

APPENDICES PART 1 Storm Bay Biogeochemical Modelling and Information System

Supporting sustainable aquaculture in Tasmania.

Karen Wild-Allen, John Andrewartha, Mark Baird, Jack Beardsley, Elizabeth Brewer, Lev Bodrossy, Ruth Eriksen, Rob Gregor, David Griffin, Mike Herzfeld, David Hughes, Pete Jansen, Clothilde Langlais, Nugzar Margvelashvili, Andrew Martini, Merinda McMahon, Andrew Revill, Farhan Rizwi, Jenny Skerratt, Cassie Schwanger, Kendall Sherrin, Sascha Frydman, Dan Wild.

March 2023

FRDC Project No 2017-215

© 2022 Fisheries Research and Development Corporation. All rights reserved.

ISBN [Insert ISBN/ISSN - researcher to obtain]

Storm Bay Biogeochemical Modelling and Information System: supporting sustainable aquaculture in Tasmania FRDC Project No. 2017-215

March 2023

Ownership of Intellectual property rights

Copyright (and any other intellectual property rights) in this publication is owned by the Fisheries Research and Development Corporation and CSIRO

This publication (and any information sourced from it) should be attributed to:

Wild-Allen, K., Andrewartha, J., Baird, M., Beardsley, J., Brewer, E., Bodrossy, L., Eriksen, R., Gregor, R., Griffin, D., Herzfeld, M., Hughes, D., Jansen, P., Langlais, C., Margvelashvili, N., Martini, A., McMahon, M., Revill, A., Rizwi, F., Skerratt, J., Schwanger, C., Sherrin, K., Frydman, S., Wild, D. 2022 *Storm Bay Biogeochemical Modelling and Information System: supporting sustainable aquaculture in Tasmania (FRDC 2017-215) Final Report Appendices*. CSIRO Oceans & Atmosphere, Hobart, March 2023.

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms.

Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from https://creativecommons.org/licenses/by/3.0/au/. The full licence terms are available from https://creativecommons.org/licenses/by-sa/3.0/au/legalcode.

Inquiries regarding the licence and any use of this document should be sent to: frdc@frdc.com.au

Disclaimer

The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC.

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry.

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact csiroenquiries@csiro.au

Researcher Contact Details

Name:	Dr Karen Wild-Allen
Address:	CSIRO Oceans & Atmosphere, GPO Box 1530, Hobart
Phone:	+61 3 6232 5222
Fax:	+61 3 6232 5000
Email:	Karen.wild-allen@csiro.au

FRDC Contact Details

Address:	25 Geils Court
	Deakin ACT 2600
Phone:	02 6122 2100
Email:	frdc@frdc.com.au
Web:	www.frdc.com.au

10 Appendices

- A.4 Storm Bay biogeochemical model parameters
- A.5 Biogeochemical model vs glider data including statistics
- A.6 Biogeochemical model vs monitoring data including statistics

A.4 Storm Bay biogeochemical model parameters

Model parameter values for the biogeochemical model run TASSE73K. This simulation used hydrodynamic transport model forcing from the hydrodynamic model v1.2 and the calibrated sediment model.

Parameter	Symbol	Value	Units
description			
Phytoplankton			
Chl-specific scattering coefficient. for microalgae	bphy	0.2	m ⁻¹ (mg Chl a m ⁻³) ⁻¹
Natural (linear) mortality rate, large phytoplankton in water column	PhyL_mL	0.14	d ⁻¹
Natural (linear) mortality rate in sediment, large phytoplankton	PhyL_mL_sed	1	d ⁻¹
Natural (linear) mortality rate, small phytoplankton in water column	PhyS_mL	0.14	d ⁻¹
Natural (linear) mortality rate in sediment, small phytoplankton	PhyS_mL_sed	1	d ⁻¹
Natural (linear) mortality rate, dinoflagellates in water column & sediment	PD_mL	0.14	d-1
Respiration as a fraction of maximum growth rate (umax)	Plank_resp	0.025	none
Radius of the large phytoplankton cells	PLrad	10.0E ⁻⁶	m
Maximum growth rate of large phytoplankton at Tref	PLµmax	1.5	d ⁻¹
Ratio of xanthophyll to Chl <i>a</i> of PL	PLxan2chl	0.81	mg mg⁻¹
Radius of the small phytoplankton cells	PSrad	2.5 E ⁻⁶	m
Maximum growth rate of small phytoplankton at Tref	PSµmax	1.6	d ⁻¹
Ratio of xanthophyll to Chl a of PS	PSxan2chl	0.51	mg mg ⁻¹
Maximum growth rate of dinoflagellates at Tref	DFµmax	0.5	d-1
Ratio of xanthophyll to Chl <i>a</i> of dinoflagellates	DFxan2chl	0.81	mg mg⁻¹
Radius of dinoflagellate cells	DFrad	10.0 E ⁻⁶	m

