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Executive Summary  

We report on the findings of a collaborative research project that was designed to identify and measure 
the effects of environmental drivers on the abundance and population dynamics of key Queensland 
fishery species. The project was co-funded by the Commonwealth Government’s Fisheries Research 
and Development Corporation (FRDC) and carried out by a multi-disciplinary team of scientists from 
the University of Queensland (UQ), the Queensland Department of Agriculture and Fisheries (DAF) and 
the Australian Institute of Marine Science (AIMS). The research team applied modern statistical, data 
science and modelling techniques in combination with biological insights into the life cycles of the three 
target species.  
 
Background 
 
With increasing evidence that environmental conditions in the marine environment are changing 
rapidly, it is becoming ever more important to understand how these changes may impact on the 
population dynamics and abundance of important fish stocks. Understanding the influence of 
environmental conditions can provide greater certainty that the risk of overfishing (under adverse 
environmental conditions) or under harvesting (under favourable conditions) are accounted for by 
resource managers.  
 
This project aimed to identify the environmental factors which may be influencing the recruitment, 
catchability or productivity of Snapper, Pearl Perch, and Spanner Crab stocks in Queensland. Results 
from this work will support sustainable management of Queensland’s fisheries by directly informing 
the assessment and management of these key species within Queensland waters.  
 
Aims/objectives  
 
The project had three key objectives: (1) To find indices of association between the abundance of 
target species and key environmental drivers; (2) To use these indices to enhance the existing stock 
assessment models for each species; (3) To enable forecasting of environmentally driven fluctuations 
in target species’ abundance, including enhancing Management Strategy Evaluations (MSEs), with the 
help of a Rapid Adaptive Projections Tool (RAPT). 
 
Methodology  
 
Target species – Spanner Crabs, Snapper and Pearl Perch – were selected by Fisheries Queensland (FQ) 
based on their categorisation as ‘depleting’ or ‘depleted’ in the national Status of Australian Fish Stocks 
Reporting (SAFS, 2018). Spatial and temporal statistical analyses were carried out on a range of 
environmental variables to investigate whether relationships existed with fishery dependent and 
independent datasets. A wide range of statistical techniques was utilised to test for associations 
between environmental indicators and measures of abundance. The techniques used included, but 
were not limited to: exploratory data analyses, correlation analyses, time series analyses, Bayesian 
Gaussian mixtures to search for clusters, lasso, ridge and trigonometric regression.  
 
A novel modelling strategy was proposed to determine the most effective way to incorporate these 
environmental indices into stock assessment via: (a) surplus production models, and (b) generalised 
linear models for CPUE standardisation. These outputs were then incorporated into a user-friendly 
rapid adaptive projections tool (RAPT) to facilitate ease of engagement with end users.  
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Results/key findings  
 
Across the three target species, Chlorophyll a concentration (Chl-a) and sea level anomaly (GSLA 
product) were found to have strong associations with either abundance or catchability of the three 
target species. These associations occurred at spatio-temporal scales relevant to each species’ biology.  
 
Snapper specific findings  
Several environmental variables were found to have strong associations with either the abundance or 
catchability of Snapper. These included GSLA, sea surface temperature (SST), Chl-a, river discharge 
(truFlo), tidal range (TideR), Southern Oscillation Index (SOI) and others.  
 
(1) There is evidence of a negative linear association between the fishery independent survey (FIS) pre-
recruit density in November and December and SST in the preceding June and July (i.e. adult spawning 
period) in offshore areas where the majority of Snapper spawning stock is thought to be present. 
 
(2) A threshold temperature sensitivity range of 19.8 ˚C to 21.8˚C was identified for offshore Snapper 
during the known spawning season. A higher frequency and larger magnitude of temperatures above 
these thresholds in June were found to be negatively associated with subsequent Snapper FIS pre-
recruitment, with a correlation value at or below -0.8.  
 
(3) There is evidence of positive linear relationships between FIS pre-recruit density and Chl-a in the 
preceding June-October period in offshore areas and in the preceding September-October period 
within Moreton Bay. This is potentially related to high levels of primary productivity improving Snapper 
larval survival and/or growth rates in the plankton. 
 
(4) A linear combination of SST in June and Chl-a in September was found to account for 75% of the 
variability in the FIS density of Snapper pre-recruits. 
 
(5) There is evidence that FIS density of Snapper pre-recruits is an indicator of subsequent commercial 
line standardised CPUE in Queensland. The strongest correlation is between the density of Snapper 
pre-recruits and commercial catch rates four years later. Four-year-olds are typically one of the most 
abundant age classes in the Queensland Snapper line fishery. 
 
Spanner Crab specific findings  
Extensive analyses of Spanner Crab associations with environmental variables revealed a complex 
pattern of both positive and negative correlations occurring in the six different regions and on different 
time scales. The environmental variables that were found to have significant associations include (but 
are not limited to): GSLA, SST, Chl-a, SOI, components of ocean current velocity and marine heatwaves 
(MHW). There are indications that some of the differences in these associations are based on the large 
latitudinal gradient across the Spanner Crab management regions as well as on the cross-shelf depth 
gradient of the surveyed locations within each management region. 
 
(1) Catch rate of legal-size crabs (i.e. carapace length (CL) of at least 100 mm) in Region 4, which 
produces the largest commercial catch of Spanner Crabs in Queensland, appeared to be insensitive to 
fluctuations in the following important environmental variables: Chl-a, GSLA (i.e. eddies and 
upwelling), SST, and MHW. Catch rate of legal-size crabs in Region 4 is positively correlated with 
bottom current speed during the month of capture (i.e. current speed appears to affect catchability).  
 
(2) Chl-a is significantly associated with the catch rate of legal-size crabs in four of the five Queensland 
regions. Significant positive correlations in Regions 2, 3, 5 and 6 are present at multiple monthly lag 
times. Regions 2 and 3 are particularly strongly associated at the majority of time lags in the year 
preceding the catch. Chl-a is a proxy for primary productivity at the ocean surface, which is expected 
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to be beneficial to higher trophic levels in the plankton, such as larval Spanner Crabs. Given that 
Spanner Crabs captured in the fishery are likely at least 4 years old, the mechanism by which Chl-a 
influences catch rates the following year is unclear.  
 
(3) GSLA is negatively associated with the FIS catch rate of legal-size crabs in three of the five 
Queensland regions. Significant negative correlations were found for Regions 2, 3 and 6, at multiple 
monthly lag times. The negative correlation with Spanner Crab FIS catch rates indicates that 
downwelling may be deleterious, while upwelling may be beneficial, to subsequent Spanner Crab catch 
rates.  
 
(4) The direction of significant associations in Region 7 is generally opposite to those in Regions 2, 3 
and 6. This applies to the correlations of the FIS catch rate of legal-size crabs with GSLA, Chl-a and SST. 
While the biological mechanism for this is unclear, it is conceivable that in this southernmost region 
the long-term warming trend could be beneficial rather than detrimental. Alternatively, these 
associations may be an artefact of large reductions in commercial fishing effort in this region in recent 
years improving local catch rates, coincidentally during the same period that GSLA and SST have been 
increasing and Chl-a has been decreasing. 
 
Pearl Perch specific findings  
There were no fishery independent surveys for Pearl Perch to permit similarly detailed analyses to 
those conducted on Snapper and Spanner Crab. However, CFISH data for the Queensland and NSW 
commercial Pearl Perch line fisheries revealed similar types of strong associations with Chl-a and GSLA.  

(1) In Queensland, GSLA had a significant negative association with the standardised annual CPUE, 
lagged by 0 to 6 years. GSLA is an indicator of upwelling, downwelling, and eddy events. A negative 
association with SCPUE indicates that downwelling and warm-core eddies are deleterious to Pearl 
Perch catches, while upwelling and cold-core eddies have positive associations with Pearl Perch 
catches. Upwelling and cold-core eddies typically trigger primary productivity blooms. 

(2) There were statistically significant positive correlations between Pearl Perch standardised annual 
CPUE and Chl-a, lagged by 0, 1 and 2 years. The current year (lag 0) yielded the strongest association, 
suggesting a positive effect of Chl-a on Pearl Perch catchability. This may be related to more active 
feeding by Pearl Perch during periods of higher productivity, such that they may be more likely to take 
bait and be captured. 
 
Implications for relevant stakeholders  
 
The identified association between Chl-a and GSLA and abundance indicators should be of particular 
interest to fisheries managers, as these factors were found to correlate negatively with stock 
productivity. Therefore, continued shifts in environmental conditions may have consequences for 
rebuilding stocks. In particular, this project identified long-term, persistent increases in GSLA and 
concurrent decreases in Chl-a, in line with the literature on climate change impacts on coastal 
oceanographic processes. As a result, our preliminary investigations incorporating these 
environmental variables into simple surplus production stock assessment models result, under some 
scenarios, in substantially increased times to stock recovery.  
 
The outputs of this project inform fishery managers, industry stakeholders and the public about the 
possible associations and impacts of environmental variables on these fishery stocks, and 
considerations for future stock modelling and management strategies. More specifically: 
 
1. The results from this project indicate that environmental variables can be used to inform future 

harvest strategy development through setting of reference points which reflect changes in 
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productivity and should be considered for incorporation into performance measures that are used 
to set harvest limits via harvest strategies. Further work is required to determine the preferred 
method for forecasting the effects of environmental variables on biomass into the future.  

2. Fishery stakeholders need to be cognisant of possible, near term, adverse scenarios if the observed 
increasing trends in sea level anomalies and SST and decreasing trends in Chl-a continue. 

3. Short-term surplus product model forecasts indicate that historical levels of harvest of these three 
species are unlikely to be achievable in the future. When environmental variables are incorporated 
in these models they suggest that, under some TACC scenarios, the re-building timeframes (to 
sustainable levels) are extended in each of the stocks. 

 
Recommendations 
 
1. Continue annual fishery independent abundance surveys of Snapper and Spanner Crabs to validate 

stock status and to optimise management procedures. Consider developing fishery independent 
monitoring of Pearl Perch recruitment using methods similar to those used to monitor Snapper 
recruitment. As the time series for the FIS abundance indices are relatively short, confidence in the 
study’s main findings should improve with additional annual survey data. 

2. Consider key environmental variables (GSLA, Chl-a, and SST) and their forecasts when developing 
harvest strategies.  

3. Ideally, undertake targeted investigations which distinguish the effects of fishing from 
environmental effects, for example whether environmental associations are detectable in areas 
not subject to recent fishing pressure (protected or unfished area).   

4. Investigate underlying causes of the relative resilience of Spanner Crab catch rates in Region 4 to 
environmental fluctuations, possibly with greater focus on oceanographic processes specific to 
that region. 

5. Continue monitoring those identified, unexplained, associations between catch rates (both FIS and 
commercial) and key environmental drivers that may be indicators of enhanced, or stable, future 
harvests. For instance, in Regions 7 and 4 of the Spanner Crab fishery.  

6. Regularly update the biomass ratio trajectories of Kobe plots in surplus production models as a, 
simple, diagnostic tool of progress towards goals of MSEs. 

7. Further explore the incorporation of environmental effects into the CPUE standardisation 
procedure for each species. The current procedure incorporates a categorical “year” factor, which 
likely absorbs much of the interannual variability potentially stemming from environmental 
conditions. Explicit and iterative replacement of the “year” factor, as well as seasonality 
parameters, with different environmental variables could identify and quantify the environmental 
conditions affecting catch rates. “Logbook grid” is a spatial explanatory term in the CPUE 
standardisation procedure in many Queensland fished species, which is also likely correlated with 
environmental influence. Hence, if environmental influences are incorporated in the 
standardisation GLM, inclusion of potentially redundant temporal (e.g. year) and spatial (e.g. grid) 
factors requires further consideration. 

8. Empirically quantify fishing power for use in the CPUE standardisation procedures for Snapper and 
Pearl Perch.  
 

Keywords 
Snapper, Chrysophrys auratus, Spanner Crab, Ranina ranina, Pearl Perch, Glaucosoma scapulare, 
environmental drivers, stock assessment models, statistical analyses, correlation, regression, Bayesian 
models, age-structured models, surplus models, Southern Oscillation Index, marine heatwaves, ocean 
currents. 
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 Introduction and Background 

The sustainable management of Australia’s fish stocks relies heavily on quantitative assessments of 
stocks of harvested species. These depend on databased, detailed, scientific stock assessment models, 
most of which do not currently account for the effect of fluctuating environmental factors (e.g. SST, 
primary productivity, surface currents) on marine systems. Deeper understanding of the influence of 
environmental factors on fish stocks will support adaptive management approaches, which can actively 
adjust harvest regulations in response to environmental conditions. This is increasingly important as 
climate change drives changes in environmental conditions leading to a complex range of phenomena 
which may influence the movement patterns, distribution and life history of fishery species in different 
ways. 
 
The scientific challenge lies in quantifying the correct, evidence based, responses to fluctuations in 
environmental conditions that will benefit both the fishing stakeholders and the sustainability of the 
harvested species. We begin to address this challenge by identifying and quantifying the relationship 
between major environmental drivers and key parameters of fishery population dynamics for three 
species for which this information is lacking. We then incorporate these relationships into surplus 
production stock assessment models for each species. Currently, most stock assessment models do 
not explicitly include impacts of fluctuating environmental factors on key population biology 
parameters (e.g. recruitment, natural mortality) despite the fact that such impacts are known to occur. 
 
The project has been developed to maximise its value to the sustainable management of Queensland 
fisheries. In particular, the project’s three focal species - Spanner Crab, Snapper and Pearl Perch - have 
been adopted on request by Fisheries Queensland. These species are at high risk of depletion, may be 
at risk of range shifts as a result of environmental change, and are of significance to fishery 
stakeholders. Recent assessments of Pearl Perch and Snapper have found that populations of both 
species are between 10-40% of virgin biomass, which is well below the 60% unfished biomass by 2027 
target of the Sustainable Fisheries Strategy. Furthermore, in 2018 Fisheries Queensland decreased the 
commercial Spanner Crab fishery quota by 50% to reduce pressure on the stock after a decade of 
decline in indicators of abundance. These declines in the three target species are likely driven by a 
combination of high fishing pressure, changes in fleet dynamics and environmental changes. 
 
This project takes advantage of recent advances in remote sensing and modelling of the marine 
environment to enrich our understanding of environmental influences on the populations of targeted 
species. Improvements to stock assessment models for these species should result in better 
predictions for management of the stocks. These predictions can also be incorporated into 
Management Strategy Evaluations (MSEs) which are a scenario-testing approach that are used to 
determine an adequate management response (e.g. Total Allowable Commercial Catch (TACC) 
increase/reduction, duration of fishing season) to changes in population status indicators. 
Development of the Rapid Adaptive Projections Tool (RAPT) dashboard allows stakeholders to take 
ownership of the accumulated scientific knowledge and data embedded in the improved stock 
assessment models and to better visualise their projections. 
 
The project addresses the FRDC National RD&E priorities (#1) well managed sustainable fisheries and 
(#3) maximising benefits from fisheries. The overall objectives of the project are also supported by the 
Great Barrier Reef Marine Park Authority (GBRMPA). 
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 Background Information on Target Species 

  

1.1.1 Snapper, Chrysophrys auratus – biology and management 
 
Snapper, Chrysophrys auratus (formerly Pagrus auratus) are distributed throughout the central Indo-
Pacific. In Australia, it inhabits coastal waters around southern Australia, from Mackay in Queensland 
to Exmouth, Western Australia. It is a long-lived, slow-growing fish targeted in commercial, recreational 
and charter fisheries. Currently, the Queensland portion of the east Australian stock is classified as 
depleted (below 20% of virgin biomass levels) (Wortmann et al. 2018). In this sub-section we briefly 
outline the main aspects of Snapper biology and ecology that are relevant to the current project.  
 
Life cycle & habitat 
 

Snapper spawn in offshore areas during winter (May to October), synchronised with the lunar cycle 
(Wortmann et al. 2018). The exact timing and duration of spawning is further influenced by water 
temperature (Scott and Pankhurst 1992; Francis 1993; Lenanton et al. 2009). For example, cooler water 
temperatures in NSW leads to later spawning (Hamer et al. 2011; Scott and Pankhurst 1992). Larvae 
are present in the plankton for 4-31 days, where they feed on phytoplankton and smaller zooplankton. 
Ocean currents can transport Snapper larvae large distances, generally in a southerly direction due to 
the flow of the East Australian Current (Sumpton et al. 2008). After this time, juveniles settle into 
sheltered inshore bay nursery areas, such as Moreton Bay, where they feed mainly on small 
crustaceans, worms and other invertebrates (Usmar 2012). 
 
Adults are found in coastal marine waters to a depth of 200 m and feed mainly on small fish, 
cephalopods and hard-shelled invertebrates. In Queensland, Snapper typically reach maturity at 26-32 
cm (1.7-3 years old). However, this varies with latitude, with subtropical Snapper exhibiting faster 
growth rates than those in temperate waters (Wortmann et al. 2018). The maximum life span of this 
species is thought to be greater than 30 years, however fish this age are very rare in Queensland, where 
90% of fish caught are less than 10 years old.  
 
Spatial extent 
 

Snapper are distributed widely across western, southern and eastern Australia. Within Australian 
waters, there are 12 genetically or biologically separate Snapper populations (Fowler et al. 2018). The 
east coast population extends from Mackay (21°S) to Eden on the Southern NSW border (38°S) 
(Morgan et al. 2019). Southward larval transport is thought to be the key mechanism responsible for 
mixing of this stock (Stewart et al. 2020) but larval dispersion models indicate ~5% of larvae spawned 
in northern NSW are transported to QLD (FRDC 2018-074 preliminary results). Results from a large-
scale tagging study indicate that adult Snapper generally move over relatively small areas (<20 km), 
with limited movement of adults out of Moreton Bay (Sumpton et al.  2003b).  
 
Queensland Snapper fishery management 
 

Due to the popularity of Snapper as a target species for commercial, charter and recreational fisheries 
(with approximately 75% of the catch coming from the recreational and charter sectors), there has 
been extensive fishing pressure on this species for decades. This consistent high fishing pressure has 
contributed to declining biomass over time. Recent assessments of Snapper abundance within 
Queensland waters estimate the biomass at <20% of virgin levels (Wortmann et al. 2018). To reduce 
the impact of fishing mortality on the stock, increasingly stringent management measures have been 
introduced over the past 20 years. Management measures that apply to all fishing sectors in 
Queensland include a minimum legal-size (MLS) of 35 cm and a state-wide seasonal spawning closure 
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from 15 July to 15 August (introduced in 2019). In addition, recreational and charter fishers are limited 
to an in-possession limit of 4 fish per person (with one fish >70cm) and commercial fishers are limited 
to a 42 t TACC. 
 
Available fisheries data 
 

Both fisheries-dependent and fisheries-independent datasets are available for this species. 
Commercial daily catch data are available from mandatory logbooks from 1988, with catch recorded 
at 30 nautical mile (NM) grid cells (6 NM where possible). Comprehensive charter fishing data on both 
retained and released fish are available for the Gold Coast region from 1993 to 2010; and charter 
logbook data for the wider sector are available from 1993 to the present. Recreational catch data have 
been collected through boat ramp and phone-based survey approaches since 1995, with state-wide 
surveys taking place every 2-5 years. These surveys collect information on the number of fish caught 
and their length. The state-wide creel surveys are designed to collect information on the recreational 
fishing population and their fishing activities, rather than information on the abundance of target 
stocks. As a result, this data does not provide an index of abundance, limiting its use in assessing trends 
in Snapper abundance. Age and length frequency data are available across all fishing sectors since 
2007, although this was discontinued for the charter fishery after 2011.  
 
Commercial fishing logbook data are used to develop standardised catch rates for Snapper. The catch 
rate standardisations use the statistical application of linear mixed models using restricted maximum 
likelihood as outlined by Wortmann et al. (2018) and include latitude (defined by one degree latitude 
bands), lunar phases, wind speed and direction, year, month, and fishing power to account for variation 
in gear technologies (the impact of GPS, colour sounders, electric fishing reels and four-stroke engines) 
on fishing. 
 
Juvenile Snapper are caught in a fishery independent beam trawl survey (FIS), conducted annually since 
2007, excluding 2016. The FIS catches juvenile, young-of-year Snapper from 3 to 13 cm total length. 
The FIS is conducted in November and December in five locations: Moreton Bay, offshore of Moreton 
Island, offshore of Stradbroke Island, Hervey Bay, and offshore of Fraser Island at Double Island Point 
(Bessell-Browne et al. 2020). The consistent methodology and sampling design of this survey ensures 
that it provides a robust index of catch-per-unit-effort for this species, which can be used as an index 
of abundance.  
 
Potential environmental influences 
 

The influence of environmental variables on Snapper abundance and catchability has been studied 
throughout Australian and New Zealand waters. Temperature has been shown to influence spawning 
patterns (Lenanton et al. 2009), with an optimal spawning temperature range of 19-21°C for this 
species (Wakefield et al. 2015). The larval phase of Snapper is also sensitive to temperature, with 
optimal growth and development occurring between 18-22°C and 100% mortality occurring above 
27°C (Mihelakakis and Yoshimatsu, 1998; Fielder et al. 2005). In New Zealand, the abundance of one 
year old Snapper was significantly influenced by temperature in April-June of the preceding year and 
accounted for 94% of the variation in one year old Snapper abundance (Francis 1993). However, a 
linear relationship between temperature and Snapper abundance was not recorded during research in 
southern Australia (Fowler and Jennings 2003). Overall, warming ocean temperatures are projected to 
have negative impacts on spawning and larval growth of Snapper in Queensland waters, with the 
optimal 19-21°C temperature window becoming shorter and potentially ceasing to occur altogether by 
mid-century (Hamer et al. 2011).  
 
Southward transport of Snapper larvae by the East Australian Current (EAC) is thought to be a key 
process driving mixing of the Australian East Coast Snapper population, with larvae being transported 
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from Queensland into New South Wales (Sumpton et al. 2008). Therefore, any future changes in the 
EAC are likely to influence this dispersal pattern. Indeed, the EAC has strengthened by 20% and now 
penetrates 350 km further south (Ridgway 2007), which may have already influenced Snapper larval 
dispersal.  
 
In a New Zealand study, Sim-Smith et al. (2013a) found that temperature, tidal range and onshore 
winds explained up to 38% of the variability in the abundance of newly settled juvenile Snapper. 
Specifically, larval recruitment success was found to be higher in conditions of large tides and stronger 
onshore winds (Sim-Smith et al. 2013b).  
 
Moreton Bay is a key settlement area for Snapper in Queensland; therefore riverine inputs could be 
expected to have important influences on juvenile Snapper abundance. Specifically, higher rainfall can 
lead to increased outflows into Moreton Bay, leading to increased productivity as nutrients enter the 
bay from rivers.  
 
Based on the range of variables that have been found to influence Snapper abundance in Australian 
and New Zealand waters previously, as well as those theorised to have impacts due to the specific 
conditions that occur within Queensland waters, our search for environmental influences included, but 
was not limited to, the examination of: 
 

• SST range, mean, minimum/maximum, 10th and 90th percentiles,  

• The occurrence, strength and duration of MHWs 

• Bottom temperature range, mean, minimum/maximum 

• Chl-a, range, mean, minimum/maximum 

• EAC strength  

• Onshore wind strength, duration, timing 

• Tidal range 
 

1.1.2 Pearl Perch, Glaucosoma scapulare – biology and management 
 

Pearl Perch (Glaucosoma scapulare) are found in offshore waters along the east coast of Australia. 
They are a prized eating fish frequently targeted by both commercial and recreational fishers using line 
fishing techniques. The harvest of Pearl Perch is managed separately by Queensland and NSW. Pearl 
Perch were a secondary target species in the Queensland rocky reef fishery; however, declining 
Snapper catch rates in the late 1990s resulted in fishers targeting Pearl Perch instead (Sumpton et al. 
2013). In 2015 Pearl Perch were classified as “depleted” in the Status of Australian Fish Stocks. This 
listing was based on a spawning stock biomass estimate below the 20% threshold for an overfished 
stock (Sumpton et al. 2017). There remain significant gaps in knowledge concerning the life cycle and 
reproductive biology of this species. The list of main project-pertinent issues discussed below is based 
primarily on Stewart et al. (2013), Sumpton et al. (2013) and Sumpton et al. (2017). 
 
Life cycle & habitat 
 

Until recently, the reproductive biology of Pearl Perch was unknown (Stewart et al. 2013). Prior to 
2010, spawning animals had not been recorded from the traditional fishing grounds in southern 
Queensland and northern New South Wales. This led researchers to hypothesise that the species 
undertook a northward spawning migration like tailor (Pomatomus saltatrix) and sea mullet (Mugil 
cephalus), and the resulting larvae were dispersed southward by the EAC. Since 2010, spawning 
animals have been sampled in commercial catches from the Swains Reef area (22°S) and in deeper 
(>180 m) water offshore from the Sunshine Coast and Fraser Island. Current research suggests that 
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individuals may make cross-shelf migrations into deeper waters to aggregate for spawning; however, 
this remains unsupported at this time. 
 
The larval period of Pearl Perch is thought to be approximately 45 days, based on the congeneric 
G. hebraicum (Pironet and Neira 1998). Previous research indicates juveniles are present over sandy 
substrates, where they are caught by prawn trawl vessels targeting eastern king prawns (Melicertus 
plebejus) (Montgomery et al. 2007) and by fishers targeting sand crabs (Portunus armatus) using pots 
in southern Queensland (Sumpton et al. 2003a). As adults, Pearl Perch form schools around submerged 
reefs, pinnacles, and rocky seabeds at depths of up to 250 m. They are also known to aggregate over 
shipwrecks, gravel substrates and adjacent areas, particularly those where gorgonian sea whips occur. 
In contrast to Snapper, the Pearl Perch life cycle occurs exclusively in offshore (>20 m deep) areas. 
 
Pearl Perch mature at ~26 cm TL (L50) (Sumpton et al. 2013). Age-at-maturity is unknown at present; 
however, this metric is being quantified as part of current research (FRDC 2018-074). Pearl Perch grow 
to at least 75 cm TL and >25 years old. Queensland fish exhibit faster growth rates than those from 
New South Wales (Stewart et al. 2013). Fishery dependent sampling indicates Pearl Perch were fully 
recruited to the fishery at five years at the MLS of 35 cm TL, although this is likely to change slightly 
given the MLS has recently increased to 38 cm TL. 
 
Spatial extent 
 

Pearl Perch are endemic to the east coast of Australia between Mackay (21°S) and Newcastle (33°S). 
Traditionally, Pearl Perch were targeted in Queensland offshore from the Sunshine Coast, Brisbane and 
the Gold Coast. However, as the populations in these areas declined, fishers moved to areas well 
offshore and to the northern extent of the species’ range (Sumpton et al. 2013). The introduction of 
modern marine electronics, particularly GPS, have facilitated this shift.  
 
As a result of their limited range and the southerly movement of the EAC, Pearl Perch should be 
considered a single biological stock (Stewart et al. 2013). However, recent research has shown that the 
timing of spawning differs throughout the species’ range: spawning appears to occur September to 
December in the Swains Reef area and March to May in Southern Queensland. Current research (FRDC 
project 2018-074) is collecting genetic information from fish across the species’ distribution to 
determine if a sub-population may be present in the northern part of the species’ distribution. 
 
Queensland Pearl Perch fishery management 
 

Prior to 1993, catch restrictions were absent. In 1993, an MLS of 30 cm TL, and a bag limit of ten were 
introduced. In response to declining catch rates, the MLS was increased to 35 cm and the bag limit was 
reduced to five in 2003. In 2011, a six-week closure was introduced for Snapper, Pearl Perch and 
teraglin between 16 February to 31 March to reduce fishing mortality; this closure was not repeated. 
In 2019, the MLS was further increased to 38 cm and the in-possession limit further reduced to four. 
In response to the requirement imposed by Fisheries Queensland to reduce catch by 30%, a one-month 
closure was introduced between 15 July and 15 August. This closure is likely to be ongoing. In line with 
the broader management changes, a 15 t TACC was implemented for Pearl Perch in 2019. 
 
On easily accessible fishing grounds, fish size is skewed toward the MLS. Larger fish occur in areas 
where fishing effort is relatively low. Several large aggregations have been located, and are 
characterised by a high proportion of large, older individuals. Such aggregations are likely to be subject 
to increasing fishing pressure in future due to the introduction of automated fishing equipment, such 
as electric reels and increasingly powerful (2 kW) sounders. 
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Available fisheries data 
 

The Queensland Fish Board (QFB), which was responsible for marketing fisheries product, collected 
catch information from 1936 until 1981, but these data are unreliable for Pearl Perch. Commercial daily 
catch data are available from mandatory logbooks from 1988 at 30 nautical mile (NM) grid cells (6 NM 
since about 2005). However, prior to 2003 Pearl Perch were reported by commercial fishers on an ad 
hoc basis. Logbook data have been used to develop standardised catch rates using the same approach 
outlined for Snapper (see Wortmann et al. 2018, for details). Charter fishing logbook data are collected 
and include Pearl Perch that are retained or released. Recreational catch data are available from both 
state-wide creel recreational fishing surveys and boat ramp surveys. Age and length frequency data 
are available across all fishing sectors from 2007 onwards. Unlike Snapper, Pearl Perch are not subject 
to fishery independent monitoring. 
 
Potential environmental influences 
 

According to Sumpton et al. (2017) Pearl Perch differ from other rocky reef species (such as Snapper) 
for which the spatial and temporal extent of spawning are relatively well known. There is increasing 
certainty around Pearl Perch spawning and reproductive biology: spawning is occurring at the northern 
end of the species’ range and in deeper offshore waters off the Sunshine Coast. Therefore, EAC 
dynamics and eddies are likely to influence the dispersal of Pearl Perch larvae southwards into 
southern Queensland and New South Wales. In addition, lunar phase may influence the timing of 
spawning. Increasing water temperatures on traditional fishing grounds may see Pearl Perch move 
southwards and eastwards to deeper water to cope with increasing water temperature. However, this 
potential temperature effect may be masked by the shift in fishing effort towards the north due to 
depletion of stocks in southern fishing grounds (FRDC 2018-074 preliminary results). 
 

1.1.3 Spanner Crab, Ranina ranina – biology and management 

Spanner Crab (Ranina ranina) is a widely distributed species across the Indo-Pacific. On the east coast 
of Australia, Spanner Crabs inhabit waters along the continental shelf (0-200 m). Currently, the status 
of Spanner Crab on the east coast of Queensland is listed as ‘depleting’ under the Status of Australia 
Fish Stocks, after over a decade of decline in population status indicators (Fowler et al. 2018, and State 
of Queensland 2019). In this sub-section we briefly outline the main aspects of Spanner Crab biology 
and ecology that are relevant to the current project. 
 
Life cycle & habitat  
 

Spanner Crab spawning can occur from October to January, and peaks in November and December 
(Skinner and Hill 1987; Minagawa et al. 1993). Females carry the fertilised egg mass (giving them a 
“berried” appearance) for 24 to 43 days, after which the eggs are released and hatch in the plankton 
(Minagawa et al. 1993). Larval Spanner Crabs, called zoea, spend 5 to 9 weeks in the plankton 
(Minagawa 1990). Their dispersal at this stage is strongly dependent on oceanic and tidal currents. 
Spanner Crab zoea metamorphosise and settle to the sea floor as megalopa between early February 
and mid-April, where they prey on small interstitial and demersal invertebrates (Vicente et al. 1986). 
As they grow into their adult form, their diet shifts to scavenging and preying on larger invertebrates 
such as polychaetes and other crustaceans (Vicente et al. 1986). Adult Spanner Crabs prefer sandy 
substrates, with minimal vertical structure and minimal silt content (Brown 1994). They can be found 
in shallow intertidal waters through to at least 100 m deep, with the majority of catch coming from the 
30-80 m depth range (Dichmont and Brown 2010). Adult Spanner Crabs spend most of their time buried 
in the seafloor to avoid predation (Skinner and Hill 1987). This is especially true during their moulting 
period in February/March, during which time catchability is distinctly reduced (Skinner and Hill 1987). 
Spanner Crabs can attain a maximum carapace length of approximately 150 mm for males and 110 mm 
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for females (Kirkwood et al. 2005), which is estimated to occur around 15 years of age. However, the 
relationship between age and carapace length in this species is unclear due to lack of a reliable 
structure for ageing and low survival of Spanner Crabs in tagging studies (Brown et al. 1999, 2008). 
 
Spatial extent 
 

Spanner Crabs are widely distributed across the Indo-Pacific, with fisheries in Hawaii, southern Japan, 
Taiwan, the Philippines, Indonesia, Thailand, the Seychelles, and Australia. In Australia, Spanner Crabs 
inhabit waters along the continental shelf of the east coast of Australia, from Yeppoon in Queensland 
(23°S) to the northern coast of New South Wales (29°S) and are also present off the coast of Western 
Australia. The Queensland/NSW population of Spanner Crab is assumed to form a single biological 
stock (Brown et al. 1999). The commercial Spanner Crab fishery area has shifted away from some 
traditional grounds (e.g. Hervey Bay) after large reductions in catch and catch rate. 
 
Queensland Spanner Crab fishery management 
 

Spanner Crabs in Queensland are captured by entanglement in baited, bottom-set dillies, which are 
size-selective, minimising the catch of sublegal individuals. In the Queensland Spanner Crab fishery 
both males and females can be taken, but visibly gravid (egg-bearing females) must be released. 
Spanner Crabs have low post-release survival, related to limb damage during entanglement and 
subsequent release (Kennelly et al. 1990; Kirkwood and Brown 1998).  
 
The catch of Spanner Crab in Queensland is managed through a TACC that is reviewed every two years, 
based on the performance of fishery indicators and in accordance with the Spanner Crab fishery 
harvest strategy (State of Queensland 2020). An annual spawning closure is in place from 1 November 
to 15 December. The minimum legal size has been 100 mm since the 1980s (Dichmont and Brown 
2010); due to differences in the growth rate of males and females, this results in predominantly males 
in the catch. Legal-size is estimated to be attained at 4.5 years old for males and 6.5 years old for 
females (Kirkwood et al. 2005), although there is uncertainty around the age-at-length for Spanner 
Crabs. 
 
