

Inland saline aquaculture - past progress, new opportunities and a synthesis of available knowledge

FRDC PROJECT NUMBER: 2022-089

Geoff Allan and Stewart Fielder

NSW Department of Primary Industries, Port Stephens Fisheries Institute Locked Bag 1, Nelson Bay NSW, 2316

2023

Please Note – Final Report Requirements – accessibility

Under the Disability Discrimination Act 1992, Australian Government agencies are required to ensure information and services are provided in a non-discriminatory accessible manner – the FRDC and as a result all content produced as part of our projects also need to meet these requirements.

The Web Content Accessibility Guidelines outlines ways to make digital content more accessible to the broadest audience – <u>https://guides.service.gov.au/content-guide/accessibility-inclusivity/</u>

While there are many aspects to this, a key focus for principal investigators is to ensure that PDF documents are accessible. To make a PDF accessible you must make sure structural elements such as headings are marked-up so that a screen reader can follow the logical order of the content. The FRDC will update the final report design standard to highlight these requirements. We are regularly working to improve what we deliver to end users and this is part of that. $\ensuremath{\mathbb{C}}$ 2024 Fisheries Research and Development Corporation. All rights reserved.

ISBN: 978-1-76058-751-2

Inland saline aquaculture - past progress, new opportunities and a synthesis of available knowledge 2022-089 2024

Ownership of Intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation and NSW Department of Primary Industries.

This publication (and any information sourced from it) should be attributed to Allan, G. L. and Fielder, D. S., NSW Department of Primary Industries, 2024, *Inland saline aquaculture - past progress, new opportunities and a synthesis of available knowledge. Final Report to Fisheries Research and Development Corporation Project 2022-089. Canberra, Australia,* February.

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms.

Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from https://creativecommons.org/licenses/by/3.0/au/. The full licence terms are available from https://creativecommons.org/licenses/by/3.0/au/.

Inquiries regarding the licence and any use of this document should be sent to: frdc@frdc.com.au

Disclaimer

The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC.

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry.

Researcher Contact Details	FRDC Contact Details	
Name: Geoff Allan	Address:	25 Geils Court
Address: 31 Andrew Close, Boat		Deakin ACT 2600
Harbour, NSW 2316	Phone:	02 6122 2100
Phone: 0419185510	Email:	frdc@frdc.com.au
Email: geoff.allan@dpi.nsw.gov.au	Web:	www.frdc.com.au

In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form.

Contents

Contentsiv
Acknowledgmentsv
Executive Summaryvi
Keywordsviii
Introduction1
Objectives 2
Methods 3
Results
Discussion and Conclusion13
Demand13
Sufficient saline groundwater14
Is the water suitable for culture of priority species? (Technical assessment.)
Are there suitable facilities for inland saline aquaculture? (Technical assessment.)
Can species be cultured cost-effectively? (Technical assessment.)
Will people eat fish grown using inland saline waters? (Market acceptance.)
Will people invest? (Commercialisation potential.)17
Conclusion
References (not listed in Bibliography – Appendix 1)18
Recommendations19
Water Supply and Security 19
Species Selection
Technological Advancements 19
Government Support and Regulation19
Knowledge Transfer 19
Attracting (Equity) Investors
Extension and Adoption20
Project materials developed21
Appendices
Appendix 1. Inland Saline Aquaculture Publications 22
Appendix 2. Presentations -Inland Saline Aquaculture Session WA23

Acknowledgments

We thank the NSW Department of Primary Industries (NSW DPI) for their support for this project that was funded by the Fisheries Research and Development Corporation (FRDC) on behalf of the Australian Government. In particular, we thank Dr Patrick Hone (FRDC) and Sean Sloan (NSW DPI) for supporting inland saline aquaculture R&D and for continually reviewing the outcomes from previous research and exploring future challenges. We would also like to thank the experts from overseas Dr Tincy Varghese (CIFI, India), Professor Kevin Fitzsimmons (University Arizona, USA) and from the other Australian states, Dr Brett Ingram (Victoria), Wayne Hutchinson (South Australia), and Dr Gavin Partridge (Western Australia). All these people enthusiastically provided us with their research outputs (including publications), details of commercial developments and challenges, and future opportunities and priorities. The presentations they gave at the special session on Inland Saline Aquaculture at the World Aquaculture 2023 (the international conference held in Darwin May/June 2023) are reproduced in this report. We thank Christine Maxwell (FutureFish) for her help in recording the Session, collating and transcribing questions and answers, and summarising future directions. We also thank Grant Webster (NSW DPI) for his insights from work in NSW, Dr Adrian Collins for providing publications and insights from his earlier research in Queensland, and Emmanuelle Sloan and Dr Peter Forward for their insights from work in South Australia and attempts to develop commercial operations. Mark Oliver kindly shared how his farm, Condabilla Fish Farm, uses saline groundwater for part of their operation. Dr John Carragher, Logifish Consulting provided a comprehensive overview of commercial investment opportunities for inland saline aquaculture in Waikerie, South Australia. Wayne Hutchinson and Josh Fielding (FRDC) gave valuable editorial advice. Finally, we thank Michelle O'Leary and Rachel Karma (NSW DPI) for their help with project finance and administration.

Executive Summary

The New South Wales Department of Primary Industries (NSW DPI) Fisheries, other state governments, the Fisheries Research and Development Corporation (FRDC), the Australian Government (then DAFF) and the Australian Centre for International Agricultural Research (ACIAR) made a major contribution to research and coordination to identify and evaluate opportunities for inland saline aquaculture in Australia (and overseas) in the early 2000s. Research has been translated into significant industry development in some areas (e.g. India) but commercial progress in Australia has been slow.

Unfortunately, with time, much of the collective research is difficult to access especially for prospective farmers and investors. New development will stand a better chance if fully informed of past progress. New technical challenges will need to be addressed. This project sought to address the following objectives:

- 1. Collate existing documents and publications documenting research, policy, practical farming methods and opportunities for inland saline aquaculture over the last twenty years.
- 2. Examine commercial developments and impacts from previous research.
- 3. Identify new opportunities.
- 4. Recommend ways these opportunities might be further explored and captured.

This was a desktop project complimented by a special Inland Saline Aquaculture session which was conducted as part of the World Aquaculture Society Conference in Darwin, May/June 2023. Experts with a strong history in inland saline aquaculture research from NSW, Victoria, South Australia, and Western Australia were invited as well as two international experts, from India and the USA. Invited experts were asked to give presentations summarising past progress, including commercial developments, challenges and future opportunities.

Objective 1. Existing documents and publications documenting research, policy, practical farming methods and opportunities for inland saline aquaculture were collated and listed in a searchable excel bibliography categorised by country/region and topic. The vast majority of publications are available online and a web link is provided in the bibliography.

There were 587 unique publications listed. Almost all publications deal with the technical issues and solutions for farming in inland saline areas. They concentrate on the growth and performance of selected species.

Of the 587 publications, 116 were from Australia. The vast majority of these arose from research from NSW DPI Fisheries, other state governments, the Fisheries Research and Development Corporation (FRDC), the Australian Government (then DAFF), the Australian Centre for International Agricultural Research (ACIAR) or Universities linked to projects supported by those agencies.

There were 157 publications from India, many of which arose from collaborative ACIAR projects in India conducted in collaboration with a NSW DPI project leader.

The international sharing of technology has been greatly facilitated by the World Aquaculture Society conferences, supported by many agencies, including FRDC, ACIAR, NSW DPI and other state and Commonwealth governments.

It is overwhelmingly obvious from the literature that it is technically possible to farm a number of species in inland saline water, although sometimes an adjustment of the water chemistry is required, for example by adding potassium in saline waters in the Murray Darling Basin in NSW.

Objective 2. There is limited commercial production from inland saline aquaculture in Australia. Small-scale commercial operations in Western Australia have ceased operation and there are currently no commercial operations in South Australia or NSW.

In Victoria, commercial production of Barramundi (*Lates calcarifer*) (up to 750 tonne/yr) uses geothermally heated (29 °C) groundwater with a salinity of 2-3 g L-1g L⁻¹.

In Queensland, a fish farm located southwest of Chinchilla, grows Murray cod (*Maccullochella peelii*) and uses saline groundwater (3-5 g L⁻¹) to reduce pathogen load in fingerlings and to purge market fish. Also in Queensland, a commercial farm near Esk, Marine Garden produces small quantities of Black Tiger Prawns (*Penaeus monodon*) using salt water trucked from the coast.

In contrast, commercial aquaculture development using inland saline water is well established in other countries. In India, for example, many species have been cultured and several are in commercial production. The main species cultured on a large scale using saline groundwater is the white leg shrimp (*Litopenaeus vannamei*). The inland culture environment is preferred to coastal areas because of the more stable environmental conditions and fewer cyclones.

Israel also has substantial commercial inland saline aquaculture production. Tilapia (*Oreochromis niloticus*), carp (*Cyprinus carpio*), and mullet (*Mugil cephalus*), are the main species.

Commercial culture is also progressing in the Middle east and the USA. A large Australian Barramundi farming company has purchased facilities in Arizona to farm Barramundi (*Lates calcarifer*) in saline ground water in a farm that used to commercially farm white leg shrimp (*Litopenaeus vannamei*).

Objective 3. In South Australia, a commercial development based on culture of Yellowtail Kingfish, using saline groundwater, is seeking investors. This development, the Waikerie Project, would not have built their model for farming without the research on inland saline aquaculture funded by the South Australian government, the National Action Plan for Salinity and Water Quality and FRDC. The aim is to develop the farm in 250 t per annum production modules, with each module to be brought on-line when the market from earlier modules is satisfied.

Opportunities exist for inland saline aquaculture groundwater, including for the whole production cycle and parts of the cycle, for example hatchery, nursery, and purging. The use of inland saline groundwater as a relatively pathogen-free water source is an opportunity.

Objective 4. A special inland aquaculture session was organised in association with the World Aquaculture Society Conference in Darwin, May/June 2023. Recommendations to identify barriers to commercial development in Australia were drafted. These included, ensuring water supply is adequate and secure over long term (e.g. decades), retaining a focus on high value species, and supporting the exploration and trial of new technologies and innovations. Government together with industry should support consistent strategies and regulations for aquaculture in general and encourage and fund enduring knowledge transfer, particularly with private sector investors.

Keywords

Inland saline aquaculture, saline groundwater

Introduction

NSW DPI Fisheries, other state governments, the Fisheries Research and Development Corporation (FRDC), the Australian Government (then DAFF) and the Australian Centre for International Agricultural Research (ACIAR) made a major contribution to research and coordination to identify and evaluate opportunities for inland saline aquaculture in Australia (and overseas) in the early 2000s. Research has been translated into significant industry development in some areas (e.g. India) but commercial progress in Australia has been slow.

However, there is renewed interest in inland saline opportunities as significant overseas developments come online and new investment has been proposed. Unfortunately, much of collective research is difficult to access for farmers and investors interested in new opportunities. New development will stand a better chance if fully informed of past progress that has addressed technical challenges with utilisation of inland saline groundwater for aquaculture.

Objectives

- 1. To collate existing documents and publications documenting research, policy, practical farming methods and opportunities for inland saline aquaculture over the last twenty years.
- 2. To examine commercial developments and impacts from previous research.
- 3. To identify new opportunities.
- 4. To recommend ways these opportunities might be further explored and captured.

Methods

This was a desktop projects. The approach to deliver on each objective is summarised below:

Objective 1. Collate existing documents and publications documenting research, policy, practical farming methods and opportunities for inland saline aquaculture over the last twenty years.

The project team attempted to obtain all available relevant documents and references, including unpublished material. This involved literature searches, contacting researchers who have been involved in this research over the past twenty years, and searching the databases of R&D Corporations (FRDC, ACIAR etc).

Objective 2. Examine commercial developments and impacts from previous research.

The project team sought information on recent developments and opportunities by utilising existing networks, literature searches and social media advertising, including contacting key experts overseas.

Objective 3. Identify new opportunities.

The project team contacted potential investors to ensure they are aware of previous research; what worked and what didn't and discussed current barriers to development.

Objective 4. Recommend ways these opportunities might be further explored and captured.

A special inland aquaculture session was organised and held in association with the World Aquaculture Society Conference in Darwin, May/June 2023. Recommendations to identify barriers to commercial development in Australia were drafted and seminars/meetings with potential investors were held to try to ensure these are commercially focused.

Results

Objective 1. To collate existing documents and publications documenting research, policy, practical farming methods and opportunities for inland saline aquaculture over the last twenty years.

The bibliography in Excel is searchable using all fields (columns) and is reproduced in Appendix 1 in Word format, sorted by Country/region (Australia first) and then alphabetically. The count of publications from each Country/region are listed in Table 1 below. Of the 587 unique publications, 116 were from Australia, the vast majority of which arose from research from NSW DPI Fisheries, other state governments, the Fisheries Research and Development Corporation (FRDC), the Australian Government (then DAFF), the Australian Centre for International Agricultural Research (ACIAR) or Universities linked to projects supported by those agencies. There were 157 publications from India, a large number of which arose from collaborative ACIAR projects in India with a NSW DPI project leader.

Of the 587 unique publications, there is a weblink for 571. The other 16 are conference abstracts (5), reports (5), proceedings of workshops (5) and an invitation to submit an EOI (1).

Almost all publications deal with the technical issues and solutions for farming in inland saline areas. They concentrate on the growth and performance of selected species.

The international sharing of technology has been greatly facilitated by the World Aquaculture Society conferences, supported by many agencies, including FRDC, ACIAR, NSW DPI and other governments.

It is overwhelmingly obvious from the literature (i.e. past research) that it is technically possible to farm a number of aquatic species in inland saline water, although the adjustment of water chemistry is sometimes required, for example by adding potassium in saline waters in the Murray Darling Basin in NSW.

		- ·· ·			
Table1	Count of Inland	Saline Adu	aculture Pub	lications by	country/region.
TUDIC 1.	count or mana	Sume / iqui		neutions by	country/region.

Country/region	Count	Country/region	Count
Australia	116	Lebanon	2
Algeria, Egypt, Oman	1	Malaysia	2
Persian Gulf	1	Vietnam	1
Bangladesh	2	Mexico	19
Brazil	13	Near east region	1
Caribbean	1	Netherlands	6
Chile	1	Norway	1
China	40	Oman	1
Crimea	1	Pakistan	8
Egypt	15	Philippines	2
Europe	1	Portugal	3
Europe and central Asia	1	Saudi Arabia	1
France	1	Taiwan	7
Germany	1	Tanzania	1
Greece	1	Thailand	2
India	157	Turkey	2
Indonesia	6	Uganda	1
Global	36	UAE	1
Iran	15	USA	93
Iraq	2	USA, Canada	1
Israel	14	Uzbekistan	2
Japan	1	Grand Total	587
Kuwait	2		

Objective 2. To examine commercial developments and impacts from previous research.

There is extremely limited commercial production from inland saline aquaculture in Australia.

In Western Australia, a small-scale commercial operation produced approximately 20 t per annum of Barramundi (*Lates calcarifer*) and Queensland grouper (*Epinephelus lanceolatus*) but the farm has since ceased production.

In Victoria, commercial production of Barramundi (*Lates calcarifer*) (up to 750 t per annum in recirculating aquaculture system (RAS)) is operated by one of the largest mainstream barramundi operations in Australia.

In Queensland, a fish farm located southwest of Chinchilla, on the western edge of the Darling Downs, grows Murray cod (*Maccullochella peelii*). As part of their operation, saline groundwater (3-5 g L⁻¹) is used at two parts of the production cycle. Firstly, fingerlings at approximately 1 g are held in saline water to reduce pathogen load and secondly, market-size fish are held in saline groundwater for purging and to improve flesh texture. The saline groundwater is an integral part of the successful operation of the farm (Pers. Com, Mark Oliver, Manager, 2023).

In Queensland, a commercial farm, Marine Garden (<u>https://marinegarden.com.au/</u>), aims to produce Black Tiger Prawns (*Penaeus monodon*) using salt water trucked from the coast.

Despite considerable interest over the years, no commercial inland saline aquaculture farms are operating in South Australia or NSW.

