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2 Executive Summary

2.1.1 Background

The Status of Australian Fish Stocks project is increasing the number of species/stocks
to be included, but many of these new stocks may fall into the "undefined" category
and, because they suggest a lack of assessment and management, they lower the overall
impression of the state of fisheries management within Australia. The FRDC National
Priority 1 has two targets relating to the "undefined" category. By 2020, the target is to
increase the number of species covered in SAFS to 200, and at the same time, to reduce
the percentage of stocks classified as undefined to less than 10%. Most major commer-
cial species by value are already included in SAFS, so increasing that number to 200
will mean including many data-poor fisheries, making the achievement of both targets
by 2020 difficult. An earlier project (2016-135) disarticulated the undefined category
into sub-groups, at least one of which should be amenable to data-poor assessment tech-
niques.

The Status of Australian Fish Stocks (SAFS) Reports bring together available biologi-
cal, catch and effort information to determine the status of Australia’s key wild catch
fish stocks across eight fisheries management jurisdictions. The reports are based on a
consistent national reporting framework developed collaboratively by fisheries scien-
tists across Australia. Almost one hundred fisheries scientists from eight jurisdictions,
are responsible for producing the 83-species reports, with a further 52 fisheries scien-
tists anonymously reviewing them. To achieve the goal of extending the number of spe-
cies, however, requires the jurisdictions to perform additional assessments on many data
poor stocks.

This current project is the result of consultation with the fisheries management jurisdic-
tions to help them begin assessing data-poor stocks in a standardised manner, to provide
seamless input into the SAFS assessment process. There is thus a need, within each ju-
risdiction, to identify which of the new species selected for inclusion in SAFS are likely
to be classed as undefined and yet are still amenable to a data-poor assessment method.
There have been many recent developments with data-poor stock assessment methods
and there is thus also a need in all jurisdictions for staff training to develop more local
expertise in these new methods, and to transfer suitable custom software for conducting
such analyses. With the agreement of all parties involved, there is a need to then apply
and document the particular assessment method used that permits a status determination
for each species selected, thereby reducing the number of undefined species.
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2.1.2 Aims/objectives

There were four objectives to this work:

1. Of'the species proposed for inclusion in the 2018 and 2020 SAFS reports, identify
those which may be deemed 'undefined' in each jurisdiction and yet potentially ame-
nable to a data-poor stock assessment.

2. In each jurisdiction with potentially 'undefined' species, arrange a training workshop
for local staff using the candidate species from objective 1 to act as case studies for
the application of suitable data-poor stock assessment methods.

3. Include the 15 potentially assessable species from SAFS 2016, as identified in Phase
one of this project (FRDC Project 2016-135).

4. Ensure that at least the local scientists involved with SAFS assessments understand
how to use the illustrated data-poor assessment methods to develop a defensible
stock status report and, if required, associated management advice.

2.2 Methodology

Seven data-poor assessment method training workshops were run in seven different ju-
risdictions (Tasmania, Victoria, South Australia, Western Australia, Northern Territory,
Queensland, and New South Wales). Originally the workshops were to have been un-
dertaken from March to the end of May 2018. However, the availability of project staff
combined with the availability of people within the jurisdictions meant that time-table
had to be extended into June.

Two open source R packages, simpleSA and cede, were used in the workshops, with ad-
ditional development of the software contained in each one continuing as experience in
the different jurisdictions expanded. cede contained software to assist with data explora-
tion (simple mapping and data summary functions) and with illustrating and comparing
different catch-effort standardization techniques. simpleSA contained three main data-
poor stock assessment techniques (catch-MSY, surplus-production modelling, and age-
structured surplus production modelling) plus functions to assist with catch-curve analy-
sis.

The workshops consisted of an introduction to the problems of assessing data-poor fish-
eries, potential solutions, and their implications for management. The workshops in-
cluded an introductory lecture and then live demonstrations of the software with expla-
nations of the limitations and assumptions of each approach, followed by hands-on use
by participants using either data sets included in the packages or, ideally, their own da-
tasets prepared before the workshops.

Initially the workshops were designed around the idea of being two days long, but after
the first two workshops, this was altered to become three days (for all but the Tasma-
nian workshop, which required only 2 days). This allowed time for participants to more
fully explore their data, to make brief presentations of analyses they had conducted, and
to receive feedback on these from the workshop presenters and their own colleagues.

The workshops were well received by the participants and detailed feedback from the

State jurisdictions on the benefits to the SAFS process, future training needs and areas
for improvement is provided in Appendix 2.
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2.3 Results
2.3.1 The simpleSA R package

An open source R package named simpleSA (as in “simple stock assessment”) was de-
veloped prior to the commencement of the FRDC contract. This was designed to con-
tain three main stock assessment methods suitable for Australian conditions plus other
additional routines or functions for conducting analyses of value in assessments. The
three main methods considered were:

1. The catch-MSY methodology (Martell and Froese, 2013)

2. Surplus-production modelling (Prager, 1994, Haddon, 2011)

3. Age-structured production modelling (Punt ez al., 1995)

Also included were some utility functions for conducting catch-curves.

The second package cede (as in “catch effort and data exploration™), was developed to
provide a few tools to assist participants with data exploration to aid in understanding
the factors influencing the fishery data they receive (e.g. by mapping their data, and
plotting their data subdivided by years or areas or some other factor).

At each workshop participants successfully applied the methods to local data sets. Not
all such analyses led to changing the status of undefined species, but where they stayed
undefined, there was a good explanation provided for why the available data failed to
provide sufficient information to determine stock status. The software developed and
the methods introduced to participants were successfully applied in many instances,
however, there were numerous datasets where the assumptions of the methods were vio-
lated. Most common were cases where there were major changes in management that
broke the time-series of data (either catches, CPUE, or both). This has the capacity to
lead to invalid or biased conclusions, but theory for dealing, for example, with broken
time-series of catch rates is not yet available where this is confounded with a change in
catchability.

2.3.2 Implications for relevant stakeholders

Data-poor stock assessment techniques should not be automated as all require a good
deal of local knowledge to understand and interpret their outputs. One result of their
generally greater uncertainty is the need to conduct many more sensitivity analyses ex-
ploring the influence of the various assumptions made. This implies that, as such anal-
yses will be on-going, some longer term investment in analytical capacity should be
considered in the various jurisdictions that currently have limited assessment scientist
capacity.

2.3.3 Recommendations

The software introduced to workshop participants was successfully used in many in-
stances, but those participants would benefit if the software was maintained and possi-
bly further developed to include requested new routines and increased generality so that
an array of special cases could be included. Participants stated they would continue to
use the R packages, but were concerned that they would not be maintained into the fu-
ture. Being open source and freely available, this should not be a large problem but is
something that needs to be taken into account when planning the future of SAFS.

6 | Reducing the Number of Undefined Species



The capacity to conduct stock assessments varies greatly among the seven jurisdictions
visited. The number of analytically minded fisheries scientists in some jurisdictions is
now limited and the requirements of SAFS and the rising adoption of formal harvest
strategies increases the risk that the number of stock assessments required in a jurisdic-
tion could become unmanageable. Some jurisdictions have analysts on short term con-
tracts, which in itself is a risk for any on-going assessment requirements.

2.3.4 Keywords

catch-rates, CPUE, standardization, fisheries data, index of relative abundance, stock as-
sessment methods, data-poor methods, catch-MSY, surplus production models, biomass
dynamic models, age-structured production models, catch-curves.
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3 Introduction

3.1 Background

The Status of key Australian Fish Stocks initiative, SAFS, has now produced reports in
2012, 2014, and 2016 (Flood et al. 2012, 2014, SAFS 2016; SAFS, 2018). The process
of generating the 2018 reports for the species included is currently underway. Each year
of the initiative, the number of species and fisheries brought under the SAFS umbrella
has increased and 2018 and 2020 are expected to continue that trend. In fact, there is
now an explicit objective to increase the number of species and fisheries covered. Un-
fortunately, given that most of the more common and valuable commercial species have
already been included in SAFS, without some form of intervention, many of the new
species/stocks may fall immediately into the "undefined" category through many of
them being relatively minor low value fisheries with low, but not negligible, commer-
cial catches. Some species are primarily recreational and currently the data available for
characterizing such fisheries is limited or absent. This is unfortunate because such a po-
tential increase in the number of undefined species may suggest a lack of assessment
and management, and they lower the overall impression of the state of fisheries manage-
ment within Australia.

3.2 The Need for Data-Poor Stock Assessment Methods

In terms of being an explicit objective, the Fishery Research and Development Corpora-
tion’s ‘National Priority 1’ now has two objectives relating to the "undefined" category.
The first is that by 2020, the number of species covered in SAFS should increase to 200,
and the second is to reduce the percentage of stocks classified as undefined to less than
10%. Given that most new species and fisheries to be included in SAFS by 2020 will be
data-poor, the two targets of increasing the number to 200 and having less than 10% un-
defined will be in conflict and difficult to achieve.

An earlier project (2016-135; Smith and Dichmont, 2017) attempted to disarticulate the
undefined category into sub-groups (their objective 1) in an attempt to improve under-
standing concerning why fisheries remained undefined, and provide better guidance for
dealing with them (their objective 2). They also considered the related concept of a neg-
ligible fishery, again to provide a better description of such fisheries and how they
might be recognized.

Project 2016-135 considered the possibility of using data-poor versions of both bio-
mass- and fishing mortality-based assessments as a means of reducing the number of
undefined fisheries. However, it must be remembered that, with regard to SAFS status
reporting, the primary performance measure of interest is the state of the stock’s bio-
mass (it is not specified whether this should be spawning or mature biomass). Fishing
mortality estimates by themselves have limited value in status determination, although
when teamed with a classical analysis of yield-per-recruit, they can determine one form
of over-fishing. There remains debate as to whether to include over-fishing in a status
determination, and current (2018) arrangements focus primarily on the abundance of
each stock relative to the unfished state or proxies for the same

(http://www fish.gov.au/Summary/National-framework-for-status-reporting; SAFS,
2016, 2018).

Whatever the case, there remained a need, within each jurisdiction, to identify which of
the new species selected for inclusion in SAFS in 2018 or 2020 are likely to be classed
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as undefined and yet still be amenable to a data-poor assessment method. Once identi-
fied it might then be possible to find forms of stock assessment to assist with addressing
the problem of achieving both new objectives in the National Priority 1.

As noted in Smith and Dichmont (2017) “It is important to note that our finding that 15
(or 19) stocks may be assessable is a judgement call, based on our own experience and a
reading of the status reports combined with examining the catch trends. ... It will not be
possible to judge the quality of our evaluation until further assessments are undertaken
as part of phase 2 of the study to categorise undefined.”

Essentially, this means that when a fishery is data-limited, then one cannot confidently
determine whether a fishery can be successfully assessed, and a status determination
made, without conducting such an assessment. Simple stock assessments could be read-
ily applied in many instances, but what matters is whether they can validly draw conclu-
sions about the state of the stock and how that might be changing. This is an important
statement of the limits of rapid reviews. Rather than make judgement calls, what may be
possible is to identify what type of assessment might be applicable to whatever data is
available, but to reserve judgement until after the selected assessment method(s) have
been applied. This means that the first objective of this project (see below) could only
ever be partially achieved through identifying which species were to be included in the
2018 or 2020 SAFS reports and, if the fisheries data were available, asserting they may
potentially be amenable to assessment. In short, if fisheries data consisting of catches,
and maybe an index of relative abundance, were available, then determining whether
they could be assessed successfully or not could only be achieved by attempting to as-
sess them.

All species and fisheries identified as undefined are also likely to be classified as data-
poor or data-limited. Hence, any efforts made to determine a stock status for such fish-
eries would need to be able to operate with limited or poor-quality data. Fortunately,
there have been many recent developments with data-poor stock assessment methods
(Carruthers et al., 2014; Geromont and Butterworth, 2014; Haddon et al., 2015). The
SAFS initiative has also identified a need in all jurisdictions for staff training to develop
more local expertise in such new methods, and to transfer suitable custom software for
conducting such analyses. As a result, this present project (2017/102) was envisaged to
identify and produce suitable, relatively simple-to-use, software, and to provide training
workshops in each jurisdiction. In this way, the different jurisdictions would be given
the tools with which to attempt to achieve the two National Priority 1 targets.

3.3 Project Objectives

1. Of the species proposed for inclusion in the 2018 and 2020 SAFS reports, identify
those which may be deemed 'undefined' in each jurisdiction, and yet potentially
amenable to a data-poor stock assessment.

2. In each jurisdiction with potentially 'undefined' species, arrange a training workshop
for local staff using the candidate species from objective 1 to act as case studies for
the application of suitable data-poor stock assessment methods.

3. Include the 15 potentially assessable species from SAFS 2016, as identified in Phase
one of this project (FRDC Project 2016-135).

4. Ensure that at least the local scientists involved with SAFS assessments understand
how to use the illustrated data-poor assessment methods to develop a defensible
stock status report and, if required, associated management advice.

Reducing the Number of Undefined Species | 9



3.3.1 The Software Strategy

The original intention had been to be very flexible and to use a newly developed deci-
sion support tool FishPath (Dowling et al., 2016) to assist in identifying suitable stock
assessment techniques for the data available for each stock. A wide range of methods
have been developed to provide for the stock assessment of data-poor fisheries. An in-
complete list of such methods includes those that:

a) are ERA related methods, such as sustainability assessment for effects of fishing
(SAFE; Zhou et al., 2008) where suitable spatial data are available but little else
(area of overlap of the fishery with the species distribution is used as proxy for sus-
tainable);

b) are for truly data-poor situations, such as when catches are sporadic and effectively
nothing else is known about the fishery/stock. These can still develop estimates of
catch (or other) triggers, and if catches (or other performance indicators) remain be-
low these triggers, the stock can be assumed to be in a sustainable state (consistently
low catches are used as a proxy for sustainability);

c) relate to estimating fishing mortality (e.g. modified catch-curves), though these do
not provide a stock status in the SAFS sense, except where consistently low fishing
mortality is used as a proxy for sustainability (although this would require many
years of age composition data);

d) provide an index of relative abundance in the context of an empirical harvest strategy
(catch-rate gradients and the use of reference periods, for example, can still generate
management advice and determine stock status if the reference periods are used as a
proxy for sustainability);

e) include more sophisticated methods that can be termed model-assisted data-poor
stock assessments that are reliant only on a catch time series plus assumptions about
stock dynamics that are encapsulated within a simple model (assumes the model’s
dynamics approximates the real world dynamics).

f) include slightly more sophisticated models that use both catch and CPUE data with
either very simple models of dynamics or age-structured dynamics, plus many as-
sumptions.

Each of the data-poor approaches described in FishPath would be made in the context
of a weight-of-evidence argument in defence of the conclusions drawn. In each of the

options above that use a proxy for stock abundance, an extra weight-of-evidence argu-
ment would be needed to support the notion that the proposed proxy for sustainability
was valid and defensible.

Unfortunately, a training strategy based on picking among the wide range of assessment
options suggested within FishPath (Dowling et al., 2016) would have led to workshops
that would need to be relatively general and wide ranging so as to cover off on the full
range of methods available, many of which are aimed at truly data-poor species, many
empirical harvest control rules, and the common use of proxies rather than assessments
of stock dynamics. Given the time constraints required to be able to visit all jurisdic-
tions before the 2018 SAFS reports were due, and the need to produce as many results
as possible in such a brief time, it was belatedly decided to select a constrained array of
data-poor assessment methods that would explicitly meet the needs of the SAFS status
determination with a minimal use of difficult to defend proxies and fit in with as many
different Australian fisheries as possible.
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This direction was selected on the assumption that the simpler assessment methods (a —
d, above) were already easily available and relatively simple to understand and imple-
ment.

4 Methods

4.1 Species Selection and Data Preparation

The initial idea for meeting the proposal's first objective was to first conduct a charac-
terization of proposed new species to select the most suitable candidates for further ex-
ploration of assessment methods and eliminate ‘negligible’ and truly ‘undefined’ spe-
cies (no useful data) from further consideration. In early 2018, the notion of ‘negligible’
was still to be given a formal definition within the SAFS framework (there is one now
at the time of writing; SAF, 2018). The SAFS Advisory Committee, with members from
each jurisdiction, confirmed a list of new (and previously listed — see Objective 3) 'un-
defined' and potentially 'undefined' species to be considered.

There is now a working definition of ‘negligible’ species: negligible stock — indicates
that catches by all fisheries are so low as to be considered negligible, and that inade-
quate information exists upon which to base a status classification (SAFS, 2018). How-
ever, this is limited as an operational definition as it fails to clarify what constitutes ‘low
catches’ or what can be ‘considered negligible’. On the other hand, determining whether
there was sufficient adequate information on which to base a status classification is one
of the outputs of this current project for each stock considered.

After identifying which species might be considered for inclusion into the 2018 and
2020 SAFS reports and then be ‘undefined’, the intention was to try to identify which
might potentially be amenable to assessment. But of course, merely looking at columns
of data is not enough to determine such a thing. The only way of doing this is to have
local knowledge of what changes in the time-series of catches, and (ideally) an index of
relative abundance (e.g. CPUE), might mean in terms of changes in the fishery, man-
agement, and environment. Without such local knowledge the possibilities for misinter-
preting changes are manifold and the only way to determine whether a stock can be as-
sessed or not is to try to assess its current state.

Originally, after identifying which species might be considered for inclusion into the
2018 and 2020 SAFS reports and then be ‘undefined’, the intention was to try to iden-
tify which might potentially be amenable to assessment. But of course, merely looking
at columns of data is not enough to determine such a thing. The only way of doing this
is to have local knowledge of what changes in the time-series of catches and (ideally) an
index of relative abundance (e.g. CPUE) mean in terms of changes in the fishery, man-
agement, and environment. Without such local knowledge the possibilities for misinter-
preting changes are manifold and the only way to determine whether a stock can be as-
sessed or not is to try to assess its current state.

The original notion was that workshop dates would be organized in each jurisdiction
and then, following the initial characterization of the species/fisheries identified as po-
tentially undefined, the jurisdictions would collate all available data relating to those
species prior to the workshops and send it to the project team for screening. However,
without running the possible analyses, or even seeing the data in some cases, it is not
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possible to determine ahead of each analysis whether such data would be amenable to
facilitating a status determination.

Furthermore, some jurisdiction were only able to arrange to have their data available as
a whole in preparation for conducting the SAFS assessments. The expectation that the
different States and Territory would be able to extract only the data for their proposed
and potentially undefined species prior to the workshops turned out not to be a workable
strategy.

In addition, as became clear in the workshops, interpreting such data without the local
knowledge available in each jurisdiction concerning the development of each fishery
would most often lead to errors when applying assessment methods. For example, there
were many cases where catches dropped significantly due to management intervention
rather than an inability to catch the species. Knowing this or other details can lead to a
completely different interpretation of even a simple assessment’s outputs. The assess-
ment analyses and status determinations could only occur in and after the workshops
had introduced the participants to the data-poor methods available along with their as-
sumptions concerning the data put into them.

To alleviate this potential problem of having the available data ready for analyses in the
workshops, data templates, with instructions on their use, were designed to facilitate the
running of the software put together for the data-poor stock assessment workshops.
These templates were distributed to each jurisdiction and they were then expected to
prepare such data sets their subset of the list of the new, potentially undefined species
for inclusion in the upcoming SAFS reports.

4.2 Data-Poor Method Selection and Implementation

The workshops were originally designed to be two days long, and in such a limited time
it was necessary to pre-select a small number of data-poor stock assessment options to
introduce to the participants. There are many different potential methods available (Car-
ruthers et al., 2014; Geromont and Butterworth, 2014; Haddon et al., 2015) but rather
than review the current wide range, the focus remained on producing and introducing a
software tool that would be useful now and for continued use into the future. In addi-
tion, the methods needed to be relatively easily extensible in the future should that be
required (as seemed likely). Although the methods selected are all relatively simple
(catch-MSY, surplus production models, age-structured surplus production models, and
catch-curves), they still have an array of assumptions and limitations with which the
participants needed to be conversant. This, combined with the wish to apply these meth-
ods to as many local species as possible, as well as introduce a set of data exploration
methods and provide an introduction to the field of CPUE standardization, meant that
even with three days the workshops remained relatively intense.

4.3 The Software Developed

Software suitable for conducting the different analyses was developed and implemented
as an R package (R Core Team, 2018; RStudio, 2017; Haddon et al., 2018) called sim-
pleSA (for simple Stock Assessment). One advantage of using an R package is that it
embeds seamlessly into the broad statistical and computational ecosystem included in
the open source, freely available software R, and is relatively simple to use within an-
other free software system known as RStudio (R Core Team, 2018; RStudio, 2017). R
packages are essentially a way of encapsulating an array of software functions designed
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to do particular analyses. These can be combined in a wide variety of ways, allowing a
great deal of flexibility in what it is possible to complete. A key advantage of such a
system is that each function has its own help information, along with worked examples,
to clarify the use of the function. In addition, longer and more detailed documents,
known in R as “vignettes”, were produced for each of the major methods included. The
vignettes for the catch-MSY, the surplus production modelling, and the age-structured
surplus production modelling methods are given as appendices to this document, to il-
lustrate the detail it was possible to include concerning how to use the software, and
what to expect it to generate as output. The vignettes were important components of the
workshops as they include some details on how to interpret the outputs and raise issues
that require attention when using the methods. In addition, they can act as self-training
resources with new users, or refresher material for those with previous experience.

4.4 The Workshops

The intent, in line with objective 4, was for the P.I. supported by at least one member of
the project team, to attend each workshop, run through the ideas behind the use of data-
poor assessment methods, explain and illustrate the use of the methods included in the
simpleSA R package, and then assist the local assessment scientists to apply the meth-
ods to as many species’ data sets as possible in the time available, explaining how one
might defend such assessments in a weight-of-evidence argument to support a status de-
termination.

Seven workshops were run in seven different jurisdictions from March to June 2018
(Table 1).

Table 1. The start and end dates and number of attendees for the data-poor stock assess-
ment methods workshops in each jurisdiction.

Jurisdiction Start End Days Attendees
Northern Territory (Darwin) Tues 20th March  Wed 21st March 2 4
New South Wales (Port Stephens) Wed 28th March  Thu 29th March 2 17
Tasmania (Hobart) Thu 10th May Fri 11th May 2 10
Victoria (Queenscliff) Wed 16th May Fri 18th May 3 8
South Australia (Adelaide) Wed 23rd May Fri 25th May 3 10
Western Australia (Perth) Mon 28th May Wed 30th May 3 34
Queensland (Brisbane) Tue 5th June Thu 7th June 3 18

The first workshop in Darwin made it clear that the intention of presenting training in
data-poor stock assessment methods was rather too limited, in that it had missed the
point that many jurisdictions were also requesting assistance with how to approach ini-
tial data exploration and CPUE standardization. Such techniques are essential when se-
lecting and pre-processing data prior to the application of any stock assessment method
(not only data-poor methods).

In response to this need, a second open source R package called cede (for catch effort
and data exploration) was quickly put together, and, while parts were presented in Dar-
win, it was only formally presented for the first time in Port Stephens, NSW. Thereafter,
it proved useful in all other jurisdictions, although Tasmania already had procedures in
place for CPUE standardization and so it was not used extensively there (hence the two-
day workshop). The vignette associated with the cede package is also included as an ap-
pendix to this document.

After the initial workshops in the Northern Territory (Darwin) and New South Wales
(Port Stephens) it also became clear that two days was insufficient time to get through
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the required material and have sufficient time to allow the participants to begin to make
sufficient progress applying the methods to explore and analyse their own data sets con-
cerning their own species. After explaining this, Victoria, South Australia, Western
Australia and Queensland all agreed to three-day workshops. This proved to be a posi-
tive change, as it allowed many more species to be considered, and allowed more time
for the participants to assimilate the materials and apply the methods to their own spe-
cies. Instead of relatively rushed meetings, there was time for more detailed questions
from the participants concerning particular cases, which could then be used to illustrate
detailed points concerning the application of these data-poor methods to the whole
workshop. In the last four workshops, there was also time for a session where partici-
pants demonstrated to each other, and to managers, the application of the methods on
their local species. These brief presentations were of both those analyses that had
yielded informative assessments (a defensible SAFS status determination as well as on-
going management advice), but also examples demonstrating where the available data
were incapable of providing a valid assessment of the stock in question. The principle in
those cases was that if a stock were to remain undefined, the analyst would now be able
to defend and explain the reason for it not being able to be assessed.

The workshops required a large enough room with a data projector so that each partici-
pant had sufficient room for themselves and their computer. Otherwise, all that was re-
quired was for each participant to already have R and RStudio installed, along with the
simpleSA and cede packages. In fact, each visit to a different jurisdiction motivated
modifications to both packages to improve their flexibility and generality. Thus, quite
often newer versions of each package were made available at successive meetings.
These changes led to very little time being wasted because another advantage of R pack-
ages is that installing them takes very little time.

5 Results and Discussion

5.1 The R Packages
5.1.1 The cede package

It is now standard practice when using catch-per-unit-effort (CPUE) data in a stock as-
sessment to conduct a CPUE standardization on the raw data, so as to obtain yearly in-
dices of relative abundance that have had the influence of factors other than relative
stock size accounted for (assuming one has data relating to those factors). So if, for ex-
ample, fishers change their behaviour from fishing mostly in summer months when
CPUE is high, to fishing mostly in the winter months when CPUE is lower but prices
are much higher, the month of fishing can be taken into account and the apparent reduc-
tion in relative abundance can be corrected. In this way, the influence of such behav-
ioural changes can be removed and the assumption is made that what remains is closer
to any trend that exists in the relative abundance of the fish stock.

Workshop participants expressed interest on building on their existing knowledge of
how best to conduct a statistical standardisation of raw CPUE records. While the litera-
ture on CPUE standardization is very extensive, much of it is in the so-called grey liter-
ature, and there is no single agreed best approach for conducting such analyses. Thus,
instead of concentrating only on a single approach, a strategy of illustrating a range of
approaches and their differences to the workshops was adopted in the open source R
package cede (Haddon, 2018). Thus, no attempt at a complete treatment of standardiza-
tion techniques was attempted. Nevertheless, following that strategy led to comparisons
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being made between simple linear models, generalized linear models, and generalized
additive models (LMs, GLMs, and GAMs). Alternatives to these were also pointed to
but not illustrated due to limited time. It needs to be emphasized that what is provided in
cede is merely a simple introduction to a small sub-set of the methodologies available.
A full treatment would take a great deal of time. Nevertheless, the examples given illus-
trate that CPUE standardization need not be as complex to implement as many appear to
believe.

Prior to going through the alternative CPUE standardization methods, simple data ex-
ploration techniques were also discussed. These included different ways of tabulating
fisheries data. In particular, the catch by vessel view of each fishery can be enlightening
concerning changes that have occurred within each fishery. In addition, simple sketch
mapping of location data was illustrated as another rapid way of detecting periods of
major change within a fishery. Functions for plotting histograms of continuous variables
(such as the distributions of depth of catches, the distribution of CPUE through years,
and the distribution of effort), and how these variables changed from year to year were
also illustrated. Details of these materials are provided in the cede vignette in the appen-
dix.

Rather than implementing stock assessment methods directly, the cede package thus
contains functions that facilitate the exploration of whatever data is available, and also
illustrates some of the many alternative approaches to the standardization of CPUE data.
The utility functions include simple sketch mapping functions, and data summary and
plotting functions that aim to simplify understanding any spatial, and, particularly, tem-
poral heterogeneity in one’s data.

Many more details and examples of how to use the available functions are provided in
the appendix containing the vignettes, with the cede vignette being the first.

5.1.2 The simpleSA R package

An open source R package named simpleSA (as in “simple Stock Assessment”; Haddon
et al., 2018) was developed prior to the commencement of the FRDC contract. After the
first workshop, a second package named cede (as in “catch effort and data exploration™)
was also produced. As more was learnt about the array of State based fisheries by at-
tending each workshop, further developments and more detailed documentation were
developed and included in both the simpleSA and the cede packages, with most empha-
sis on simpleSA. The main package went through 14 different versions during the seven
different workshops. Now the workshops are completed, further developments aimed at
including some of the requests made during the workshops still are occurring during the
current project write-up (it is now up to version 0.1.18).

simpleSA was designed to contain three main stock assessment methods suitable for
Australian conditions plus other additional routines or functions for conducting analyses
of value in assessments. The three main methods considered were:

1. The catch-MSY methodology (Martell and Froese, 2013)
2. Surplus-production modelling (Prager, 1994, Haddon, 2011)
3. Age-structured production modelling (Punt, 1995)

In addition, some utility functions for conducting catch-curves are also included.
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The simpleSA package was designed to provide the analytical tools needed for an array
of workshops that were run around the country in the different jurisdictions (Table 1).

5.1.3 Catch-MSY

The catch-MSY method (Martell and Froese, 2013; Froese ef al., 2017) is just one of a
number of methods that only requires a time-series of catches from a fishery (Zhou et
al.,2017). Such limited requirements would appear to promise many opportunities for
assessing currently undefined stocks. However, as concluded by Carruthers et al.,
(2014):

For most life-histories, we found that methods that made use of only his-

torical catches often performed worse than maintaining current fishing

levels. Only those methods that dynamically accounted for changes in

abundance and/or depletion performed well at low stock sizes. Stock as-

sessments that make use of historical catch and effort data did not neces-

sarily out-perform simpler data-limited methods that made use of fewer

data. There is a high value of additional information regarding stock de-

pletion, historical fishing effort and current abundance when only catch

data are available. Carruthers et al., (2014, p 48)

In Australia, part of the reason for the poor performance of catch-only methods is that
catches are influenced by many factors other than abundance, including management
changes, and other causes of changes in fisher behaviour. As repeated numerous times
in the workshops, even though the catch-MSY can generate estimates of MSY, current
depletion and fishing mortality, and thus determine a stock status, because of its inher-
ent uncertainty it should be regarded as the formal stock assessment of last resort. There
are many circumstances where the outputs can appear to make sense but in reality are
invalid. For example, there was more than one species whose catch time-series had ex-
hibited primarily increasing catches up until the present day. The catch-MSY needs the
catch time-series to exhibit contrast through time (i.e. it should increase but also de-
crease). The method also makes the assumption that any on-going declines in catch are
due to earlier catches depleting the stock, and thus it becomes unable to maintain
catches as large as have been experienced in the past. Without significant and on-going
decreases in catch it cannot validly estimate any useful statistics. Many more details of
the use and limitations of this method are given in the appendix of the vignettes.