Available fisheries data 
 

A fishery independent survey (FIS) has been conducted for Spanner Crab annually since 2000. The FIS 
uses standardised gear to sample Spanner Crabs > 50 mm carapace length, and records sex and size 
composition. The FIS takes place in May each year in a range of locations in each of the Spanner Crab 
management regions in Queensland and New South Wales (Figure 8). Catch rate measures of 
abundance are generated from 25 sampled areas (6 × 6 NM grids) across the Queensland fishery. 
Fifteen individual ground lines (the sampling units), each consisting of 10 nets, are set in each area. 
The net soak times, with the number of Spanner Crabs caught and their sex and size (rostral carapace 
length) are recorded. The consistent methodology and sampling design of this survey ensures that it 
provides a robust index of catch-per-unit-effort for this species. 
 
Commercial catch data are available from fisher logbooks in both Queensland and NSW since 1988, 
with catch recorded at 30 NM grid cells (6 NM where possible) daily in Queensland, and monthly in 
NSW until 2009, after which catch is recorded daily. Commercial catch rates are then standardised to 
account for a range of potential influencing variables. The current catch rate standardisation considers 
fishing years, regions and months, as well as the main effects of fishing effort of individual vessels, the 
number of net lifts (which is a function of the number of ground lines used, nets per ground line and 
lifts per ground line), the spatial resolution of catches based on 30 × 30 NM grids, fishing power and 
the lunar cycle. The charter and recreational take of this species are negligible in Queensland, 
representing less than 1% of the total harvest in recent years (State of Queensland 2020).  
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Potential environmental influences 
 

The influence of environmental variables on catchability of Spanner Crabs has been extensively 
studied, with strong indications that catch rates are affected by a number of environmental conditions, 
including current velocity, bottom temperature, El Niño Southern Oscillation (ENSO) cycles, and swell 
(Spencer et al. 2017, 2018, 2019).  
 
Catch rates have been shown to improve with increasing bottom current speed, potentially as a result 
of the odour from the baited dillies being carried to a larger area (Spencer et al. 2017, 2019). Cooler 
Bottom Boundary Layer Temperatures (BBLT) improve catch rates, even after controlling for 
seasonality and depth effects (Spencer et al. 2018). Catch rates are higher in El Niño years, potentially 
as a result of lower wind speeds in those years (Brown et al. 2008). Higher catch rates are associated 
with wind-driven seasonal upwelling during the austral spring (northerlies). Catch rates decline when 
winds change to favour downwelling (south-easterlies), which warm the BBLT (Spencer et al. 2018). 
These upwelling effects can be identified by subsequent Chl-a blooms resulting from upwelling, or from 
the 7-day mean alongshore wind stress that triggers up- or downwelling (Spencer et al. 2018). Similarly, 
mesoscale warm-core eddies that pull warm shelf waters to the seabed have also been hypothesised 
to decrease local catch rates of Spanner Crab (Spencer et al. 2017). Wave height also affects catch 
rates, with low catch rates during and immediately following periods of heavy swell (Brown et al. 2008, 
Thomas et al. 2013). This is potentially a result of changes in turbidity and oscillation of the seabed 
caused by heavy swell (Spencer et al. 2017).  
 
The literature on direct effects of environmental variables on Spanner Crab abundance is less 
extensive. Salinity has been demonstrated to have a direct effect on the survival of Spanner Crabs 
during metamorphosis, with 27-34 ppt salinity ideal for metamorphosis. Salinities < 20 ppt and > 40 
ppt were lethal to zoea (Minagawa 1992). An optimal temperature range of 25-29˚C has been identified 
for larvae in aquaculture environments (Minagawa 1990). Previous work has identified promising 
correlations between ENSO cycles and Spanner Crab CPUE that may be a result of ENSO-induced 
changes in local salinity (Brown et al. 2008).  
 
Based on the range of variables that have been found to influence Spanner Crabs directly or indirectly, 
our search for environmental influences spanned, but was not limited to:  
 

• SST range, mean, minimum/maximum, 10th and 90th percentiles 

• Bottom temperature range, mean, minimum/maximum, 10th and 90th percentiles 

• The occurrence, strength and duration of MHW 

• Chl-a range, mean, minimum/maximum 

• Salinity 

• EAC strength 

• Onshore wind strength, duration, timing 

• Eddy type, duration, and frequency 
 
 

 Data Acquisition and Development of Environmental Indices 
 

The data acquisition process has collected data on a wide range of environmental variables from 
established databases from sources such as AIMS, BOM, BRAN, EHMP, GA, IMOS, JAMSTEC, NOAA and 
Waverider buoys. Variables included but were not limited to sea temperatures (at surface and various 
depths), salinity, turbidity, components of current velocities, river discharge volume, Chl-a, tidal 
measurements, SOI, IOD and many others.  
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An extended compilation of possible indices directed the search for significant environmental drivers. 
The team biologists supplied a list of 56 possible quantitative indices based on their knowledge of the 
lifecycles of the three species under investigation as well as a wide range of relevant scientific studies  
(see Table 1). This ensures that the statistical and data science analyses are more targeted and remain 
relevant to the project’s objectives. Analyses of a large portion of these are reported in this document. 
In Section 8.1 we recommend further examination of the remaining indices.  
 
Table 1: Potential quantitative environmental indices hypothesised to be associated with study species biology. 

Index Short name Unit Data 
source 
spatial 
resolution 

Environmental 
index resolution 
and extent 

Data source 

Measured river discharge at the furthest downstream 
gauge for each catchment, total discharge per 
month, and per wet season (Dec-Mar) 

truFlo ML/month per major 
river in SEQ 

Nerang River, Albert 
River, Logan River, 
Brisbane River, Mary 
River, Burnett River, 
Fitzroy River 

https://water-monitoring.information.qld.gov.au/  

Modelled river discharge, for each catchment, total 
discharge per month, and per wet season (Dec-Mar) 

modFlo ML/month per major 
river in SEQ 

Fitzroy, Mary, Burnett, 
Calliope, Boyne, 
Caboolture, Logan, 
Pine, Brisbane Rivers 

http://dapds00.nci.org.au/thredds/dodsC/fx3/gbr
4_2.0_rivers/gbr4_rivers_simple_2019-11.nc.html  

Measured monthly river discharge anomalies 
(subtract monthly values from long-term average) 

truFloa ML/month per major 
river (or 
multi-river 
area) in SEQ 

  https://water-monitoring.information.qld.gov.au/  

Median monthly temperature at a particular depth 
slice (7.5m, 17.5m, 22.7m, 34.2m, 48.5m, 75.2m, 
105m). Only estimate temperature value at a depth 
slice for a CFISH grid if >50% of the CFISH grid has 
valid data at that depth 

BBLTmed °C 11km grid 
(0.1° x 0.1°) 

per CFISH grid cell and 
per Bay of interest 

BRAN 
https://research.csiro.au/bluelink/outputs/data-
access  
AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Minimum monthly temperature at a particular depth 
slice (7.5m, 17.5m, 22.7m, 34.2m, 48.5m, 75.2m, 
105m) 

BBLTmin °C 11km grid 
(0.1° x 0.1°) 

per CFISH grid cell and 
per Bay of interest 

BRAN 
https://research.csiro.au/bluelink/outputs/data-
access  
  
AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Maximum monthly temperature at a particular depth 
slice (7.5m, 17.5m, 22.7m, 34.2m, 48.5m, 75.2m, 
105m) 

BBLTmax °C 11km grid 
(0.1° x 0.1°) 

per CFISH grid cell and 
per Bay of interest 

BRAN 
https://research.csiro.au/bluelink/outputs/data-
access  
AIMS 
https://ereefs.aims.gov.au/ereefs-aims  

Bottom temperature anomaly, i.e., deviation from 
long-term monthly mean, at particular depth slice 
(7.5m, 17.5m, 22.7m, 34.2m, 48.5m, 75.2m, 105m) 

BBLTa °C 11km grid 
(0.1° x 0.1°) 

per CFISH grid cell and 
per Bay of interest 

BRAN 
https://research.csiro.au/bluelink/outputs/data-
access  
AIMS 
https://ereefs.aims.gov.au/ereefs-aims  

Sea surface temperature 6 day mean SST6d °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

SST monthly mean SSTmean °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

SST monthly median SSTmed °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

SST monthly minimum SSTmin °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

SST monthly maximum SSTmax °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

SST winter minimum (May-Oct) SSTwmin °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

SST winter maximum (May-Oct) SSTwmax °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

SST monthly anomaly, i.e. deviation from long-term 
monthly mean, night time 1993-2011 

SSTa °C 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for 1° x 1° areas 
along the coast 

http://www.bom.gov.au/marinewaterquality/; or 
https://portal.aodn.org.au/search?uuid=d9618fb2
-1a71-4afd-b1c8-56a6871b224a 

https://water-monitoring.information.qld.gov.au/
http://dapds00.nci.org.au/thredds/dodsC/fx3/gbr4_2.0_rivers/gbr4_rivers_simple_2019-11.nc.html
http://dapds00.nci.org.au/thredds/dodsC/fx3/gbr4_2.0_rivers/gbr4_rivers_simple_2019-11.nc.html
https://water-monitoring.information.qld.gov.au/
https://research.csiro.au/bluelink/outputs/data-access
https://research.csiro.au/bluelink/outputs/data-access
https://ereefs.aims.gov.au/ereefs-aims
https://research.csiro.au/bluelink/outputs/data-access
https://research.csiro.au/bluelink/outputs/data-access
https://ereefs.aims.gov.au/ereefs-aims
https://research.csiro.au/bluelink/outputs/data-access
https://research.csiro.au/bluelink/outputs/data-access
https://ereefs.aims.gov.au/ereefs-aims
https://research.csiro.au/bluelink/outputs/data-access
https://research.csiro.au/bluelink/outputs/data-access
https://ereefs.aims.gov.au/ereefs-aims
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
http://www.bom.gov.au/marinewaterquality/
https://portal.aodn.org.au/search?uuid=d9618fb2-1a71-4afd-b1c8-56a6871b224a
https://portal.aodn.org.au/search?uuid=d9618fb2-1a71-4afd-b1c8-56a6871b224a
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Marine Heatwaves - number of MHW days in 
preceding summer (1st Dec - 31 March) MHW 
definition as per Hobday et al. (2016) 

MHWd days 0.01° x 0.01° 
(approx. 
11x11km) 

Moreton Bay; and each 
CFISH grid cell 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

Marine heatwave intensity (highest maximum 
anomaly above long-term mean temperature) 

MHWint °C 0.01° x 0.01° 
(approx. 
11x11km) 

Moreton Bay; and each 
CFISH grid cell 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

Number of winter days (between May and Oct) with 
mean SST below 22°C – derived for each CFISH grid 
and for 1° x 1° areas 

SSTwd days 0.01° x 0.01° 
(approx. 
11x11km) 

Moreton Bay; and each 
CFISH grid cell 

https://portal.aodn.org.au/search?uuid=023ae12a
-8c0c-4abc-997a-7884f9fec9cd  

Degree heating days - number of days (out of 120) 
where positive SST anomalies were observed over 
summer (1st Dec - 31st March)  

DHD days 0.01° x 0.01° 
(approx. 
11x11km) 

Moreton Bay; and each 
CFISH grid cell 

http://www.bom.gov.au/marinewaterquality/  

Tidal range during Snapper settlement season (1 June 
to 31 Sept) 

TideR m   Moreton Bay (tide at 
Brisbane Bar) 

https://www.data.qld.gov.au/dataset/brisbane-
bar-tide-gauge-archived-interval-recordings  

Duration of onshore winds during Snapper 
settlement season (1 June to 31 Sept), i.e. count of 
days with wind direction between 45 and 135 
degrees 

WindDirOn days 12km grids Moreton Bay http://www.bom.gov.au/research/projects/reanal
ysis/ 

Mean speed of onshore winds (u component of wind, 
negative values) during Snapper settlement season (1 
June to 31 Sept) 

WindUmean m/s 12km grids Moreton Bay http://www.bom.gov.au/research/projects/reanal
ysis/ 

Median speed of onshore winds (u component of 
wind, negative values) during Snapper settlement 
season (1 June to 31 Sept) 

WindUmed m/s 12km grids Moreton Bay http://www.bom.gov.au/research/projects/reanal
ysis/ 

Duration of upwelling conditions from Spencer et al.  
(2018) 

UpDur weeks approx. 
20x20km 

for each CFISH grid cell 
and for 1deg lat * 1deg 
long areas along the 
coast 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Intensity of upwelling conditions from Spencer et al. 
(2018) 

UpInt index approx. 
20x20km 

for each CFISH grid cell 
and for 1deg lat * 1deg 
long areas along the 
coast 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Mean strength of u component of surface current (E-
W) during the month of the survey or catch 

CurU m/s 0.01° x 0.01° 
(approx. 
11x11km) 

for each CFISH grid cell 
and for each Spanner 
Crab management 
region 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Mean strength of v component of surface current (N-
S) during the month of the survey or catch 

CurV m/s 0.2° x 0.2°  for each CFISH grid cell 
and for each Spanner 
Crab management 
region 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Cold-core (cyclonic, negative sea surface height 
anomaly) eddy frequency (number of cold-core 
eddies occurring in SEQ in half of year (1 Oct to 30 
Mar, 1 Apr to 30 Sept) 

EddyCCf number 0.2° x 0.2°  all of SEQ from Fraser 
island to border, up to 
1.5°longitude offshore 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Cold-core eddy duration (total number of days per 
season (time frame specified above) with identified 
cold-core eddies 

EddyCCd days approx. 
20x20km 

all of SEQ from Fraser 
island to border, up to 
1.5°longitude offshore 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Warm-core (anti-cyclonic, positive sea surface height 
anomaly) eddy frequency (number of warm-core 
eddies occurring in SEQ in half of year (1 Oct to 30 
Mar, 1 Apr to 30 Sept) 

EddyWCf number approx. 
20x20km 

all of SEQ from Fraser 
island to border, up to 
1.5°longitude offshore 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Warm-core eddy duration (total number of days per 
season (time frame specified above) with identified 
warm-core eddies 

EddyWCd days approx. 
20x20km 

all of SEQ from Fraser 
island to border, up to 
1.5°longitude offshore 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Monthly average distance of EAC from coast at north 
tip Fraser island, north tip north stradbroke island, 
QLD/NSW border, Byron Bay, and any other key 
locations 

EACdistF, 
EACdistS, 
EACdistQ, 
EACdistB 

km 0.2° x 0.2°   Distance-from-point, 
calculated using 
OceanCurrent data as 
per Bolin et al. (2020) 

IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9 

Speed of EAC at 27.5°S, 154°E EACsp m/s 0.2° x 0.2°   Point-based IMOS Ocean Current - Gridded Sea Level Anomaly 
https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9  

Swell (wave height) SwH m Bouy 
locations 

Closest available 
waverider buoy to each 
CFISH grid cell  

Waverider buoys (AODN) 
https://portal.aodn.org.au/search?uuid=2807f3aa
-4db0-4924-b64b-354ae8c10b5 8  

Southern Oscillation Index – atmospheric pressure 
difference between Darwin and Tahiti. Annual mean, 
and quarterly means (JanFebMar, AprMayJun, etc) 

SOI N/a  N/a Whole study region http://www.bom.gov.au/climate/current/soihtm1
.shtml 

Pacific Decadal Oscillation (annual mean and 
quarterly means) 

PDO N/a N/a All Qld https://www.ncdc.noaa.gov/teleconnections/pdo
/ 

Indian Ocean Dipole (annual mean and quarterly 
means) 

IOD N/a N/a All Qld https://www.esrl.noaa.gov/psd/gcos_wgsp/Times
eries/Data/dmi.long.data 

Mean bottom depth of CFISH grid DepthMean m 0.5° x 0.5° per CFISH grid cell  https://ecat.ga.gov.au/geonetwork/srv/eng/catal
og.search#/metadata/115066  

Median bottom depth of CFISH grid DepthMed m 0.5° x 0.5° per CFISH grid cell https://ecat.ga.gov.au/geonetwork/srv/eng/catal
og.search#/metadata/115066 

https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
https://portal.aodn.org.au/search?uuid=023ae12a-8c0c-4abc-997a-7884f9fec9cd
http://www.bom.gov.au/marinewaterquality/
https://www.data.qld.gov.au/dataset/brisbane-bar-tide-gauge-archived-interval-recordings
https://www.data.qld.gov.au/dataset/brisbane-bar-tide-gauge-archived-interval-recordings
http://www.bom.gov.au/research/projects/reanalysis/
http://www.bom.gov.au/research/projects/reanalysis/
http://www.bom.gov.au/research/projects/reanalysis/
http://www.bom.gov.au/research/projects/reanalysis/
http://www.bom.gov.au/research/projects/reanalysis/
http://www.bom.gov.au/research/projects/reanalysis/
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=2807f3aa-4db0-4924-b64b-354ae8c10b5
https://portal.aodn.org.au/search?uuid=2807f3aa-4db0-4924-b64b-354ae8c10b5
http://www.bom.gov.au/climate/current/soihtm1.shtml
http://www.bom.gov.au/climate/current/soihtm1.shtml
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/dmi.long.data
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/115066 
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/115066 
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/115066
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/115066
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Max bottom depth of CFISH grid DepthMax m 0.5° x 0.5° per CFISH grid cell https://ecat.ga.gov.au/geonetwork/srv/eng/catal
og.search#/metadata/115066  

Salinity salMean unitless 
psu 

0.1° x 0.1° per CFISH grid cell https://dap.nci.org.au/thredds/remoteCatalogSer
vice?catalog=http://dapds00.nci.org.au/thredds/c
atalog/gb6/BRAN/BRAN_2016/catalog.xml  

Gridded sea level anomaly GSLA m 0.2° x 0.2° per CFISH grid cell https://portal.aodn.org.au/search?uuid=3162c844
-d45c-491c-b326-6ae37e4079f9 or  
https://thredds.aodn.org.au/thredds/catalog/IMO
S/OceanCurrent/GSLA/DM01/catalog.html  

Monthly mean chloropyll a concentration ChlMean mg/m3 1 𝑘𝑚2 per CFISH grid cell https://catalogue-
imos.aodn.org.au/geonetwork/srv/eng/metadata.
show?uuid=f73daf07-eb81-4995-a72a-
ca903834509f 

Monthly median chloropyll a concentration ChlMed mg/m3 1 𝑘𝑚2 per CFISH grid cell https://catalogue-
imos.aodn.org.au/geonetwork/srv/eng/metadata.
show?uuid=f73daf07-eb81-4995-a72a-
ca903834509f 

Monthly average chloropyll a anomalies Chlanom mg/m3 1 𝑘𝑚2 per CFISH grid cell https://catalogue-
imos.aodn.org.au/geonetwork/srv/eng/metadata.
show?uuid=f73daf07-eb81-4995-a72a-
ca903834509f 

Monthly mean chlorophyll concentration (from the 
GBR4 model) 

ChlMod mg/m3 approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly mean chlorophyll concentration anomaly  ChlModa mg/m3 approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Lunar phase Lun % N/a whole study region https://CRAN.R-project.org/package=suncalc 
 

Monthly average seagrass biomass SGN gN/m2 approx. 
4x4km 

per Bay of interest AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly average seagrass biomass anomalies  SGNa gN/m2 approx. 
4x4km 

per Bay of interest AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly average EpiPAR_sg (light intensity above 
seagrass)  

EpiPAR mol photon/ 
m2d1 

approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly average EpiPAR_sg anomalies  EpiPARa mol photon/ 
m2d1 

approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly average TSS (Total Suspended Sediment, 
calculated by adding the suspended sediments in the 
water column: Fine sediment, Mud, Mud carbonate, 
Dust, Sand mineral and Sand carbonate) 

TSS kg/ m3 approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly average TSS anomaly  TSSa kg/ m3 approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly average Kd_490 (measure of water clarity) Kd490 m-1 approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

Monthly average Kd_490 anomaly Kd490a 
 

m-1 approx. 
4x4km 

per CFISH grid cell and 
per Bay of interest 

AIMS 
https://ereefs.aims.gov.au/ereefs-aims 

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/115066 
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/115066 
https://dap.nci.org.au/thredds/remoteCatalogService?catalog=http://dapds00.nci.org.au/thredds/catalog/gb6/BRAN/BRAN_2016/catalog.xml
https://dap.nci.org.au/thredds/remoteCatalogService?catalog=http://dapds00.nci.org.au/thredds/catalog/gb6/BRAN/BRAN_2016/catalog.xml
https://dap.nci.org.au/thredds/remoteCatalogService?catalog=http://dapds00.nci.org.au/thredds/catalog/gb6/BRAN/BRAN_2016/catalog.xml
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://portal.aodn.org.au/search?uuid=3162c844-d45c-491c-b326-6ae37e4079f9
https://thredds.aodn.org.au/thredds/catalog/IMOS/OceanCurrent/GSLA/DM01/catalog.html
https://thredds.aodn.org.au/thredds/catalog/IMOS/OceanCurrent/GSLA/DM01/catalog.html
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://catalogue-imos.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=f73daf07-eb81-4995-a72a-ca903834509f%20(IMOS%20-%20SRS%20-%20MODIS%20-%2001%20day%20-%20Chlorophyll-a%20concentration%20(GSM%20model)%20)
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
https://ereefs.aims.gov.au/ereefs-aims
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 Objectives 

The project has three key objectives:  
 
(1) Find indices of association between measures of abundance and key environmental drivers;  
 
(2) Use these indices to enhance the existing stock assessment model for each species;  
 
(3) Enable forecasting of environmentally driven fluctuations in targeted species’ abundance, 
including enhancing Management Strategy Evaluations (MSEs), with the help of a Rapid Adaptive 
Projections Tool (RAPT).  
 

 

 Materials and Methods  
 

Our approach recognises that abundance of fish populations has three main drivers: (B) biological, (H) 
harvest/economic, and (E) environmental. Existing stock assessment models and accompanying 
management strategies depend crucially on the interface between B and H. To date, E has received 
little attention in Queensland or elsewhere, with some notable exceptions such as saucer scallop 
(O’Neill et al. 2020). The scientific challenge lies in quantifying the correct, evidence based, responses 
to fluctuations in the environmental factors that will benefit both the fishing industry and the 
sustainability of the harvested species. We will address this by examining how to incorporate 
environmental factors into the emerging new generation of rapid (Bayesian surplus production) stock 
assessment models. 
 
It is already clear from Table 1 that data considered in this project come from very diverse sources and 
hence will, of necessity, be of highly varied quality and spatiotemporal resolutions. This issue will be 
further compounded by inclusion of fisheries data that will be introduced in this section. The latter will 
also be of widely varied quality as they include data from scientific fishery independent surveys (FIS), 
self-reported logbook data and questionnaire data that statewide surveys of recreational catch 
generate. Thus, the accuracy and reliability of various variables used in this study can also be expected 
to vary widely, ranging from direct accurate gauge measurements of river flows, through algorithmic 
estimates of Chl-a from satellite images, to sampling estimates of recreational catch. Furthermore, in 
some cases, time series of certain key variables contain as few as 11 points. Collectively, such data are 
not well suited for hypothesis testing.  
 
Consequently, much of the data analyses carried out in this project were in the spirit of an exploratory, 
rather than a confirmatory, study. Thus, a range of specific statistical techniques was used for 
identifying associations among variables that the data reveal rather than hypotheses testing tasks. 
Many of the statistical techniques used such as regression analysis or generalised linear models are, 
nowadays, quite standard (see, for instance, Timm 2002).  
 
Since correlational analysis is used extensively we, briefly, mention that it is a group of techniques 
designed to measure the strength (or lack) of associations among variables of interest with the help of 
statistics designed for that purpose such as Pearson correlation, Spearman correlation or Kendall tau. 
Of these, Pearson correlation is the most widely used statistic to capture the degree of linear 
association between two continuous variables. It is usually called simply correlation coefficient, or 
correlation, and takes values between -1 and 1. A correlation close to 0 signifies lack of linear 
association between the variables while a correlation close to 1 signifies strong positive association 
implying that as one variable increases the other one tends to also increase. Similarly, a correlation 
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close to -1 signifies strong negative association implying that as one variable increases the other one 
tends to decrease. When considering more than two variables at once, we usually analyse their 
correlation matrix. The latter is a symmetric matrix whose off-diagonal elements are the pairwise 
correlation coefficients.  
 
A threshold p-value of 0.05 was used to determine statistical significance for all correlations and 
regressions. A range of threshold adjustment tools are available to account for applying multiple 
statistical tests to the same dataset (e.g. Bonferroni correction). We chose to stay with the standard 
threshold of 0.05, despite the extremely large number of correlations explored in the project, for two 
main reasons. First, in this project we pursue exploratory rather than confirmatory analyses, and as 
such prefer to over-detect rather than under-detect relationships with statistical significance, which 
are then identified for further inspection. Second, we apply a filter of “biological meaningfulness” to 
all statistically significant correlations. This involves our team’s domain-expert fisheries scientists and 
oceanographers hypothesising potential biological mechanisms for each statistically significant 
correlation. In the absence of a clear biological mechanism for a correlation, we identify the correlation 
as a potential statistical or data artefact. The bulk of statistically significant correlations are presented 
in the Results section, but the Discussion section is focused on correlations with clear biological merit. 
  
In addition to the routine statistical tools, such as the above, we use some more advanced techniques 
as well as some non-standard indices developed for the purpose of this specific study. These are 
described, in more detail, later in this section.  
 

 Fisheries and Fishery Independent Survey Data 

In this section we briefly describe the fisheries and fishery independent survey data for the three 
species: Snapper, Spanner Crab and Pearl Perch. We also describe the spatial extent of these fisheries 
in Queensland and NSW waters. 
  

3.1.1 Snapper  

For Snapper, harvest and catch rates were obtained from several data sources: Queensland 
commercial logbooks, NSW commercial logbook systems as well as historical records. Only one fishery 
independent data source was available for this analysis, FIS pre-recruit survey at Moreton Bay. The 
data collection consists of sampling young Snapper (<150 mm in fork length) at Moreton Bay during 
November – December from 2007-2019.  
 

3.1.1.1 Queensland Snapper fishery 

The analyses in this report covered both the regions of Fraser Coast, Sunshine Coast and Moreton 
where most of the commercial catch comes from and Moreton Bay where FIS data were collected. 
Figure 1 shows a map of Australian east coast waters and spatial stratifications for Snapper. 
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Figure 1: Map of Queensland waters and spatial stratifications for Snapper and Pearl Perch (Wortmann 2020). 

 

Figure 2 shows the annual harvest of the Queensland Snapper fishery from 1940 to 2019. The Snapper 
fishery is composed of three sectors: charter, commercial line, and recreational catch. In particular, 
the contribution of recreational harvest to the total harvest is substantial. The estimated recreational 
harvest is based on estimates of the combined Queensland and NSW recreational harvest reported in 
Wortmann et al. (2018) and the recreational survey data of Queensland and NSW in years 2000 and 
2013 from the 2020 rock reef finfish report (see Wortmann 2020).  
 
To extract estimates of Queensland’s recreational catch from these combined estimates, we use data 
from years 2000 and 2013 which are the only two overlapping years when recreational catch surveys 
were conducted in both states. These surveys reported the 2000 recreational catch of 227 t in Qld and 
188 t in NSW for total of 415 t, and the 2013 recreational catch of 82 t in Qld and 148 t in NSW for total 
of 230 t.  
 
To estimate recreational catch in Queensland, we assumed that it constitutes 0.55=227/415 of the 
combined catch every year prior and including year 2000, and 0.36=82/230 of the combined catch 
every year from 2013 on. For the period 2001 to 2012, we used ratios from linear interpolation 
between 0.55 and 0.36. This resulted in the Queensland breakdown of harvest from various sectors 
displayed in Figure 2. 
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Figure 2: Estimated annual Snapper harvest from Queensland (1940-2019) across three fishery sectors.  

 

Figure 3 displays the standardised annual catch rates of Snapper, with fishing power (FP), from 
Queensland commercial line fishing (Wortmann 2020). Overall, there was a decrease in catch rates 
from 1989-2019, with a peak occurring in 2005.  
 

 

Figure 3: Time series of annual log transformed standardised catch rates for Snapper (1988-2019) for the 

Queensland commercial line fishery. Note that fishing power was accounted for in the standardisation.  
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The map in Figure 4 shows the fishery independent survey strata. Only pre-recruits caught at Moreton 
Bay (during November and December) with fork length of 150 mm and under were included in this 
analysis. 
 

 

Figure 4: Map of survey strata for the annual fishery independent beam trawl survey for Snapper pre-recruits 

(Bessell-Browne et al. 2020). 

 

The average number of pre-recruit Snapper sampled in each survey from Moreton Bay area varied 
between 2007 and 2019. From 2010-2011 we can see an increase in abundance, reaching the peak in 
2011, followed by a marked decline up to 2015 when it reached the lowest number of pre-recruits per 
hectare sampled (Figure 5).  
 

 

Figure 5: Annual relative abundance of Snapper pre-recruits (2007-2019) in Moreton Bay area. 
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3.1.1.2 New South Wales Snapper fishery 

In Figure 6 we display the NSW Snapper harvest for the line and trap fisheries combined in 2009-2019. 
The data used come from the most recent NSW commercial fishing catch and effort reporting 
(fishonline logbook) where catch is recorded daily. Prior to this period, spatial reporting of the 
commercial catch data was 60 x 60 nm grids, with a temporal reporting of monthly catch and effort.  
 

 

Figure 6: NSW Snapper line and trap fisheries colour coded by amount harvested (2009-2019). Grid codes at 1 

degree scale. 

 

Top panel of Figure 7 displays the standardised catch rate for the NSW commercial line for years 1997-
2018. The NSW catch rate standardisation for line fishing method started from 1997 because fishing 
method was not recorded before that year (Wortmann et al. 2018). As can be seen, catch rates 
remained without much variation from 1997-2010 and then decreased from 2011-2016 (Wortmann 
2020). The bottom panel of Figure 7 presents the standardised catch rate of the commercial trap 
fishery scaled with respect to the mean catch rate of 2009-2019 (DPI NSW personal communication 
2021).  
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Figure 7: Annual standardised CPUE of Snapper for NSW commercial line (top) and trap (bottom) fisheries. Note 

that fishing power was accounted for in the standardisation of the line fishery. Grey shaded area covers 95% 

confidence intervals. 

 

3.1.2 Spanner Crab: Queensland 

Figure 8 illustrates the Spanner Crab in the Queensland and NSW waters between about 23°S and 
29.5°S. The fishery was divided into six regions: Regions 2-6 in Queensland waters within Managed 
Area A from where most of Queensland catch comes (Campbell et al. 2016; State of Queensland 2020), 
and Region 7 in New South Wales waters. The map also represents the sites (i.e., 6’x 6’ subgrids) of the 
annual Spanner Crab fishery independent survey. Since 2000, the fishery independent survey was 
usually conducted in May each year (see Department of Primary Industries and Fisheries 2005 and 
McGilvray et al. 2006, for detail).  
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Figure 8: Six-minute subgrids (yellow squares) in the Spanner Crab survey in Queensland (Region 2 to 6) and 

New South Wales (Region 7). This figure is reproduced from Brown et al. (2008) with permission. 

 
Figure 9 depicts Queensland’s commercial harvest from 1988 to 2019 based on the Queensland CFISH 
logbook records. The commercial harvest peaked at about 3,454 t in 1994, but started decreasing since 
1998. In that period, the most apparent feature is that the harvest of Region 3 is declining. Region 4 
became the productive area where most of Queensland catch is taking place.  
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Figure 9: Queensland’s commercial harvest of Spanner Crab for 1988-2019, colour coded by region. 

 

Figure 10 displays the time series of standardised catch rates (SCPUE) for the whole of Queensland (left 
panel) and Regions 2-6 (right panel). These SCPUEs were generated using a generalised linear model 
fitted to CFISH data from 2000 to 2019 (see Section 3.5.2 and Campbell et al. 2016, for detail). The left 
panel shows that the SCPUE of the whole fishery decreases from 2008 to a low level in 2017 and then 
gradually recovers. However, the 2019 level is still low. The right panel indicates that SCPUEs of Regions 
2-4 are generally higher than those of Regions 5-6. However, SCPUEs of Regions 2-3 decrease in 2007-
2018, and SCPUE of Region 4 declines in 2010-2017. Moreover, Region 4 recovers faster than Regions 
2 and 3, since 2017.  
 

 

Figure 10: Spanner Crab SPCUE based on CFISH commercial logbook data for the whole of Queensland (left) 

and individual regions (right) for the period 2000-2019. 
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We relied on Spanner Crab FIS data collected around May, from 2000 to 2019, in the environmental 
correlation analyses. In Queensland there were approximately 75 sampling sites per region, but there 
were no surveys in 2004 and 2012. In NSW, Region 7, there were 60 sampling sites from 2005 to 2018.  
 
Nominal CPUE from this FIS was estimated for the period 2000 to 2019, inclusive. The estimates were 
calculated – in each year and each region of interest - using the formula 
 

𝐶𝑃𝑈𝐸 =
number of catch 

soak time ×  number of dillies
× 50 minutes × 10 dillies, 

where soak time × number of dillies represent fishing effort, and 50 minutes and 10 dillies are standard 
soak time and number of dillies used in the survey. Thus, the above is expressed in the units of number 
of crabs per ground-line. With the equation, the two 𝐶𝑃𝑈𝐸s of two spatial extents were calculated: 
 
(a) 𝐶𝑃𝑈𝐸𝑟𝑒𝑔: 𝐶𝑃𝑈𝐸 by region for the six regions, labelled Region 2-Region 7,  

(b) 𝐶𝑃𝑈𝐸𝑠𝑢𝑏: 𝐶𝑃𝑈𝐸 by each of the 34 six-minute subgrids. 
 