In contrast, commercial aquaculture development using inland saline water is well established in other countries. In India, for example, many species have been cultured and several are in commercial production. The main species cultured is the white leg shrimp (*Litopenaeus vannamei*) and the inland culture environment, with saline groundwater, has been found to be preferred to coastal areas because of more stable environmental conditions and fewer cyclones. Other species farmed are: Black Tiger Prawns (*Penaeus monodon*), Giant Freshwater Prawn (*Macrobrachium rosenbergii*), Milkfish (*Chanos chanos*), Tilapia (*Oreochromis niloticus*), and Striped Catfish (*Pangasianodon hypophthalmus*). Barramundi (*Lates calcarifer*), European Sea Bream (*Sparus aurata*), Cobia (*Rachycentron canadum*), Silver Pompano/Snubnose Dart (*Trachinotus blochii*) and Amur carp (*Cyprinus carpio haematopterus*) have all been cultured in small quantities (see Varghese, 2023, Inland Saline Aquaculture session, World Aquaculture 2023, section below).

Another country with substantial inland saline aquaculture production is Israel. Tilapia (*Oreochromis niloticus*), Carp (*Cyprinus carpio*), Sea Mullet (*Mugil cephalus*), and to a lesser extent European Sea Bass (*Dicentrarchus labrax*), European Sea Bream (*Sparus aurata*), Red Drum (*Sciaenops ocellatus*) have been successfully cultured and more recently, Barramundi (*Lates calcarifer*) is widely cultured. The largest RAS in Israel is capable of producing 1,000 t per annum (Fitzsimmons, 2023, Inland Saline Aquaculture session, World Aquaculture 2023, see section below).

Commercial culture is also progressing in the Middle east and the USA. A large Australian Barramundi farming company has purchased facilities in Arizona (<u>https://www.mainstreamaquaculture.com/home/</u>) to Barramundi (*Lates calcarifer*) in saline ground water in a farm that used to commercially farm White Leg Shrimp (*Litopenaeus vannamei*).

2. Objective 3. To identify new opportunities

There are still opportunities for aquaculture using inland saline water. To realise those opportunities, proponents will need information on the resources needed (water, land, infrastructure, potential staff, markets, etc). Opportunities include the use of saline groundwater for the complete production cycle as well as parts of the cycle, for example hatchery, nursery, purging, etc. The use of inland saline groundwater for culturing marine or estuarine species in a relatively pathogen-free environment remains a clear opportunity.

One existing opportunity for investors is the inland saline aquaculture project, the Waikerie Project:

The following information was provided by John Carragher, Logifish Consulting:

- In South Australia, in the Riverland near Waikerie, a commercial development, the Waikerie Project (<u>https://a-culture.com.au/the-waikerie-project/</u>) is seeking investors to culture Yellowtail Kingfish (*Seriola lalandi*) using saline water from an underground saline aquifer.
- The project proponents are fully aware of the previous research that has been done by the South Australian Research and Development Institute (SARDI) (Hutchinson, W., & Flowers, T. [2008], Appendix 1). Without the positive results on performance of fish in the saline groundwater near Waikerie, the proposal would not have been possible.
- One of the other key benefits from previous research was the provision of key data, including for water chemistry, needed when applying for operating permits.
- The saline water is currently considered an environmental problem. This operation will not release any to the environment.
- This project involves a multi species, indoor tank system using commercially-inconfidence technology.
- The aim is to develop the farm in 250 t per annum production modules. Following the first module, subsequent modules will be brought on-line when market demands indicates prices are not likely to decline with the increase in production.

Objective 4. To recommend ways these opportunities might be further explored and captured.

A special session on Inland Saline Aquaculture was held at the World Aquaculture Society. Key experts were invited from India and the USA as well as from all the states in Australia, except Queensland, where the opportunities for commercial development were identified and the majority of inland saline research was conducted. These include New South Wales, Victoria, South Australia and Western Australia.

The session included presentations, where experts were asked to discuss status, opportunities and challenges, and a panel discussion, where directed questions were discussed as well as a Q&A with the audience (see Figures 1, 2 & 3 and Table 3). A copy of the powerpoint presentations (six slides per page) for all the presentations in the session is provided in Appendix 2.

Figure 1. Inland Saline Aquaculture Session, World Aquaculture 2023.

Figure 2. Presenters: Inland Saline Aquaculture Session

Session Snapshot featuring:

Inland saline aquaculture in NSW: 10 years of Research & Development Stewart Fielder

Inland saline aquaculture in Victoria: A retrospective view and future opportunities Brett Ingram

Inland Saline Aquaculture In Western Australia: Past, Present and Future? Gavin Partridge

Inland Saline Aquaculture: USA and Israel Perspectives Kevin Fitzsimmons

2 | INLAND SALINE AQUACULTURE: SESSION SUMMARY: WAS 2023

NSW Department of Primary Industries FRDC

Table 3. Agenda: Inland Saline Aquaculture session plan.

Inland Saline Aquaculture Session, World Aquaculture Society, Darwin May/June 2023					
INLAND SALINE AQUACULTURE IN AUSTRALIA: PAST PROGRESS CHALLENGES AND OPPORTUUNITIES	Geoff	Allan	NSW DPI		
TWO DECADES OF RESEARCH AND DEVELOPMENT IN INLAND SALINE AQUACULTURE IN INDIA: PRESENT STATUS AND PROSPECTS	Tincy	Varghese	CIFI, India		
INLAND SALINE AQUACULTURE IN NSW: 10 YEARS OF RESEARCH & DEVELOPMENT	Stewart	Fielder	NSW DPI		
PAST RESEARCH AND BARRIERS TO COMMERCIAL AQUACULTURE UTILISING SALINE GROUNDWATER FROM SALT INTERCEPTIONS SCHEMES IN SOUTH AUSTRALIA	Wayne	Hutchinson	FRDC (ex SARDI, SA)		
INLAND SALINE AQUACULTURE IN VICTORIA – A RETROSPECTIVE VIEW AND FUTURE OPPORTUNITIES	Brett	Ingram	VFA, Victoria		
INLAND SALINE AQUACUTLURE IN WESTERN AUSTRALIA; PAST, PRESENT AND FUTURE?	Gavin	Partridge	Harvest Road (ex Challenges TAFE, WA)		
INLAND SALINE AQUACULTURE - USA AND ISRAEL PERSPECTIVES	Kevin	Fitzsimmons	University Arizona USA)		
INLAND SALINE AQUACULTURE IN AUSTRALIA: PANEL DISCUSSION	Geoff	Allan	NSW DPI		

Panel discussion and Q&A

The figure below (Figure 3), summarises the panel discussion and the Q&A.

Figure 3. Panel discussion and Q&A

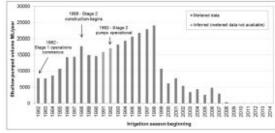
INLAND SALINE AQUACULTURE (ISA) IN AUSTRALIA: PANEL DISCUSSION

- · What characterises successful ISA?
- Are there some fundamentals that are important for commercial potential?
- · What did previous R&D miss?
- · What has prevented ISA ventures from thriving?
- · How much water is enough?
- · How big do commercial ventures need to be or become?
- · Is there still potential for ISA in Australia?
- · If so, where and for what species?
- · What can be done to limit future failure of ISA?

The panel discussion revolved around the topic of Inland Saline Aquaculture, specifically focusing on the challenges, opportunities, and strategies for commercialising this type of aquaculture.

The discussion covered various aspects, including how many species could be successfully grown in inland saline water, often with relatively inexpensive adjustment to the water chemistry. The development of inland saline industries in India, the USA and other countries demonstrates the potential. The challenges with commercial development of inland saline aquaculture in Australia were discussed. The panelists highlighted the need for long-term water security, selection of higher-value species, a unified national strategy and long-term support from Government, effective knowledge dissemination programs, and the need to attract both small and large-scale investors. The importance of new technological advancements, for example for recirculating aquaculture systems (RAS), waste management, and the potential for overseas niche markets were also discussed.

3 INLAND SALINE AQUACULTURE: SESSION SUMMARY: WAS 2023


NSW Department of Primary Industr SESSION SUMMARY B

QUESTION: In regards to the Murray Darling groundwater evaporation system (with 56 groundwater bores) wells), why was ongoing water availability a limitation? Secondly, was there any problem with water quality, particularly variation in the salinity, nutrient load or microbiota in the water?

ANSWERS

+ For the Wakool Sub Surface Drainage Scheme (WSSDS), the largest such scheme on the Murray Darling Basin, and in Australia, there was 13,000 ML pumped from the groundwater table to prevent rising saline groundwater from reaching the surface. All this water was disposed of using the constructed 1600 ha evaporation ponds. + Over time the groundwater was depleted.
 This was not anticipated by the scheme architects or us. But this was the single major reason why commercial development of aquaculture using the WSSDS did not proceed.
 The graph below illustrates the decline:

- + With regard to water quality from the WSSDS, the salinity overall was stable from each bore. It did vary from bore to bore, but not by a huge amount. Overall it was about 15 to 18 ppt so it was high salinity. The water temperature was very consistent (around 18 C). Nutrient concentrations were very low. The ponds were huge (about 30 ha each), with very little micro algae production - they were low productivity ponds.
- + In other areas of the Murray Darling Basin, we targeted particular aquifers for the quality of the water in that aquifer. It depends where, how deep and which aquifer you're using.
- One common feature of all the water from the Murray Darling Basin is that it is relatively sterile.
 We considered using this water for bio secure hatcheries. For example, SPF (Specific Pathogen Free) Hatcheries. This still has potential.

QUESTION: In regards to the Walkerle (SA) commercial agreement that didn't go through, you said one factor was the fact that water security could only be guaranteed for three years. Can you talk about why they decided that was the maximum? What risks they were trying to manage?

ANSWERS

+ Potential investors get the water for free when the scheme is operating, but because the operators run the scheme to manage rising salinity in the landscape, when that need changes, for example during a flood or prolonged drought, guaranteeing water availability is difficult. This is why the operators at Waikerie were only prepared to guarantee three years of water supply. They couldn't be sure the scheme would be operating beyond that time and there was no mechanism for the potential investor to either run the scheme themselves, just to obtain their water, nor to pay the scheme operators to run the scheme when it was not needed for saline groundwater management.

QUESTION: Why doesn't Australia as a whole have a strategy? Why do we have separate state strategles?

Comment: India is a good example of commitment. There the government stayed in in inland saline R&D for the long haul while in Australia we walked away after 10-15 years. +If an investor saw that the government (Commonwealth and State) agreed to a strategy, irrespective of where it was, investors would be more willing to take a risk if they thought the government was there, not just for the 3 years but for the 20 years of support, infrastructure, R&D.

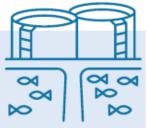
QUESTION: Tincy, you're saying that in India, despite the fact you had good commercial production of shrimp from coastal areas, risks from weather events like cyclones, made inland areas more attractive. Is that an attraction for Inland Saline Aquaculture farmers in India?

ANSWERS

- + There are also other issues for farmers the effluent treatment system, training systems and awareness of land access and what land (owned by government) and availability is also an issue with coastal aquaculture. On the other hand, farmers in inland areas face challenges coastal farmers don't. In general the farmers are less educated than other farmers globally. We give our farmers simple leaflets and we have our own demonstration farms so we can expose farmers to the best farming practices.
- + We help farmers at the start with subsidies and many farmers are still continuing farming even after the subsidy stops.

Integrated discussion points - lessons from success in India

- In India there is a huge population. There's a big market for the product. A lot of potentially on each farm, to drive livelihoods and employ people - women and youth.
- + Australia are known to sell high value species -like Barramundi. In India the people eat low value species and the high value species we export.
- + There are two different ends of the spectrum when it comes to India and Australia. Biology wise there is possibility of exchange of information, but how things work in India and how they work here in Australia is very different. For example, every research organisation in India has a huge extension wing for each government body. Your job in India is dependent on how many farmers who have adopted your technology and the production from those farmers. Promotions and the future of researchers is dependent on those metrics.



Integrated discussion points: Barriers to inland saline aquaculture in Australia

- + Water security: The Operators at Waikerie Interception Scheme could not guarantee that they were going to run the interception schemes indefinitely. They committed to three years but the potential investors wanted more like three decades. Similarly, in the Murray Darling Basin, at the Wakool Sub Surface Drainage Scheme (WSSDS), the water flow dried up following prolonged drought. Without water security, the investors also dried up.
- + Water security was the number one barrier for commercial development of inland saline aquaculture at Waikerie(SA) and Wakool (NSW), two of the sites with the highest potential for aquaculture. The scheme operators could not commit to long term water security and the aquaculture investors can't commit to develop an enterprise without long-term water security.
- + The use of the scheme for aquaculture helps justify the interception scheme, which is a positive, the availability of "free" water for aquaculture is a positive, but the conflicting drivers for the interception schemes and for aquaculture can sometimes be a barrier.
- Potential investors have to negotiate water security.
- + The inland saline aquaculture research in Australia demonstrated you could solve water quality deficiencies, e.g. potassium, easily and relatively cheaply. However, it does add another complexity to the water security challenge.

- + Environmental management: A problem at some sites, for example Waikerie, was effluent disposal. When the scheme operates as planned, salty ground water is disposed of via a natural basin that acted as an evaporation basin. During the R&D phase, effluent from the aquaculture trials was also disposed of in the evaporation basin. Initially, the basin was just considered as waste, salt-affected land. Over time, with saline water inflow, the basin became an attractive habitat for wildlife, including birds. The potential for aquaculture effluent to harm this new ecosystem and the need for potential investors to consider environmental expectations as part of their planning became an additional barrier.
- Asset management: Investors using assets owned by others (e.g. saltwater interception schemes, including water supply and disposal) also need a commitment that those assets will be available and maintained, and at a known cost to the investor, for the long term.
- Government commitment and support: is also needed, particularly at a policy level.
- + The potential "scalability" using inland saline water is also needed. Is there enough water and land for the planned venture. Can investors expand if they are successful?
- Access to markets, labour, energy, transport, etc. In remote areas affected by saline groundwater, the location can make access difficult. This is a consideration for development at scale.

Integrated discussion points: Inland Aquaculture

- + Consider. If we focus just on developing Inland Aquaculture - it does change the whole dynamic for Australia because then we've got lots of land. The term ARID Aquaculture has been used to describe "Aquaculture activities practised in desert and arid lands characterized by low precipitation (<250 mm/year), high solar radiation, high rate of evaporation, using subsurface and surface water".
- + What are new technology changes that have happened in the last 20 years (feeds and electricity systems)? Does this alter the potential for arid aquaculture?
- Recirculating Aquaculture Systems (RAS) are one technology that could change the potential for arid aquaculture. Less water is needed per kg fish produced, and effluent disposal is less of a problem as it is more concentrated and could be buried, etc.
 Effluent from using freshwater makes good soil conditioner.
- + There are many water bodies in WA that stink with sulfide - there is a lot of carbon, and gases - is there some kind of commercial and profitable option that can be used to reduce those gases? Could this add another dimension to the Inland Saline Aquaculture story.
- + Should we focus on having a Carbon Neutral approach?

QUESTION: We know about some new Investors are Interested in Inland Saline Aquaculture. What information would help them? Do they need biology research or are they looking at other constraints to possibly attract finance?

ANSWERS

- + I think this year we've got a lot of people looking to regional communities to create new lifestyles. It's very expensive to live in Australian cities, and then they're looking at alternatives.
- We're seeing an upsurge in interest in the aquarium industry and by products and other things.
- + We get a little bit stuck on just seafood for seafood sake. You don't you need the same water volume,land, and other resources to produce corals for example in inland saline areas. You don't need a lot of space and you can run a very good aquarium system.
- + We do things like rainbow fish, for the aquarium industry, which are incredibly valuable. You can run them in quite good systems.
- People are out there with very novel solutions, and they're looking for unique niche markets.
- Aquaculture Australia works well when you've got a very small niche of a high value product with a very good market and no one else producing.
- + Or you have a incredibly good, innovative system that just drives labour costs out of the business. So just get all the labour out and innovate, to get the best production system with no labour.
- + They seem to be approaches that have worked. Less labour and niche markets

QUESTION: I heard a recent talk in a session here of a company looking for equity investors, and It strikes me that the characteristics of these systems are not the sort of characteristics that an equity investor will be looking for, in terms of things like global market scalability. To me it means you're relying on bank finance, and that for that banks have to understand the characteristics of these systems to make them bankable - have you looked at that? ANSWERS

- + We did have some work on investment + activities analysis- but it may not be fit for purpose in today's market. We look at a framework investment from a banking position that clearly wasn't adequate.
- + Clearly, it's a bankable thing its not an Investor thing at the moment, so how do you turn it to the other? Banks don't like really investing for long term. Equity investors would.
- + That is the reason why Prawn farms work. If the prawn farm fails, it's may still be very valuable for agriculture or even urban development (e.g. canal estates). It can be used for sugar cane or range of other things. It's hard to sell the land used for inland saline aquaculture so once you've spent a lot of money developing the farm, there is not much potential for selling the land if the venture fails.