Parameter	Symbol	Value	Units
description			
Zooplankton (ZL)			
Growth efficiency, large	ZL_E	0.426	none
Fraction of growth inefficiency lost to detritus,	ZL_FDG	1.0	none
large zooplankton Fraction of mortality lost to	ZL_FDM	1.0	none
Natural (quadratic) mortality	ZL_mQ	0.02	d ⁻¹ (mg N m ⁻³) ⁻¹
Diel vertical migration rate of large zooplankton	ZLdvmrate	0	m d ⁻¹
Grazing technique of large zooplankton	ZLmeth	rect	none
Zooplankton light dependency	ZLpar	1.0 E ⁻¹²	mol photons m ⁻² s ⁻¹
Radius of large zooplankton cells	ZLrad	5 E ⁻⁴	m
Swimming velocity for large zooplankton	ZLswim	1.5 E ⁻³	m s ⁻¹
Maximum growth rate of large zooplankton at Tref	ZLµmax	1.33	d ⁻¹
Growth efficiency, small zooplankton	ZS_E	0.462	none
Fraction of growth inefficiency lost to detritus,	ZS_FDG	1.0	none
Fraction of mortality lost to detritus small zooplankton	ZS_FDM	1.0	none
Natural (quadratic) mortality rate. small zooplankton	ZS_mQ	0.07	d ⁻¹ (mg N m ⁻³) ⁻¹
Grazing technique of small zooplankton	ZSmeth	rect	none
Radius of the small zooplankton cells	ZSrad	12.5 E ⁻⁶	m
Swimming velocity for small zooplankton	ZSswim	0.0002	m s ⁻¹
Maximum growth rate of small zooplankton at Tref	ZSµmax	2.0	d ⁻¹
Filter Feeders FF (excludes farmed			
shellfish)			
Nitrogen-specific area of filter feeder density	FFden	0.002	m ² mg N ⁻¹
Max. growth rate of filter feeder at Tref	FFumax	0.2	d-1
Mortality of filter feeder at Tref	FFmort	8.0 E ⁻¹⁰	d ⁻¹ (mg N m ⁻²) ⁻¹
Grid scale to filter feeder reef scale ratio	FFarea	0.1	m m ⁻¹

Parameter description	Symbol	Value	Units	
Seagrass (SG)				
Half-saturation of SG N uptake in sediment	SG_KN	420	mg N m ⁻³	
Half-saturation of SG P uptake in sediment	SG_KP	96	mg P m ⁻³	
Natural (linear) mortality rate of SG	SG_mL	0.03	d ⁻¹	
Critical shear stress for SG loss	SG_tau_critical	2	N m⁻²	
Time-scale for critical shear stress for SG loss	SG_tau_efold	43200	S	
Fraction (target) of SG biomass below-ground	SGfrac	0.75	-	
Nitrogen-specific area of SG leaf	SGleafden	1.5	m ² g N ⁻¹	
Compensation irradiance for SG	SGmlr	1.5	mol m ⁻²	
Natural (linear) mortality rate, SG root	SGROOT_mL	0.004	d-1	
Maximum depth for SG roots	SGrootdepth	-0.15	m	
Seagrass seed biomass as fraction of 63 % cover	SGseedfrac	0.01	-	
Time scale for seagrass translocation	SGtransrate	0.0333	d-1	
Orientation of seagrass	SGorient	0.5	-	
Maximum growth rate of SG at Tref	SGµmax	0.2	d-1	
Macroalgae (MA)				
Natural (linear) mortality rate, macroalgae	MA mL	0.01	d-1	
Nitrogen-specific area of macroalgae leaf	 MAleafden	1	m ² g N ⁻¹	
Maximum growth rate of MA at Tref	MAµmax	1.0	d ⁻¹	
Critical shear stress for MA loss	MA tau critical	2	N m-2	
Time-scale for critical shear stress for MA loss	MA tau efold	86400	S	
Nitrogen-specific area of kelp leaf	MAGleafden	0.01	m2 g N-1	
Maximum growth rate of kelp at Tref	MAGµmax	1.0	d-1	
Critical shear stress for kelp loss	MAG_tau_critical	5	N m-2	
Time-scale for critical shear stress for kelp loss	MAG_tau_efold	86400	S	
Microphytobenthos (MPB)				
Radius of the MPB cells	MBrad	10.0 E ⁻⁶	m	
Maximum growth rate of MPB at Tref	MBµmax	1.05	d-1	
Ratio of xanthophyll to Chl <i>a</i> of MPB	MBxan2chl	0.81	mg	
MPB natural (quadratic) mortality rate, applied in sediment	MPB mQ	0.0001	d ⁻¹ (mg N m ⁻³)	