The CPUE time series in the six FIS regions are displayed in Figure 11. Note that sublegal cohort is 
defined as crabs less than 100mm carapace length (CL). Several important trends are clearly visible in 
Figure 11. These include (but are not limited to): near zero levels in Region 3 during 2017-2018; steep 
declines in both Regions 2 and 3 from 2013; relative stability of Regions 5-6 and generally increasing 
trend in Region 7 since 2012. 
 

 

Figure 11: Time series of 𝐶𝑃𝑈𝐸𝑟𝑒𝑔 in May each year in the six regions of the sublegal crabs (<100mm in brown), 

the legal-size crabs (≥100mm in green) and the whole (in blue) from the FIS data, in the units of number of crabs 

per ground-line. 

 

In the case of 𝐶𝑃𝑈𝐸𝑠𝑢𝑏 there are several six-minute subgrids in each of the six regions. Hence it is 
convenient to represent these data with their box-plot distributions as in Figure 12 to Figure 14. 
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Figure 12: Boxplots of 𝐶𝑃𝑈𝐸𝑠𝑢𝑏  of legal-size crabs at 6’x6’ resolution across all regions. 

 

 
Figure 13: Boxplots of 𝐶𝑃𝑈𝐸𝑠𝑢𝑏  of sublegal crabs at 6’x6’ resolution across all regions. 
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Figure 14: Boxplots of 𝐶𝑃𝑈𝐸𝑠𝑢𝑏  of all crabs at 6’x6’ resolution across all regions. 

 

3.1.3 Pearl Perch 

For Pearl Perch, harvest and catch rates were obtained from several data sources: Queensland 
commercial logbooks, NSW commercial logbook systems as well as historical records.  
 

3.1.3.1 Queensland Pearl Perch fishery 

Queensland commercial Pearl Perch fishery shares the same spatial extent as that of Snapper (Figure 
1). Figure 15 displays the annual harvest of the Queensland Pearl Perch fishery from 1988 to 2019 
according to commercial (line), charter and recreational sectors. The estimated recreational harvest 
was acquired using RFish catch estimates of 1999 and 2002 and QLD statewide recreational survey 
estimates of 2000, 2010 and 2013 (Higgs 2001, Higgs et al. 2007, Webley et al. 2015). The estimation 
was performed in two steps. First, we used the method of Lovett et al. (2020) to level the RFish catch 
estimates of 1999 and 2002. Then, we estimate the Queensland recreational catch by interpolating 
and extrapolating the updated RFish catch estimates and the statewide recreational survey estimates. 
We note that the 2005 recreational estimate was not considered due to methodological differences 
(see caption of Figure 15 in Wortmann 2020). The Pearl Perch commercial harvest peaked in 2005 and 
has declined since that time (Figure 15).  
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Figure 15: Queensland’s Pearl Perch harvest colour coded by fishery sectors over the period 1988-2018.  

 
Figure 16 shows the standardised CPUE of Pearl Perch for Queensland commercial line fishing. Details 
of standardisation can be found in Wortmann (2020). From 1988 to 2002, the standardised catch rate 
remained stable followed by an increasing up to 2005. After that period, there is a general declining 
trend in catch rates.  
  
 

 

Figure 16: Time series of standardised Pearl Perch catch rates (1988-2018) for Queensland commercial line 

fishery. Fishing power was included in the standardisation. Gray shaded area covers 95% confidence intervals. 
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3.1.3.2 New South Wales Pearl Perch fishery 

In Figure 17 we can see the spatial extent of NSW Pearl Perch line fishery and the spatial distribution 
of the harvest between 2009 and 2019. The data used come from the most recent NSW commercial 
fishing catch and effort reporting (fishonline logbook) where catch is recorded daily. Prior to this 
period, spatial reporting of the commercial catch data was 60 x 60 nm grids, with a temporal reporting 
of monthly catch and effort. Historically, majority of the commercial fishery in NSW records had been 
taken by line fishing methods.  

 

Figure 17: NSW Pearl Perch line fishery colour coded by amount mean harvested (2009-2019). Grid codes at 1 

degree scale. 

 

The corresponding standardised catch rate is presented in Figure 18. Overall, there was an increasing 
trend in Pearl Perch commercial standardised catch rate until 2006. After that there was a general 
gradual declining trend.  
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Figure 18: Time series of annual standardised catch rates for Pearl Perch (1998-2018) for New South Wales 

commercial line fishery. Fishing power was included in the standardisation (Wortmann 2020). Gray shaded area 

covers 95% confidence intervals.  
 

 Environmental Variables 

In Section 1.2 we described the process of data acquisition of the environmental variables analysed in 
this project (see Table 1). In this section we outline the spatial extent of where most of these variables 
were calculated. The latter vary from species to species and are influenced by the location of 
commercial fisheries as well as of FIS sites.  
 

3.2.1 Spatial extent of environmental variables 

3.2.1.1 Snapper 

Figure 19 shows the areas in the Queensland Snapper fishery where time series of environmental 
variables were calculated for correlational analyses with Snapper catch rates. The left panel shows 
areas relevant to the FIS data, while the right panel is relevant to CFISH data.  
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Figure 19: Moreton Bay Snapper pre-recruit area (left) adult Snapper areas (right). The combined offshore adult 

regions1N and 1S constitute Region 1W. The coloured grids illustrate an example of average monthly SST.  

 

The maps in Figure 20 indicate the areas in the NSW Snapper fishery where time series of 
environmental variables were calculated for correlational analyses with Snapper catch rates. The left 
panel shows areas relevant to the commercial line fishery, while the right panel is relevant to the trap 
fishery.  
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Figure 20: NSW regions of Snapper commercial line fishery (left) and trap fishery (right). Regions from which 

data were analysed consisted of N1 and S1 marked in the left panel and N2 and S2 marked in the right panel. For 

Pearl Perch analysis only Region N1 was considered. The coloured grids illustrate an example of average SST in 

February 2009. 

 

 

3.2.1.2 Spanner Crab 

The map below shows the spatial extent of Regions 2 to 6 used to extract features of environmental 
variables. Then, the extracted features are summarised as time series for correlating with the FIS CPUE. 
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Figure 21: Spatial extent for environmental variables to correlate with Spanner Crab FIS CPUE.  

 

3.2.1.3 Pearl Perch 

Figure 22 indicates the areas in the Queensland Pearl Perch line fishery where time series of 
environmental variables were calculated for correlational analyses with Pearl Perch catch rates. For 
NSW Pearl Perch commercial line fishery, the area considered coincides with Region N1 indicated in 
the map of Figure 20. 
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Figure 22: Spatial 30’ x 30’ grids highlighted for each region covered in the analysis of Pearl Perch commercial 

line fishery in Queensland.  

 

 

 Indices Capturing Historic Profile of Environmental Variables  
 
This sub-section is dedicated to developing a generic family of mathematical indices that can be 
extracted from a “signal” of recorded observations of a relevant random variable which can be almost 
any environmental variable that is relevant to this project. The formulation of this family of indices is 
a contribution that requires detailed mathematical notation to be precise.  
 
A time series of values of an environmental variable can be represented as 𝑋t = 𝑋1,𝑋2, … , 𝑋𝑀, where 
t represents time (e.g. in months, days or years) and 𝑀 is the maximum time-lag to be considered in 
the analysis. From this history of past observations, we can often extract a series of environmental 
episodes, where each episode represents conditions during an interval of time such as a season or the 
duration of a La Niña or El Niño event. These intervals might be periodic and fixed in duration (e.g. a 
season or year) or they may have a variable duration defined by the interval between values of 𝑋t 
crossing a threshold (e.g. the value of the Southern Oscillation Index is used to define El Niño and La 
Niña episodes and the temperature is used to define heatwave episodes). The impact of each episode 
on the fishery of interest will depend on its intensity, I, and its weight, w, relative to the weight of other 
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episodes. The parameter 𝑀 will be called a cumulative memory (or just memory, for short) which we 
may also count in terms of a ratio 𝑀/𝑚 (e.g. a memory of 𝑀=48 months, or four years, with 𝑚=12). 
The impact of some environmental variables on a species of interest may depend on the frequency, 
the duration, and the intensity of certain episodes. These are to be construed broadly as they can be 
tailored to capture potentially important phenomena of interest such as intermittent MHW, or 
seasonally recurring winter cooler periods. Whatever their definition, the essential requirement of the 
episodes is that there is some number 𝐾 ≤ 𝑀 of them and that the entire remembered history of the 
signal 𝑿 = { 𝑋1, 𝑋2, … , 𝑋𝑀} can be sub-partitioned into these 𝐾 mutually exclusive episodes 𝐸𝑘 =

{ 𝑋𝑠𝑘
,𝑋𝑠𝑘+1, … , 𝑋𝑠𝑘+𝑛𝑘−1}, 𝑘 = 1, … , 𝐾, where 𝑛𝑘  denotes the length of the 𝑘𝑡ℎ episode and 𝑠𝑘 is its 

starting time location. Namely, 

 ∪𝑘=1
𝐾 [𝐸𝑘] ⊆ 𝑿. (1) 

Note that, for the sake of simplicity of notation, in the above we assumed that each episode 𝐸𝑘 consists 
of 𝑛𝑘  consecutive observations of the signal. However, episodes consisting of non-consecutive 
observations can also be considered analogously. With respect to the above sub-partition, we can next 
define a family of associated indices extracted from the signal of the environmental variable 𝑋. This 
family is of the form  
 

 𝑋(𝑰, 𝒘) = ∑ 𝑤(𝐸𝑘)𝐼(𝐸𝑘),

𝐾

𝑘=1

 (2) 

where 𝑤(𝐸𝑘) and 𝐼(𝐸𝑘) denote importance weights and intensity measures associated with episodes 
𝐸𝑘. Defining episodes 𝐸𝑘 is crucial for constructing the index 𝑋(𝑰, 𝒘). Two important types concern 
the cases of (a) persistent threshold crossing, and (b) periodic seasonality. They are differentiated by 
the way the sub-partitions are defined.  
 

(a) Persistent threshold-crossing indices. 

Let 𝛿 be a threshold of interest and let the 𝑘𝑡ℎ episode of interest, of duration 𝑛𝑘 , be defined by either 

 𝐸𝑘 = 𝐸𝑘(𝛿𝑢) = { 𝑋𝑘𝑗
 | 𝑋𝑘𝑗

> 𝛿, 𝑗 = 1, … , 𝑛𝑘} (3) 

 
or 

 𝐸𝑘 = 𝐸𝑘(𝛿𝑑) = { 𝑋𝑘𝑗
 | 𝑋𝑘𝑗

< 𝛿, 𝑗 = 1, … , 𝑛𝑘}. (4) 

For instance, in the case where 𝑋 is the Southern Oscillation Index (SOI), 𝛿=-8 may be used to identify 

episodes 𝐸𝑘 = 𝐸𝑘(𝛿𝑑) of length 𝑛𝑘 > 5 (consecutive) months sometimes used to identify El Niño 

episodes. 
 

(b) Periodic seasonality 

In this case each episode 𝐸𝑘 is of equal length 𝑛𝑘 = 𝑛 and they occur with periodic regularity.  

 𝐸𝑘 = {𝑋𝑘1
, 𝑋𝑘2

, … , 𝑋𝑘𝑛
},       𝑘 = 1, … , 𝐾,  (5) 

where the number 𝐾 of these episodes is limited by spacings between them and the total memory 𝑀 
under consideration. For instance, in the case of Snapper consider a memory of, say, 𝑀=48 months 
counting backwards from December of the current year. If the episodes capture the May-October 
spawning aggregations, there would be exactly 𝐾=4 such episodes consisting of 𝐸1 = {𝑋3, 𝑋4, … , 𝑋8}, 
𝐸2 = {𝑋15, 𝑋16, … , 𝑋20}, 𝐸3 = {𝑋27, 𝑋28, … , 𝑋32}, 𝐸4 = {𝑋39, 𝑋40, … , 𝑋44}. 
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To complete the construction of the 𝑋(𝑰, 𝒘) indices we must supply the intensity 𝐼(𝐸𝑘) functions and 
the 𝑤(𝑛𝑘, 𝑀) weights associated with episodes 𝐸𝑘 of the sub-partition (1). There are clearly many 
possible choices for these functions. We list only those that we used in subsequent analyses.  
 

(c) Intensity functions 𝑰(𝑬𝒌)  

An intensity function 𝐼(𝐸𝑘) = 𝐼(𝑋𝑘1
,𝑋𝑘2

, … , 𝑋𝑘𝑛𝑘
) must map observed values in the episode onto a 

number capturing the intensity or strength of that episode. We considered several natural candidates 
for such functions including, the mean of the observations {𝑋𝑘1

, 𝑋𝑘2
, … , 𝑋𝑘𝑛𝑘

}, their median, geometric 

mean, signal-to-noise ratio and the logarithm of their sum (ensuring that each is well defined). The two 
candidates that, to date, yielded promising results were 

 𝐼(𝐸𝑘) = 𝐼(̅𝐸𝑘) ≔
1

𝑛𝑘
∑ 𝑋𝑘𝑗

,

𝑛𝑘

𝑗=1

   (6) 

and  

 𝐼(𝐸𝑘) =  𝐼𝑙(𝐸𝑘) ≔ 𝑙𝑛{ ∑ 𝑋𝑘𝑗
}.

𝑛𝑘

𝑗=1

 (7) 

(d) Weights of episodes 𝑬𝒌 

The final ingredient in the construction of the 𝑋(𝑰, 𝒘) index, is the determination of the relative 

importance weight of the 𝑘𝑡ℎ episode 𝐸𝑘 , for each 𝑘. We propose the following form of these weights 

 𝑤(𝐸𝑘) = 𝑤1(𝑛𝑘, 𝑀)𝑤2(𝑠𝑘, 𝑀), (8) 

where 𝑤1(𝑛𝑘, 𝑀) is intended to capture the relative importance of the persistence of the 𝑘𝑡ℎ episode 
𝐸𝑘 of length 𝑛𝑘, and 𝑤2(𝑠𝑘, 𝑀) is to capture the importance of the starting position 𝑠𝑘 of the same 
episode in the 𝑀-step history. Of course, in absence of deeper understanding of the persistence and 
memory aspects, the modeller has the option of setting 𝑤1(𝑛𝑘, 𝑀) = 𝑤2(𝑠𝑘, 𝑀) = 1, for every 𝑘. We 
used the following functional form of the first of these weights 

 𝑤1(𝑛𝑘, 𝑀) = 𝑒𝑥𝑝  { 𝑎 ( 
𝑛𝑘

𝑀
− 1) }, (9) 

where 𝑎 > 0 was selected based on experimentation. Note that short episodes are discounted more 
strongly by the above formula. 
 
The default second weight values of 𝑤2(𝑠𝑘, 𝑀) = 1 were used in some of our settings. However, we 
also experimented with more sensitive weights of the form 
 

 ν(𝑠𝑘 , 𝑀) = 𝑑 ( 
𝑠𝑘

𝑀
)

𝑐

(1 − 
𝑠𝑘

𝑀
)

1−𝑐

 , (10) 

or alternatively 
 𝑤2(𝑠𝑘, 𝑀) = 𝑒𝑥𝑝 { −𝑏(1 − ν (𝑠𝑘 , 𝑀)) }. (11) 

 
In the above, 𝑠𝑘  denotes the starting time (e.g. month) of the episode 𝐸𝑘  and 𝑐 lies between 0 and 1. 
For instance, from Figure 23 we see that when 𝑐=0 (red line), episodes starting late in the remembered 
history (𝑠𝑘 close to 𝑀) obtain ν(𝑠𝑘 , 𝑀) values that are smaller than episodes starting early in that 
history (𝑠𝑘  close to 1), and conversely when 𝑐=1 (purple line). A value of 𝑐 strictly between 0 and 1 can 
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be selected to ensure that episodes starting at a prescribed time in the middle of the remembered 
history obtain the highest ν(𝑠𝑘 , 𝑀) value. The scaling parameter 𝑑>0 is chosen to ensure that the 
highest possible ν(𝑠𝑘 , 𝑀) is 1. Then, when (10) is substituted into (11), with 𝑏>0, this ensures that the 
importance weights 𝑤2(𝑠𝑘 , 𝑀) also range between 0 and 1 and attain a maximum when ν(𝑠𝑘 , 𝑀) = 1. 
However, the parameter 𝑏 can be used as a dampening (or accelerating) factor of the rate of decay 
away from the maximum. For instance, from the right panel of Figure 23 we see that 𝑏=0.3 dampens 
the rate of decay of these weights to always remain above 0.7, while 𝑏=1.5 permits them to drop to 
below 0.3. It is envisaged that, in future research, parameters 𝑐 and 𝑏 could be calibrated to reflect the 
natural mortality or longevity of the species under investigation. 
 

 

Figure 23: Examples of the shape of the 𝜈(𝑠𝑘 , 𝑀) (left panel) and 𝑤2(𝑠𝑘 , 𝑀) (right panel) functions when 𝑀=24 

and parameters 𝑐 and 𝑏 take the indicated values.  

 
It should also be clear that, in some application, we may want to “zero-out” effects of the 
environmental signal in certain periods of interest and that is easily achieved by setting 𝑤2(𝑠𝑘, 𝑀)=0, 
during these periods. Similarly, we are able to assign other prescribed values (between 0 and 1) to 
these weights, in selected periods, on the basis of exogenous factors such as whether these correspond 
to spawning or juvenile periods in the life-cycle of the species.  
 
Remark: Note that most standard statistical indices can be easily recovered within the above 𝑋(𝑰, 𝒘) 
family. For instance, if we wanted the mean of observations 𝑋1, 𝑋2, … , 𝑋12, all we need to do is define 

𝐸𝑘 = 𝑋𝑘 for each 𝑘, the memory 𝑀=12, the intensity function to be 𝐼(𝐸𝑘) =
𝑋𝑘

12
 and all the weights to 

be identically 1. Similarly, other indices such as medians, moving averages, or coefficient of variation 
can be naturally constructed in the above form. 
 

(e) The up/down 𝜹-rectified means  

This is just a special case of 𝛿 threshold crossing indices introduced in (a) when 𝐾=1, the importance 
weights are set to 𝑤1(𝑛1, 𝑀) = 𝑤2(1, 𝑀) = 1, and the following variant of the intensity function is 
used 

 𝐼(𝐸1) = 𝐼�̅̅̅�(𝐸1) ≔
1

𝑀
∑ 𝑋1𝑗

.

𝑛1

𝑗=1

 (12) 

Note that we also experimented with the direct form (12) where is 𝑀 replaced by 𝑛1, but found that 
in the cases where the episode 𝐸1 is short (small 𝑛1), the corresponding index 𝑋(𝑰, 𝟏) seemed to inflate 
the importance of the episode. When 𝐸1 = 𝐸1(𝛿𝑢) = { 𝑋1𝑗

 | 𝑋1𝑗
> δ, 𝑗 = 1, … , 𝑛1}, this index now 

simply coincides with  
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 𝑋𝑢(𝛿) ≔
1

𝑀
∑ 𝑋1𝑗

.

𝑛1

𝑗=1

 (13) 

The above can be seen as the strength of 𝛿–exceeding signal relative to the length of the memory 
period of interest and we shall refer to it as an up 𝛿-rectified mean.  
 

Of course, 𝑋𝑑(𝛿) for the strength of the signal falling below the threshold 𝑋𝑑(𝛿) is defined the same 

way but with respect the episode 𝐸1 = 𝐸1(δd) = { 𝑋1𝑗
 | 𝑋1𝑗

< δ, 𝑗 = 1, … , 𝑛1}. For example, when 

the signal is the SST observed daily in, say, June in a given location and 𝛿=21°C is the threshold, then 
the down 21°-rectified mean is given by  

 𝑋𝑑(21) ≔
1

30
∑ 𝑋1𝑗

,

𝑛1

𝑗=1

 (14) 

where 𝑛1 is the number of days in June when the recorded temperature was below 21°C. Such 𝛿-
rectified means are helpful in identifying important thresholds when they correlated with species 
abundance indices such as density of Snapper pre-recruits. 
 
We illustrate the techniques (a), (c), (d) and (e) with the monthly SOI signal considered with a memory 
of 𝑀=24 months and threshold up (3) and down (4) episodes corresponding to two different 𝛿 values: 
0, and 8, respectively. The intensity function (6) was used with all 𝑤2(𝑠𝑘, 𝑀) weights set to 1 and  
𝑤1(1, 𝑀) calculated according to equation (9) with the parameter 𝑎=2. Figure 24 displays the resulting 
up/down indices so constructed, with the red curves corresponding to those using 𝛿=0 threshold and 
the green curves corresponding to the 𝛿=8 threshold. It can be seen that these curves capture several 
key up/down characteristics of the SOI signal, with the green curves emphasizing fluctuations 
somewhat more than the red curves. 
 

 

Figure 24: Four X(I,w) indices extracted from the monthly SOI signal and memory 𝑀=24 months. Red for 

threshold δ=0 and green for threshold 𝛿=8. The two curves above the 0 level correspond to the up episodes and 

those below correspond to the down episodes, with respect to the two thresholds.   
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 Marine Heatwaves 

Marine heatwaves (MHW) are anomalous sea temperature events that can be caused by 
configurations of atmospheric and oceanographic processes. They are not restricted to Australian 
waters and are expected to become both more frequent and intense in response to climate change. 
Adverse impacts of MHW on western rock lobster and other species were identified by Caputi et al. 
(2014). Consequently, we also investigated the potential impact of the MHW phenomenon as a 
potentially important environmental driver in this study. We note also that it is a phenomenon the 
impact of which may well depend on the issues of memory, persistence, intermittence and thresholds 
discussed in the preceding section.   
 
We relied on a hierarchical definition of MHW episodes (Hobday et al. 2016) comprising the following 
key ingredients: (i) Anomalously warm temperatures with respect to a baseline average temperature 
over a period of 30 years, and a high percentile threshold of 90%; (ii) Prolonged events persisting for 
at least five days; (iii) Discrete events appearing with sufficient separation between successive events. 
Following the convention in Hobday et al. (2016) one MHW event could have one of the following 
forms:  
 

• at least 5 hot days, or  

• at least 5 hot days, followed by no more than 2 normal days, followed by at least 5 hot days, 
or  

• at least 5 hot days followed by no more than 2 normal days, followed by at least 1 but fewer 
than 5 hot days, or 

• at least 1 but fewer than 5 hot days, followed by no more than 2 normal days, followed by at 
least 5 hot days.  

 
Here “normal” temperature refers to any temperature below the 90th percentile and “hot” refers to 
any temperature at or above that percentile. It should also be clear that two successive MHW events 
must be separated by more than two days of normal temperatures. 
 
The MHW events characterised above permit us to form episodes 𝐸𝑘 and MHW indices of the 𝑋(𝑰, 𝒘) 
type considered in Section 3.3. The intensity function that calculates the strength 𝐼(𝐸𝑘) of the kth 
event, its weight 𝑤(𝐸𝑘) and the length M of the memory, must be set. Hobday et al. (2016) provide a 
wide selection of possible intensity functions and we have selected the one that is called the “mean 
temperature anomaly during the MHW”. This corresponds to area between the black and blue curves 
in Figure 25 during the MHW episode 𝐸𝑘, divided by the duration of that episode. 
 
In our application baseline temperature from IMOS database was used with (6 day average night time, 
“ghrsst_L3S_6d_ngt”) resolution over a period of approximately 28 years (01/04/1992 to 31/12/2019), 
only slightly below the above mentioned 30 years. The 6 day average night time dataset was used in 
order to avoid any daytime temperature artefacts (e.g. sun glint), and 6 day averaging fills gaps that 
are otherwise present in the daily time series as a result of cloud cover blocking satellite view of the 
ocean surface. To make the concept clearer Figure 25 illustrates a typical MHW event occurring in April 
2016, shaded in red, in the Snapper offshore area of Brisbane and Sunshine Coast (see Figure 19).  
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Figure 25: A typical MHW event, shaded in red, in April 2016 in the Snapper offshore area of Brisbane and 

Sunshine Coast. The blue curve indicates the baseline long-term mean daily temperature, the green curve is its 

90th percentile upper bound and the black curve represents the daily averages. 

 

 

 A Strategy for Incorporating Environmental Factors 
 

For the sake of illustration of the methodology, assume that one or more environmental variables have 
been identified that significantly impact the species under investigation and that these variables are 
captured in an environmental index 𝒛𝑡, constructed so that it produces negative values if it is 
detrimental for the species and positive values if it is associated with increased abundance. We 
explored two distinct, yet related, approaches for incorporating such an index into stock assessment 
models based on: I. Surplus production models, and II. CPUE standardisation models. Below, we use a 
green font to indicate possible modifications to models’ equations. 
 

I. Surplus production models 
 
Consider a surplus production model of the generic form: 
 

 𝐵𝑡 = 𝐵𝑡−1 + 𝑆𝑃(𝐵𝑡−1) − 𝐶𝑡−1, (15) 

where 𝐵𝑡 denotes biomass in year 𝑡 , 𝑆𝑃(𝐵𝑡−1) denotes the natural surplus during the previous year 

and 𝐶𝑡−1 denotes the biomass harvested. Now, there are two natural ways by which environmental 

index 𝒛𝑡 can be incorporated into the model: 

 

a. Environmental index influences the biomass proportionally; that is 

 

 𝐵𝑡 = (𝐵𝑡−1 + 𝑆𝑃(𝐵𝑡−1) − 𝐶𝑡−1)𝑒𝜷𝒛𝑡−1.  

 

b. Environmental index influences the surplus production proportionally; that is 
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 𝐵𝑡 = 𝐵𝑡−1 + 𝑆𝑃(𝐵𝑡−1)𝑒𝜷𝒛𝑡−1 − 𝐶𝑡−1.     

 

II. CPUE standardisation models 

We also consider incorporating environmental indices in CPUE standardization. One step in the 
standardization process is building a model that relates the CPUE to a set of observed variables, using 
models like GLM or GAM. The generic form of the latter is:  
 

 𝑆𝐶𝑃𝑈𝐸 = H(𝑥1, 𝑥2, … , 𝑥𝑘), (16) 

where the variables 𝑥1, 𝑥2, … , 𝑥𝑘  denote known (or expected) systematic factors affecting catchability 
such as year, season, type of gear, lunar phase etc. Recognising that some of our environmental indices 
may also affect catchability we shall also examine modified SCPUE models of the form 
 

 𝑆𝐶𝑃𝑈𝐸 = H(𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑧), (17) 

where the inclusion of the environmental index 𝑧 in the above is also allowing for the possibility of 
including it with appropriate time lags. 
 
We note that approach II. can be adopted in conjunction with approach I. because it is certainly 
possible that some environmental indices may impact catchability while some others may impact 
reproductive potential/abundance.  
 

3.5.1 Including environmental factors in a surplus production JABBA model  

Next, we consider in a little more detail of approach I. The advantage of such models is that with only 
a few parameters and minimal data requirements they enable us to estimate maximum sustainable 
yield (MSY) and accompanying reference points for fisheries management. We have selected the 
modelling platform and framework of Winker et al. (2018) that is known under the acronym JABBA 
(Just Another Bayesian Biomass Assessment). While JABBA can accommodate several forms of surplus 
biomass functions 𝑆𝑃(𝐵𝑡), their detailed analysis centres around a rather flexible Pella and Tomlinson 
(1969) model with the mathematical form 
 

 𝑆𝑃(B𝑡) =
𝑟

𝑚 − 1
𝐵𝑡 (1 − (

𝐵𝑡

𝐾
)

𝑚−1

) , (18) 

where 𝑟 is the intrinsic rate of population increase at time 𝑡, 𝐾 is the carrying capacity and m is a shape 
parameter. These parameters are assumed to be larger than zero. If we denote the biomass 
corresponding to the maximum sustainable yield by 𝐵𝑀𝑆𝑌, then it can be easily shown that for 𝑚 not 
equal to 1 

 𝐵𝑀𝑆𝑌 = 𝐾 (
1

𝑚
)

1
𝑚−1

,  or  equivalently, 
𝐵𝑀𝑆𝑌

𝐾
= (

1

𝑚
)

1
𝑚−1

 (19) 

Because of certain biologically undesirable properties when 𝑚 ≤ 1, we will assume 𝑚 > 1. It is also 
well known that fishing mortality corresponding to the maximum sustainable yield, denoted by 𝐹𝑀𝑆𝑌, 
is given by the simple formula 

 𝐹𝑀𝑆𝑌 =
𝑟

𝑚 − 1
(1 −

1

𝑚
). (20) 
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With 𝐵𝑀𝑆𝑌 and 𝐹𝑀𝑆𝑌 used as reference points and prior distributions selected, MCMC (Markov chain, 
Monte Carlo) technique is exploited to calibrate the model’s parameters to best fit historical catch data 
recovered from time series of CPUE records. 
 
The trajectory of the system can be conveniently visualised in a so-called Kobe phase plot which uses 
the biomass ratio 𝐵/𝐵𝑀𝑆𝑌 and the fishing mortality ratio 𝐹/𝐹𝑀𝑆𝑌 as performance criteria on the 
horizontal and vertical axis, respectively (see Figure 26). The lines of the biomass ratio and fishing 
mortality ratio equal to one split the plotted area into four rectangles. The area of 𝐵/𝐵𝑀𝑆𝑌 < 1 and 
𝐹/𝐹𝑀𝑆𝑌 > 1, indicating low biomass and high fishing mortality, is the least desirable high risk state 
(coloured red, depleted) for the system’s trajectory to reside in. On the other hand, the area of 
𝐵/𝐵𝑀𝑆𝑌 >  1 and 𝐹/𝐹𝑀𝑆𝑌 < 1, indicating high biomass and low fishing mortality, is the most desirable 
and sustainable state (green, sustainable). The states of 𝐵/𝐵𝑀𝑆𝑌 < 1 and 𝐹/𝐹𝑀𝑆𝑌 < 1 (yellow, 
recovering), and of 𝐵/𝐵𝑀𝑆𝑌 > 1 and 𝐹/𝐹𝑀𝑆𝑌 > 1 (brown, depleting) are ones where exactly one of 
the criteria represented by these ratios is taking undesirable values.  
 
The advantage of the Kobe plot visualisation is that as the trajectory of the fishery evolves (e.g. yearly) 
it can be represented as a sequence of points residing, at different times, in one of these four different 
regions. This enables managers to assess whether the trajectory is either in, or moving towards, the 
most sustainable green rectangle.  
 
In the illustration depicted in Figure 26 below, for Queensland’s Spanner Crab fishery, it was assumed 
that 𝐵𝑀𝑆𝑌 ≈ 0.5𝐾 and that the starting biomass in year 1988 was approximately 80% of the virgin 
biomass level. Under this scenario, the trajectory begins in 1988 deep in the sustainable (green) state, 
before entering the depleting state in 1994, then re-enters the sustainable state in 2002 where it 
remains until 2012, and finally ends up in the recovering state from 2013 to 2019. Naturally, 
uncertainties accumulate as the trajectory evolves. In the JABBA visualisation the roughly oval grey 
shaded shapes correspond to the 50%, 80% and 95% confidence regions for the location of the final 
2019 point of the trajectory. In the case of the Spanner Crab setup scenario illustrated here we note 
that while these states are wide, a large portion of them overlaps either the depleted (red) or the 
recovering (yellow) states. 
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Figure 26: Kobe plot for the Queensland's Spanner Crab fishery over 1988-2019. 

 
From the perspective of this project, the most important question is whether the inclusion of 
environmental variables into the surplus production model in the manner discussed in Section 3.4, 
significantly impacts either the trajectory or the uncertainty regions in the above Kobe plots. If it turns 
out that such impacts are negligible, or small, that suggests that – at the coarse surplus production 
level – stock assessment omitting environmental variables from the model does not materially alter 
the models’ outputs.  
 
Remark: We recall that in Section 3.4 we proposed two options for including environmental drivers: 
(a) Environmental variable influences the biomass proportionally, and (b) Environmental index 

influences the surplus production proportionally, namely, 𝐵𝑡 = 𝐵𝑡−1 + 𝑆𝑃(𝐵𝑡−1)𝑒𝜷𝒛𝑡−1 − 𝐶𝑡−1, where 
𝒛𝑡 denotes the environmental variable. Preliminary exploration of these two options indicated that 
only (b) yielded meaningful results. Hence the results reported later in this report pertain to that 
option. 
   

3.5.2 Including environmental variables in CPUE standardisation 

Catch rate or catch per unit effort (CPUE) standardisation becomes essential in the process of fisheries 
stock assessment because comparing with nominal CPUE (i.e., reported catch divided by reported 
fishing effort), standardised CPUE is independent of factors other than fish abundance and is less 
biased as an abundance index used in stock models (Maunder 2004). 
 
A catch rate standardisation model is adapted to model catch (𝐶) with fishing effort offset in the model 
or CPUE data. Here, we represent the modelling of 𝐶 in the generic form 

 𝐸(𝐶|𝒙) = H(x1, x2, … , x𝑘), (21) 
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where the vector 𝒙 consists of variables x1, x2, … , x𝑘  denoting observed factors affecting catchability 
such as year, season, type of gear, lunar phase etc. The expression 𝐸(𝐶|𝒙) denotes expected catch 
given the vector 𝒙.  
 
In this project, we studied whether environmental factors need to be taken into account in the CPUE 
standardization process. To do so, we calculate the SCPUEs for Spanner Crab and Snapper using models 
with and without environmental factors, then compare the models and SCPUEs to check whether 
including the environmental factors results in any difference. 
 
Hence, we explored the possibility of appending one or more environmental variables 𝑧 to the vector 
𝒙 of systematic factors influencing catchability. Effectively, this changes (21) above to  

 𝐸(𝐶|𝒙, 𝑧) = H(x1, x2, … , x𝑘 , z). (22) 

 
Spanner Crabs 
 
For Queensland’s Spanner Crab fishery, the baseline GLM model was analogous to that used by DAF 
and reported in Campbell et al. (2016). We assumed that catch 𝐶 conditional on a vector of predictiors 
𝒙 is quasi-Poisson distributed with the variance proportional to the expected catch.  
 