QUESTION: Are obtaining permits stopping Inland saline aquaculture development in Australia? COMMENT

When you look globally, countries like Ecuador, Mexico, Brazil and other countries where aquaculture really thrives, their aquaculture businesses are supported. I believe it's a country agenda. It's a coordinated effort between different institutions, organisations to truly put together an aquaculture agenda and to create jobs with great opportunities. Most of the time, it seems to me that excessive permits and regulations stop aquaculture development in many countries.

ANSWERS

+ No, it's been a problem with aquaculture generally. I would say the Inland Saline Aquaculture is less of a problem than coastal aquaculture, and some fresh water inland. Certainly a whole lot less of the stakeholders around whereas on the coast you're fighting a lot of negativity and population - for us policy isn't the main issue.

QUESTION: Do we actually have the development of Inland aquaculture right, to support long term investors? We do it by states. From an investor's view - Brazil, Israel, India, they do it at the country level. Do we have that right ?

ANSWERS

- We had the 2000 Aquaculture strategy with some aspirational goals, but that wasn't supported by long term investment. We end up being conflicted by our inventory responsibilities and in our development and economic promotion. Often the same departments to do both and this causes a diversion of effort.
- + Projects in SA in particular work on a 3-4 year infrastructure cycle. They are set up to get some initial results, identify the problems, but then run out of money before investment is secured and before new businesses can stand on their own feet. We need to invest in project funding vehicles more like the Cooperative Research Centres approach (10 year) to allow you to tackle problems you actually don't foresee. One the short term funding model, there is a lot of infrastructure - built up and then lost.

Inland

Saline

Aquaculture

Research Centre

QUESTION: The fish that you were using – were all first / second generation fish throughout all the trials - has the broodstock been kept and has there been any improvement in genetics since then and why – can it support profitable ventures for 2023?

ANSWERS

- + The fish and prawns used in all the studies were at least first generation and hatchery reared juveniles produced in our respective government hatcheries or purchased from commercial trout hatcheries. The stock certainly went through a range of bottlenecks including high temperature. This research was done almost 20 years ago, and any broodfish associated with juvenile production have long gone. We also didn't maintain progeny from the fish or crustaceans that were grown in the ISA systems.
- + Rainbow Trout now are relatively temperature tolerant given the industry has been developing in Australia for many years and selection of temperature tolerant stock has been done; - but mortality is usually experienced once water temperature reaches 22C.
- + Kingfish would be better performing now after many years of hatchery rearing improvement and we would be in a much better place in terms of supply and genetic traits.
- + In general, we are now in a better position: better fish, better facilities, better feeds - we just need to look at the economic margin now.
- + Wayne: In Waikerie we didn't explore other opportunities like micro algae or other marine bio products.

8 INLAND SALINE AQUACULTURE: SESSION SUMMARY: WAS 2023

NSW Department of Primary Industries SUMMARY BY

QUESTIONS: Can you outline the production systems that were evaluated to use sailne groundwater for aquaculture and what were some of the key technical outcomes from that research.

ANSWERS

Various methods to use saline groundwater were tested. In NSW, Victoria, South Australia and Western Australia, we evaluated the saline groundwater that was collected in evaporation systems used to dispose of the salty water table from surrounding irrigated agricultural enterprises. In Queensland, saltwater extracted from coal-seam gas extraction was evaluated. A range of experiments was done, starting with small-scale bioassays in tanks followed by long-term growout trials in ponds and Recirculating Aquaculture Systems. One common result for saline groundwater sourced away from the coast, was that compared with equivalent salinity seawater, the saline groundwater was highly deficient in potassium. For some freshwater species including silver perch, barramundi, rainbow trout and artemia, that were tolerant of saline water, the low potassium concentration did not result in any reduced growth performance; however, for other estuarine species including mulloway and prawns, it was necessary to add potassium into the groundwater. This was done easily using agricultural potash. Saline groundwater sourced from coastal aguifers such as at the Coorong in SA, was not deficient in potassium and the water chemistry resembled seawater. Some of the biggest issues we identified at the inland locations, were related to the environment, especially the annual and daily temperature ranges which were much more variable (colder in winter and hotter in summer) than those experienced on the coast. This limited the potential growth period for tropical species. After scoping studies were completed, species with the most potential for production in inland saline groundwater were selected and included rainbow trout (NSW), mulloway (SA), barramundi (WA), Penaeid prawns (Qld) and Artemia (Victoria). Growout trials were completed and product was sold to local outlets in each state to provide market acceptance information. The ISA farmed produce had very high market acceptance.

QUESTION: What happened to the McRobert Aquaculture System? (If you recall you trialled it for mud crabs as well as it had that ability with some novel concepts). ANSWERS

+ The McRoberts System was a very good system for aquaculture and was unique in the way it operated. In Western Australia (WA), the Semi-Intensive Floating Tank System (SIFTS) designed by Ian McRobert was compared with floating raceways and simple floating cages in ponds filled with saline groundwater. Barramundi were successfully produced from juvenile to market-size. SIFTS was also trialled in Victoria for Murray Cod production in freshwater farm dams. We evaluated the performance of SIFTS in various harbour environments in WA - but the system engineering was not robust enough to withstand the wave action of commercial shipping activity in the otherwise protected harbour environment. Ian McRoberts has since moved on from building aquaculture systems and now uses water to make whisky, rather than fish.

QUESTION: Given that SIFTS only used mechanical filtration of recirculating water, was there any investigation into the potential to include biofiltration of wastewater before it was released into the environment. ANSWERS

- + Yes, we did explore the use of biofilters with water that was discharged directly from the SIFTS. We found that there was very little dissolved ammonia in the SIFTS wastewater because it was completely extracted by microalgae that was growing in the pond water that was recirculated through the SIFTS. As a consequence, we couldn't see any value by including biofiltration to remove ammonia from culture water.
- + We also investigated heterotrophic pond management. The year that we did the study we had a weird microalgae bloom that migrated up and down through the water column. This resulted in the algae bloom blanketing the sludge at the bottom of the pond and subsequently hydrogen sulphide was released into the pond water which killed fish we had plenty of challenges.

QUESTION: You said the cost to run a RAS system is very high at the moment and that you can't use the product to lower cost at the moment as it does not work-is that true in the current market? Why do you use it year by year if you are at a loss?

ANSWERS

+ RAS have to scale to be profitable.

+ That's why they've jumped from 400tpy and the average successful RAS is now 4000tpy. It's all about scale to be profitable. The fish produced in RAS is generally a commodity product. Its low value compared to niche markets, so high volume production is necessary. I think it's quite easy to make a business case that's shows profit on paper -but needs proving of every single aspect of the costs to be confident.

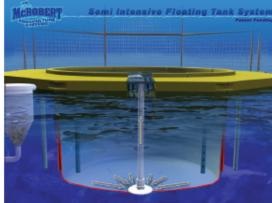
Q: Does the RAS System work for Sliver Perch? ANSWERS

 The main production method used to culture silver perch is in ponds and not in RAS Systems. QUESTION: In salmon farming we use RAS to grow the smolt - one of the problems experienced is the seasonal temperature issue. So, what about the merging of the two technologies where RAS is used during the during the coldest months followed by ongrowing in ponds when the outside environmental conditions are suitable. Is anybody been thinking about that type of concept using the ponds? Trout grown in saline groundwater actually look quite good.

ANSWERS

- + I think we've thought about that for sure.
- + The issue in NSW, WA and SA wasn't so much the warming temperatures, but the reliability of saline groundwater supply.
- + The volumes of saline groundwater available to us at the ISARC at Wakool weren't sufficient to generate a commercial return when the real effects of long-term drought were felt. The lack of irrigation of agricultural crops resulted in the saline groundwater table staying well below the root zone and there was no need to pump the saline groundwater to the surface to the evaporation basins. So, our saline water resource literally dried up. Future ISA projects associated with saline groundwater evaporation basins will be aware of this potential problem and will need to develop strategies to deal with drought conditions.
- + In the end, successful ISA projects will need a guaranteed supply of saline groundwater for more than a couple of years. Wayne, talked about what happened in SA at Waikerie - they asked the investors who were ready to sign on the line for commercial farming what guarantee of water supply could be given by the managers of the saline water disposal system. They were guaranteed 3 years supply of water. Investors Response: We need 30 years - not 3 years. The tenure on the water and the licensing was just too short term. The fact they couldn't guarantee water supply, proved it as too high risk for investment- so they moved away.
- + 20,30 -50 year tenure for water needs to be considered like the same you get on land.
- + This is pretty much the single most important issue we have going forward for development. That, and the scalability issues we need get it to a scale that makes it commercially viable.
- + Finding a suitable production model was difficult and especially trying to develop a product that only works for a short period of the year is hard to commercialise.

Department of


mary Industries

NSW

QUESTION: Lots of technologies and research are being done, but what is being done to transfer that knowledge? Are there any programs where they can actually come and look at what's being done? Are there experienced workshops or training available so people can come and see and experience, then take decisions to start a venture? ANSWERS

- + Yes, one of the main outputs of our research program was to develop demonstration facilities in all States using the different ISA technologies. We had demonstration facilities to show the operations to potential investors who would come and see them. They were operating for a 4-5 year period but they weren't maintained once the project was finished.
- + We have harvested most of the commercial interest and for one reason or another, most of that was fallen by the way-side.
- + The reason to hold and maintain those demonstration facilities wained.
- + We also had open days and people from the community were aware of what was going on.

QUESTION: What could government do to drive a resurgence? The constraints now aren't necessarily biological constraints, there are other issues. Is there a way that we can turn our attention to try and make more productive investments work - what do they need to do? Do they need to know about species or better understand niche markets? ANSWERS

- + I'd comment at the moment, that First Nations people in building self sufficiency, around economic opportunities and we look for things like the new hatchery in Victoria, where we're actually building First Nations opportunities to self sufficiency.
- + First Nations look at the landscape very differently. They build a different economic model a more long term sustainable model.
- + There's a lot of opportunity around First Nations people, and they have significant amount of native title on inland, waters and water systems. I think that's changed since when we did this.
- + We have to address climate change. There is a lot of rural Australia that won't be able to produce crops that are going to produce for the future - we need a whole of government approach to that.
- + And lastly, notwithstanding the fact that we've got such a large coastline (third world's largest coastline in the world) it's either incredibly rough, or it's right opposite Sydney.
- + Our real asset is INLAND.
- + So how do you use inland? I don't think we've solved that problem
- + The government needs a 1015 yr strategy, you can do 3 to solve resources issues. So that requires collective government action, (the role of government to remove risk for investors).
- + Have inception schemes that are guaranteed to run for decades.

QUESTION: With all the great database knowledge created - (500+ publications), how can we best package or make the information available to people, First Nations people or Commercial Investors? Are there any ideas of how that would be best received or best used?

- + Initially, open access publications and social media.
- + Show and visit successful cases and call for more promotion.
- + Refresh: Go to countries, location farms that are operating with long term profitability and learn from them and their integrated systems and Government structures.
- + Look at First Nations people, their specific communities, ambassadors and leaders. They are the ones that create the climate which creates the stories from the culture.
- + It's important to extract information, connect with key people of influence.
- + Look at the life expectancy of that information. Look at key principles and fundamentals and keep refreshing that information keep it top of mind front page news and update.
- + Packages for the audiences: One for the investor, one for the farmer, one for the Aboriginal nations with several layers. Hook someone in from that first level - ask questions. Don't produce things that look so overwhelming. Give choice - have some layers so if you want to dig deep you can.
- + In the past we have had a big push. We've learned stuff. We're trying to push it to investors push it to the market, where we need the pull.
- + The database of 500 should not be in the thing that is good for scientists. New things like Chat GTP, all the new technologies and outcomes of this project, is to build a better way of taking science knowledge. Put spacial layers, financial institution + geographic layers to make it easier. Then put new Al tools to extract from 100 papers, something that synthesizes the info.
- + There are tools we haven't explored. There's clearly is a lot of information there, its the great unknown - unknown and we don't know how someone else might use it and can't find it.
- + Look at the sustainability metrics and R+D to understand the social impacts.

QUESTION: We've got a lot of successful Industries in Australia and it seems like Inland Saline ticks the boxes for so much. Do we have any comparison strategies that show why some cases are successful? And for those that are not successful-why not? Can we see any gaps of what makes a successful industry? Are there success pathways to help you perform? It seems to range from very small hobby farms to large commercial production facilities which have all been successfully run. Have comparisons that people can use been made?

ANSWERS

- + We appreciate the insights, but successful commercial ventures are focused on making money. While we can demonstrate and ignite potential, it may be challenging to attract investors to take a risk. However, circumstances can change, and now might be a good opportunity to revisit our approach. I believe that would be a useful exercise.
- + I enjoyed a talk I heard yesterday that discussed the values within the farming system and the human dimensions that contributed to its success.
- + What's really important is that when we started, we tried to consider as much as our biological minds would allow. However, perhaps we involved the wrong people to thoroughly explore the commercial aspects.
- + Wayne: Our project took place during the 2008 Global Financial Crisis, which was not favorable for investors. However, now is a good time to reassess it in light of current opportunities and advancements in technology.

QUESTION: I find there is an isolation of information when it comes to getting your high quality product to market, the barriers of such a large coastline and limited population. We've seen climate change, extreme weather events where whole states have been cut off from that supply chain. Do we need to look at how are we going to value add or find different ways of preserving product? How do we market our products overseas and if you have inland Agua farming, how do we get there?

ANSWERS

- + There are issues with remoteness. For instance, Delivering products it can take one full day of the week to drive a truckload of fish to a fish market.
- + We need to think about the distances we might be traveling on from coast to coast and change that perspective to similar distances inland. Perhaps its not that different?
- + Look at your products with a long shelf life?
- + We should consider carbon neutral as an export market. Australia's still exporting a lot of stuff that's carbon heavy and not very sophisticated. Have you made the industry more carbon neutral?
- + If you're going to do it in aquaculture strategy you wouldn't do it divorced from the other food strategies. If you're going to do a food strategy for Inland Australia, you would solve the logistics once at the same time. Look at things like carbon, getting rid of diesel engines, renewable energies, employment - making sure you've got a reliable workforce. You do the whole thing once - not just for Inland Aquaculture. - That may have been one of our problems last time - we tried to do it alone.
- + Integration is good but we have to watch not to become too big its hard to nail down what the intentions are.
- + Look at carbon credit metrics.

CALL TO ACTION AREAS

Inland Aquaculture

Our Australian Asset is INLAND and how we use our resources.

The term "Inland saline aquaculture" can be limiting and instead we recommend a focus on the term "Inland Aquaculture". This will broaden the appeal, increase the scope of appropriate technologies and assist scalability. This should help attract investment. It will help showcase aquaculture businesses that already operate efficiently, are able to scale faster, and create more value in society.

Water Supply and Security

- Ensure long-term availability and waterbody tenures with government support.
- Ensure interception schemes can be used to supply water for decades.
- Secure effluent disposal (e.g. evaporation basins) approvals for long-term environmental se<u>curity</u>

Species Selection

- Continue to focus on higher-value species
 such as Barramundi and Trout.
- Market development required for some more niche species
- Consider temperature-tolerant species for better performance.
- Potential for sterile bio-secure hatcheries to produce SPF (specific pathogen free) juveniles

Government Support and Regulation:

- Advocate for a unified national strategy instead of fragmented state strategies.
- Collaborate with an integrated food strategy that addresses areas like carbon, renewable energy sources and employment benefits.

Develop programs for potential investors

Categorise a new database, targeting

groups like The Farmer | The Investor

Maintain demonstration facilities for

a longer duration to showcase the

First Nations People or Regional

to visit and experience aquaculture

Professionalise, Personalise and

 Establish long-term government support for infrastructure, research, and development and investments.

Factors and Lessons:

Compare successful industries and identify key factors for success.

Reassess the industry based on current technology advancements and market trends.

\$\$-Show potential value of Inland Saline Aquaculture.

Database note:

Add various layers to the database financial, geographic, social, local networks, carbon credit metrics and comparisons.

Technological Advancements

- Explore new technologies and innovations, particularly for RAS systems, electricity systems, and waste disposal.
- Emphasize the advantages of circular economy and waste nutrient utilisation. Integrated cultivation techniques with
- Integrated cultivation techniques with conventional crops.

Attracting (Equity) Investors

Community Groups.

industry's potential.

Knowledge Transfer:

operations.