Parameter description	Symbol	Value	Units
Biogeochemistry			
Reference temperature (Tref)	Tref	15	Deg C
Temperature coefficient for rate parameters	Q10	2	none
Breakdown rate of dissolved organic matter	r_DOM	0.00176	d-1
Respiration as a fraction of max growth rate µmax	Benth resp	0.025	none
Breakdown rate of labile detritus at 106:16:1	r DetPL	0.1	d⁻¹
Breakdown rate of labile detritus at 550:30:1	r DetBL	0.1	d-1
Breakdown rate of refractory detritus	r RD	0.0036	d ⁻¹
Concentration of dissolved N2	N2	2000	mg N m ⁻³
DOC-specific absorption of CDOM at 443 nm	acdom443star	0.00013	m ² mg C ⁻¹
Fraction of labile detritus converted to dissolved organic	F_LD_DOM	0.01	none
Fraction of labile detritus converted to refractory detritus		0 10	none
Fraction of refractory detritus that breaks down to DOM		0.15	none
Maximum anammov rate in codiment	r ana cod	40.05	d ⁻¹
Maximum analimux rate in sediment		40.0	u -1
Maximum anammox rate in water column	r_ana_wc	0.1	0 - 1
iviaximum denitrification rate in sediment	r_aen_sea		u - d-1
iviaximum denitrification rate in water column	r_aen_wc	0.01	0 ⁻
Maximum nitrification rate in water column	r_nit_wc	0.1	d ⁻¹
Maximum nitrification rate in water sediment	r_nit_sed	5.0	d-
Minimum carbon to chlorophyll ratio	C2Chlmin	60	wt/wt
Nominal N:Chl a ratio in phytoplankton by weight	NtoCHL	7	g N (g Chl a) ⁻¹
Oxygen half inhibition coeff. For dentification in water column	KO_den_wc	1000	mg O m ⁻³
Oxygen half-inhibition of denitrification rate in sediment	KO_den_sed	10000	mg O m⁻³
Oxygen half-saturation coeff. for Anammox in water column	KO_ana_wc	1000	mg O m ⁻³
Oxygen half-saturation coeff. for Anammox in sediment	KO ana sed	5000	mg O m⁻³
Oxygen half-saturation for aerobic respiration	KO aer	256	mg O m⁻³
Oxygen half-saturation for nitrification in sediment	KO nit sed	2000	mg O m⁻³
Oxygen half-saturation for nitrification in water column	KO nit wc	5000	mg O m⁻³
Oxygen half-saturation for P adsorption	Pads KO	2000	mg O m⁻³
Rate at which P reaches adsorbed/desorbed equilibrium	Pads r	0.04	d ⁻¹
Exponent for Freundlich Isotherm	Pads_exp	1	none
Freundlich Isothermic Const P adsorption to TSS in water	Pads_Kwc	30	mg P kg TSS ⁻¹
Freundlich Isothermic Const P adsorption to TSS in sediment	Pads_Ksed	74	mg P kg TSS ⁻¹
Pate of conversion of DID to immobilized DID	r immob DID	0.0012	d ⁻¹
Sediment-water diffusion coefficient	FniDiffCooff	3 U E U0	$m^2 s^{-1}$
Jeannent-water annusion toerntient		3.U E-Uð 0.0065	m s
Absorption of ambor river water at 440mm		0.0005 1	111 m ⁻¹
Absorption of amper river water at 440nm	a440cdom_amber	1	m ⁻¹
Absorption of dark river water at 440nm	a440cdom_dark	8	m ∸ -1
Absorption of pale river water at 440nm	a440cdom_pale	0.1	m
Spectral slope of CDOM absorption for amber river water			1
(for Derwent, Snug, Esperance, Coal, Carlton NWBay, Jordan Rivers)	Scdom_amber	0.0125	nm⁻¹
Spectral slope of CDOM absorption for dark river water (for Huon River)	Scdom_dark	0.015	nm ⁻¹
Spectral slope of CDOM absorption for pale river water	Scdom_pale	0.01	nm ⁻¹
Wavelengths of light	Light lambda	Various	Nm
	r COD decav	0	d ⁻¹
Rate of COD decay		-	-
Rate of COD decay Rate of consumption of oxygen by COD	tau COD	12	d ⁻¹
Rate of COD decay Rate of consumption of oxygen by COD COD concentration wheb detrital remin tends to 0	tau_COD COD max	12 32000	d ⁻¹ mg O m ⁻³