𝐸(𝐶|𝒙) = exp {𝛽0 + 𝛽𝑙𝑙 + 𝛽𝑔𝑔 + 𝛽𝑙adv
𝑙adv + 𝛽𝑏𝑏 + 𝛽𝑦𝑦 + 𝛽𝑟𝑟 + 𝑓𝑝 + 𝛽𝑔𝑒 ∙ (𝑔 × 𝑒)

+ 𝛽𝑦𝑟 ∙ (𝑦 × 𝑟) + 𝛽𝑟𝑠 ∙ (𝑟 × 𝑠) + 𝛽𝑟𝑐𝑠 ∙ (𝑟 × 𝑐𝑠) + 𝛽𝑟𝑠6
∙ (𝑟 × 𝑠6) + 𝛽𝑟𝑐𝑠6

∙ (𝑟 × 𝑐𝑠6)

+ 𝛽𝑟𝑠4
∙ (𝑟 × 𝑠4) + 𝛽𝑟𝑐𝑠4

∙ (𝑟 × 𝑐𝑠4)}, 

(23) 

 
where the variables of the model are specified in Table 2. The coefficients with double subscripts 
correspond to interaction terms between pairs of variables, which are denoted with × symbol. The ∙ 
notation stands for the inner product of two vectors. For instance, with 𝑦 taking on 18 possible values 
and 𝑟 corresponding to 5 regions, the interaction 𝑦 × 𝑟 denotes a 90 dimensional vector with zeros 
except for unity in the entry corresponding to year 𝑦 and region 𝑟, and the coefficient vector 𝛽𝑦𝑟 has 

length 90. Thus, this is a heavily parameterised model designed to ensure that any trends are able to 
reflect changes in abundance. 
 
Table 2: Description of variables used in model (23). 

Variable Type Definition 

lunar (𝑙) continuous lunar phase represented as the calculated luminance measure, which 
follows a sinusoidal pattern. 

lunaradv (𝑙adv) continuous the same lunar data replicated and advanced seven days. 

gfpid (𝑔) binary Indicating whether the boat has a general fisheries permit (GFP).  

potsliftlog (𝑒) continuous logarithm of the number of pots lifted. 

boat (𝑏) categorical the boat id (213 levels). 

year (𝑦) categorical year (18 levels). 

region (𝑟) categorical region (5 levels). 

c12 (𝑠) continuous seasonality, calculated as cos (2𝜋𝑑/𝐷), where 𝑑 and 𝐷are the number 
of days lapsed in the year and the total number of days in the year. 

c6 (𝑠6) continuous cos (4𝜋𝑑/𝐷).  

c4 (𝑠4) continuous cos (6𝜋𝑑/𝐷).  

cs12 (𝑐𝑠) continuous sin (2𝜋𝑑/𝐷).  

cs6 (𝑐𝑠6) continuous sin (4𝜋𝑑/𝐷).  

cs4 (𝑐𝑠4) continuous sin (6𝜋𝑑/𝐷).  

logfp (𝑓𝑝) continuous logarithm of fishing power (coefficient set to 1). 
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Equation above is the more detailed form of the generic equation (21). After inclusion of an 
environmental variable 𝑧, the corresponding analogue of (22) becomes  
 

𝐸(𝐶|𝒙, 𝑧) = exp {𝛽0 + 𝛽𝑙𝑙 + 𝛽𝑔𝑔 + 𝛽𝑙adv
𝑙adv + 𝛽𝑏𝑏 + 𝛽𝑦𝑦 + 𝛽𝑟𝑟 + 𝑓𝑝 + 𝛽𝑔𝑒 ∙ (𝑔 × 𝑒)

+ 𝛽𝑦𝑟 ∙ (𝑦 × 𝑟) + 𝛽𝑟𝑠 ∙ (𝑟 × 𝑠) + 𝛽𝑟𝑐𝑠 ∙ (𝑟 × 𝑐𝑠) + 𝛽𝑟𝑠6
∙ (𝑟 × 𝑠6)

+ 𝛽𝑟𝑐𝑠6
∙ (𝑟 × 𝑐𝑠6) + 𝛽𝑟𝑠4

∙ (𝑟 × 𝑠4) + 𝛽𝑟𝑐𝑠4
∙ (𝑟 × 𝑐𝑠4) + 𝛽𝑧𝑧}, 

(24) 

where 𝑧 can be a variable such as SST, GSLA, Chl-a, etc. 
 
Snapper 
 
In the case of Snapper, the CPUE standardisation procedure is more complicated since commercial 
logbook data contain a moderately high proportion of records (approximately 24%) where zero catch 
is recorded. Now, a GLM approach is used to model the probability of obtaining a non-zero catch that 
is combined with an LMM (Linear Mixed Model) approach to estimate the expected logarithm of such 
positive catch. The resulting benchmark model is the same as the one reported in Wortmann et al. 
(2018, Table 5.12). We do not elaborate the details because the findings are even less significant than 
those reported above for Spanner Crabs. These details can be found in working files stored on AARNET 
clouldstor (see Section 9.1). 
 

 Modelling Time Series of Environmental Variables  
 

In the preceding section we discussed methodologies for incorporating a time dependent 
environmental index 𝒛𝑡  into surplus production models. However, once that is done, there is a need 
to construct future scenarios of such an index to enhance Management Strategy Evaluations (MSEs). 
There is a large body of quantitative techniques that can be used to construct such future scenarios of 
an index based on time series of historical data for that same index. In this project, for the most part, 
we exploited rather routine curve fitting and extrapolation methods that do not require further 
elaboration. In this section, we very briefly outline our use of one somewhat more advanced technique 
known as polynomial-trigonometric regression (Eubank and Speckman 1990). This technique is 
appropriate when that time series of the variable of interest is strongly periodic, as is the case with SST 
that features importantly in this study.  
 
For the purpose of this outline, let 𝒛𝑡 denote SST in month 𝑡, in a given region of interest. As will be 
seen later this variable exhibits a very strong annual cycle and is generally expected to have slight time 
trend induced by global climate change. Hence, it is reasonable to attempt to fit the following 
mathematical model to this variable  
 

 𝑧𝑡 = 𝑐1 + 𝑐2𝑡 + 𝑐3 sin (
2𝜋

12
𝑡) + 𝑐4 cos (

2𝜋

12
𝑡) + 𝑅𝑡 , (25) 

where the linear terms are designed to model the mean trend (via coefficients 𝑐1 and 𝑐2), the 
trigonometric terms are to capture the annual cycle (via 𝑐3 and 𝑐4) and 𝑅𝑡 denotes the residual. Auto-
correlations in 𝑅𝑡 are modelled by an autoregressive (AR) model of the form 
 

 𝑅𝑡 = 𝑐5𝑅𝑡−1 + 𝜖𝑡 , (26) 

where 𝑐5 is the AR coefficient and 𝜖𝑡 is a white noise error term. The model coefficients are estimated 
using maximum likelihood estimation (Hyndman and Khandakar 2008; Trapletti and Hornik 2020). 
Once these coefficients have been estimated, equations (25)-(26) lead to the following recursive 
relationship that can be used to estimate 𝒛𝑡+𝑚, at m months in the future 
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𝑧𝑡+𝑚 = 𝑐1 + 𝑐2(𝑡 + 𝑚) + 𝑐3 sin (
2𝜋(𝑡 + 𝑚)

12
) + 𝑐4 cos (

2𝜋(𝑡 + 𝑚)

12
) + 𝑐5

𝑚+1𝑅𝑡−1 + ∑ 𝑐5
𝑖 𝜖𝑡+𝑚−𝑖

𝑚

𝑖=0

. (27) 

In the above, depending on the application, the error term 𝜖𝑡would either be replaced by its estimated 
expected value of 0, or simulated by random sampling from the appropriate distribution (typically, 
𝑁(0, σ2)). Of course, σ2 can be estimated from the time series of the errors generated by (26). Figure 
27 illustrates the fit of monthly average SST data from the offshore Region 1N (indicated in the right 
panel of (Figure 19) and the output generated by the above trigonometric regression technique.  

 
Figure 27: Monthly average SST in Snapper offshore area 1N (black curve), and trigonometric regression 

generated model (red curve).  

 

We note that the model in equation (25) is said to be of polynomial order 1 and of trigonometric order 
1. This is because the terms 𝑐1 + 𝑐2𝑡 formed an order 1 polynomial in 𝑡 and there was only one pair of 
trigonometric terms with only one frequency. Clearly, these orders could be changed but, naturally, 
higher orders necessitate estimation of more parameters. Polynomial order 0 corresponds to the case 
of absence of long-term trend. The highest trigonometric order used in this study is 2 (see Section 
4.4.2).  
 
 

 Results 

 Snapper: Correlation Analyses for Key Environmental Variables 

Environmental indices were analysed in Moreton Bay where juvenile Snapper abundance data are 
available from the annual FIS and the CFISH grid cells from which the majority of the commercial catch 
is reported (Figure 19). Note that the four northern grid cells in the right panel of Figure 19 constitute 
Region 1N, the five southern cells form Region 1S and the nine cells combined makeup Region 1W. 
Consistency between nominal and standardised density response variables was confirmed in the sense 
that qualitatively similar results are obtained using either one of these variables. A detailed comparison 
can be found in working files stored on AARNET clouldstor (see Section 9.1). 
 
Several environmental variables were found to have strong associations with either the abundance or 
catchability of Snapper. These included GSLA, SST, Chl-a, truFlo, TideR, SOI and others.  
 
1. There is evidence of a negative linear association between pre-recruit density in the November-
December FIS and SST in preceding June and July (i.e. adult spawning period) in offshore areas where 
the majority of Snapper spawning stock is thought to be present (see Figure 1). 
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2. A threshold temperature sensitivity range of 19.8˚C to 21.8˚C was identified for offshore Snapper 
spawning. Higher frequency and larger magnitude of temperatures above these thresholds in June are 
negatively associated with subsequent Snapper pre-recruitment, with a correlation value equal to or 
smaller than -0.8.  
 
3. There is evidence of positive linear relationships between pre-recruit density in the November-
December FIS and Chl-a in the preceding June-October period in offshore areas and in the preceding 
September-October period within Moreton Bay. This is potentially related to high levels of primary 
productivity improving Snapper larval survival and/or growth rates in the plankton.  
 
4. A linear combination of two environmental variables (SST in June and Chl-a in September) was found 
to account for 75% of the variability in the nominal density of Snapper pre-recruits in the November-
December FIS. 
 
5. There is evidence that the density of Snapper pre-recruits in the annual FIS in Moreton Bay is an 
indicator of subsequent annual commercial line CPUE in Queensland. The strongest correlation is 
between the density of Snapper pre-recruits and commercial catch rates four years later. Four-year-
olds are typically one of the most abundant age classes in the Queensland Snapper line fishery.  
 
In the remainder of this sub-section, we summarise a representative sample of various analyses 
supporting these findings. Further details of these analyses are documented in the project’s repository 
of files stored on AARNET clouldstor (see Section 9.1). 
 
 

4.1.1 Snapper pre-recruits overview and summary of strength of associations 

In the association analysis, the response variables used were nominal FIS density (densSPR), 
standardised density and their logarithmic transformations. However, as the results were largely very 
consistent, we illustrate only with nominal density. Table 3 highlights several important correlations 
and their corresponding R2 statistic showing the proportion of variability in densSPR explained by each 
of these environmental variables. All but one of these associations are statistically significant at the 
<0.05 level. These are colour coded in green. 
 
Table 3: Correlation coefficients between nominal density of Snapper pre-recruit and selected environmental 

variables at Moreton Bay. Months refer to the most recent year. River discharge (truFlo) and tidal range (TideR) 

refer to Brisbane river and Brisbane bar.  

Lag (month) Environmental index 
Correlation  

with densSPR 
R2 

-Jun Mean SST -0.71 0.51 
-Sep log (median Chl-a) 0.62 0.39 
-Jun log (mean truFlo) 0.54 0.30 
-Sep Mean TideR -0.63 0.40 
-Nov Mean GSLA -0.74 0.55 

 

The possibility of combining these environmental variables into more complex and powerful indices 
will be explored further. However, the temptation to do so will be tempered by the recognition of both 
the dangers of model overfitting and collinearity among the environmental variables that Figure 28 
shows. Some candidate pairs of variables are not strongly correlated and are pursued in further 
analyses in Section 4.1.4. 
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Figure 28: Correlation values between key environmental variables. Colour intensity (light to dark) is 

proportional to the correlation coefficients (0 to 1 for the positive coefficient and 0 to −1 for negative coefficient). 

An asterisk * denotes the significance of the correlation between 0.05 and 0.10, double ** corresponds to level 

between 0.01 and 0.05, triple *** corresponds to level below 0.01, and NS stands for non-significant. 

 

In Table 4, we summarise the pattern of positive and negative associations between the nominal 
Snapper pre-recruits and several key environmental variables including those highlighted earlier in 
Table 3, at a range of different monthly lags in the year preceding the sampled observations.  
 
We also considered the proposition that, indirectly, environmental variables in the adult Snapper areas 
1N, 1S and 1W (closest to the pre-recruit Moreton Bay (MB)) may also influence pre-recruit density. As 
can be seen from Table 4, this is the case for SST lagged 6 months to the most recent June and is 
indicated by the green column of negative correlations for all four areas of interest. Adjacent months’ 
columns (July and May) also contain some associations significant at the same level. 
 
Similarly, the logarithmically transformed Chl-a variable in the most recent July and June (and adult 
regions 1N, 1S, 1W) had moderate1 positive correlations with FIS densSPR in November-December, 
even though only the one in Region 1N was statistically significant at the 95% level. The same variable 
lagged only two months to the most recent October also had a significant positive association in regions 
1S and 1W, with correlations in regions MB and 1N still noteworthy but not quite reaching the 95% 
level cut-off. 
 

 

1 Sufficiently high absolute values of the correlation coefficient are possible indicators of the presence of a linear 
relationship between covariates.  While there is no universally accepted threshold, a simple rule-of-thumb of the 

correlation being greater than 1/√𝑛  is sometimes used (e.g. Krehbiel 2004). 
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Table 4: Summary table of the linear regression analyses performed to explore the effect of environmental indices 

on FIS density of pre-recruit Snappers in Moreton Bay in November-December, 2007-2019. Values in green 

indicate correlations statistically significant at the 95% level. 

 
Month Dec Nov Oct Sep Aug Jul Jun May Apr Mar Feb Jan 

Lag 0 1 2 3 4 5 6 7 8 9 10 11 

Sea Surface Temperature             

Mean SST             

Region             

MB -.50 -.11 -.51  .11 -.06 -.48 -.71 -.04 -.08 -.20  .22 -.55 

 1N -.42 -.28 -.23 -.24 -.48 -.58 -.71 -.59 -.49 -.19  .31 -.07 

1S -.53 -.30 -.63 -.31 -.48 -.79 -.73 -.44 -.40 -.26  .01 -.32 

1W (1N+1S) -.51 -.37 -.31 -.21 -.39 -.58 -.75 -.33 -.35 -.12  .31 -.12 

Chlorophyll a             

Log (Median Chl-a)             

Region             

MB  .18  .28  .55  .62  .25  .34  .19  .01  .14  .44  .34  .21 

 1N  .35  .35  .54  .39  .43  .58  .37  .19  .12  .04  .15  .17 

1S  .33  .31  .63  .44  .32  .50  .51  .22  .11 -.06  .13  .40 

1W (1N+1S)  .32  .34  .62  .43  .37  .53  .43  .19  .12 -.03  .13  .35 

Gridded Sea Level Anomaly             

Mean GSLA             

Region             

MB -.13 -.74 -.63 .02 -.45 -.58 -.34 -.48 -.52 -.13 -.35 -.31 

 1N .20 -.42 -.07 -.58 -.30 -.13 -.32 -.41 .00 -.19 .01 .27 

1S -.48 -.55 -.55 -.39 -.64 -.66 -.70 -.45 -.41 -.43 -.42 -.36 

1W (1N+1S) -.10 -.63 -.49 -.31 -.46 -.72 -.51 -.29 -.40 -.31 -.26 -.03 

River Discharge             

Log (Mean truFlo)             

Station             

Caboolture River (142001A)  .16 -.23 -.16 -.02  .15  .36  .38  .16  .16  .17  .31  .53 

Brisbane River (143001C)  .07  .23 -.14 -.14  .24  .43  .54 -.23  .23  .46  .50  .61 

Logan River (145014A)  .08  .06  .20  .24  .19  .11  .18 -.07 -.30 -.19  .33  .46 

Tidal Range             

Mean TideR             

Tide gauge             

Brisbane Bar -.17 -.61  .06 -.63 -.35 -.10 -.26  .23  .17  .17  .07 .47 

Mooloolaba Bar -.09 -.56  .12 -.66 -.39  .06 -.15  .32  .40  .35  .04 .52 

Southport Bar  .20 -.39  .07 -.56 -.35 -.05 -.25  .17  .08 -.06 -.14  .17 

Southern Oscillation Index              

Mean SOI  .44  .37  .34  .41  .31  .36  .26  .20  .40  .69  .43  .46 

 

 
The GSLA variable in the most recent periods from November to October and August to June had 
several significant negative associations with the FIS densSPR in November-December, in at least one 
of the four areas considered. Notably, in Region 1S, the observed correlations for August, July and June 
were -0.64, -0.66 and -0.7, respectively. The Moreton Bay GSLA correlations for November and October 
were -0.74 and -0.63.   
 
As far as the logarithmically transformed river discharge variable truFlo was concerned, it was tested 
for association with densSPR for Caboolture, Brisbane and Logan rivers. Of these, the only statistically 
significant positive association was detected for the Brisbane river’s discharge in January (lag 11). 
However, there were also two other moderate positive correlations that missed the 95% significance 
level cut-off. This also applied to the Caboolture river’s discharge in previous January. 
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The mean TideR variable observations were taken from three gauges: Brisbane Bar, Mooloolaba Bar 
and Southport Bar. For the Brisbane Bar, significant negative associations with the FIS densSPR in 
November-December were observed for most recent November (lag1) and September (lag3) TideR. 
For the Mooloolaba Bar the only association meeting the 95% significance level was again observed in 
September (lag3). There were other moderate negative correlations that did not meet the 0.05 p-value 
cut-off. The effects of the SOI signal will be discussed in more detail later in this report (Section 4.1.7). 
 

4.1.2 Snapper pre-recruits and sea surface temperature  

A strong and highly significant correlation (r = -0.71, p = 0.015)2 was identified between FIS pre-recruit 
Snapper nominal density in November-December and SST in Moreton Bay in the preceding June (see 
Table 3). Replacing the mean SST with a suitable 𝛿-rectified mean SST variable in the preceding June 
yielded several even stronger correlations3. The strongest correlation (r = -0.84, p < 0.001) was attained 
using a threshold of 𝛿 =18.2°C, resulting in a change in R2 from 0.51 to 0.70. That is, an 18.2°-rectified 
mean SST in the preceding June explains 19% more of the variability in densSPR than the standard 
mean SST approach. 
 
Moreover, June SST may be impacting the spawning adult populations in the nearby Fraser, Sunshine 
Coast and Brisbane offshore areas (Region 1W in Figure 19). Hence, the above 𝛿-rectified mean SST 
analysis was repeated using water temperatures from these areas and is illustrated in Figure 29. An 
even stronger negative correlation of r=-0.86 was identified but with a higher threshold of 21.0°C. This 
accounts for nearly 74% of the variability in the FIS pre-recruit nominal density.  
 

 

Figure 29: Correlations (r) between FIS pre-recruit nominal density and 𝛿-rectified mean SST in preceding June 

in the offshore Region 1W, for a range of 𝛿 values. Green dots indicate correlations significant at the 95% level. 

 
In fact, if we search for the temperature range for which the correlation between 𝛿-rectified mean SST 
and the nominal density of pre-recruits falls at, or below, the -0.8 level, this occurs between 19.8°C 
and 21.8°C. This can be seen from the right panel of Figure 29. The choice of the cut-off level may be 
driven by the degree of improvement in R2 over the correlation with regular mean. In this instance, R2 

 

2 Here, r denotes the (Pearson) correlation coefficient and p denotes the associated “p-value”, indicating how 
low is the probability that the corresponding, or stronger, value of r could have occurred purely at random. 
3 Recall that in calculating the 18.2°-rectified mean SST variable in the preceding June, we zero-out all daily 
temperatures at or below 18.2°C and use equation (12) to average observations above that level.   
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improved from approximately 0.56 to 0.64, an increase of roughly 14%. These findings suggest that the 
21°-rectified mean SST in preceding June in the nearby offshore areas (1W) may be a relevant 
environmental driver of the density of Snapper pre-recruits in the Moreton Bay area. Figure 30 shows 
that this single variable accounts for 73% of variability in the density.  
 

 

Figure 30: Scattergram of FIS pre-recruit nominal density in November-December and 21°-rectified mean SST in 

preceding June in offshore Region 1W, r = -0.86, R2 = 0.73 and p-value much smaller than 0.05.  

 

4.1.3 Snapper pre-recruits and chlorophyll a  

Strong associations with highlighted environmental variables were preserved even when the response 
variable was logarithmically transformed but, sometimes, with somewhat different values. In Figure 
31, we illustrate one such relationship between the logarithmically transformed nominal density of FIS 
pre-recruits in November-December and logarithmically transformed median values of Chl-a in the 
previous September corresponding to a lag of 3 months (with respect to December). The observed 
correlation between these variables was 0.62 and had p-value of 0.03 and R2 = 0.39.  
 
The three panels of Figure 31 demonstrate presence of a strong, positive association. In particular, 
panel A shows that all but two of the years covered by the data fall within the uncertainty bands of a 
straight line fit. The 2018 observation only just misses out while the 2015 observation corresponds to 
an exceptionally low catch rate that may be an outlier. Panels B and C illustrate the roughly similar 
trends between the logarithmically transformed density of Snapper and similarly transformed Chl-a 
median in the previous September. Time series of Chl-a (median values) were calculated from IMOS in 
September over the period 2007-2019 for Moreton Bay (30 nm by 30 nm grids). Note that Chl-a values 
above 15 mg/m3 were excluded as potentially erroneous due to the way in which remote sensing 
platforms measure Chl-a (Davies et al. 2018).  
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Figure 31: A) Scatterplot between density of Snapper pre-recruits in November-December and three month lagged 

September median Chl-a (log-log); B). Nominal density of Snapper pre-recruits in log scale and C) Chl-a (median 

values) in log scale at Moreton Bay region, r = 0.62, R2=0.39 and p-value = 0.030. 

 

To ensure that the inclusion of the outlier year 2015 does not artificially increase the linear association 
exhibited in Figure 31, we repeated the analysis with that data point excluded. The results indicate that 
this only increases the strength of the association. 
 

4.1.4 Combinations of key environmental variables 

As indicated earlier, the feasibility of combining these environmental variables into more complex and 
powerful indices needs to be explored. In particular, we would like to know whether significantly more 
of the variability in the FIS nominal density of Snapper pre-recruits variable densSPR can be explained 
by meaningful linear combinations of the environmental drivers summarised in Table 4. While there 
are many statistical techniques that could be employed for this purpose, we are constrained by data 
limitations (only 12 annual FIS data points) and multicollinearity already noted in Figure 28. In view of 
this, we focused on parsimonious multiple linear regression (MLR) techniques that would retain no 
more than two explanatory variables. Stepwise regression was used to identify promising pairs of 
explanatory variables. The addition or subtraction from the set of explanatory variables was based on 
Akaike information criterion (AIC). As the order of the variables matters, we run the stepwise in all 
directions and compare AIC values. Effectively, for each such pair MLR creates a combined index of the 
two variables with coefficients estimated by the technique.  
 
The scattergrams in Figures 11-13 illustrate the performance of such combined indices. Each of these 
displays the corresponding scatterplot of observed vs fitted, with the regression line for the nominal 
FIS density of pre-recruits.  
 
The best fit pair identified by MLR is shown in Figure 32. The fitted values correspond to the model 
with the log mean Brisbane river discharge in June and mean Brisbane tidal range in September. Note 
that the correlation is 0.89, which is considerably higher than the correlation if we separately 
considered only the river discharge in June (r=0.54), or only the tidal range in September (r=-0.63). 
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Figure 32: Scatterplot of FIS densSPR in November-December vs best MLR combination of Brisbane river 

discharge in June and Brisbane Bar tidal range in September, r = 0.89, R2=0.80 and p-value =0.002.  

 

Despite the statistically excellent diagnostics of this pair of environmental variables, it was recognised 
that they are not well suited for incorporation into future trend scenarios because they are both tied 
to a specific location and have a lot of variability as well as limited biological meaning. Consequently, 
two other pairs of combined environmental variables were considered which have clearer potential 
biological mechanisms and provide statistical fits close to the above river discharge and tidal range 
pair. 
 
From Figure 33, we see that the best combination of SST in June and Chl-a in September has a 
correlation of 0.87 with density and explains approximately 75% of the variability in the latter. This is 
a higher correlation than we would have obtained using SST in June (-0.71) or of Chl-a in September 
(0.62), separately.  
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Figure 33: Scatterplot of FIS densSPR in November-December vs best MLR combination of SST in June and Chl-

a in September, at Moreton Bay region, r = 0.87, R2=0.75 and p-value =0.002. 

  
To ensure that the inclusion of the outlier year 2015 does not artificially increase the linear association 
exhibited in Figure 33, we repeated the analysis with that data point excluded. The results indicate that 
this only increases the strength of the association. 
 

4.1.5 Snapper pre-recruits and large scale climatological/oceanographic indices  

We also compared relative associations of two large-scale climatological/oceanographic indices with 
Snapper pre-recruit density. The two indices were SOI (Southern Oscillation Index) and PDO (Pacific 
Decadal Oscillation). Table 5 summarises correlations obtained to explore the effect of annual and 
seasonal means of SOI and PDO indices on FIS density of pre-recruit Snapper in Moreton Bay in 
November-December, 2007-2019. The analyses were conducted considering nominal as well as the 
standardised density as the response variable. When considered across the four seasons Summer and 
Autumn return the biggest positive correlations with SOI.  
 
Table 5: Correlation of FIS nominal and standardised pre-recruit density with annual and seasonal large-scale 

climatological indices, 2007-2019. Values in green indicate correlations statistically significant at the 95% level. 

 

Period 
Nominal density  Standardised density 

SOI PDO  SOI PDO 

annual 0.57 -0.83  0.54 -0.72 

summer 0.61 -0.84  0.50 -0.78 

autumn 0.63 -0.84  0.57 -0.59 

winter 0.36 -0.67  0.27 -0.59 

spring 0.40 -0.77  0.40 -0.67 
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The consistently strong negative correlations with PDO are noted as worthy of further investigation. 
These are not pursued further as we are not aware of studies linking this index to the biology of any of 
the three species that are targets of this project and because the long-term nature of PDO and its 
effects on the environment and biology of marine species are poorly understood. 
 

4.1.6 Association between Snapper pre-recruits and adults 

Since Snapper pre-recruits FIS data are only from Moreton Bay area it is not a priori clear whether they 
are indicative of any trends in the adult Snapper population. Here we demonstrate that density of 
Snapper pre-recruits in the annual fishery independent survey in Moreton Bay is a reasonable indicator 
of commercial line CPUE in Queensland, four years later. In Table 6, we display the correlations 
between the log transformed SCPUE of commercial line catch, and log of densSPR from 𝑘 years earlier, 
where 𝑘 = 0,1, … ,6. For instance, when 𝑘 = 2, values of SCPUE in 2009, 2010, ….2019, correspond to 
values of densSPR in 2007, 2008, ….2017, since our FIS data series begins in 2007. Hence, as the delay 
index 𝑘 increases by one, the length of the series used in the calculation decreases by one.   
 
Table 6: Correlations between commercial log-transformed SPCUE and log-transformed FIS densSPR delayed 

by 𝑘 years. Values in green indicate correlations statistically significant at the 95% level. 

 

𝒌 
Correlation  

with densSPR 
R2 

0 0.16 0.03 
1 -0.02 0.00 
2 0.60 0.36 
3 0.50 0.25 
4 0.78 0.61 
5 0.34 0.12 
6 -0.35 0.12 

 

The strongest correlation of 0.78 observed in Table 6 is between the FIS density of Snapper pre-recruits 
and commercial catch rates four years later. Four-year-olds are typically one of the most abundant age 
classes in the Queensland Snapper line fishery. Figure 34 displays the scattergram corresponding to 
this association.  
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Figure 34: Scattergram of commercial log-transformed SCPUE delayed by 4 years vs log-transformed FIS 

densSPR. Yearly labels are for SCPUE, r = 0.78, R2=0.61 and p-value = 0.013.  

 

4.1.7 Commercial Snapper CPUE and long-term SOI associations 

We also investigated associations between commercial standardised Snapper CPUE in Queensland and 
the SOI signal indices constructed using the methodology of Section 3.3 (a), (c), (d). 
 

From the monthly SOI signal, we extracted indices 𝑆𝛿+ and 𝑆𝛿− corresponding to the positive and the 
negative episodes of the signal for the values of 𝛿=0 and 𝛿=8 defined by equations (3) and (4) from 
Section 3.3. Note that thresholds of 8 and -8 are used to characterise La Niña and El Niño episodes, 
respectively. Mathematically, the threshold 𝛿=0 is more fundamental by merely separating the positive 
and negative components of the SOI signal. 
 
The intensity of these episodes was calculated in accordance with either equation (6) or (7) and 
persistence weights by (9) with parameter 𝑎=2. The location importance weights were all set to 1. We 
also considered a range of memory parameters 𝑀 = 1, 2 … 6 corresponding to one to six years. Thus, 

for each of these six values of 𝑀 we constructed time series of indices 𝑆𝛿+ and 𝑆𝛿− over the years 1988 
to 2019, separately for 𝛿=0, 𝛿=8 and under intensity functions (6) or (7). Finally, correlations between 

annual logarithmically transformed SCPUE and 𝑆𝛿+ and 𝑆𝛿− were calculated.  
 
The columns of A) in Table 7 give key statistics when intensity function (7) was used. It is clear that the 
association begins weakly and strengthens as the length of memory increases. We note the sustained 
increases in the absolute values of the consistently negative correlations. When the memory is 

increased to six years, the p-value drops to 0.014 and that 𝑆𝛿− accounts for 19% of the variability in 
log(SCPUE). 
 

The columns of B) in Table 7 give the corresponding statistics when the intensity used to calculate 𝑆𝛿− 
was changed from equation (7) to (6). Despite this change, the pattern is generally similar, but the 
strength of correlations is lower, and their p-values do not decrease monotonically with the length of 
the memory. However, the maximum memory of six years still corresponds to the strongest correlation 
of -0.39 and the lowest p-value of 0.027. 
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The results presented in Table 7 are somewhat counterintuitive because they suggest that sustained 
histories of stronger negative values of the SOI signal (i.e. El Niño events) are associated with better 
catch rates of Snapper. El Niño events are often associated with warmer SSTs; because SST has been 
demonstrated previously (Table 3) to have a negative association with Snapper abundance, this 
outcome suggests that different, non-SST aspects of El Niño episodes may be impacting Snapper 
measures of abundance (e.g. lower rainfall or wind speeds). Similar results are also observed in NSW 
commercial line Snapper and Pearl Perch fisheries (see Section 4.8, Tables 20 and 24) also in Regions 3 
and 6 of the Spanner Crab fishery (see Section 4.2.6, Figure 52).  
 
Table 7: Correlations of log(SCPUE) versus 𝑆𝛿− for 𝛿=0, commercial line catch, 1988-2019. A) intensity using 

equation (7), B) intensity using equation (6).  

 

A) log (SCPUE) vs 𝑆𝛿−  B) log (SCPUE) vs 𝑆𝛿−  

Memory r R2 p-value Memory r R2 p-value 

1 -0.03 0.00 0.866 1 -0.18 0.03 0.328 

2 -0.27 0.07 0.141 2 -0.27 0.07 0.139 

3 -0.33 0.11 0.062 3 -0.30 0.09 0.098 

4 -0.38 0.14 0.033 4 -0.33 0.11 0.069 

5 -0.40 0.16 0.025 5 -0.31 0.10 0.084 

6 -0.43 0.19 0.014 6 -0.39 0.15 0.027 

 

 

4.1.8 Marine heatwaves 
 

We now return to the consideration of the impact of MHW episodes on Snapper commercial line 
SCPUE with the help of the methodology introduced in Section 3.3. We considered the period from 
01/04/1992 to 31/12/2019 (approximately 28 years) and corresponding SST data from IMOS to 
calculate the frequency and duration of MHW episodes in Snapper regions 1N, 1S and 1W. These 
results are summarised in Table 8. 
 
 
Table 8: Number of MHW events and their average and maximum duration for Snapper regions 1N, 1S and 1W.  

Region # of events 
Average duration 

(days) 
Max duration 

(days) 

1N 70 12.2 50 
1S 64 12.8 59 

1W 67 12.5 67 

 
 
Over the period 2007-2019, we analysed correlations between logarithmically transformed 
standardised CPUE and the 𝑋(𝑰, 𝒘) type MHW indices (see equation (2)) taking into consideration 

cumulative memories of 1 up to 8 years. The weight of 𝑤(𝐸𝑘) = 𝑤1(𝑛𝑘, 𝑀)𝑤2(𝑠𝑘, 𝑀) of the 𝑘𝑡ℎ 
episode was calculated using equation (9) with 𝑎=2 for 𝑤1(𝑛𝑘, 𝑀), and 𝑤2(𝑠𝑘 , 𝑀) = ν(𝑠𝑘 , 𝑀) as in 
equation (10) with 𝑐 = 0 and 𝑑 = 1. We carried out the analyses for offshore regions 1N, 1S and 1W. 
Table 9 below summarises the results obtained.  
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Table 9: Correlations between log transformed Snapper SCPUE and MHW indices for a range of values of the 

cumulative memory parameter. Values in green indicate correlations statistically significant at the 95% level. 