5.1.4 spm surplus production modelling

Surplus production modelling has a longer history, with the methods first being de-
scribed in detail by Schaefer (1954, 1957). It treats the stock biomass as an aggregated
mass and ignores details such as length or age-composition. It is a method that is well
covered in the literature (Polacheck et al., 1993; Prager, 1994; Haddon, 2011). It was
selected as a data-poor method as it only requires time-series of total catches and of an
index of relative abundance (most often CPUE in Australia). This is a model-assisted
data poor method and two versions of the modelled dynamics are available. The first
was by Schaefer (1954, 1957) and the second by Fox (1970, 1975). Full details and the
equations of the model options are provided in the appendix of the vignettes.

5.1.5 aspm age-structured production models
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Age-structured production models again require time-series of catches and CPUE (or
another index of relative abundance). However, they also require some biological infor-
mation such as estimates of natural mortality, age at maturity, length at age, weight at
length at age, and perhaps selectivity at age. Strategies for what to use if some of those
biological data requirements are missing or vague are discussed in the vignette.

Age-structure models have a long history in population dynamics (Lotka, 1925) but
were developed much further in the 1980s and 1990s so as to be fitted to catch and
CPUE data, combined with biological information concerning growth, maturity, selec-
tivity and recruitment (Fournier and Archibald, 1982; De La Mare, 1989; Francis, 1992;
Punt 1994, Punt et al, 1995). However, with the on-going development of such models
to include age- and length-composition data (and other data sources) the simpler age-
structured production models became far less used. With their limited data require-
ments, these constitute the most sophisticated ‘data-limited’ assessment models in-
cluded into simpleSA. Once again, full details and the equations of the model options
are provided in the appendix of the vignettes.

Both R packages are freely available. Currently they are available in a shared DropBox
folder although this will likely change to a publicly open BitBucket directory hosted by
CSIRO. DropBox is not necessarily accepted by a number of the State fishery organisa-
tions, so the BitBucket option may be simpler for users to work with. Eventually at least
simpleSA may be put onto the CRAN (Comprehensive R Archive Network) — which,
along with GitHub, is the standard repository for R packages. Recently, a branch of sim-
pleSA called datapoorSA has been developed somewhat further (with the addition of
age-structured stock reduction analysis, useful for exploring the effects of future catches
on exploratory fisheries). This is freely available for installation from
https://github.com/haddonm/datalowSA should there be issues with obtaining the
software elsewhere.

5.2 The Workshops

Two of the seven workshops occurred in March, four in May, and the final one at the
start of June (Table 1).

The number of participants in each workshop ranged from five to thirty-four partici-
pants, although in each case, some people only attended for part of each workshop. This
was especially the case for fisheries managers interested in hearing the introductory ma-
terial but less interested in the more technical details concerned with conducting the
stock assessments and interpreting their outputs.

Both the Darwin- and Hobart-based workshops were challenged by extreme weather
events, with Cyclone Marcus occurring the weekend before the workshop occurred in
Darwin, and very heavy rain with associated flooding and disruptions in Hobart. Fortu-
nately, in both locations the venues available remained open and the workshops could
continue, albeit with somewhat reduced numbers attending. The Darwin workshop was
most heavily impacted as the Fisheries offices were closed and their computer servers
were down, so that the local fisheries data available in the workshop was restricted to
only two species. Assistance was provided by the Darwin Museum and the Charles Dar-
win University who each made space available for the presentation and running of the
workshop. That workshop would have failed had they not been so generous with their
space.

5.3 Different issues in Different Jurisdictions
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5.3.1 Unrepresentative Data

Although the different jurisdictions shared many of the same problems with their fisher-
ies data in general, they also have issues idiosyncratic to the assessments of their own
particular data-poor fisheries. In the Northern Territory, for example, there appear to be
very many relatively local but distinct biological stocks of the same species across the
jurisdiction. One important cause of fisheries being data-poor is the occurrence of
marked spatial heterogeneity, making it very difficult to obtained representative data.
This is very apparent in the Northern Territory, although local practitioners have yet to
explore what happens when such small-scale stocks are combined.

Western Australia and Queensland have what might appear to be the opposite problem,
which is that they have small fisheries spread over enormously extensive stretches of

coastline. Once again, under such circumstances, obtaining representative data is very
difficult.

In Victoria and New South Wales, (and Western Australia) there is the issue of large
proportions of the total catch of commercially important species being taken by recrea-
tional fishers. In the appendices, under the catch-MSY methodology there is a section
on “Significant Unknown Recreational Catches” (section 14.4 on page 71), which dis-
cusses the effect of unknown recreational catches on the outputs from the data poor
methods. Fortunately, the estimate of stock depletion does not appear to be adversely af-
fected by an unknown proportion of the total catch being taken by recreational fishers.
These results have also been demonstrated for more sophisticated stock assessments
(Rudd and Branch 2017). That remains a valid conclusion even if there is a relatively
strong trend in the proportion of recreational catches through time.

5.3.2 The Assessment of Minor Fisheries

Such issues also raise the question of what constitutes a negligible or minor fishery
(negligible was undefined at the time of the workshops) and led to much discussion re-
garding the subject. This was important in helping to understand what was required be-
fore even a simple data-=poor assessment method could be validly applied. An annual
fishery of five to 20 tonnes spread over 20 - 50km of coast may be sufficiently focussed
as to allow for the collection of representative data and a stock assessment that would
suffice to determine a stock’s status. However, if catches drop below that level in vari-
ous years, the total number of records generated in each of those years may be so low as
to preclude them from being representative of anything about a fish stock. For example,
if there are less than 50 catch records, there could be less than a record a week, and the
records that are available are likely to be clumped in time, increasing the potential for
bias. While such data, when summarized into yearly totals or averages, may be accepted
by an assessment method, because of the risk of bias in the samples (through them be-
ing unrepresentative) any output from such an analysis seems likely to be invalid. The
difficulty of knowing when there was bias is why this increases the risk of drawing in-
correct inferences. This was the primary reason for developing the data exploration part
of cede. This problem would be exacerbated if, for example, a five or more tonne small
fishery was spread over 1000km instead of only 50km. Extending those low catches
over 20 times (or more) the coastline would imply a very low density of catches over an
enormous area, making data collection both difficult and unrepresentative. The concept
of a negligible or un-assessible fishery perhaps needs to be articulated further, so as to
account for the density of a fishery as a major factor when determining its scale.

It is certainly the case that there exist a number of example fisheries in many of the ju-
risdictions where the data available are inadequate to provide for a status determination.
This is at least part of what it takes for a fishery to be accepted as negligible. It would
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appear that the intent of this clause in the definition of negligible is that the data inade-
quacy must stem from the lack of suitable data rather than that it simply not be suitable
for determining a status. Thus, just because a time-series of data may lack contrast and
hence provide little information about stock size changes through time, is not sufficient
to claim the fishery to be negligible. On the other hand, if the fishery has been short
lived, or is still developing and the catches to date have been relatively minor, then a
case could be made that such catches as there had been were insufficient to make an ap-
parent impact on the stock dynamics, and hence the fishery could be claimed to be neg-
ligible (whereas what is really intended is that it is un-assessible). In addition to the no-
tion of a negligible species there may be value in exploring the notion of an un-assessi-
ble species. The idea that all species should be assessible needs to be explicitly recog-
nized as being incorrect.

5.3.3 The Weight-of-Evidence Context

Each of the data-poor methods can produce an assessment, but in each case the results
output by each set of method-related functions (see appendix) still need to be placed in
the context of a weight-of evidence argument. By their nature, data-poor assessment
methods are inherently uncertain, especially those that only use catch history data. Us-
ing the catch-MSY does not involve fitting any parameters; instead, it relies on con-
straints placed upon what are deemed to be plausible stock biomass trajectories in the
underlying stock reduction analyses.

What this means is that for an assessment to be defensible, ideally, it is necessary to
conduct an array of sensitivity analyses that change the various inputs to each model to
determine how sensitive the assessment is to the assumptions underlying each method.
For example, with the catch-MSY method, one should examine the effect of varying the
assumed initial and final depletion level, or the effect of setting an upper limit on the
plausible annual harvest rates. For the surplus production models, sensitivity analyses
might involve comparing the outputs from using the Schaefer model of dynamics with
the dynamics as described by the Fox (1970, 1975) model (Haddon, 2011; see appen-
dix). In addition, when fitting parameters to either a surplus-production model or an
age-structured production model, one should also test the robustness of the solution.
This determines whether the solution is merely one of many local minima or has the ap-
pearance of a global minima. Each such approach to testing the validity and robustness
of the model fitted should provide insights into the robustness of, and confidence in, the
model outcomes.

5.3.4 The Characterization of Uncertainty

Finally, it is necessary to characterize the uncertainty contained within an assessment.
For the catch-MSY the range of plausible parameter combinations (giving rise to trajec-
tories which are consistent with the constraints imposed) can be interpreted as biomass
trajectories or depletion trajectories. By summarizing across these it is possible to char-
acterize how uncertain the result are. In projections, however, this uncertainty leads to a
need for relatively low catches to be taken, for the proportion of trajectories less than
the limit reference point to begin to decrease. The catch-MSY is, in this way, naturally
conservative, although such methods are often biased in a non-conservative direction.

With the surplus-production and age-structured surplus production models, bootstrap
functions are provided that can be used to generate percentile confidence intervals
around mean estimates of depletion, MSY, biomass trajectories, and any other model
outputs. Each of these should assist in the weight-of-evidence argument concerning the
stock status conclusion from each assessment.

5.4 Lessons Learned
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5.4.1 Project Limitations

This project was designed to expand knowledge of data-poor stock assessment methods
(and provide associated software) to jurisdictions undertaking increased assessment ac-
tivity with data-poor fisheries. It did this is a relatively short timeframe. What success it
has had reflects the changing needs of analytical capacity in fisheries, particularly for
data-limited fisheries. This need has increased in recent years due to the increased pres-
sure for public accountability concerning the sustainability of current catches, which re-
quires that organisations tasked with assessing and managing natural marine resources
do so in a defensible manner.

Strategically, this project was an important initiative on the part of the different fisheries
jurisdictions, the SAFS advisory committee, and the FRDC. On the other hand, its con-
strained timeline meant that while it managed to achieve its intent, a longer term, more
strategic approach could have achieved a good deal more. With hind-sight, it would
have been beneficial had the workshop team, or even an individual, remained in each
jurisdiction for another day or so to directly assist individuals as they came to grips with
their own species. The limited duration of each workshop meant that, in all cases, taking
individuals through to completion of their assessments was rare or extremely limited.

The reality of Australian fisheries is that with such a large country, containing so many
low-value relative to high-value fisheries, the inefficiencies and low cost-effectiveness
precludes maintaining a high level training facility for fisheries stock assessment. Yet
the need for stock assessment capacity building in Australia is an on-going issue, which,
given the expected exit of the older generation of fisheries scientists that is currently un-
derway, is likely to get worse rather than better. Unfortunately, no simple solution pre-
sents itself but given the on-going need to assess low value, data-limited stocks this
problem of analytical capacity will also be on-going.

5.4.2 Possibilities for Automation

It is possible to almost completely automate the use of empirical harvest control rules
within empirical harvest strategies used to generate management advice. This is because
an empirical harvest control rule should be able to have the fishery performance meas-
ure (CPUE, mean length, or whatever measure is being used) input to the control rule,
and management advice should then be produced without intervention. The Tier 4 har-
vest control rule (Little ef al., 2011; Haddon, 2014) within the SESSF is an example of
such an analysis. Such harvest control rules can have many options (different limits and
targets, with discards or without, alternative reference periods) and so automation may
not always be simple or possible if new assessment options are requested, but for many
fisheries, once they are set up, little would need to change.

On the other hand, as soon as an attempt is made to account for and understand a fished
stock’s real world dynamics using a formal model, then automation of the assessment
process becomes impossible. Such an understanding of the dynamics would be required
if one wanted to project those dynamics forward when generating management advice;
for example, as to the implications of different levels of effort or catch. To understand
the implied dynamics given by an assessment’s outputs requires local knowledge of the
operation of a fishery and of the biology of the species involved.

There appears to be current interest being expressed in Australia to try to simplify and
automate stock assessments. However, for the three main methods included in sim-
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pleSA, such automation is not possible while still ensuring a valid and defensible as-
sessment each time. The use of the R functions in simpleSA (and from elsewhere) can
certainly simplify and speed up the assessment process, making the analyst more effi-
cient, but because there is a need to interpret the data going into the analysis and the im-
plied dynamics of different stocks to make sensible management advice, this requires an
interactive and responsive approach that reacts to how each stage of an assessment pro-
ceeds. Even once an assessment is set up and only needs to be updated each agreed as-
sessment time-step by including the most recent data, the additional data can alter the
stability properties of each model, so care needs to be taken to test such updates for
changes in the stability and robustness of the assessment outputs. Such interpretative
processes cannot yet be automated.

It should nevertheless be possible to automate data extraction, although the data charac-
terization, subsequent data selection and possible CPUE standardization should still re-
quire an adaptive responsiveness to how each analysis proceeds.

Wherever sensitivity analyses or the characterization of uncertainty is required this
should also need to proceed in an interactive, heuristic, and interpretive fashion. Repeat-
edly in the workshops it became clear that, without local knowledge of each fishery and
the resulting statistics, it would not be possible to conduct a valid analysis of most data
sets.

It should be noted that even the simplest of stock assessments that attempt to model a
stock’s dynamics cannot be successfully automated. All the data poor methods are in-
trinsically less certain than more sophisticated methods that can include more data from
the fishery. The increased uncertainty obtained with data-poor assessments means that,
to produce a defensible assessment, it is best to conduct an array of sensitivity tests to
examine the effect of selecting different initial conditions or different initial parameters.
In this way even the data-poor assessments can take an appreciable time to conduct for
each species, and invariably need to be conducted in an interactive manner.

5.4.3 The Utility of the R Packages

The workshop participants appear to find the R packages a convenient vehicle for the
transmission of these stock assessment approaches. The R packages include built-in
help for each function (usually with a worked example).One can see the structure of
each function (it is open source software), and more detailed vignettes were written con-
taining expositions on the use of the methods and how to string the syntax together in
worked examples (see the appendices). Such packages mean that after attending an in-
troductory course, participants should be able to return to the packages at any time and
remind themselves of how to use the methods and quickly make sense of R scripts they
may have saved one or more years before. In this way the R packages will hopefully be
utilised into the future.

The simpleSA package was first put together before the project formally started and as
such was relatively limited in its scope. While it was improved through the period of
giving the workshops and further developments are still occurring, there were an array
of extra requests for analytical options to be added to the base package. Some jurisdic-
tions were also concerned about whether the R packages would be receiving on-going
support and maintenance. Some kind of on-going support would mean that if anyone
had an issue they wanted addressed within the software, they would have someone to
approach. Such support could even take the form of some organisation taking on the re-
sponsibility of receiving such requests for aid or modifications, and then proposed
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changes could be considered by the SAFS advisory committee and actioned if deemed
of general interest.

One reason for choosing R as the language for programming the different methods was
that R is free to everyone, but also that the resulting packages are open source. What
this means is that if one group or person ceases to actively maintain a package it is not
impossible for others to pick up that task. All of the code is available within the package
itself, (in fact, it is all only fully available in the .tar.gz version of simpleSA because
that version includes the C++ libraries added to speed up the catch-MSY analyses). Oth-
erwise, the code for each function is easily available, and each is easily modified should
the need arise, and someone has the coding capacity.

6 Implications

An array of currently and potentially undefined species were successfully assessed in a
manner that permitted a defensible stock status to be determined during these work-
shops. The enthusiasm with which the stock assessment tools were received gave an in-
dication of the degree of need out among the different jurisdictions. simpleSA and cede
are already being used for other stock assessments and within the SAFS process this
year. By providing relatively simple-to-use tools with which Australian assessment sci-
entists can conduct their stock assessments, processes within each jurisdiction now have
a great chance of becoming more transparent, and, importantly, repeatable, and thus,
more defensible.

7 Recommendations

7.1.1 Further Developments

During the workshops an array of requests for extra features were made. One example
was to have the capacity to include more than one time-series of index of relative abun-
dance data included in the surplus production and age-structured surplus production
models. Much of this particular change has been completed but requires some final im-
plementation in the code and, importantly, detailed documentation, although when done
in detail that can take longer than it takes to program the changes.

Any future developments should always require adequate and sufficient documentation
so that the package remains a standalone output capable of being used by anyone who
knows how to use R.

8 Extension and Adoption

This project, its products, and outcomes were widely disseminated across the various ju-
risdictions within Australia through the workshops, which were a major deliverable of
the project. Each workshop entailed an introductory lecture, which many local fishery
managers also attended in many jurisdictions. Given the software produced is open
source and documented in more than one way, its use is expected to expand and con-
tinue into the future. It is already being used in the seven jurisdictions visited and appli-
cations have also been run on some relatively data poor Commonwealth fisheries (e.g.
Western Orange Roughy). The hope is that improvements will be suggested and imple-
mented as more and more example stock assessments are attempted.

22 | Reducing the Number of Undefined Species



9 Project Material Developed

Two R packages, simpleSA and cede were partially developed and improved during the
course of this project. They are publicly available for download at the following link:

https://www.dropbox.com/ sh/
jkwldvgkgw8Iw7u/AABmMMI95tPWqj Yty V5ZXxSbgEa?dl=0

Included in the public DropBox are further example data sets and related materials. The
software will also be available in the near future for download from the CSIRO Data ac-
cess portal by searching for simpleSA and cede at the following link:

https://data.csiro.au/collections/

Recently, a branch of simpleSA called datapoorSA has been developed somewhat fur-
ther (with the addition of age-structured stock reduction analysis, useful for exploring
the effects of future catches on exploratory fisheries). This is freely available for instal-
lation from https://github.com/haddonm/datalowSA should there be issues with ob-
taining the software elsewhere. A branch of cede is also available on github from
https://github.com/haddonm/cede.

10 Appendix 1: Staff

Paul Burch: CSIRO Oceans and Atmosphere, Hobart
Natalie Dowling: CSIRO Oceans and Atmosphere, Hobart
Rich Little: CSIRO Oceans and Atmosphere, Hobart
Malcolm Haddon: CSIRO Oceans and Atmosphere, Hobart
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11 Appendix 2: Feedback from participants of the
training workshop on data-poor stock assessment
methods

11.1 Background:

National Priority one of the FRDC RD&E Plan 2015-20 is ensure that “Australian fish-
ing and aquaculture products are sustainable and acknowledged to be so”. One of the
three targets to be met against this priority is to “Reduce the number of species classi-
fied as ‘undefined’ from the current figure (SAFS 2014) of approximately 30 per cent to
less than 10 per cent.

In order to help deliver against this target, the FRDC funded seven workshops—one in
each jurisdiction around Australia—(from March to June 2018) to increase knowledge
on the low information stock assessment methods, and to provide guidance on use of in-
dicators in the absence of a stock assessment.

The overarching goal of the workshops was to increase stock assessment skills in each
jurisdiction to reduce the number of undefined species in the SAFS reports.

Specific aims were:

1. Of the species proposed for inclusion in the 2018 and 2020 SAFS reports, iden-
tify those which may be deemed 'undefined' in each jurisdiction and yet potentially ame-
nable to a data-poor stock assessment.

2. In each jurisdiction with potentially 'undefined' species, arrange a training work-
shop for local staff using the candidate species from objective 1 to act as case studies for
the application of suitable data-poor stock assessment methods.

3. Include the 15 potentially assessable species from SAFS 2016, as identified in
Phase one of this project (FRDC Project 2016-135).

4. Ensure that at least the local scientists involved with SAFS assessments under-
stand how to use the illustrated data-poor assessment methods to develop a defensible
stock status report and, if required, associated management advice.

The number of people that attended the seven workshops ranged from four in the North-
ern Territory to over 25 in Western Australia (Table 1). In some jurisdictions a mixture
of scientists and fisheries managers attended while other in jurisdictions only scientists
attended.

To assist the project PI (Dr Malcolm Haddon) in running each workshop, one or two ad-
ditional CSIRO staff members attended to help participants in applying the assessment
methods to their own stocks.
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Table 1'. The start and end dates and number of attendees for the data-poor stock as-
sessment methods workshops in each jurisdiction.

Jurisdiction Start End Days Attendees
Northern Territory (Darwin) Tues 20th March  Wed 21st March 2 4
New South Wales (Port Stephens) Wed 28th March  Thu 29th March 2 17
Tasmania (Hobart) Thu 10th May Fri 11th May 2 10
Victoria (Queenscliff) Wed 16th May Fri 18th May 3 8
South Australia (Adelaide) Wed 23rd May Fri 25th May 3 10
Western Australia (Perth) Mon 28th May Wed 30th May 3 34
Queensland (Brisbane) Tue 5th June Thu 7th June 3 18

11.2 Training materials were developed:

Two open source R packages simpleSA and cede were developed for and used during
the workshops:

cede contained software to assist with data exploration (simple mapping and data sum-
mary functions) and with illustrating and comparing different catch-effort standardiza-
tion techniques.

simpleSA contained three main data-poor stock assessment techniques (catch-MSY,
surplus-production modelling, and age-structured surplus production modelling) plus
functions to assist with catch-curve analysis.

11.3 Collective feedback from the jurisdictions:

During the first workshop in the Northern Territory it was identified that there was a
need for additional course material to assist participants with data exploration and catch-
effort standardization. The course material continued to be developed between the
workshops in the Northern Territory, New South Wales and Tasmania, that ran for two
days. This allowed the workshops to be expanded to fill three days in the other four ju-
risdictions. The addition of a third day allowed more time for data exploration and an
introduction to catch-effort standardization using the cede package.

The timing of the workshops suited most of jurisdictions well and the methods and soft-
ware from the workshops were applied in the 2018 SAFS process.

11.3.1 What were the benefits of the workshops to your team?

The feedback from the jurisdictions about the benefits of the workshops was generally
positive. Those who attended felt that the workshop provided a foundation in the theory
and application of data poor assessment methods. Along with the software, worked ex-
amples, termed vignettes, were provided to demonstrate to participants how to apply the
models to real data. The vignettes are included as appendices in the project final report.
Participants also benefited from the availability of workshop staff to assist with the ap-
plication of the assessment methods to their own stocks.

1Table 1 is repeated from page 13.
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The workshop highlighted the need for individual assessment for each species, and that
automation of these types of assessment is not appropriate. It was noted that it is im-
portant to understand the assumptions of each assessment method, particularly catch
MSY which is sensitive management induced changes in catches and uncertainty in rec-
reational catches. They also identified the need to undertake catch-effort standardization
rather than use raw catch per unit effort in assessment. Participants in some jurisdic-
tions, felt that it would be desirable for additional statistical support to be available to
assist fisheries scientists with catch-effort standardization.

Participants generally found the software easy to learn how to use, however those with
prior experience using the R software benefited more than non-R users. The open-
source nature of the software allowed staff using these methods to better understand and
adapt methods as required. The graphics used to visualise the data and the model out-
puts were a highlight for many participants.

Most participants felt that the workshop improved their ability to assess stock status and
to critically evaluate different evidence sources. The workshops provided the oppor-
tunity for capacity building, particularly for the next generation of fisheries scientists.
Summarised feedback from workshop coordinators in each jurisdiction is provide be-
low.

11.3.2 Are you interested in further workshops for your teams?

All jurisdictions expressed a desire for future workshops on assessment methods to held
in conjunction with the SAFS process. Different jurisdictions had slightly different pri-
orities in the material that they wanted to be covered in future workshops. Some juris-
dictions considered that a short refresher targeted to staff likely to apply these methods
would be sufficient, while other jurisdictions expressed a desire for training that goes
beyond data-poor methods to include data-moderate assessment, and perhaps even inte-
grated assessment methods such as Stock Synthesis. It was also noted that there may be
additional methods available in time for the 2020 SAFS assessments and that the utility
of these methods could be considered when planning future workshops.

11.3.3 What could have been done better to achieve project out-
comes?

There was general agreement that the workshops were a useful addition to the 2018
SAFS process, providing the jurisdictions with assessment methods to that could be ap-
plied to previously unassessed stocks.

An area where there could be improvement is to better promote a consistent interpreta-
tion of the SAFS framework across jurisdictions, so that SAFS outcomes can be
achieved in a standardised manner around Australia. For cross-jurisdictional stocks a
desire was also expressed for meetings between jurisdictions.

One problem that was common among jurisdictions was stocks with high proportions of
recreational harvest for which the catch history is largely unknown. The catch MSY
method assumes that the total annual catch is known, however, estimates of recreational
catches from surveys are not available for most years and when available are usually
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highly uncertain. It would be useful if future SAFS training could include some focus
on how to assess with stocks where there a high proportion of the harvest is taken by the
recreational sector.

Some jurisdictions expressed the need for additional statistical support to assist with
both with catch-effort standardization and the application and interpretation of the as-
sessment methods. There was also the desire from some jurisdictions for opportunity for
more time both during and after the workshops to allow greater exploration of data and
review of candidate assessments. Of the stocks classified as undefined in SAFS 2014,
stock status was determined for 65%. This was partly achieved through FRDC funded
workshops in each jurisdiction on low information stock assessment methods, and also
guidance provided on use of indicators in the absence of a stock assessment.
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13 Appendices

13.1 Introduction

The vignettes from the cede (“catch effort and data exploration”) package, plus the
catch-MSY method, the spm (surplus production model) method, and the aspm (age-
structure surplus production model) method from the simpleSA (“simple stock assess-
ment”) package are listed in sequence. The only change here relative to the originals in
the R packages is that figure numbers have been made sequential. In addition, the order
of the text, figures, and code, may have been altered slightly to avoid the occurrence of
large gaps in the text.

The table of contents has been combined at the front, and the references combined at the
rear. Tables do not generally have legends, and some figures form part of the flow of the
discussion and do not always have legends. The legend numbers in the appendices re-
flect those in the vignettes not in the general flow of the text of this document.

The aims of the vignettes are to introduce the methods, and illustrate how they can be
used.
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14 cede - Catch Effort and Data Exploration

When working with relatively minor commercial species, the data available is typically
less comprehensive than for species that might be considered to be the economic drivers
of a fishery. Nevertheless, data exploration, perhaps through plotting up different varia-
bles and how they might change through the years, can often be informative about
changes in any fishery for a particular species. The cede R package (Catch Effort and
Data Exploration) includes an array of functions that should assist with such data explo-
ration. If a species’ fishery includes CPUE data then plots of the distribution of catches,
effort, and CPUE (perhaps as Log(CPUE)) can be helpful in the interpretation of such
CPUE, especially if there is sufficient data to allow for CPUE standardization. cede now
includes various functions that can also assist with CPUE standardization. All these
functions are described below, with examples of their use.

There should be no expectation that the functions to be used in the standardization of
CPUE constitute anything like a complete treatment. This vignette only provides a very
brief introduction or pointer to get people started. There are many aspects not consid-
ered (e.g. how to treat, or whether to include, zeros). This vignette remains a draft and if
you find errors, omissions, or obscurities do please let me know (see DESCRIPTION
for email address). In addition, if you wish to reference this package when writing your
SAFS assessment, you can obtain one by typing citation(“cede") into the console,
which will give you the latest version.

14.1 Data Exploration

The main data set included with cede is called sps and contains typical fisheries data
from a scalefish fishery. It is there mainly to assist with learning the operation of the
different functions. Generally it would be better to use your own data but if you con-
sider the sps data set you will gain an understanding of a typical format. Check the de-
scription of the sps data set using "?sps

data(sps)

kable(sps[1:6,],digits=c(90,0,0,0,3,3,0,0,2,0))

Year Month Vessel catch kg Long Lat Depth DayNight Effort Zone

2004 4 1 220 145.117 -43.067 125 N 4.00 1
2004 4 1 280 145.250 -43.233 130 M 3.66 1
2004 4 1 180 145.150 -43.083 115 D 3.50 1
2004 4 1 70 145.233 -43.217 120 N 4.75 1
2004 4 1 200 145.100 -43.033 120 M 4.75 1
2004 4 1 100 145.767 -43.683 130 M 2.01 1
properties(sps)
## Index isNA Unique Class Min Max  Example
## Year 1 (%] 12 numeric 2003.00000 2014.00 2004
## Month 2 0 12 numeric 1.00000 12.00 4
## Vessel 3 0 23 numeric 1.00000 27.00 1
## catch kg 4 0 442  numeric 1.00000 4500.00 220
## Long 5 0 447  numeric 144.11667 146.30 145.1167
## Lat 6 0 512 numeric -45.83333 -40.75 -43.06667
## Depth 7 0 191 numeric 2.00000 366.00 125
## DayNight 8 0 3 character 0.00000 0.00 N
## Effort 9 0 377 numeric 0.16000 9.66 4
## Zone 10 0 3  numeric 1.00000 3.00 1
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The properties function categorizes the contents of a data.frame, counting the number of
NAs in each variable, if any, listing their class, their minimum and maximum (if appli-
cable) and finally printing an example of the contents. I find this function quite useful
when beginning to use a different data.frame. Generally I refer to variables within a
data.frame by their names so it is important to know if they are capitalized or not as

well as knowing exactly which variables are present.

Once we have our data available for analysis it is often a good idea to find ways to sum-
marize how they vary relative to one another. With fisheries data it is common to want
to know how different factors influence the total catch and whether these vary by year.
Typically one might use the R function tapply to conduct such examinations. To sim-
plify this use one can use the tapsum function from within cede.

