D. L., Siebeck, U. E., Jermiin, L. S., Vaney, D. I., and Rouse, G. W. (2005). A modern soft-bottom, shallow-water crinoid fauna (Echinodermata) from the Great Barrier Reef, Australia. *Coral Reefs*, 25(1), 164–168. http://doi.org/10.1007/978-1-4757-0740-3_9
- Montgomerie, M., Forbes, R. (2015) Basic Fishing Methods a comprehensive guide to commercial fishing methods. SEAFISH. pp. 106
- Morissette, L. H. (2006). The trophic role of marine mammals in the northern Gulf of Lawrence. *Marine Mammals Science* 22: 74-103.
- Newman, S.J., J. I. Brown, D. V. Fairclough, B. S. Wise, L. M. Bellchambers, B. W. Molony, R. C. J. Lenanton,
 G. Jackson, K. A. Smith, D. J. Gaughan, W. J. Fletcher, R. B. McAuley, and C. B. Wakefield (2018). A risk assessment and prioritisation approach to the selection of indicator species for the assessment of multi-species, multi-gear, multi-sector fishery resources. Marine Policy 88:11-22.
- NWSJEMS (2007). North West Shelf Joint Environmental Management Study. http://www.cmar.csiro.au/nwsjems/about/background.htm (last visited 31/5/2021)
- Owen, C. L., Messing, C. G., Rouse, G. W., and Shivji, M. S. (2009). Using a combined approach to explain the morphological and ecological diversity in *Phanogenia gracilis* Hartlaub, 1893 (Echinodermata: Crinoidea) sensu lato: two species or intraspecific variation? *Marine Biology*, *156*(8), 1517–1529. http://doi.org/10.1007/s00227-009-1173-6
- Palomares, M.L.D. and Pauly, D. (1998). Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Marine and Freshwater Research 49: 447-453.
- Pauly, D. (1980). On the interrelationships between natural mortality, growth, and mean environmental temperature in 175 fish stocks. *ICES Journal of Marine Science* 39: 175-192.
- Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres, F. (1998). Fishing down marine food webs. *Science* 279: 860-863.
- Parsons, T.R., Maita, Y., Lalli, C.M. (1989). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Toronto.
- Peart, R. A. (2004) Amphipoda (Crustacea) collected from the Dampier Archipelago, Western Australia. In:
 D. S. Jones (Ed), Report on the results of the Western Australian Museum/Woodside Energy Ltd.
 Partnership to explore the marine biodiversity of the Dampier Archipelago 1998–2002. Records of the Western Australian Museum, Supplement, 66, 159–167.
- Pitcher C.R., Austin M., Burridge C.Y., Bustamante R.H., Cheers S.J., Ellis N., Jones P.N., Koutsoukos A.G., Moeseneder C.H., Smith G.P., Venables W., Wassenberg T.J., (2008) Recovery of Seabed Habitat from the Impact of Prawn Trawling in the Far Northern Section of the Great Barrier Reef Marine Park. CSIRO Marine Research Final Report to GBRMPA, pp. 191 http://www.cmar.csiro.au/eprint/open/2008/pitchercr_a.pdf