•

•

- Highlight and promote the economic and scalable viability.
- Understanding the scale necessary to support commercial industries.
- Explore partnerships with investors interested in regional communities and alternative lifestyles (also define remote attributes, bankable systems + comparisons).
- Focus on investors with an integrated vision and values that also focuses on sustainability, economic, social and environmental impact

Call to Action

Promotions Promote the asset of Inland Aquaculture and how we can best access our resources and the economic drivers attached to this. Showcase the benefits of community building, remote living lifestyles and livelihoods.

SESSION

SUMMARY BY

FUTUREFISH

Department of Primary Industries

Discussion and Conclusion

This project was initiated to ensure that potential new investors in inland saline aquaculture in Australia were aware of all the work done since the early 2000s and could easily access the information. The outputs of past work were compiled and are now available in a searchable bibliography. This will allow any commercial developments to consider impacts arising from previous research, identify new opportunities, and investigate ways these opportunities might be further explored and captured.

587 individual publications were found, 116 from Australia, that we collated in a searchable excel spreadsheet. These are easily accessible and 568 are available on the internet. Of the 16 publications not available on the internet, five are conference abstracts, five are reports (most of the information in these reports are published elsewhere and available on the internet), five are proceedings of workshops and one is an invitation to submit an expression of interest to the South Australian Government issued in 2001.

The research questions that were addressed in the 2000s can be summarised as follows:

- 1. Is there **demand** for aquaculture products from inland saline aquaculture?
- 2. Is there sufficient saline ground water?
- 3. Is the water suitable for culture of priority species? (Technical assessment.)
- 4. What facilities are needed for inland saline aquaculture? (Technical assessment.)
- 5. Can species be cultured cost-effectively? (Technical assessment.)
- 6. Will people eat fish grown using inland saline waters? (Market acceptance.)
- 7. Will people invest? (Commercialisation potential.)

Current users of inland saline aquaculture research were asked if they were aware of previous work and if so, was it useful? Although only a small sample, both the Manager of Condabilla Fish Farm (the farm uses saline groundwater for pathogen treatment of fingerlings and for purging fish prior to sale) and the consultant seeking investors for the Waikerie project in South Australia (an inland saline aquaculture commercial venture), reported that not only were they well aware of previous research on inland saline aquaculture in Australia, but that results from previous work were of critical importance to their operation of plans. In the case of the Waikerie project, the venture would not have been initiated without the research conducted by the South Australian Government (Hutchinson and Flowers, 2008; in bibliography).

The other commercial developments, in Western Australia and Victoria, not only had access to information from scientists involved in the research but arguably would have not proceeded without access to that information. Those operations ceased for reasons other than lack of research results (G. Partridge, June 2023, Pers. Comm.; B. Ingram, June 2023, Pers. Comm.).

However, it is apparent that despite the past investment in research, and the comprehensive outputs and outcomes, current commercial development is far smaller than expected when inland saline aquaculture research started in Australia. This project sought to understand why this is the case and examined if something was missing from the approach taken in the 2000s?

Demand

Globally, and in Australia, aquaculture was, and still is, growing rapidly in response to increasing demand for seafood and static or declining capture fisheries. Inland aquaculture (49 Mt in 2020) dominates global aquaculture production (122.5 Mt in 2020) (FAO, 2022).

In Australia, total aquaculture production of 132,000 t in 2020/21 was mainly marine species with the top five species salmon, tuna, edible oysters, pearl oysters and prawns, although inland aquaculture is also growing in Australia with species, including Barramundi, Murray cod, Rainbow Trout, Silver Perch, and Red Claw Crayfish, among those cultured (Tuynman and Dylewski, 2022). There is a long-term trend of increasing per capita consumption of seafood in Australia, equivalent to 13.9 kg per person in 2020-21. This includes imported seafood products which accounted for 62 per cent of consumption (https://seafoodindustryaustralia.com.au/good-for-you-good-for-the-planet-data-shows-australians-are-eating-more-seafood/#:~:text=Australians%20consumed%20around%20356%2C000%20tonnes,of%2015.5%20in%2020 03%2D4).

In summary, the strong overall demand for seafood in Australia, and globally, that was projected before the new millennium was genuine. The growth of aquaculture both globally, and in Australia, demonstrates that this was not a barrier to inland saline aquaculture production. Of course, localised demand needs to be considered and the transport and logistical considerations needs to be factored into any aquaculture venture. Lack of demand was not raised as a factor in the lack of commercial inland saline aquaculture developments.

Sufficient saline groundwater

In the early 2000s, constraints to the expansion of marine aquaculture, including because of conflict over the use of oceans and harbours, encouraged advocates to consider using saline groundwater. The Murray Darling Basin, the southeast of Western Australia and many other arid areas of Australia contain vast stores of salt in the soil and shallow groundwater. In the early 2000s, rising groundwater salinity, long a problem in the Australian landscape, particularly in the Murray Darling Basis, and related vegetation dieoff, was identified as one of the greatest environmental problems facing the country.

The scale of the issue is evident by the scale of saline lakes, salt disposal basins and salt interception schemes in Australia. The biggest saline lake is Lake Eyre in South Australia at 9,500 km² but the nine Kerang saline lakes collectively occupy about 2,500 ha and the ten Saline Western District Lakes occupy about 44,000 ha (Allan, et al., 2001, see bibliography Appendix 1). One particularly effective solution was to intercept rising saline groundwater, before it reached the root zone of plants, and pump it into evaporation basins. The use of evaporation basins for the disposal of intercepted saline water was first used in 1917 (Allan et al., 2001). There are 11 large salt interception schemes in the Murray Darling Basin (approximately 5,344 ha) and, in 2000, there were another eight being constructed or planned (Allan, et. al., 2001). These are very effective at controlling rising salinity, although they are very expensive to construct and maintain.

The opportunity for aquaculture to offset some of these costs, or at least to benefit from the availability of saline water, was an attractive consideration. In the early 2000s, the conclusion, supported by resource assessments (e.g. Allan et al., 2001), was there was plenty of saline groundwater available.

With so much saltwater in the inland landscape, why wasn't it used for aquaculture?

Moving forward to 2023, the experts consulted during this review almost all cited long-term security of water as a primary reason commercial investment did not proceed. Two examples explain this apparent paradox. In the first, a commercial development was proposed using trout cultured in water supplied at the outlet into evaporation ponds at the Wakool Tullakool Sub Surface Drainage System (WTSSDS) the

largest saltwater interception scheme in Australia. Initiall, the WTSSDS pumped a maximum of 25,000 ML pa, but as the millenium drought took hold, this volume declined. By 2009, pumping had stopped altogether (Figure 4). It had not resumed by 2023. There was plenty of saline groundwater but it was not a secure supply. The investors lost confidence and Murray Irigation Limited, the company who owned and operated WTSSDS, were hesitant to commit. Consequently, the investment never eventuated.

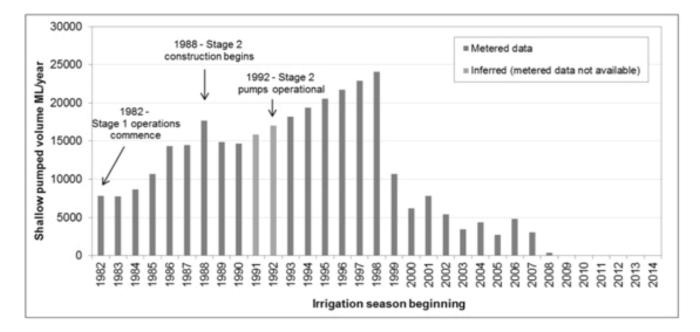


Figure 4. Volume of water pumped into evaporation ponds at Wakool-Tullakool Sub Surface Drainage System Scheme from 1982-2014 (figure courtesy Murray Irrigation Limited).

The second example relates to the proposed commercial opportunity for aquaculture using saline groundwater from the Woolpunda, Waikerie, Qualco-Sunlands Salinity Interception Scheme (SIS) in the Riverland region of South Australia. The scheme comprises 93 bores adjacent to the Murray River that intercept approximately 30 ML day⁻¹ saline groundwater. The saline groundwater is pumped to the 350ha Stockyard Plains Disposal Basin. Research by the South Australian Research and Development Institute (SARDI) demonstrated commercially attractive performance of marine species including Mulloway (*Argyrosomus japonicus*) and Yellowtail Kingfish (*Seriola lalandi*) using this saline water (Hutchinson and Flowers, 2008, see bibliography Appendix 1). A significant effort was made to provide information to potential investors, including GIS mapping to help with site selection, documenting the policy and regulatory framework, and conducting economic and sensitivity analysis. There was genuine commercial interest but ultimately investors walked away when long-term (e.g. 30 years) water security could not be guaranteed by the scheme operators. A secondary problem was difficulties with approvals to use the Stockyard Plains Disposal Basin to dispose of aquaculture effluent (Hutchinson, *pers comm.*, 2023). The saline groundwater supply was not secure enough for lon-term commercial investment.

There is still commercial interest in using saline groundwater from this SIS for aquaculture in the Riverland region of South Australia and investors are being sought. The proposed operation is for an indoor, tankbased farm (using proprietary technology), constructed in stand-alone modules each producing 250 t per annum. Water use would be minimised and no saline water would leave the farm obviating the problem with disposeal of effluent.

Our conclusion is that although there are vast quantities of saline groundwater available in Australia, the amounts in any single location are limited and obtaining the long-term water security needed for large-scale aquaculture prevented commercial inland aquaculture development and remains a challenge.

Potential solutions to the problem of water security is to construct recirculating aquaculture systems (RAS) that use less water per unit of production. The is similar to the approach being adopted by the Waikerie Project in South Australia (<u>https://a-culture.com.au/the-waikerie-project/</u>). An added advantage is that these systems produce less effluent, especially when technology for the concentration and removal of solid waste is incorporated.

Scale is a factor increasing the challenge with the availability of saline groundwater. In general, aquaculture companies are getting larger to better exploit market power and to adopt new technologies that incease net efficiency (e.g. salmon farms [Pandey, et al., 2023]). In Australia, the four largest aquaculture companies acount for over 40% industry revenue, and this is only described as moderate market share concentration (Ibisworld, 2023)

[https://www.ibisworld.com/au/industry/aquaculture/4225/#IndustryStatisticsAndTrends]). It is likely that investors will look twice at opportunities that do not offer the potential to scale up.

Is the water suitable for culture of priority species? (Technical assessment.)

The suitability of these inland sources of saline water for aquaculture was the next question. Allan et al. (2001), used thirteen broad resource assessment categories to help determine the overall suitability of identified resources for inland saline aquaculture. These were:

- 1. Resource availability (quantity and quality of available water).
- 2. Resource salinity.
- 3. Ionic composition.
- 4. Other water quality.
- 5. Availability of freshwater.
- 6. Availability of land.
- 7. Nature of soil.
- 8. Environmental sensitivity.
- 9. Existing structures.
- 10. Availability of labour and commercial services.
- 11. Proximity of power supply.
- 12. Proximity to transport corridors.
- 13. Opportunities for cost-sharing.

The first phase of almost every evaluation of saline groundwater, in Australia and elsewhere, was "do fish survive and grow in the water?" Of the 113 publications from Australia related to inland saline aquaculture (Appendix 1), 65 concerned the suitability of saline groundwater or documented attempt to modify the groundwater to ameliorate sub-optimum conditions. Matching the species with the environmental conditions is paramount for commercially-successful aquaculture, including inland saline aquaculture.

The desert environment presents different challenges to coastal environments, including the diurnal and seasonal temperature regime, and selecting species that can thrive in those conditions is important. This applies to all aquaculture not just inland saline aquaculture. In some areas, an ionic inbalance in saline groundwater, compared with oceanic waters of equivalent salinity, (e.g. a potassium deficiency in parts of the Murray Darling Basin), needs to be adjusted (e.g. by the simple addition of potassium salts). However, in summary, almost all species trialled in inland saline waters could be cultured and, for the best species at every site, performance was equivalent to that achieved using coastal water (for marine species) or freshwater (for anadromous or catadromous species).

The "suitability" of inland saline water was not a barrier to commercial development.

Are there suitable facilities for inland saline aquaculture? (Technical assessment.)

The facilities investigated during the research phase included small tanks, particularly for initial experiments, large tanks, including commercial-scale, RAS systems, ponds and raceways. The question about what are the "most appropriate" facilities for the planned operation applies to almost all aquaculture and is not specific to inland saline aquaculture. There are no reports that the type of facilities available to aquaculturists generally were unsuitable for inland saline aquaculture.

The issue of scale of facilities and farms is, however, a factor. As mentioned above, investors around the world are scaling-up, individual companies are more interested in larger farms (in terms of production potential) and industries are rationalising with company acquisitions and mergers increasingly common (Pandey et al., 2023). For example, the largest salmon farming companies are now multi-national. Pandey et al., (2023) attributes this to an attempt for companies to become large enough to exploit market power, and/or becoming large enough to adopt new technologies that increase the efficient scale.

Can species be cultured cost-effectively? (Technical assessment.)

A considerable effort was invested in economic modelling for inland saline aquaculture, including for inland saline aquaculture of prawns and trout, and for using recirculating aquaculture systems (RAS) for inland saline aquaculture (Johnstone, 2014a,b,c, see Bibliography Appendix 1). These and other attempts to quantify potential investment returns in NSW, Victoria and South Australia and Western Australia, led to some since-lapsed commercial development (in Western Australia), to an initial commercial proposal that didn't proceed in NSW, and to a state government publication of an expression of interest for investment in inland saline aquaculture in Riverland region of South Australia, that also didn't proceed. The proposals in NSW and South Australia didn't proceed primarily due to the failure to guarantee long-term (i.e. decades) water security.

The investment proposal in South Australia demonstrates, that at least on paper, species can be cultured cost-effectively in inland saline groundwater (https://a-culture.com.au/the-waikerie-project/) although uncertainties have clearly constrained commercial development so far.

Will people eat fish grown using inland saline waters? (Market acceptance.)

Taste panel studies and practical trials in most jurisdictions conclusively showed that consumers accepted fish cultured in inland saline aquaculture. This wasn't a barrier to development.

Will people invest? (Commercialisation potential.)

Inland saline aquaculture research and development in every jurisdiction was predicated on the assumption that once research questions were addressed and results were encouraging, investors would commit. The research approach asked the right questions but scientists and Government may have been overoptimistic about the results, and underestimated problems with guaranteeing long-term water security for the volumes needed to attract significant commercial investment. The misunderstanding of the potential for development at scale may have also been a factor.

Significant investment is likely to require removal of risks to long term viability of projects including secure access to the water resource, likely production performance of target species that can be cultured in saline

groundwater, and the need to achieve a scale of production that can provide attractive returns that will likely only be possible if the product can be supplied to large national and international markets.

Conclusion

The research approach followed throughout Australia, had considerable support from the Commonwealth Government (including the Fisheries Research and Development Corporation, the Australian Centre for International Agricultural Research, and the Department of Agriculture Fisheries and Forestry), various State Governments including NSW, South Australia, Victoria, Queensland and Western Australia, Universities and private landholders and investors. There is a wealth of published, easily available information about inland saline aquaculture in every state of Australia where there is potential. These publications and data are a valuable resource for anyone contemplating commercial development.

The reason commercial development has not proceeded as expected in Australia, ultimately, is mainly due to the failure to secure long-term water security of sufficient quantity to underpin large scale development.

There is still potential for more modest commercial development. Advances in technology, for example in RAS, and some of the underlying advantages of aquaculture away from the coast and population centres, and some of the pathogens that are difficult to manage, may make inland saline aquaculture more attractive to investors.

Commercial investors will also need to prepared to reach the scale of production and product price needed to remain profitable within a competitive national or global seafood market.

References (not listed in Bibliography – Appendix 1)

FAO, 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. *Rome*, FAO. <u>https://doi.org/10.4060/cc0461en</u>. (<u>https://www.fao.org/3/cc0461en/online/sofia/2022/aquaculture-production.html</u>).

Pandey, R., Asche, F., Misund, B., Nygaard, R., Adewumi, O., Straume, H-M., and Zhang, D., 2023. Production growth, company size, and concentration: The case of salmon. Aquaculture 577 (2023) <u>https://doi.org/10.1016/j.aquaculture.2023.739972</u>

Tuynman, H and Dylewski, M 2022, Australian fisheries and aquaculture statistics 2021, Fisheries Research and Development Corporation, ABARES, Canberra, December, DOI: <u>https://doi.org/10.25814/amdt-x682</u>)

Recommendations

The following recommendations are made for investors looking at inland saline aquaculture:

Water Supply and Security

- Ensure long-term availability and waterbody tenures with government support.
- Ensure interception schemes can be used to supply water for decades.
- Secure approvals for effluent disposal (e.g. evaporation basins) for long-term environmental security

Species Selection

- Continue to focus on higher-value species such as yellowtail kingfish, barramundi and trout.
- Market development should be carried out for some more niche species
- Focus on temperature-tolerant species for better performance.
- Examine the potential for sterile bio-secure hatcheries to produce SPF (specific pathogen free) juveniles

Technological Advancements

• Explore new technologies and innovations, particularly for RAS systems, electricity systems, and wastedisposal.