The seasonality of catches can be indicative of the typical behaviour of the fishery
within a year. The following tapsum command provides the total catch by year and
month:

kable(tapsum(sps, "catch_kg","Year","Month"),digits=c(1,1,1,1,1,1,1,1,1
)111)1))

1 2 3 4 5 6 7 8 9 10 11 12
2003 33.6 260 373 304 147 37 48 116 145 51 64 338
2004 73.7 66.2 527 100.8 559 183 127 228 84 94 30.1 21.6
2005 1149 839 350 374 73 151 118 6.1 41 133 139 36.0
2006 79.8 53.1 458 274 03 18 28 31 04 51 92 557
2007 31.8 60.1 273 1.5 136 46 25 08 03 02 7.0 206
2008 763 21.6 33.0 55 21 07 13 05 02 32 64 141
2009 16.7 254 95 25 24 07 06 20 07 67 182 112
2010 409 225 114 20 03 05 18 23 14 16 07 44
2011 25.0 38.6 10.6 63 27 32 15 27 21 22 51 235
2012 353 494 249 64 29 26 51 16 16 34 44 131
2013 473 488 410 110 171 03 23 05 13 66 63 64
2014 11.0 103 215 121 64 110 81 155 39 38 266 494

Here we have examined the catch by zone, where the 3 zones are in sequence along the
coast (or they would be if this was a real fisheries data).

tapsum(sps, "catch_kg","Year","Zone")

H#H# 1 2 3
## 2003 94.6190 98.06400 29.197
## 2004 215.2230 210.47900 46.804
## 2005 112.7670 216.02300 50.079
## 2006 82.4370 120.29100 81.663
## 2007 42.7560 91.46240 36.161
## 2008 51.9840 93.81300 19.020
## 2009 33.9920 33.62310 28.931
## 2010 11.8070 18.71400 59.165
## 2011 37.1840 79.41725 6.892
## 2012 55.2330 65.35600 30.263
## 2013 50.3015 83.81800 54.848
## 2014 46.6240 81.44250 51.455
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We are not limited to summarizing catch but, for example, could also look at the distri-
bution of effort as total number of hours (note the change to the default value of “div”
so that the total number of hours is not divided by 1000). By pointing the function call
to a new object one can then plot the results. Tables of numbers are very informative but
sometimes it is much easier to gain a visual impression of patterns in one’s data by plot-
ting temporal trends, and relative frequencies.

effbyyr <- tapsum(sps,"Effort"”,"Year","Zone",div=1.0)
effbyyr

H#H# 1 2 3
## 2003 2473.36 1998.01 724.13
## 2004 3558.32 2541.13 709.58
## 2005 2095.92 2750.78 639.01
## 2006 2001.37 2055.52 941.46
## 2007 1192.94 1279.45 481.96
## 2008 1426.79 1072.82 495.61
## 2009 877.81 739.13 488.86
## 2010 471.06 493.39 691.16
## 2011 855.54 1185.06 293.93
## 2012 1278.07 981.93 508.41
## 2013 1323.23 960.89 816.47
## 2014 1036.63 1222.02 681.42

# plotprep(width=7,height=4.5)

ymax <- max(effbyyr,na.rm=TRUE)

label <- colnames(effbyyr)

yrs <- as.numeric(rownames(effbyyr))

par(mfrow=c(1,1),mai=c(0.45,0.45,0.05,0.05))

par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)

plot(yrs,effbyyr[,label[1]],type="1",1wd=2,col=1,ylim=c(0,ymax),
ylab="Total Effort (Hours) by Zone per Year",xlab="",
panel.first=grid())

lines(yrs,effbyyr[,label[2]],1wd=2,c0l=2)

lines(yrs,effbyyr[,label[3]],lwd=2,co0l=3)

legend("topright",label,col=c(1,2,3),1lwd=3,bty="n",cex=1.25)
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Figure 1. A plot of total effort by zone, showing that a visual illustration can often more
easily highlight changes in a fishery’s dynamics.
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DayNight is another factor that can have large consequences for catches and catch rates.
tapsum(sps, "catch_kg","Year", "DayNight")

H#H# D M N
## 2003 80.54300 81.3930 59.9440
## 2004 226.67300 153.7910 92.0420
## 2005 157.21800 133.5640 88.0870
## 2006 127.24900 104.6120 52.5300
## 2007 72.13700 61.5024 36.7400
## 2008 75.67900 56.9030 32.2350
## 2009 35.10710 34.7680 26.6710
## 2010 39.00500 25.8060 24.8750
## 2011 46.14625 44.6535 32.6935
## 2012 52.92000 59.4950 38.4370
## 2013 72.16750 66.8170 49.9830
## 2014 52.40750 64.0420 63.0720

One of the most influential factors within each fishery is the vessel doing the catching.

Often this is also a reflection of the skipper of the vessel as well as the relative perfor-
mance of the boat itself. Nevertheless, it is often the case the vessel name is the only in-
formation available about the vessel’s relative fishing power. It is possible to pay spe-
cial attention to catch-per-vessel, although the following analysis is more general than
that: it provides a sub-total of catch by vessel number and year, and can be applied to,
for example, catch-by-month relative to Depth Category.

cbv <- tapsum(sps, "catch_kg","Vessel","Year") # often more vessels tha
n years

total <- rowSums(cbv,na.rm=TRUE)
cbvl <- cbv[order(total,decreasing

= # sort by total catch
kable(cbvi[1:20,],digits=c(1,1,1,1,1,

TRUE), ]
1,1,1,1,1,1,1))

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
2 525 1548 973 86.0 63.0 854 505 346 595 575 705 384
1 1.7 1073 73.1 32,6 233 251 183 17.1 307 429 314 802
7 453 37.8 615 497 141 207 115 62 63 162 230 32
3 31,6 157 399 328 21.7 163 123 258 200 214 41.7 150
13 8.6 82 10.1 43 267 95 1.1 40 03 9.3 89 17.1
5 0.1 277 408 295 9.2
8
6
9
1

38,6 321 172

194 417 37 138

1.2 9.3 14 61 150 64 21 1.9 58 32 125 132
0 9.8 180 228 220
14 6.2 0.3 06 46 6.1 1.2 05 0.0 0.1
12 3.0 4.9 1.2 3.0 0.1
4 03 11.0
11 0.0 3.7 75

25 0.1 0.1 0.7 28
17 2.5

19 0.0 0.1 00 08 04 03 0.2
23 1.2

24 0.2 0.6

20 0.8
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Obviously some vessels will be much more influential than others, simply because they
catch a great deal more than others and hence introduce many more records into the da-
tabase.

# plotprep(width=8,height=6) # not needed in the vignette

to <- turnover(cbvil)

yearBubble(cbvl,ylabel="sqrt(catch-per-vessel)",
diam=0.125,txt=c(2,3,4,5),hline=TRUE)
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Figure 2. This hypothetical fishery is clearly dominated by four or five vessels with nu-
merous minor players. Additionally, before 2007 there were a few more productive fish-
ers present (this reflects the structural adjustment in the Commonwealth from which this
simulated data derives). The optional horizontal lines merely delineate the individual
vessels. The top two rows of numbers is the total catch per year and the bottom row of
numbers is the number of vessels reporting in each year.

It is likely that if the data from the nine vessels with the lowest catches were omitted
there would be no effect on any results as their catches are so minor in a relative sense.
It is clear those vessels are merely casual occurrences within the fishery (Figure 2).

While the main vessels were reasonably consistent in terms of reporting from this fish-
ery, other vessels came and went. To summarize such activity, one can use the turnover
function which summarizes the year-to-year changes in which vessels report being ac-
tive.

print(to)

## Continue Leave Start Total
## 2003 19 (%} (%} 19
## 2004 14 5 (7} 14
## 2005 13 1 3 16
## 2006 11 5 (%} 11
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## 2007
## 2008
## 2009
## 2010
## 2011
#H# 2012
## 2013
## 2014

O NN 00NN NN
CORONRKRRLD
PNOORNMNRLR
®© WO N 00 00 WV 00 ®

=

The Continue column lists how many vessels continued from the preceding year, the
Leave column designates how many left relative to the previous year, while the Start
column is literally how many vessels started reporting in that year. The Total is the total
number of vessels reporting in each year. No attempt is made to follow individual ves-
sels.

14.1.1 The Addition of CPUE data

You will have noticed that the sps data came with catch and effort but not CPUE, so we
need to calculate that. In the following I test for the presence of zeros in the catch and
effort to avoid generating errors of division (divide by zero errors will stop the analysis)
and when taking logarithms. In fact, as the properties call showed, there were no N4
values, but it remains worth checking.

While we are adding CPUE we can also group the depth data into depth classes to pro-
vide that option as an explanatory variable when standardizing the CPUE data.

sps$CE <- NA # make space in the data.frame

sps$LnCE <- NA

pick <- which((sps$catch_kg > @) & (sps$Effort > 9))

sps$CE[pick] <- sps$catch_kg[pick]/sps$Effort[pick]

sps$LnCE[pick] <- log(sps$CE) # natural Log-transformation

# categorize Depth

range(sps$Depth,na.tm=TRUE) # to aid selection of depth class widt
h

## [1] 1 366

sps$DepCat <- NA
sps$DepCat <- trunc(sps$Depth/25) * 25

table(sps$DepCat)

##

#i# (%] 25 50 75 100 125 150 175 200 225 250 275 300 3
25 350

H#H# 6 19 224 1569 4583 3593 1393 74 66 21 15 21 7
5 7

It is clear from the summary of records by depth that most of the fishing occurs in wa-
ters of 150 metres or less.

Typically, with fisheries data, one might plot each variable, such as catch, effort,
log(CPUE), depth, etc., by year to see whether changes have occurred through time.
Such changes might adversely affect any analysis applied so it is always a good idea to
examine (explore) one’s data before using it. cede provides a function Aistyear that an
plot a histogram of a selected variable by year.
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outH <- histyear(sps,Lbound=-1.75,Rbound=8.5,inc=0.25,pickvar="LnCE",
years="Year",varlabel="1og(CPUE)",plots=c(4,3))
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Figure 3. The distribution of the log(CPUE) each year for which data is available. The
smooth green lines are fitted normal distributions there for reference (log-transformation
should normalize log-normal data).

outH <- histyear(sps,Lbound=0,Rbound=375,inc=12.5,pickvar="Depth",
years="Year",varlabel="Depth (m)",plots=c(4,3),v1line=120)
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Figure 4. The distribution of reported mean depth of fishing each year. The green lines
are fitted normal distributions there for reference, the blue lines are merely reference
lines to ease comparisons between years.

outH <- histyear(sps, Lbound=0,Rbound=10,inc=0.25,pickvar="Effort",
years="Year",varlabel="Effort (Hrs)",plots=c(4,3),vline=NA)
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Figure 5. The distribution of reported Effort each year. The green lines are fitted normal
distributions there for reference. Note the spikes of reporting four hours.

Spikes can be seen in each of the graphs and the question needs to arise whether these
are due to rounding by the fishers or are real phenomena. In fact, unless dealing with
counts of fish caught (quite possible in some fisheries) then rounding invariably occurs
when estimating catches by weight, but also in effort. The following plot can help diag-
nose whether values are clustered due to rounding.

par (mfrow=c(1,1),mai=c(0.45,0.45,0.05,0.05))

par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)

plot(sps$Effort,sps$catch_kg,type="p",pch=16,col=rgb(1,0,0,1/5),
ylim=c(0,500),xlab="Effort (Hrs)",ylab="Catch (Kg)")

abline(h=0.0,col="grey")
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Figure 6. A plot of catch against effort for each record in the sps data.frame. The catch
axis has been truncated at 500 kg so as to allow the rounding of catches to be less com-
pressed and more visually obvious. It should be clear there is rounding at every half
hour between 2 - 6 hours. In addition, there is rounding at about 30 kg steps from 30 -
300 kg, with other categories above that. The 30-33kg rounding reflects a belief that a
standard fish bin contains about 30-33Kg of fish.

The uneven, grid-like nature of the catch and effort data is reflected in the CPUE data,
which might make one sceptical about the notion of a predictive model attempting to
predict such values. While the residuals (that are the basis of the statistical model fit-
ting) might be smoother in their distribution, they do derive from a comparison of
smooth predicted values with the grouped observed values, so any results are likely to
be uncertain and to under-estimate any inherent variation.

Despite such problems, it is possible to derive useful information even from rounded
fisheries data. It is generally recognized that fisheries data is noisy and potentially con-
tains many errors, especially when considering the less important species that fall into
the data-poor category. Nevertheless, the challenge remains of attempting to obtain use-
ful and useable information from analysing such data.

14.1.2 Plotting Sketch Maps of Lat-Long data

Since the advent of GPS and GPS plotters, very many fishers use this equipment, and
fisheries departments have started to ask for precise location data accordingly. If such
latitude and longitude data are available, it is often informative to plot such data as a lit-
eral map to illustrate the focus and range of a fishery. cede also provides the capacity to
generate such sketch maps (instead of using a full Geographical Information System
projected co-ordinate system). The idea here is not to conduct detailed spatial analyses,
for which a GIS is better suited. Instead the idea is simply to gain a rapid impression of
the spatial extent and distribution of a fishery’s effort. Of course, care needs to be taken
with such plots, as they very obviously contain confidential information (such as exactly
where fishers have been operating). This is especially important when there are very
few fishers involved in a fishery. While such images may not be able to be displayed in
meetings, they remain useful for data exploration purposes.
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leftlong <- 143.0; rightlong <- 150.0

uplat <- -40.0; downlat <- -44.6
plotaus(leftlong,rightlong,uplat,downlat,gridon=1.0)
addpoints(sps,intitle="Location of Catches")

## 11603 1 4500

plotLand(incol="blue")
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Figure 7. A sketch map of the Lat Long data within the sps data set. There are clearly a
number of points reported to be out over the abyssal plain, but the majority of points de-
fine the range of the fishery.

Rather than show individual points it is also possible, by using the function plotpolys, to
aggregate catches into different geographical sub-divisions (e.g. 0.25 or 0.5 degree
squares, definable with plotpolys’ gridon parameter). If these are coloured relative to
the density of total catches the locations where most of the yield of a fishery derives
from becomes apparent. The output from the function includes the plotting, but also the
sub-divisions used, and the counts of each of those sub-divisions. The final plotting of
the land is merely to provide a tidy plot as it covers any points that accidently fall on
land.

leftlong <- 143.0; rightlong <- 150.0

uplat <- -40.0; downlat <- -44.6

plotaus(leftlong,rightlong,uplat,downlat,gridon=1.0)

plotpolys(sps,leftlong,rightlong,uplat,downlat,gridon=0.2,leg="1eft",
intitle="0.2 degree squares",mincount=2)
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## subdiv 87.057 8.7057 ©.87057 0.087057
## counthot © 000

## 494.8624 500 250 100 50 10 5 1 0.001
## countpoly © 2 6 6 11 4 16 31

plotLand(incol="pink")
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Figure 8. A sketch map of the Lat Long data within the sps data set with catches aggre-
gated into 0.2 degree squares. By requiring at least 2 records in each square forinclu-
sion, some (although not all) of the deeper water extraneous records have been elimi-
nated. The red, green, and royal blue squares denote the areas generating the greatest
yields.

Such sketch maps can be helpful, especially when plotting single years of data, to illus-
trate how the spatial extent of a fishery varies through time. There are obvious limita-
tions: 1) there is no formal map projection; one merely alters the width and height of the
plot until the visual representation of the land looks acceptable; and ii) there are islands
missing so as to limit the size of the underlying coastal definition data set (to see this,
try entering head(cede: . :aus,30) into the console).

14.2 CPUE Standardization
14.2.1 Introduction

If one were to search online for catch-per-unit-effort (CPUE) standardization, it would
quickly become apparent that this is a very large subject with many alternative ap-
proaches and strategies. Here I will introduce two approaches: General and Generalized
Linear Models (LMs and GLMs), and Generalized Additive Models (GAMS). This will
only be a brief introduction to the subject, but the hope is that such an introduction
would enable users to explore further and develop approaches best suited to their own
fisheries.
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Commercial CPUE data are used in very many fishery stock assessments in Australia as
indices of relative abundance. Using CPUE in this way assumes there is a direct rela-
tionship between catch rates and exploitable biomass. However, many other factors can
influence catch rates, including vessel, gear (fishing method), depth, season, area, and
time of fishing (e.g. day or night). The use of CPUE as an index of relative abundance
requires the statistical removal of the effects of variation due to changes in factors other
than stock biomass, on the assumption that what remains will provide a better estimate
of the underlying biomass dynamics. This process of adjusting the time series for the ef-
fects of other factors is known as standardization and the accepted way of doing this is
to use some statistical modelling procedure that focuses attention onto the annual aver-
age catch rates adjusted for the variation in the averages brought about by all the other
factors identified. Idiosyncrasies between species and methods across Australia means
that each fishery/stock for which standardized catch rates are required entails its own set
of conditions and selection of data (Sporcic and Haddon, 2016).

14.2.2 The Limits of Standardization

The use of commercial CPUE as an index of the relative abundance of exploitable bio-
mass can be misleading when there are factors that significantly influence CPUE but
cannot be accounted for in a statistical standardization analysis. Over the last few dec-
ades the management of many Australian fisheries has undergone significant changes.
For example, in the Commonwealth fisheries, there was the introduction of the quota
management system into the South Eastern Scalefish and Shark Fishery (SESSF) in
1992, and the introduction of the Commonwealth Harvest Strategy Policy (HSP) and as-
sociated structural adjustment from 2005 - 2007. The combination of limited quotas and
the HSP is now controlling catches in such a way that many fishers have been altering
their fishing behaviour to take into account the availability of quota and their own ac-
cess to quota needed to land the species taken in the mixed species SESSF.

14.3Methods
14.3.1 Initial Data Selection

Fisheries data is often noisy and can contain obvious errors (e.g. an inshore species re-
portedly being caught in 6000 m of water). The data exploration mentioned earlier
should allow one to defensibly select data for further analysis. Often such data selection
is aimed at identifying records that represent typical activities in each fishery concerned,
and removing obvious errors. In particular some selection criteria are aimed at focussing
on records where the species is being targeted. For example, most species have a depth
range within which they are typically caught. Ideally, an agreed depth range should be
used so that it becomes standard to select data records between some minimum and
maximum depth range. A second example relates to one vessel in the SESSF catching a
particular species by a particular gear having catch rates 10 - 20 times those of other
vessels fishing in the same places at the same time. Further exploration indicated that
the vessel concerned had misunderstood how to fill in the log book so their data were
removed from subsequent analysis. Whatever decisions are made about the selection of
data, each choice should be defensible, and it should be possible to present the evidence
for the selection made (e.g. illustrate extreme values, typical depth ranges, unusual ves-
sels).

Once a defensible set of data records have been selected, there are other modifications
needed. At its most basic, a linear model is very similar to a regression analysis. If you
imagine conducting a regression of Log(CPUE) against Year so as to evaluate how
those catch rates have changed through time then all that would come out would be a
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single line having two parameters, an intercept and gradient. There are only two param-
eters because it would treat the factor “Year’ as a continuous variable. What we actually
want is a separate index for each year, we need to treat the “Year’ factor as a categorical
factor rather than as a continuous variable. Below we will illustrate the use of using all
categorical factors and then a different illustration showing how to include a continuous
variable such as depth, into a standardization.

14.3.2 Standardization

The use of properties indicates that in the sps data set contains six clear factors: Year,
Month, Vessel, Depth or DepCat, DayNight, and Zone. The Zone factor is a subdivision
of mainly the Latitude factor although longitude is also in there to a lesser extent.

First we need to convert some of the factors into categorical factors. For the sps data set
there are six factor. It is good practice not to over-write your original data.frame so here
the sps name is slightly modified to sps/.
kable(properties(sps),digits=c(0,0,0,0,6,6,6))

Index isNA Unique Class Min Max Example
Year 1 0 12 numeric 2003.000000 2014.000000 2004
Month 2 0 12 numeric 1.000000 12.000000 4
Vessel 3 0 23 numeric 1.000000 27.000000 1
catch kg 4 0 442 numeric 1.000000  4500.000000 220
Long 5 0 447 numeric 144.116670 146.300000 145.1167
Lat 6 0 512 numeric -45.833330 -40.750000 -43.06667
Depth 7 0 191 numeric 2.000000 366.000000 125
DayNight 8 0 3 character 0.000000 0.000000 N
Effort 9 0 377 numeric 0.160000 9.660000 4
Zone 10 0 3 numeric 1.000000 3.000000 1
CE 11 0 3624 numeric 0.222222  4140.000000 55
LnCE 12 0 3596 numeric -1.504077 8.328451 4.007333
DepCat 13 0 15 numeric 0.000000 350.000000 125

labelM <- c("Year","Zone","Vessel","Month", "DayNight","DepCat")
spsl <- makecategorical(labelM,sps)
kable(properties(spsl),digits=c(0,0,0,0,6,6,6))

Index 1isNA Unique Class Min Max Example
Year 1 0 12 factor 0.000000 0.000000 2004
Month 2 0 12 factor 0.000000 0.000000 4
Vessel 3 0 23 factor 0.000000 0.000000 1
catch kg 4 0 442 numeric 1.000000  4500.000000 220
Long 5 0 447 numeric 144.116670 146.300000 145.1167
Lat 6 0 512 numeric -45.833330 -40.750000 -43.06667
Depth 7 0 191 numeric 2.000000 366.000000 125
DayNight 8 0 3 factor 0.000000 0.000000 N
Effort 9 0 377 numeric 0.160000 9.660000 4
Zone 10 0 3 factor 0.000000 0.000000 1
CE 11 0 3624 numeric 0.222222  4140.000000 55
LnCE 12 0 3596 numeric -1.504077 8.328451 4.007333
DepCat 13 0 15 factor 0.000000 0.000000 125
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Note that after using makecategorical, the factors of interest within sps/ are now listed
as factors rather than numeric, and that is enough to alter the analysis to something
more like an analysis of variance (ANOVA) than a regression analysis, so that we ob-
tain a parameter for each level of the factors used.

labelM <- c("Year","Zone","Vessel","Month","DayNight", "DepCat")
spsl <- makecategorical(labelM,sps)

mod <- makeonemodel(labelM)

mod

## LnCE ~ Year + Zone + Vessel + Month + DayNight + DepCat
## <environment: 0x0000000010ebab78>

class(mod)
## [1] "formula"

Each of the standardization methods we will use requires that each statistical model to
be examined needs to be a formula. If you enter makeonemodel, without brackets, into
the R console you will see the final form <- as.formula(form), which achieves
this requirement.

If we are going to use a simple linear model then we can proceed using the function
dosingle (try ?dosingle or just dosingle). We point the output of this function to the out
object because there is an enormous amount of information generated. You can see this
by using just str(out).

labelM <- c("Year","Zone","Vessel","Month", "DayNight", "DepCat")
spsl <- makecategorical(labelM,sps)

mod <- makeonemodel(labelM)

out <- dosingle(mod,spsl)

str(out,max.level=1)

## List of 7
## ¢ Results : num [1:12, 1:2] ©.855 1.351 1.26 1.077 ©.949 ...

##  ..- attr(*, "dimnames")=List of 2
##t ¢ StErr : num [1:12, 1:2] © 0.0377 0.0399 0.0413 0.0473 ...
ftHt ..- attr(*, "dimnames")=List of 2

## $ Optimum : num 2
## $ modelcoef: num [1:63, 1:4] 3.8949 ©.3697 0.1962 -0.0137 -0.2159

##  ..- attr(*, "dimnames")=List of 2

## $ optModel :List of 13

ftHt ..- attr(*, "class")= chr "1m"

## $ modelG :List of 13

##  ..- attr(*, "class")= chr "1m"

## $ years : Factor w/ 12 levels "2003","2004",..: 1 2 3456 7 8
910 ...

One of the components of the out object is the optModel, which, not surprisingly, repre-
sents the optimum model. It is possible to run the generic functions summary and
anova. The summary function (summary (out)) will generate the parameters (on the
log-scale) and a few other details. the anova function determines the significance of
each factor.
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anova(out$optModel)

## Analysis of Variance Table

##

## Response: LnCE

it Df Sum Sq Mean Sq F value Pr(>F)
## Year 11 371.6 33.78 35.072 < 2.2e-16
## Zone 2 809.2 404.58 420.019 < 2.2e-16
## Vessel 22 374.6 17.03 17.675 < 2.2e-16
## Month 11  281.3 25.57 26.546 < 2.2e-16
## DayNight 2 223.4 111.69 115.950 < 2.2e-16
## DepCat 14  432.7 30.91 32.087 < 2.2e-16
## Residuals 11540 11115.7 0.96

14.3.2.1 The Mean Year Estimates

For the lognormal model, the expected back-transformed year effect involves a bias-cor-
rection to account for the log-normality; this then focuses on the mean of the distribu-
tion rather than the median:

CPUE, = e(re+oi/2)

where Y, is the Year coefficient for year ¢ and o; is the standard deviation of the log
transformed data (obtained from the analysis). The year coefficients were all divided by
the average of all the Year coefficients to simplify the visual comparison of catch rate
changes.

CPUE,

b = ScPUED/m

where CPUE,is the yearly coefficients from the standardization, CPUE,is the arithmetic
average of the yearly coefficients, n is the number of years of observations, and CE; is
the final time series of yearly index of relative abundance. All of this can be obtained in
two ways. Within the out object there is the Results matrix which contains both the geo-
metric mean estimates (labelled Year) along with the optimum statistical model. StErr
within out contains the standard error estimates for each of those.

cbind(out$Results,out$StErr)

#i# Year  optimum  Year optimum

## 2003 0.8551563 1.0803147 0.00000000 0.00000000
## 2004 1.3506682 1.5644932 0.03774809 0.03629678
## 2005 1.2600506 1.3154374 0.03988160 0.03897411
## 2006 1.0769724 1.0665040 0.04131560 0.04084128
## 2007 0.9487208 0.8715249 0.04731264 0.04691162
## 2008 0.8429911 0.8105254 0.04670561 0.04604055
## 2009 0.8422759 0.8031273 0.05292345 0.05183217
##2010 0.8511003 0.8000413 0.05818629 0.05697959
## 2011 0.8379600 0.7449298 0.05251125 0.05168512
##2012 1.0175412 0.9594120 0.04949327 0.04872046
## 2013 0.9505466 0.9162404 0.04723900 0.04669282
## 2014 1.1660166 1.0674496 0.04849594 0.04877541

Alternatively, if all the details are wanted, there is another function getfact, which pro-
vides these.
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kable(getfact(out$optModel, "Year"),digits=c(4,4,4,4,4,4))

Coeff SE LogCE Scaled t value Prob
Year 1.0000 0.0000 0.0000 1.0803
Year2004 1.4482 0.0363 0.3697 1.5645 10.1841 0.0000
Year2005 1.2176 0.0390 0.1962 1.3154 5.0330 0.0000
Year2006 0.9872 0.0408 -0.0137 1.0665 -0.3355 0.7373
Year2007 0.8067 0.0469 -0.2159 0.8715 -4.6015 0.0000
Year2008 0.7503 0.0460 -0.2884 0.8105 -6.2637 0.0000
Year2009 0.7434 0.0518 -0.2978 0.8031 -5.7462 0.0000
Year2010 0.7406 0.0570 -0.3020 0.8000 -5.2996 0.0000
Year2011 0.6895 0.0517 -0.3731 0.7449 -7.2178 0.0000
Year2012 0.8881 0.0487 -0.1199 0.9594 -2.4604 0.0139
Year2013 0.8481 0.0467 -0.1658 0.9162 -3.5513 0.0004
Year2014 0.9881 0.0488 -0.0132 1.0674 -0.2700 0.7872

The standardizations provide parameters for each level of each factor, except for the
first level in each case. These first levels are all assumed to have a log-transformed (ref-
erence) value of 0.0 (= 1.0 on the nominal scale). All the other parameters (when log-
normal errors are used), are proportional to the first level. Thus the LogCE column is
the output from the standardization. The bias-adjusted transformation back to the nomi-
nal scale is described in the equations above. The ‘Scaled’ column is the same as the
‘Coeff” column except it is has been divided through by the mean of the series. This sets
the average value to 1.0, which permits simple visual comparison with other time-series.
The ‘SE’ column provides the basis for generating the log-normally distributed confi-
dence intervals.

# plotprep(width=7,height=4.5)
plotstand(out,bars=TRUE)
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Figure 9. The standardization of the CPUE data within the sps data set. The dashed line
is the geometric mean CPUE while the solid line with 95% confidence intervals is the
standardized CPUE. In places, the difference between the standardized CPUE and the
geometric mean CPUE is greater than the 95% log-normal confidence intervals.
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One issue with the scaling of this plot is that it makes little sense to industry members
who are more used to the nominal scale at which they personally operate. Given that the
average of both the geometric mean and the optimum model is 1.0, both can be multi-
plied by a constant to rescale the plots. If we calculate the geometric mean CPUE for
the whole fishery, we can use that as a multiplier, and that will place each time-series on
a recognizable nominal scale. This can be done using the function geomean and includ-
ing the geo option of plotstand.

# plotprep(width=7,height=4.5)
geom <-geomean(sps$CE)
plotstand(out,bars=TRUE,geo=geom)
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Figure 10. The standardization of the CPUE data within the sps data set. The dashed
line is the geometric mean CPUE, while the solid line with 95%. These trajectories both
have an average of the overall geometric mean CPUE.

It is often helpful to examine the standardizations as they increase in complexity, so that
the relative influence of each factor becomes clearer. However, to do this requires a lit-
tle more R code.

# first make a matrix to hold the results
labelM <- c("Year","Zone","Vessel","Month", "DayNight","DepCat")
columns <- c("adjR2","incR2","RSS","MSS", "Npar", "nobs","AIC")
nummod <- length(labelM)
results <- as.data.frame(matrix(@,nrow=nummod,ncol=1length(columns),
dimnames=1ist(labelM,columns)))

for (i in 1l:nummod) { # sequentially build the models

mod <- makeonemodel(labelM[1:i]) # When 1 = 1 LnCE ~ Year

out <- dosingle(mod,spsl)

outsum <- summary(out$optModel)

aov <- anova(out$optModel) # Extract a range of results
RSS <- tail(aov$"Sum Sq",1)
df <- aov$Df

nobs <- sum(df) + 1

numfact <- length(df) - 1

npars <- sum(df[l:numfact]) + 1

AIC <- nobs * 1log(RSS/nobs) + (2 * npars)
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results[i,] <- c(outsum$adj.r.squared,NA,RSS,sum(aov$“Sum Sg") - RS
S,npars,nobs,AIC)
}
results[2:nummod, "incR2"] <- results[2:nummod, "adjR2"]-results[1:(numm
od-1),"adjR2"]
round(results,4)

H## adjR2 incR2 RSS MSS Npar nobs AIC
## Year 0.0264 NA 13236.77 371.6062 12 11603 1552.5217
## Zone 0.0857 0.0594 12427.62 1180.7589 14 11603 824.6352
## Vessel ©0.1116 0.0259 12053.06 1555.3196 36 11603 513.5497
## Month 0.1315 ©.0199 11771.79 1836.5924 47 11603 261.5701
## DayNight 0.1478 0.0163 11548.41 2059.9662 49 11603  43.2834
## DepCat ©0.1788 0.0309 11115.70 2492.6736 63 11603 -371.8236

By looking at the increments to the adjusted-R2 (“adjR2”) it is clear that the factor Dep-
Cat has a larger impact on the variation accounted for than even Vessel, so strictly the
analysis should be repeated after re-ordering the different factors within labelM. The
AIC column identifies the optimum combination of factors with the smallest value indi-
cating the optimum. It would be worthwhile repeating the analysis with the re-ordering.
Typically, if one plots each standardization on the same plot, typically, while the later
factors can be statistically significant, their effect upon the trajectory of the standardized
CPUE can be minimal or appear to contribute mainly noise. If the standardization is to
be used within an assessment it is the trend that matters so those final few factors may
only have a minor effect.