- Pitcher C.R., Poiner I.R., Hill B.J., Burridge C.Y. (2000) The implications of the effects of trawling on sessile megazoo-benthos on a tropical shelf in northeastern Australia. ICES Journal of Marine Science 57:1359-1368 http://icesjms.oxfordjournals.org/content/57/5/1359.full.pdf
- Pitcher, C.R., Doherty, P., Arnold, P., Hooper, J., Gribble, N., and 55 others. (2007). Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area. AIMS/CSIRO/QM/QDPI Final Report to CRC Reef Research. 320 pp. ISBN 978-1-921232-87-9 http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2003-021-DLD.pdf
- Pitcher, C.R., Ellis, N., Althaus, F., Williams, A., McLeod, I. (2015) Predicting benthic impacts and recovery to support biodiversity management in the South-east Marine Region. Pages 24–25 in Bax, N.J. and Hedge, P. [Eds.]. 2015. Marine Biodiversity Hub, National Environmental Research Program, Final report 2011–2015. Report to Department of the Environment. Canberra, Australia. http://nerpmarinebiodiversity2015.report/predicting-benthic-impacts-and-recovery-to-support-biodiversity-management-in-the-south-east-marine-region/
- Pitcher, C.R., Ellis, N., Jennings, S., Hiddink, J.G., Mazor, T., Kaiser, M.J., Kangas, M.I., McConnaughey, R.A.,
 Parma, A.M., Rijnsdorp, A., Suuronen, P. Collie, J., Amoroso, R., Hughes, K.M., Hilborn, R., (2017).
 Estimating the sustainability of towed fishing-gear impacts on seabed habitats: a simple
 quantitative risk assessment method applicable to data-limited fisheries. Methods in Ecology and
 Evolution 8: 472-480 https://doi.org/10.1111/2041-210X.12705
- Pitcher, C.R., Ellis, N., Smith, S.J. (2010) Example analysis of biodiversity survey data with R package gradientForest. R vignette. http://gradientforest.r-forge.r-project.org/biodiversity-survey.pdf 13 pp.
- Pitcher, C.R., Miller, M., Morello, E., Fry, G., Strzelecki, J., McLeod, I., Slawinski, D., Ellis, N., Thomson, D., Bearham, D., Keesing, J., Donovan, A., Mortimer, N. Babcock, R., Fromont, J, Gomez, O., Hosie, A., Hara, A., Moore, G., Morrison, S., Kirkendale, L., Whisson, C., Richards, Z., Bryce, M., Marsh, L., Naughton, K., O'Loughlin, M., O'Hara, T., Boddington, D. and Huisman, J. (2016) Environmental Pressures: Regional Biodiversity - Pilbara Seabed Biodiversity. Mapping and Characterisation. Final report, CSIRO Oceans and Atmosphere, Published Brisbane, March 2016. https://publications.csiro.au/rpr/download?pid=csiro:EP161829&dsid=DS2
- Pitcher, C.R., Ellis, N., Venables, W., Wassenberg, T.J., Burridge, C.Y., Smith, G.P., Browne, M., Pantus, F.J.,
 Poiner I.R., Doherty P.J., Hooper, J.N.A., Gribble N. (2016). Effects of trawling on sessile
 megabenthos in the Great Barrier Reef, and evaluation of the efficacy of management strategies.
 Proceedings: Effects of Fishing on Benthic Fauna and Habitats ICES Journal of Marine Science.
 73,i115-i126 https://doi.org/10.1093/icesjms/fsv055
- Pitcher, C.R., Lawton, P., Ellis, N., Smith, S.J., Incze, L.S., Wei, C-L., Greenlaw, M.E., Wolff, N.H., Sameoto, J., Snelgrove, PVR. (2012) Exploring the role of environmental variables in shaping patterns of seabed

biodiversity composition in regional-scale ecosystems. J. Applied Ecology 49:670-679 https://doi.org/10.1111/j.1365-2664.2012.02148.x

Pitcher, C.R., Rochester, W., Dunning, M., Courtney, T., Broadhurst, M., Noell, C., Tanner, J., Kangas, M., Newman, S., Semmens, J., Rigby, C., Saunders T., Martin, J., Lussier, W. (2018) Putting potential environmental risk of Australia's trawl fisheries in landscape perspective: exposure of seabed assemblages to trawling, and inclusion in closures and reserves — FRDC Project No 2016-039. CSIRO Oceans and Atmosphere, Brisbane, 71 pages.

http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2016-039-DLD.pdf

Plaganyi, E. (2004). A critical look at the potential of Ecopath. *African Journal of Marine Science* 26: 261-287.

Prado, J., Dremière, P.Y. (1990) FAO Fisherman's Workbook. Fishery Industries Division, Food and Agriculture Organization of the United Nations, Fishing News Books, Oxford

QGIS (2020). QGIS version 3.14.15-Pi. The QGIS Project. https://www.qgis.org/en/site/

- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Rankin, D. L., and Messing, C. G. (2008). A revision of the comatulid genus *Stephanometra* AH Clark with a rediagnosis of the genus *Lamprometra* AH Clark (Echinodermata: Crinoidea). *Zootaxa*, *1888*, 1–35.
- Rees, A.J.J., Yearsley, G.K., Gowlett-Holmes, K. and Pogonoski, J. Codes for Australian Aquatic Biota (on-line version). CSIRO Marine and Atmospheric Research, World Wide Web electronic publication, 1999 onwards. Available at: http://www.cmar.csiro.au/oldcaab/

Robins, J.P. (1969) North-west trawl fishing. FINS (Fishing Industry News Service, Western Australia) 2:5-13