 

Memory 1N 1S 1W 

1 -0.45 -0.27 -0.27 
2 -0.49 -0.59 -0.53 
3 -0.43 -0.48 -0.47 
4 -0.54 -0.56 -0.52 
5 -0.45 -0.51 -0.47 
6 -0.34 -0.41 -0.33 
7 -0.20 -0.31 -0.20 
8 0.08 -0.08 0.09 

 

We note the presence of strong, negative associations for short memory of two years. In the case of 
Region 1S, Figure 35 illustrates these findings in a little more detail. The left panel of that figure shows 
that in the case of log transformed Snapper standardised CPUE there was a significant negative 
association with MHW indices for memories of 2 and 4 years. This can be seen from the fact that the 
blue curve and its green (95%) confidence bands lie below the horizontal axis for 𝑀=2 and 4. 
Furthermore, the scattergram in the right panel of that same figure shows that when 𝑀=2, the MHW 
index accounts for approximately 35% of the variability of the log transformed catch rate. We note 
that this result is clearly impacted by the low catch rates of 2017-2019.  
  

 

Figure 35: Left panel: correlations of log transformed SCPUE with MHW index (blue curve) and their 95% 

confidence bands in green, at Snapper Region 1S. Right panel: scattergram for the correlation corresponding to 

the cumulative memory of 2 years in Region 1S, r = -0.59, R2 = 0.35 and p-value = 0.034. 

 
 

 Spanner Crab: Correlation Analyses for Key Environmental Variables 
 

Because juvenile and adult Spanner Crabs are bottom dwelling, several environmental variables with 
available values-at-depth were considered at six depth levels: top (sea surface), 22m, 34m, 48m, 75m 
and bottom. This recognises that in some areas the bottom occurs at depths lower than some of the 
preceding levels and that data for some of the deeper levels would be more sparse. Similarly, because 
Spanner Crabs are estimated to recruit to the fishery at approximately 4.5 years old (male) and 6.5 
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years old (female), a history of up to 48 months (i.e. four years) was considered when considering 
possible lags of environmental variables. 
 

A wide range of statistical analyses was carried out for a range of environmental variables including 
(but not limited to): water temperature at depth, GSLA, Chl-a, SST, current velocity, MHW, salinity, SOI 
and PDO. The results of these analyses are fully documented in working files stored on AARNET 
clouldstor (see Section 9.1). 
 
For the sake of completeness, a series of preliminary consistency analyses was performed to guard 
against potential bias due to a choice of datasets, or of one of the widely used variable transformations. 
The general findings in that category were that there was: 
 

• A high degree of consistency between analyses carried with BRAN 2016 and IMOS data (1996-
2016); 

• A high degree of consistency between analyses carried with raw environmental variables and 
their anomaly counterparts (e.g. for SST and its anomaly with respect to long-term average); 

• A high degree of consistency between analyses carried out with raw catch rate variables and 
their logarithmic transforms. 

 
In this report, we highlight a representative sample of those results that either indicate a presence of 
an association, or the absence of such an association in the cases where there may have been reasons 
to expect a contrary finding (such as previous studies). Extensive analyses of Spanner Crab associations 
with environmental variables revealed a complex pattern of both positive and negative correlations 
manifesting themselves differently in the six regions and on different time scales. The environmental 
variables that were found to have significant associations include (but are not limited to): GSLA, Chl-a, 
SST, SOI, current velocity and MHW. There are indications that some of the differences in these 
associations are based on the large latitudinal gradient across the Spanner Crab management regions 
and the cross-shelf depth gradient of the surveyed location in each management region.  
 
The four main Spanner Crab findings that emerged from the analyses were: 
 
1. Catch rate of legal-size crabs in Region 4 (the region with the largest commercial catch) appears to 
be insensitive to fluctuations in the following important environmental variables: Chl-a, sea level 
anomalies (i.e. eddies and upwelling), SST, and MHW. Catch rate of legal-size crabs in Region 4 is 
positively correlated with bottom current speed during the month of capture (i.e. related to 
catchability).  
 
2. Chl-a is significantly associated with the catch rate of legal-size crabs in four of the five Queensland 
regions. Significant positive correlations in Regions 2, 3, 5 and 6 are present at multiple monthly lag 
times. Regions 2 and 3 are particularly strongly associated with the majority of time lags in the year 
preceding the catch. Chl-a is a proxy for primary productivity at the ocean surface, which is expected 
to be beneficial to higher trophic levels in the plankton, such as larval Spanner Crabs. Given that 
Spanner Crabs captured in the fishery are likely greater than 4 years old, the mechanism by which Chl-
a influence catch rates the following year is unclear.  
 
3. GSLA is negatively associated with the catch rate of legal-size crabs in three of the five Queensland 
regions. Significant negative correlations were found for Regions 2, 3 and 6, at multiple monthly lag 
times. GSLA is indicative of eddies, upwelling, and downwelling events. The negative correlation with 
Spanner Crab catch rates indicates that upwelling is beneficial to subsequent Spanner Crab catch rates. 
Upwelling typically triggers primary productivity blooms.  
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4. In Region 7, the direction of statistically significant associations between the catch rate of legal-size 
crabs and GSLA, Chl-a and SST is generally opposite to the corresponding associations in Regions 2, 3 
and 6. Furthermore, it is the only region exhibiting a significant positive association with MHW. This 
finding requires further study of its underlying causes. It is conceivable that in this southernmost region 
the long-term warming trend could be beneficial rather than detrimental. Alternatively, these 
associations may be an artefact of large reductions in commercial fishing effort in this region in recent 
years improving local catch rates, coincidentally during the same period that GSLA and SST has been 
increasing and Chl-a has been decreasing.  
 
Next, we present a representative sample of results supporting the above, as well as several other 
findings. The presentation is organised around the analyses carried out for each environmental 
variable. Greater emphasis was placed on findings for legal-size Spanner Crab than for sublegal crabs 
because it was assumed that catch data for legal-size crabs were more reliable since the dillies used in 
the surveys were specifically designed to catch legal-size animals. 
 

4.2.1 Chlorophyll a  

The analyses of the Chl-a reveal multiple significant, but complex, associations. Our main findings are:  
 

• For both legal-size and sublegal crabs there are strong positive associations between catch rate 
and Chl-a in Regions 2, 3 and 6 at multiple monthly lag times.  

• Catch rate of legal-size crabs in Region 4 is largely insensitive to fluctuations in Chl-a. 

• For the sublegal crabs in Region 5, and to a lesser degree Region 4, there are several significant 
negative associations. This also applies to Region 7 for legal-size crabs. 
 

The time series plots of logarithmically transformed Chl-a across the Spanner Crab Regions 2-7 are 
provided in Figure 36. The large spikes in 2019 in Regions 6 and 7 are interpreted as outliers and are 
monitored in subsequent analyses.  
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Figure 36: Time series of Chl-a across Regions 2-7 from 2003 to 2019. MODIS GSM Chl-a data from IMOS 

accessed in March 2020 (also see Table 1). 

 
We considered the effect of monthly time lags for Chl-a over the previous four years. Figure 37 displays 
the plots of the corresponding correlations (blue curves) in Region 3 (top panel) and Region 4 (bottom 
panel) accompanied by their 95% confidence interval bands. 
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Figure 37: Chl-a correlation coefficient plots with 95% (green) confidence intervals for regional FIS legal-size 

CPUE in Region 3 (top) and Region 4 (bottom). The horizontal axis corresponds to the monthly time lag of Chl-a 

and the vertical axis corresponds to the correlation between the log transformed regional FIS CPUE and the log 

transformed monthly median Chl-a. 

 

The catch rate in Region 3 is much more sensitive to Chl-a than in Region 4. Furthermore, Region 3 
exhibits several significant associations with Chl-a with rather short time lags, May to February and 
December to August of the preceding year. In Region 4 there are no strong associations for short time 
lags.  
 
Such analyses were repeated for Regions 2-7 with both legal-size and sublegal crabs and are recorded 
in Figure 38. As before, the green colour denotes correlations significant at the 95% level. The grey 
coloured numbers indicate associations that are not significant at that level.   
 
The patterns of positive and negative correlations in Figure 38 exhibit several interesting features. For 
instance, predominance of positive correlations were expected as Chl-a is generally seen as an 
indicator of higher local primary productivity. Indeed, for legal-size crabs, this is generally what 
columns corresponding to Regions 2, 3 and 6 reflect. Similarly, for Regions 2 and 3 there is a cluster of 
statistically significant positive correlations in the six rows of the left hand panel, corresponding to lags 
of 0 to 5 months (May to December) of the preceding year. 
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Besides this, lags corresponding to the winter and spring months (June to November) cover a large 
proportion of significant correlations in Regions 2 and 3. In fact, for legal-size crabs in these two 
regions, the Chl-a correlations in the month of October in the previous three years (lags 7, 19 and 31) 
correspond to positive associations significant at the 95% level. At a lag of 43 months (i.e. October of 
the fourth year) there are moderate associations in three out of the six regions, with the one in Region 
6 being significant at the 95% level. 
 
For legal-size crabs, Regions 4 and 5 exhibit very few significant correlations with Chl-a. In particular, 
in Region 4 there is no statistically significant correlation for 0-38 lags reaching back more than three 
years. For Region 5 there are only two significant correlations in the 48 lagged months. On the other 
hand, Region 7 stands apart by having three statistically significant negative correlations in the first 30 
lagged months. This is just one of several instances where Region 7 correlations differ markedly from 
those in Regions 2 and 3.  
 
For sublegal crabs, the Chl-a associations in Regions 2, 3 and 6 are roughly consistent with those of 
legal-size crabs. With just two exceptions, associations in Region 4 are statistically non-significant for 
the first 35 lagged months. In Region 7, there is just one statistically significant correlation in the entire 
49 lags. However, the dominance of negative associations in Region 5 stands out and requires deeper 
investigation since nine of these are significant at the 95% level.  
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Figure 38: Correlation coefficients between log transformed regional FIS CPUE and the log transformed median 

Chl-a at various time lags. Left panel applies to legal-size Spanner Crab and right panel to sublegal Spanner 

Crab. Colour green indicates that the 95% confidence interval does not cover zero. 

 

4.2.2 Sea Level Anomaly  

The time series of GSLA reflects differences among the Spanner Crab Regions 2-7, as displayed in Figure 
39. It is worth noting that Regions 2-3 exhibit a similar upward trend which becomes quite pronounced 
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from 2009. The post 2009 trend is also noticeable, but marginally less pronounced, in Regions 4-5 and 
becomes even smaller in Regions 6-7. The size of the oscillations between positive and negative values 
increase from northern to southern regions. 
 

 

Figure 39. Time series of GSLA across Regions 2-7 from 1993 to 2019. MODIS DM01 GSLA data from IMOS 

(also see Table 1). 

 

Similar to Chl-a, the GSLA correlation analyses were performed between log transformed FIS CPUE with 
the results summarised in Figure 40. Once again, the patterns of positive and negative correlations in 
Figure 40 exhibit several interesting features. Negative correlations were expected because negative 
GSLA indicates upwelling, which typically results in locally higher primary productivity, which may 
enrich the local food chain, eventually benefitting bottom-dwelling Spanner Crabs. Indeed, for legal-
size crabs, this is generally what columns corresponding to Regions 2, 3 and (to a lesser extent) also 
Region 6 reflect (Figure 40).  
 
As with Chl-a, the catch rate of legal-size crabs in Region 4 seems to be largely unaffected by 
fluctuations in GSLA. With just two exceptions, correlations in Region 4 are statistically non-significant 
for the first four years of lagged months. However, for sublegal crabs, statistically significant positive 
associations dominate for lags of 21 months and greater, with just one significantly negative exception.  
 
In Regions 5 and 7 there are several significant positive correlations for both legal-size and sublegal 
crabs, likely because differences in local benthic coastal topography affect the activity and 
consequences of coastal processes such as eddies and upwelling. In addition, we note that overall 
increasing trend in GSLA is weaker in these regions than in Regions 2-3. For legal-size crabs in Regions 
2 and 3 lags corresponding to the most recent four months, May to preceding February, contain a high 
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proportion of statistically significant correlations. In Region 3, the winter and spring months June to 
November also contain many significant correlations. 

 
 

Figure 40: Correlation coefficients between log transformed regional FIS CPUE and the lagged monthly mean 

GSLA. Left panel applies to legal-size Spanner Crab and right panel to sublegal Spanner Crab. Colour green 

indicates that the 95% confidence interval does not cover zero.  
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4.2.3 Temperature 

Water temperature was already shown to correlate with Snapper in important ways. Consequently, it 
was also investigated in some detail for Spanner Crabs. Furthermore, since SST is correlated with 
temperatures at greater depths in most cases the associations of crab CPUEs with SST were examined 
in the first instance. 
 
The time series plots of mean SST across the Spanner Crab Regions 2-7 are provided in Figure 41 for 
1992-2019. As expected, the strong annual cycle is clearly observable in all regions. The very slight 
upward trend (of the order of 0.13° per decade) is harder to detect but noticeable, especially in Regions 
2-4, by focussing on the minima of mean SST in each year. This trend will be quantified later using the 
trigonometric regression technique discussed in Section 3.6.   
 

 
 

Figure 41: Time series of SST across Regions 2-7 from 1992 to 2019. SRS ghrsst L3S 6d nighttime SST from IMOS 

(also see Table 1). 

 

Several meaningful findings were obtained when we considered Spanner Crabs in two distinct groups: 
legal-size and sublegal. Once again, the results exhibit strong regional differences. We will illustrate 
them with the simple mean SST variable lagged by up to 48 months. However, we note that analogous 
analyses were carried with a range of SST related variables such as minimum, maximum, 10th 
percentile, 90th percentile of the corresponding lagged SST variables. The results of these additional 
analyses are recorded in the project’s file repository but are not reported here as their outcomes are 
broadly consistent with those obtained with the mean SST.  
 
Figure 42 and Figure 43 display the corresponding correlations (blue curves) in Region 3 (top panel) 
and Region 4 (bottom panel). For both legal-size and sublegal crabs in Region 3 there are significant 
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negative associations between logarithmically transformed CPUE and mean SST at three monthly time 
lags. However, in the case of Region 4 there are no significant associations at that level for legal-size 
crabs. With one exception, at lag 0, the same holds for sublegal crabs in that region.  
 

 

 

Figure 42: SST correlation coefficient plots with 95% (green) confidence intervals for regional FIS legal-size 

CPUE in Region 3 (top) and Region 4 (bottom). The horizontal axis corresponds to the monthly time lag of SST 

and the vertical axis corresponds to the correlation between the log transformed regional FIS CPUE and the 

monthly mean SST. 

In the case of legal-size Spanner Crabs in Region 3 the strongest negative correlations of -0.62 occur in 
the preceding March (lag 2) as well as in the preceding winter months of August (lag 9) and July (lag 
10) with correlations of -0.56 and -0.60, respectively. In the case of sublegal crabs (Figure 43) in Region 
3 the strongest negative associations occur in the preceding March (lag 2), July (lag 10), and April (lag 
25) with the corresponding correlations of -0.53, -0.48 and -0.49, respectively. The consistent 
significance of most recent March and July months is noted.  
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Figure 43: SST correlation coefficient plots with 95% (green) confidence intervals for regional FIS sublegal CPUE 

in Region 3 (top) and Region 4 (bottom). The horizontal axis corresponds to the monthly time lag of SST and the 

vertical axis corresponds to the correlation between the log transformed regional FIS CPUE and the monthly 

mean SST. 

 

The summary of the associations with lagged mean SST variable, across all six regions, is displayed in 
Figure 44. Once again, for legal-size crabs, we note the presence of a few strong negative correlations 
in Regions 2, 3 and also Region 6 (but at much longer time lags). In Region 7 most moderate correlations 
are positive and three (at lags of 3, 4 and 6 months) are significant at the 95% level.  
 
As with Chl-a and GSLA, the catch rate of legal-size crabs in Region 4 seems to be largely unaffected by 
fluctuations in mean SST. With just one exception, correlations in Region 4 are statistically non-
significant for up to 48 months. If we discount the high (0.64) correlation for lag 0 (being the month of 
catch), then there is strong consistency in the relative insensitivity of Region 4 to mean SST fluctuations 
for both legal-size and sublegal crabs. 
 
For sublegal crabs in other regions we see rough consistency with legal-size correlations in Regions 3, 
5 and 6. For sublegal crabs, Region 7 has no associations significant at the 95% level. In the case of 
Region 2 some statistically significant positive associations arise in the winter months of the preceding 
year and there are no significant negative correlations left in the first column of the right panel in Figure 
44. 
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Thus, similarly to the case of associations with GSLA, there is an inconsistency between the direction 
of significant associations for legal-size and sublegal crabs in Region 2. That direction switches from 
the expected negative for legal-size to the counterintuitive positive for the sublegal crabs.  

 

Figure 44: Correlation coefficients between log transformed regional FIS CPUE and the lagged mean SST. Left 

panel applies to legal-size Spanner Crab and right panel to sublegal Spanner Crab. Colour green indicates that 

the 95% confidence interval does not cover zero.  

 
Since Spanner Crabs are bottom dwelling, it is also worthwhile to compare correlations between FIS 
CPUE and temperatures at the bottom with the analogous correlations at the surface. The comparisons 
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expose a complex pattern of associations with CPUE in certain regions and certain times of the year. 
Importantly, the direction of these associations is not uniform. Below, we illustrate some of these 
patterns for the pooled Spanner Crab size classes in a given region. 
 
Figure 45 shows the correlations between log transformed FIS CPUE and temperature lagged by 
months, at the bottom level for Regions 2-7. The solid dots indicate correlations that are statistically 
significant at the 95% level. Despite this, we also note that a great majority of the plotted points 
correspond to correlations smaller than 0.3 in absolute value and as such do not account for much of 
the variability in the response variable.  
 
However, the yellow curve corresponding to Region 4 is notable because of the periodicity of the 
statistically significant lags corresponding to November-February months (lags 6-3, 18-15, 30-27 and 
42-39). Most of the corresponding correlations are below -0.4 and, as such, account for at least 16% of 
the log transformed FIS CPUE variable. Furthermore, the November-February period overlaps Spanner 
Crabs’ spawning season.  
 
 

 

Figure 45: Correlations of log transformed FIS legal-size CPUE and temperature at the bottom of all the 6’x6’ 

fishing sites, lagged by k months, k=0,1,…48. The solid dots indicate correlations that are statistically significant 

at the 95% level. 
 

To underscore this point in Figure 46, we plotted scattergrams of FIS log CPUE (legal-size) and bottom 
temperature at January lags of 4, 16, 28 and 40, in Region 4. The relationship between FIS log CPUE 
(legal-size) and bottom temperature in January appears to be consistent and negative at a number of 
time lags. However, further inspection of these correlations indicated that they are primarily driven by 
spatial patterns among the FIS sites, in particular consistent warm temperatures and low catch rates 
at site 14W34 (see also https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ). 
 

 

https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ
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Figure 46: Scattergrams of log transformed FIS legal-size CPUE and bottom temperature at January lags of 4, 

16, 28 and 40, calculated over all 6’x6’ fishing sites in Region 4. 

 

4.2.4 Ocean current 

We also investigated the speed of the ocean current derived from the current velocity components 
supplied in the BRAN 2016 dataset for possible association with Spanner Crab CPUEsub (see Section 
3.1.2). These components were denoted by u (East-West), v (North-South) and w (vertical) and were 
measured in metres per second and supplied at various depth levels4. The speed was calculated as the 
usual Euclidean norm of the (u, v, w) vector. However, the vertical w component was not always 
available at greater depths and even when available its absolute values were negligible compared to 
the u and v components. Thus, for the sake of consistency of calculations, the speed calculation used 
only the u and v components. Furthermore, the bottom speed at each location was actually calculated 
using deepest available u and v values at that location. 
 
We focussed especially on current speed at the bottom level and searched for associations over 48 
monthly lag times. For log transformed CPUEsub and the cohort of legal-size crabs, it was shown that: 
 

• Regions 2, 3 and 5 stood out by having essentially no significant correlations with the current 
speed at the bottom. 

• Catch rate of legal-size crabs in Region 4 has moderately strong positive correlations with the 
ocean current speed at the bottom. This is most pertinent at lag 0 (month of the catch) but is 

 

4 By convention, u > 0 corresponds to East, v > 0 corresponds to North and w > 0 corresponds to up.  
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periodically and consistently moderately strong at many time lags, including September to 
October for up to four years in the past. The latter period overlaps the Spanner Crabs’ 
spawning season of October to January. 

• Region 7 also had several statistically significant positive correlations with the current speed 
at the bottom at various time lags. However, these were viewed as less important than those 
in Region 4 because they lacked periodicity and all but one were less than 0.4. 

• Region 6 stood out by having several strong negative correlations with the current speed at 
the bottom which also lacked periodicity.  

 
Most of the findings can be seen from the plots displayed in Figure 47. In particular, note the narrow 
range (roughly between -0.25 and 0.25) of the blue, red and green curves corresponding to Regions 2, 
3 and 5 which indicates little association in these regions. The findings concerning Regions 6 and 7 are 
reflected in the violet and purple curves, respectively. The consistently high positive correlations 
observed in Region 4 raise the question of whether they are a manifestation of another phenomenon 
influencing CPUEsub.  
 

 

Figure 47: Correlations between log transformed FIS legal-size CPUE and current speed at the bottom of 6’x6’ 

fishing sites, lagged by k months, k=0,1,...48; across all regions. Solid dots denote correlations with p-value 

<0.05. 

 

In Figure 48 we highlight the regularity of significant positive correlations with bottom speed in October 
in Region 4. The four panels correspond to lags of 7, 19, 31 and 43 months preceding the catch. We 
note that the corresponding correlation coefficients are displayed in the figure. Thus, the bottom 
current speed variable accounts for a surprising amount of the variability in the response variable 
log(CPUEsub), as measured by the 𝑅2 coefficients (27%, 33%, 23% and 18%, respectively). Interestingly, 
perhaps, the association with current speed in October of 19 months prior to is stronger than that with 
speed in the most recent October at lag 7. However, closer inspection of these correlations indicated 
that they are entirely driven by spatial patterns among the FIS sites, in particular low current speeds 
and low catch rates at site 14W34 (see https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ).  
 

https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ
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Figure 48: Scattergrams of log transformed FIS legal-size CPUE against current speed at the bottom of 6’x6’ 

fishing sites in four Octobers preceding the catch, Region 4. 

 
Naturally, from the perspective of catchability, the association between CPUEsub and the bottom 
current speed in the month of the catch (lag 0) is of greatest importance. The leftmost points of the 
curves in Figure 47 show that, with the important exception of Region 4, these associations are minor 
as the corresponding correlations are smaller than 0.2 in absolute value.  
 
In Region 4, the lag 0 correlation of 0.46 is not only statistically significant with p-value much smaller 
than 0.05 but also accounts for approximately 21% of the variability in the log transformed CPUEsub 
response variable. Closer examination of the corresponding scattergram in Figure 49 reveals an 
interesting pattern consisting of two consecutive segments exhibiting linear growth. However, the first 
of these – up to the speed of approximately 0.08 m/sec – has a much higher slope than the segment 
with current speeds greater than 0.08 m/sec.  
 
Remark: The following limitations affect the analysis: the speed we calculated is the monthly average 
of model predicted value at a “nearest” location that can be some distance away from the fishing sites 
(up to 11km in some instances). Thus, our current speed may not accurately reflect the actual speed 
at the fishing sites during the fishing period. 
 



 

89 

 

 

Figure 49: Scattergrams of log transformed FIS legal-size CPUE against current speed at the bottom of 6’x6’ 

fishing sites in the month of the catch (lag 0), Region 4. 

 

We note that the fitted dashed curve displayed in Figure 49 was derived using the so-called LOWESS 
local regression of the response variable on the explanatory variable (current speed) that was 
developed by Cleveland (1979).  
 

4.2.5 Marine Heatwaves 

We now return to the consideration of the impact of MHW episodes on Spanner Crabs with the help 
of the methodology introduced in Section 3.3. As with Snapper, we considered the period from 1992-
04-01 to 2019-12-31 (approximately 28 years) and corresponding SST data from IMOS to calculate the 
frequency and duration of MHW episodes in Spanner Crab regions 2-7. These results are summarised 
in Table 10 and show a slightly increasing frequency as we move southward.  
 
Table 10: Number of MHW events and their average and maximum duration for Spanner Crab Regions 2-7. 

Region # of events 
Average duration 

(days) 
Max duration 

(days) 

2 56 14.3 70 
3 66 11.9 64 
4 64 13.0 71 
5 67 11.8 44 
6 69 11.9 47 
7 69 11.4 64 

 
Over the period 2000-2019, we analysed correlations between logarithmically transformed Spanner 
Crab FIS CPUE and the 𝑋(𝑰, 𝒘) type MHW indices (see equation (2)) taking into consideration 

cumulative memory of 1 up to 7 years. The weight of 𝑤(𝐸𝑘) = 𝑤1(𝑛𝑘, 𝑀)𝑤2(𝑠𝑘, 𝑀) of the 𝑘𝑡ℎ episode 
was calculated using equation (9) with 𝑎=2 for 𝑤1(𝑛𝑘, 𝑀), and 𝑤2(𝑠𝑘, 𝑀) = ν(𝑠𝑘 , 𝑀) as in equation 
(10) with 𝑐=0 and 𝑑=1. Analyses were undertaken separately for legal-size and sublegal crabs in 
Regions 2-7. While majority of these correlations were not statistically significant, there were two 
important exceptions.  
 
The results of one such exception are displayed in Figure 50. The left panel of that figure shows that in 
the case of sublegal crabs in Region 3 there was a significant negative association with MHW indices 
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for cumulative memory ranging from 2 to 5 years. This can be seen from the fact that the blue curve 
and its green (95%) confidence bands lie below the horizontal axis for 𝑀=2,…,5. Furthermore, the 
scattergram in the right panel shows that when 𝑀=2, correlation r=-0.52 and so the MHW index 
accounts for approximately 27% of the variability of the log transformed FIS CPUE.  
 

  

Figure 50: Region 3 sublegal crab. Left panel: correlation coefficients between log transformed FIS sublegal 

CPUE and MHW index (blue curve) and their 95% confidence intervals in green. Right panel: The scatter plot 

when the cumulative memory is equal to two years.  

 

The results of the second exception are displayed in Figure 51. The left panel of that figure shows that 
in the case of legal crabs in Region 7 there was a significant, sustained, positive association with MHW 
indices for cumulative memory ranging from 1 to 7 years. This can be seen from the fact that the blue 
curve and its green (95%) confidence bands lie above the horizontal axis for 𝑀=1,…,7. Furthermore, 
the scattergram in the right panel shows that when 𝑀=2, correlation r=0.71 and so the MHW index 
accounts for approximately 50% of the variability of the log transformed FIS CPUE. This may be related 
to the fact that Region 7 is close to the southern limit of the species so warming trends could initially 
be beneficial to Spanner Crabs in Region 7. Alternatively, these associations may be an artefact of large 
reductions in commercial fishing effort in this region in recent years improving local catch rates, 
coincidentally during the same period that GSLA and SST has been increasing and Chl-a has been 
decreasing. In future it might be worth investigating whether the biological mechanism by which MHW 
phenomena appear to benefit Spanner Crab in this region. 
 

  

Figure 51: Region 7 legal-size crab. Left panel: correlation coefficients between log transformed FIS legal-size 

CPUE and MHW index (blue curve) and their 95% confidence intervals in green. Right panel: The scatter plot 

when the cumulative memory is equal to two years.  
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4.2.6 Large scale climatological/oceanographic indices  

We also compared associations for two large-scale climatological/oceanographic indices with Spanner 
Crab FIS CPUE. The two indices were SOI and PDO.  
 
Table 11 summarises correlations obtained to explore the effect of annual and seasonal means of SOI 
and PDO indices on FIS CPUE of all Spanner Crabs (legal-size and sublegal) for the period 2000-2020. 
The SOI and PDO variables corresponded to mean annual, Spring (Sep-Nov), Summer (Dec-Feb), 
Autumn (Mar-May) and Winter (Jun-Aug) in the 12 month period that ends with the May survey.  
 
Region 3 is the only one where statistically significant positive correlations are recorded, with the most 
significant one corresponding to the preceding Spring (Sep-Nov). FIS CPUE in all other regions seems 
largely insensitive to these mean SOI fluctuations.  
 
Table 11: Correlations of FIS CPUE with SOI and PDO, respectively, for legal-size and sublegal crabs combined; 

across Regions 2-7. Values in green indicate correlations statistically significant at the 95% level. 

 

Index Period Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 

Mean SOI 

annual 0.28 0.44 -0.31 0.17 0.27 -0.21 

summer 0.21 0.30 -0.18 -0.10 0.15 -0.45 

autumn 0.33 0.17 -0.26 0.27 0.09 -0.29 

winter 0.30 0.46 -0.30 0.17 0.25 0.13 

spring 0.07 0.49 -0.28 0.22 0.36 -0.03 

Mean PDO 

annual -0.08 -0.50 0.35 -0.02 -0.10 0.58 

summer -0.19 -0.49 0.43 -0.10 -0.09 0.61 

autumn 0.12 -0.38 0.28 0.25 0.15 0.64 

winter -0.17 -0.34 0.28 0.01 -0.03 0.39 

spring -0.05 -0.53 0.24 -0.22 -0.39 0.44 

 

The consistently strong negative correlations with PDO in Region 3 and even stronger positive 
correlations in Region 7 require further investigation. However, mean values of SOI in the 12 months 
preceding the May FIS may miss the importance of the ENSO signals for two main reasons: 
cancellations of positive and negative values and insufficiently long memory of past episodes. 
Consequently, as was the case with Snapper, we also investigated associations between FIS CPUE and 
the SOI signal indices constructed using the methodology of Section 3.3 (a), (c), (d).  
 

In particular, from the monthly SOI signal we extracted indices 𝑆𝛿+ and 𝑆𝛿− corresponding to the 
positive and the negative episodes of the signal for the values of 𝛿=0, 3 and 8 defined by equations (3) 
and (4) from Section 3.3. The value 𝛿=8 was selected to match the standard definition of ENSO events 
(Bureau of Meteorology 2012). The value 𝛿=3 was selected after numerical experimentation with 
several thresholds lying between 0 and 8. 
 
For all three thresholds, the intensity of episodes was calculated in accordance with equation (6) and 
persistence weights by (9) with parameter 𝑎=2. The location importance weights were all set to 1. We 
also considered a range of memory parameters 𝑀 = 1, …,8 corresponding to the cumulative memory 
of one to eight years. Thus, for each of these eight values of 𝑀 we constructed time series of indices 

𝑆𝛿+ and 𝑆𝛿− over the years 2000 to 2020, separately for 𝛿=0, 3 and 8 and using the intensity function 

(6). Finally, correlations between FIS CPUE and 𝑆𝛿+ and 𝑆𝛿− were calculated. Figure 52 shows a 
summary of the results for the combined size classes. 
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Figure 52: Correlations of FIS all crab CPUE with 𝑆𝛿+  (top panel) and with 𝑆𝛿−  (bottom panel) for 𝛿=0, 3 and 8 

for M=1,…,8. Values in green indicate correlations statistically significant at the 95% level. 

 

The top panel of Figure 52 shows a lack of significant linear associations between CPUE and 𝑆𝛿+ in 

nearly all cases in Regions 4, 5 and 6. Furthermore, the strongest associations manifest themselves for 
the threshold of 𝛿=3 and 𝛿=8. In particular, in Region 2 these associations become significant at 95% 
level for all cumulative memories greater than 𝑀=2. We note that positive sign of these significant 
correlations is biologically expected as 𝑆8+  corresponds to the La Niña signal. Significant correlations 
also occur in Region 7 but only for the cumulative memory of 𝑀=8. However, in Region 3 we observe 
the counterintuitive significant negative correlations for 𝑀=7 and 8 and 𝛿=8.   
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The results presented in the bottom panel of Figure 52 suggest that sustained histories of stronger 
negative values of the SOI signal in Regions 3 and 6 are associated with better catch rates of Spanner 
Crab. This calls for further investigation. However, we note that related associations have been 
reported in Brown et al. (2008) who state that “The negative correlations between the SOI and effort, 
while not significant at the 95% level, indicate a tendency toward more effort in El Niño years than in 
La Niña, with wind strength tending to be the most strongly related variable.”  
 
Some of the linear associations represented by the green dots in Figure 52 are quite strong. For 
instance, the correlation from the top panel when 𝑀=3 and 𝛿=3, in Region 2, corresponds to the 
scattergram in Figure 53. We see that it has the value of 0.85 correlation accounting for roughly 73% 
of the variability in FIS CPUE. We recall that Region 2 is the most northerly of the six regions, and as 
such may be more strongly influenced by the La Niña signal (e.g. see Redondo-Rodriguez et al. 2011, 
Bureau of Meteorology 2012), which may partly explain this association.  
 
 

 
Figure 53: Scattergram between FIS all crab CPUE and 𝑆3+ for Region 2, with 𝑀=7, r=0.85, R2=0.73 and 

p- value < 0.001.  
 

4.2.7 Spanner Crabs and environmental associations over 2009-2019 

Several analyses already reported associations with three key environmental variables: GSLA, Chl-a and 
SST. However, a closer inspection of time series plots of these variables in Sections 4.2.1-4.2.3 suggests 
that underlying trendlines for GSLA and Chl-a may have accelerated over, roughly, 2009-2019 of FIS 
observations (e.g. see Figure 39). Furthermore, during that decade significant catch rate changes were 
recorded not only in standardised CPUE from CFISH but also in FIS nominal CPUE in several regions (see 
Figure 9 to Figure 14). 
 
Consequently, in this section, the analyses focus on the above period which spans the most recent ten 
years of FIS observations (since none were taken in 2012 for Regions 2-6 and in 2019 for Region 7). We 
acknowledge the limitations caused by the reduced number of observations but also note that this 
time span includes the period of steep declines in FIS CPUE in Regions 2 and 3 that have raised serious 
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concerns among fishery managers. In particular, it is important to examine further the differences – 
over that decade – between previously productive Region 3 and the currently productive Region 4. 
 
Results summarised in Figure 54 qualitatively reaffirm the main Spanner Crab findings 1-3, typically 
generating more statistically significant associations in Regions 2 and 3. They also highlight the 
presence of several significant negative correlations with SST in Regions 2 and 3 as well as a few in 
Regions 5 and 6.  