14.3.3 Alternative Standardization Strategies

So far we have only considered General Linear Models (which with log-normal errors
give the same results as simple linear models). If we wish to use alternative residual er-
ror structures then it would be necessary to use true GLMs (as in Generalized Linear
Models). These would be necessary if, for example, there was a wish to attempt using
perhaps a Gamma distribution instead of log-normal. Such alternate error structures re-
quire different syntax. The standard approach when using the Gamma distribution
would be to use a log-link in the GLM. In such cases, the dependent variable would
then be CE rather than LnCE. The functions described so far have been designed for
use with log-normal residual errors that need a bias-correction, Gamma residual errors
do not require such a bias-correction, so we will need to work directly with the esti-
mated coefficients.

labelM <- c("Year","Zone","Vessel","Month", "DayNight", "DepCat", "Month:
Zone")

spsl <- makecategorical(labelM,sps)

mod <- makeonemodel(labelM,dependent="CE")

modeld <- glm(mod,family=Gamma(link="1o0g"),data=spsl)

m4 <- summary(model4)$coefficients # combine these with empty first y
ear

yrval <- rbind(c(90,0,0,0),m4[grep("Year",rownames(m4)),])

gamres <- cbind(yrval,exp(yrval[,"Estimate"]))

rownames (gamres) <- 2003:2014

gamres
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## Estimate Std. Error t value Pr(>|t])

## 2003 0©0.000000000 0.00000000 ©.00000000 O.000000e+00 1.0000000
## 2004 0.333489137 0.04141384 8.05260025 8.901627e-16 1.3958299
## 2005 0.232479826 0.04412451 5.26872275 1.398554e-07 1.2617250
## 2006 0.003738450 0.04620812 0.08090461 9.355192e-01 1.0037454
## 2007 -0.123979553 0.05282090 -2.34716857 1.893353e-02 0.8833979
## 2008 -0.139742192 0.05204407 -2.68507408 7.261757e-03 0.8695824
## 2009 -0.226946891 0.05850235 -3.87927840 1.053499e-04 0.7969631
## 2010 -0.079275668 0.06427291 -1.23342264 2.174433e-01 0.9237852
## 2011 -0.147106194 0.05832505 -2.52217851 1.167642e-02 0.8632023
## 2012 -0.080927349 0.05495370 -1.47264600 1.408738e-01 0.9222607
## 2013 -0.002500419 0.05314454 -0.04704940 9.624747e-01 0.9975027
## 2014 0.023195520 0.05528536 0.41955987 6.748148e-01 1.0234666

plotstand(out,bars=TRUE)
lines(2003:2014,exp(yrval[, "Estimate"]),lwd=2,col=4)
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Figure 11. The standardization of the cpue data within the sps data set comparing a LM
using log-normal with a GLM using Gamma residual errors. The dashed line is the geo-
metric mean CPUE while the solid black line with 95% confidence intervals is the log-
normal error standardization. Finally, the blue line is the Gamma error standardization.

14.3.4 The Use of GAMs

Generalized Additive Models (GAMs) are an extension of GLMs in which at least some
of the factors are replaced by fitting smooth surfaces to some of the factors that are con-
sidered to have a non-linear relationship with catch rates.In order to run them, however,
it is necessary to install a number of additional R packages.

As an example, we could use a GAM to add a smoother to the Lat - Long data in the sps
data set. We would actually use the sps1 data set as the remaining categorical factors are
also included in the analysis. A possible workflow might involve the following code:

# install and call these R packages and their dependencies
library(nlme)
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library(mgcv)

library(gamm4)

# note the use of gam rather than Lm or glm (see the examples in ?gam

for more

# details.

modelGam <- gam(LnCE ~ s(Long,Lat) + Year + Zone + Vessel + Month +
DayNight + DepCat, data = spsl)

anova(modelGam)

##
## Family: gaussian
## Link function: identity

##

## Formula:

## LnCE ~ s(Long, Lat) + Year + Zone + Vessel + Month + DayNight +
#i# DepCat

##

## Parametric Terms:

H## df F p-value

## Year 11 54.145 <2e-16

## Zone 2 0.778 0.459

## Vessel 22 16.549 <2e-16
## Month 11 26.175 <2e-16
## DayNight 2 112.842 <2e-16
## DepCat 14 9.269 <2e-16

##
## Approximate significance of smooth terms:
H## edf Ref.df F p-value

## s(Long,Lat) 26.96 28.69 19.14 <2e-16

We should not be surprised that the Zone factor is no longer sinificant. By including the
Lat - Long surface including the Zone factor becomes redundant so we should really re-
peat the analysis without Zone included.

modelGam <- gam(LnCE ~ s(Long,Lat) + Year + Vessel + Month +
DayNight + DepCat, data = spsl)
anova(modelGam)

## Family: gaussian

## Link function: identity

##

## Formula:

## LnCE ~ s(Long, Lat) + Year + Vessel + Month + DayNight + DepCat
##

## Parametric Terms:

H## df F p-value
## Year 11 54.039 <2e-16
## Vessel 22 16.635 <2e-16
## Month 11 26.237 <2e-16
## DayNight 2 112.859 <2e-16
## DepCat 14 9.297 <2e-16

##
## Approximate significance of smooth terms:
## edf Ref.df F p-value

## s(Long,Lat) 27.14 28.74 26.65 <2e-16
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We can use the getfact function to extract the results we need. The Coeff column con-
tains the LogCE transformed back to the linear scale and Scaled is the Coeff re-scaled to
a mean of 1.0. Once again if it is desired to scale this to the nominal CPUE from the
fishery so as to improve communication with industry and managers then we can use
geomean to estimate the overall geometric mean to re-scale the ‘Scaled’ column to
something more meaningful to industry members.

answer <- getfact(modelGam, "Year")
opti <- answer[,"Scaled"]
round(answer,5)

## Coeff SE LogCE Scaled t value Prob
## Year 1.00000 0.00000 ©0.00000 1.11779 NA NA
## Year2004 1.43698 0.03557 0.36191 1.60624 10.17322 0.00000
## Year2005 1.18326 0.03826 0.16754 1.32263 4.37886 0.00001
## Year2006 0.94500 0.04009 -0.05737 1.05631 -1.43110 0.15243
## Year2007 0.76003 0.04616 -0.27546 0.84955 -5.96784 0.00000
## Year2008 0.72439 0.04523 -0.32344 0.80972 -7.15074 0.00000
## Year2009 0.70430 0.05095 -0.35185 0.78725 -6.90523 0.00000
## Year2010 0.69154 0.05594 -0.37039 0.77300 -6.62073 0.00000
## Year20ll 0.66716 0.05075 -0.40601 0.74575 -7.99956 0.00000
## Year201l2 0.85665 0.04794 -0.15587 0.95755 -3.25124 0.00115
## Year201l3 0.82559 0.04588 -0.19271 0.92283 -4.19995 0.00003
## Year201l4 0.94059 0.04789 -0.06240 1.05138 -1.30282 0.19266

We can gain an impression of the surface fitted to the Lat - Long data using the plot
function, which recognizes the output from a GAM and can react accordingly.

#plotprep(width=4.5,height=7)
plot(modelGam,ylim=c(-44.5,-40),x1im=c(143.5,146.5),se=FALSE,xlab="",
ylab="")
title(ylab=1list("Latitude", cex=1.0, font=7),
xlab=1list("Longitude", cex=1.0, font=7))
plotLand("pink™)
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Figure 12. A plot of the surface fitted to the output from the gam function.

The effect on the year parameters is what we are really interested in for the purposes of
stock assessment, and we can compare the outcome of the GAM with the previous
GLM.

#plotprep(width=7,hheight=4.5)

plotstand(out,bars=TRUE)
lines(facttonum(out$years),opti,col=4,1lwd=2)
legend("bottomleft",c("GLM","GAM"),col=c(1,4),1lwd=3,bty="n",cex=1.2)
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Figure 13. The standardization of the CPUE data within the sps data set comparing an
LM using log-normal residual errors with a GAM having a surface fitted to the
Lat/Long data. The dashed line is the geometric mean CPUE while the solid black line
with 95% confidence intervals is the log-normal error standardization. Finally, the blue
line is the Generalized Additive Model.

15 catch-MSY

15.1 Introduction
15.1.1 Which Stock Assessment?

Which stock assessment method to apply to fisheries for data-poor to data-moderate
species will depend upon what fisheries and biological data are available but also, im-
portantly, on what management objectives need to be met within the jurisdiction in
question. It may be the case that the fishery for a particular species is of sufficient size
and value to warrant on-going monitoring and management towards some defined goal
for the stock. In such a case the assessment used should obviously be capable of gener-
ating some notion of the current state of the fishery and indicate what management ac-
tions may be required to eventually achieve the agreed management goals. But some
fisheries may be so minor that trying to actively manage them would be inefficient both
practically and economically. Nevertheless, to meet the requirements of the Status of
key Australian Fish Stocks (SAFS) one still requires some form of defensible stock as-
sessment capable of determining whether the current level of fishing is sustainable.

15.2Modified Catch-MSY

The Catch-MSY method (Martell and Froese, 2013) could be termed a ‘model-assisted’
stock assessment method. It only requires a complete time-series of catches and a set of
strong assumptions to conduct a stock assessment. As only a brief description of how it
is considered to work is given here, it is recommended that users read the original paper
to gain an understanding of what the method does and how it does it.
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The underlying stock dynamics are described by the simple model used, which in the
case implemented here is a Schaefer surplus production model with parameters r, the
population growth rate, and K, the population carrying capacity or unfished biomass.
The model uses ratios of the initial and final catches relative to the maximum catch to
set up arrays of potential values for the initial and final depletion levels as well as for
the potential range of » and K values (all of which are now modifiable by the user). The
method sequentially steps through the years of the fishery by randomly selects pairs of
r-K values from the wide initial ranges, which defines the initial biomass, subtracting
the catches, and moving the population dynamics forward each year using the predic-
tions from the simple model. Essentially this is a stock reduction that removes catches
from a known set of dynamics. However, the very many »-K pairs used (at least 20000)
are combined with a fixed set of initial depletion levels (about 20 steps between the
minimum and maximum initial depletion set) to generate often 100,000s of possible
stock reduction trajectories. Criteria are included (e.g. no trajectory is kept if it predicted
zero biomass or biomass above K) that lead to numerous potential trajectories being re-
jected. Those that are left after all criteria for acceptance have been completed constitute
the set of trajectories deemed to be consistent with the known catches. The implications
of these successful trajectories are used to produce an assessment of the possible status
of the stock.

In this section we will describe how to conduct a catch-MSY analysis, how to extract
the results from that analysis, as well as plot out illustrations of those results. In addi-
tion, we will examine how to project the successful trajectories under constant catch
scenarios to determine what level of catches should lead to the majority of trajectories
moving in a desired direction (rebuilding to a target, staying stable, or declining to a tar-
get depletion).

A standard workflow might consist of:

1. read in data and use checkdata to determine which analyses are possible

2. set the run-time parameters to conduct the desired catch-MSY analysis (see later)

3.  use run_cMSY to conduct a catch-MSY analysis. One sensitivity you should run
is to set sigpR (the proxy for process error) to 1e-10 (a very small number) to see
deterministic trajectories. Do other sensitivities (see text).

4. use cMSYphaseplot to determine status for SAFS, if more is wanted.

use summarycMSY to generate a summary object of the answer.

6. use plottrajectory to illustrate either all successful trajectories along with the suc-
cessful harvest rates (use option oneplot = TRUE), or just a sample of 7 or 15 bio-
mass trajectories.

7. use ploteMSY6 to plot up the overview of successful and failed r - K combina-
tions.

8. use pulloutStats to obtain summary statistics regarding MSY and depletion

9. use plotconstC with $deplet from the object output from pulloutstats to plot up the
successful trajectories depicting stock depletion.

10. use doconstC to conduct constant catch projections to find a level of catch that
lead, on average, to the population decreasing, staying stable, or increasing (possi-
bly to some selected target within a particular time).

11. optionally, use trendMSY to illustrate the relationship between the estimated
MSY and the average MSY of the successful trajectories.

e
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15.3 Some Formal Details

The Catch-MSY method described here can be regarded as a model-assisted data-poor
method. It uses a form of stock reduction analysis where the productivity of a given
stock (its unfished biomass and its reproductive rate) is characterized within the parame-
ters of a simple mathematical model, and how that modelled stock responds to the his-
tory of known catches (a stock reduction analysis) forms the basis of the alternative
methods used to characterize productivity in management useable terms.

The Catch-MSY method (Martell and Froese, 2013) uses the relatively simple Schaefer
surplus production model as the basis for describing the dynamics of the stock being de-
scribed:

B,
Bt+1 S Bt + TBt <1 _?) - Ct

where B; represents the stock biomass in year ¢, r represents a population growth rate
that includes the balance between recruitment and natural mortality, K is the maximum

population size (the carrying capacity), and C; being the catch in year ¢. The (1 — %)
represents a density dependent term that trends linearly to zero as B; tends towards K.

Importantly, for our purposes, one of the properties of the discrete Schaefer surplus pro-

duction model is that MSY can be estimated very simply from the parameter estimates:
rK
MSY = —
4
which reflects the symmetric production function implied by the model dynamics. A
relatively simple future possible development would be to include the option of using
Fox model dynamics instead of the Schaefer.

Such surplus-production (or biomass dynamic) models usually require both a time-se-
ries of total catches (landings plus discards) and a time-series of an index of relative
abundance (Haddon, 2011). In Australia the index of relative abundance is most often a
time-series of CPUE (ideally standardized CPUE).

15.3.1 Empirical Harvest Strategies

In the Southern and Eastern Scalefish and Shark Fishery (SESSF), rather than using sur-
plus production models or other simple approaches that attempt to model the underlying
population dynamics of a stock, empirical harvest strategies have been developed that
use such time-series in empirical relationships that give rise directly to management re-
lated advice on catch levels (Little et al., 2011; Haddon, 2014). Such empirical harvest
strategies can provide the needed management advice but do not determine stock status
unless the reference period, often used in such approaches, is assumed to be a proxy for
the target reference point (and associated limit reference point) for sustainability. A
weight-of-evidence argument would need to be made to support the use of such a proxy.
In the SESSF, this so-called Tier 4 harvest strategy is used to determine whether a stock
is over-fished or not but currently cannot be used to determine whether over-fishing is
occurring. In addition, there is the strong assumption made that the commercial catch
rates are a direct reflection of the stock biomass. There are, however, some species, for
example mirror dory (Zenopsis nebulosa), where catch rates increase when catches in-
crease, and then decline once catches begin to decline. They appear to be fisheries based
on availability rather than the fishery being the major influence on the stock biomass
and other aspects of the environment of the species appear to be driving its dynamics.
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The use of CPUE may thus be misleading in such cases, or at best lead to simply reac-
tive management decisions (CPUE goes up so can catches, CPUE goes down so must
catches).

More widely than the SESSF, there are many fisheries within Australia that may only
have a time-series of catches with only limited information related to a useable index of
relative abundance. In addition, such catch time-series may not be available from the
beginning of the fishery, which means that methods such as Depletion-Based Stock Re-
duction Analysis (Dick and MacCall, 2011) cannot be validly applied (although, as
shown in Haddon et al, 2015, if sufficient years of catches are present (perhaps >25)
then the method can still provide approximate estimates of management related parame-
ters). Under such data-limited situations, other catch-only based assessment methods
can provide the required estimates of management interest.

15.3.2 Stock Reduction Analyses

As with many of the more capable catch-only data-poor approaches the Catch-MSY
method evolved from the stock reduction analyses of Kimura and Tagart (1982), Ki-
mura et al. (1984), and eventually Walters et al. (2006). It uses a discrete version of the
Schaefer surplus production model (Schaefer, 1954, 1957; Haddon, 2011) to describe
the stock dynamics in each case. The Catch-MSY requires

- atime-series of total removals
- prior ranges for the » and K parameters of the Schaefer model, and

- possible ranges of the relative stock size (depletion levels) in the first and last
years of the time-series.

As described by Martell and Froese (2013), the range of initial depletion levels can be
divided into a set of initial values, and a stock reduction using the known total removals,
applied to each of these multiple initial depletion levels combined with pairs of -K pa-
rameters randomly drawn from uniform distributions across the prior ranges of those
parameters. Each of these parameter pairs, plus each of the initial depletion levels, are
projected using the total catch trajectory, leading to a stock biomass trajectory, which is
either accepted or rejected depending on whether the stock collapses or exceeds the car-
rying capacity, and whether the final depletion level falls within the assumed final
range. Take especial note that no model fitting is involved in the catch-MSY analysis, it
is purely a case of searching for parameter combinations that are consistent with what is
known about the fishery and it properties.

The initial and final depletion ranges can be relatively broad. Other criteria can be in-
cluded to further constrain the biomass trajectories, if extra evidence is available. Such
additional constraints are still under development. For example, in some of the exam-
ples you will notice that the annual harvest rates for some accepted trajectories can be
very high (> 0.5), which for many (though not all) Australian species can be considered
to be implausible. Now it is possible to conduct a sensitivity analysis where trajectories
implying some pre-defined harvest rate will also be rejected. These high fishing mortal-
ity trajectories are only possible for the more productive parameter combinations so re-
moving such trajectories will likely reduce the predicted MSY (maximum productivity).
We can use the invert data set of catches to exemplify the process of applying the
Catch-MSY method.
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15.3.3 The data-file format

As can be seen in the R-code below, the data for the catch. MSY analysis is read into an
R object containing fish, g/b, and others if present. Using the data command places the
data object, in the example it is called invert, into the global environment. Using the re-
addata command with a “named.csv” file also produces one large object. The actual
data requirements of the different methods available differs greatly. The catch-MSY
method really only requires two columns in fish, one being “year”, the other being
“catch”. The surplus production modelling also requires a “cpue” column, and the age-
structured surplus production model also requires various biological properties relating
to weight-at-age, maturity-at-age, and selectivity-at-age. These are tested by the check-
data function.

Table 1. The format of the fish object. Not all fields are required for all analyses.

year catch cpue se geom vessel records
1986 283.434 0.7005 0.000 71.7 47 1592
1987 185.612 0.8842 0.038 93.0 47 1764
1988 285.942 0.9786 0.041 124.6 41 1395
1989 234.523 0.8371 0.043 139.3 39 1143
1990 329.837 1.5811 0.049 174.5 25 727
1991 461.521 1.3874 0.050 182.9 29 734
1992 668.453 1.0286 0.058 166.3 19 434
1993 574.393 1.2245 0.050 172.4 21 673
1994 482.073 1.1569 0.050 170.3 26 661
1995 529.336 0.9135 0.044 105.0 25 1070
1996 424.963 0.8085 0.042 95.4 25 1216
1997 473.406 0.7581 0.047 86.8 21 855

The use of checkdata indicates that both catch-MSY and spm analyses are possible with
this data. This does not mean that the results of such analyses will always be valid with
the given data, only that the required data to conduct these analyses are present.

The answer object contains all the results from the catch-MSY analysis and is used by
other R functions to generate summaries and plots of those results.

#Llibrary(simpleSA)

glb <- invert$glb # contains available biological data
checkdata(invert)

H#it Method Possible

## catch-MSY TRUE TRUE

## spm TRUE TRUE

## aspm aspm FALSE

## catch-curves catch-curves FALSE

# normally one would run at least 20000 iterations, preferably more
reps <- 5000
# read the help for run_cMSY to understand each input parameter

answer <- run_cMSY(fish,glb,n=reps,sigpR=0.025,maximumH=1.0)
str(answer,max.level=1)
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## List of 13

## $ R1 :List of 3

#t $ ell : num [1:1011, 1:23] © © 0 0 0 00 000 ...

ftHt ..- attr(*, "dimnames")=List of 2

## $ rK : num [1:1011, 1:5] ©.345 0.168 0.309 0.219 0.22

ftHt ..- attr(*, "dimnames")=List of 2

## ¢ parbound :List of 5

## $ Statistics :List of 3

##t ¢ Rfirst :List of 3

##t ¢ firstparbound :List of 5

##t $ startbd : num [1:23] 0.15 0.175 0.2 0.225 0.25 0.275 0.3
0.325 0.35 0.375 ...

## $ outtab :'data.frame’: 11 obs. of 2 variables:

## $ initialDepletion: num [1:5000, 1:23] ©.15 0.175 0.2 0.225 0.25 ©
.275 0.3 0.325 0.35 0.375 ...

ftHt ..- attr(*, "dimnames")=List of 2

##t ¢ finaldepletion : num [1:5000, 1:23] 0 0 0 0 O ...

ftHt ..- attr(*, "dimnames")=List of 2

##t ¢ BO : num [1:5000, 1:23] 6311 4751 2683 2462 2275 ...
##  ..- attr(*, "dimnames")=List of 2

## $ MaximumH : num 1

15.3.4 SAFS Status

A summary and illustration of the stock status can be obtained by extracting the average
stock biomass trend, along with the average fishery harvest rate trend from the success-
ful trajectories.

Using the average estimate of the 7 - K pairs it is also possible to generate an estimate of
the production curve, from which it is possible to derive estimates of By, 0.2K or
0.2B0, and target harvest rate, Hurg, and limit harvest rate, Hjim, with which the phase
plot can be subdivided to provide a visual representation of the how the history of
catches from the fishery are reflected in predicted changes in the biomass and harvest
rate. Whether over-fishing is occurring (leading to a status of ‘depleting’) is determined
by whether the current point lies above the Hy., or above the Hji, which in turn is de-
cided by the management objectives adopted in each jurisdiction. A status of ‘depleted’
or ‘sustainable’ currently corresponds to whether the current year’s point is to the left or
right of the 0.2By line.

out <- cMSYphaseplot(answer,fish)
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Figure 14. A phase plot of the man predicted biomass and harvest rates through the
years observed. The first year of data is a green point and the last a red point. The axes
for the bottom plot are identified through the colour of the axis titles,

The results are synthesized within the contents of out.

str(out)

## List of 6
## ¢ medianB: Named num [1:31] 3499 3552 3711 3775 3887 ...

##  ..- attr(*, "names")= chr [1:31] "1986" "1987" "1988" "1989" ...
## $ medianH: Named num [1:31] ©0.081 0.0522 0.0771 0.0621 0.0849 ...
ftHt ..- attr(*, "names")= chr [1:31] "1986" "1987" "1988" "1989" ...
## $ msy : num 375

##t $ Bmsy : num 3088

## ¢ Hmsy : num 9.121

## $ Hlim : num 0.193

15.3.5 Other Potential Qutputs from catch-MSY

A useful summary of the catch-MSY analysis containing the primary results can be ob-
tained using the summarycMSY function.

summcMSY <- summarycMSY(answer,fish,final=TRUE)
str(summcMSY,max.level=1) # try max.level = 2

## List of 11
## $ countcolour: Named num [1:5] 3989 694 210 89 18

##  ..- attr(*, "names")= chr [1:5] "red_0" "black_2" "blue_4" "yello
w 6" ...

## $ meanmsy : num [1:4, 1:2] 381 375 381 278 72 ...

##  ..- attr(*, "dimnames")=List of 2

##t ¢ meanr : num [1:4, 1:2] 0.252 0.2419 0.2522 0.14 0.0723 ...
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ftHt ..- attr(*, "dimnames")=List of 2

##t ¢ meank : num [1:4, 1:2] 6315 6197 6322 3911 1176 ...
##  ..- attr(*, "dimnames")=List of 2

## $r : num [1:1011] ©.345 ©.168 0.309 0.219 0.22 ...
## $ K : num [1:1011] 5526 6913 5047 7823 6690 ...

## $ msy : num [1:1011] 477 290 390 428 368 ...

##t ¢ pickC :List of 6

## $ years : num [1:31] 1986 1987 1988 1989 1990 ...

## $ parbound :List of 5

## $ fish :'data.frame': 31 obs. of 7 variables:

As can be seen from the series of large objects in summcMSY, such as the r, K, and msy
components, only a portion of the n=5000 trials succeeded in meeting the constraints
that define an acceptable trajectory. This has removed all the parameter combinations
that were not productive enough or those that were too productive and retained only
those that were at least realistic/plausible enough to be consistent with what is known
about the fishery. If you run the last three lines of R code a few times and examine the
structure of the summcMSY object you will notice that each time the length of the 7, K,
and msy objects usually differs. This merely exemplifies the fact that the randomly se-
lected parameter combinations lead to different numbers of successful trajectoris each
time through. To obtain a visual representation of a selection of the successful trajecto-
ries you can use the function plottrajectory (see its help function for a description of all
the options).

It should be noted that the catch-MSY method uses a two stage strategy. Unless set oth-
erwise, it first sets the initial K values between the maximum catch and 60 times the
maximum catch. This invariably leads to very many successful trajectories that suggest
a very large initial biomass combined with a very low population growth rate. While
mathematically this may match the productivity of the stock, as suggested by the time-
series of catches, it is biologically less plausible than lower K values associated with
higher r values (these two parameters are negatively correlated). To avoid the less plau-
sible combinations in their original code Martell and Froese (2013) search for the small-
est K value that will still give rise the overall average MSY value across the successful
trajectories found in the first run through. Once a more restricted initial K range has
been found then the n replicates are repeated and the final result put into the R/ object
inside answer. The results from the first run through the replicates are put inside the
Rfirst object.

Once the summcMSY object has been generated (Figure 16) the results can be summa-
rized by using the plotcMSY6 function. This generates a plot of the combinations of »
and K and whether they succeeded or not. In addition it displays the distribution of the
successful r, K, and MSY values.

out <- plottrajectory(answer$R1l,fish$year,fish$catch,answer$parbound,

oneplot=FALSE,Bmax=25000,
scalar=1.0,plotout=TRUE,plotall=15)
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Figure 15. 15 examples of different 7-K combinations only illustrating those trajectories
that were plausible. The number at the top of each plot is the predicted MSY for the
given parameter pair. The r and K values are the y-axis labels in each case. The final
plot is the catch history with the predicted average MSY as the blue line.

plotcMSY6(summcMSY, fish[,"catch"],label=glb$spsname)
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Figure 16. A plot of the catch trajectory with the MSY and its 90th percentiles shown
as horizontal lines. The two colour plots are a plot of the K vs » combinations with the
red dots depicting failure and then the colours from black to green denote more combi-
nations of initial depletion that succeeded for each »-K pair. The right-hand plot is the
log-transformed version of the left-hand plot. The histograms describe the distributions
of the successful 7-K pairs and the resulting MSY. The red lines are the median and the
90th percentile confidence intervals.
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15.3.6 Interpretation of the plotcMSY6 plot

The histograms along the bottom row of Figure 16 illustrate the distribution of the suc-
cessful values of each parameter and the resulting MSY from the parameter pairs. Be-
cause of the truncation of the K values in the two phase operation of the analysis it
should not be surprising if the ‘Successful K’ histogram is flat up against the right hand
bound. However, if either of the » or left-hand side of the K plots is hard up against the
bounds, it would be worthwhile exploring whether different initial values of the » and K
values are less constrained. This can be done using a different resilience value or by ex-
plicitly altering the start r and the start K values. Around the jurisdictions, examples
were seen where parts of the 7 or K histograms were flat topped, which suggests there is
insufficient information in the catches to adequately discriminate between potentially
successful trajectories and failures.

Reading Martell and Froese (2013), one can see that the method relies on the notion that
a fishery is expected to begin small, build up catches, and then those catches lead to de-
pletion, so that they cannot be maintained and the catches drop. Of course, in Australia
there can be many reasons for catches to drop other than the stock becoming depleted.
There may be management interventions that lead to reduced catches (imposed catch
limits, large marine closures, gear restrictions, and other management steps). In such sit-
uations where catches are reduced before stock depletion leads to reduced catches, the
catch-MSY seems likely to generate conservative estimates of sustainable production.
Other issues that can arise are that catches have only ever increased or stayed stable.
Without an on-going decline in catches at some period in the fishery, the model used in-
side the catch-MSY will have no way in which to characterize maximum productivity,
and it may give simply an approximate estimate of the average catches. Obviously care
should be taken to understand the data and the fishery, when interpreting the outputs
from the catch-MSY analysis.

The Catch-MSY method requires a catch history and some prior notion of the relative
resilience or expected productivity of the species being fished. The basic idea is that the
method begins with a given range of initial depletion and final depletion levels along
with initial ranges of the two parameters describing the Schaefer model; these are the
and K parameters representing the un-restricted population growth rate and the popula-
tion carrying capacity respectively. The catch-MSY method is based on a review of very
many catch histories and relies on an expectation of catches increasing as a fishery de-
velops and then decreasing as the catches impact the stock. The statistics can begin at
the start of a fishery or after it has already developed, hence the initial depletion is set
by comparing the initial catches with the maximum catches. The initial ranges for the
model parameters depend on the assumed productivity or resilience of the species of
which four options exist - “verylow”, “low”, “medium”, and “high”, with associated r
ranges of (0.015 - 0.125), (0.1 - 0.6), (0.3 - 0.8), and (0.6 - 1.5). In the original code as-
sociated with the Martell and Froese (2013) paper they only used three resilience cate-
gories, omitting the “medium”. The initial range of the unfished biomass is also very
broad with a minimum set at the maximum catch and a maximum set at 60 times the
maximum catch.