Initial conditions for the 1 year pilot model run to generate a spatially resolved and self-consistent biogeochemical model initial condition [dissolved organic and inorganic nutrients, plankton detritus, oxygen, epibenthic macroalgae, and seagrass across the model domain].

Variable	Code	Water	Sediment	Unit
	name	Column		
Labile Detrital Nitrogen Benthic	DetBL_N	0	500	mg N m ⁻³
Labile Detrital Nitrogen Plank	DetPL_N	0.01	500	mg N m⁻³
Refractory Detrital Carbon	DetR_C	0.01	8000	mg C m ⁻³
Refractory Detrital Nitrogen	DetR_N	0.01	500	mg N m⁻³
Refractory Detrital Phosphorus	DetR_P	0.01	138	mg P m⁻³
Dissolved Inorganic Carbon	DIC	24758	24758	mg C m ⁻³
Dissolved Inorganic Phosphorus	DIP	10	100	mg P m ⁻³
Dissolved Organic Carbon	DOR_C	1000	1000	mg C m⁻³
Dissolved Organic Nitrogen	DOR_N	300	300	mg N m⁻³
Dissolved Organic Phosphorus	DOR_P	5	5	mg P m ⁻³
Ammonia	NH4	14	200	mg N m⁻³
Nitrate	NO3	100	500	mg N m⁻³
Dissolved Oxygen	Oxygen	6505	65.05	mg O m⁻³
Chemical Oxygen Demand	COD	0	0	mg O m⁻³
Dinoflagellate chlorophyll	PhyD_Chl	1	0	mg Chl m ⁻³
Dinoflagellate I reserve	PhyD_I	7	0	mmol photon m ⁻³
Dinoflagellate Nitrogen	PhyD_N	5	0	mg N m⁻³
Dinoflagellate N reserve	PhyD_NR	2	0	mg N m⁻³
Dinoflagellate P reserve	PhyD_PR	0.5	0	mg P m⁻³
Large Phytoplankton chlorophyll	PhyL_Chl	2	0	mg Chl m ⁻³
Large Phytoplankton I reserve	PhyL_I	14	0	mmol photon m ⁻³
Large Phytoplankton N	PhyL_N	10	0	mg N m⁻³
Large Phytoplankton N reserve	PhyL_NR	4	0	mg N m⁻³
Large Phytoplankton P reserve	PhyL_PR	0.5	0	mg P m ⁻³
Small Phytoplankton chlorophyll	PhyS_Chl	2	0	mg Chl m ⁻³
Small Phytoplankton I reserve	PhyS_I	14	0	mmol photon m ⁻³
Small Phytoplankton N	PhyS_N	10	0	mg N m⁻³
Small Phytoplankton N reserve	PhyS_NR	4	0	mg N m⁻³
Small Phytoplankton P reserve	PhyS_PR	0.5	0	mg P m⁻³
Particulate Inorganic Phosphorus	PIP	0.1	1000	mg P m⁻³
Particulate Inorganic Phosphorus on dust	PIP_dust	0.01	10	mg P m⁻³
Immobilised Particulate Inorganic Phosphorus	PIPI	0	0.01	mg P m⁻³
Large Zooplankton N	ZooL_N	15	0	mg N m⁻³
Small Zooplankton N	ZooS_N	10	0	mg N m ⁻³
Macroalgae N	MA_N	0.01	-	g N m⁻²
Microphytobenthos chlorophyll	MPB_Chl	0	48.2	mg Chl m ⁻³
Microphytobenthos light reserve	MPB_I	0	797.22	mmol photon m ⁻³
Microphytobenthos N	MPB_N	0	337.4	mg N m⁻³
Microphytobenthos N reserve	MPB_NR	0	169.65	mg N m ⁻³
Microphytobenthos P reserve	MPB_PR	0	23.32	mg P m⁻³
Seagrass N	SG_N	0.05	-	g N m ⁻²
Seagrass root N	SGROOT_N	-	0.01	g N m ⁻³
Filter feeder N	FF_N	600	-	mg N m ⁻²

A.5 Biogeochemical model vs glider data including statistics

Summary of model vs glider observations statistical skill assessment [properties [yellow/green Willmott score > 0.4 (good), dark green Willmott score > 0.6 (very good), red Willmott score < 0.3 (poor); blue model bias low, red model bias high].