- Examine opportunities through the circular economy and waste nutrient utilisation.
- Explore the integration of cultivation with conventional crops.

Government Support and Regulation

- Advocate for a unified national strategy instead of fragmented state strategies.
- Collaborate with an integrated food strategy that addresses areas like carbon, renewable energy sources and employment benefits.
- Establish long-term government support for infrastructure, research, and development and investments.

Knowledge Transfer

- Develop programs for potential investors to visit and experience aquaculture operations.
- Professionalise, Personalise and Categorise by developing a new approach including reaching groups like The Farmer | The Investor | First Nations People or Regional Community Groups.
- Maintain demonstration facilities for a longer duration to showcase the industry's potential.

Attracting (Equity) Investors

- Highlight and promote the economic and scalable viability.
- Understand the scale necessary to support commercial industries.
- Explore partnerships with investors interested in regional communities and alternative lifestyles (also define remote attributes, bankable systems + comparisons).

• Focus on investors with an integrated vision and values that also focuses on sustainability, economic, social and environmental impact.

Extension and Adoption

The primary method of extending the project was through the Inland Saline Aquaculture session at World Aquaculture 2023, held in Darwin, NT, in May-June 2023.

Project materials developed

A bibliography of 587 Inland Saline Aquaculture publications sortable by category/species and country/region (Appendix 1).

Appendices

Appendix 1. Inland Saline Aquaculture Publications

Sorted with publications from Australia first in alphabetical order followed by all other countries by alphabetical order. (Please note a fully sortable excel file is available separately to improve access for those interested.)

Category/species	Country/region	Reference
General status and opportunities	Australia	Allan, G. L., & Fielder, S. (1999a). Inland mariculture activities in NSW. Proceedings of a Workshop Held on 6-7 August 1997, Perth, W.A., No. 83, 1–61. https://www.aciar.gov.au/sites/default/files/legacy/node/308 /pr83_pdf_14323.pdf
General status and opportunities	Australia	Allan, G. L., & Fielder, S. (1999b). Potential for inland saline water culture of crustaceans. Proceedings of a Workshop Held on 6-7 August 1997, Perth, W.A., No. 83, 1–61. https://www.aciar.gov.au/sites/default/files/legacy/node/308 /pr83_pdf_14323.pdf
Resourcespolicysys tems	Australia	Allan, G. L., Banens, B., & Fielder, S. (2001). Developing commercial inland saline aquaculture in Australia. part 2. resource inventory and assessment. Final Report to Fisheries Research and Development Corporation, Project 98/225. NSW Fisheries Final Report Series No. 31. https://www.dpi.nsw.gov.au/data/assets/pdf_file/0008/545 615/FFRS-31_Allan-et-al-2001.pdf
Economics	Australia	Allan, G. L., Blackburn, J., & Fielder, D. S. (2008). Toward commercialisation of inland saline aquaculture in the Murray Darling Basin. Skretting Australasian Aquaculture Conference, 3-6 August, Brisbane.
Economics	Australia	Allan, G. L., Dignam, A., & Fielder, S. (2001). Developing commercial inland saline aquaculture in Australia: Part 1. R & D Plan. Final Report to Fisheries Research and Development Corporation, Project 98/335. NSW Fisheries Final Report Series No. 30. https://www.dpi.nsw.gov.au/data/assets/pdf_file/0006/545 613/FFRS-30_Allan-et-al-2001.pdf
Economics	Australia	Allan, G. L., Fielder, D. S., Fitzsimmons, K. M., Applebaum, S. L., & Raizada, S. (2009). Inland saline aquaculture. In G. Burnell & G. L. Allan (Eds.), New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management (pp. 1119–1147). Woodhead Publishing Limited. https://doi.org/10.1533/9781845696474.6.1119
General status and opportunities	Australia	Allan, G., & Fielder, S. (2002). Inland saline aquaculture - progress & priorities. Austasia Aquaculture, 16(2), 36–37.
Economics	Australia	Allan, G., Heasman, H., & Bennison, S. (2008). Development of industrial-scale inland saline aquaculture: Coordination and communication of R&D in Australia. Final Report to FRDC Project No. 2004/241. https://www.frdc.com.au/sites/default/files/products/2004- 241-DLD.PDF
Algae seaweed	Australia	Awal, S., & Christie, A. (2015). Suitability of inland saline ground water for the growth of marine microalgae for industrial purposes. Journal of Aquaculture & Marine Biology, 3(2). https://doi.org/10.15406/jamb.2015.03.00063

	1	
Algae seaweed	Australia	Barokoni, R., Awal, S., & Christie, A. (2015). Growth
		performance of the marine microalgae Pavlova salina and
		Dunaliella tertiolecta using different commercially available
		fertilizers in natural seawater and inland saline ground water.
		Journal of Algal Biomass Utilization, 6(1), 15–25.
		https://www.researchgate.net/profile/Sadiqul-
		Awal/publication/299389546_
Integrated ISA	Australia	Blackwell, J. (1999). Using serial biological concentration to
Agriculture		combine irrigation and saline aquaculture in Australia. In B.
		Smith & C. Barlow (Eds.), Inland Saline Aquaculture.
		Proceedings of a workshop held on 6-7 August 1997 in Perth,
		Western Australia. ACIAR Proceedings No. 83 (pp. 1–61).
		https://ageconsearch.umn.edu/record/135193/files/PR083.pd
		f#page=27
Marine finfish	Australia	Booth, M., & Fielder, D. (2016). Fortification of an aquafeed
		with potassium chloride does not improve survival of juvenile
		Australian snapper Pagrus auratus reared in potassium
		deficient saline groundwater. Fishes, 1(1), 52–64.
		https://doi.org/10.3390/fishes1010052
Algae seaweed	Australia	Bui, H. T. T. (2018). Technical feasibility of cultivating local
		seaweed species in inland saline water of Western Australia
		[PhD Thesis]. In espace.curtin.edu.au.
		https://espace.curtin.edu.au/handle/20.500.11937/70550
Algae seaweed	Australia	Bui, H. T. T., Luu, T. Q., & Fotedar, R. (2018a). Effects of
		enriching nitrogen and phosphorus on the growth of
		Sargassum podacanthum cultured in potassium-fortified
		inland saline water. American Journal of Applied Sciences,
		15(3), 149–161. https://doi.org/10.3844/ajassp.2018.149.161
Algae seaweed	Australia	Bui, H. T. T., Luu, T. Q., & Fotedar, R. (2018b). Effects of
		temperature and pH on the growth of Sargassum linearifolium
		and S. podacanthum in potassium-fortified inland saline water.
		American Journal of Applied Sciences, 15(3), 186–197.
		https://doi.org/10.3844/ajassp.2018.186.197
Algae seaweed	Australia	Bui, H. T. T., Luu, T. Q., Fotedar, R., & Tantulo, U. (2017).
		Productivity of Sargassum linearifolium in potassium fortified
		inland saline water under laboratory conditions. Aquaculture
		Research, 48(11), 5631–5639.
		https://doi.org/10.1111/are.13385
Algae seaweed	Australia	Chipchase, T., & Awal, S. (2012). Investigation into the
		suitability of inland ground saline water for the growth of
		marine microalgae for industrial purposes. International
		Journal on Algae, 79–92.
		https://www.dl.begellhouse.com/journals/7dd4467e7de5b7ef
		,4fc8aedf026987a5,6f73fd0020cb8b9d.html
Environmental	Australia	Coleman, M. (2019). Saline Discharges into Natural Wetlands
		in Western Australia Preliminary Review of Issues and Options.
		Report to the Department of Environmental Protection (p. 31).
		actis Environmental Services.
		https://library.dbca.wa.gov.au/static/FullTextFiles/630599.pdf
Penaieds (not	Australia	Collins, A., & Russell, B. (2003, April 1). Inland prawn farming
vannamei)		trial in Australia - responsible seafood advocate. Global
		Seafood Alliance.
		https://www.aquaculturealliance.org/advocate/inland-prawn-
		farming-trial-in-
		australia/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA

Penaieds (not vannamei)	Australia	Collins, A., Russell, B., Walls, A., & Hoang, T. (2005). Inland prawn farming. Studies into the potential for inland marine prawn farming in Queensland (pp. 1–95). The State of Queensland, Department of Primary Industries. http://era.daf.qld.gov.au/id/eprint/5756/1/Inland%20prawn% 20farming_studies%20into%20the%20potential%20for%20inla nd%20marine%20prawn%20farming%20in%20Queensland_QI 05051_2005_collins.pdf
Algae seaweed	Australia	Cordover, R. (2007). Seaweed Agronomy Cropping in inland saline groundwater evaporation basins. A report for the Rural Industries Research and Development Corporation (p. 60). RIRDC Publication No 07/033. https://agrifutures.com.au/wp- content/uploads/publications/07-033.pdf
Molluscs Echinoderms	Australia	Dinh, H. Q., & Fotedar, R. (2016). Early development of the blue mussel Mytilus edulis (Linnaeus, 1758) cultured in potassium-fortified inland saline water. Aquaculture, 452, 373–379. https://doi.org/10.1016/j.aquaculture.2015.11.025
Marine finfish	Australia	Doroudi, M. S., Fielder, D. S., Allan, G. L., & Webster, G. K. (2006). Combined effects of salinity and potassium concentration on juvenile mulloway (Argyrosomus japonicus, Temminck and Schlegel) in inland saline groundwater. Aquaculture Research, 37(10), 1034–1039. https://doi.org/10.1111/j.1365-2109.2006.01525.x
Freshwater fish (not carp)	Australia	Doroudi, M. S., Webster, G. K., Allan, G. L., & Fielder, D. S. (2007). Survival and growth of silver perch, Bidyanus bidyanus, a salt-tolerant freshwater species, in inland saline groundwater from southwestern New South Wales, Australia. Journal of the World Aquaculture Society, 38(2), 314–317. https://doi.org/10.1111/j.1749-7345.2007.00102.x
Marine finfish	Australia	Doroudi, M., Allan, G., & Fielder, S. (2003). Inland saline culture of marine species in NSW. Proceedings of the Aquafin CRC Snapper Workshop Held on 26 September 2002 at the Airport Motel & Convention Centre, Melbourne (Aquafin CRC 2001/208), 22–24. https://www.dpi.nsw.gov.au/data/assets/pdf_file/0005/134 564/Output-Aquafin.pdf
Penaieds (not vannamei)	Australia	Doroudi, M., Allan, G., & Fielder, S. (2003). Preliminary study on the survival and growth of post-larvae of black tiger prawns in inland saline groundwater, southern NSW, Australia. Proceedings of 2003 Ridley Aqua-Feed Prawn and Barramundi Farmers Conference, 24-31 July 2003.
Marine finfish	Australia	Doupé, R. G., & Lymbery, A. J. (2002). Justification for genetic improvement in growth rates of black bream(Acanthopagrus butcheri):A partial budgeting analysis. Aquaculture Economics & Management, 6(5-6), 339–347. https://doi.org/10.1080/13657300209380323
Environmental	Australia	Doupé, R. G., & Lymbery, A. J. (2005). Environmental risks associated with beneficial end uses of mine lakes in southwestern Australia. Mine Water and the Environment, 24(3), 134–138. https://doi.org/10.1007/s10230-005-0084-0
Environmental	Australia	Doupé, R. G., Alder, J., & Lymbery, A. J. (1999). Environmental and product quality in finfish aquaculture development: an example from inland Western Australia. Aquaculture Research, 30(8), 595–602. https://doi.org/10.1046/j.1365- 2109.1999.00371.x
Marine finfish	Australia	Doupé, R. G., Lymbery, A. J., & Greeff, J. (2003). Genetic variation in the growth traits of straight-bred and crossbred black bream (Acanthopagrus butcheri Munro) at 90 days of age. Aquaculture Research, 34(14), 1297–1301. https://doi.org/10.1046/j.1365-2109.2003.00939.x

-	A 1 11	
Economics	Australia	Doupé, R. G., Lymbery, A. J., & Starcevich, M. R. (2003). Rethinking the land: The development of inland saline aquaculture in Western Australia. International Journal of Agricultural Sustainability, 1(1), 30–37.
		https://doi.org/10.3763/ijas.2003.0104
Marine finfish	Australia	Doupé, R. G., Sarre, G. A., Partridge, G. J., Lymbery, A. J., & Jenkins, G. I. (2005). What are the prospects for black bream Acanthopagrus butcheri (Munro) aquaculture in salt-affected inland Australia? Aquaculture Research, 36(14), 1345–1355. https://doi.org/10.1111/j.1365-2109.2005.01350.x
Economics	Australia	Doupé, R., Lymbery, A., Sarre, G., Jenkins, G., Partridge, G., & George, R. (2003). The national research and development plan for commercial inland saline aquaculture: A review from afar. Natural Resource Management, 6(1). https://www.researchgate.net/publication/228937208_The_n ational_research_and_development_plan_for_commercial_inl and_saline_aquaculture_A_view_from_afar
Marine finfish	Australia	Fielder, D. S. (2003). Improvement of intensive larval rearing and evaluation of inland saline groundwater for aquaculture of snapper, Pagrus auratus [PhD Thesis]. In ecite.utas.edu.au. http://ecite.utas.edu.au/27880/
Resourcespolicysys tems	Australia	Fielder, D. S. (2006). Inland saline aquaculture at the Wakool- Tullakool subsurface drainage scheme. Roundtable Discussion on Climate Change. Charles Sturt University, Wagga Wagga, Australia, November 8.
General status and opportunities	Australia	Fielder, D. S. (2007). Project theme, research highlights and future planning for the development of inland saline aquaculture in Australia. Workshop on Development of Inland Saline Aquaculture Technologies in India and Australia. New Delhi, India, 27 November., New Delhi.
General status and opportunities	Australia	Fielder, D. S. (2009a). A review of inland saline aquaculture activities in Australia and India. Proceedings of the Australian Centre for International Agricultural Research Fisheries Program Meeting, 26-27 May, Cronulla, New South Wales.
General status and opportunities	Australia	Fielder, D. S. (2009b). Marine finfish culture and inland saline aquaculture in Australia. Technical Workshop for Australian Centre for International Agricultural Research Project FIS 2002/001 Developing Aquaculture in Degraded Inland Areas in India and Australia. Rohtak Centre, Rohtak, Haryana, India, 18- 20 May 2009.
Marine finfish	Australia	Fielder, D. S., & Allan, G. L. (2003). Improving fingerling production and evaluating inland saline water culture of snapper, Pagrus auratus (pp. 1–68). NSW Fisheries Final Report Series No. 43. ISSN 1440-3544. https://www.dpi.nsw.gov.au/data/assets/pdf_file/0011/545 627/FFRS-43_Fielder-and-Allan-2003.pdf
Crustaceans (not penaeids)	Australia	Fielder, D. S., & Raizada, S. (2006). Production of giant freshwater prawns in saline groundwater in inland northwestern India. Australasian Aquaculture 2006, Adelaide, Australia, August 28-30.
Marine finfish	Australia	Fielder, D. S., Allan, G. L., Pepperall, D., & Pankhurst, P. M. (2007). The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture, 272(1), 656–666. https://doi.org/10.1016/j.aquaculture.2007.08.043