In case these particular combinations do not suit what is known or suspected of a partic-
ular species, the run_cMSY function now includes the option to set your own limits on
both the initial values for » and K. A call to either formals(run_CMSY) or to ?run_cMSY
will illustrate the syntax and the names of start r and start K. In each case they require
a short vector of two numbers (e.g. start r=c(0.015,0.3))
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15.3.7 Results from the Catch-MSY Analysis

The plots above (Figures 15 and 16) illustrate the results and provide some information,
but it is also helpful to obtain a tabulation of the outcome of the analysis. For that we
use the pulloutStats function. This generates another object containing a matrix of 7, K,
MSY, and current depletion percentiles and mean values. In addition, it contains the suc-
cessful biomass trajectories and those same trajectories translated into depletion levels.

results <- pulloutStats(answer$R1)
print(str(results,max.level=1))

## List of 3

## $ output : num [1:4, 1:8] 1.38e-01 4.19e+03 2.61e+02 6.95e-02 2.42
e-01 ...

ftHt ..- attr(*, "dimnames")=List of 2
## ¢ traject: num [1:2208, 1:35] 1479 4303 4816 2069 2498 ...
ftHt ..- attr(*, "dimnames")=List of 2

##t ¢ deplet : num [1:2208, 1:35] 0.268 ©.622 0.697 0.41 ©.319 ...
##  ..- attr(*, "dimnames")=List of 2
## NULL

Table 2. The results$output statistics from the Catch-MSY analysis. The 2.5%Perc and
97.5%Perc are the respective percentiles describing the spread of the trajectories

(i.e. not confidence intervals around the mean). The % columns are the quantiles so that
the 50% columns represents the medians.

2.5%Perc Mean 97.5%Perc 2.5% 5% 50% 95% 97.5%
r 0.14 0.24 0.43 0.14 0.15 0.24 0.39 0.41
K 4188.76 6196.66 9167.06 3911.06 4220.37 6479.79 7940.26 8016.45
MSY 260.69 374.82 538.92 264.36 277.55 37390 51897 554.18
CurrDepl 0.07 0.32 0.57 0.07 0.09 0.34 0.49 0.49

These results are fine as far as they go, but in order to obtain some notion of stock status
it is necessary to trace the successful trajectories in terms of how their depletion has
changed through time. For this we can use the same plottrajectory function as used pre-
viously, only this time changing the oneplot parameter to TRUE, which overrides the
plotall parameter. The Bmax parameter can be adjusted to obtain an acceptable spread
of the results.

out <- plottrajectory(answer$R1l,fish$year,fish$catch,answer$parbound,
oneplot=TRUE,scalar=1.0,plotout=TRUE,plotall=7)
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Figure 17. The top plot is of the successful biomass trajectories and the red line is the
mean in each year. The bottom plot is of the annual harvest rate; note a few seemingly
successful trajectories lead to harvest rates > 0.5. Associated with these high harvest
rates note also that the final biomass for many trajectories is very low, which may also
be deemed unrealistic.

Given each biomass trajectory has an associated K value, it is possible to translate the
biomass trajectories into depletion trajectories. There are two ways to do this. The sim-
plest way is to use the pulloutStats function (see example above) which outputs both the
biomass and depletion matrices as a byproduct to estimating the mean MSY and current
depletion.

results <- pulloutStats(answer$R1)
# Note the use of constC=0, we are not doing any projections yet so no
constant catches
effectC <- plotconstC(results$deplet,endyear=2017,constC=0,1limit=0.2,t
arget=0.4,
console=TRUE,intensity=NA, contours=TRUE)

## Year PltLim% PgtTargk Mean Median Pincrease
## 2013 2013 0.2595109 0.05525362 0.2682119 0.2715415 0.1942935
## 2014 2014 0.2758152 0.07835145 0.2682592 0.2754918 0.1376812
## 2015 2015 0.2468297 0.16666667 0.2873085 0.3004043 0.1621377
## 2016 2016 0.2318841 0.26811594 0.3039083 0.3187994 0.1884058
## 2017 2017 0.2182971 0.35009058 0.3201295 0.3389702 0.0000000

abline(h=c(0.2,0.3,0.4),col=3,1wd=2)
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Figure 18. A plot of the successful depletion trajectories with the mean and median an-
nual depletion marked. The lower red line is the default 0.2B0 limit reference point,
while the upper is the input target reference point. The green line denotes the end of the
final year in which data are available. If the abbreviated table under the plot is not
wanted (all the information will be in effectC) then the console=TRUE should be set to
console=FALSE. The red dashed lines are the inner 80th and 90th percentile bounds but
if not wanted set contours=FALSE.

The PItLim% column in the console output is the proportion of trajectories that are <
limit, whereas the PgtTarg% is the proportion of trajectories that are greater than the tar-
get. Given the great uncertainty in these analyses it should not be surprising that both of
these increase over time, which suggests the total spread of the outcomes is increasing.
The question that needs answering is whether the average is increasing or decreasing.
Here, both the mean and median are increasing, though only by about 4 - 5 % across the
five years prior to the final year of data. As the average stock size increases, the rate of
increase would be expected to first increase and then decline as the stock moved, on av-
erage, above the biomass that produces the maximum productivity (Busy).

The default plot of the depletion in Figure 18 has grey lines of equal density, but if one
wants to attempt to generate a plot with the density of colour matched to the density of
trajectories, then it is possible to include a number in the intensity parameter (Figure
19). The value input determines the density of the trajectories required to obtain full col-
our intensity and this will undoubtedly vary by fishery and so will need to be used inter-
actively to find a value that generates a satisfactory plot. If the plot is to be printed then
be sure to save the plot as a bit map or .png file so that the varying density and transpar-
ency is retained in the plot.

effectC <- plotconstC(results$deplet,endyear=2017,constC=0,1limit=0.2,t
arget=0.4,

console=FALSE,intensity=30)
abline(h=c(0.2,0.3,0.4),col=3,1wd=2)
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Figure 19. A plot of the successful depletion trajectories with the mean and median an-
nual depletion marked, with the density of trajectories represented by different intensity
of colour. The lower red line is the default 0.2B0 limit reference point, while the upper
is the input target reference point. The green line denotes the end of the final year in
which data are available. The intensity value may need to be adjusted empirically to ob-
tain a satisfactory plot.

In Figure 19 different intensity of colours are used to denote the paths followed by most
trajectories. In this case between 1995 and about 2001 most lines are towards the top of
the overall path, but are moving downwards until between 2002 and 2008, when the
median line is biased low, with it being closer to the bottom of all paths than the top.
After that most paths are moving upwards with the median once again shifting closer to
the upper margin than the lower.

15.3.8 Constant Catch Projections

From the table and the plot it is clear that the average depletion is quite a way below the
selected target. We need to remember that this is a data-poor assessment and that cur-
rently there are no agreed harvest strategies or harvest control rules. Nevertheless, if we
project the currently potentially successful trajectories forward under different constant
catch scenarios we will be able to determine what levels of catch will lead to the stock
increasing (on average) and what will lead to decreases (on average). Depending on
where the assessment indicates a species is laying will then determine what manage-
ment action to advise to manage a stock in a desired direction (whether that be to in-
crease or decrease its current state).

output <- doconstC(answer$R1l,projn=10,constCatch=250,lastyear=2017,1im
it=0.2,
target=0.48, console=FALSE)
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## Year PltLim% PgtTargk Mean Median Pincrease
## 2017 2017 0.2182971 0.08333333 0.3201295 0.3389702 0.0000000
## 2018 2018 0.2264493 0.15670290 0.3272867 0.3501942 0.7047101
## 2019 2019 0.2336957 0.22780797 0.3344058 0.3627125 0.7047101
## 2020 2020 0.2382246 0.28260870 0.3420144 0.3745919 0.7047101
## 2021 2021 0.2409420 0.32201087 0.3502623 0.3864780 0.7047101
## 2022 2022 0.2418478 0.35552536 0.3589386 0.4010272 0.7047101
## 2023 2023 0.2454710 0.38768116 0.3678768 0.4158672 0.7047101
## 2024 2024 0.2477355 0.42527174 0.3769153 0.4300547 0.7047101
## 2025 2025 0.2527174 0.45018116 0.3859903 0.4440718 0.7047101
## 2026 2026 0.2558877 0.47554348 0.3948929 0.4597548 0.7047101
## 2027 2027 0.2567935 0.49592391 0.4036456 0.4741102 0.7047101

Figure 20. A plot of the successful depletion trajectories followed by five years of pro-
jection. The limit and target reference points are depicted by the two fine red lines. The
green line denotes the end of the final year in which data are available, with projections
to the right. The mean depletion varies away from the median because an array of tra-
jectories go extinct on projection

The projections suggest that a total catch of about 250 t would be expected to lead, on
average, to a small increase in stock levels over the five years. By exploring the out-
comes with smaller and larger constant catches, the implications can be made clear and
appropriate decisions about catch levels or triggers could then be made in an attempt to
meet whatever objective is desired for the fishery. What seems to be implied by Figure
20 is that the stock in question was overfished between about 2003 — 2010, but as the
plot of catches vs MSY from the plotcMSY6 analysis illustrate, after 2003 catches were
reduced significantly and that led to the stock rebuilding, until in 2017 it was estimated
(with great uncertainty) to be about 30% B0. In 2017, given the stock is rebuilding and
is already above the limit reference point, it can be claimed that it is sustainable and that
over-fishing is not occurring.

15.3.9 Robustness of MSY Estimate

While it is true that the ranges of the successful » and K combinations is quite wide, be-
cause there is a strong negative correlation between these two parameters, the spread of
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the MSY estimates is not so large in relative terms. This can be illustrated by using the
trendMSY function which estimates the MSY implied by a series of slices down the K
axis from the scatter of 7 - K combinations. Given that a function of » and X, it is possi-
ble to map estimated MSY onto the plot of 7 - K combinations, along with the estimated
mean trend from the successful » - K combinations (Figure 21).

r <- summcMSY$r

K <- summcMSY$K

meanmsy <- trendMSY(summcMSY$r, summcMSY$K,inc=300)

centr <- central(r)

centK <- central(K)

means <- central(summcMSY$msy)

avMSY <- means["Geometric","Mean"]

# plotprep(width=7,height=4.0)
par(mfrow=c(1,1),mai=c(0.45,0.45,0.05,0.05),0ma=c(0.0,0,0.0,0.0))
par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
plot(r,K,type="p",pch=16,col=rgb(1,0,0,1/3),panel.first=grid())

rval <- seq(0.1,0.6,length=100)

kval <- (4 * avMSY)/rval # calculate the K value that would generate
avmMsy

lines(rval, kval,col=4,1wd=2)

pickvalid <- which(meanmsy[,"N"] > @)

lines(meanmsy[pickvalid, "rcenter"],meanmsy[pickvalid, "Kcenter"], lwd=2,
col=3)

points(centr[2,1],centK[2,1],pch=16,cex=2,col=1)

5000 6000 7000 8000

4000

Figure 21. A plot of the successful » - K combinations with the estimated mean MSY
overlaid in blue, and the mean MSY for horizontal slices of the cloud of successful » - K
combinations derived from trendMSY. Note that the overall mean MSY (the black dot)
coincides approximately with the point at which the blue and the green lines begin to di-
verge (as r increases and K decreases).

One can imagine contours of MSY running across the » - K parameter space, and the

catch-MSY analysis discovering which » - K combinations are consistent with the possi-
bilities (Figure 22).
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r <- summcMSY$r
K <- summcMSY$K
avMSY <- seq(100,600,100)
nMSY <- length(avMSY)
# plotprep(width=7,height=4.0)
par(mfrow=c(1,1),mai=c(0.45,0.45,0.05,0.05),0ma=c(0.0,0,0.0,0.0))
par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
plot(r,K,type="p",pch=16,col=rgb(1,0,0,1/3),panel.first=grid(),ylim=c(
2500,9000) )
rval <- seq(0.1,0.6,length=100)
for (i in 1:nMSY) {

kval <- (4 * avMSY[i])/rval # calculate the K value that would gen
erate avMSy

lines(rval,kval,col=4,1lwd=2)
}
X <- seq(0.15,0.375,length=nMSY)
yval <- 4 * (avMSY/x)
for (i in 1:nMSY) text(x[i],yval[i],avMSY[i],cex=1,font=7,pos=4)

Figure 22. A plot of the successful » - K combinations with an array of implied MSY
values, as implied contours across the » - K parameter space. Some contours would un-
der-estimate the implied productivity while others would over-estimate what was con-
sistent with available observations.

15.4 Significant Unknown Recreational Catches

It is often the case that obtaining accurate estimates of recreational catch is rarely done,
even when it is known that they can rival commercial catches. In jurisdictions where
there are significant recreational catches of commercial species, there remains a need to
assess the stock status of such species and likely also provide management advice as to
what would constitute sustainable commercial catches. As long as there is some notion
of the proportion of recreational catches, it is still possible to apply the catch-MSY as-
sessment method to a time-series of commercial catches. To demonstrate the effect of
having significant amounts of recreational catch on top of a commercial catch, we can
conduct an analysis using one of the data sets internal to simpleSA, then that can be
compared to the same analysis after the catches have been proportionally reduced in
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some manner as if the total catch was made up of known commercial catches and un-
known recreational catches. In this preliminary exploration we will examine a determin-
istic reduction, keeping just 80%, and 60% of known commercial catches while repeat-
ing the analysis. To include some variation we can reduce the original catches by a ran-
domly varying proportion around some selected mean. Finally, we can conduct the anal-
ysis on a deterministically reducing commercial proportion down from say 80% to 50%
over the time period of data available.

We can use the invert data set. First, we obtain the expected outcome by analysing the
full data set.

library(simpleSA)
data(invert)

fish <- invert$fish
glb <- invert$glb

reps <- 5000 # one would run at least 20000, preferably more
answer <- run_cMSY(fish,glb,n=reps,sigpR=0.025)

summcMSY <- summarycMSY (answer,fish,final=TRUE)

ans <- pulloutStats(answer$R1)

round(ans$output[,1:3],3)

#it 2.5%Perc Mean 97.5%Perc
#H# r 0.127 0.231 0.421
## K 4309.742 6480.576 9744.866
## MSY 253.399 374.364 553.074
## CurrDepl 0.059 0.312 0.566

So, the mean current depletion is estimated to be about 0.31, with an MSY of about 370
tonnes. Now we can answer what would happen if the commercial catch data was only
80% of the original (with variation about that 80% each year; this implies there would
be unknown recreational catches of about 20% plus or minus some variable amount
each year) while the CPUE data remains unchanged. The deterministic reductions gave
very precise results, so this exposition begins with the somewhat more realistic variation
around a given average proportion of recreational catches.

commprop <- 0.8

propcom <- rnorm(31,mean=commprop,sd=0.025) # 31 equals the number of
years

fishC <- fish

fishC[,"catch"] <- fishC[,"catch"]*propcom

answerC <- run_cMSY(fishC,glb,n=5000,sigpR=0.025)

ansC <- pulloutStats(answerC$R1)

#str(ans10)

round(ansC$output[,1:3],3)

#H# 2.5%Perc Mean 97.5%Perc
## r 0.119 0.222 0.412
## K 3540.525 5416.386 8286.128
## MSY 196.170 299.956 458.653
## CurrDepl 0.056 0.308 0.561

round(ans$output[,1:3],3)

#it 2.5%Perc Mean 97.5%Perc
## r 0.127 0.231 0.421
## K 4309.742 6480.576 9744.866
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## MSY 253.399 374.364 553.074
## CurrDepl 0.059 0.312 0.566

msy <- ansC$output["MSY","Mean"]/ans$output["MSY", "Mean"]
depl <- ansC$output[“CurrDepl”,"Mean"]/ans$output["CurrDepl”, "Mean"]
cat("reduced catch MSY/full catch MSY = ", msy, mean(propcom),"\n")

## reduced catch MSY/full catch MSY 0.8012429 0.8057442

cat("Proportion of Current Depetion = ",depl,"\n")

## Proportion of Current Depetion = ©0.9873974

You could try different values for the commprop value to see the effect of the recrea-
tional proportion increasing. But it appears that the impact of a 20% decrease in known
catches is to reduce the sustainable production available to commercial operators by
about 20% (and, similarly, a 40% reduction leads to about a 40% reduction in produc-
tion).

As opposed to the mean recreational catch proportion staying approximately stable
through time, it is also possible to examine the effect of a temporal trend in the propor-
tion of commercial catches. Here we inspect the effect of the commercial proportion
changing from 80% to 50% (unknown recreational catches change from 20% to 50%)
over a 31 year period. Normally one would use at least 20000 replicates rather than
5000, but for purposes of run time, the example is limited to the latter.

propcom <- seq(0.8,0.5,length=31) # 31 equals the number of years
fishC <- fish

fishC[,"catch"] <- fishC[,"catch"]*propcom

answerC <- run_cMSY(fishC,glb,n=5000,sigpR=0.025)

ansC <- pulloutStats(answerC$R1)

round(ansC$output[,1:3],3)

#it 2.5%Perc Mean 97.5%Perc
#H# r 0.111 0.205 0.376
## K 3321.514 4953.451 7387.198
## MSY 165.480 253.686 388.910
## CurrDepl 0.063 0.313 0.563

round(ans$output[,1:3],3)

## 2.5%Perc Mean 97.5%Perc
## r 0.127 0.231 0.421
## K 4309.742 6480.576 9744.866
## MSY 253.399 374.364 553.074
## CurrDepl 0.059 0.312 0.566

msy <- ansC$output["MSY","Mean"]/ans$output["MSY", "Mean"]
depl <- ansC$output[“CurrDepl”,"Mean"]/ans$output["CurrDepl”, "Mean"]
cat("reduced catch MSY/full catch MSY = ", msy, mean(propcom),"\n")

## reduced catch MSY/full catch MSY = 0.6776468 0.65
cat("Proportion of Current Depletion = ",depl,"\n")

## Proportion of Current Depletion = 1.003029
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If this code chunk is run numerous times the outcomes suggest that the estimate of sus-
tainable commercial catch may be biased slightly high but, on the other hand the deple-
tion level is invariably very close to that obtained when using all the catch data.

These two sets of scenarios suggest that if we consider an unknown recreational catch to
reflect one of these two scenarios (randomly varying around some relatively constant
proportion of the commercial catch or approximately following some trajectory from
one proportion to a higher proportion of recreational catch) then it should still be possi-
ble to get an estimate of the stock’s current depletion level while, at the same time, gen-
erating potential management advice concerning the commercial fishery. These explora-
tions need to be more fully investigated but, at least with the Catch-MSY approach, the
conclusions appear to be acceptable. The results can even provide a phase plot of pre-
dicted biomass against harvest rate, but obviously only for the commercial component.
These results are consistent with those of Rudd and Branch (2017) who found very sim-
ilar results using fitted stock assessments in a management strategy evaluation frame-
work rather than catch-only methods.

cMSYphaseplot(answerC,fishC)
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This phase plot can then be compared with the analysis that derived from the full dataset
of catches:

cMSYphaseplot (answer, fish)
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There are clear differences between the two phase plots in that the analysis of partial
catch suggests that there was a time that the stock went below the limit reference point
but overall, the trajectory obtained is approximately the same as that for the full catch
data set.

It is not surprising that differences occur between those analyses that capture all catches
and those that include a proportion of unknown catches, because the productivity now
appears to be different. Nevertheless, the same general pattern observed with all data re-
mains, even with the truncated data using only the commercial catches. In reality, with a
fishery having a significant recreational proportion, we would only have the ‘truncated’
data but these explorations indicate that it should still be possible to obtain both a status
and management advice (at least for the commercial proportion of the fishery) under the
assumption that the relative proportion would not change further. Of course, if there is a
temporal trend in the proportion of recreational take relative to the commercial take,
then only advice in the short term could be deemed useful.

15.5 Plausible Levels of Harvest Rate

Even though the overall productivity of the diverse Australian fisheries may be rela-
tively high, the productivity of many individual Australian fisheries tends not to be as
great as equivalent fisheries in the northern hemisphere. Many commercial Australian
fish species seem to live longer than northern hemisphere counterparts, and have lower
overall productivity by species, and hence naturally cannot have such high catches. It
seems unlikely, therefore, that the fishing mortalities observed in places such as the
North Sea, where F' values of 1.0 (equivalent to harvest rates of between 0.6 and 0.7
each year) have been common, are not plausible, and certainly not sustainable, here.
The catch-MSY method only uses the available time-series of catches, and its random
selection of 7-K combinations can select highly productive combinations which enable
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the stock to grow well beyond plausible bounds (which are rejected). There are other
combinations of r and K, whose implied productivity (from the Schaefer model used
within the catch-MSY to reflect the stock dynamics) is far too low, so that any trajecto-
ries go extinct (also rejected). Then there are the combinations that imply a productivity
that allows for the catches taken but stays within the other constraints implied by the re-
silience and starting catch levels for the species (accepted trajectories). However, within
those accepted trajectories there will be some parameter sets that imply productivities at
which the populations only barely survive within the constraints. It is also implied that
some of these trajectories reflect relatively high annual harvest rates. For example, using
the invert data set we can obtain some trajectories with harvest rates greater than 0.5
(50% of exploitable biomass taken every year).

# Library(simpleSA)

data(invert)

fish <- invert$fish

glb <- invert$glb

answer <- run_cMSY(fish,glb,n=5000,sigpR=0.025,finaldepl=c(0.05,0.5),m
aximumH=1.0)

ans <- pulloutStats(answer$R1)

round(ans$output[,1:3],3)

#it 2.5%Perc Mean 97.5%Perc
## r 0.116 0.216 0.403
## K 4477 .619 6897.759 10625.978
## MSY 243.057 372.339 570.386
## CurrDepl 0.056 0.309 0.561

out <- plottrajectory(answer$R1l,fish$year,fish$catch,answer$parbound,
oneplot=TRUE,scalar=1.0,plotout=TRUE,plotall=7)
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Figure 23. A plot of the implied successful biomass trajectories and their implied an-
nual harvest rates generated by the function plottrajectory with the option oneplot set to
TRUE. The red lines are the median values, the green line is at a harvest rate of 0.5, for
reference.
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In Figure 23, some of the harvest rates in the final years approach 0.5, but between 2000
and about 2007, some trajectories fully breach the 0.5 line and often stay close to it. Part
of this reflects the default final depletion range of ¢(0.05,0.5) given if catches in the fi-
nal year are less than half the maximum catch (a selection which ignores the fact that
management intervention or marketing issues may have controlled catches, rather than
an inability to catch). However, even if we change the lower final depletion value to, for
example, 0.15, the final year high harvest rates that survive, the period from 2000 still
appears to be exceptional, even though most of them were reduced.

In order to conduct a sensitivity on the implications of there being an upper limit of har-
vest rate, a new maximumH parameter has been added to the run_cMSY function. Its de-
fault value is set to 1.0, so that all harvest rates are possible (obviously one could not
take more than 100% of what is present!). If we alter the value to 0.5, the outcome
changes.

With this extra constraint, the successful biomass trajectories are much more restricted,
and the harvest rates far lower. This change only improves the depletion level by about
3%, but the productivity, as measured by the MSY is reduced from about 370 t down to
333 t, a reduction of 10%. It may appear counterintuitive that removing some of the
lower trajectories (note the increase in the lower 95th percentile) leads to a lower
productivity, but the important parts are reflected in the mean values of , the population
growth rate. By comparing the outputs related to Figures 23 and 24, the reduction in r
should be clear. It is this reduction that has led to the decrease in productivity.

Such a sensitivity to maximumH is very dependent upon local knowledge of the history
of any fishery. Productivity is also partly determined by the resilience attributed to a
species. One could also run sensitivities on what resilience was given to a species. The
importance of that is that the resilience determines the implied bounds on r used in the
search for successful trajectories. Of course, it is possible to modify these, if it is felt
necessary, by directly entering values for start r as a vector of two numbers.

answer <- run_cMSY(fish,glb,n=5000,sigpR=0.025,finaldepl=c(0.05,0.5),m
aximumH=0.5)

ans <- pulloutStats(answer$R1)

round(ans$output[,1:3],3)

## 2.5%Perc Mean 97.5%Perc
## r 0.114 0.174 0.265
## K 6038.608 7737.059 9913.227
## MSY 234.142 336.988 485.009
## CurrDepl 0.085 0.325 0.564

out <- plottrajectory(answer$Rl,fish$year,fish$catch,answer$parbound,
oneplot=TRUE,scalar=1.0,plotout=TRUE,plotall=7)
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Figure 24. A plot of the implied successful biomass trajectories and their implied an-
nual harvest rates generated by the function plottrajectory with the option oneplot set to
TRUE and the maximumH parameter set to 0.5. The red lines are the median values, the
green line is at a reference harvest rate of 0.5.

15.5.1 Other Sensitivities

We have seen it is possible to examine the implications of changing the initdepl and fi-
naldepl, along with changing the start r and start K. A further sensitivity that ought to
be conducted relates to the process error term sigpR. This term aims to attempt to cap-
ture un-accounted for variation in the stock dynamics between the years. The simple
model is so simple it fails to capture many sources of natural variation. It is worthwhile
examining alternative values for sigpR. In particular, it is worthwhile effectively turning
this source of variation off to see the effect of almost deterministic dynamics. This can
be achieved by setting sigpR = 0.

# Library(simpleSA)

# normally one would run 20000+ replicates, but for speed we use 5000
answer <- run_cMSY(fish,glb,n=5000,sigpR=0,finaldepl=c(0.05,0.5),maxim
umH=1.0)

ans <- pulloutStats(answer$R1)

round(ans$output[,1:3],3)

#it 2.5%Perc Mean 97.5%Perc
## r 0.127 0.231 0.421
## K 4279.238 6586.085 10136.503
## MSY 261.929 380.815 553.661
## CurrDepl 0.054 0.307 0.560

out <- plotconstC(ans$deplet,endyear=2017,constC=0)
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Figure 25. A plot of the implied successful depletion trajectories when the sigpR pa-
rameter is set to 0. The 23 different starting depletion levels between the default 0.15 -
0.7 can now be clearly seen. The lowest values are the most sparse in terms of success-
ful trajectories.

## Year PltLim% PgtTargk Mean Median Pincrease
## 2013 2013 0.2857741 0.00000000 0.2619774 0.2644233 0.2230126
## 2014 2014 0.3087866 0.00000000 0.2610978 0.2668415 0.1631799
## 2015 2015 0.2744770 ©.00000000 0.2780376 0.2879090 0.1824268
## 2016 2016 0.2560669 0.00292887 0.2927127 0.3070091 0.1945607
## 2017 2017 0.2476987 0.06820084 0.3065656 0.3233666 0.0000000

The assumption that a final depletion level of 5% (0.05) is plausible should be ques-
tioned for many Australian fisheries when the catches remain about 1/3 of the maximum
and the CPUE barely changes. As always, such data-poor stock assessments should only
form part of a weight-of-evidence argument supporting a claim for a set of management
advice and stock status determinations.

plotfishery(fish,glb)
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Figure 26. A plot of the reported catch history and the standardized CPUE for the ex-
ample data set used in the vignette.
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16 spm - Surplus Production Models

16.1Introduction
16.1.1 Which Assessment to Apply

Which stock assessment method to apply to fisheries for data-poor to data-moderate
species will depend upon what fisheries and biological data are available but also, im-
portantly, on what management objectives need to be met within the jurisdiction in
question. It may be the case that the fishery for a particular species is of sufficient size
and value to warrant on-going monitoring and management towards some defined goal
for the stock. In such a case the assessment used should obviously be capable of gener-
ating some notion of the current state of the fishery and indicate what management ac-
tions may be required to eventually achieve the agreed management goals. But some
fisheries may be so minor that trying to actively manage them would be inefficient.
Nevertheless, to meet the requirements of the Status of key Australian Fish Stocks
(SAFS) one still requires some form of defensible stock assessment capable of deter-
mining whether the current level of fishing is sustainable.

16.2Surplus Production Modelling = spm

Surplus production models are one of the simplest analytical methods available that pro-
vides for a full fish stock assessment of the population dynamics of the stock being ex-
amined. First described in the 1950s (Schaefer, 1954, 1957), modern versions with dis-
crete dynamics are relatively simple to apply. This is partly because they pool the over-
all effects of recruitment, growth, and mortality (all the aspects of positive production)
into a single production function. The stock is considered solely as undifferentiated bio-
mass; that is, age and size structure, along with sexual and other differences, are ignored
(this is one reason these models are also called “biomass-dynamic models”). Details of
the equations used in the following analyses are provided in the Appendix of this vi-
gnette. You will also find details of the parameters and other aspects in the help files for
each of the functions (try ?spm or ?simpspm, or even ?simpfox). In brief, the model pa-
rameters are

- 1 the net population rate of increase (combined individual growth in weight, re-
cruitment, and natural mortality),

- K, the population carrying capacity or median unfished biomass (B)(not to be
confused with B;,;; (sometimes, in other contexts confusingly, also called By)),
and

- Binit» which is only required if the index of relative abundance data (usually
CPUE) only becomes available after the fishery has been running for a few
years, and after the stock has been depleted to some extent. B;,;; is set equal to
K if no initial depletion is assumed. If early catches are known to be small rela-
tive to the maximum catches taken (< 10 - 25% of maximum), then it may well
be true that initial depletion is only minor and might not be distinguishable from
unfished.

The minimum data requirements needed to estimate parameters for such models are

- atime-series of an index of relative abundance, and

- atime series of associated catch data.
The catch data can extend either end of the index data if it is available. In Australia the
index of relative stock abundance is most often catch-per-unit-effort (CPUE), but could
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also be some fishery-independent abundance index (e.g., from trawl surveys, acoustic
surveys), or both abundance indices could be used. The analysis will permit the produc-
tion of on-going management advice as well as a determination of stock status.

In this section we will describe the details of how to conduct a surplus production analy-
sis, and how to extract the results from that analysis, as well as plot out illustrations of
those results. Example code will be developed that a user can take and modify to suit
their own needs.

A standard workflow might consist of:

1. read in time-series of catch and relative abundance data. It would also be possible
to use the function checkdata to ensure all data columns required are present; you
could also consider the functions makespmdat and checkspmdat for similar pur-
poses, check their help files.

2. use a ccf analysis to determine whether the CPUE data are likely to be informative
and thus provide plausible results from the spm (or not!).

3. define/guess a set of initial parameters containing » and K, and optionally B;,;; =
initial biomass - used if it is suspected that the fishery data starts after the stock has
been somewhat depleted. The mean values from a catch-MSY analysis might be
suitable.

4. use DisplayModel to plot up the implications of the assumed initial parameter set
for the dynamics. This is useful when searching for plausible initial parameters
sets.

5. use optim or fitSPM to search for the optimum parameters once a potentially via-
ble initial parameter set are input.