Willmott Skill	Chl-a mg/m3	Oxygen mg/m3	Ed 440 W/m2/nm	Ed 490 W/m2/nm	Ed 550 W/m2/nm	Ed 670 W/m2/nm	Nitrate mg/m3	Temp deg.C	Salinity PSU
Feb-15	0.60	0.73	0.85	0.86	0.89	0.88		0.81	0.69
Apr-15	0.60	0.34	0.87	0.86	0.88	0.86		0.57	0.47
Jun-15	0.50	0.17	0.84	0.85	0.89	0.90		0.95	0.93
Aug-15	0.55	0.33	0.92	0.90	0.93	0.91		0.70	0.88
Oct-15	0.46	0.45	0.85	0.85	0.89	0.92		0.80	0.75
Apr-16	0.62	0.40	0.81	0.79	0.80	0.87		0.57	0.55
Sep-16	0.77	0.41	0.92	0.93	0.91	0.80		0.63	0.96
Feb-17	0.66	0.86	0.91	0.91	0.92	0.93		0.68	0.71
Mar-17	0.70	0.57	0.88	0.90	0.91	0.87		0.84	0.64
May-17	0.71	0.33					0.74	0.53	0.58
Sep-18	0.48	0.13					0.10	0.83	0.50
Apr-19	0.55	0.78					0.63	0.89	0.31
Aug-19	0.33	0.16					0.85	0.85	0.63
Jan-20	0.57	0.55					0.72	0.90	0.56
Normalised Bias									
Feb-15	-0.35	0.03	-0.47	-0.43	-0.32	-0.35		-0.06	-0.01
Apr-15	-0.44	0.01	-0.35	-0.33	-0.23	-0.44		-0.02	0.00
Jun-15	-0.58	-0.08	-0.40	-0.34	-0.18	-0.46		0.01	0.00
Aug-15	-0.47	-0.05	-0.25	-0.26	-0.13	-0.39		-0.02	0.00
Oct-15	0.56	0.01	-0.32	-0.34	-0.22	-0.31		-0.02	0.00
Apr-16	-0.42	0.00	-0.36	-0.32	-0.26	-0.22		-0.03	-0.01
Sep-16	-0.06	0.09	-0.28	-0.26	-0.31	-0.55		0.00	0.00
Feb-17	-0.44	-0.02	-0.12	-0.18	-0.13	-0.25		-0.06	0.00
Mar-17	-0.29	0.15	-0.39	-0.35	-0.30	-0.40		-0.03	0.00
May-17	-0.51	-0.07					0.12	0.04	0.00
Sep-18	-0.20	0.04					5.11	0.00	0.01
Apr-19	-0.69	0.01					0.57	0.01	0.00
Aug-19	-0.23	-0.03					0.02	0.01	0.00
Jan-20	0.08	0.03					-0.67	0.02	0.00
Mean									
Willmott	0.58	0.44	0.87	0.87	0.89	0.88	0.61	0.75	0.65
Correlation	0.44	0.19	0.79	0.79	0.82	0.85	0.66	0.71	0.61
Normalised Bias	-0.38	0.01	-0.35	-0.33	-0.23	-0.39	0.12	-0.01	0.00

05-Sep-18 07-Sep-18 09-Sep-18 11-Sep-18 13-Sep-18 15-Sep-18 17-Sep-18 19-Sep-18 21-Sep-18 23-Sep-18 25-Sep-18

35.2 35

34.8 34.6

34.4 34.2

34

35.2 35

34.8

24-May-17

25-May-17

15-Sep-16 17-Sep-16 19-Sep-16 21-Sep-16 23-Sep-16 25-Sep-16 27-Sep-16 29-Sep-16 01-Oct-16 03-Oct-16 05-Oct-16