Molluscs Echinoderms General status and	Australia	 Fielder, D. S., Dove, M. C., Parker, L. M., Booth, M. A., & O'Connor, W. A. (2017). Oysters in the outback: oyster spat culture in potassium deficient inland saline groundwater. Book of Abstracts. World Aquaculture Society Asian-Pacific Aquaculture 2017, July 24-27, Kuala Lumpur, Malaysia. https://wasblobstorage.blob.core.windows.net/meeting- abstracts/APA2017AbstractBook.pdf Fielder, D. S., Raizada, S., & Chadha, N. K. (2012). Development
opportunities	Australia	of aquaculture in degraded inland areas in India and Australia. Final Report for Australian Centre for International Agricultural Research. Canberra, Australia. 72 pp. https://www.researchgate.net/publication/265787494_Devel oping_aquaculture_in_degraded_inland_areas_in_India_and_ Australia_project_number_Dr_Sudhir_Raizada_Central_Institu te_of_Fisheries_Education_Contents
Crustaceans (not penaeids)	Australia	Fielder, D. S., Raizada, S., Chadha, N. K., & Allan, G. L. (2008). Development of hatchery and growout technology for Macrobrachium rosenbergii using saline groundwater in northern India. Skretting Australasian Aquaculture 2008, Brisbane, Australia, 3-6 August.
General status and opportunities	Australia	Fielder, D. S., Webster, G., Allan, G., & Raizada, S. (2007). Research and development of inland saline aquaculture in Australia and India. Fisheries and Aquaculture: Strategic Outlook for Asia. Book of Abstracts., 104. https://www.afsconferences.net/wp- content/uploads/2019/10/8AFF-Abstract- Book_20141016063123.pdf
Marine finfish	Australia	Fielder, D. Stewart., Bardsley, W. J., & Allan, G. L. (2001). Survival and growth of Australian snapper, Pagrus auratus, in saline groundwater from inland New South Wales, Australia. Aquaculture, 201(1-2), 73–90. https://doi.org/10.1016/s0044- 8486(01)00555-5
Marine finfish	Australia	Fielder, D. Stewart., Bardsley, W. J., Allan, G. L., & Pankhurst, P. M. (2002). Effect of photoperiod on growth and survival of snapper Pagrus auratus larvae. Aquaculture, 211(1-4), 135– 150. https://doi.org/10.1016/s0044-8486(02)00006-6
General status and opportunities	Australia	Fielder, S., & Allan, G. L. (1998). Inland production of marine fish. In K. W. Hyde (Ed.), The New Rural Industries. A Handbook for Farmers and Investors. (pp. 108–113). 1998 Rural Industries Research and Development Corporation. https://www.frdc.com.au/sites/default/files/products/1997- 343-DLD.pdf
Marine finfish	Australia	Flowers, T. J. (2010). Metabolic and osmregulatory responses of snapper (Pagrus auratas), mulloway (Argyrosomus japonicus) and yellowtail kingfish (Seriola lalandi) in saline groundwater [Master of Applied Science in Aquaculture by Research]. In eprints.utas.edu.au. https://eprints.utas.edu.au/10404/
Molluscs Echinoderms	Australia	Fotedar, R., Harries, S., & Savage, S. (2008). Survival, growth and osmolality of greenlip abalone Haliotis laevigata (Donovan 1808) when exposed to different ionic profiles of inland saline water. Aquaculture Research, 39(5), 441–448. https://doi.org/10.1111/j.1365-2109.2007.01721.x
Resourcespolicysys tems	Australia	Gavine, F., & Bretherton, M. (2007). Aquaculture in saline groundwater evaporation basins. A Report for the Rural Industries Research and Development Corporation. RIRDC Publication No 07/114. https://agrifutures.com.au/wp- content/uploads/publications/07-114.pdf

Economics	Australia	Gibson, T. S., Allan, G. L., File, G., Mullen, J. D., & Scott-Orr, H.
		(2007). Priorities and principles for investment in aquaculture research by NSW Department of Primary Industries. In AgEcon Search. NSW Department of Primary Industries. Economic
		Research report No. 36.
Decoursespelieursus	Australia	https://ageconsearch.umn.edu/record/37665/
Resourcespolicysys tems	Australia	Gooley, G. J., Hone, P. W., McKinnon, L. J., & Ingram, B. A. (2000). Cage aquaculture in Australia: A developed country perspective with reference to integrated aquaculture development within inland waters. Agris.fao.org; AFS; WAS-SC. https://agris.fao.org/agris-
	•	search/search.do?recordID=PH2002001140
Resourcespolicysys tems	Australia	Gooley, G., & Gavine, F. (Eds.). (2003). Integrated agri- aquaculture systems. A resource handbook for Australian industry development. A Report for the Rural Industries Research and Development Corporation Edited by. http://www.backyardaquaponics.com/Travis/03- 012.pdf#page=20
General status and	Australia	Gooley, G., Ingram, B., & McKinnon, L. (1999). Inland saline
opportunities		aquaculture - a Victorian perspective. Inland Saline Aquaculture Workshop. Proceedings of a Workshop in Perth, Western Australia, 6-7 August 1997., 83, 16–19. https://www.aciar.gov.au/sites/default/files/legacy/node/308 /pr83_pdf_14323.pdf
Economics	Australia	Government of South Australia. (2010). Invitation to submit an expression of interest to utilise water from the Woolpunda / Waikerie / Qualco salt interception scheme information memorandum.
Marine finfish	Australia	Haddy, J. A., & Pankhurst, N. W. (2000a). The effects of salinity on reproductive development, plasma steroid levels, fertilisation and egg survival in black bream Acanthopagrus butcheri. Aquaculture, 188(1-2), 115–131. https://doi.org/10.1016/s0044-8486(00)00326-4
Marine finfish	Australia	Haddy, J. A., & Pankhurst, N. W. (2000b). The efficacy of exogenous hormones in stimulating changes in plasma steroids and ovulation in wild black bream Acanthopagrus butcheri is improved by treatment at capture. Aquaculture, 191(4), 351–366. https://doi.org/10.1016/s0044- 8486(00)00445-2
Resourcespolicysys tems	Australia	Hauck, E. (2004). Evaporation basin guidelines for disposal of saline water. (p. 23). The Department of Agriculture WA. https://library.dpird.wa.gov.au/cgi/viewcontent.cgi?article=10 07&context=misc_pbns
Integrated ISA Agriculture	Australia	Heuperman, A., Bethune, M., Mann, L., & Batey, T. (2000). Management of saline drainage water on irrigation farms in Northern Victoria. 10th World Water Congress: Water, the Worlds Most Important Resource, 888–897. https://search.informit.org/doi/abs/10.3316/INFORMIT.51689 2551097612
Integrated ISA Agriculture	Australia	Heuperman, A., Mann, L., Greenslade, R., Heath, J., Gooley, G., Ingram, B., & McKinnon, L. (1999). Value adding to serial biological concentration for improved environmental management. Final Report. (pp. 1–35). Institute of Sustainable Irrigated Agriculture.
Economics	Australia	Hutchinson, W., & Flowers, T. (2008). Research to foster investor attraction and establishment of commercial aquaculture parks aligned to major saline groundwater interception schemes in south Australia. SARDI Research Report Series No: 317 (pp. 1–443). SARDI Aquatic Sciences. https://pir.sa.gov.au/data/assets/pdf_file/0007/231694/No

		_317_Research_to_foster_investor_attraction_Final_pp1- 33.pdf
Molluscs Echinoderms	Australia	Huy, D., Quang. (2016). Cultural biology of the blue mussel, Mytilus edulis (Linnaeus, 1758) in inland saline water in Western Australia [PhD Thesis]. In http://hdl.handle.net/20.500.11937/239. https://espace.curtin.edu.au/handle/20.500.11937/239
Integrated ISA Agriculture	Australia	Ingram, B. A., Gooley, G. J., McKinnon, L. J., & De Silva, S. S. (2000). Aquaculture-agriculture systems integration: An Australian prospective. Fisheries Management and Ecology, 7(1-2), 33–43. https://doi.org/10.1046/j.1365- 2400.2000.00182.x
General research	Australia	Ingram, B. A., McKinnon, L. J., & Gooley, G. J. (2002). Growth and survival of selected aquatic animals in two saline groundwater evaporation basins: an Australian case study. Aquaculture Research, 33(6), 425–436. https://doi.org/10.1046/j.1365-2109.2002.00691.x
General status and opportunities	Australia	Ingram, B., Gooley, G., & McKinnon, L. (1996). Potential for inland mariculture in Victorian saline groundwater evaporation basins. Austasia Aquaculture, 10(3), 61–63. https://www.researchgate.net/profile/Brett-Ingram- 2/publication/283738429_Potential_for_inland_mariculture_i n_Victorian_saline_groundwater_evaporation_basins/links/56 49239808ae54697fbe5f04/Potential-for-inland-mariculture-in- Victorian-saline-groundwater-evaporation-basins.pdf
General status and opportunities	Australia	Jenkins, G. (1999). Potential for inland saline aquaculture of fishes. Inland Saline Aquaculture Workshop. Proceedings of a Workshop in Perth, Western Australia, 6-7 August 1997, 37– 39. https://www.aciar.gov.au/sites/default/files/legacy/node/308 /pr83 pdf 14323.pdf
General/Economic decision	Australia	Johnstone, W. (2014a). Inland Saline Recirculation Aquaculture . Decision Tool . Queensland Government. https://www.publications.qld.gov.au/dataset/agbiz-tools- fisheries-aquaculture/resource/cda06968-016e-474b-8f7f- 44ed8d71117f
Prawns/Economic decision	Australia	Johnstone, W. (2014b). Inland Saline Prawn Culture. Decision Tool. Queensland Government. https://www.publications.qld.gov.au/dataset/agbiz-tools- fisheries-aquaculture/resource/629fcf1b-022e-483b-b347- 899962e06d7d?inner_span=True
Trout/Economic decision	Australia	Johnstone, W. (2014c). Inland Saline Trout Culture. Decision Tool. Queensland Government. https://www.publications.qld.gov.au/dataset/ba57f75c-2f52- 4692-9e9b-1d735984ad65/resource/cfe749c7-9233-4aa4- 9ea8-3b66d403860f/download/inland-saline-finfish-culture.xls
General research	Australia	Khan, S. J., Murchland, D., Rhodes, M., & Waite, T. D. (2009). Management of concentrated waste streams from high- pressure membrane water treatment systems. Critical Reviews in Environmental Science and Technology, 39(5), 367–415. https://doi.org/10.1080/10643380701635904
General status and opportunities	Australia	Kolkovski, S. (2011). An overview on desert aquaculture in Australia. In V. Crespi & A. Lovatelli (Eds.), Aquaculture in desert and arid lands: development constraints and opportunities. FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture

		Proceedings No. 20. Rome, FAO. 2011. pp. 39–60. https://www.fao.org/3/ba0114e/ba0114e03.pdf
		https://www.iao.org/5/bao114e/bao114e05.pui
Algae seaweed	Australia	Kumar, V., Fotedar, R., & Dods, K. (2009). Effect of inland saline water ionic profiles on growth, chemical composition and agar characteristics of Gracilaria cliftonii (Withell, Miller and Kraft 1994) under laboratory conditions. Aquaculture International, 18(5), 869–881. https://doi.org/10.1007/s10499-009-9306-y
Algae seaweed	Australia	Kumar, V., Fotedar, R., & Longbottom, S. (2011). Effect of nutrient media on the growth, physicochemical and agar properties of Gracilaria cliftonii cultured in ocean and inland saline water. Journal of Applied Aquaculture, 23(4), 317–328. https://doi.org/10.1080/10454438.2011.626371
Molluscs Echinoderms	Australia	Lee, C. (1999). Potential of inland saline water for aquaculture of molluscs. In B. Smith & C. Barlow (Eds.), Inland Saline Aquaculture Workshop. Proceedings of a workshop held on 6 and 7 August 1997 in Perth, Western Australia. ACIAR Proceedings No. 83, 61 pp.
Freshwater fish (not carp)	Australia	Lever, C., Lymbery, A. J., & Doupé, R. G. (2004a). Preliminary comparisons of yield and profit achieved from different rainbow trout, Oncorhynchus mykiss, production systems in inland Western Australia. Journal of Applied Aquaculture, 16(1-2), 63–73. https://doi.org/10.1300/j028v16n01_05
Freshwater fish (not carp)	Australia	Lever, C., Lymbery, A. J., & Doupé, R. G. (2004b). Preliminary comparisons of yield and profit achieved from different rainbow trout,oncorhynchus mykiss, production systems in inland Western Australia. Journal of Applied Aquaculture, 16(1-2), 63–73. https://doi.org/10.1300/j028v16n01_05
Integrated ISA Agriculture	Australia	Lymbery, A. J., Doupé, R. G., Bennett, T., & Starcevich, M. R. (2006). Efficacy of a subsurface-flow wetland using the estuarine sedge Juncus kraussii to treat effluent from inland saline aquaculture. Aquacultural Engineering, 34(1), 1–7. https://doi.org/10.1016/j.aquaeng.2005.03.004
Integrated ISA Agriculture	Australia	Lymbery, A. J., Kay, G. D., Doupé, R. G., Partridge, G. J., & Norman, H. C. (2013). The potential of a salt-tolerant plant (Distichlis spicata cv. NyPa Forage) to treat effluent from inland saline aquaculture and provide livestock feed on salt- affected farmland. Science of the Total Environment, 445-446, 192–201. https://doi.org/10.1016/j.scitotenv.2012.12.058
Freshwater fish (not carp)	Australia	Lymbery, A., Starcevich, M., & Doupé, R. (2007). Managing environmental impacts in inland saline aquaculture. A Case Study for Trout Production from Saline Groundwater in Western Australia. A report for the Rural Industries Research and Development Corporation (pp. 1–78). RIRDC Publication No 05/166.
Crustaceans (not penaeids)	Australia	McDowall, S., Awal, S., & Christie, A. (2016). Investigation into the potential use of inland saline groundwater for the production of live feeds for commercial aquaculture purposes. Journal of Aquaculture & Marine Biology, 4(1). https://doi.org/10.15406/jamb.2016.04.00071
Economics	Australia	McKinnon, L., Ingram, B., & Gooley, G. (1998). Fish production from salt-affected land. profit potential from a persistent problem. Trees and Natural Resources, 40(2), 29–31. https://search.informit.org/doi/epdf/10.3316/ielapa.9811113 94

Freshwater fish (not carp)	Australia	Mellor, P., & Fotedar, R. (2005). Physiological responses of Murray cod (Maccullochella peelii peelii)(Mitchell 1839) larvae and juveniles when cultured in inland saline water. Indian J. Fish, 52(3), 249–261.
Marine finfish	Australia	Michael, R. J., Partridge, G. J., Hofmann, T., & Caro, E. D. (2010). Evaluation of mosquito fish Gambusia holbrooki (Girard) as a partial and complete pellet replacement for juvenile barramundi Lates calcarifer (Bloch). Aquaculture Research, 41(11), e788–e794. https://doi.org/10.1111/j.1365- 2109.2010.02595.x
Freshwater fish (not carp)	Australia	Molony, B. (2001). Environmental requirements and tolerances of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) with special reference to Western Australia: A review. Fisheries Research Report No 130. http://www.sjrdotmdl.org/concept_model/bio- effects_model/documents/Molony2001.pdf
Environmental	Australia	Ogburn, M. D. (2007). Environmental impacts in Australian aquaculture. In T. M. Bert (Ed.), Ecological and Genetic Implications of Aquaculture Activities. Methods and Technologies in Fish Biology and Fisheries, Vol 6. Springer Netherlands. https://doi.org/10.1007/978-1-4020-6148-6
General status and opportunities	Australia	Partridge, G. (2008). Inland saline aquaculture: Overcoming biological and technical constraints towards the development of an industry (p. 169) [PhD Thesis]. https://researchrepository.murdoch.edu.au/id/eprint/245/2/0 2Whole.pdf
Marine finfish	Australia	Partridge, G. J., & Creeper, J. (2004). Skeletal myopathy in juvenile barramundi, Lates calcarifer (Bloch), cultured in potassium-deficient saline groundwater. Journal of Fish Diseases, 27(9), 523–530. https://doi.org/10.1111/j.1365- 2761.2004.00567.x
Marine finfish	Australia	Partridge, G. J., & Lymbery, A. J. (2008). The effect of salinity on the requirement for potassium by barramundi (Lates calcarifer) in saline groundwater. Aquaculture, 278(1-4), 164– 170. https://doi.org/10.1016/j.aquaculture.2008.03.042
Marine finfish	Australia	Partridge, G. J., & Lymbery, A. J. (2009). Effects of manganese on juvenile mulloway (Argyrosomus japonicus) cultured in water with varying salinity—Implications for inland mariculture. Aquaculture, 290(3-4), 311–316. https://doi.org/10.1016/j.aquaculture.2009.02.020
Marine finfish	Australia	Partridge, G. J., Lymbery, A. J., & Bourke, D. K. (2008). Larval rearing of barramundi (Lates calcarifer) in saline groundwater. Aquaculture, 278(1-4), 171–174. https://doi.org/10.1016/j.aquaculture.2008.03.023
General status and opportunities	Australia	Partridge, G. J., Lymbery, A. J., & George, R. J. (2008). Finfish mariculture in inland Australia: A review of potential water sources, species, and production systems. Journal of the World Aquaculture Society, 39(3), 291–310. https://doi.org/10.1111/j.1749-7345.2008.00169.x
General status and opportunities	Australia	Partridge, G. J., Sarre, G. A., Ginbey, B. M., Kay, G. D., & Jenkins, G. I. (2006). Finfish production in a static, inland saline water body using a Semi-Intensive Floating Tank System (SIFTS). Aquacultural Engineering, 35(2), 109–121. https://doi.org/10.1016/j.aquaeng.2005.09.001
General status and opportunities	Australia	Partridge, G., Sarre, G., Lymbery, A., Jenkins, G., Doupé, R., Kay, G., Michael, R., Willett, D., & Erler, D. (2008). New technologies for sustainable commercial finfish culture. Fisheries Research and Development Corporation Report FRDC Project 2005/213 I.