6. use DisplayModel using the optimum parameters to illustrate the implications of
the optimum model and its relative fit (especially using the residual plot).

7. ideally one should examine the robustness of the model fit by using multiple differ-
ent initial parameter sets as starting points for the model fitting procedure.

8.  once satisfied with the robustness of the model fit use spmphaseplot to plot out
the phase diagram so as to determine and illustrate the stock status visually .

9. use bootspm to characterize uncertainty in the model fit and outputs.
10. Document and defend any conclusions reached.

Two versions of the dynamics are currently available: the classical Schaefer model
(Schaefer, 1954) and the Fox model (Fox, 1970). Both are described in Haddon (2011).
Prager (1994) provides many additional forms of analysis that are possible using surplus
production models and practical implementations are also provided in Haddon (2011).
See the model equations in the appendix for more details of each model.

16.3Application of the spm assessment

The minimum data requirements for a surplus production analysis are a time series of
catches and a time series of an index of relative abundance (CPUE). The years of catch
information can be longer than the years of cpue data. We will use the dataspm data set
built into the package to illustrate the use of the spm function. The checkdata function
indicates it would be possible to apply the catch-MSY, the spm, and the aspm analyses
to this data.

# Library(simpleSA) # 1include the Library before starting analysis
data(dataspm)
fish <- dataspm$fish
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# check data.frame has all required columns; not usually required; use
head(fish, 10)

checkdata(dataspm)

#it Method Possible
## catch-MSY TRUE TRUE
## spm TRUE TRUE
## aspm TRUE TRUE
## catch-curves catch-curves FALSE

16.3.1 Are the CPUE data informative?

The first step is to try to discover whether or not the available index data provide more
information than the catches alone. With a developed fishery, if the fishing (that is, the
catches), do indeed influence the stock dynamics, which would in turn affect the CPUE,
then we would expect that if catches increased the catch rates would eventually respond
by declining. We would also expect that, if catches declined, then the CPUE would, in
turn, eventually increase. Such a time-lagged negative correlation is something we can
look for statistically, if we have sufficiently long time-series of catches and associated
CPUE. To determine whether there are any significant negative correlations of CPUE
with catches, we need to conduct a sequence of correlation analyses on the original data
(timelag=0), then lag the CPUE data backwards by successive years, and repeat the cor-
relation analysis (e.g. the first time, with n-1 years this time, lag=-1).. Rather than do
this manually, it is possible to use a built-in R function ccf. To simplify things further,
there is a wrapper function in simpleSA called getlag. This uses the ccf function to run
the analysis, which can also generate a plot immediately. Alternatively, its output can be
used to produce a more visually appealing plot for inclusion in a report (check out
str(ans))

ans <- getlag(fish,plotout=FALSE)
par(mfrow=c(1,1),mai=c(0.5,0.45,0.05,0.05),0ma=c(0.0,0,0.0,0.0))
par(cex=1.0, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
plot(ans,lwd=3,col=2,main="",ylab="Cross-Correlation")

minim <- which.min(ans$acf)

text(9,-0.6,pasted("Optimum Lag = ",ans$lag[minim]),cex=1.1,font=7,pos
=4)

It should not be forgotten that when correlating catches and CPUE, we have catches in-
side the CPUE, so it occurs in both variables invovled in the correlation analysis, so we
should expect to see correlations. If effort were relatively constant, however, then if
availability increased and catchability remained the same, then catches would increase
and so would CPUE. Thus, the correlation at lag = 0 would be high. Despite such com-
plications it still appears to be the case that if no significant correlations at negative time
lags occur, then valid spm or aspm model fits to the CPUE data do not seem to occur.
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Figure 27. A plot of the ccf function output when applied to the fishery data within the
built in dataspm data set. The strong negative correlation at lags of -7 and -8 suggest an
spm or aspm analysis will likely generate plausible results, although the relatively
strong correlation at a lag of 0, may weaken any valid relationship between the catches
and subsequent CPUE values.

16.3.2 Fitting the spm Model

The first step is to start guessing initial parameter sets until an approximate solution pre-
sents itself. This eases the way for the minimization of the negative log-likelihood (-
verLL) used to fit the model to the data. If the initial guesses are too far from the final
solution, then the numerical methods used to conduct the minimization may fail to con-
verge on a viable solution. If the stock is thought to have been depleted before the col-
lection of data began, then three parameters (, K , and Binit) are required, otherwise
only two are needed. In the example below these parameters are » = 0.16, K = 6700, and
Binit = 3500 (which implies an initial depletion of 3500/6700, which is ~52%). When
making these initial guesses it is helpful to both plot the implied predicted trajectory of
CPUE against the observed CPUE, and include the estimation of the negative log-likeli-
hood. In that way, if the guessed model fit to the data begins to improve it is easily de-
tected by the negative log-likelihood getting smaller (more negative in this case).

The plot in Figure 28 merely represents the first guess at the parameters, so it is not sur-
prising that the model fit to data is not particularly impressive. Guessing a set of param-
eters and displaying their implications is an important first step to get the predicted
CPUE vaguely approximating the observed CPUE. Only once such an approximation is
produced should you think about trying to fit the model to the data formally. Model fit-
ting may produce sensible results before an approximate solution is found, but often it
does not. It is possible to use the catch-MSY method to generate first guesses at the »
and K parameters, but producing initial values for Binit, if it is to be used, is currently
down to trial and error.

# display the dynamics for a set of guessed initial parameters
pars <- c(0.16,6700,3500) # r, K, and Binit
negLL(pars,fish, simpspm)

## [1] -2.862565
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ans <- displayModel(pars,fish,schaefer=TRUE,target=0.48,addrmse=TRUE)
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Figure 28. A summary plot depicting the fit of the model using the guessed input pa-
rameters. These initial parameters have not been fitted. The plots include the predicted
depletion and catch through time. The green line is a loess fit to the observed CPUE,
while the red line is the fit using the parameters. The surplus production curve is given
twice, once with biomass and once with depletion on the x-axis. Finally, the log-normal
residuals between the fit and the data are illustrated.

Rules of thumb can also be used when attempting to find suitable starting points. A pos-
sible approximation for the unfished biomass (K parameter) can be obtained by multi-
plying the maximum catch by 10 to 15. As in the catch-MSY method, if the initial
catches in the available data are a reasonable proportion of the maximum catch then the
stock can be assumed to have been somewhat depleted prior to data collection. A value
between 0.5 to 0.7 times the selected K value could be used for a Binit value. One might
then search for an » value perhaps starting at something like 0.3. Remember that the »
parameter as a combination of both the reproductive rate and the natural mortality rate is
a net population growth rate, not only the reproductive rate. This means it may be lower
than a simple consideration of the species’ life history might suggest. A plausible set of
parameters would be where the implied predicted CPUE trajectory even roughly ap-
proximates the observed trajectory. The next step after finding a plausible starting point
is to attempt to use numerical methods to fit the data to the model.

The production curves are an expression of the - K parameters where, for the Schaefer
model, the MSY is assumed to occur at half the unfished biomass (K; see the model
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equations appendix). Using the production curve it will be possible to estimate the pre-
dicted catch at Brgyger and By im;t, and from those it will be possible to estimate the har-
vest rates at the target and limit reference points. Two of the potential input parameters
to the displayModel function are the /imit and target, which default to 0.2 and 0.48. Ob-
viously these can be set to whatever is relevant to the jurisdiction involved.

16.3.3 Fitting the Model to the Data

There are three functions available for working with the dynamics of surplus production
models. The most comprehensive in its output is spm, which generates the full dynamics
and returns a matrix of all values (try out <- spm(inp=pars, indat=fish, schaefer =
TRUE). The default Schaefer model dynamics are defined by the schaefer = TRUE pa-
rameter value. To use the Fox model, the option schaefer = FALSE should be used. The
model fitting only compares the observed CPUE with the predicted CPUE and does not
require the full dynamics to be produced. Thus, in order to speed up the iterative process
of numerically searching for a model fit, we also have a simplified simpspm function
that only outputs the predicted CPUE. This function also has a schaefer parameter to de-
termine whether to use a Schaefer or the Fox model. The simpspm function is used in
the model fitting, whereas if you inspect the code for displayModel, you will find that it
uses spm. In the following we will use optim which is a solver or minimizer that comes
as part of the base R installation. Check out ?optim or formals(optim), or more thor-
oughly you could read the Optimization task view at https://cran.r-project.org/. The code
below is a template that should work for you. The control list is not always needed but it
usually helps to keep the solver stable. If you check the code for negLL by typing that in
the R console without brackets, you will see there is code (na.rm=TRUE) to exclude
records where there may be catch data but no observed CPUE data. Ideally one has data
for both in each year, which generally leads to more stable outcomes, but in reality this
does not always occur.

Instead of using optim or one of the other non-linear minimizers in R, it is possible to
use fitSPM, which is a wrapper within simpleSA that contains two runs through the op-
tim fitting routine (see later).

pars <- c(0.16,6700,3500) # r, K, and Binit, implies a depletion of ~@
.52
cat("initial -ve log-likelihood ",negLL(pars,fish,simpspm),“\n")

## initial -ve log-likelihood -2.862565

bestSP <- optim(par=pars,fn=neglLL,callfun=simpspm,indat=Ffish,
control=1list(maxit = 1000, parscale = c(1,1000,1000)))
outoptim(bestSP) # outoptim just prints the results more compactly.

## $par :0.2424071 5173.363 2845.831
## $value : -12.12879

## $counts : 192 NA iterations, gradient
## $convergence : ©

## $message

# read the help files to understand what each component means.
# Schaefer model dynamics is the default so no need for schaefer=TRUE

Now plot up the optimum solution, in this case using the Schaefer model. Note in this
case that the final depletion is close to the approximate target green line defined by the
loess smoother fit to the observed data (a result of the addrmse=TRUE). Note also that
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the years in which catches were greater than the MSY (the red line in the top right plot)
were the years in which the stock declined.

ans <- displayModel(bestSP$par,fish,schaefer=TRUE,addrmse=TRUE)
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Figure 29. A summary plot depicting the fit of the optimum parameters. The plots in-
clude the predicted depletion and catch through time. The green line is a loess fit to the
CPUE data and the red line is the fit to CPUE using the parameters. The surplus produc-
tion curve is given with biomass and depletion on the x-axes (note the symmetry of the
production curve). Finally, the residuals between the fit and the data are illustrated.

There are some patterns in the residuals which may suggest there are other factors at
play on the fishery dynamics: it is clear there are some changes occurring which the
model is not sufficiently flexible to fit. Such simple surplus production models ignore
good and bad recruitment years and so some deviations from the observed are to be ex-
pected. Whether this is a sufficient reason for such patterned deviations would require
extra independent evidence to be determined.

str(ans)

## List of 11

## ¢ Dynamics :List of 5

## ..$ outmat : num [1:31, 1:8] 2846 3043 3141 3344 3448 ...
ftHt .. ..- attr(*, "dimnames")=List of 2

## e «o «.% ¢ chr [1:31] "1986" "1987" "1988" "1989"

## e «o «.% : chr [1:8] "ModelB" "Catch" "CPUE" "PredCE"

#  ..$ g : num 9.00034
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##  ..$ msy : num 314

ftHt ..$ parameters: num [1:3] ©.242 5173.363 2845.831

## ..$ sumout : Named num [1:9] ©.242 5173.363 2845.831 313.515 1
ftHt .. ..- attr(*, "names")= chr [1:9] "r" "K" "BO" "msy"

## $ BiomProd : num [1:100, 1:2] 100 151 202 254 305 ...

ftHt ..- attr(*, "dimnames")=List of 2

## .. ..$ : NULL

## .. ..$ : chr [1:2] "x" "y"

## $ rmseresid: num 1.03

## $ MSY : num 313

##t $ Bmsy : num 2611

##t ¢ Dmsy : num 0.505

## ¢ Blim : hum 1022

## ¢ Btarg : num 2509

##t ¢ Ctarg : num 313

## $ Dcurr : Named num ©.522

##  ..- attr(*, "names")= chr "2016"
##t $ rmse : num 0.137

The object output from displayModel has a number of parts including the dynamics,
various statistics relating to the model fit, the model parameters, and the production
curve. These are used by other functions to summarize and plot the outcomes. However,
first it would be best to be confident that one has a unique and optimum model fit.

The model fitted was the Schaefer model, so it may be worth considering the outcome
had the alternative Fox model been used. This can be implemented by making simple
changes to the same functions, as before. In this particular case the initial values that en-
abled a solution for the Schaefer model also work for the Fox model, but this is not al-
ways the case. Note the fit is slightly better, but in fact the predicted CPUE trajectories
barely differ. Note also the use of magnitude to estimate the scale of each parameter and
hence simplify the use of the parscale option within the control list.

pars <- c(0.16,6700,3500) # r, K, and Binit, implies a depletion of ~@
.52

cat("initial -ve log-likelihood ",negLL(pars,fish,simpspm,schaefer=FAL
SE),"\n")

## initial -ve log-likelihood -5.998584

parscl <- magnitude(pars)
bestSP <- optim(par=pars,fn=neglLL,callfun=simpspm,indat=Ffish,schaefer=
FALSE,

control=1list(maxit = 1000, parscale = parscl))
outoptim(bestSP )

## $par : 0.1382109 6129.655 2757.171
## $value : -12.35283

## $counts : 160 NA iterations, gradient
## $convergence : ©

## $message
# Fox model dynamics 1s set by schaefer=FALSE

ans <- displayModel(bestSP$par,fish,schaefer=FALSE,addrmse=TRUE)
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Figure 30. A summary plot depicting the fit of the optimum parameters. The plots in-
clude the predicted depletion and catch through time. The green line is a loess fit to the
CPUE data and the red line is the fit to CPUE using the parameters. The surplus produc-
tion curve is given with biomass and depletion on the x-axes (note the asymmetry of the
production curve). Finally, the residuals between the fit and the data are illustrated.

..$ outmat : num [1:31, 1:8] 2757 2949 3041 3240 3342 ...

Il1987ll "1988" Il1989"

..$ sumout : Named num [1:9] 1.38e-01 6.13e+03 2.76e+03 3.12e+

str(ans)

## List of 11

## ¢ Dynamics :List of 5

##

ftHt .- attr(*, "dimnames")=List of 2

it ..$ : chr [1:31] "1986"

ftHt .. ..$ : chr [1:8] "ModelB" "Catch" "CPUE" "PredCE"
#  ..$ g : num 9.00035

##  ..$ msy : num 312

ftHt ..$ parameters: num [1:3] ©.138 6129.655 2757.171

##

02 1.00e-08 ...

ftHt .- attr(*, "names")= chr [1:9] "r" "K" "BO" "msy"
##t ¢ BiomProd : num [1:100, 1:2] 100 161 222 283 344 ...
it .- attr(*, "dimnames")=List of 2

## ..$ : NULL

it ..$ : chr [1:2] "x" "y"

## $ rmseresid: num 1.03

## $ MSY : num 312

##t ¢ Bmsy : num 2232
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##t ¢ Dmsy : num 0.364

## $ Blim : nhum 1196

## ¢ Btarg : num 2963

##t ¢ Ctarg : num 298

## $ Dcurr : Named num ©.425

##  ..- attr(*, "names")= chr "2016"
## $ rmse : hum ©.137

16.3.4 Is the Solution the Global Optimum?

In the ideal world you should always try solving from multiple starting points. A gen-
eral function is under development, but in the meantime you could try using the fitSPM
function, which runs through the fitting process twice (in case the first run through
failed to find the best solution) (try ?fitSPM or just fitSPM with no brackets):

pars <- c(0.16,6700,3500) # the original starting point
origpar <- pars
N <- 20 # the number of random starting points to try
scaler <- 10 # how variable; smaller = more variable
# define a matrix for the results
columns <- c("ir","iK","iB@","iLike","r","K","Binit","-veLL","MSY","
Iters")
results <- matrix(@,nrow=N,ncol=length(columns),dimnames=1ist(1:N,co
lumns))
pars <- cbind(rnorm(N,mean=origpar[1],sd=origpar[1]/scaler),
rnorm(N,mean=origpar[2],sd=origpar[2]/scaler),
rnorm(N,mean=origpar[3],sd=origpar[3]/scaler))
# this randomness 1ignores the strong correlation between r and K
for (i in 1:N) {
bestSP <- fitSPM(pars[i,],fish,schaefer=TRUE)
opar <- bestSP$par
msy <- opar[l]*opar[2]/4
origlL <- negLL(pars[i,],fish,simpspm)
results[i,] <- c(pars[i,],origlLL,bestSP$par,bestSP$value,msy,best
SP$counts[1])
}
cat("\n\n\n")

kable(results[order(results[,"-velLL"]),],digits=c(9,3,3,3,3,3,3,3,3,3,
9))

ir iK iBO  iLike r K Binit -veLL MSY Iters
12 0 7054.497 4293.170 -3.715 0.242 5173.514 2846.040 - 313.513 284
13 0 8145.097 2969.235 3.457 0.242 5173.634 2846.102 - 313.513 174
17 0 6990.304 3561.189 12.675 0.242 5173.596 2846.153 - 313.514 176
11 0 7268.679 3221.805 -7.749 0.242 5173.411 2846.070 - 313.517 152
8 0 6261.529 3812.002 -5.681 0.242 5173.579 2845.957 - 313.514 148
15 0 8272.553 3682.467 -4.294 0.242 5173.522 2846.076 - 313.512 286
19 0 7360.068 3673.318 - 0.242 5173.531 2845.885 - 313.514 178
4 0 6662.154 3159.226 -4.168 0.242 5173.644 2846.229 - 313.515 232
3 0 6962.042 3375.847 -8.338 0.242 5173.402 2845.870 - 313.517 196
16 0 6670.589 3317.342 - 0.242 5173.573 2846.273 - 313.514 204
18 0 6350.766 3392.096 19.590 0.242 5173.231 2846.066 - 313.519 150
6 0 6025200 2799.990 55.220 0.242 5173.480 2845.871 - 313.510 110
2 0 7157.476 3917.461 - 0.242 5173.980 2846.404 - 313.509 156
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14 0 6166.552 3612.957 10.208 0.242 5173.961 2846.218 - 313.511 126
10 0 6549.646 3707.303 54.352 0.242 5173.852 2845.990 - 313.506 154
7 0 7244.823 3637.724 14967 0.242 5173.886 2846.159 - 313.513 212
20 0 5961.728 3425.592 53.339 0.242 5173.220 2845.616 - 313511 112
5 0 6463.095 2924876 47.923 0.242 5174.464 2846.192 - 313497 122
1 0 6189.280 2904.257 43.275 0.242 5174.868 2847.300 - 313490 92
9 0 6374.195 3467.723 12.473 0.243 5168.933 2842.278 - 313.572 124
cat("\n\n")

kable(apply(results,2,range),digits=c(o,3,3,3,3,3,3,3,3,3,0))

ir iK iBO iLike r K Binit -veLL MSY Iters

0 5961.728 2799.99 -10.776 0.242 5168.933 2842.278 -12.129 313.490 92
0 8272.553 4293.17 55220 0.243 5174.868 2847.300 -12.129 313.572 286

cat("\n\n")
round(apply(results,2,median),3)

## ir iK iB@ iLike r K Binit -
velLL MSY Iters
## 0.160 6666.371 3446.658 6.832 0.242 5173.576 2846.073 -12
.129 313.513 155.000

By repeating that analysis multiple times (more than 20, and try changing the scaler
variable) you will eventually find solutions that fall far from the most common opti-
mum. This is valuable in demonstrating that the initial starting values can be influential
on the final solution and that one should not immediately trust a solution found numeri-
cally until it has been tested and pushed around to determine how robust it is to initial
conditions. Notice that any outlying values, if they occur, are not common, so the use of
the median will usually exclude them from an estimate of the central tendency for the
parameters and stock properties such as MSY. We can use the median values of the op-
timum estimates when we are plotting up a phase plot of biomass against fishing mor-
tality to illustrate the stock status. Had we used a single optim run instead of the two
found inside fitSPM, more failures to find the optimum are likely to have occurred.

16.3.5 Produce a Phase Plot

In the SAFS process, determining the stock status is an important component. This is
simply achieved once you have run the function displayModel using the optimum pa-
rameters. First fit an optimum model (here we use the median estimates of a set of runs
like those produced in the previous example). Once we have applied the displayModel
function using the optimum parameter estimates, we can produce the phase plot.

pars <- c(0.2424, 5173.5972, 2846.0953) # r, K, and Binit, median valu
es

bestSP <- fitSPM(pars,fish,schaefer=TRUE)

ans <- displayModel(bestSP$par,fish,schaefer=TRUE,addrmse=TRUE)
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Figure 31. A summary plot depicting the fit after using the median optimum parameters
from the repeated starting points depicted in the analysis above. The plots include the
predicted depletion and catch through time. The green line is a loess fit to the CPUE
data and the red line is the fit to CPUE using the parameters. The surplus production
curve is given with biomass and depletion on the x-axes. Finally, the residuals between
the fit and the data are illustrated.

The object output by displayModel is used to generate a phase plot of the trajectory of
stock status implied by the surplus production model’s description of the fishery’s dy-
namics.

# plotprep(width=7,height=5.5) # to avoid using the RStudio plot windo

w

spmphaseplot(ans,fnt=7)

92 | Reducing the Number of Undefined Species



0

0.

Annual Harvest Rate
0 }I] l].}S

5

0.

= Blim Btarg

S 1 T T T | T

= 0 1000 2000 3000 4000 5000

Biomass

= 3
Eﬁ: Wi Mﬁ
2] =}
Uea | =

=
=T T | | T | T =
1985 1990 1995 2000 2005 2010 2015

Figure 32. The top plot is a phase plot of the predicted stock biomass versus the pre-
dicted annual harvest rate for the optimum model fit. The green dot is the starting year
and the red dot the final year. The limit reference points and tentative target reference
points are included to aid interpretation. The catch history and related harvest rates are
illustrated in the lower plot also, with an aim to aid interpretation of the status trajectory
(in which time is only implied).

In the case illustrated, the current status is both above the limit and the target biomass
reference points, and below the limit and target harvest rate reference points, and so can
be safely concluded to be sustainable. A more detailed summary would conclude no
over-fishing and that the stock is not over-fished. The catch history indicates that the
first eight years of catches led to harvest rates sufficiently low as to allow the stock to
increase in size, but that as catches increased from 1994 onwards, they quickly rose
above the harvest rate that would, in theory, maintain the stock at its target. This led to
the stock declining over the following 10 years, after which catches declined again, so
that the stock slowly recovered back up to the target biomass over the next 10 years,
with occasional increases in harvest rate close to the target rate.

16.3.6 Generate Bootstrap Confidence Intervals

Every fishery analysis is invariably uncertain and an effort should always be made to in-
clude at least an indication of that uncertainty into any report of a stock assessment. One
such characterization included in simpleSA for the spm and aspm models is the genera-
tion of percentile confidence intervals around parameters and model outputs (MSY,
etc.) by taking bootstrap samples of the log-normal residuals associated with the CPUE.
These are used to generate new bootstrap CPUE samples with which to replace the orig-
inal CPUE time-series (Haddon, 2011). Each time such a bootstrap sample is made, the
model is re-fitted, and the solutions obtained are stored for further analysis. To conduct

Reducing the Number of Undefined Species | 93



such an analysis, one uses the bootspm function. Once we have found suitable starting
parameters we use the firtSPM function, which uses optim twice sequentially with a neg-
ative likelihood approach to obtain an optimum fit.

data(dataspm)

fish <- dataspm$fish

colnames(fish) <- tolower(colnames(fish))

pars <- c(r=0.25,K=5500,Binit=2900)

ans <- fitSPM(pars,fish,schaefer=TRUE,maxiter=1000) #Schaefer version
answer <- displayModel(ans$par,fish,schaefer=TRUE,addrmse=TRUE)
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Figure 33. A summary plot depicting the fit of the optimum parameters to the dataspm
dataset. The residuals between the fit and the CPUE data are illustrated at the bottom
left. These are what are bootstrapped: each sample is multiplied by the optimum pre-
dicted CPUE time-series to obtain each bootstrap CPUE time-series.

Once we have an optimum fit, we can proceed to conduct a bootstrap analysis. Here, we
are only running 100 replicates for computational speed, but you would usually run at
least 1000, even though that might take a few minutes to complete.

reps <- 100 # this might take ~60 seconds, be patient
startime <- Sys.time() # how long will this take

boots <- bootspm(ans$par,fishery=fish,iter=reps,schaefer=TRUE)
print(Sys.time() - startime)

## Time difference of 4.887969 secs
str(boots)

## List of 3
##  $ dynam : num [1:100, 1:31, 1:5] 2846 3553 2739 3480 2860 ..
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ftHt ..- attr(*, "dimnames")=List of 3

# .. ..$ : chr [1:1@0] "1" "2" "3" "4" ...

## . «.% : chr [1:31] "1986" "1987" "1988" "1989" ...

ftHt .. ..%$ : chr [1:5] "ModelB" "BootCE" "PredCE" "Depletion" ...

##t ¢ bootpar : num [1:100, 1:6] 0.242 0.271 0.31 0.265 0.234 ...
##  ..- attr(*, "dimnames")=List of 2

# .. ..$ : chr [1:100] "1" "2" "3" "4" ...

# .. ..$ : chr [1:6] "r" "K" "Binit" "MSY"

## ¢ negativepars: num 0

The output contains the dynamics of each run with the predicted model biomass, each
bootstrap CPUE sample, the predicted CPUE for each bootstrap sample, the depletion
time-series, and the annual harvest rate time-series. Each of these can be used to illus-
trate and summarize the outcomes and uncertainty within the analysis. Given the rela-
tively large residuals in Figure 33, one might expect a relatively high degree of uncer-
tainty.

dynam <- boots$dynam
bootpar <- boots$bootpar
rows <- colnames(bootpar)
columns <- c(c(0.025,0.05,0.5,0.95,0.975),"Mean")
bootCI <- matrix(NA,nrow=1length(rows),ncol=1length(columns),
dimnames=1ist(rows,columns))
for (i in 1:1length(rows)) { # i=1
tmp <- sort(bootpar[,i])
gtil <- quantile(tmp,probs=c(0.025,0.05,0.5,0.95,0.975),na.rm=TRUE
)
bootCI[i,] <- c(qtil,mean(tmp,na.rm=TRUE))

}
kable(bootCI,digits=c(3,3,3,3,3,3))

0.025 0.05 0.5 0.95 0.975 Mean
r 0.109 0.143 0.256 0.359 0.373 0.250
K 3635.081 3671.058 5082.288 7894.464 10086.318 10509.205
Binit 1648.772 1801.246 2796.433 5668.114 7736.649 3161.843
MSY 268.633 280.265 319.086 353.151 361.007 342.134
Depl 0.387 0.394 0.541 0.655 0.682 0.526
Harv 0.047 0.055 0.085 0.118 0.124 0.087

Such percentile confidence intervals can be visualized using histograms and including
the respective selected percentile CI.

par(mfrow=c(3,2),mai=c(0.45,0.45,0.15,0.05),0ma=c(0.0,0,0.0,0.0))
par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
hist(bootpar[,"r"],breaks=25,col=2,main="",xlab="r")
abline(v=c(bootCI["r",c(2,3,4,6)]),col=c(3,3,3,4),1lwd=c(1,2,1,2))
hist(bootpar[,"K"],breaks=25,col=2,main="",xlab="K")
abline(v=c(bootCI["K",c(2,3,4,6)]),col=c(3,3,3,4),1lwd=c(1,2,1,2))
hist(bootpar[,"Binit"],breaks=25,col=2,main="",xlab="Binit")
abline(v=c(bootCI["Binit",c(2,3,4,6)]),col=c(3,3,3,4),1lwd=c(1,2,1,2))
hist(bootpar[,"MSY"],breaks=25,col=2,main="",xlab="MSY")
abline(v=c(bootCI["MSY",c(2,3,4,6)]),col=c(3,3,3,4),1lwd=c(1,2,1,2))
hist(bootpar[,"Depl"],breaks=25,col=2,main="",xlab="Final Depletion")
abline(v=c(bootCI["Depl",c(2,3,4,6)]),col=c(3,3,3,4),lwd=c(1,2,1,2))
hist(bootpar[, "Harv"],breaks=25,col=2,main="",xlab="Final Harvest Rate
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ll)
abline(v=c(bootCI["Harv",c(2,3,4,6)]),col=c(3,3,3,4),1lwd=c(1,2,1,2))
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Figure 34. The bootstrap replicates from the optimum spm fit to the dataspm data set.
The vertical green lines, in each case, are the median and 90" percentile confidence in-
tervals and the blue lines are the mean values. There is little evidence of bias with the ‘r’
and ‘MSY’, estimates, although both the median ‘K’ and ‘Binit’ values appear biased
somewhat low, while the depletion and harvest rates appear slightly biased high.

Of course, with only 100 replicates in such a variable analysis, these results remain only
very approximate. One would expect 1000 replicates would provide for a smoother re-
sponse and more representative confidence bounds (we reiterate that 100 replicates were
used simply to demonstrate the principle within a short time; this may be sped up later
using C++). Note that the confidence bounds are not necessarily symmetrical around ei-
ther the mean or the median estimates. Notice also that, with the final year depletion es-
timates, the 10™ percentile CI is well above 20%By, implying that even though this anal-
ysis is uncertain, the current depletion level is above the default limit reference point
with more than a 90% likelihood (again more replicates are required before this claim
could be more defensibly validated).

The fitted trajectories can also provide an indication of the uncertainty surrounding the
analysis.

years <- fish[,"year"]

par(mfrow=c(1,1),mai=c(0.45,0.45,0.05,0.05),0ma=c(0.0,0,0.0,0.0))
par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)
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ymax <- getmaxy(c(dynam[,,"PredCE"],fish[,"cpue”]))

plot(fish[,"year"],fish[,"cpue"],type="n",ylim=c(0,ymax),xlab="Year",
ylab="CPUE",panel.first = grid())

for (i in 1l:reps) lines(years,dynam[i,,"PredCE"],lwd=1,col="grey")

lines(years,answer$Dynamics$outmat[, "PredCE"], lwd=2,col=2)

points(years,fish[, "cpue"],cex=1.1,pch=16,col=4)

percs <- apply(dynam[,,"PredCE"],2,quants)

arrows (x0=years,y0=percs["5%",],yl=percs["95%",],1length=0.03,angle=90,

code=3,co0l=2)
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Figure 35. A plot of the original observed CPUE (blue dots), the optimum predicted
CPUE (solid red line), the bootstrap predicted CPUE (the grey lines), and the 90™ per-
centile confidence intervals around those predicted values.