15-Sep-16 17-Sep-16 19-Sep-16 21-Sep-16 23-Sep-16 25-Sep-16 27-Sep-16 29-Sep-16 01-Oct-16 03-Oct-16 05-Oct-16

Model BGC73K sep16 Oxygen mg/m3 in range:0.03, d2:0.41, rms:790.62, bias:675.95, r:0.54, omean:7939.66 -50 -100 -100 -150

15-Sep-16 17-Sep-16 19-Sep-16 21-Sep-16 23-Sep-16 25-Sep-16 27-Sep-16 29-Sep-16 01-Oct-16 03-Oct-16 05-Oct-16

IMOS glider apr16

26-Aug-15 28-Aug-15 30-Aug-15 01-Sep-15 03-Sep-15 05-Sep-15 07-Sep-15 09-Sep-15 11-Sep-15 13-Sep-15 15-Sep-15

07-Feb-15 09-Feb-15 11-Feb-15 13-Feb-15 15-Feb-15 17-Feb-15 19-Feb-15 21-Feb-15 23-Feb-15 25-Feb-15 27-Feb-15

A.6 Biogeochemical model vs monitoring data including statistics

Figure A6.1 Site locations for field observations: • EPA/IMAS/BEMP Aquenal • DEP sites; • Additional EPA/IMAS sites including eastern bays

Table A6.1 Summary statistics for timeseries comparison of observed and simulated water quality at stations throughout the region from 2015 to (May) 2020 [Willmott & Correlation > 0.4 are coloured green, < 0.3 are red, model bias low is blue, model bias high is orange].

				Median			
		Mean	Mean	Normalised			
BGC73K		Willmott	Correlation	Bias	N. Obs	N.Days	N.Substances
Storm Bay	SB01_Iron	0.57	0.52	0.20	1259	42	11
	SB03 Yellow	0.55	0.43	0.09	377	16	10
	SB08 SEBetsv	0.56	0.51	0.00	395	16	10
	SB09 NWHead	0.51	0.45	0.11	413	16	11
	SB05 NWedge	0.54	0.46	0.20	1550	58	11
	NUB4 SWedge	0.61	0.49	0.00	1552	63	9
	SB02 Mid	0.60	0.49	0.01	453	15	11
	SB06 Variety	0.54	0.39	0.04	464	16	11
	SB04_COF	0.53	0.27	-0.02	473	16	10
	SB03_site3	0.55	0.92	0.02	54	20	4
	SB07 Dart	0.53	0.32	-0.02	523	14	10
	SB11 Evariety	0.55	0.55	0.02	167	10	7
	SDII_LVariety	0.04	0.51	0.30	167	10	7
	CD12	0.40	0.32	0.45	167	10	7
	SD15 CD14	0.45	0.43	0.45	167	10	7
		0.43	0.42	-0.03	167	10	7
	2812	0.48	0.32	0.03	107	10	/
	FHenryв	0.53	0.51	0.21	210	6	10
orfe	Ngreen	0.46	0.35	0.23	192	6	10
Ž	EMF117	0.51	0.37	0.24	492	6	10
S	NB2_EMF117N	0.46	0.41	0.24	438	6	10
Ba	White	0.55	0.43	0.27	210	6	10
L I I	Norfolk	0.52	0.50	0.34	126	6	10
dric	Smooth	0.49	0.43	0.48	192	6	10
Fre	Denison	0.48	0.40	0.32	84	6	10
	Eaglehawk	0.45	0.40	0.20	174	6	10
en	NUB2_Creeses	0.52	0.50	0.10	1406	64	9
ad de la companya de	NUB3_WhiteB	0.60	0.53	-0.01	1396	64	9
Ź	NUB1	0.53	0.48	0.12	1386	64	9
	PA4_Dog	0.60	0.50	-0.03	1629	65	10
2	PA3_CMC	0.64	0.51	-0.02	1663	65	10
t t	PA2_Carnarvon	0.64	0.51	-0.01	1611	65	10
1 tu	PA1_SLB	0.61	0.57	0.00	1490	65	10
2 A	LBGP	0.44	0.29	0.06	273	13	10
	PA6	0.45	0.06	-0.07	179	9	10
	SB11_B3	0.61	0.58	0.13	1275	26	10
	B3	0.60	0.55	0.05	2833	64	9
+ L	B1	0.59	0.51	0.02	2974	64	9
/en	RB	0.80	0.75	0.00	2120	54	3
erv	RBS	0.77	0.77	-0.06	677	54	3
	RBN	0.48	0.39	0.25	1925	64	9
	E	0.59	0.51	0.14	2919	63	9
	NN	0.78	0.83	-0.03	1892	60	9
D'Entrecasteaux	M15	0.55	0.41	0.06	1613	83	9
	M09	0.55	0.56	-0.01	1613	83	9
	MOS	0.05	0.50	0.01	1613	83	9
	M07	0.05	0.50	0.04	1612	83	9
	M06	0.55	0.52	0.07	1612	83	9
	M12	0.01	0.50	0.07	1613	83	9
	M10	0.08	0.05	0.00	1613	20 20	9
	M11	0.01	0.59	0.14	1613	دن ده	9
		0.53	0.51	0.24	1613	03 02	9
	M12	0.57	0.55	0.15	1613	65	9
	MOS	0.53	0.42	0.12	1613	65	9
		0.56	0.53	0.42	1013	83	9
	1/103	0.60	0.55	0.26	1013	83	9
	1/104	0.58	0.57	0.30	1613	83	9
	IVIU2	0.62	0.61	0.14	1613	83	9
	IVIUT	0.61	0.58	0.15	2503	109	10