		https://www.frdc.com.au/sites/default/files/products/2005- 213-DLD.PDF
General status and opportunities	Australia	Paust, G. (1999). Inland saline aquaculture in Western Australia. Proceedings of a Workshop in Perth, Western Australia, 6-7 August 1997, 83, 1–61. https://www.aciar.gov.au/sites/default/files/legacy/node/308 /pr83_pdf_14323.pdf
Economics	Australia	PIRSA Aquaculture. (2008a). Economic impact analysis for the use of salt interception schemes for aquaculture development (pp. 1–24). EconSearch Pty Ltd.
Economics	Australia	PIRSA Aquaculture. (2008b). Financial sensitivity analysis for the use of salt interception schemes for aquaculture development (pp. 1–56). EconSearch Pty Ltd.
Penaieds (not vannamei)	Australia	Prangnell, D. I., & Fotedar, R. (2005). The effect of potassium concentration in inland saline water on the growth and survival of the western king Shrimp, Penaeus latisulcatus Kishinouye, 1896. Journal of Applied Aquaculture, 17(2), 19– 34. https://doi.org/10.1300/j028v17n02_02
Penaieds (not vannamei)	Australia	Prangnell, D. I., & Fotedar, R. (2006a). The growth and survival of western king prawns, Penaeus latisulcatus Kishinouye, in potassium-fortified inland saline water. Aquaculture, 259(1-4), 234–242. https://doi.org/10.1016/j.aquaculture.2006.05.023
Penaieds (not vannamei)	Australia	Prangnell, D. I., & Fotedar, R. (2006b). Effect of sudden salinity change on Penaeus latisulcatus Kishinouye osmoregulation, ionoregulation and condition in inland saline water and potassium-fortified inland saline water. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145(4), 449–457. https://doi.org/10.1016/j.cbpa.2006.08.029
Penaieds (not vannamei)	Australia	Prangnell, D. I., & Fotedar, R. (2009). Effect of sudden change in potassium concentration on Penaeus latisulcatus Kishinouye survival, osmolality and health in inland saline water cultures. Hydrobiologia, 626(1), 145–153. https://doi.org/10.1007/s10750-009-9742-8
Economics	Australia	Primary Industries and Resources South Australia. (2008). SIS aquaculture planner user guide. EconSearch Pty Ltd.
Penaieds (not vannamei)	Australia	Romano, N., & Zeng, C. (2009). Evaluating the newly proposed protocol of incorporated potassium in nitrate toxicity experiments at different salinities: A case study with the tiger prawn, Penaeus monodon, juveniles. Aquaculture, 289(3-4), 304–309. https://doi.org/10.1016/j.aquaculture.2009.01.035
Crustaceans (not penaeids)	Australia	Romano, N., & Zeng, C. (2011). Importance of balanced Na+/K+ ratios for blue swimmer crabs, Portunus pelagicus, to cope with elevated ammonia-N and differences between in vitro and in vivo gill Na+/K+-ATPase responses. Aquaculture, 318(1-2), 154–161. https://doi.org/10.1016/j.aquaculture.2011.05.016
Penaieds (not vannamei)	Australia	Romano, N., & Zeng, C. (2012). Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture, 334-337, 12–23. https://doi.org/10.1016/j.aquaculture.2011.12.035
Freshwater fish (not carp)	Australia	Rowland, S. J. (2009). Review of aquaculture research and development of the Australian freshwater fish silver perch, Bidyanus bidyanus. Journal of the World Aquaculture Society, 40(3), 291–324. https://doi.org/10.1111/j.1749- 7345.2009.00252.x

	a	
General status and	Australia	Rozema, J., & Flowers, T. (2008). Crops for a salinized world.
opportunities		Science, 322(5907), 1478–1480.
		https://doi.org/10.1126/science.1168572
Marine finfish	Australia	Sarre, G., Partridge, G., Jenkins, G., Potter, I., & Tiivel, D.
		(2003). Factors required for the successful aquaculture of
		black bream (Acanthopagrus butcheri) in inland water bodies
		(p. 81). FRDC Final Report Project No. 1999/320.
		https://researchrepository.murdoch.edu.au/id/eprint/19802/
		1/successful_aquaculture_of_black_bream.pdf
Freshwater fish	Australia	Schultz, A. G., Healy, J. M., Jones, P. L., & Toop, T. (2008).
(not carp)		Osmoregulatory balance in Murray cod, Maccullochella peelii
(F/		peelii (Mitchell), affected with chronic ulcerative
		dermatopathy. Aquaculture, 280(1-4), 45–52.
		https://doi.org/10.1016/j.aquaculture.2008.04.011
Penaieds (not	Australia	Slattery, S. L., & Palmer, P. J. (2008). Growing organic prawns -
vannamei)	Australia	in inland saline waters. In era.daf.qld.gov.au (pp. 1–119).
valillalliel)		
		RIRDC Publication No 08/126.
	A 1 11	https://era.daf.qld.gov.au/id/eprint/3505/
General status and	Australia	Smith, B., & Barlow, C. (Eds.). (1999). Inland saline
opportunities		aquaculture. (pp. 1–61). Proceedings of a workshop held on 6-
		7 August 1997 in Perth, Western Australia. ACIAR Proceedings
		No. 83.
		https://www.aciar.gov.au/sites/default/files/legacy/node/308
		/pr83_pdf_14323.pdf#page=6
Freshwater fish	Australia	Starcevich, M. R., Lymbery, A. J., & Doupé, R. G. (2003).
(not carp)		Potential environmental impacts from farming rainbow trout
		using inland saline water in Western Australia. Australasian
		Journal of Environmental Management, 10(1), 15–24.
		https://doi.org/10.1080/14486563.2003.10648569
Penaieds (not	Australia	Tantulo, U., & Fotedar, R. (2006). Comparison of growth,
vannamei)		osmoregulatory capacity, ionic regulation and organosomatic
		indices of black tiger prawn (Penaeus monodon Fabricius,
		1798) juveniles reared in potassium fortified inland saline
		water and ocean water at different salinities. Aquaculture,
		258(1-4), 594–605.
		http://dx.doi.org/10.1016/j.aquaculture.2006.04.038
Densieds (net	Avetralia	
Penaieds (not	Australia	Tantulo, U., & Fotedar, R. (2007). Osmo and ionic regulation of
vannamei)		black tiger prawn (Penaeus monodon Fabricius 1798) juveniles
		exposed to K+ deficient inland saline water at different
		salinities. Comparative Biochemistry and Physiology Part A:
		Molecular & Integrative Physiology, 146(2), 208–214.
		https://doi.org/10.1016/j.cbpa.2006.10.020
Penaieds (not	Australia	Tantulo, U., & Fotedar, R. (2017). Physiological performance
vannamei)		and serum Na+, K+ Ca2+ and Mg2+ regulation of black tiger
		prawn (Penaeus monodon Fabricius 1798) reared in varying
		Na+/K+ ratios of inland saline water. Aquaculture, 479, 52–59.
		https://doi.org/10.1016/j.aquaculture.2017.05.023
Environmental	Australia	Trendall, J., Aldert, J., & Lymbery, A. (1999). A national
		environmental management policy for land-based fish
		farming. In B. Smith & C. Barlow (Eds.), Inland Saline
		Aquaculture Workshop. Proceedings of a workshop held on 6
		and 7 August 1997 in Perth, Western Australia. ACIAR
		Proceedings No. 83, 61 pp.
		https://ageconsearch.umn.edu/record/135193/files/PR083.pd f#page=31

Integrated ICA	Algoria Egunt	Corner D. Forcer H. & Creeni M. (Eds.) (2020) Integrated
Integrated ISA Agriculture	Algeria, Egypt, Oman	Corner, R., Fersoy, H., & Crespi, V. (Eds.). (2020). Integrated agri-aquaculture in desert and arid lands - Learning from case studies from Algeria, Egypt and Oman. In Google Books. FAO Fisheries and Aquaculture Circular No. 1195. https://books.google.com.au/books?hl=en&lr=&id=djfoDwAA QBAJ&oi=fnd&pg=PR3&dq=saline+groundwater+aquaculture &ots=hnCNLYB5Am&sig=KeGNxEWYwqH2zJQGLwaNz6gPplw# v=onepage&q=saline%20groundwater%20aquaculture&f=false
Economics	Arabia/Persian Gulf	Brown, J. J., Das, P., & Al-Saidi, M. (2018). Sustainable agriculture in the Arabian/Persian Gulf region utilizing marginal water resources: Making the best of a bad situation. Sustainability, 10(5), 1364. https://doi.org/10.3390/su10051364
Vannamei	Bangladesh	Kabir, M. H., & Eva, I. J. (2014). Environmental impacts of shrimp aquaculture: The case of Chandipur village at Debhata upazila of Satkhira district, Bangladesh. Journal of the Asiatic Society of Bangladesh, Science, 40(1), 107–119. https://doi.org/10.3329/jasbs.v40i1.31738
Vannamei	Bangladesh	Naser, M. N., Sarker, M. N., & Hosain, M. E. (2022). Whiteleg shrimp Litopenaeus vennamei: Current status, future prospects and opportunities for Bangladesh Aquaculture. Bangladesh Journal of Zoology, 50(2), 143–184. https://doi.org/10.3329/bjz.v50i2.62051
Vannamei	Brazil	Esparza-Leal, H. M., Amaral Xavier, J. A., & Wasielesky, W. (2016). Performance of Litopenaeus vannamei postlarvae reared in indoor nursery tanks under biofloc conditions at different salinities and zero-water exchange. Aquaculture International, 24(5), 1435–1447. https://doi.org/10.1007/s10499-016-0001-5
Vannamei	Brazil	Esparza-Leal, H. M., Ponce-Palafox, J. T., Aragón-Noriega, E. A., Arredondo-Figueroa, J. L., García-Ulloa Gómez, M., & Valenzuela-Quiñonez, W. (2009). Growth and performance of the whiteleg shrimp Penaeus vannamei (Boone) cultured in low-salinity water with different stocking densities and acclimation times. Aquaculture Research, 41(6), 878–883. https://doi.org/10.1111/j.1365-2109.2009.02367.x
Vannamei	Brazil	Esparza-Leal, H. M., Ponce-Palafox, J. T., Cervantes-Cervantes, C. M., Valenzuela-Quiñónez, W., Luna-González, A., López- Álvarez, E. S., Vázquez-Montoya, N., López-Espinoza, M., & Gómez-Peraza, R. L. (2019). Effects of low salinity exposure on immunological, physiological and growth performance in Litopenaeus vannamei. Aquaculture Research, 50(3), 944–950. https://doi.org/10.1111/are.13969
Vannamei	Brazil	Esparza-Leal, H. M., Ponce-Palafox, J. T., Valenzuela-Quiñónez, W., Arredondo-Figueroa, J. L., & García-Ulloa Gómez, M. (2010). Effects of density on growth and survival of juvenile Pacific white shrimp, Penaeus vannamei, reared in low-salinity well water. Journal of the World Aquaculture Society, 41(4), 648–654. https://doi.org/10.1111/j.1749-7345.2010.00406.x
Vannamei	Brazil	Esparza-Leal, H. M., Ponce-Palafox, J. T., Valenzuela-Quiñónez, W., Beltrán, H. C., & Figueroa, J. L. A. (2009). The effect of low salinity water with different ionic composition on the growth and survival of Litopenaeus vannamei (Boone, 1931) in intensive culture. Journal of Applied Aquaculture, 21(4), 215– 227. https://doi.org/10.1080/10454430903113958

Vannamei	Brazil	Espinoza Ortiz, M., Apún Molina, J. P., Peinado Guevara, H. J., Herrera Barrientos, J., Belmonte Jiménez, S. I., Ladrón de Guevara Torres, M. de los Á., & Delgado Rodríguez, O. (2021). Evaluation of groundwater in the coastal portion of Guasave, Sinaloa for white shrimp farming (Penaeus vannamei) through VES, chemical composition, and survival tests. Journal of Marine Science and Engineering, 9(3), 276. https://doi.org/10.3390/jmse9030276
Vannamei	Brazil	Maicá, P. F., Borba, M. R. de, Martins, T. G., & Wasielesky Junior, W. (2014). Effect of salinity on performance and body composition of Pacific white shrimp juveniles reared in a super-intensive system. Revista Brasileira de Zootecnia, 43(7), 343–350. https://www.scielo.br/j/rbz/a/f8vvcPgDnfsQZYwpxLFct3m/
Algae seaweed	Brazil	Matos, Â. P., da Silva, T., & Sant'Anna, E. S. (2020). The feasibility of using inland desalination concentrate (DC) as an alternative substrate for Spirulina platensis mass cultivation. Waste and Biomass Valorization, 12(6), 3193–3203. https://doi.org/10.1007/s12649-020-01233-9
Integrated ISA Agriculture	Brazil	Miranda, F. R., Lima, R. N., Crisóstomo, L. A., & Santana, M. G. S. (2008). Reuse of inland low-salinity shrimp farm effluent for melon irrigation. Aquacultural Engineering, 39(1), 1–5. https://doi.org/10.1016/j.aquaeng.2008.04.001
Vannamei	Brazil	Oliveira, C. R. do R., de Oliveira, V. Q., Pimentel, O. A. L. F., dos Santos, E. P., de Oliveira Filho, P. R. C., Gálvez, A. O., & Brito, L. O. (2022). Growth performance and proximate composition of Penaeus vannamei reared in low-salinity water with different ionic compositions in a synbiotic system. Aquaculture International, 30(6), 3123–3141. https://doi.org/10.1007/s10499-022-00952-1
Integrated ISA Agriculture	Brazil	Sánchez, A. S., Nogueira, I. B. R., & Kalid, R. A. (2015). Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops. Desalination, 364, 96–107. https://doi.org/10.1016/j.desal.2015.01.034
Vannamei	Brazil	Silva, G. C., Limeira, A. C., de Almeida Costa, G. K., da Silva, S. M. B. C., de Oliveira Filho, P. R. C., & Brito, L. O. (2022). Effects of different forms of artificially salinized in low-salinity water of Penaeus vannamei in the grow-out phase in a synbiotic system. Aquaculture International. https://doi.org/10.1007/s10499-022-01025-z
Vannamei	Brazil	Zacarias, S., Schveitzer, R., Arantes, R., Galasso, H., Pinheiro, I., Espirito Santo, C., & Vinatea, L. (2018). Effect of different concentrations of potassium and magnesium on performance of Litopenaeus vannamei postlarvae reared in low-salinity water and a biofloc system. Journal of Applied Aquaculture, 31(1), 85–96. https://doi.org/10.1080/10454438.2018.1536009
Tilapia	Caribbean	Watanabe, W., Ernst, D., Olla, B., & Wicklund, R. (1989, February 1). Aquaculture of red tilapia Oreochromis sp. in marine environments: State of the art. Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia, 20 Feb - 4 Mar 1989. https://archimer.ifremer.fr/doc/00000/1493/
Crustaceans (not penaeids)	Chile	De los Rios Escalante, P., & Salgado, I. (2012). Artemia (Crustacea, Anostraca) in Chile: A review of basic and applied biology. Latin American Journal of Aquatic Research, 40(3), 487–496. https://doi.org/10.3856/vol40-issue3-fulltext-1