There are clearly some major deviations between the predicted and the observed CPUE
values, but the median estimates and the confidence bounds around them remain well
defined.

16.4 Discussion

In the Southern and Eastern Scalefish and Shark Fishery (SESSF), rather than using sur-
plus production models or other simple dynamic approaches, empirical harvest strate-
gies have been developed that use such time-series in empirical relationships that give
rise directly to management-related advice on catch levels (Little et al., 2011; Haddon,
2014). Such empirical harvest strategies can provide the needed management advice,
but do not determine stock status unless the reference period, used in such approaches,
is assumed to be a proxy for the target reference point (and its implied limit reference
point) for sustainability. In the SESSF, this “Tier 4 harvest strategy is used to deter-
mine whether a stock is over-fished or not, but currently cannot be used to determine
whether over-fishing is occurring. In addition, there is the strong assumption made that
the commercial catch rates are a direct reflection of the stock biomass. There are, how-
ever, some species, for example mirror dory (Zenopsis nebulosa), where catch rates in-
crease when catches increase, and then decline once catches begin to decline (see the
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discussion above about whether the CPUE is informative). They appear to be fisheries
driven by availability, as opposed to the fishery being the major influence on the stock
biomass. That is, other aspects of the environment of the species appear to be driving its
dynamics. The use of CPUE may thus be misleading in such cases.

16.4.1 Management Advice with spm

If working with a species that requires ongoing management, then it is necessary to pro-
duce advice with respect to acceptable catches that will lead to a sustainable fishery - or
whatever other management goal is in place for the fishery. To generate such advice,
some form of harvest strategy (HS) is required to allow the outputs from the assessment
to be converted into a recommended biological catch (RBC; noting that informal HSs
are less repeatable than formal HSs). This RBC may then be modified by fishery man-
agers taking into account potential rates of change within a fishery or social or eco-
nomic drivers of management decisions. It was possible to put forward suggestions for
new harvest strategies that use the catch-MSY method, although none are currently
available; that put forward here is only a suggestion for consideration. Putting forward a
proposed harvest control rule for the spm approach without consultation with jurisdic-
tional fisheries managers could produce suggestions incompatible with a particular ju-
risdiction’s objectives. There are harvest control rules that can be used once limit and
target reference points are agreed upon and these can be utilized where considered ap-
propriate. The SAFS process, however, does not currently require a target reference
point, even though most harvest control rules do require one.
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16.5 Appendix: Surplus Production Model Equations

The surplus production model is used to describe the dynamics of the stock in terms of
its exploitable biomass. In general terms, where the dynamics are designated a function
of the biomass at the start of a given year #:

Biy1 =B+ f(Bt) - C;

where B, represents the stock biomass at the start of year t, f (B;) represents a produc-
tion function in terms of stock biomass (accounting for recruitment or new individuals,
growth of biomass of current individuals, and natural mortality), and C, is the catch in
year t.

The model dynamics are also used to generate predicted values for the catch rate index
of relative abundance in each year:

AN
Iy =—=qB;

where /I\t is the predicted or estimated value of the index of relative abundance, which is
compared to the observed indices to fit the model to the data, E; is the fishing effort in
year t, and q is the catchability coefficient (defined as the amount of biomass/catch
taken with one unit of effort).

A number of functional forms have been put forward to describe production. In sim-
pleSA we have implemented two: the Schaefer model, and a modified form of the Fox
model:

The Schaefer (1954) model uses:

FB) =B, (1~ %)

while the Fox (1970) uses:

£(BY) = Ln(K)rB, (1 Ln(Bf))

"~ Ln(K)

Alternatively, a formulation from Polacheck et al. (1993) provides a general equation
for the population dynamics that can be used for both the Schaefer and the Fox model
depending on the value of a single parameter p.

T B\?
Bt+1=Bt+EBt(1_E) _Ct
When p is set to 1.0, this equation reduces to the Schaefer model. But when p is set to a
very small number, say 1e-0.8, then the formulation becomes equivalent to the Fox
model’s dynamics.

The Schaefer model assumes a symmetrical production curve with maximum surplus
production (MSY) at 0.5K. The Fox model generates asymmetrical production curves
with the maximum production at some lower level of depletion. The Schaefer model

can be regarded as more conservative than the Fox, in that it requires the stock size to be
higher for maximum production, and generally leads to somewhat lower levels of catch.
Other production functions could be added later. r represents a population growth rate
that includes the balance between recruitment, growth in current biomass, and natural
mortality, and K is the maximum population size (the carrying capacity). The part in
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brackets, (1 - %), represents a density dependent term that trends linearly to zero as

B;. This tends towards K in the Schaefer model. In the Schaefer mdoel the production
curve is symmetric with maximum production occurring at 0.5K. In the Fox model, the
density dependent terms introduces some non-linearity, which generates an asymmet-
rical production curve with the point of maximum production moved to < 0.5K (see
later diagrams of the prodution curves; see Haddon (2011) for further details).

Thus for the Schaefer model we would have:

B
Bt+1 = Bt + 7"Bt <1 _E) - Ct

where By = K or B;,;; , depending on whether the stock was deemed to be depleted
when data from the fishery first became available.

It appears that fitting the model to data would require at least three parameters: the 7,
the K, and the q (B;,;; might also be needed). However, it is possible to used what is
known as a “closed-form” method for estimating the catchability coefficient g:

g = exp (%ZLn (;—tt))

which is the back-transformed geometric mean of the observed CPUE divided by the
exploitable biomass.

16.5.1 Sum of Squared Residuals

Such a model can be fitted using least squares or, more properly, the sum of squared re-
sidual errors:

ssq =Y, (Ln(]t) —Ln (/I\t)>2

The log-transformations are required as CPUE is considered typically to be distributed
log-normally, and the least-squares method implies normal random errors. The least
squares approach tends to be more robust when first searching for a set of parameters
that enable a model to fit to available data. However, once close to a solution, more op-
tions become available if one then uses maximum likelihood methods.

Maximum likelihood methods, as the name dictates, entail maximizing the likelihood of
the available data given the model and a proposed set of parameters. Very often the like-
lihoods involved when fitting models are very small numbers. To avoid rounding errors
(even when using 64 bit computers), it is standard to use log-likelihoods rather than
likelihoods (in that way, the log-likelihoods can be individually added together rather
than the individual likelihoods multiplied). Additionally, rather than maximizing a log-
likelihood, minimization often best matches our intuitions about model fitting. As such,
an optimal fit is obtained by minimizing the negative log-likelihood. The full log-nor-
mal negative log likelihood is:

—(Lnlt—Ln?t)

1 N - 7
e 232

L(data|Bl-nit,r, K, CI) = 1_[
1N 216

Fortunately, the negative log-likelihood can be simplified (Haddon, 2011), to become:

—velL = %(Ln(Zn) +2Ln(6) + 1)
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where the maximum likelihood estimate of the standard deviation, & is given by:

) (Ln(]t) —In (?t))z

n

AN
o =

Note the division by 7 rather than by n-1. Strictly the negative log-likelihood is fol-
lowed by an additional term:

—XLn(ly)
This is the sum of the log-transformed observed catch rates. But as this will be constant,
it is usually omitted.

16.5.2 Estimating Management Statistics

The Maximum Sustainable Yield (MSY) can be calculated for the Schaefer model
simply by using:
rK

MSY = —
4

However, for the more general equation using the p parameter from Polacheck et a/
(1993) one needs to use:

_ rK
MSY = o7D

p+1) P
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17 aspm - Age-Structured Production Models

17.1Introduction
17.1.1 Which Stock Assessment?

Which stock assessment method to apply to fisheries for data-poor to data-moderate
species will depend upon what fisheries and biological data are available but also, im-
portantly, on what management objectives need to be met within the jurisdiction in
question. It may be the case that the fishery for a particular species is of sufficient size
and value to warrant on-going monitoring and management towards some defined goal
for the stock. In such a case the assessment used should obviously be capable of gener-
ating some notion of the current state of the fishery and indicate what management ac-
tions may be required to eventually achieve the agreed management goals. But some
fisheries may be so minor that trying to actively manage them would be inefficient.
Nevertheless, to meet the requirements of the Status of key Australian Fish Stocks
(SAFS) one still requires some form of defensible stock assessment capable of deter-
mining whether the current level of fishing is sustainable.

17.2Age-Structured Production Model
17.2.1 Introduction to ASPM

The age-structured production model (ASPM or aspm) is literally a surplus production
model which is based upon an age-structured model of production rather than an accu-
mulated biomass model (see the vignette on spm).

There are some specific data requirements for fitting an age-structured production
model to fishery data. The following data from the fishery need to included, as a mini-
mum:
e an accurate catch time-series plus
e an index of relative abundance for at least some of the years within the catch time-
series.
e In addition, information (or defensible assumptions) is needed for the species con-
cerned in relation to the description of
o its natural mortality
o its growth
o its maturation, and
o the selectivity of the fishery (maturity and selectivity could be knife-edge).

If just the catches and CPUE data are available, then one might try fitting a simple, ag-
gregated biomass, surplus production model. But if the above biological data and infor-
mation are also available, then an age-structured production model opens the way to on-
going improvements with respect to the inclusion of occasional age-composition data or
other observations that could be predicted by a suitable model, and hence included in
the model fitting process.

More details on age-structured production models can be found in Punt et al. (1995).
The model equations are provided in the appendix. It would be helpful to the user to
read the spm vignette, as the theory in there also applies to age-structured production
models.
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17.2.2 A Typical Workflow

A typical workflow for using an age-structured production model might be something
like:

1. Read in the available data and use checkdata to ensure it can be used with aspm.

2. Search for suitable initial parameter values using dynamics, aspmLL, and
plotASPM. This will include deciding on the use of a two parameter model (no ini-
tial depletion) or a three parameter model that accounts for an initial depletion
level.

3. Given suitable initial parameters, use fitASPM, or, more basically, optim, to fit the
model to the available data.

4.  Once successfully fitted, it is best to plot the solution using plotASPM to determine
visually how close the model fit is to the data. One approach to improving this is to
include confidence intervals around the index of relative abundance (CPUE). This
is done first using getL NCI and then including the output of this into plotASPM or,
for a closer look, in plotceASPM. Eventually, improved confidence intervals for the
model outputs can be obtained using bootstrap samples (see below).

5. A better test of the robustness of the solution is to test how sensitive it is to the ini-
tial conditions. This can be done by randomly varying the initial parameters and
determining whether the model fitting outcomes vary. Suitable example code is
given in the vignette.

6. After finally deciding on the overall optimum solution it would be sensible to use
the optimum parameters to determine the implied production curve, so that man-
agement statistics such as MSY, the target catch, and the limit and target reference
points, can be defined. This can be done using getProductionC, the C post-fix de-
noting this is a C++ function (used for speed), the results of which can be plotted
and summarized using prodASPM.

7. One can produce a classical phase plot of predicted biomass vs harvest rate to aid
in the determination of the stock status.For this we would use aspmphaseplot.

8.  Finally, to obtain a better notion of the uncertainty in the analysis, we use boot-
ASPM, which facilitates the application of a bootstrap analysis.

17.2.3 An Example

The data requirements for the aspm are described above. For the next example we will
use the dataspm built-in data set. First, we will examine an example using only two pa-
rameters (assuming the population begins in an unfished state), and then extend the
model fitting to include the possibility of an initially depleted state. The two parameters
being fitted are

e the average unfished recruitment level and

e the standard deviation of the errors around the CPUE data.

We load dataspm, which contains a dataframe of the catches and CPUE by year (fish),
and other parameters used for the age-structured production model.

library(simpleSA)

data(dataspm)

fish <- dataspm$fish

props <- dataspm$props # Length-,weight-,maturity-and selectivity-at-age
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While a simple, aggregated biomass surplus production model only requires the specifi-
cation of the species name in the g/b data object, an aspm requires information on the

e growth

e selectivity

e weight-at-age

e steepness of the stock-recruit relationship, and
e natural mortality.

The global parameters (g/b), in addition to the spsname, need to contain the population
ages (maxage and ages), natural mortality (M), von Bertalanffy growth parameters
(Linf, K and t0), weight-at-age parameters (Waa and Wab), age at 50% maturity, delta
(M50a and deltaM), age that 50% of the population are selected by the gear and delta
(sela50 and deltaS) and the steepness of the stock-recruitment relationship. The number
of years (nyrs) of over which catch and CPUE are available (including missing years) is
calculated from the fish dataframe. A starting value for the log of the initial recruitment
(R0) also needs to be provided, although this will be estimated along with the standard
deviation of the errors around the CPUE data.

We inspect the global parameters specified in dataspm.
(glb <- dataspm$glb)

## $maxage
## [1] 20

##

## $M

## [1] ©.225
##

## $Linf

## [1] 103.4
##

## $K

## [1] 0.2
##

## $to

## [1] -3.139
##

## $Waa

## [1] 0.0029
##

## $Wab

## [1] 3.139
##

## $M50a

## [1] 5

##

## $deltaM
## [1] 2.5
##

##t $steep

## [1] 0.75
##

## $RO
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## [1] 13.7

##

## $sela5o

## [1] 3.5

##

## $deltasS

## [1] 1

##

## $resilience
## [1] "low"
##

## $nages

## [1] 21

##

##t $ages

## [1] © 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
##

##t $nyrs

## [1] 31

##

## $spsname

## [1] "TrawlCaught_Scalefish"

Just as with the spm model, fitting an aspm model entails first finding initial parameter
estimates that lead to predicted CPUE time-series that approximate the observed series.
Thus, one might begin something like this, and use aspmLL to determine the negative
log-likelihood (-veLL), then dynamics to calculate the dynamics of the aspm, and fi-
nally plotASPM to illustrate the quality of fit, to help decide whether changes are re-
quired to the initial guesses:

pars <- ¢(12.9,0.25)
aspmLL (pars,infish=fish,inglb=glb,inprops=props)

## [1] 386.8754

fishery <- dynamics(pars,infish=fish,inglb=glb,inprops = props)
plotASPM(fishery)
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Figure 36. The outcome of a first guess at a two parameter version of the aspm. Clearly
the fit is very poor, and the strong trends in the predicted CPUE, the log-normal residu-
als, and the annual harvest rate bumping up against the built-in upper limit of 0.85
across numerous years, provide a strong indication that the initial guess at unfished av-
erage recruitment parameter (R0) is too small. Try increasing it slowly to see its effect
on the model fit to the data.

Once reasonable starting values have been found for the parameters (R, the unfished
average recruitment, and 0, the standard deviation associated with fitting the observed
CPUE), then an attempt at formally fitting the model to the data can be made using
code something like this:

pars <- c(13.7,0.19)
ans <- fitASPM(pars,infish=fish,inglb=glb,inprops=props)
outoptim(ans) # a tidier way of printing the Llist output from optim

## $par : 13.69138 0.189471

## $value : -7.582633

## $counts : 55 NA iterations, gradient
## $convergence : ©

## $message

fishery <- dynamics(ans$par,infish=fish,inglb=glb,inprops = props)
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Table 1. The output from the fitASPM function and the dynamics function.
kable(fishery,digits=c(9,3,3,3,3,3,4,4,3))

Year Catch PredC SpawnB  ExploitB FullH CPUE PredCE Deplete
1985 5643.463 6216.733 1.000
1986 1129 1129 5547.856 6119.538 0.018 1.2006  1.2731 0.983
1987 206.3 206.3 5381.150 5955.372 0.034 1.3547 1.2532 0.954
1988 95.7 95.7 5325.183 5910455 0.016 1.0585 1.2196 0.944
1989 183.1 183.1 5208.120 5799.303 0.031 1.0846 1.2104 0.923
1990 1474 147.4 5136.775 5735.954 0.025 0.9738 1.1876 0.910
1991 1989 198.9 5034.632 5638.377 0.035 1.0437 1.1747 0.892
1992 102.1 102.1 5027.222 5638.064 0.018 0.7759  1.1547 0.891
1993 2355 2355 4914.029 5523921 0.042 1.0532 1.1546 0.871
9 1994 247.8 2478 4801.433 5414330 0.045 1.2840 1.1312 0.851
10 1995 426.8 426.8 4552.038 5165.789 0.079 1.3327  1.1088 0.807
11 1996 448.0 448.0 4310.173 4933418 0.087 1.4014 1.0579 0.764
12 1997 5774 5774 3991273 4623.718 0.117 1.4687 1.0103 0.707
13 1998 558.5 558.5 3726.747 4374.663 0.121 1.4493  0.9469 0.660
14 1999 4279 4279 3607.166 4275.655 0.098 1.1420  0.8959 0.639
15 2000 509.3 509.3 3447.541 4121.138 0.119 0.9957  0.8756 0.611
16 2001 5024 5024 3314.139 3991335 0.122 0.8818  0.8440 0.587
17 2002 429.6 429.6 3256.173 3938955 0.108 0.7635 0.8174 0.577
18 2003 360.2 360.2 3264.635 3951252 0.091 0.7668 0.8066 0.578
19 2004 306.2 306.2 3319.664 4007.258 0.077 0.7198  0.8092 0.588
20 2005 1957 195.7 3460.581 4149.242 0.049 0.5997  0.8206 0.613
21 2006 210.0 210.0 3578.106 4256.624 0.051 0.6336  0.8497 0.634
22 2007 2873 287.3 3615276 4278.291 0.067 0.6936 0.8717 0.641
23 2008 2142 2142 3698.766 4357911 0.050 0.8894  0.8761 0.655
24 2009 260.6 260.6 3733.374 4387.110 0.060 0.8644 0.8924 0.662
25 2010 2722 2722 3751418 4403.947 0.062 0.8442  0.8984 0.665
26 2011 3569 3569 3696.506 4346.717 0.081 0.8427 0.9019 0.655
27 2012 345.0 345.0 3654.393 4308.073 0.079 0.8849  0.8902 0.648
28 2013 2827 2827 3669.508 4331.070 0.066 0.9964  0.8822 0.650
29 2014 285.1 285.1 3686.377 4351.140 0.066 0.9804  0.8869 0.653
30 2015 237.8 237.8 3742.829 4410.295 0.055 009570 0.8911 0.663
31 2016 233.3 2333 3799.558 4464.794 0.053 1.0629  0.9032 0.673

0NNk WND R~ O

Note that the predicted catches are identical to the observed catches. The catches are as-
sumed to be known accurately, and so as to ensure a close match between the predicted
and observed catches, aspmLL has a simple sum-of-squared deviations penalty built into
it (try aspmLL, without brackets in the console). This is usually sufficient to force the
solution to generate a close match, once plausible parameter values are found. Note that
with respect to reproduction, only the average unfished recruitment is estimated. In its
current form, the aspm cannot take into account strong and weak cohorts; this remains a
very simple model of the dynamics.

To visualize the output of the model fitting we can plot some of the variables from the
fishery information generated by the dynamics function.

plotASPM(fishery,CI=NA)
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Figure 37. The outcome of fitting a two parameter age-structured production model to
the available data. Included is a plot of the catch history, the predicted spawning bio-
mass, the CPUE, the harvest rate, the log-normal residuals for the CPUE, and the pre-
dicted depletion.

The two-parameter model manages to capture the main CPUE trends but fails to capture
some of the more obvious and more rapid consistent changes in CPUE (Figure 37). The
example fishery in question was known to have been fished prior to 1985, so in the year
the data begin to be available, the stock can be expected to be depleted to some extent.
Thus, an alternative might be to fit the model using three parameters. The first ap-
proach, with only one parameter of real interest, required data from the beginning of the
fishery. However, there are many fisheries for which data are only available after the
fishery has been running for a number of years. In such cases, it is necessary to estimate
the level of depletion and its effect upon recruitment, and thus requires two parameters
of interest to the dynamics. The first is, as before, the unfished recruitment level, R, but
then we use a parameter that defines the initial depletion at the start of the observations
(Djnit)- If this parameter is present in pars a search is made for the constant harvest rate
that, when applied to the initial unfished stock, leads to the predicted initial depletion
level. Only then does the model fitting proceed. Any initial depletion will influence the
recruitment depending on the assumed steepness of the stock recruitment relationship,
which is assumed to be a Beverton-Holt relationship.

The dataspm data set is not particularly suited to a two-parameter model. Even though
that arrangement was able to provide a result, these assessments should not be done au-
tomatically: it always takes some background knowledge to ensure that any methods or
choices applied are valid.

As an alternative two-parameter example, the deep water fishery data data(fishdat) was

a deepwater fishery with catch data from the very start of the fishery, which means it is
better suited to using a simple two parameter model.
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data(fishdat)

fish <- fishdat$fish

glb <- fishdat$glb

props <- fishdat$props

pars <- c(14,0.3)

ans <- fitASPM(pars,infish=fish,inglb=glb,inprops = props)
outoptim(ans)

## $par : 13.98282 0.2956361

## $value : 3.606029

## $counts : 71 NA iterations, gradient
## $convergence : ©

## $message

fishery <- dynamics(ans$par,infish=fish,inglb=glb,inprops = props)
kable(fishery,digits=c(90,3,3,1,1,3,3,3,3))

Year Catch PredC SpawnB ExploitB FullH CPUE PredCE Deplete

0 1985 18014.3  17693.0 1.000
1 1986 3924912 3924912 142482 13994.0 0.222 7.553 0.791
2 1987 5117.988 5117.988  9428.1 9259.9 0.366 5.974 0.523
3 1988 4722200 4722.200  5129.8 5038.3 0.510 3.953 0.285
4 1989 1365.128 1365.128  4105.5 4032.3 0271 1490 2.151 0.228
5 1990  801.567 801.567  3641.7 3576.7 0.199 1.849 1.721 0.202
6 1991  625.407 625407  3369.2 3309.1 0.175 1.501 1.527 0.187
7 1992 1108.241 1108.241  2707.0 2658.7 0335 2997 1.413 0.150
8 1993  964.409 964.409  2201.1 2161.8 0363 1415 1.135 0.122
9 1994  800.618 800.618  1858.5 18254 0.370 1.139 0.923 0.103
10 1995 962.399 962399  1413.5 1388.3 0.527 0.700 0.779 0.078
11 1996 1180.349 1180.031 845.1 830.1 0.850 0.469 0.593 0.047
121997  297.003 297.003 925.3 908.8 0.358 0.303 0.354 0.051
13 1998 316.131 316.131 1007.3 989.4 0.348 0.356 0.388 0.056
14 1999 210.529 210.529  1165.6 1144.8 0.213  0.390 0.422 0.065
15 2000 169.337 169337  1365.7 13414 0.148 0.439 0.489 0.076
16 2001 200.843 200.843 15593 1531.5 0.150 0.489 0.573 0.087
17 2002  255.735 255.735 17224 1691.7 0.167 0.431 0.654 0.096
18 2003 217.502 217.502 19164 1882.2 0.129 0.520 0.722 0.106
19 2004 283.110 283.110  2064.5 2027.7 0.150 0.777 0.804 0.115
20 2005 264.607 264.607 22254 21857 0.130 1.322 0.866 0.124
21 2006 139316 139316  2484.6 2440.2 0.064 1412 0.933 0.138
22 2007 28.571 28.571 28389 2788.3 0.012 1.042 0.158
23 2008 3.331 3.331 32243 3166.8 0.001 1.190 0.179
24 2009 13.859 13.859  3608.2 3543.8 0.004 1.352 0.200
25 2010 21.440 21.440  3988.3 3917.1 0.006 1.513 0.221
26 2011 31.426 31.426  4358.7 4281.0 0.008 1.672 0.242
27 2012 17.253 17.253 47374 4652.9 0.004 1.828 0.263
28 2013 35.940 35940  5093.6 5002.8 0.008 1.986 0.283
29 2014 22.087 22.087  5453.2 5355.9 0.004 2.136 0.303
30 2015 16.206 16.206  5806.4 5702.9 0.003 2.287 0.322

The output contains the estimates of the optimum parameters, the final log-likelihood
estimate, the number of iterations needed to find the optimum, and some diagnostic in-
formation. The statement convergence: int () implies the solution appears valid, and the
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lack of warning messages is also encouraging, but see later concerning how to test the
robustness of such model fitting. If we put the fitted optimum parameters into the func-
tion dynamics, we can see the time-series of the more important population variables
implied by the model fit.

The use of fitASPM is basically shorthand for using bestL <- optim(pars, aspmLL,
method="“Nelder-Mead”, infish=fish, inglb=glb, inprops=props, control=list(maxit =
1000, parscale = ¢(10,1))) twice in a row. Examine its code by using fitASPM without
brackets in the R console window.

Note that the harvest rate in 1996 appears to have bumped up against the upper limit of
0.85 hardwired into the R-code (try typing dynamics into the R console without brackets
to see the code). So, the 1180 tonnes of catch in 1996 was likely to have been damag-
ing. However, the predicted catch is only slightly less than the reported catch, so this
spike in harvest rate has some support in the data. Plotting up the fishery results enables
the visualization of the impact of the fishery, and the effect of cutting back catches.

ceCI <- getLNCI(fishery[,"PredCE"],ans$par[2])
plotASPM(fishery,CI=ceCI)
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Figure 38. The outcome of fitting a two parameter age-structured production model to
the deep-water fishery data. If the function plotceASPM is used, then only the CPUE
with confidence intervals are plotted.

The modelling suggests that once catches were reduced to an average of about 246 t be-
tween 1997 - 2005 the stock began to very slowly recover. Then, after catches were fur-
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ther reduced from 2007 onwards (due to a deep-water closure and cessation of target-
ing) the rate of recovery was predicted to have increased. The model predicts that the
stock breached the 0.2B, limit reference point in about 2010. However, extrapolation
beyond the data must always be treated with a great deal of caution. The uncertainty
about the catch rates is relatively large, especially because the records from 1992, 2005,
and 2006 deviate so much from the rest of the trend. Without confirmation from other
data, the predicted recovery from 2007 onwards is purely driven by the predictions from
the fitted model. The predicted recovery should not be accepted on the basis of the
model fit alone: there need to be other data confirming such a recovery. To confirm
whether the predicted recruitment from the model actually occurred would require aux-
iliary information or data to corroborate the prediction. With this low productivity deep
water fishery, because the fishery was so short lived and they only mature between 31 -
35 years of age, the biology suggests that the fishable stock is still receiving unfished
recruitment levels, which can be expected to decline once the recruits produced from the
depleted population begin entering the fishery. However, given that the lowest point of
the stock is predicted to have occurred in 1996, the expected minimum in recruitment
should occur in about 2026 - 2030.

One way of estimating confidence intervals around the CPUE is to use the standard de-
viation estimates from the likelihood fitting of the CPUE (parameter 2) and set up log-
normal error bars, but later we will consider bootstrap percentile confidence intervals as
an alternative.

It is not surprising that the bounds on the predicted CPUE become very wide in the re-
gions where there are no CPUE data. But even where there are data, the bounds are
wide. A better estimation of the uncertainty is more likely to be generated by the boot-
strap analysis. The variation expressed is primarily driven by the elevated values in
1992 and in 2005 and 2006. The period from 1989 - 2006 is assumed to relate to when
aggregations were not being targeted, but occasionally, no doubt, smaller aggregations
would have added heterogeneity to the CPUE data. Certainly given this uncertainty it
remains questionable whether one could validly claim that the likelihood of the limit
reference point being passed was high, based only on these data. It would be best to test
the robustness of this result to the initial conditions by trialling the model fit using a
large array of initial parameter values, just to see whether the optimum result was re-
peatable and stable. We will consider this after introducing the three parameter models.

17.3A three parameter model

Returning to the dataspm data set, it is possible to use a three parameter model to fit this
data, accepting that the observations began when the stock had already been fished and
would be expected to have been partially depleted. There are details that need attention
if we are to assume such a model structure. These are mathematical models and, unless
controlled, they can exhibit mathematical artefact behaviour, such as negative recruit-
ment or initial depletions much greater than 1.0. To avoid initial depletions > 1.0,
which should not be possible when assuming average recruitment, we have imple-
mented a slightly different maximum likelihood function, so we should use
aspmPENLL instead of aspmLL. In this case, where the initial depletion is estimated to
be a long way below 1.0, it might not matter, but such penalties can stabilize even such
supposedly safe parameter sets.

data(dataspm)
fish <- dataspm$fish
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glb <- dataspm$glb
props <- dataspm$props
pars <- c(14,0.19,0.6) # Fit 3 par__aspm__with penalty
# pars <- c(13.2794439,0.1731744,0.4933178) # Ln(R®), sigmaCE, InitDepletion
scalepar <- magnitude(pars)
bestL <- optim(pars,aspmPENLL,method="Nelder-Mead",
infish=fish,inglb=glb,inprops=props,
control=1list(maxit = 1000,parscale=scalepar))
outoptim(bestL)

## $par ¢ 13.33983 0.1746212 0.6233444
## $value : -10.1113

## $counts : 116 NA iterations, gradient
## $convergence : ©

## $message

fisheryPen <- dynamics(bestL$par,infish=fish,inglb=glb,inprops=props)
ceCI <- getLNCI(fisheryPen[, "PredCE"],bestL$par[2])
plotASPM(fisheryPen,CI=ceCI)
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Figure 39. The outcome of fitting a three-parameter age-structured production model to
the slope fishery data.

Once again the model fails to capture the more rapid changes in the predicted dynamics,
but does capture the general trends through time (Figure 39). Unlike the two-parameter
model, it predicts a final depletion close to 50% rather than 60%, but this time suggests
that the starting depletion was about 65% rather than 100%. However, the -ve log-likeli-
hood in this case is -9.95, rather than -7.58 as with the two-parameter model, indicating
a slightly better fit (an improvement > 1.96 for each additional parameter suggests a bet-
ter fit; Venzon and Moolgavkar, 1988).
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Despite the improved fit to the data, the confidence intervals around the CPUE remain
very large. Thus, when using the three parameter model, one should test the robustness
of this fit to the initial conditions, to determine whether or not the outcome is stable fol-
lowing the model fitting or whether there is variation (uncertainty), and, if so, how
much.

17.3.1 Testing the Robustness of the Model Fit

The sensitivity of the model fit to the initial parameter values is important to explore, to
gain greater confidence that the solution one finds is a global optimum rather than some
local minima on the log-likelihood surface.