- Rouse, S., Kafas, A., Catarino, R. and Peter, H., 2018. Commercial fisheries interactions with oil and gas pipelines in the North Sea: considerations for decommissioning. ICES Journal of Marine Science, 75(1), pp.279-286.
- Rowe, F. W. E., Hoggett, A. K., Birtles, R. A., and Vail, L. L. (1986). Revision of some comasterid genera from Australia (Echinodermata: Crinoidea), with descriptions of two new genera and nine new species. *Zoological Journal of the Linnean Society*, *86*(3), 197–277.
- Rützler, Klaus. (1978). "Sponges in coral reefs." in Coral Reefs: Research Methods: Monographs on oceanographic methodology, edited by Stoddart, David R. and Johannes, R. E., 299–313. UNESCO Monographs on Oceanographic Methodology. UNESCO.
- Sainsbury, K.J. (1987). Assessment and Management of the demersal fishery on the continental shelf of north-western Australia. pp 465–503 in J. J. Polovina and S.R. Ralston (eds) Tropical Snappers and Groupers: Biology and Fisheries Management. Westview Press, Boulder, Colorado.
- Sainsbury, K. J. (1988). The ecological basis of multispecies fisheries, and management of a demersal fishery in tropical Australia. In: Fish population dynamics. 2nd ed. ed. Editor J. A. Gulland, Chapter 14, pp 349–382, John Wiley and Sons Ltd.

- Sainsbury, K. J. (1991). Application of an experimental approach to management of a tropical multispecies fishery with highly uncertain dynamics. ICES Marine Science Symposia, 193, 301–320.
- Sainsbury K. J., R. A. Campbell, R. Lindholm and A. W. Whitelaw (1997). Experimental management of an Australian multispecies trawl fishery: examining the possibility of trawl induced habitat modification. pp 107-112 in E. L. Pikitch, D. D. Huppert and M. P. Sissenwine, eds. Global Trends: Fisheries Management. American Fisheries Society Symposium 20, Bethesda, Maryland.
- Seemann, J. Y.-S. (2018). The importance of sponges and mangroves in supporting fish communities on degraded coral reefs in Caribbean Panama. *Peer Journal*, 6:e4455; DOI 10.7717/peerj.4455.
- Schaefer, M.B. (1954) Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Bull. Inter-American Trop. *Tuna Comm.* 1, 27-56.
- Shindo, S., (1972). General review of the trawl fishery and the demersal fish stocks of the South China Sea. FAO Fish. Tech. Paper 120, 49 pp.
- Slack-Smith, S.M. and Bryce, C.W. (1996). Molluscs. In Hutchins, J.B., Slack-Smith, S.M., Bryce, C.W., Morrison, S.M. and Hewitt, M.A. (eds), Marine Biological Survey of the Muiron Islands and the eastern shore of Exmouth Gulf. Report to the Ocean Rescue 2000 Program (Project number G0012/94), February, 1996, 64–101. Western Australian Museum, Perth.
- Slack-Smith, S.M. and Bryce, C.W. 2004. A survey of the benthic molluscs of the Dampier Archipelago, Western Australia. *Records of the Western Australian Museum Supplement* 66, 221–245.
- Summers, M. M., Messing, C. G., and Rouse, G. W. (2017). The genera and species of Comatulidae (Comatulida: Crinoidea): taxonomic revisions and a molecular and morphological guide. *Zootaxa*, *4268*(2), 151. http://doi.org/10.11646/zootaxa.4268.2.1
- Suzuki, T., K. Masuda and S. Nakane (1964) Variations of the catches and the volume of stomach contents of medium sized "Kuchinidae" (*Lethrinus ornatus* Cuvier and Valencienna) between day and night and observed in the trawl grounds along the northwestern coast of Australia. Bull. Fac. Fish., Hokkaido Univ. 15–16: 29–44.
- Taylor, K. H., Rouse, G. W., and Messing, C. G. (2017). Systematics of *Himerometra* (Echinodermata: Crinoidea: Himerometridae) based on morphology and molecular data. *Zoological Journal of the Linnean Society*, 181, 342–356.
- Taylor, K. H., Rouse, G. W., and Messing, C. G. (2018). Revising Mariametridae: the genera Dichrometra, Lamprometra, and Liparometra (Echinodermata: Crinoidea), 1–19. http://doi.org/10.1080/14772000.2017.1375044
- Troje, M. & Campbell, R.1989. Documentation for the analysis of photographic slides of = sea-floor benthic items. CSIRO Internal report, Sept 1989. 29pp.
- Ulanowicz, R. (1990). Mixed trophic impacts in Ecosystem. *Coenoses*, 5: 7-16.
- Ulanowicz, R. (1986). Growth and development: ecosystem phenomenology. New York, (USA). Springer-Verlag.