Table A6.2 Summary statistics for each observed substance from timeseries comparison of observed and simulated water quality at stations throughout the region from 2015 to (May) 2020 [Willmott & Correlation > 0.4 are coloured green, < 0.3 are red, model bias low is blue, model bias high is orange].

			Median			
	Mean	Mean	Normalised			
	Willmott	Correlation	Bias	N. Obs	N.days	N.Sites
Temp deg.C	0.96	0.96	-0.02	12423	2421	55
Salinity psu	0.68	0.63	0.00	12330	2412	55
Oxygen mg/m3	0.69	0.62	-0.05	10695	2325	55
All Chl-a mg/m3	0.44	0.20	-0.13	2578	2419	63
NO3 mg/m3	0.56	0.66	1.79	5419	2462	57
NH4 mg/m3	0.27	0.21	0.96	5419	2458	57
TN mg/m3	0.59	0.40	0.03	5419	2462	57
DIP mg/m3	0.58	0.58	0.43	5419	2462	57
TP mg/m3	0.47	0.34	0.36	5419	2462	57
DOC mg/m3	0.21	0.17	1.56	928	313	34

-42.6

73K NO3 mg/m3 median d2 = 0.62

73K NHx mg/m3 median d2 = 0.23

-42.6

Figure A6.2 Spatial distribution of Willmott skill for model vs observations at stations throughout the region from 2015 to (May) 2020.

73K Chl-lund mg/m3 median bias = -0.21

73K NO3 mg/m3 median bias = 19.97

-42.6

Figure A6.3 Spatial distribution of model bias c.f. observations at stations throughout the region from 2015 to (May) 2020.

73K Salinity psu median bias = -0.01

-42.6

73K Temp deg.C median bias = -0.33

-42.6

-42.8

-43

-43.2

-43.4

-43.6

-42.8

-43

-43.2

-43.4

-43.6

146.8 147

146.8

400

350

Smoo Salinity psu

PA8 Chl-lund mg/m3

Nov-17

Mar-19

Feb-15

Jun-16

PA7 Chl-lund mg/m3

PA6 Chl-lund mg/m3

Norf Salinity psu d2:٥ू.68, mape:1.7, rms:0.64, bias:0.18, r:0.91, omean:33.74

LBGP Salinity psu d2:0,46, mape:0.6, rms:0.30, bias:-0.22, r:0.23, omean:34.90 -5 -6 -10 -15 Feb-15 Jun-16 Nov-17 Mar-19

FHen TN mg/m3

-5

EMF1 NO3 mg/m3

Eagl Salinity psu d2:0.47, mape:2.1, rms:0.78, bias:0.05, r:0.78, omean:33.78

Storm Bay Modelling & Information System | 101

PA1 NP-DOC mg/m3

d2:0.55, mape:19.8, rms:66.59, bias:-30.98, r:0.32, omean:279.50

PA2 NP-DOC mg/m3

d2:0.48, mape:18.9, rms:63.84, bias:-38.73, r:0.18, omean:275.82

d2:0.86, mape:4.0, rms:416.35, bias:-148.67, r:0.77, omean:8498.58

PA3 NP-DOC mg/m3

d2:0.54, mape:18.6, rms:64.53, bias:-47.14, r:0.44, omean:276.92

-0.8

38

d2:0.59, mape:16.9, rms:59.38, bias:-41.63, r:0.46, omean:276.06

d2:0.84, mape:4.2, rms:462.99, bias:-261.98, r:0.78, omean:8607.73

Storm Bay Modelling & Information System | 117

SB06 NP-DOC mg/m3 d2:0.09, mape:169.0, rms:477.96, bias:475.19, r:-0.07, omean:293.33