To test for robustness of the model fit we can use the original optimal model parameters
or the original guesses, add variation to them, and re-fit the model. The intent is to ex-
plore the robustness of the model fitting so the starting point can influence this. If the
initial guesses are used then other initial guesses might be tried as a starting point. This
process should enable an analysis of the stability of the modelling outcomes. If the opti-
mum parameters are used, then more should be added to ensure the parameter space is
covered. The first parameter is Log (R,), so, to simplify the selection of random varia-
tions away from the original, it helps to return that parameter to the linear scale and re-
turn it to the log-scale only when finished.

set.seed(12335) # to get repeatable results, normally not done
data(fishdat)

fish <- fishdat$fish

glb <- fishdat$glb

props <- fishdat$props

pars <- c(14,0.3)

out <- robustASPM(pars,fish,glb,props,scaler=20,N=15,console=FALSE)
kable(out$results,digits=c(3,3,2,3,3,4,1,1,0))

str(out,max.level=1)

iLnRO isigmaCE iLike LnRO sig-  -veLL MSY BO Iters
9 14.034 0.290 9.12 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 71
15 13.992 0.303  4.40 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 71
5 14.055 0.285 11.63 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 71
11 13.993 0.307 4.50 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 71
8 13.977 0.304 10.27 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 71
12 14.014 0.283  7.03 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 71
2 14.009 0.270  6.78 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 69
10 14.092 0.308 13.68 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 69
14 14.012 0.281 6.85 13.983 0.296 3.6060 2.399000e+02 1.801430e+04 69

4 13985 0.290  3.76 13983  0.296 3.6060 2.399000e+02 1.801430e+04 69
7 14.038 0.303 898 13983  0.296 3.6060 2.399000e+02 1.801430e+04 67
6 13.966 0.297 49.14 42.176  0.660 18.0638 4.209864e+14 3.161862¢+16 23
13 13.937 0.301 314.81 41.204  0.660 18.0638 1.592507e+14 1.196069¢+16 25
3 13.960 0.320 91.58 46.792  0.660 18.0638 4.254969¢+16 3.195738e+18 21
1 13.939 0.300 292.89 41.314  0.660 18.0638 1.777260e+14 1.334829%¢+16 21
## List of 3

## ¢ results: num [1:15, 1:9] 14 14 14.1 14 14 ...

##  ..- attr(*, "dimnames")=List of 2
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## ¢ range : num [1:2, 1:9] 13.94 14.09 ©0.27 0.32 3.76 ...

ftHt ..- attr(*, "dimnames")=List of 2

## $ medians: Named num [1:9] 13.993 ©.3 9.119 13.983 0.296 ...

##  ..- attr(*, "names")= chr [1:9] "ilLnRe" "isigmaCE" "ilLike" "LnRe"

Starting with the deep water fishery data fishdat, we find that 11 out of 15 generate one
solution, which appears to be optimum, while the remaining four, which all began with
highly unlikely first guesses (i.e. iLike, the initial likelihood was large) all gave implau-
sible outcomes. It would be sensible to explore this lack of robustness further by using
many more iterations. However, given the variation in the CPUE data, this is not a sur-
prising result.

If we test the robustness of the model fit to the dataspm data set (a three parameter
model) similar outcomes arise.

set.seed(12235)

data(dataspm)

fish <- dataspm$fish

glb <- dataspm$glb

props <- dataspm$props

pars <- c(14,0.2,0.6)

out <- robustASPM(pars,fish,glb,props,scaler=15,N=10,console=FALSE)
kable(out$results,digits=c(2,2,2,2,3,2,2,2,1,1,0))

iLnRO isigmaCE iDepl iLike LnRO sigmaCE Depl -veLL MSY BO TIters

10 13.94 0.21 0.63 -091 13.279 0.17 0.49 - 3438 3738.2 102
7 13.93 0.20 058 1.44 13.279 0.17 0.49 - 3438 3738.2 261
6 13.83 0.21 057 -0.81 13.279 0.17 0.49 - 3438 3738.2 104
9 14.10 0.18 0.64 3.23 13.279 0.17 0.49 - 3438 37382 112
4 14.07 0.23 051 4.64 13.279 0.17 0.49 - 343.8 3738.2 183
2 13.97 0.17 059 4.60 13.280 0.17 0.49 - 343.8 3738.3 181
1 14.04 021 0.60 1.67 13.282 0.17 0.49 - 3447 3747.6 186
3 14.04 0.20 0.53 5.71 13.301 0.17 0.55 - 3514 38212 125
8 14.09 0.18 0.58 5.74 13.301 0.17 0.55 - 3514 3821.1 119
5 13.92 0.18 0.60 2.11 13.315 0.17 0.57 - 356.2 3872.8 124

kable(out$range,digits=c(2,2,2,2,3,2,2,2,1,1,0))

iLnRO isigmaCE iDepl iLike LnRO sigmaCE Depl -veLL MSY BO TIters

13.83 0.17 051 -091 13.279 0.17 0.49 -10.37 343.8 37382 102
14.10 023 0.64 5.74 13315 0.17 0.57 -10.27 356.2 3872.8 261

Here we find that the four final negative log-likelihoods (iLike) differ from the opti-
mum, although in this case the differences are not too far from the optimum. Very slight
differences in the parameters even with the optimum -veLL lead to small differences in
the derived statistics such as MSY and B,. Once again the variation in the CPUE data is
what leads to any instability, although in this particular case the parameter set appears
relatively stable. Whatever the case it is to be hoped that these examples illustrate that
one should never accept the final result of fitting a model, even if the diagnostics look
acceptable (i.e. the plot, the -veLL value, and optim gives convergence = 0). Without
testing the robustness, it is possible that one is settling for only a local minima. This is
one reason why it is usually a good idea to run a fitting routine twice, once from the ini-
tial parameter guesses, the second time from the solution of the first time.
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When testing the robustness ideally one would run very many trials (at least 100 to al-
low for proportional attribution of variation), in which case it becomes a reasonable
proposition to plot the results. The correlations between the parameters can also be cal-
culated (they tend to be very high).

cor‘(ou‘t$r‘esul‘ts [ »C ( "LnRO" > "Depl" > "-velLL" > "MSY" ) ] )#correLations between outputs

H## LnRo Depl -vell MSY
## LnRO 1.0000000 0.9926413 0.9882819 0.9999921
## Depl ©.9926413 1.0000000 0.9986348 ©.9922690
## -vellL ©.9882819 0.9986348 1.0000000 0.9877160
## MSY  ©.9999921 0.9922690 ©.9877160 1.0000000

#iplotprep(width=8, height=6)

intensity <- 2 # how many points overlapping = maximum colour

pairs(out$results[,c("LnRO", "Depl","-veLL","MSY")],pch=16,
col=rgb(1,0,0,1/intensity),font=7,font.labels = 7)
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Figure 40. The correlations between outputs from repeated trials starting from different
initial parameter values. Usually one would use many more trials than the example of
10, then these plots might be more informative. Histograms of these values might also
indicate the variation present.

17.3.2 The Production Curve and Statistics

Using two runs through the optim function each time, the median of the different trials
is very similar to the optimum model fit, so we will use those values to determine the
production curve predicted by a model We can then use that to estimate the biomass at
the target reference point (default = 0.48B,) and at the limit reference point of 0.2B,. In
addition, by estimating the yield expected at those reference points and dividing that
through by the biomass at those reference points we can calculate the target and limit
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harvest rate reference points. The contents of prod can be used to determine other statis-
tics such as the sustainable yield over the range of the current predicted depletion levels.
This can be illustrated using a 3 parameter model on the dataspm data-set.

data(dataspm)

fish <- dataspm$fish

glb <- dataspm$glb

props <- dataspm$props

pars <- ¢(13.75,0.189667,0.6) # Fit 3 par_ _aspm with penalty

bestL <- optim(pars,aspmPENLL,method="Nelder-Mead",
infish=fish,inglb=glb,inprops=props,
control=1list(maxit = 1000, parscale = ¢(10,1,0.1)))

# two times through

bestL <- optim(bestL$par,aspmPENLL,method="Nelder-Mead",
infish=fish,inglb=glb,inprops=props,
control=1list(maxit = 1000, parscale = c(10,1,0.1)))

par <- bestL$par

print(par)

## [1] 13.2794896 0.1731791 0.4934525

prod <- getProductionC(exp(par[1l]),fish,glb,props,
Hrg=c(0.01,0.45,0.005),nyr=50)
head(round(prod,3),6)

H## Harvest  SpawnB ExploitB  Yield Depletion
#it 0 0.000 3738.229 4117.963 NA 1.000
##t 0.01 0.010 3503.303 3896.605 38.966 0.937
## 0.015 0.015 3393.404 3792.697 56.890 0.908
## 0.02 0.020 3288.158 3692.955 73.859 0.880
## 0.025 0.025 3187.299 3597.142 89.929 0.853
## 0.03 0.030 3090.581 3505.037 105.151 0.827

tail(round(prod,3),6)

H## Harvest SpawnB ExploitB  Yield Depletion
## 0.425 0.425 425.115 702.960 298.758 0.114
## 0.43 0.430 414.797 688.847 296.204 0.111
## 0.435 0.435 404.686 674.933 293.596 0.108
##t 0.44 0.440 394.777 661.213 290.934 0.106
## 0.445 0.445 385.066 647.683 288.219 0.103
## 0.45 0.450 375.547 634.339 285.452 0.100

anspen <- prodASPM(prod,target=0.48,console=FALSE,plot=TRUE)
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Figure 41. Production curves for the optimum fitting three parameter age-structured
production model fitted to the slope fishery data in dataspm. The target in this case is
0.48B,, designated by the vertical green lines. The results contained within anspen are
used as labels. In this case the model is suggesting that Bsy is down at 0.243 B, so us-
ing a target of 0.48 B, means that the harvest rate, and presumably effort, would be
halved, the stock kept at a much higher presumably more resilient level, and the catch
only reduced on average by about 18%.

round(anspen, 3)

## MSY Bmsy Hmsy Dmsy BO targC Htarg B

targ
## 343.814 908.060 0.265 0.243 3738.229 281.745 0.125 1809

.504

17.3.3 A Phase Plot

The final part of age-structured production modelling would entail generating a phase
plot of predicted biomass against the predicted harvest rates. The previous functions and
analyses will provide all the information we require to feed into the function aspmpha-
seplot.

# plotprep(width=7,height=5.5)
fisheryPen <- dynamics(bestL$par,infish=fish,inglb=glb,inprops=props)
outs <- aspmphaseplot(fisheryPen,prod,anspen,Blim=0.2,fnt=7)
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Figure 42. Phase plot of predicted biomass vs predicted harvest rate for the optimum
fitting three parameter age-structured production model fitted to the slope fishery data in
dataspm. The target, in this case at 0.48B,, is designated by the green lines, while the
limit reference points are designated by the red lines.

The phase plot (Figure 42) suggests that the biomass is a little below the target but the
fishing mortality is very close to its target. In addition the fishery appears relatively sta-
ble at present indicating it is not declining. In the SAFS system, this fishery could de-
fensibly be claimed to be sustainable, although the uncertainty in the analysis would
need to be noted explicitly.

17.3.4 Characterization of Uncertainty

When only fitting to CPUE, it is possible to use many replicate bootstrap samples, fol-
lowed by re-analysis to generate a detailed characterization of uncertainty. The follow-
ing example code illustrates the approach. First, we need to obtain the optimum solu-
tion.

# Library(simpleSA)

library(simpleSA)

data(dataspm)

fish <- dataspm$fish

glb <- dataspm$glb

props <- dataspm$props

pars <- ¢(13.5,0.18,0.5)

bestL <- fitASPM(pars,fish,glb,props,callfun=aspmPENLL)
fishery <- dynamics(bestL$par,fish,glb,props)
kable(fishery,digits=c(0,1,1,3,3,3,3,3,3))
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Year Catch PredC SpawnB  ExploitB  FullH CPUE PredCE Deplete

0 1985 1844.493  2201.515 0.493
1 1986 1129 1129 1905.994 2281.700 0.051 1.201 1.075 0.510
2 1987 2063 2063 1897.882 2279.923 0.090 1.355 1.115 0.508
3 1988  95.7 95.7 1986.162 2377.159 0.042  1.058 1.114 0.531
4 1989 183.1 183.1 2005.773 2396.363 0.077 1.085 1.161 0.537
5 1990 1474 1474 2059.854 2478.526 0.062 0.974 1.171 0.551
6 1991 198.9 198.9 2082.974 2518471 0.080 1.044 1.211 0.557
7 1992 102.1 102.1 2193.351 2640.207 0.041 0.776 1.230 0.587
8 1993 2355 2355 2193.924 2633.084 0.089 1.053 1.290 0.587
9 1994 2478 247.8 2180.129 2615.893 0.094 1.284 1.286 0.583
10 1995 426.8 426.8 2019.514 2445.747 0.163  1.333 1.278 0.540
11 1996 448.0 448.0 1851.779 2279.545 0.183  1.401 1.195 0.495
12 1997 5774 5774 1599.185 2025.283 0.253 1.469 1.114 0.428
13 1998 558.5 558.5 1389.703 1821.336 0.276 1.449 0.989 0.372
14 1999 4279 4279 1310.586 1759.085 0.235 1.142 0.890 0.351
15 2000 5093 5093 1188.966 1631.779 0.290 0.996 0.859 0.318
16 2001 5024 502.4 1082984 1518.972 0.308 0.882 0.797 0.290
17 2002 429.6 429.6 1038.707 1473.711 0.283 0.764 0.742 0.278
18 2003 360.2 360.2 1049.518 1485.656 0.244 0.767 0.720 0.281
19 2004 3062 3062 1099.426 1537.854 0.206 0.720 0.726 0.294
20 2005 1957 1957 1227.569 1673.737 0.127  0.600 0.751 0.328
21 2006 210.0 210.0 1336.509 1772.734 0.125 0.634 0.818 0.358
222007 2873 2873 1368.358 1784.647 0.162 0.694 0.866 0.366
23 2008 2142 2142 1441.816 1857.291 0.120  0.889 0.872 0.386
24 2009 260.6 260.6 1471.771 1884.847 0.140 0.864 0.907 0.394
25 2010 2722 2722 1489.268 1907.019 0.144 0.844 0.921 0.398
26 2011 3569 3569 1441.380 1859.230 0.187 0.843 0.932 0.386
27 2012 345.0 345.0 1407.928 1830.919 0.186  0.885 0.908 0.377
28 2013 2827 282.7 1430.753 1865.664 0.154 0.996 0.894 0.383
29 2014 285.1 285.1 1457.524 1897.810 0.153  0.980 0.911 0.390
30 2015 237.8 237.8 1522403 1968.634 0.125 0.957 0.927 0.407

31 2016 2333 2333 1588.181 2033.085 0.119 1.063 0.962 0.425

Having run the model through optim twice inside fitASPM, the optimum fit is used to
characterize the dynamics using dynamics. The basis of the bootstrap sampling is that
the log-normal residuals (CPUE/PredCE) are randomly sampled with replacement, with
each such bootstrap then being multiplied by the optimum model’s predicted CPUE. If,
for example, we take the original residuals and multiply them by the original predicted
CPUE, we would re-generate the original observed CPUE. All we are doing in the boot-
strap procedure is reordering the residuals by randomly resampling them with replace-
ment. The ‘with replacement’ bit implies that some values may be omitted and others
may be repeated more than once.

Such bootstrap samples are generated within bootASPM. This function generates repli-
cate numbers of optimal fitting parameters in param, estimates of unfished biomass in
B0, and finally a matrix of five time-series of spawning biomass, fully selected harvest
rate, each bootstrap CPUE series, the optimum predicted CPUE, and the depletion level
through time. Here we are only running 100 replicates so as to speed the process, but in
a real analysis one might use at least 1000 replicates.
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reps <- 20
starttime <- Sys.time()
answer <- bootASPM(fish,glb,props,bestL$par,iter=reps)

## 20

Sys.time() - starttime

## Time difference of 13.00663 secs
str(answer,max.level=1)

## List of 3
## ¢ result: num [1:20, 1:32, 1:5] 1844 2330 1607 1883 2442 ...
##  ..- attr(*, "dimnames")=List of 3

##t ¢ BO : num [1:20] 3738 4004 3741 3816 3973 ...
## ¢ param : num [1:20, 1:3] 13.3 13.3 13.3 13.3 13.3 ...
it ..- attr(*, "dimnames")=List of 2

Once the bootstraps are completed there are multiple ways of displaying the resultant
information. Initially one can generate classical percentile confidence intervals from the
bootstrap replicates (Haddon, 2011).

yrs <- fishery[,"Year"]

nyrs <- length(yrs)

par(mfrow=c(2,2),mai=c(0.45,0.45,0.05,0.05))

par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)

label <- names(answer$result[1,1,])

label <- label[-3] # remove CPUE

numvar <- length(label)

bootvar <- answer$result[,nyrs,label[1]]

for (i in 1l:numvar) { # 1=3
bootvar <- answer$result[,nyrs,label[i]]
quantCI <- quantile(bootvar,probs=c(0.05,0.5,0.95),na.rm=TRUE)
hist(bootvar,breaks=30,main="",xlab=1abel[i],col="red")
abline(v=quantCI,col=c(4,4,4),lwd=c(1,2,1))

120 | Reducing the Number of Undefined Species



- o
o
=-_
1 .
=™ 2
g 2
[ [F-
=
—_
w
pem
[— ='—
[ | T T T 1 < | I I | I 1
1200 1400 1600 1800 2000 2200 0.09 010 011 012 013 014 015
SpawnB FullH
-+ s
i
=-_
: .
AR 2
z 2
By =)
=
-
L]
pEn
=
- | | | T | | = [ T | 1
0,92 094 09 098 1.00 1.02 0.35 0.40 0.45 0.50
PredCE Deplete

Figure 43. Histograms of the final years’ spawning biomass, fully selected harvest rate,
predicted CPUE, and the stock depletion level. Of course 20 replicates is completely in-
adequate but each bootstrap replicate can take a significant time (note the time taken to
run the example). One thing that can be noted is the asymmetrical percentile confidence
bounds.

With only 20 replicates, no conclusions can be drawn, but the plots still illustrate the
principle behind the bootstraps. The percentile confidence intervals can illustrate the un-
certainty in the assessments and the potential risk of falling below limit reference
points.

pickvar <- "Deplete"

bootvar <- answer$result[,,pickvar]
yrs <- as.numeric(colnames(bootvar))
nyrs <- length(yrs)

quantCI <- t(apply(bootvar,2,quants))
kable(quantCI,digits=c(3,3,3,3,3,3))

2.5% 5% 50% 90% 95% 97.5%
1985 0.302 0.319 0.497 0.650 0.670 0.702
1986 0.328 0.346 0.513 0.652 0.672 0.700
1987 0.339 0.357 0.511 0.637 0.657 0.681
1988 0.375 0.393 0.534 0.648 0.666 0.687
1989 0.392 0.410 0.540 0.643 0.659 0.678
1990 0.417 0.435 0.554 0.648 0.663 0.679
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1991 0.431 0.449 0.560 0.646 0.661

1992 0.469 0.486 0.589 0.668 0.682
1993 0.476 0.493 0.590 0.662 0.676
1994 0.480 0.496 0.586 0.654 0.668
1995 0.443 0.460 0.541 0.609 0.625
1996 0.404 0.421 0.495 0.563 0.581
1997 0.342 0.360 0.427 0.495 0.516
1998 0.291 0.309 0.370 0.439 0.462
1999 0.274 0.292 0.349 0.417 0.440
2000 0.246 0.264 0.316 0.384 0.409
2001 0.220 0.239 0.288 0.355 0.382
2002 0.209 0.228 0.276 0.343 0.371
2003 0.212 0.229 0.279 0.346 0.374
2004 0.224 0.241 0.292 0.360 0.387
2005 0.257 0.274 0.326 0.393 0.421
2006 0.285 0.303 0.355 0.422 0.449
2007 0.292 0.309 0.364 0.431 0.458
2008 0.310 0.327 0.383 0.451 0.478
2009 0.316 0.334 0.391 0.460 0.486
2010 0.320 0.337 0.396 0.465 0.491
2011 0.307 0.323 0.383 0.453 0.479
2012 0.298 0314 0.374 0.445 0.470
2013 0.305 0.320 0.380 0.450 0.475
2014 0314 0.327 0.387 0.456 0.481
2015 0.332 0.345 0.405 0.472 0.496
2016 0.352 0.364 0.422 0.488 0.512

0.676
0.695
0.688
0.679
0.635
0.590
0.525
0.470
0.449
0.417
0.389
0.378
0.381
0.395
0.428
0.456
0.465
0.484
0.492
0.497
0.485
0.476
0.481
0.487
0.502
0.517

ymax <- getmaxy(bootvar)

par(mfrow=c(1,1),mai=c(0.45,0.45,0.05,0.05))

par(cex=0.85, mgp=c(1.35,0.35,0), font.axis=7,font=7,font.lab=7)

plot(yrs,bootvar[l,],type="n",lwd=1,col=0,ylim=c(0,ymax),
panel.first = grid(),xlab="",ylab=pickvar)

for (i in 1l:reps) lines(yrs,bootvar[i,],lwd=1,col="grey")

lines(yrs,quantCI[,"50%"],lwd=2,col="red")

arrows (x0=yrs,y0=quantCI[,"5%"],yl=quantCI[, "95%"],

col=2,1wd=1,length=0.035,angle=90, code=3)
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Figure 44. The bootstrapped trajectories of stock depletion of the dataspm data set.
Note that 20 replicates are far too few to provide sensible or valid percentile confidence
intervals.

The output from the bootASPM function includes the bootstrap optimum parameters.
These can be used along with the fish, glb, and props objects from the data set used to
generate productivity curves and determine target catches, MSY, and other fishery out-
puts for each set of parameters. This means that percentile confidence intervals can be
generated for such assessment outputs.

17.3.5 Management Advice with aspm

If working with a species that requires on-going management then it is necessary to pro-
duce advice with respect to acceptable catches that will lead to a sustainable fishery or
whatever other management goal is in place for the fishery. To generate such advice
formal harvest strategies are required to allow the outputs from the assessment to be
converted into a recommended biological catch. This may then be modified by fishery
managers taking into account potential rates of change within a fishery or social or eco-
nomic drivers of management decisions.

It was possible to put forward suggestions for new harvest strategies using the catch-
MSY method because none were available previously and that put forward was only a
suggestion for a possible consideration. Putting forward a proposed harvest control rule
for the spm approach without consultation with jurisdictional fisheries managers could
produce suggestions incompatible with a particular jurisdiction’s objectives. There al-
ready are harvest control rules that can be used once limit and target reference points are
agreed upon, and these can be utilized where considered appropriate with either the spm
or aspm models. The SAFS process, however, does not currently require a target refer-
ence point even though most harvest control rules do require one. No specific harvest
control rules are provided so as to avoid such things appearing as recommendations
when none are intended.
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17.4Appendix: Age-Structured Production Model Equations
17.4.1 Initiation of an Age-Structured Model

At equilibrium, in an un-exploited population, the age-structure is assumed to be the re-
sult of natural mortality acting alone upon constant average unfished levels of recruit-
ment. The equilibrium result would be a stable age distribution determined by those
constant average recruitments and natural mortality. At the start of a time series, let us
say in year 1, this is defined as:

NO,l = RO a=20
Ngi=4Na-1.e7" 1<a<a,
Nax—1,1e_M/(1 —e™) a=a,

where N, ; 1s the numbers of age a, in year 1, a, is the maximum age modelled (the
plus-group), and M is the instantaneous rate of natural mortality. In a pre-exploitation
population there is no fishing mortality and the final component the above equation
(where a = a,), is referred to as the plus group because it is the series which combines
ages a, and all older ages that are not modelled explicitly. This requires the inclusion of
the (1- e~™) divisor to force the equation to be the sum of an exponential series. The
Ny 1 is the constant unfished recruitment level, Ry. Sometimes this also has an e ™™
term, depending on the timing of spawning. If the natural mortality term is included,
then the estimated R, value will be somewhat higher than if it is omitted (by 1/e~M), so
it is usually simpler to omit it. This stable age distribution can also be obtained by first
calculating the numbers-at-age for a recruitment of 1, or the numbers-at-age per recruit,
and then multiplying that vectors of numbers by R, which is how it is implemented in
simpleSA::dynamics

17.4.2 Biological Characteristics
Length-at-age of fish is defined by the von Bertalanffy growth function:
Ly = Lo (1 — e F(a=to))

where L, is the mean length at age a, L, is the asymptotic average maximum length, k
is the grow rate coefficient, and t, is the length at age zero.

The mass-at-age relationship is defined as:
w, = WaLW/’

where w,, is the mass at age a, and W, and Wp are the coefficients that define the power
relationship between length and mass.

17.4.3 Spawning Stock Recruitment Relationship

The biomass A, can be defined as the mature stock biomass that would develop given a
constant recruitment level of one (i.e. Ny ; = 1 in the above equation). Thus, at a bio-
mass of A, distributed across a stable age distribution, the resulting average recruitment
level would be Ry = 1. A, acts as a scaling factor in the recruitment equations by
providing the link between R, and B,
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Ax

Ay = Z Ng,1 MgWq

a=1

where m; is the proportion mature at age a, n, 1 is the virgin number of animals per re-
cruit of age a in year 1, and w, is the weight of an animal of age a. The average un-
fished recruitment level, R, is directly related to the virgin mature, or recruited, bio-
mass, By,

Ry = Bo/Ao

By determining 4,, from a constant recruitment level of one, the recruitment levels
from realistic B, levels can be obtained by applying the above equation. Once R, has
been determined, the unfished number at age distribution can be obtained by substitut-
ing R, into the first equation. The spawning stock — recruitment relationship can be de-
scribed by the deterministic form of the Beverton — Holt relationship:

Sp
aBy

y+1 = Sp
b+ B}

Sp - . . .
where Byp is the mature, or spawning biomass in the year y.

A re-parameterization of the Beverton-Holt parameters in terms of steepness, h, and B,

is to specify a and b such that:
“Ssh-1 " " 5h-1

a

Using this re-parameterization the number of recruits produced in year y from the
spawning biomass in year y — 1 is:
s
_ 4hR,B,",
(1—h)By + (5h— 1)B,?,

No,y

17.4.4 Stock dynamics

To describe the dynamics subsequent to population initiation (i.e. the generation of
Ny, the number at age a in year y, for years other than 0), requires the inclusion of the
stock recruitment relationship and the impact of fishing mortality. Not all age classes
are necessarily fully selected, thus the fishing mortality term must be multiplied by the
selectivity associated with the fishing gear for age a, s,, described by a logistic curve:

1
(1 + e(a_gSO))

where as is the age at which 50% of individuals are selected by the fishing gear, and &
is a parameter that determines the width or steepness of the selectivity ogive. Such lo-
gistic curves are also used to describe the development of maturity within the popula-
tion, but in such a case the as, refers to the age at 50% maturity.

Sq =

A term is also needed for the recruitment in each year (stock-recruit relationship above),
and this is assumed to be a function of the spawning biomass of the stock at the end of

the previous year y, B,?.
The spawning biomass for a year y is:
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Ax
Sp _
B," = z Wq Mg Ny y
a=0

When applied to the unfished stable age distribution, this would provide an estimate of
the unfished spawning biomass-per-recruit. When using difference equations (rather
than continuous differential equations) the dynamics of the fishery, in terms of the order
in which growth, natural, and fishing mortality occur, are important when defining how
the numbers at age change. If the transition of numbers at age in year y into numbers at
age in year y + 1 is broken down into a number of steps, this simplifies the calculation
of internally consistent estimates of exploitable biomass, catch rates, and harvest rates.
If it is assumed that the dynamics of a population entails that fish first grow from year
y — 1 to year y, then undergo half of natural mortality before they are fished, and only
then undergo the final half of natural mortality, this would imply two steps to define the
transition from one year to the next. The first step entails recruitment, growth from each
age class to the next, and the application of the effect of half of natural mortality:

No’y a=20
e ={Ng_1,_1e7M/? 1<a<a,—1

(Nay-1y-1 + Nayy-1)e™? a = ay

N ay

where N ,, is defined by the stock - recruit relationship, ages 1 to a,-1 are modelled by
adding 1.0 to the previous year’s ages 0 to a, — 2, and imposing the survivorship from
half the natural mortality, and the plus group (a,) is modelled by adding 1.0 to the pre-
vious year’s age a, — 1, and adding those to the numbers in the previous year’s age a,
and then applying the survivorship from half the natural mortality. The above equation
thus leads to the mid-year exploitable biomass (mid-year being the reason for the

e M/2) in year y being defined as:

Ax
E _
By = Z Wq SqNg y+
a=0

The dynamics within any year are completed by the application of the survivorship fol-
lowing fishing mortality across all ages (expressed as an annual harvest rate), followed
by the survivorship following the remainder of natural mortality. Natural mortality is
not applied directly to the new recruits until they grow into the next year:

No'y* a= 0

N .=
Y Ny (1 — 5, ny) e™™/?2 1<ac<a,

In the above equation, the N, ,, refer the numbers in age a at the end of year y (i.e. after

. ) N
all the dynamics have occurred). The predicted harvest rate, H,,, given an observed or
recommended catch level in year y, C,,, is estimated as

N _ Cy
y B)L/E'

where Bf is defined above. The catch at age, in numbers, is therefore defined by:

N N
Cay = Ng,ySq Hy
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and the total catch by mass is the sum of the separate catches at age multiplied by their
respective average weights for all ages:

Ay
_ N
Cy = Z Wa Cayy
a=0

Predicted catch rates also derive from the exploitable biomass and the average catcha-
bility coefficient, g:

I, = qB}.
17.4.5 Likelihoods

Maximum likelihood methods, as the name dictates, entail maximizing the likelihood of
the available data given the model and a proposed set of parameters. Very often the like-
lihoods involved when fitting models are very small numbers. To avoid rounding errors
(even when using 64 bit computers) it is standard to use log-likelihoods rather than like-
lihoods (in that way the log-likelihoods can be individually added together rather than
multiply the individual likelihoods). Additionally, rather than maximizing a log-likeli-
hood, minimization often best matches our intuitions about model fitting and this in-
volves minimizing the negative log-likelihood. The full log-normal negative log likeli-
hood for the aspm is similar to that used for the spm but with a few parameter changes,
and it estimates the &, directly rather than using a closed form:

. —(Ln1g-Lnd;)
—veLL(data|R0, é\,) = —ZLn — e 26
t

1.\ 2m &,
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