   

Figure 54: Correlation coefficients between log transformed regional FIS legal-size CPUE and three key 

environmental variables for Regions 2-7 in 2009-2019. From left to right: log transformed Chl-a, GSLA and SST 

lagged by 0,…,48 months. 

 

To illustrate the preceding finding more clearly in Figure 55 we present the correlations between log 
transformed legal-size crab FIS CPUE in Region 3 with the lagged mean SST variable (top panel) and 
compare them with the corresponding correlations in Region 4 (bottom panel).  
 
We note from the top panel of that figure that six significant negative correlations occur at multiple 
time lags including July (lag 10), March (lag 14), three month long period September-July (lag 20-22) 
and April (lag 25). Their values range from -0.64 to -0.86. Furthermore, in the top panel, all but one of 
25 correlations exceeding 0.3 in absolute value are negative.  
 
On the other hand, for Region 4 (bottom panel) there were only two correlations that were statistically 
significant. The first in April (lag 1) was positive while the second (in February (lag 3)) was negative. 
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Overall, there were 38 correlations (out of 49) smaller than 0.3 in absolute value, corroborating one of 
the main findings concerning the relative resilience of Region 4. 
 

 

 

Figure 55: Correlation coefficient with 95% (green) confidence intervals between log transformed regional FIS 

legal-size CPUE and mean SST in Region 3 (top) and Region 4 (bottom). The horizontal axis corresponds to the 

monthly time lag and the vertical axis corresponds to the correlation between the log transformed CPUE and mean 

SST lagged by the respective number of months. 

 
Analogous distinction between strong associations in Region 3, and a relative insensitivity in Region 4 
also manifest themselves with respect to Chl-a and GSLA environmental drivers. In Figure 56 we 
illustrate this phenomenon only with the correlations of the mean GSLA and the log transformed FIS 
legal-size crab CPUE.  
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Figure 56: Correlation coefficient with 95% (green) confidence intervals between log transformed FIS legal-size 

CPUE in Region 2 (top) and Region 4 (bottom). The horizontal axis corresponds to the monthly time lag and the 

vertical axis corresponds to the correlation between the log transformed CPUE and the mean GSLA lagged by the 

respective number of months. 

 

The top panel of that figure shows that moderate negative correlations occur at many lags. Indeed, 
nine of these are statistically significant at the 95% level and range from -0.63 to -0.83. In contrast, in 
Region 4 (bottom panel), there are only three statistically significant positive correlations occurring at 
rather large lags of 28, 40 and 44 months. There were only 12 negative correlations and all but two of 
these were smaller than 0.3 in absolute value.  
 
A natural, but challenging, question arises from the above and some of the earlier analyses presented 
in Sections 4.2.1-4.2.6: What underlies the qualitatively different levels of associations observed in 
Region 4 as compared to Region 3? 
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We believe that tackling this important question would require a deeper study of oceanographic, 
climate or biological processes that is beyond the scope of this project. However, we offer some 
preliminary evidence hinting that, in Region 4, such processes may be mitigating the potentially 
adverse impacts of trends in the three key environmental drivers that we analysed in most detail.   
 

  
Figure 57: Comparison of mean trend lines of SST (left) and GSLA (right) in Regions 3 and 4 for the period 1992-

2019.  

 

In Figure 57, we present mean trend lines of SST and GSLA variables for the period 1992-2019 in Region 
3 (solid green line) and Region 4 (solid red line), with their 95% uncertainty bands (in dashed green and 
red curves, respectively). The small positive slopes of all four of these trend lines are in rough 
agreement with climate change modelling (e.g. see White et al. 2014 and Benveniste et al. 2020). 
 
Naturally, because of its geographic location the SST red trend line of Region 4 begins at a lower 
temperature than the SST green line of Region 3. More importantly, however, the slope of the green 
line is greater (by approximately 24%) than that of the red line; thus, the disparity between these trend 
lines increases over time. Interestingly, the GSLA red trend line of Region 4 begins at a very marginally 
higher level than the GSLA green line of Region 3. However, once again the slope of the green line is 
greater (by approximately 14%) than that of the red line; thus, the green line overtakes the redline in 
the late 1990s and the disparity between Regions 3 and 4 grows from that time on.  
 
In Figure 58, we present mean trendlines of median log transformed Chl-a variable for the period 2002-
2019 in Region 3 (solid green line) and Region 4 (solid red line), with their 95% uncertainty bands (in 
dashed green and red curves, respectively). Both trendlines have negative slopes. In 2002, the log(Chl-
a) of Region 4 begins at essentially the same level as that of Region 3. However, the log(Chl-a) slope of 
Region 3 is more negative (by approximately 21%) than that of Region 4. Thus, the decline in Chl-a is 
more rapid in Region 3 compared to that in Region 4.  
 
The above results show that, for all three key environmental drivers (Chl-a, GSLA and SST) over the 
past 17 years, the trend lines in Region 3 were steeper than those in Region 4. Potentially, that disparity 
became sufficiently great in the past decade that – in combination with fishing pressure – there was a 
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cumulative effect that contributed to falling abundance in Region 3 as compared to Region 4. If so, a 
similar cumulative effect may have also occurred in Region 2. 
 

 
Figure 58: Comparison of mean trend lines of median log transformed Chl-a variable in Regions 3 and 4 over 

2002-2019. 

 

 Pearl Perch: Correlation Analyses for Key Environmental Variables 

In our analysis of Pearl Perch catch rates from Queensland line fishery, we only consider catch rate 
time series from 2005 onwards. This decision was made on the basis that changes to the logbook (Line 
Fishery) may have impacted on the quality of the data reported prior to 2004 (Sumpton et al. 2017). 
Analysis of early logbook data suggested that Pearl Perch’s harvest could have been under-reported or 
in many cases not recorded at a specific species level category.  
 
Regions covered included Rockhampton Offshore (RO), Fraser Offshore North (FON) and Fraser 
Offshore South and Sunshine Coast Offshore (FOS+SCO) as this is where most of the commercial catch 
data come from (see Figure 22). Standardised CPUE was used as a measure of abundance (see Figure 
16).  
 
The results resembled some of those reported in Section 4.1 for the Snapper fishery. However, the 
amount of commercial logbook data for Pearl Perch is relatively low and fishery independent survey 
data are non-existent. As such, only annual rather than monthly time series could be considered. Below 
we highlight three main findings: 
 

• GSLA had a significant negative association with the standardised CPUE, across 0-6 yearly time 
lags and all three regions considered. 

• Chl-a in both current and previous year, had a very strong positive association with the 
standardised CPUE, across all three regions considered. 

• Long-term associations with the negative SOI signal were found to be significant. 
 
Many of these results are summarised in Table 12-14. 
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Table 12: Summary table of associations between environmental indices and standardised CPUE (log 

transformed) of Pearl Perch for Queensland commercial line fishery. Values in green indicate correlations 

statistically significant at the 95% level. 

 
  Lag (years) 

  0 1 2 3 4 5 6 7 8 9 10 

Sea Surface Temperature            

Mean SST Region            

 RO -.15 -.38 -.33 .05 .28 -.02 -.12 .12 -.10 -.13 .06 

 FON -.22 -.51 -.53 -.15 .25 -.08 -.27 .03 -.05 .01 .14 

 FOS + SCO -.11 -.34 -.43 -.05 .31 .00 -.18 .07 .03 .06 .20 

Chlorophyll a            

Log (Median Chl-a) Region            

 RO .71 .60 .19         

 FON .70 .69 .61         

 FOS + SCO .73 .60 .52         

Gridded Sea Level Anomaly            

Mean GSLA Region            

 RO -.66 -.73 -.55 -.61 -.73 -.53 -.53 -.67 -.76 -.67 -.40 

 FON -.70 -.82 -.69 -.65 -.54 -.54 -.62 -.44 -.30 -.17 -.30 

 FOS + SCO -.65 -.76 -.75 -.72 -.56 -.55 -.64 -.51 -.45 -.35 -.01 

Southern Oscillation Index            

Mean SOI  -.09 .06 .19 -.08 -.26 -.21 -.16 -.39 -.51 -.13 -.03 

Pacific Decadal Oscillation            

Mean PDO  -.19 -.39 -.30 -.10 .12 .40 .31 .30 .47 .57 .39 

 

 
Table 13: Summary table of associations between environmental indices in the year of the catch and standardised 

CPUE of Pearl Perch for Queensland commercial line fishery (2005-2018). The effect of environmental indices 

was analysed in summer (Dec-Feb), autumn (Mar-May), winter (Jun-Aug), spring (Sep-Nov) and spawning 

seasons according to each region (Sep-Nov in Region RO and Mar-May in the other regions). In the case of Chl-

a we considered the effect of the log transformed median, for the remaining variables the effect of the mean on the 

log transformed standardised CPUE. Correlations indicated in green are statistically significant at the 95% level. 

 
 SST  Chl-a  GSLA 

SOI PDO 
 RO FON 

FOS+
SCO 

 RO FON 
FOS+
SCO 

 RO FON 
FOS+
SCO 

Season              

summer  0.15 -0.14 -0.01  0.69 0.57 0.61  -0.64 -0.56 -0.51 -0.02 -0.19 

autumn -0.22 -0.27 -0.17  0.48 0.51 0.56  -0.59 -0.44 -0.44 -0.10 -0.21 

winter -0.14 -0.10  0.01  0.51 0.60 0.45  -0.49 -0.60 -0.71 -0.09 -0.02 

spring -0.14 -0.11 -0.18  0.64 0.70 0.68  -0.42 -0.73 -0.40 -0.10 -0.26 

              

Spawning              

Sep-Nov -0.14    0.64    -0.42   -0.10 -0.26 

Mar-May  -0.27 -0.17   0.51 0.56   -0.44 -0.44 -0.10 -0.21 

 

In Figure 59, we display the scattergrams corresponding to strong negative associations between 
lagged mean GSLA and log transformed standardised CPUE in Region RO, for lags of 0, 1, and 2 years. 
The association peaks at lag 1 (previous year) where the correlation attains a high negative value of -
0.73 where it accounts for 54% of the variability in the response variable. Interestingly, perhaps, that 
association remains significant at 95% level for mean GSLA lagged by as much as nine years (see Table 
12).  
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Figure 59: Scattergrams of Pearl Perch log transformed standardised CPUE vs lagged mean GSLA in RO. From 

left to right panel: Lag 0 (current year), Lag 1 (previous year) and Lag 2 (two years before). 

 

It is worth mentioning the high positive correlation with Chl-a in RO in a potential spawning season of 
September-November in current year, but not nearly as high in the potential spawning season of 
March-May for Regions FON and FOS + SCO. These results can be seen from Figure 60. 
 

 

Figure 60: Scattergrams of commercial standardised CPUE vs lagged median Chl-a (log-log) in spawning season 

according to Regions RO (left), FON (middle) and FOS+SCO (right). Left: r =0.64, R2=0.41 and p-value = 0.013; 

Middle: r =0.51, R2=0.26 and p-value = 0.062 and Right: r =0.56, R2=0.31 and p-value = 0.039.  

 
Just as in the case of Snapper, we also investigated associations between commercial standardised 
Pearl Perch CPUE and the SOI signal indices constructed using the methodology of Section 3.3 (a), (c), 

(d). As before, we extracted the index 𝑆𝛿− corresponding to the negative episodes of the signal for 𝛿=0 
defined by equation (4). The intensity of these episodes was calculated in accordance with equation 
(6) and persistence weights by equation (9) with parameter 𝑎=2. The location importance weights were 
all set to 1. We also considered a range of memory parameters 𝑀=1,…,8 corresponding to one to eight 

years. The plot of correlations of these 𝑆𝛿−  indices with the commercial SCPUE, together with their 
95% significance bands is displayed in Figure 61. 
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Figure 61: Left panel: correlations of log transformed commercial SCPUE with SOI index 𝑆𝛿− (for 𝛿=0 and 

intensity function (6)) and their 95% confidence bands in green, for cumulative memory of 1,…, 8. Right panel: 

scattergram for the correlation corresponding to the cumulative memory of 7 years (𝑀=7). 

 

It is clear from Figure 61 that the association begins weakly with only one year of memory (𝑀=1) and 
strengthens as the length of memory increases to seven years. The columns of Table 14 give the 
corresponding key statistics. We note the sustained very strong negative correlations for cumulative 
memories ranging from six to eight years. Just as in the case of Snapper these results suggest that 
sustained histories of stronger negative values of the SOI signal are associated with better catch rates 
of Pearl Perch. However, we have no suggested biological mechanism for such associations.  
 

Table 14: Correlations of commercial SCPUE versus 𝑆𝛿− for 𝛿=0 and cumulative memory of 1,…,8 years plus 

their R2 and p-values. Correlation indicated in green are statistically significant at the 95% level. 

 

Memory Correlation R2 

1 +0.06 0.00 
2 -0.02 0.00 
3 -0.13 0.02 
4 -0.23 0.05 
5 -0.32 0.10 
6 -0.45 0.20 
7 -0.53 0.28 
8 -0.46 0.21 

 

 

 Estimating Possible Future Trends of Selected Environmental Variables 

Many environmental variables that are of interest in this project exhibit varying degrees of periodicity 
(e.g. annual cycles and multi-year cycles). Consequently, they lend themselves to a range of time series 
modelling techniques including the trigonometric regression approach briefly described in Section 
3.6.These models enable us to estimate future trends of the variables of interest together with 
accompanying uncertainty bands. In this section, we present the results of such trend estimation for 
three key variables that already featured prominently in the preceding sections.  
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4.4.1 Possible future trends in sea surface temperature  

We illustrate the analysis with monthly time series of SST based on IMOS data. The series was 
constructed for the Snapper Region 1W indicated earlier in Figure 19. Daily data were aggregated 
across months and 0.02° x 0.02° grids were aggregated across the whole 1W region. The available data 
spanned the period 1992-2019. The five parameter trigonometric regression model of equation (22) 
was fitted with the help of the maximum likelihood estimation method and extrapolated forward to 
December 2029.  
 
In Figure 62 we display the fitted model (red curve) and its extrapolation, together with IMOS data 
points (in black) and the expected value trendline (green line). The shaded area around the trendline 
constitutes the 95% uncertainty band around the mean. The shaded area around the red curve 
constitutes the corresponding uncertainty band around the fitted model. It should be clear that the 
model provides an extremely good fit. Importantly, the slope of the trendline represents a small, but 
significant, warming trend of approximately 0.15°C per decade, with the standard deviation of 0.06°C. 
This is roughly consistent, but slightly greater, than NOAA’s warming trend of 0.13°C per decade at a 
nearby location (-26°S, 154°E). Naturally, NOAA’s standard deviation of 0.01°C is much smaller as it is 
based on a much longer time series, going back to 1920.  

 
Figure 62: Trigonometric regression fit (red line) of SST time series (black line) for Snapper Region 1W. The 

shaded area around the trendline constitutes the 95% uncertainty band around the mean. The shaded area around 

the red curve constitutes the corresponding uncertainty band around the fitted model.    

 

4.4.2 Possible future trends in gridded sea level anomaly  

The time series for the GSLA variable was constructed for the aggregated Spanner Crab Regions 2 and 
3, indicated earlier in Figure 8. The available data spanned the period 1993 – 2020 (see Table 1). This 
time the trigonometric regression model was of polynomial order 1 and trigonometric order 1, in the 
terminology introduced in Section 3.6. 
 
In Figure 63, we display the fitted model, its extrapolation and the expected value trendline. We note 
that, due to much greater volatility of this time series, the model does not capture the extreme 
fluctuations in the data. However, the fit can still reasonably predict the expected value. Importantly, 
the slope of the trendline represents a strong increasing trend of approximately 2.9 cm per decade, 
with the standard error of 0.7 cm. The shaded region in the figure includes uncertainty in the linear 
trend.  
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Figure 63: Trigonometric regression fit (red line) of GSLA time series (black line) for Spanner Crab Regions 2-3 

for a model with polynomial order 1 and trigonometric order 1. The shaded areas represent the 95% uncertainty 

bands around the mean and the fitted model, respectively.    

 

4.4.3 Possible future trends in chlorophyll a  

The time series for the log transformed Chl-a variable was constructed for the same Snapper Region 
1W indicated earlier in Figure 19. Daily data were aggregated across months and 0.02° x 0.02° grids 
were aggregated across the whole 1W region. The available data spanned the period 2002 – 2020 (see 
Table 1).  
 
Unlike the SST time series, the Chl-a time series in Figure 64 indicates the presence of second periodic 
oscillation, in addition to the strong annual cycle. This can also be confirmed by examining the 
periodogram of that series which is reported in the working files. Consequently, the model equation 
(25) for the SST now needs to be extended by adding two additional trigonometric terms to capture 
the secondary oscillation. The resulting seven parameter trigonometric regression model was fitted via 
maximum likelihood estimation method and extrapolated forward to December 2029. Thus, it became 
a trigonometric regression model with the polynomial order 1 and trigonometric order 2, in the 
terminology introduced in Section 3.6. 
 
In Figure 64, we display the fitted model (red curve) and its extrapolation, together with data points 
(in black) and the expected value trendline (green line). The shaded area including the trendline 
constitutes the 95% uncertainty band around the mean. Except for some small discrepancies in 2019, 
the fitted model provides a generally good fit. Importantly, the slope of the trendline represents small, 
but significant, declining trend of approximately -0.1 per decade on the log scale, with a standard error 
of 0.02. This implies a reduction of Chl-a concentration by approximately 21% in a decade (see remark 
concerning Chl-a IMOS data in Section 3.2). 
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Figure 64: Trigonometric regression fit of Chl-a time series for Snapper Region 1W for a model with polynomial 

order 1 and trigonometric order 2. The shaded areas represent the 95% uncertainty bands around the mean and 

the fitted model, respectively. 

 

We note, however, that if we forced the model to be of polynomial order 0 the declining trend would 
vanish and the extrapolation would result in a perfectly flat trendline depicted in Figure 65. The latter 
model would not capture the decreasing trend in Chl-a and would not provide adequate explanatory 
power.  

 
Figure 65: Trigonometric regression fit of Chl-a time series for Snapper Region 1W for a model with polynomial 

order 0 and trigonometric order 2. The shaded areas represent the 95% uncertainty bands around the mean and 

the fitted model, respectively. 

 

 Including Environmental Factors in a Surplus Production Model  

In this section we return to the surplus production model introduced in Section 3.5.1 and the task of 
incorporating environmental drivers into such a model. Below, we describe the development and 
calibration of such models, separately, for Snapper and Spanner Crabs. Analogous results for Pearl 
Perch are documented in the project’s file repository. 
 

4.5.1 Snapper and the surplus production model for Queensland 

An important aspect of the harvest data time series displayed in Figure 2 is that it spans long periods 
of diverse management regimes and harvest data estimation methods going back to 1940, with the 
modern logbook reporting commencing only in 1988. In order to address differences in input data 
uncertainty and potential variability arising from using a combination of reconstructed and logbook 
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harvest estimates (1940 onwards), or logbook-only harvest estimates (1988 onwards), a decision was 
made to calibrate the surplus production model with two alternative setup scenarios:  M0_y1940 and 
M0_y1988 which use data starting in 1940 and 1988, respectively. 

Table 15 displays the JABBA parameter settings that were selected to run these two versions of the 
model. The only difference lies in the selection of the prior distribution of the depletion parameter ϕ. 
Normally, this requires an estimate of the biomass to virgin biomass ratio for Queensland Snapper in 
1988. We relied on the Wortmann et al. (2018) stock assessment report which analysed spawning 
biomass ratios for Snapper from 1880-2016 across 72 possible trajectories (see Figure 3.15 in that 
report). The distribution of that biomass ratio in 1988 guided our choice of the parameters of the prior 
distribution of ϕ. 

 
Table 15: Setup scenario parameters for M0_y1940 and M0_y1988. 

 

Parameter  M0_y1940: original JABBA 
 

M0_y1988: original JABBA 

𝑚 - shape  𝑚 = 2 ⇒ 𝐵𝑀𝑆𝑌 = 0.5𝐾  𝑚 = 2 ⇒ 𝐵𝑀𝑆𝑌 = 0.5𝐾 

     
𝑟 - intrinsic growth rate 

 
mean of  
prior = 0.5 

std dev of 
prior = 0.3 

 
mean of  
prior = 0.5 

std dev of 
prior = 0.3 

       

𝜑 - depletion 
parameter at initial 
year 

 
mean of  
prior = 0.85 

std dev of 
prior = 0.1  

mean of  
prior = 0.3 

std dev of 
prior = 0.1 

 

The Kobe plots of the Snapper fishery trajectories generated by the setup scenarios M0_y1940 and 
M0_y1988 are displayed in Figure 66. Some of the most striking differences are easily explained as 
natural consequences of the construction of these setup scenarios. For instance, the fact that the 
trajectory of the M0_y1940 scenario (on the left) resides in the sustainable state prior to 1993 reflects 
both the moderate harvests prior to 1997 and the relatively high 0.85 estimate of the mean of the prior 
distribution of ϕ, in 1940. By contrast, the fact that the trajectory of the M0_y1988 scenario (on the 
right) begins at the boundary of the depleted state and remains there reflects both the high harvests 
rates during 1996-2008 and the relatively low estimate of the mean of the prior distribution of ϕ, 
namely 0.30, in 1988. The fact that, post 2010, the trajectory moves down with respect to the vertical 
axis is a reflection of declining harvests. However, because fishing mortality is still too high that 
movement is accompanied by a slight undesirable drift to the left along the horizontal axis. Overall, 
the trajectory of the M0_y1940 is more optimistic with regards to the current status of the Snapper 
stock than the M0_y1988 setup scenario. 
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Figure 66: Kobe plot for the Queensland's Snapper fishery under the setup scenarios M0_y1940 (left) and 

M0_y1988 (right). 

 

Naturally, we are also interested in comparing forward projections of the fishery’s trajectory under a 
range of total annual harvest scenarios. We considered five scenarios corresponding to TACC of 20, 40, 
60, 80 and 100 t, respectively. In Figure 67 we display the JABBA models, projections of the biomass to 
virgin biomass ratio 𝐵/𝐵0 through to 2029, under these five harvest scenarios. We observe that in 
M0_y1940, even under the highest 100 t scenario (orange curve), the stock is projected to recover to 
𝐵𝑚𝑠𝑦 = 0.5𝐾 level by 2025, according to the mean trend. However, in M0_y1988, also under the 100 t 

scenario (orange curve), the stock’s projection will still not reach 𝐵𝑚𝑠𝑦 = 0.5𝐾 level by 2029. As 

expected, the uncertainty bands in both models, represented by the shaded areas, in Figure 67, grow 
rather fast.  
 
 
  

  

Figure 67: Projections of five harvest scenarios for M0_y1940 (left) and M0_y1988 (right) models. 

 

 

It is likely that the more optimistic trends exhibited by M0_y1940 are a consequence of the low 
estimated harvest rates during the period from 1955 to 1975 (Figure 2), which were reconstructed 
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from archival and historical data sources (Wortmann 2018)5. In view of the larger number of data 
inferences required to develop the historical harvest rate timeseries used in M0_y1940, we regard the 
M0_y1988 and its projections as more reflective of likely future trends.  

Next, we demonstrate the impact of including May SST in the Snapper Region 1W as an additional 
variable in the JABBA model affecting its surplus production term. In Section 4.4.1, the time series of 
SST was very well approximated with the help of a trigonometric regression technique (see Figure 62). 
From that model the fitted values of May SST were extracted plotted in Figure 68 (in blue) while the 
IMOS time series of that variable is displayed in the same figure (in red). Note that the modelled (blue) 
curve includes linear mean trendlines in the years preceding available IMOS observations and in the 
future period 2020-2029. 
 

 

Figure 68: IMOS time series of mean May SST (red) in the Snapper Region 1Wand statistically fitted model (blue) 

and its extrapolations. 

 

We take 23.52° as the reference May SST in Region 1W as it is the 30-year mean of May SST means 
over the period 1961-1990. Then we define 𝒛𝑡 to be the May SST anomaly with respect to this long-
term mean of 23.52° and include it as an additional variable in the JABBA model affecting its surplus 

production term as in 𝑆𝑃(𝐵𝑡)𝑒𝜷𝒛𝑡 with the 𝜷 = 𝜷𝒔𝒔𝒕 parameter to be estimated.  
 
We note that following the correlation analysis in Section 4.1.1 (for pre-recruits), we had implemented 
May, June, and July SST, respectively, in the JABBA model using CFISH data. The posterior medians of 
those three monthly SST effects are negative and consistent with the correlation analysis results. 
However, the 95% credible intervals show that May SST effect is more significant than the other 
months. This and the fact that May is the first month of Snapper’s spawning season guided its selection 
for this analysis (see also Section 1.1.1). 
  

 

5It is not clear that the relatively low harvests during the period 1955-1975 captured the true trend in the Snapper 
catch, especially as Queensland population doubled from 1 to 2 million persons between 1938 and 1974, 
according to the Australian Bureau of Statistics (ABS). 
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The yearly values of the 𝒛𝑡 variable from 1988-2019 are thus known. We now extend the previous 
M0_y1988 setup scenario to create two new setup scenarios both of which use the above May SST 
anomaly values from 1988-2019 but which differ primarily in the fixed values of the shape parameter 
with 𝑚=2 implying 𝐵𝑚𝑠𝑦 = 0.5𝐾 and 𝑚=3.4 implying 𝐵𝑚𝑠𝑦 = 0.6𝐾. The specification of these 

scenarios is given in Table 16. 
 
Table 16: Setup scenario parameters for SST(5)_y1988_0.5K and SST(5)_y1988_0.6K. 

Parameter  SST(5)_y1988_0.5K 
 

SST(5)_y1988_0.6K 

𝑚 - shape  𝑚 = 2 ⇒ 𝐵𝑀𝑆𝑌 = 0.5𝐾  𝑚 = 3.4 ⇒ 𝐵𝑀𝑆𝑌 = 0.6𝐾 

     
𝑟 - intrinsic growth rate 

 
mean of  
prior = 0.5 

std dev of 
prior = 0.3 

 
mean of  
prior = 0.5 

std dev of 
prior = 0.3 

       

𝐾 -carrying capacity 
 

mean of  
prior = 6 × 106 

CV of prior = 1 
 

mean of  
prior = 6 × 106 

CV of prior = 1 

       
𝜑 - depletion 
parameter at initial 
year 

 
mean of  
prior = 0.3 

std dev of 
prior = 0.1  

mean of  
prior = 0.3 

std dev of 
prior = 0.1 

 
 
When JABBA is calibrated using these two scenarios, the results yield rather similar trajectories of the 
𝐵𝑡/𝐵0 biomass to virgin biomass ratios but differ substantially in median maximum sustainable yield 
(MSY). There are also some, less pronounced, differences in the important 𝑟 and 𝛽𝑠𝑠𝑡 parameters, as 
illustrated in Figure 69. 
 
 

  

Figure 69: JABBA outputs of scenario SST(5)_y1988_0.5K (left) and SST(5)_y1988_0.6K (right). 

 
Similarly, the Kobe plots of the system’s trajectories under these two scenarios are qualitatively very 
similar. This can be seen from Figure 70 where, perhaps, the only differences that can be easily noticed 
are in the slightly lower, most recent, 𝐵2019/𝐵msy ratio and slightly narrower uncertainty region 

around the 2019 endpoint. Overall, perhaps, some preference could be given to the SST(5)_y1988_0.5K 
scenario on the grounds that median MSY of 654t is less unrealistic than the 835t under the 
SST(5)_y1988_0.6K scenario.  
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Figure 70: JABBA Kobe plot of scenario SST(5)_y1988_0.5K (left) and SST(5)_y1988_0.6K (right). 

 

However, in this project, the main task is to quantify the possible future impact of an environmental 
driver such as May SST on the attainment of Queensland’s objectives in Sustainable Fisheries Strategy. 
To do that we must make some assumptions about future projections of May SST in the 1W Snapper 
region. We illustrate the analysis with three alternative projections for the period 2020-2029: 
  

PI. May SST will remain constant at 23.52° (the mean over 1961-1990);  
PII. May SST will remain constant at 24.12° (its value in May 2019);  
PIII. May SST will continue to increase according to the blue trendline indicated in Figure 68.  

 
Arguably, PI could be considered as overly optimistic and PIII as pessimistic in assuming the continued 
upward trend. We next illustrate that, within the JABBA model framework, these three projections 
have a large impact on the consequences of the SST(5)_y1988_0.5K and SST(5)_y1988_0.6K scenarios 
in terms of likely reachability of their respective 𝐵𝑚𝑠𝑦 levels. As before, we considered five harvest 

scenarios of 20, 40, 60, 80 and 100 t, respectively. The results corresponding to projections PI, PII and 
PIII are displayed in Figure 71, Figure 72 and Figure 73, respectively. 
 
 

  

Figure 71: Projection PI; five harvest futures under SST(5)_y1988_0.5K (left) and SST(5)_y1988_0.6K (right). 

 
We note that the projection PI of steady 23.52° mean May temperature and scenario 
SST(5)_y1988_0.5K are the only configuration under which the Snapper stock recovers to 𝐵𝑚𝑠𝑦 

sometime between roughly 2027 and 2029 as the harvest level ranges from 20 t to 100 t. Under the 
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SST(5)_y1988_0.6K scenario no such recovery takes place even with the low PI temperature projection. 
In fact, the level of recovery over the next decade is very low from 𝐵2019/𝐵0 =0.11 to somewhere 
between 0.26 and 0.36 as the harvest level ranges from 20 t to 100 t (see right panel of Figure 71). 
 
 

  

Figure 72: Projection PII; five harvest futures under SST(5)_y1988_0.5K (left) and SST(5)_y1988_0.6K (right). 

 
Surprisingly, perhaps, the projection PII of steady 24.12° mean May SST (Figure 72) makes a significant 
difference under scenario SST(5)_y1988_0.5K but not in SST(5)_y1988_0.6K. In the former case, the 
level of recovery over the next decade is very low from 𝐵2019/𝐵0 =0.11 to somewhere between 0.23 
and 0.35 as the harvest level ranges from 20 t to 100 t (see left panel of Figure 72). On the other hand, 
comparison of right panels in Figure 72 and Figure 71 shows only minimal decline as a result of this 
0.6° increase in the projected temperature. 
 

  

Figure 73: Projection PIII; five harvest futures under SST(5)_y1988_0.5K (left) and SST(5)_y1988_0.6K (right).. 

 
Finally, the projection PIII of linear increase in mean May temperatures creates a further, but only 
small, decline in stock recovery rates under scenario SST(5)_y1988_0.5K (see left panel of Figure 73). 
In the case of SST(5)_y1988_0.6K and projection PIII the level of recovery over the next decade is again 
very slow from 𝐵2019/𝐵0 =0.11 to somewhere between 0.12 and 0.20 as the harvest level ranges from 
20 t to 100 t (see right panel of Figure 73).  

 

4.5.2 Spanner Crabs and the surplus production model for Queensland 

Next, we extend the preceding methodology for incorporating environmental variables into surplus 
production models to Queensland’s Spanner Crab fishery, using commercial logbook catch data for the 
period 1988-2019. The fishery spans previously considered Regions 2-6, the whole area of which will 
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referred to as managed area A. Because of the previously noted similarities between Regions 2 and 3 
with respect to their responses to several environmental variables, they will be combined into a region 
called the ‘north Spanner Crab fishery’. Similarly, combined Regions 4, 5 and 6 will be called the ‘south 
Spanner Crab fishery’. The standardised catch rates of commercial logbook database CFISH for the 
whole management area A and individual regions are displayed in Figure 10 in left and right panels, 
respectively.  
 
To proceed with creating a JABBA model three benchmark setup scenarios were created, one each for 
the whole, the north and the south Spanner Crab fisheries. The details of these scenarios are in Table 
17. Note that some parameter choices were influenced by those cited in Haddon (2018) for the 
assessment of Hawaiian Kona Crab fishery (which is the same species, R. ranina). 
 
Table 17: Setup scenario parameters for M0_whole_0.5K, M0_north_0.5K and M0_south_0.5K. 

Parameter  M0_whole_0.5K  M0_north_0.5K  M0_south_0.5K 

𝑚 - shape  𝑚 = 2 ⇒ 𝐵𝑀𝑆𝑌 = 0.5𝐾  𝑚 = 2 ⇒ 𝐵𝑀𝑆𝑌 = 0.5𝐾  𝑚 = 2 ⇒ 𝐵𝑀𝑆𝑌 = 0.5𝐾 

       
𝑟 - intrinsic 
growth rate 

 
mean of  
prior = 0.3 

std dev of 
prior = 0.3 

 
mean of  
prior = 0.3 

std dev of 
prior = 0.3 

 
mean of  
prior = 0.3 

std dev of 
prior = 0.3 

          

𝐾 -carrying 
capacity  

mean of  
prior = 
2.8 × 107 

CV of  
prior = 1  

mean of  
prior =  
1.5 × 107 

CV of  
prior = 1  

mean of  
prior =  
1.3 × 107 

CV of  
prior = 1 

          
𝜑 - depletion 
parameter at 
initial year 

 
mean of  
prior = 0.8 

std dev of 
prior = 0.15  

mean of  
prior = 0.8 

std dev of 
prior = 
0.15 

 
mean of  
prior = 0.8 

std dev of 
prior = 
0.15 

 
 
The Kobe plots of the 1988-2019 trajectories resulting from these scenarios are displayed in Figure 74. 
The drastic decline in SCPUE in the north fishery (Regions 2-3) in the past decade is reflected by the 
location of the last few points on the trajectory in the top right panel which ends at a very low, left of 
the centre, point. Surprisingly, perhaps, the last few years of the trajectory of the south fishery (Regions 
4-6) also reside in undesirable regions of the Kobe plot (see right panel of Figure 74). This could be 
driven by SCPUE declines in the productive Region 4 during 2010-2014 and 2015-2017. Furthermore, 
the region of uncertainty around the final 2019 point is much greater in the south fishery. The 
trajectory of the whole fishery (left panel) is somewhat less erratic but still ends in an undesirable 
quadrant of Kobe plot in 2019 and with a large uncertainty region.  
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Figure 74: Kobe plots of Spanner Crab scenarios for M0_whole_0.5K (left), M0_north_0.5K (top right) and 

M0_south_0.5K (bottom right). 