SB06 Salinity psu d2:0,40, mape:1.7, rms:0.80, bias:0.52, r:-0.19, omean:34.53

SB02 NP-DOC mg/m3 d2:0.15, mape:173.8, rms:487.05, bias:483.88, r:0.60. omean:300.00

SB05 NP-DOC mg/m3 d2:0.22, mape:173.9, rms:497.40, bias:492.92, r:0.59, omean:315.15

NUB2 TN mg/m3 d2:0.59, mape:20.5, rms:67.48, bias:21.56, r:0.38, omean:279.47 400 350 -5 300 -10 250 200 -15 . 150 Jun-16 Feb-15 Nov-17 Mar-19

NUB1 TN mg/m3 d2:0.40, mape:26.5, rms:98.50, bias:36.10, r:0.23, omean:285.16

NUB1 TP mg/m3 d2:0.36, mape:67.3, rms:21.91, bias:17.35, r:0.19, omean:31.70

SB09 NP-DOC mg/m3 d2:0.20, mape:160.8, rms:513.88, bias:507.63, r:0.33, omean:337.14

SB09 Salinity psu d2:0.69, mape:1.4, rms:0.73, bias:0.32, r:0.83, omean:34.14

SB01 Chl-lund mg/m3

NN Salinity psu d2:0.28, mape:100.0, rms:5.93, bias:-2.03, r:0.34, omean:2.03

RBN TN mg/m3 d2:0.43, mape:31.5, rms:98.92, bias:66.48, r:0.28, omean:273.19

RBN TP mg/m3 d2:0.41, mape:52.5, rms:18.94, bias:14.47, r:0.22, omean:34.86

SB11 Salinity psu 42:0,85, mape:2.0, rms:0.99, bias:0.48, r0.81, omean:3.09 -5 -0 -10 -10 -10 -10 -20 Feb-15 Jun-16 Nov-17 Mar-19

5811 TN mg/m3 42:0.72, mape:14.0, rms:49.76, bias:2.70, r:0.54, omean:274.52 -5 -0 -5 -0 -15 -20 Feb-15 Jun-16 Nov-17 Mar-19

M01 Salinity psu d2:0.86, mape:1.4, rms:0.66, bias:0.09, r:0.76, omean:33.90 -5 -10 -15

-20 ______ 28 Feb-15 Jun-16 Nov-17 Mar-19

Nov-17

Jun-16

Mar-19

Feb-15

M03 TN mg/m3 d2:0.66, mape:19.2, rms:58.82, bias:22.93, r:0.45, omean:266.67 -5 -0 -5 -0 -10 -15 -20 Feb-15 Jun-16 Nov-17 Mar-19

M13 TN mg/m3

M11 TN mg/m3 d2:0.44, mape:32.3, rms:100.82, bias:57.72, r:0.15, omean:279.87

M06 TN mg/m3 d2:0.60, mape:20.1, rms:58.85, bias:13.52, r:0.35, omean:262.26 -5 -0 -10 -15 Feb-15 Jun-16 Nov-17 Mar-19

Feb-15 Jun-16 Nov-17 Mar-19 M08 TP mg/m3

M09 Salinity psu

CONTACT US

- t 1300 363 400 +61 3 9545 2176
- e csiroenquiries@csiro.au
- w www.csiro.au

AT CSIRO, WE DO THE EXTRAORDINARY EVERY DAY

We innovate for tomorrow and help improve today – for our customers, all Australians and the world.

Our innovations contribute billions of dollars to the Australian economy every year. As the largest patent holder in the nation, our vast wealth of intellectual property has led to more than 150 spin-off companies.

With more than 5,000 experts and a burning desire to get things done, we are Australia's catalyst for innovation.

CSIRO. WE IMAGINE. WE COLLABORATE. WE INNOVATE.

FOR FURTHER INFORMATION

CSIRO Oceans & Atmosphere Karen Wild-Allen t +61 4 6232 5010 e karen.wild-allen@csiro.au w www.csiro.au