- Valls, A. C. (2015). Keystone species: Toward an operational concept for marine biodiversity conservation. *Ecological Monographs* 85, 29-47.
- Van Soest, R.W.M; Boury-Esnault, N.; Hooper, J.N.A.; Rützler, K.; de Voogd, N.J.; Alvarez, B.; Hajdu, E.;
 Pisera, A.B.; Manconi, R.; Schönberg, C.; Klautau, M.; Picton, B.; Kelly, M.; Vacelet, J.; Dohrmann, M.; Díaz, M.-C.; Cárdenas, P.; Carballo, J. L.; Ríos, P.; Downey, R. (2018). World Porifera database.
 Accessed at http://www.marinespecies.org/porifera on 2018-12-06
- Venables, W. (2011). Extension of the hybrid GLM/TREE approach. Pages 63–65 in Bax, N. ed. CERF Report on Transition and Extension Program. Marine Biodiversity Hub, May 2011. http://www.nerpmarine.edu.au/document/cerf-report-transition-and-extension-program
- Wakefield, C. B., Blight, S., Dorman, S. R., Denham, A., Newman, S. J., Wakeford, J., Molony, B. W.,
 Thomson, A. W., Syers, C. and O'Donoghue, S. 2014. Independent observations of catches and
 subsurface mitigation efficiencies of modified trawl nets for endangered, threatened and protected
 megafauna bycatch in the Pilbara Fish Trawl Fishery. Fisheries Research Report No. 244.
 Department of Fisheries, Western Australia. 40 pp.
- Walters, C. (2005). Possible ecosystem impacts of applying MSY policies from single-species assessment. *ICES J. Mar. Sci*, 62: 558-568.
- Walters, C. V. (1997). Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. *Reviews in Fish Biology and Fisheries*, 7: 139–172.
- Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R., Hebert, P.D.N., 2005. Barcoding Australia's fish species. Philos. Trans. R. Soc. B 360, 1847–1857.
- Wassenberg T.J., Dews, G., Cook, S.D. (2002). The impact of fish trawls on megabenthos (sponges) on the north-west shelf of Australia. *Fisheries Research* 58(2),141–151.
- Watson, R.J., Butler, E.C., Clementson, L.A. and Berry, K.M., 2005. Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater. *Journal of Environmental Monitoring*, 7(1), 37–42.
- Wells, F.E., Slack-Smith, S.M. and Bryce, C.W. (2000). Molluscs. In Berry, P.F. and Wells, F.E. (eds), Survey of the Marine Fauna and Habitats of the Montebello Islands, Western Australia. Records of the Western Australian Museum, Supplement 59, 29–46.
- Wells, F.E., Walker, D.I. and D. S. Jones. 2003. The marine flora and fauna of Dampier, Western Australia.Vol. 2. Proceedings of the Twelfth International Marine Biological Workshop. WAM.
- Wibowo, K. and Motomura, H. 2021. Review of Indo-Pacific species of the scorpionfish genus *Scorpaena* (Teleostei: Scorpaenidae), with descriptions of two new species from the west coast of Australia. Ichthyological Research First online: 1-37. https://doi.org/10.1007/s10228-021-00827-0
- Wickham, H., Averick, M. Bryan, J. Chang, W., D'Agostino McGowan, L., François, R., Grolemund, G., Hayes,
 A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M. and Kirill Müller, K., Ooms,
 J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H.

(2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686.

- Willan, R.C., Bryce, C., Slack-Smith, S.M. 2015. Kimberley marine biota. Historical data: molluscs. *Records of the Western Australian Museum Supplement* 84, 287–343. DOI 10.18195/issn.0313-122x.84.2015.287-343
- Williams, G.C. (1995). Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): illustrated key and synopses. Zoological Journal of the Linnean Society, 113, 93–140.
- Williams, G.C. (2011). The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PLoS ONE, Volume 6 (7): e22747). Doi: 10.1371/journal.pone.0022747
- WoRMS Editorial Board (2018). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2018-12-01. doi:10.14284/170
- Yearsley, G.K., Last, P.R. and Morris, G.K. (1997). Codes for Australian Aquatic Biota (CAAB): an upgraded and expanded species coding system for Australian fisheries databases. CSIRO Marine Laboratories Report no. 224, available on request from Gordon Yearsley at the email address above, or write to Gordon Yearsley, CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania 7001, Australia.

CONTACT US

t 1300 363 400 +61 3 9545 2176 e csiroenquiries@csiro.au w www.csiro.au

AT CSIRO, WE DO THE EXTRAORDINARY EVERY DAY

We innovate for tomorrow and help improve today – for our customers, all Australians and the world.

Our innovations contribute billions of dollars to the Australian economy every year. As the largest patent holder in the nation, our vast wealth of intellectual property has led to more than 150 spin-off companies.

With more than 5,000 experts and a burning desire to get things done, we are Australia's catalyst for innovation. CSIRO. WE IMAGINE. WE COLLABORATE. WE INNOVATE.

FOR FURTHER INFORMATION

CSIRO Oceans & Atmosphere

Dr John Keesing t +61 8 93336500

e john.keesing@csiro.au