 

As in the case of Snapper, we are also interested in comparing forward projections of the fishery’s 
trajectory under a range of total annual harvest scenarios. We considered four scenarios corresponding 
to TACC of 600, 800, 1000 and 1200 t, respectively, for the whole management A area fishery.  It should 
be noted that biomass estimates of 𝐵 and 𝐵0 should be interpreted in terms of total biomass. However, 
TACCs refer to exploitable biomass. The projections of the biomass to virgin biomass ratios for the 
whole fishery, under these four harvest scenarios, indicate rapid recovery to the 0.5 𝐵/𝐵0 level by 
2024, as indicated in the left panel of Figure 75. However, from right panels of the same figure we see 
that the stock recovery is slower in the north fishery and in the south the 1000 t and 1200 t annual 
harvest scenarios lead to further decline rather than a recovery. Quick recovery still takes place under 
the 600 t harvest scenario. 
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Figure 75: Projections of four Spanner Crab harvest scenarios for M0_whole_0.5K(left), M0_north_0.5K(top 

right) and M0_south_0.5K (bottom right). 

 
Next, we demonstrate the impact of including GSLA as an additional variable in the JABBA model 
affecting its surplus production term. In Section 4.4.2 the time series of GSLA in the north fishery was 
well approximated with the help of a trigonometric regression technique and this was repeated for the 
south and the whole fisheries. From these statistical models the fitted values of GSLA were extracted 
and plotted in Figure 76 (in blue) while the IMOS time series of that variable for 1993-2019 were 
displayed in the same figure (in red). Note that the modelled (blue) curve includes linear mean 
trendlines in the years preceding available IMOS observations and in the future period 2020-2029. 
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Figure 76: IMOS time series of GSLA (red) in the Spanner Crab whole (left), north (top right) and south (bottom 

right) fisheries; and statistically fitted models (blue) and their extrapolations. 

 

For the whole management area A we take the reference GSLA to be -0.070m as it is the mean GSLA 
for the 30-year period 1961-1990. Similarly, for the north and south fisheries we take the 
corresponding 30-year means as reference GSLAs: -0.076m for north and -0.065m for south.  
 
As in the case of Snapper, we must make some assumptions about future projections of GSLA in three 
Spanner Crab fisheries under consideration. We carried out the analyses with three alternative 
projections for the period 2020-2029 applied correspondingly across the whole, the north and the 
south fisheries  
 

PI. GSLA will remain constant at their respective reference GSLAs;  
 
PII. GSLA will remain constant at their respective 2019 values;  
 
PIII. GSLA will continue to increase according to their respective blue trendlines in Figure 76.  
 

Arguably, PI can be seen as too optimistic and PII as too pessimistic because the observed 2019 GSLA 
values were the highest from 1993-2019 in each of the three fisheries. Hence, we highlight only the 
results obtained under the PIII future projection.   
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Figure 77: Kobe plots of Spanner Crab scenarios for M0_whole_0.5K(left), M0_north_0.5K (top right) and 

M0_south_0.5K (bottom right), with GSLA trends included. 
 

The new Kobe plots of the 1988-2019 trajectories resulting from the inclusion of GSLA are displayed in 
Figure 77 and should be compared with the benchmark case in Figure 74. It is immediately noticeable 
that the inclusion of GSLA has smoothed the trajectories but that the location of the 2019 endpoints is 
very similar for the whole and north fisheries. In the case of the south fishery, the 2019 end point has 
moved down from the depleted red region to the recovering yellow region but that the uncertainty 
region around the 2019 end point has increased considerably. Even so, over the past decade, 
trajectories of the whole, north and south fisheries reside in comparable regions of the Kobe plots, 
irrespective of whether GSLA is included in their respective models.  
 
However, comparison of forward projections of the fisheries’ trajectories under corresponding ranges 
of total annual harvest scenarios yields drastically different results for the whole and the north 
fisheries. This can be seen by comparing the left and top right panels in Figure 78 to the corresponding 
panels in Figure 75. As before we considered four scenarios corresponding to TACC of 600, 800, 1000 
and 1200 t, respectively, for the whole management A area. Before GSLA was included the biomass to 
virgin biomass ratios recovered rapidly to the 0.5 level by 2024. However, once GSLA has been 
incorporated the 0.5 level is still out of reach even by 2029 for the 600 and 800 t harvest levels. For the 
1000 and 1200 t harvest levels these biomass ratios decline rather than grow, albeit relatively slowly.  
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For the north Spanner Crab fishery, before including GSLA, we observed recovery of the biomass ratios 
to 0.5 by 2007, under all four annual harvest scenarios of 50, 100, 150 and 200 t, respectively. However, 
after GSLA is included, the top right panel of Figure 78 shows only minimal improvement under the 
50 t and 100 t harvests and further declines under the 150 t and 200 t annual harvests. Interestingly, 
however, the differences in south fishery are very minor as can be seen by comparing the bottom right 
panels of Figure 78 and Figure 75. This is consistent with the relative resilience to environmental drivers 
of the most productive Region 4 in the south fishery. 
 
 

 

 

 

Figure 78: Projections of four Spanner Crab harvest scenarios for M0_whole_0.5K(left), M0_north_0.5K(top 

right) and M0_south_0.5K (bottom right), with future projection PIII of GSLA included.  

 

 Including Environmental Factors in CPUE Standardisation  

Below we summarise very briefly the results of this exploration for Spanner Crab and Snapper CPUEs. 
For both species, the main findings were:  
 

• Despite some environmental variables being statistically significant in GLM models currently 
used, they contributed only in a negligible way to their goodness-of-fit. 
 

• The current, heavily parametrised, GLM models likely already account for nearly all the 
variability in CPUE that could be explained by these environmental factors. 

 
In view of the above, further investigation of appending environmental variables to GLM models for 
SCPUE is impractical unless there was interest in also re-examining the composition of the currently 
systematic factors used, in particular the categorical year factor appears to account for a large 
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proportion of the interannual variation in environmental conditions. Next, we present some evidence 
to support these findings.  
 
Spanner Crabs 
 
It can be seen from Table 18 that seven key environmental indices are statistically significant when 
appended to the benchmark GLM model (23), respectively. In particular, we see that SST, SOI and 
current speed near the bottom are all highly significant. However, that does not mean that their 
inclusion would appreciably improve the GLM model. 
 

Table 18: Estimates, standard error, t value and p-value of the seven key environmental indices when appended 

to the benchmark GLM model (23), respectively, for Spanner Crab commercial CPUE standardisation. 

Environmental index Coefficient Std. Error t value p-value 

SST 0.169 0.008 20.624 <0.001 

Chl-a -0.004 0.002 - 1.865 0.062 

GSLA 0.030 0.003 10.625 <0.001 

bottom temperature 0.016 0.005  3.182 0.001 

SOI - 0.012 0.002 - 5.121 <0.001 

PDO 0.005 0.004  1.435 0.151 

bottom speed 0.045 0.003 15.941 <0.001 

 

 
In fact, we found that inclusion of environmental indices barely affects the annual standardised CPUE. 
For instance, Figure 79. We observe that the curves are nearly identical except for some minor 
differences in years 2007-2010. This lack of appreciable effect is also reflected in some standard 
diagnostics such as R2 changing from 0.574 to only 0.576, an improvement of only 0.002. It is entirely 
possible that variables such as the year, seasonality, and region and their interactions, included in the 
benchmark model, may have already accounted for nearly all the variability that could be explained by 
SST.  
 

 

Figure 79: Prediction of commercial standardised CPUE for Spanner Crab with and without SST. 
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The above lack of appreciable effect is not unique to the SST variable. Analogous findings repeat 
themselves with Chl-a, GSLA, bottom temperature, bottom current speed, SOI and PDO.  
 
Snapper 
 
From Table 19 we see that SST is the only environmental variable identified as statistically significant 
when added to the benchmark model.   
 
Table 19: Estimates, standard error, t value and p-value of five environmental indices when appended to the 

benchmark GLM model, respectively, for Snapper commercial CPUE standardisation. 

Environmental index Coefficient Std. Error t value p-value 

SST 0.078 0.016 4.937 <0.001 

Chl-a 0.007 0.005 1.402 0.161 

SOI -0.003 0.006 -0.508 1.388 

PDO 0.004 0.010 0.451 0.652 

GSLA 0.001 0.008 0.092 0.926 

 

 
As was the case with the comparison of CPUEs plots for Spanner Crabs (see Figure 79), we again find 
that including SST in the benchmark CPUE model has a negligible effect. In Figure 80, we observe that 
the model fit is nearly identical except for some very minor differences in years 2010-2011.  
 

 

Figure 80: Prediction of commercial standardised CPUE for Snapper with and without SST. 

 

 

 Observed Patterns Needing Further Study  

It is clear from results reported so far that in the case of the Spanner Crab fishery the complex pattern 
of positive and negative associations with environmental variables calls for further investigation of the 
underlying processes contributing to them across the six regions and on different time scales.  
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There are indications that some of the differences in these associations are due to the large latitudinal 
gradient across the regions as well as on the cross-shelf depth gradient of the surveyed locations within 
each region. Several of the environmental variables we investigated exhibit markedly different 
features, the causes of which are likely related to the pattern of associations we observed. These 
variables include, but are not limited to, components of the current velocity, current speed, and water 
temperatures at different depths.  
 
Furthermore, there is already a body of literature pointing to dynamic oceanographic and climate 
processes influencing large segments of the Spanner Crab fishery environment. For instance, Brieva et 
al. (2015) studied the effects of East Australian Current (EAC) on the distribution of phytoplankton 
blooms (as indicated by Chl-a) near the Fraser Island continental shelf and linked them to two distinct 
quasi-climatological patterns. They found that the area overlaps with a hot-spot in EAC-generated 
bottom layer stress connected with the “Southeast Fraser Island Upwelling System”. Furthermore, in 
Ismail et al. (2017), the authors identify “The Fraser Gyre”, a characteristic recurring wind-driven 
cyclonic flow located south of Fraser Island between about 25°S and 27°S. They conjecture that the 
Fraser Gyre could be “facilitating the offshore transport of fish larvae, sediments, nutrients, river 
discharges, and other properties across the shelf break and into the southward flowing EAC during the 
austral autumn and winter”. 
 
While deeper investigation of such physical processes is beyond the scope of this project, in this sub-
section we highlight a sample of just three patterns which, we believe, may be connected with these 
processes. We hope that other research teams will be able to shed more light on these patterns, in the 
future. 
 
In Figure 81, we display time series of regional monthly averages of the (u,v,w)-components of ocean 
current velocity - in Spanner Crab Regions 3, 4 and 7 – at three depth levels: top, bottom and 23m. It 
should be understood that, in each site covered, “top” and “bottom” refer to depths as close as 
practical to the surface and bottom, at that site. Also, u, v and w are the east-west, north-south and 
up-down components, respectively. The figure exposes a lot of qualitative differences between the 
regions. For instance, in Region 3 the green u component at the bottom is nearly everywhere positive, 
indicating predominantly eastward (offshore) flows. On the other hand, in Region 4, the same 
component is more negative than positive, indicating a balance of westward (inshore) flows and this is 
accompanied by largely eastward flows closer to the surface. Such phenomena could, perhaps, be 
indicators of upwelling events. Consistent with that, note also that the green up-down component w 
at the bottom is largely positive while the orange w component at 23m is largely negative in Region 4. 
That pattern is, at least partially, reversed in Region 3. The north-south component v (centre panels in 
Figure 81) indicate predominantly southwards flows in all three regions, with Region 7 having the 
strongest such flows but exhibiting the greatest variability. The latter may be induced by properties of 
the East Australian Current.  
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Figure 81: Regional monthly averages of East-west (u), North-south (v) and up-down (w) components of ocean 

current at three depth levels: top (blue), 23m (orange) and green (near bottom). 

 

 
In Figure 82, we display analogous plots for the (undirected) current speed variable for the same three 
regions. We note that – at all three depth levels – both the speed and its variability increase as we 
move from Region 3, through Region 4 to Region 7. Once again, this may be related to the influence of 
EAC.  
 

 

Figure 82: Regional monthly averages of ocean current speed at three depth levels: top (blue), 23m (orange) 

and green (near bottom). 

 
In Figure 83, we display monthly averages of water temperature - at 6’ by 6’ resolution - at three depth 
levels: top (blue), 23m (orange) and green (near bottom), for Spanner Crab Regions 2-7. At that finer 
resolution, the plots display the temperatures averaged in areas that are close to the sites where the 
FIS crabs were caught. We first note that in Regions 2 and 3 there is so little difference in these 
averaged temperatures at the top and 23m depth levels that their plots essentially overlap. Their 
differentiation becomes clearer in Region 4. The separation from the bottom temperature increases 
markedly in Regions 5. Interestingly, however, the southernmost Region 7 is, once again, exceptional 
in exhibiting a pattern that appears closer to that of Region 3 than of the adjacent Region 6. Closeness 
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to shore of FIS sites in Region 7 may be part of the explanation for this last observation. However, we 
also note from Figure 8 that FIS sites in Regions 3 and 4 are not as close to shore as those in Region 7.  
 
Additionally, the difference between regions may be influenced by the stratification of the water 
column, which is related to the depth profile. Shallower water is typically more well mixed and 
therefore has a weaker gradient between top and bottom temperatures. Deeper waters are more likely 
to be stratified, with thermoclines developing, across which a rapid drop in temperature occurs. 
Thermoclines are strongest in summer due to greater solar heating at the top of the water column. 
However, storms and strong currents can mix the water column and break down the thermocline. 
Regions 5 and 6 may have greater variation between top and bottom temperature due to their greater 
depths and the presence of one of more thermoclines, which may be weaker (or absent) in the other 
regions, causing this disparity seen in Figure 83. 
 
 

 

Figure 83: Monthly averages of water temperature at the 6’x6’ fishing sites at three depth levels: top (blue), 23m 

(orange) and green (near bottom), for Spanner Crab Regions 2-7.  

 

 Findings for NSW Snapper and Pearl Perch  

 
As the title of this project suggests, its main mission was the analysis of the impact of environmental 
changes and effects on Snapper, Pearl Perch and Spanner Crab caught in Queensland. However, its 
secondary mission was to perform at least a portion of similar analyses on the same species caught in 
NSW. Indeed, in the case of Spanner Crabs, the NSW Region 7 data from FIS were analysed alongside 
Queensland data from Regions 2 to 6. For NSW Snapper and Pearl Perch there are no FIS data, but we 
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were given access to their commercial harvest data for these two species. In this section, we present 
a summary of analyses performed on data from two main sectors: commercial line, and commercial 
trap fisheries. These two fisheries account for bulk of commercial harvest of these species. However, 
fishing effort on Pearl Perch is difficult to quantify for trap fishing, so in the following analyses, only 
results for Pearl Perch line fishery are presented. Line catch-rate may provide a better index of relative 
fish abundance (Sumpton et al. 2017). 
 
Our analyses were restricted to regions N1 and S1 for the Snapper line fishery, N2 and S2 for the 
Snapper trap fishery, as indicated in Figure 20. For the Pearl Perch only region N1 was considered. The 
environmental variables considered were: SST, GSLA, Chl-a, SOI and PDO.  
 
Starting with Snapper we had access to standardised CPUE commercial line data from 1997 to 2018, 
and commercial trap data from 2009 to 2019, as shown in Figure 7. We note that in 2001 the MLS was 
increased from 28 cm to 30 cm. In 2008, escape gaps were introduced in commercial fish traps to 
address discards. Further, recent, reforms introduced in 2018/19 would have no impact on our 
analyses. Based on discussions with NSW DPI scientists, it was determined that the standardised CPUE 
data for the period 2009-2019 were the most reliable and hence the associations reported below are 
based on this time series. For Pearl Perch commercial line fishery, the corresponding SCPUE data are 
shown in Figure 18. 
 
Results for Snapper commercial line fishery 

The summary of short-term seasonal effects of environmental indices on the log transformed SCPUE 
for the commercial line fishery is given in Table 20. We observe that for the three key variables of SST, 
GSLA and Chl-a, statistically significant correlations occur in the winter season in the northern region 
N1. However, only Chl-a yields significant correlation in winter in the more southern region S1. Chl-a is 
the only one of these three variables that yields significant correlations in spring and also in the 
spawning season of July to September, in region N1. Similarly, the correlations with the SOI index are 
statistically significant only in summer. The correlations with PDO index are uniformly consistent and 
significant but, as before, we cannot offer meaningful interpretation of these associations.  
 
Table 20: Summary of short-term seasonal effects of environmental indices on the log transformed SCPUE for the 

commercial line Snapper fishery. The effect of environmental indices was analysed in summer (Dec-Feb), autumn 

(Mar-May), winter (Jun-Aug) and spring (Sep-Nov), as well as in the spawning season (Jul-Sep), in the year of the 

catch. 2009-2018. 

 SST  Chl-a  GSLA 
SOI PDO 

 N1 S1  N1 S1  N1 S1 

Season           
summer 0.09 -0.20  0.24 0.19  -0.19 -0.32 0.64 -0.81 
autumn -0.40 -0.26  0.14 -0.06  -0.54 -0.45 0.54 -0.61 

winter -0.67 -0.08  0.65 0.68  -0.62 -0.53 0.39 -0.76 
spring -0.02 -0.48  0.56 0.65  -0.06 0.35 0.61 -0.76 

           

Spawning           
Jul-Sep -0.30 -0.08  0.59 0.52  -0.49 -0.07 0.53 -0.75 

 

 

The summary of long-term yearly lagged effects of environmental indices on the log transformed 
SCPUE for the commercial line fishery is given in Table 21. We observe that of the three key variables 
of SST, Chl-a and GSLA, only the latter contains 95% statistically significant negative correlations at lags 
of both 4 and 5 years in regions N1 and S1. Furthermore, a 6 year lag also yields a moderate correlation 
in the south region S1. While these long-term GSLA associations may be related to abundance, the lag 
0 significant positive correlation with SOI may be related to catchability. However, the statistically 
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significant negative correlation with SOI at year lag of 8 is counterintuitive but also consistent with 
some of the results concerning the negative SOI signal reported in Section 4.1.5. Once, again the 
significant correlations with PDO index are recorded for the sake of completeness. 
 
Table 21: Summary of long-term lagged effects of environmental indices on the log transformed SCPUE for the 

commercial line Snapper fishery, 2009-2018. Values in green indicate correlations statistically significant at the 

95% level. 

  Lag (years) 

  0 1 2 3 4 5 6 7 8 9 10 

Sea Surface Temperature            

Mean SST Region            

 N1 -.47 .07 -.14 -.46 -.50 -.44 .09 .10 -.39 -.22 .32 

 S1 -.38 -.37 -.39 -.48 -.19 -.20 .38 -.02 -.14 -.19 .54 

Chlorophyll a            

Log (Median Chl-a) Region            

 N1 .26 .45 .19 .10 -.17 -.09 -.22     

 S1 .38 .44 .12 .05 -.40 -.29 -.32     

Gridded Sea Level Anomaly            

Mean GSLA Region            

 N1 -.53 -.16 -.33 -.46 -.68 -.67 -.47 -.19 -.43 -.46 .27 

 S1 -.42 -.48 -.25 -.53 -.73 -.73 -.60 -.25 -.31 -.53 -.04 

Southern Oscillation Index            

Mean SOI  .69 .55 .17 .20 -.14 -.57 -.38 -.61 -.65 .03 .02 

Pacific Decadal Oscillation            

Mean PDO  -.80 -.48 -.21 -.12 -.03 .52 .63 .69 .58 .02 -.15 

 

 

Results for Snapper commercial trap fishery 
 
Overall, there are very few strong associations when looking at both the short-term seasonal effects 
(see Table 22) and the long-term lagged effects (see Table 23). In Table 22 we regard the moderately 
strong correlation of -0.60 and the significant one of -0.61 with SST and Chl-a, respectively, as spurious 
because of lack corroborating substantial correlations in other seasons and regions. On the other hand, 
we regard the correlations of 0.59 and 0.61 with SOI as meaningful because of corroborating 
corresponding correlations with SOI in commercial line fishery (see Table 20).  
  
Table 22: Summary of short-term seasonal effects of environmental indices on the log transformed SCPUE for the 

commercial trap Snapper fishery. The effect of environmental indices was analysed in summer (Dec-Feb), autumn 

(Mar-May), winter (Jun-Aug) and spring (Sep-Nov), as well as in the spawning season (Jul-Sep), in the year of the 

catch. 2009-2019. 

 

 SST  Chl-a  GSLA 
SOI PDO 

 N2 S2  N2 S2  N2 S2 
Season           

summer  0.48  0.16  -0.05 -0.61   0.04  0.32  0.25 -0.31 
autumn  0.10 -0.06  -0.12 -0.23   0.03  0.12  0.22 -0.26 

winter -0.37 -0.09   0.35  0.25  -0.12 -0.06  0.42 -0.37 
spring -0.02 -0.60   0.29  0.40   0.37  0.38  0.59 -0.55 

           

Spawning           
Jul-Sep  0.00 -0.28   0.42  0.20   0.10  0.11  0.61 -0.45 
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As far as the long-term lagged effects are concerned it is worth highlighting that there are no 
correlations that are statistically significant at the 95% level (see Table 23). This suggests that the 
Snapper commercial trap fishery may be relatively resilient to these environmental drivers. 
 
Table 23: Summary of long-term lagged effects of environmental indices on the log transformed SCPUE for the 

commercial trap Snapper fishery.  

  Lag (years) 

  0 1 2 3 4 5 6 

Sea Surface Temperature        

Mean SST Region        

 N2  .01  .08 -.22 -.35 -.15 .05 .06 

 S2 -.28 -.21 -.29 -.09 .28 .22 .12 

Chlorophyll a        

Log (Median Chl-a) Region        

 N2  .06  .06 -.14 -.22 -.37 -.02 .28 

 S2  .11  .01 -.25 -.37 -.45 -.15 .45 

Gridded Sea Level Anomaly        

Mean GSLA Region        

 N2  .07 -.16 -.33 -.51 -.50 -.22 -.10 

 S2  .18 -.04 -.31 -.52 -.55 -.27 -.12 

Southern Oscillation Index        

Mean SOI   .47  .15 -.01 -.33 -.43 -.60 -.42 

Pacific Decadal Oscillation        

Mean PDO  -.41 -.03  .12  .28 .35 .60 .45 

 

 

Results for Pearl Perch commercial line fishery 

The summary of short-term seasonal effects of environmental indices on the log transformed SCPUE 
for the commercial line fishery is given in Table 24. We observe that from the three key environmental 
variables of SST, GSLA and Chl-a only the latter registers statistically significant correlations occurring 
in the winter and spring season in the northern Region N1.  
 
Table 24: Summary of short-term seasonal effects of environmental indices on the log transformed SCPUE for the 

commercial line Pearl Perch fishery. The effect of environmental indices was analysed in summer (Dec-Feb), 

autumn (Mar-May), winter (Jun-Aug) and spring (Sep-Nov), in the year of the catch. 2009-2018. 

 SST  Chl-a  GSLA 
SOI PDO 

 N1  N1  N1 

Season        
summer -0.07  0.54  -0.11 0.51 -0.85 
autumn -0.23  0.52  -0.38 0.53 -0.71 

winter -0.58  0.78  -0.59 0.42 -0.88 
spring -0.03  0.69  -0.14 0.57 -0.88 

 

 

The summary of long-term lagged effects of environmental indices on the log transformed SCPUE for 
the commercial line fishery is given in Table 25. There are a number of similarities between 
corresponding correlations in the previously discussed Snapper line fishery. Like Snapper, the lag of 
four years yields the strongest correlations with both SST and GSLA of -0.65 and -0.84, respectively. 
We also note the presence of strong negative associations with SOI at lags of 6-8 years. 
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Table 25: Summary of long-term lagged effects of environmental indices on the log transformed SCPUE for the 

commercial line Pearl Perch fishery.  

 
  Lag (years) 

  0 1 2 3 4 5 6 7 8 9 10 

Sea Surface Temperature            

Mean SST Region            
 N1 -.41 -.25 -.05 -.30 -.65 -.42 -.02 -.01 -.29 -.16 .20 

Chlorophyll a            

Log (Median Chl-a) Region            

 N1 .45 .49 .07 .32 -.22 -.33 -.09     

Gridded Sea Level Anomaly            

Mean GSLA Region            

 N1 -.46 -.34 -.27 -.37 -.84 -.64 -.51 -.42 -.42 -.36 .18 

Southern Oscillation Index            

Mean SOI  .64 .55 .58 .13 -.20 -.33 -.66 -.65 -.65 -.22 .01 

Pacific Decadal Oscillation            

Mean PDO  -.91 -.65 -.44 -.17 .00 .49 .74 .72 .66 .31 -.01 

 

 

 Rapid Adaptive Projections Tool (RAPT) 

An important benefit of incorporating abiotic environmental variables into stock assessment models is 
that many of them are accompanied by reliable forward projection/forecasting tools. To effectively 
communicate the results of this project we have developed a rapid adaptive projection tool (RAPT) 
within the R-shiny environment (Chang et al. 2020). This tool permits running forward scenarios 
substituting forecasts of environmental variables into the surplus production models discussed in 
Section 4.5, under alternative harvest management scenarios. The computation of such projections is 
fast and is built in to RAPT’s user friendly online calculator.  
 
Naturally, the uncertainty accompanying of RAPT's projections will grow with the number of time steps 
into the future. We expect that these reliability periods will vary from species to species. Parameters 
underlying the stock models should be scheduled for regular updates as successive years' data become 
available. 
 
RAPT’s graphical user interface also provides a "dashboard" of projected of biomass ratios of the 
selected species for regions of interest.  Users are thus able to able to view convenient displays of both 
historical trajectories of the system and future projections for the fishery. The dashboard allows 
stakeholders to easily assimilate the accumulated scientific knowledge and data embedded in the 
surplus production stock assessment models and to better visualise their projections.  This allows users 
to explore the effects of different environmental conditions and harvest rates on stock recovery. 
 
The RAPT software and instruction files can be found in the project’s repository directory on 
https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ.  
   
  
 

https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ
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 Discussion 

In line with the objectives of this project we have constructed several novel, as well as many standard, 
environmental indices and shown a wide range of associations between these indices and measures of 
either abundance or catchability for the three target species. Furthermore, we developed a 
methodology for incorporating these indices into surplus production stock assessment models. Results 
obtained were discussed in Sections 4.5.  
 
Broad issues and limitations 
 
Collectively, the methodology, datasets, analyses, and findings gave rise to several important issues 
that deserve further discussion and reflection, in the context of both what has been previously 
reported in the literature and the limitations of the present study.  
 
1. All three species studied are depleted or depleting, making it particularly difficult to distinguish 

potential environmental effects from the effects of fishing.  

 
Specifically, Queensland stocks of all three focal species for this work are listed as either “depleting” 
or “depleted” (SAFS, 2018), with pronounced declines in CPUE over time apparent in all available 
datasets. In this context, it is challenging to detect potential historical environmental effects 
influencing stocks whose abundance trajectories may have been driven by declines in spawning 
biomass (Wortmann et al. 2018; Sumpton et al. 2017; Campbell and O’Neill 2016). The prolonged and 
persistent decline in measures of abundance for these stocks is coincident with the prolonged and 
persistent shifts in key environmental variables (increases in SST and GSLA, decline in Chl-a) resulting 
from a changing climate. This has the potential to conflate statistical correlations between 
environmental variables and measures of species abundance and should be kept in mind when 
interpreting these correlations. As such, we treat correlations that are persistent across multiple time 
lags, and that do not occur at time scales relevant to the species’ biology or across all regions, as 
coincidental rather than causative.  
 
2. Long-term trends and future projection in environmental variables are difficult because many of 

them are interacting with each other and are affected by climate processes operating on annual 

(e.g. SOI) and decadal (e.g. PDO) timescales as well as the non-linear effects of climate change.  

 

The simplified environmental forecasting produced for this report was carried out mainly for the 
purpose of informing realistic scenarios for the surplus production models. Actual long-term trends in 
SST, Chl-a, and GSLA are likely to be far more complex, resulting from large-scale oceanographic and 
climate processes interacting with local conditions at annual (e.g. SOI) and decadal (e.g. PDO) time 
scales, overlaid with non-linear effects of climate change (Steinberg 2007). Short-term extreme events 
such as MHWs can also have rapid and profound impacts on marine species, which can affect the 
population for a number of years after (Caputi et al. 2019, Benthuysen et al. 2020). That said, a general 
trend of increasing SSTs, enhanced water column stratification, and declining primary productivity has 
been observed in marine waters across Australia (Richardson et al. 2020), at rates comparable to those 
presented here.  
 

3. A relatively small number of fishery data points were available.  

 

The limited number of observations related to species abundance should be kept in mind when 
interpreting the patterns discussed in this paper. Both FIS and commercial SCPUE datasets were 
provided at annual timesteps, and for a limited number of years, such that all correlations identified in 
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this report are drawn from fewer than 30 data points each. In particular, correlations with the Snapper 
pre-recruit dataset are based on just 11 observations. Analyses based on small datasets are known to 
be particularly vulnerable to overfitting, with extremely high, “optimistic” correlation coefficients 
frequently resulting from chance alone (Smith et al. 2014) and noted in previous research on Snapper 
pre-recruits (Francis 1993). In this project we guarded against overfitting by focusing on parsimonious 
models. 
 
4. Recent revision of IMOS chlorophyll a data. 

 
It should be noted that the Chl-a data that we used were the daily MODIS GSM Chl-a data from IMOS 
downloaded in March 20206. The source data were revised late in August 2020. These revisions show 
a weaker declining trend that also weakens our findings concerning associations with Chl-a. Since the 
revised Chl-a data have not yet been subjected to broad scrutiny of the scientific community, we retain 
the current findings. 
 
5. Spawning stock-recruitment relationship. 

 
We acknowledge the need to study the impact of environmental factors on spawning stock-
recruitment relationships (SPRR) along the lines pioneered in Penn and Caputi (1986). However, 
Queensland’s FIS Snapper data were collected annually during the November to December period as 
it focused on pre-recruits. As such they do not overlap with the May to October spawning period. It is 
not clear whether commercial CPUE data from that period could have been used as a proxy, because 
the latter omit recreational catch that accounts for a very significant proportion of total Snapper 
harvest in Queensland. Moreover, in the case of Spanner Crab, FIS data do not permit identification of 
the age of crabs caught which presents another challenge to investigating SPRR.  
 
Main Snapper findings and biological hypotheses 

 

1. Snapper pre-recruit density and its negative correlation with SST in offshore areas in the preceding 

June & July (see Section 4.1).  

 

The negative correlation between pre-recruit density and SST in the preceding June and July may be 
associated with an influence of temperature on egg production (i.e., spawning adults), larval survival, 
or both. The timing and duration of Snapper spawning are known to be influenced by water 
temperature (Scott and Pankhurst 1992; Francis 1993; Lenanton et al. 2009; Wakefield et al. 2015), 
with earlier spawning at low latitudes and later spawning at higher latitudes observed on both the east 
(Hamer et al. 2011; Scott and Pankhurst 1992) and west (Wakefield et al. 2015) coasts of Australia. The 
negative correlation detected between Snapper pre-recruit density in the November/December FIS 
and SST in offshore areas in the preceding June and July suggests that ideal Snapper spawning 
temperatures are attained in this region in June and July, as observed in a similar latitude Snapper 
population on the west coast (Wakefield et al. 2015).  

In addition, the use of our 𝛿-rectified mean technique allowed us to identify a specific SST sensitivity 
range of 19.8 ˚C to 21.8˚C, in June. Higher frequency and larger magnitude of temperatures above 
these thresholds were negatively associated with subsequent Snapper FIS pre-recruitment, with a 
correlation value ≤ -0.8 (and p-values ≤ 0.002).   

Previous research has identified 18˚C as the optimum temperature for larval Snapper survival in 
captivity at Port Stephens, NSW (Fielder et al. 2005), while work from New Zealand demonstrated that 

 

6http://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/OC/gridded/aqua/P1D/catalog.html .  

http://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/OC/gridded/aqua/P1D/catalog.html
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warmer SSTs (within the observed range of 16.0 to 18.5˚C) improved Year Class Strength, potentially 
as a result of greater larval growth rates and survival rates in relatively warmer waters (Francis 1993). 
The cooler ideal temperatures identified in the earlier Snapper research as compared to the current 
work may be a result of the different latitudes and stocks studied. 
 
2. Snapper pre-recruit density and its positive correlation with Chl-a in the preceding June-October in 

offshore areas, and the preceding September-October within Moreton Bay (see Section 4.1).  

 
The positive correlation between Snapper pre-recruit density and Chl-a in the preceding June to 
October period in offshore areas, and in the preceding September/October period within Moreton Bay, 
suggests a direct relationship between primary productivity and larval Snapper growth rates or 
survival. Given that Snapper spawning in this region occurs between May and October, with a peak in 
the June/July period (Wortmann et al. 2018), larval Snapper are likely to be in the plankton in offshore 
areas, where they would benefit from the trophic consequences of greater primary productivity 
(Murphy et al. 2013, Parsons et al. 2013), between June and October, as was identified in the current 
study. Research from New Zealand indicates that newly-settled Snapper predominantly feed on 
zooplankton rather than benthic invertebrates (Martin Lohrer et al. 2018), which could explain the 
secondary correlation between pre-recruit density and Chl-a in September/October within Moreton 
Bay. 
 
3. Snapper pre-recruit density and its negative correlation with tidal range in September (see Section 

4.1). 

 
The negative correlation between Snapper pre-recruit density in the November/December FIS and 
tidal range in the preceding September may be related to Snapper settlement, with reduced water 
movement associated with neap tides potentially making it easier for larval Snapper to move into 
Moreton Bay. However, this is the opposite of the association previously identified in New Zealand, 
where Snapper larval settlement was greater following larger tidal ranges, potentially due to larval 
taking advantage of “tidal-stream transport” to access suitable settlement habitat (Sim-Smith et al. 
2013). The larvae of perciform fishes such as Snapper are known to have behaviours and abilities that 
can influence their dispersal trajectories, particularly in warmer waters (Leis 2007). The difference 
between our result and that of the previous New Zealand work may be due to differences in the tidal 
dynamics in these two locations, the metrics used (monthly mean tidal range, this study; daily tidal 
range, Sim-Smith et al. 2013), or to the shape of the settlement bays relative to prevailing currents.  
 
4. Snapper pre-recruit density and its positive correlation with QLD-wide commercial line CPUE four 

years later (see Section 4.1). 

 
The positive correlation between Snapper pre-recruit density and commercial SCPUE four years later 
represents a crucial link between the long-term FIS work and subsequent commercial catch rates (see 
Section 4.1.6). The timing of the lagged relationship is plausible, as four-year-old fish are the most 
abundant age class in the commercial catch of Snapper in Queensland (Wortmann et al. 2018).  
 
Previous work by Francis (1993) indicated that Snapper year class strength is affected by post-
settlement processes, such as warmer autumn water temperatures increasing juvenile growth rates 
and subsequently improving winter survival rates. Further work is required to confirm this hypothesis 
for Queensland Snapper. As a first step, the current project quantifies the relationship between 
juvenile and adult abundance and provides a critical step for improving future stock assessments for 
the species, informing adaptive, active management of this iconic fishery. 
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5. Negative effect of MHW on Snapper SCPUE two years later (see Section 4.1.8).  
 
The negative relationship between MHW and Snapper SCPUE two years later suggests that MHW may 
briefly depress SCPUE in the years following MHW events. We hypothesise that this may be a result of 
MHW events displacing adult Snapper towards deeper, cooler waters that are not typically targeted by 
fishers, or southwards outside of the bounds of the Queensland fishery. A similar temperature-induced 
displacement of large juvenile and adult finfish was observed in Western Australia in the two years 
following the 2011 MHW event (Caputi et al. 2014).  
 
6. Possibility of compounding effects  

 
We note that some of the environmental indices explored could potentially have compounding effects 
on the study species. Hypothetically, an environmental driver could correlate positively with 
catchability of adults and negatively with recruitment or survival rates of juveniles. That could, 
potentially, create a cumulative risk for the sustainability of the species. This point is raised because in 
Table 4 we listed a significant positive correlation of 0.69 between densSPR of Snapper pre-recruits 
and the mean SOI variable in the most recent March (lag 9). This suggests that low SOI values (i.e., El 
Niño conditions) in March may result in lower densities of Snapper pre-recruits later that year. If El 
Niño conditions coincidentally increase catchability of adult Snapper (e.g. due to improved conditions 
for offshore fishing), this could result in a situation in which the same environmental phenomenon 
(SOI) would be contributing to simultaneously reducing recruitment and increasing catch rates. The 
possibility of such “double jeopardies” on the fishery merits further investigation.  
 
Main Pearl Perch findings and biological hypotheses 
 
1. Qld line Pearl Perch SCPUE and its negative correlation with GSLA with lags of 0 and up to 9 years, 

and positive correlation with Chl-a with lags of 0,1,2 years (no older Chl-a data) (see Section 4.3). 

 
Positive correlations between Pearl Perch SCPUE in Queensland and Chl-a, along with concurrent 
negative correlations with GSLA, were identified at lags of 0 to 9 years, although Chl-a data were 
unavailable for lags greater than 2 years. We do not see any credible biological mechanisms for these 
associations and hypothesise that the consistency of these correlations indicates that they are 
statistical artefacts of the decadal decline in the Pearl Perch fishery resulting from overfishing, 
coincident with the decadal increase in GSLA associated with climate-change, and the concurrent 
decadal decrease in Chl-a (Richardson et al. 2020). 
 
Main Spanner Crab findings and biological hypotheses  

 

1. Spanner Crab CPUE in Region 4 was insensitive to many of the environmental variables tested, with 

some exceptions (see Section 4.2): 

 
a. The strong, positive, non-linear correlation between Spanner Crab CPUE in Region 4 and 

bottom current speed at lag 0 hints at an effect on crab catchability, with a similar relationship 
previously reported in the literature, and is suggested to be related to stronger currents 
carrying the odour of bait to a larger area (Spencer et al. 2019). However, we are cautious with 
this interpretation because the correlation was not detected in other regions, as would be 
expected if the mechanism behind the correlation was due to greater distribution of the odour 
of bait. Furthermore, the strong correlation between Spanner Crab CPUE in Region 4 and 
bottom current speed was persistent across a number of temporal lags (Figure 49), hinting at 
a different, unmeasured covariate influencing the relationship observed in the present study.  
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b. The negative correlation detected between bottom temperature and Spanner Crab CPUE in 
Region 4 was observed during months from November to February every year for up to four 
years (Figure 45). While this period coincides with Spanner Crab spawning season, and it is 
unlikely that these correlations are linked to biological processes such as egg production or 
survival of pre-recruits. This is because legal-size Spanner Crabs are not caught in the fishery 
until they are four or more years of age (Kirkwood et al. 2005), and therefore the occurrence 
of optimal or sub-optimal bottom temperature one year prior could not be the driver of 
changes in stock productivity. This is further re-enforced by the absence of relationships in 
data from other regions.  

 

2. Spanner Crab FIS in Regions 2 and 3 and their many positive correlations with Chl-a and negative 

associations with GSLA in the months leading up to the catch (see Section 4.2).  

  
a. Spanner Crab CPUE in Regions 2 and 3 was frequently negatively correlated with GSLA and 

positively correlated with Chl-a in the months leading up to the FIS. The location of the FIS 
subgrids within Regions 2 and 3 (Figure 8) coincides with a known hot-spot for eddy formation 
and consequent upwelling: the Swains Reefs trigger frequent eddy formation off the EAC, with 
eddies typically “spinning up” offshore of the Capricorn Bunker reefs (23.4394°S) (Weeks et al. 
2010) and leading to local Chl-a blooms. It is possible that reduced primary productivity in the 
preceding months is associated with lower Spanner Crab catch rates, with reduced food 
availability shifting Spanner Crabs out of traditional foraging areas.  

 
b. The catch rate of sublegal sized Spanner Crabs in Region 3 was negatively correlated with GSLA 

and positively correlated with Chl-a during spawning months four-years prior (i.e., October and 
November, 42 and 43 month lags). The sublegal index is predominantly made up of four year 
olds crabs, and therefore it is possible that declines in food availability – driven by increases in 
GSLA and reductions in Chl-a – may have contributed to lower recruitment success within 
Region 3. Given that Region 3 historically received high fishing pressure, it is plausible that with 
already reduced egg production in the area, persistent unfavourable environmental conditions 
may be adding to stock recruitment pressures.  
 

c. Regions 2 and 3 are particularly strongly associated with Chl-a at the majority of time lags in 
the year preceding the catch. Chl-a is a proxy for primary productivity at the ocean surface, 
which is expected to be beneficial to higher trophic levels in the plankton, such as larval 
Spanner Crabs. Given that Spanner Crabs captured in the fishery are likely > 4 years old, the 
mechanism by which Chl-a influence catch rates the following year is unclear but may relate 
to food web effects of high levels of primary productivity enhancing productivity of prey 
species of adult Spanner Crabs. 

 
3. Spanner Crab Region 7’s association patterns are often opposite to other regions (see Section 4.2). 

  
a. Spanner Crab management Region 7 was notable for consistently demonstrating contradictory 

environmental correlations with those detected in other regions. This may be a result of 
beneficial effects of climate change-induced warming on a species at the southernmost extent 
of its range, as has been reported in a number of other marine taxa (Poloczanska et al. 2016, 
Wolfe et al. 2020, Champion et al. 2021). This may be the case here, with positive correlations 
between catch rates in the Spanner Crab FIS and MHW at a number of different time lags 
(Figure 51).  

b. We note that Region 7’s catch rate is somewhat confounded by a shift in fishing activity within 
NSW waters which results in a multi-year decline in local fishing effort. This effort shift likely 
contributed to increasing CPUE in Region 7 during the same period that other regions have 
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recorded declines in CPUE. This apparent increase in Region 7’s CPUE is coincident with long-
term environmental trends, such as increased SST, GSLA, and MHWs, and declining Chl-a, not 
necessarily causative. This hypothesis is supported by statistical associations such as a 
persistent negative relationship between Chl-a and Spanner Crab CPUE in Region 7, which is in 
opposition to established biological associations between primary productivity and catch rates 
of other taxa (Blanchard et al. 2012; Friedland et al. 2012).  

 
4. No convincing correlations between Spanner Crab FIS data and any SST metric in any region (see 

Section 4.2). However, analyses of the last decade of FIS data (see Section 4.2.7) suggest that 

possible associations with MHW (see Section 4.2.5) should continue to be monitored. 

 
In general, there were few convincing correlations between Spanner Crab CPUE and different 
measures of SST or bottom temperature. This is somewhat similar to previous research indicating that 
the relationship between Spanner Crab catch rates and water temperature is complex, and highly 
variable by region (Spencer et al. 2019).  
 

 Conclusions 

This project aimed to identify the environmental factors which may be influencing the recruitment, 
catchability or productivity of Snapper, Pearl Perch, and Spanner Crab stocks in Queensland. Results 
from this work are intended to support sustainable management of Queensland’s fisheries by directly 
informing the assessment and management of these key species within Queensland waters.  
 
The original spirit of this project was to tell “the story that the data tell”. The reported analyses, results 
and discussions indicate a level of complexity that requires further research to more fully resolve the 
impact of environmental factors on Queensland’s fish stocks. This is because, fundamentally, the data 
of the environmental drivers and their impacts on the target species reflect intricate dynamics of 
diverse processes and include their associated feedbacks such as multi-scale climate oscillations.  
 
More specifically, we demonstrated that while there is no shortage of strong associations, some of 
these indicate the presence of complex interactions among biological, oceanographic, and climate 
processes, as well as fishing harvest activities and changes in fishing effort. Accordingly, the identified 
associations with environmental drivers may manifest themselves differently in space and time. 
Moreover, some observed associations may be due to an environmental phenomenon impacting 
species abundance, catchability, or both. 
 
Across the three target species, two environmental variables, GSLA and Chl-a, were found to have 
strong associations with either abundance or catchability across the three target species. These 
associations occurred at spatio-temporal scales relevant to each species’ biology. SST also had strong 
associations with Snapper as well as more nuanced, associations with Spanner Crabs in specific regions. 
 
Importantly, all three of these environment variables, GSLA, SST and Chl-a, were found to have certain 
consistent long-term trends, with rates of change depending somewhat on the region under 
consideration. In particular, these trends show that GSLA and SST have been increasing, while Chl-a 
has been decreasing.  
 
If these trends are sustained, and the direction and strength of the identified associations are 
maintained, they have the potential to delay the effectiveness of sustainable stock management 
strategies. In particular, we demonstrated that incorporating these environmental variables into 
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simple surplus production stock assessment models results in, under some scenarios, delays in stock 
recovery. 
 
However, we also demonstrated that incorporating environmental variables into existing CPUE 
standardisation models did not lead to significantly improved performance of these models. The latter 
are so heavily parametrised that the influence of environmental variables may have already been 
accounted for by year, month and region-specific interaction terms already included in the 
standardisation. This is despite some of the environmental variables being classified as statistically 
significant within the generalised linear models’ framework.  
 
In addition, we also identified intriguing long-term associations with several environmental drivers 
including those consisting of intermittent events such as MHW or El Niño and La Niña episodes. While 
these could be indicative of potential impacts on the species’ abundance, biological mechanisms 
related to these associations were unclear. Moreover, their frequency and intensity in the future were 
very hard to model and forecast. They are recorded in this report so that other researchers have an 
opportunity to investigate them in more depth. 
 
Similarly, in the case of the Spanner Crab fishery, we identified a complex pattern of positive and 
negative associations with environmental variables that calls for further study of the underlying 
processes contributing to them across the six regions and on different time scales. Several of these 
environmental variables exhibit starkly different features the causes of which are likely related to the 
observed pattern of associations. These variables include, but are not limited to, current speed, 
individual components of the current velocity, and water temperatures at different depths. They 
deserve further investigation by oceanographers and marine biologists. 
 
The stock models produced as part of this research were developed primarily for the purposes of 
observing and testing the influence of environmental factors on the stock productivity, now and into 
the future. In achieving this outcome some model assumptions, adjustments and simplifications have 
been introduced to the models presented herein that may result in them differing from those currently 
being used to inform biomass estimates and harvest levels for each stock. Therefore, while we hope 
that the important outcomes demonstrated through this work result in the enhancement of future 
stock assessments to inform management, we stop short of recommending that the biomass 
projections and TACCs developed herein should be used to support management decisions. 
 

 Snapper Specific Conclusions 

Of the three species studied Snapper yielded the most convincing results of the type of associations 
that might be expected. Furthermore, the availability of FIS data for Snapper pre-recruits made it 
possible to attribute some of the identified associations as impacting species abundance rather than 
catchability. Several environmental variables were found to have strong associations with either the 
abundance or catchability of Snapper. These included GSLA, SST, Chl-a, river discharge volume, tidal 
range, SOI and others.  
 
There was evidence of strong, negative, linear association between pre-recruit FIS density in November 
– December and SST in the preceding June and July (i.e., adult spawning period) in offshore areas where 
the majority of Snapper spawning stock is thought to be present. Furthermore, certain threshold 
sensitivity SST temperatures (in the range of 19.8˚C to 21.8˚C) were identified for offshore Snapper 
spawning. Higher frequency and larger magnitude of temperatures above these thresholds in June are 
negatively associated with subsequent Snapper pre-recruits, with correlation values at or below -0.8.  
There was also evidence of positive linear relationships between pre-recruit FIS density in November 
– December and Chl-a in the preceding June-October period in offshore areas and in the preceding 



 

133 

 

September-October period within Moreton Bay. This may be related to high levels of primary 
productivity improving Snapper larval survival and/or growth rates in the plankton.  

The density of Snapper pre-recruits in the annual FIS in Moreton Bay was shown to be an indicator of 
subsequent commercial line CPUE in Queensland. The strongest correlation was between the density 
of Snapper pre-recruits and commercial catch rates four years later. Four-year-olds are typically one 
of the most abundant age classes in the Queensland Snapper line fishery.  
 

 Spanner Crab Specific Conclusions 

The environmental variables that were found to have significant associations include (but are not 
limited to): GSLA, SST, Chl-a, SOI, components of ocean current velocity and MHW. There were 
indications that some of the differences in these associations are based on the large latitudinal gradient 
across the Spanner Crab management regions as well as on the cross-shelf depth gradient of the 
surveyed locations within each management region. 
 
Perhaps, fortunately, in the most productive Region 4, the FIS catch rate of legal-size crabs was found 
to be relatively insensitive to fluctuations in the following important environmental variables: Chl-a, 
GSLA, SST, and MHW. FIS catch rates in Region 4 were found to be positively correlated with bottom 
current speed during the month of capture which was seen to be related to catchability. This 
association may be of interest to fishers, as there seems to be a consensus that the East Australian 
Current is accelerating (e.g. Cai et al. 2005). 
 

We also concluded that, based on the data used in our study, Chl-a was significantly associated with 
the catch rate of legal-size crabs in four of the five Queensland regions. Significant positive correlations 
in Regions 2, 3, 5 and 6 were present at multiple monthly lag times ranging from 1 to 48 months. Given 
that Spanner Crabs captured in the fishery are likely at least four years old, mechanisms by which Chl-
a influence catch rates the following year are unclear. Moreover, Chl-a is a proxy for primary 
productivity at the ocean surface, which is expected to be beneficial to higher trophic levels in the 
plankton, such as larval Spanner Crabs. 
 
GSLA was found to be negatively associated with the catch rate of legal-size crabs in Queensland 
Spanner Crab Regions 2, 3 and 6, at multiple monthly lag times. Sea level anomalies are indicative of 
eddies, upwelling, downwelling events and current speed. The negative correlation with spanner crab 
catch rates indicates that downwelling is deleterious and upwelling is beneficial to subsequent Spanner 
Crab catch rates. Upwelling typically triggers primary productivity blooms.  
 
The direction of significant associations in the NSW Spanner Crab Region 7 was found to be generally 
opposite to those in Regions 2, 3 and 6. This applies to the correlations of the catch rates of legal-size 
crabs with GSLA, Chl-a and SST. While the biological mechanism is unclear, it is conceivable that in this 
southernmost region the long-term warming trend could be beneficial rather than detrimental. This is 
in concordance with recent findings for Queensland saucer scallop fishery in Courtney et al. (2021) 
who report that increased catch rates have been observed in the southern most part of the fishery off 
Fraser Island in recent decades. Alternatively, these associations may be an artefact of large reductions 
in commercial fishing effort in this region in recent years improving local catch rates, coincidentally 
during the same period that GSLA and SST has been increasing and Chl-a has been decreasing. 
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 Pearl Perch Specific Conclusions  

There was no fishery independent survey done for Pearl Perch to permit similarly detailed analyses to 
those conducted on Snapper and Spanner Crab. However, CFISH logbook data for the Queensland’s 
commercial Pearl Perch line fishery were analysed for associations with SST, Chl-a and GSLA.  

In particular, GSLA had a significant negative association with the commercial standardised CPUE in 
Queensland, lagged by 0 – 6 years. This suggested presence of long-term delayed effects of the GSLA 
variable. There were also statistically significant positive correlations between Pearl Perch CPUE and 
Chl-a, lagged by 0, 1 and 2 years. The current year (lag 0) yielded the strongest degree of association, 
suggesting a positive effect of Chl-a on Pearl Perch catchability, although a biological mechanism for 
this is unclear. 
 

 Implications 

Our three target species - Spanner Crabs, Snapper and Pearl Perch – were selected by Fisheries 
Queensland based on their categorisation as depleting or depleted in the national Status of Australian 
Fish Stocks Reporting (SAFS 2018). As a result, these species are of key interest to the management 
agencies in Queensland and NSW. Findings of this project inform fishery managers, industry 
stakeholders and the public about: (a) The environmental associations of the three targeted fishery 
species, (b) The possible impacts of environmental drivers on these fishery stocks, and (c) The impacts 
of environmental drivers on predictive modelling of fishery stocks, including the evaluation of different 
management strategies. 
 
The main implication of our study is cautionary in the following ways: 
 
A. Fishery stakeholders need to be cognisant of possible, near term, adverse scenarios if the observed 

increasing trends in sea level anomalies and seas surface temperature and decreasing trends in 
Chl-a continue. 

B. Some of these long-term trends are consistent with literature on climate change and, as such, 
unlikely to self-correct in the near term, except for intermittent oscillations such as La Niña 
episodes. 

C. Short-term surplus model forecasts indicate that historical levels of harvest of these three species 
are unlikely to be achievable in the future. 
  

A secondary, more optimistic, implication stems from the following findings which, however, require 
ongoing monitoring, or further research, to confirm their persistence: 
 
D. Presence of certain, counterintuitive, significant associations between catch rates and key 

environmental drivers and (in some cases) absence of the same, may indicate opportunities for 
stable future harvests. 

E. For Spanner Crabs, D would be consistent with the observed relative resilience of Region 4 and 
observed associations in Region 7.  

F. For Snapper, D would be consistent with the observed relative resilience of trap fishery in NSW. 
 
Finally, the results from this project indicate that environmental variables can be used to inform future 
harvest strategy development through setting of reference points and should be considered for 
incorporation into performance measures that are used to set harvest limits via harvest strategies. 
Further work is required to determine the most appropriate method for forecasting the effects of 
environmental variables on biomass into the future.  
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 Recommendations 

Several recommendations follow directly from the findings of this study.  

1. Continue annual fishery independent abundance surveys of Snapper and Spanner Crabs to validate 
stock status and to optimise management procedures. Consider developing fishery independent 
monitoring of Pearl Perch recruitment using methods similar to those used to monitor Snapper 
recruitment. As the time series for the FIS abundance indices are relatively short, confidence in the 
study’s main findings should improve with additional annual survey data. 

2. Consider key environmental variables (GSLA, Chl-a, and SST) and their forecasts when developing 
harvest strategies.  

3. Ideally, undertake targeted investigations which distinguish the effects of fishing from 
environmental effects, for example whether environmental associations are detectable in areas 
not subject to recent fishing pressure (protected or unfished area).   

4. Investigate underlying causes of the relative resilience of Spanner Crab catch rates in Region 4 to 
environmental fluctuations, possibly with greater focus on oceanographic processes specific to 
that region. 

5. Continue monitoring those identified, unexplained, associations between catch rates (both FIS and 
commercial) and key environmental drivers that may be indicators of enhanced, or stable, future 
harvests. For instance, in Regions 7 and 4 of the Spanner Crab fishery.  

6. Regularly update the biomass ratio trajectories of Kobe plots in surplus production models as a, 
simple, diagnostic tool of progress towards goals of MSEs. 

7. Further explore the incorporation of environmental effects into the CPUE standardisation 
procedure for each species. The current procedure incorporates a categorical “year” factor, which 
likely absorbs much of the interannual variability potentially stemming from environmental 
conditions. Explicit and iterative replacement of the “year” factor, as well as seasonality 
parameters, with different environmental variables could identify and quantify the environmental 
conditions affecting catch rates. “Logbook grid” is a spatial explanatory term in the CPUE 
standardisation procedure in many Queensland fished species, which is also likely correlated with 
environmental influence. Hence, if environmental influences are incorporated in the 
standardisation GLM, inclusion of potentially redundant temporal (e.g. year) and spatial (e.g. grid) 
factors requires further consideration. 

8. Empirically quantify fishing power for use in the CPUE standardisation procedures for Snapper and 
Pearl Perch.  

 

 Further Development 

Constraints of time and resources – that included the onset of COVID-19 restrictions - prevented us 
from carrying out certain analyses that, ideally, we would have wanted to complete. In this section we 
mention three tasks that fall into this category. 
 
The first of these concerns the list of potentially meaningful environmental variables presented in Table 

1. Not all of these were analysed in this project even if their data were pre-processed for such analyses. 
For instance, wind speed and direction or variables related to eddy activities were not covered. It would 
be desirable for analyses on these important variables to be completed. This would encourage 
researchers to further explore potential impacts of environmental drivers. In addition, there are other 
variables beyond the scope of the current project which merit investigation, in particular regarding 
habitat availability and changes. For example, Spanner Crabs prefer coarse sandy sediments which 
enable them to bury themselves, but large flood or storm events may locally deposit fine sediments, 
which could result in increased Spanner Crab natural mortality due to predation, or Spanner Crab 
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movement away from affected areas. Note that recently, Courtney et al. (2021) modelled the 
distribution of sediment types and saucer scallops on the Queensland coast. 
 
The second task is related to the timing of intermittent episodes such as MHWs or El Niño/La Niña 
events. The biological impact of these events may be amplified, or reduced, depending on the season 
at which they occur (e.g. winter spawning of Snapper), or the life history stage of the species of interest 
(e.g. pelagic larval phase) that they coincide with. This would require more detailed analyses tailored 
to each species. It would also potentially reduce the number of episodes such as MHWs qualifying for 
consideration. 
  
The third task concerns our objective (2) as stated in Section 2. It was determined that surplus 
production models offered the most promising pathway of incorporating the impact of environmental 
factors into stock assessments – in a unified fashion – for all three target species. There was a threefold 
rationale for this determination. Firstly, there is no age-structured stock assessment model of Spanner 
Crabs and surplus production models were the only option. Secondly, our attempts to exploit CPUE 
standardisation models did not yield useful results. Thirdly, DAF is currently updating its age-structured 
stock models for Snapper and Pearl Perch, so it would not be appropriate to work with the models that 
will soon be replaced. However, we feel that incorporation of environmental drivers into age-
structured stock assessment models is an important task that should be undertaken. In fact, we have 
considered the methodology for tackling this task which we, briefly, outline below.  
 
Incorporating environmental indices into age-structured models  

Consider a traditional age-structured population model with an annual time step measured in years. 
The population dynamics input is total annual catch and fitted to standardised annual catch rates and 
age-frequency data. Generally, the number of individuals at age 𝑎 + 1 at time 𝑡 + 1 is described by the 
system of recursive equations 
 

𝑁𝑎+1(𝑡 + 1) = {

 𝑁𝑎(𝑡)𝑒−𝑀(1 − sel𝑎 ⋅ 𝑑𝑎 ⋅ 𝑈(𝑡)), 𝑎 = 1, … , 𝑎𝑚𝑎𝑥−1

𝐸(𝑡)

𝛼 + 𝛽𝐸(𝑡)
,                                       𝑎 = 0

 

 

(28) 

where 𝑡 is the year, 𝑎 denotes age of the fish in years, 𝑎𝑚𝑎𝑥 is the oldest modelled age, 𝑀 is the annual 
instantaneous natural mortality rate, 𝑠𝑒𝑙𝑎 is the gear-selectivity at age 𝑎, 𝑑𝑎 is the discard mortality at 

age 𝑎, 𝑈(𝑡) = �̂�(𝑡)/𝐵(𝑡) represents the harvest rate at time 𝑡, where �̂�(𝑡) is the recorded total annual 
catch (in t) and 𝐵(𝑡) is the exploitable biomass at time 𝑡 (in tons). Finally, 𝐸(𝑡) is the number of recruits 
(or egg production) and 𝛼, 𝛽 are parameters of the associated Beverton-Holt type recruitment relation 
(Beverton and Holt 1957). 

There are several, natural, ways to modify (28) to account for the impact of the environmental index 
𝒛𝑡 depending on whether such index is deemed more likely to impact recruitment, survival or growth 
rates. For instance, we intend to consider modified models of the form 
 

𝑁𝑎+1(𝑡 + 1) = {

 𝑁𝑎(𝑡)𝑒−𝑀𝑒𝝂𝒂𝒛𝑡(1 − sel𝑎 ⋅ 𝑑𝑎 ⋅ 𝑈(𝑡)), 𝑎 = 1, … , 𝑎𝑚𝑎𝑥−1

𝐸(𝑡)𝑒𝜼𝒛𝑡

𝛼 + 𝛽𝐸(𝑡)𝑒𝜼𝒛𝑡
,                                       𝑎 = 0

 

 

(29) 

where we have the options of eliminating the influence on either the recruits (by setting 𝜂 = 0 ), or on 
subsequent cohorts (by setting 𝜈𝑎 = 0).  
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 Extension and adoption  

To date the research team has been focusing on the scientific aspects of the study and there has been 
very limited opportunity for extension activities. Nonetheless, the process of disseminating the 
objectives and findings of this project has begun and will continue in order to reach diverse groups of 
end users including fishery managers, industry, pertinent research communities and the public at large. 
The following is the list of extension activities have either taken place or are still pending:  
 
1. UQ News media release on 20/01/2020 entitled “How do environmental factors impact 

Queensland’s fisheries”, see https://www.uq.edu.au/news/article/2020/01/how-do-
environmental-factors-impact-queensland%E2%80%99s-fisheries  

2. Results communicated to stakeholders at Spanner Crab working group on 5/3/2021 by team’s Dr 
S. Williams, and to stakeholders at the Rocky Reef Fishery working group on 14/7/2021 by 
team’s Dr S. Leahy. These groups represent all relevant stakeholders including recreational 
fishers, commercial fishers, charter fishers, scientists, and conservationists. 

3. Progress and findings were presented to representatives of our main stakeholder groups 
comprising the project Steering Committee. Three, half day long meetings were held on 
27/03/2020, 12/10/2020 and 5/03/2021. 

4. Results communicated to Fisheries Queensland fishery managers and stock assessment team via 
copy of this report once reviewed by FRDC.  

5. The RAPT software and instruction files can be found in the project’s repository directory on 
https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ. 

6. Provide model support online.  
7. News release scheduled to coincide with FRDC’s acceptance of the final report. Future media 

engagement and extension will be overseen by project PI (Filar) and CI (Leahy) and coordinated 
among the co-investigating agencies composed of UQ, QDAF, FRDC and AIMS. Advance notice 
will be given to FRDC of any planned media releases.    

8. Presentation at WFC 2021 in Adelaide entitled “Environmental-Based Quantitative Assessments: 
A Case Study of the East Coast Spanner Crab and Snapper Fisheries”, to be presented by team’s 
Dr W.-H. Yang. 

9. Training of two UQ PhD students: Ms M. Mendiolar and Mr Y. Lei who, upon graduation, will be 
well qualified to work in fisheries modelling. 

10. Training of one post-doctoral research fellow: Dr L. Gibson who, upon completion, will be well 
qualified to work in fisheries modelling. 

11. Planned international journal publications:  
a. “Associations between environmental drivers and three Queensland species”, based on 

selected material from Sections 4.1-4.3 and targeting Fisheries Research. 
b. “Incorporating environmental variables into surplus production models”, based on material 

from Sections 4.1, 4.5 and targeting Fisheries Research. 
c. “Environmental indices capturing memory, intermittence, persistence, thresholds and 

periodicity”, based on material from Sections 3.3, 4.1.5, 4.1.7, 4.1.8, 4.2.5, 4.2.6 and 4.3 
targeting Natural Resource Modeling. 

12. Project staff have extended results from the present study to researchers associated with the 
FRDC-funded project Development of a user-friendly MSE framework for Queensland’s rocky 
reef fishery (2019/020).  
a. Specifically, the negative correlation between SST in offshore areas during June and July and 

the density of snapper recruits in Moreton Bay was incorporated into the MSE via the 
recruitment deviation parameter. The incorporation of this parameter allows the user to test 
the effects of decreasing recruitment on biomass, resulting from increasing SST, in the 
forecasted period. 

https://www.uq.edu.au/news/article/2020/01/how-do-environmental-factors-impact-queensland%E2%80%99s-fisheries
https://www.uq.edu.au/news/article/2020/01/how-do-environmental-factors-impact-queensland%E2%80%99s-fisheries
https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ
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b. Further, the positive correlation between Chl-a and pearl perch SCPUE may imply a negative 
correlation to SST given the trajectories of Chl-a and SST (see Figure 57 and Figure 58), 
despite the absence of direct correlations between SCPUE and SST (Table 12). As with 
snapper, the effect of variable pearl perch recruitment on biomass, resulting from changing 
SST, can be quantified using the recruitment deviation parameter. 

c. In the MSE forecast period for both snapper and pearl perch, the recruitment deviation 
parameter varies according to a user-specified standard deviation parameter with a default 
log value equal to zero. 

 

 Project Materials Developed 

A project directory on AARNET clouldstor https://cloudstor.aarnet.edu.au/plus/s/8Hb3kHOAhcWJCSZ 
has been created storing results – but not the data - of extensive statistical and modelling analyses and 
experiments carried out in the course of this project. 
 
The RAPT app is also available in that directory together with a readme file on how to run it.  
 
When the planned publications, outlined in Section 9, are accepted hyperlinks to their journals and 
DOIs will be added to this directory.  
 
When PhD theses of Ms Mendiolar and Mr Lei are completed, they will also be added to this repository. 
This is because components of their theses are related to their involvement in this project. 
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  Local Trendlines for Key Environmental Variables 

In this appendix we provide plots of time series of the three key environmental variables, GSLA, SST 
and Chl-a, calculated for local fishery areas that featured in this report. These plots display both actual 
and modelled data colour coded in black and red, respectively. Importantly, their mean trendlines are 
indicated as straight lines, in green. After the year 2020 only the estimated model curves and their 
trendlines are extrapolated up to the year 2030. Finally, these plots are accompanied by tables listing 
the two key properties of the trendlines: their gradients and standard errors.  
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Figure 84: Time series of SST for Spanner Crab Regions 2-6. Actual data (black), modelled data (red) and 

trendlines (green). After 2020 only the estimated model curves and their trendlines are displayed. 
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Figure 85: Time series of SST for Snapper Regions 1N, 1S, 1W and MB. Actual data (black), modelled data (red) 

and trendlines (green). After 2020 only the estimated model curves and their trendlines are displayed. 

 

Table 26: Gradients and standard errors of SST trendlines across all regions considered. 

 

Region Gradient (℃ per decade) Standard Error 

2 0.199 0.071 

3 0.187 0.073 

4 0.150 0.064 

5 0.139 0.058 

6 0.119 0.058 

7 0.116 0.063 

1N 0.151 0.065 

1S 0.143 0.060 

1W 0.147 0.063 

MB 0.194 0.075 
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Figure 86: Time series of GSLA for Spanner Crab Regions 2-6. Actual data (black), modelled data (red) and 

trendlines (green). The shaded area represents the 95% uncertainty band around the mean trend. After 2020 only 

the estimated model curves and their trendlines are displayed.  
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Figure 87: Time series of GSLA for Snapper Regions 1N, 1S, 1W and MB. Actual data (black), modelled data (red) 

and trendlines (green). The shaded area represent the 95% uncertainty band around the mean trend. After 2020 

only the estimated model curves and their trendlines are displayed. 

 
Table 27: Gradients and standard errors of GSLA trendlines across all regions considered. 

 

Region Gradient (cm per decade) standard error 

2 2.78 0.73 

3 3.02 0.72 

4 2.65 0.73 

5 2.27 0.75 

6 2.59 0.77 

7 2.55 0.84 

1N 2.79 0.73 

1S 4.00 0.77 

1W 3.50 0.75 

MB 4.07 0.79 
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Figure 88: Time series of Chl-a for Spanner Crab Regions 2-6. Actual data (black), modelled data (red) and 

trendlines (green). The shaded area represents the 95% uncertainty band around the mean trend. After 2020 only 

the estimated model curves and their trendlines are displayed.   
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Figure 89: Time series of Chl-a for Snapper Regions 1N, 1S, 1W and MB. Actual data (black), modelled data (red) 

and trendlines (green). The shaded area represents the 95% uncertainty band around the mean trend. After 2020 

only the estimated model curves and their trendlines are displayed. 

 
Table 28: Gradients and standard errors of Chl-a trendlines across all regions considered. 

Region Gradient (% per decade) standard error 

2 -18.0 5.3 

3 -22.7 6.0 

4 -19.1 6.2 

5 -17.9 5.1 

6 -12.7 6.6 

7 -13.4 6.6 

1N -20.2 6.3 

1S -17.2 5.3 

1W -18.3 5.9 

MB -17.7 9.4 

 