Vannamei	China	Addo, F. G., Zhang, S., Manirakiza, B., Ma, Y., Yuan, S., Alklaf, S. A., Guo, S., & Abakari, G. (2023). Brown sugar addition enhanced nutrient removal rates, growth performance, and bacterial community in a rice straw-based biofloc shrimp culture system. Aquaculture, 567, 739274. https://doi.org/10.1016/j.aquaculture.2023.739274
Environmental	China	Cao, N. (2015). Study on desalination of brackish water and causes of arid area. Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy. https://doi.org/10.2991/icismme-15.2015.400
Integrated ISA Agriculture	China	Chang, Z., Neori, A., He, Y., Li, J., Qiao, L., Preston, S. I., Liu, P., & Li, J. (2020). Development and current state of seawater shrimp farming, with an emphasis on integrated multi-trophic pond aquaculture farms, in China – a review. Reviews in Aquaculture, 12(4), 2544–2558. https://doi.org/10.1111/raq.12457
Vannamei	China	Changbo, Z. H. U., & Shuanglin, D. (2005). Advances, problems and prospect of inland shrimp farming. South China Fisheries Science, 1(5), 63–69. https://www.schinafish.cn/en/article/id/5f4f675a-0477-4e3c- b81c-8c0c066230b8
Vannamei	China	Chen, K., Li, E., Xu, C., Wang, X., Lin, H., Qin, J. G., & Chen, L. (2015). Evaluation of different lipid sources in diet of Pacific white shrimp Litopenaeus vannamei at low salinity. Aquaculture Reports, 2, 163–168. https://doi.org/10.1016/j.aqrep.2015.10.003
Crustaceans (not penaeids)	China	Chen, Y., Qin, K., Liang, G., Li, X., Niu, M., Wang, H., Wang, C., Mu, C., & Zhu, R. (2023). Comparative study on non-volatile flavor substances of Scylla paramamosain cultured in inland low saline-alkaline water. Journal of Food Composition and Analysis, 118, 105157. https://doi.org/10.1016/j.jfca.2023.105157
Tilapia	China	Cheng, Y., Zhao, J., Ayisi, C. L., & Cao, X. (2022). Effects of salinity and alkalinity on fatty acids, free amino acids and related substance anabolic metabolism of Nile tilapia. Aquaculture and Fisheries, 7(4), 389–395. https://doi.org/10.1016/j.aaf.2020.06.005
General research	China	Gao, F., Li, C., & Jin, W. (2011). Study on saline aquaculture wastewater treatment by constructed wetland. In 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 2011, pp. 3938-3941 (pp. 3938–3941). https://doi.org/10.1109/ICECC.2011.6068041
Vannamei	China	Gao, W., Tian, L., Huang, T., Yao, M., Hu, W., & Xu, Q. (2016). Effect of salinity on the growth performance, osmolarity and metabolism-related gene expression in white shrimp Litopenaeus vannamei. Aquaculture Reports, 4, 125–129. https://doi.org/10.1016/j.aqrep.2016.09.001
Integrated ISA Agriculture	China	Geng-Mao, Z., Liu, ZP., Ming-Da, C., & Wei-Feng, K. (2006). Effect of saline aquaculture effluent on salt-tolerant Jerusalem artichoke (Helianthus tuberosus L.) in a semi-arid coastal area of China. Pedosphere, 16(6), 762–769. https://doi.org/10.1016/S1002-0160(06)60112-4
Resourcespolicysys tems	China	He, Z., & Zhao, W. (2002). Biological resource in inland saline waters in North China. Journal of Dalian Fisheries College, 17(3), 157–166. https://europepmc.org/article/cba/371280
Environmental	China	Higgins, S., Overeem, I., Tanaka, A., & Syvitski, J. P. M. (2013). Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophysical Research Letters, 40(15), 3898– 3902. https://doi.org/10.1002/grl.50758

Vannamei	China	Huang, HH., Luo, T., Lei, YJ., Kuang, WQ., Zou, WS., & Yang, PH. (2021). Water quality, shrimp growth performance and bacterial community in a reusing-water biofloc system for nursery of Penaeus vananmei rearing under a low salinity condition. Aquaculture Reports, 21, 100894. https://doi.org/10.1016/j.aqrep.2021.100894
Marine finfish	China	Huang, Z., Song, X., Zheng, Y., Peng, L., Wan, R., Lane, T., Zhai, J., Hallerman, E., & Dong, D. (2013). Design and evaluation of a commercial recirculating system for half-smooth tongue sole (Cynoglossus semilaevis) production. Aquacultural Engineering, 54, 104–109. https://doi.org/10.1016/j.aquaeng.2012.12.004
Vannamei	China	Li, E., Chen, L., Zeng, C., Chen, X., Yu, N., Lai, Q., & Qin, J. G. (2007). Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture, 265(1-4), 385–390. https://doi.org/10.1016/j.aquaculture.2007.02.018
Vannamei	China	Li, E., Wang, X., Chen, K., Xu, C., Qin, J. G., & Chen, L. (2015). Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Reviews in Aquaculture, 9(1), 57–75. https://doi.org/10.1111/raq.12104
Vannamei	China	Li, E., Xu, C., Wang, X., Wang, S., Zhao, Q., Zhang, M., Qin, J. G., & Chen, L. (2018). Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Reviews in Fisheries Science & Aquaculture, 26(3), 381–399. https://doi.org/10.1080/23308249.2018.1440530
General research	China	Li, L., Dong, S., Tian, X., & Boyd, C. E. (2013). Equilibrium concentrations of major cations and total alkalinity in laboratory soil-water systems. Journal of Applied Aquaculture, 25(1), 50–65. https://doi.org/10.1080/10454438.2012.758074
Integrated ISA Agriculture	China	Li, T., Zhang, B., Zhu, C., Su, J., Li, J., Chen, S., & Qin, J. (2021). Effects of an ex situ shrimp-rice aquaponic system on the water quality of aquaculture ponds in the Pearl River estuary, China. Aquaculture, 545, 737179. https://doi.org/10.1016/j.aquaculture.2021.737179
General status and opportunities	China	Li, Z., Liu, J., Wang, Q., & Silva, S. S. D. (2018). Inland aquaculture: Trends and prospects. In JF. Gui, Q. Tang, Z. Li, J. Liu, & S. S. De Silva (Eds.), Aquaculture in China (pp. 25–37). https://doi.org/10.1002/9781119120759.ch1_2
Crustaceans (not penaeids)	China	Liang, G., Qin, K., Chen, Y., Niu, M., Wang, H., Wang, C., Mu, C., Chen, L., Wang, F., Su, Q., & Zhu, R. (2022). Transcriptomic analysis of adaptive mechanisms in response to inland saline- alkaline water in the mud crab, Scylla paramamosain. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.974501
Molluscs Echinoderms	China	Lin, T., Zhou, K., Liu, X., Lai, Q., Zhang, D., & Shi, L. (2016). Effects of clam size, food type, sediment characteristic, and seawater carbonate chemistry on grazing capacity of Venus clam Cyclina sinensis (Gmelin, 1791). Chinese Journal of Oceanology and Limnology, 35(5), 1239–1247. https://doi.org/10.1007/s00343-017-5334-z
Vannamei	China	Liu, H., Tan, B., Yang, J., Chi, S., Dong, X., & Yang, Q. (2014). Effects of aqueous Na/K and dietary K on growth and physiological characters of the Pacific white shrimp Litopenaeus vannamei, reared in low-salt well water. Aquaculture Research, 47(2), 540–553. https://doi.org/10.1111/are.12513

Algae seaweed	China	Lu, X., Cui, Y., Chen, Y., Xiao, Y., Song, X., Gao, F., Xiang, Y., Hou, C., Wang, J., Gan, Q., Zheng, X., & Lu, Y. (2021). Sustainable development of microalgal biotechnology in coastal zone for aquaculture and food. Science of the Total Environment, 780, 146369. https://doi.org/10.1016/j.scitotenv.2021.146369
Penaieds (not	China	Pan, LQ., Luan, ZH., & Jin, CX. (2006). Effects of Na+/K+
vannamei)		and Mg2+/Ca2+ ratios in saline groundwaters on Na+-K+- ATPase activity, survival and growth of Marsupenaeus japonicus postlarvae. Aquaculture, 261(4), 1396–1402. https://doi.org/10.1016/j.aquaculture.2006.09.031
Molluscs	China	Peng, M., Li, Z., Liu, X., Lan, T., Niu, D., Ye, B., Dong, Z., & Li, J.
Echinoderms		(2019). Survival, growth and physiology of the juvenile razor clam (Sinonovacula constricta) under Na+/K+ ratio stress. Aquaculture Research, 51(2), 794–804.
		https://doi.org/10.1111/are.14429
Molluscs Echinoderms	China	Peng, M., Li, Z., Liu, X., Niu, D., & Li, J. (2020). Inland alkaline brackish water aquaculture of juvenile razor clam: Survival, growth, physiology and immune responses. Aquaculture Reports, 18, 100463. https://doi.org/10.1016/j.aqrep.2020.100463
General status and	China	Qin, K., Jiang, Z., & He, Z. (2002). Fish species and diversity of
opportunities		inland saline waters in northern part of China. Journal of Dalian Fisheries College.
		https://europepmc.org/article/cba/371356
Tilapia	China	Song, L., Zhao, Y., Song, Y., Zhao, L., Ma, C., & Zhao, J. (2021). Effects of saline-alkaline water on growth performance, nutritional processing, and immunity in Nile tilapia (Oreochromis niloticus). Aquaculture, 544, 737036. https://doi.org/10.1016/j.aquaculture.2021.737036
Marine finfish	China	Teng, G., Huang, W., Ji, C., Chen, Y., & Shan, X. (2022).
		Morphological changes and variations in Na+/K+-ATPase
		activity in the gills of juvenile large yellow croaker
		(Larimichthys crocea) at low salinity. Aquaculture and
		Fisheries, 7(3), 313–320.
		http://dx.doi.org/10.1016/j.aaf.2020.08.003
General status and	China	Wang, Q., Cheng, L., Liu, J., Li, Z., Xie, S., & De Silva, S. S.
opportunities		(2014). Freshwater aquaculture in PR China: Trends and
		prospects. Reviews in Aquaculture, 7(4), 283–302.
		https://doi.org/10.1111/raq.12086
Vannamei	China	Wang, X. D., Li, E. C., Wang, S. F., Qin, J. G., Chen, X. F., Lai, Q.
		M., Chen, K., Xu, C., Gan, L., Yu, N., Du, Z. Y., & Chen, L. Q.
		(2014). Protein-sparing effect of carbohydrate in the diet of
		white shrimp Litopenaeus vannamei at low salinity.
		Aquaculture Nutrition, 21(6), 904–912.
Marine finfish	China	https://doi.org/10.1111/anu.12221 Wang, Y., Li, W., Li, L., Zhang, W., & Lu, W. (2015). Effects of
	China	salinity on the physiological responses of the large yellow
		croaker Pseudosciaena crocea under indoor culture
		conditions. Aquaculture Research, 47(11), 3410–3420.
		https://doi.org/10.1111/are.12788
Resourcespolicysys	China	Wen, Z., & Zhi-hui, H. (1999). Biological and ecological features
tems		of inland saline waters in North Hebei, China. International
		Journal of Salt Lake Research, 8(3), 267–285.
		https://doi.org/10.1023/a:1009091216842
Vannamei	China	Xu, C., Li, E., Liu, Y., Wang, S., Wang, X., Chen, K., Qin, J. G., &
		Chen, L. (2017). Effect of dietary lipid level on growth, lipid
		metabolism and health status of the Pacific white shrimp
		Litopenaeus vannamei at two salinities. Aquaculture Nutrition,
		24(1), 204–214. https://doi.org/10.1111/anu.12548

M., & Zhao, B. (2011). Assessing impact of land uses on land salinization in the Yellow River delta, China using an integrated and spatial statistical model. Land Use Policy, 28(4), 857–866. https://doi.org/10.1016/j.landusepol.2011.03.002Crustaceans (not penaeids)ChinaZhao, W., Wang, Q., Zheng, M., Zhao, Y., & Wang, H. (2002). A preliminary study on the biology of Daphniopsis tebitana Sar. Journal of Dalian Fisheries College, 17(3), 209–214. https://europepmc.org/article/cba/371357VannameiChinaZhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture.2003.11.027VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth,	Environmental	China	Zhang, TT., Zeng, SL., Gao, Y., Ouyang, ZT., Li, B., Fang, C
and spatial statistical model. Land Use Policy, 28(4), 857–866. https://doi.org/10.1016/j.landusepol.2011.03.002 Crustaceans (not penaeids) China Zhao, W., Wang, Q., Zheng, M., Zhao, Y., & Wang, H. (2002). A preliminary study on the biology of Daphnlopsis tebitana Sar. Journal of Dalian Fisheries College, 17(3), 209–214. https://doi.org/10.1016/j.aquaculture, 23(41), 485–496. https://doi.org/10.1016/j.aquaculture, 23(41), 485–496. https://doi.org/10.1016/j.aquaculture.2003.11.027 Vannamei China Zhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 23(41), 485–496. https://doi.org/10.1016/j.aquaculture.2003.11.027 Vannamei China Zhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 2063.0383 Vannamei China Zhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://doi.org/10.1028/3/0730- 8000(2006)25(107:1105A4K)2.0.CC;2 Crustaceans (not penaeids) Crimea Yakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, Jong-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.1037/688, 2017_161 Resourcespolicysys tems Egypt El Semary, N. A. (2017). Algae and chalin aquaculture: An approach towards sustaina		00	
IntegrateIntegrationCrustaceans (not penaeids)ChinaZhao, W., Wang, Q., Zheng, M., Zhao, Y., & Wang, H. (2002). A preliminary study on the biology of Daphinopsis tebitana Sar. Journal of Dalian Fisheries College, 17(3), 209–214. https://europepmc.org/article/dx371357VannameiChinaZhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 234(1), 485–486. https://doi.org/10.1016/j.aquaculture.2003.11.027VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 235(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, CB., Dong, Shuang-Lin, & Wang, (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:1105AK]2.0.C0;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, F. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, Jong-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.1030/w14182786Algae seaweed temsEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agricultura! In A. Negm & M. Abu-hashim (Eds.), Seytainability of Agricultura! Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiny, F.,			salinization in the Yellow River delta, China using an integrated
Crustaceans (not penaeids) China Zhao, W., Wang, Q., Zheng, M., Zhao, Y., & Wang, H. (2002). A preliminary study on the biology of Daphniopsis teblicana Sar. Journal of Dalian Fisheries College, 17(3), 209–214. https://europepmc.org/article/cba/371357 Vannamei China Zhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 234(1), 485–496. https://doi.org/10.1016/j.aquaculture.2003.11.027 Vannamei China Zhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2066.03.038 Vannamei China Zhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25(107:TIOSAK)2.0.CO;2 Crustaceans (not penaeids) Crimea Yakovenko, V., Shadrin, N., & Anufrileva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.1007/698_2017_161 Algae seaweed Egypt El Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt's costal lakes: Opportunitites and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.),			and spatial statistical model. Land Use Policy, 28(4), 857–866.
penaeids)preliminary study on the biology of Daphniopsis tebitana Sar. Journal of Dalian Fisheries College, 17(3), 209–214. https://europepmc.org/article/cba/371357VannameiChinaZhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 23(1), 485–496. https://doi.org/10.1016/j.aquaculture.2003.11.027VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 2066.03.038VannameiChinaZhu, CB., Dong, SL., Wang, F., & Wang, (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Andrileva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweed temsEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agricultural Environmental Chemistry, Vol 71 (pp. 211–36). Springer, Cham. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt: Soastai lakes' Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastai Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 211–36). S			https://doi.org/10.1016/j.landusepol.2011.03.002
Journal of Dalian Fisheries College, 17(3), 209–214. https://europepmc.org/article/cba/371357VannameiChinaZhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 234(1), 485–496. https://doi.org/10.1016/j.aquaculture.2003.11.027VannameiChinaZhu, C. B., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, C. B., Dong, SLu, Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.206.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang, (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)/25[107:1105Ak]2.0.C0;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufrileva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, Jong-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.1330/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environmenti in Egypt? Scastal lakes: Opportunities and chailenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.)	Crustaceans (not	China	Zhao, W., Wang, Q., Zheng, M., Zhao, Y., & Wang, H. (2002). A
Image: constraint of the second sec	penaeids)		preliminary study on the biology of Daphniopsis tebitana Sar.
VannameiChinaZhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 234(1), 485–496. https://doi.org/10.1016/j.aquaculture.2003.11.027VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufrileva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.330/w14182786Algae seaweed termsEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agricultural Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys termsEgyptElbehry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/978_2018_250Resourcespolicysys termsEgyptElbehry, F., Mahmoud,			Journal of Dalian Fisheries College, 17(3), 209–214.
ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei. Aquaculture, 234(1), 485–496. https://doi.org/10.1016/j.aquaculture.2006.11.027VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture. 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufrileva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea]: Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweed temsEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainabile agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt? Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part 1. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgypt			https://europepmc.org/article/cba/371357
Litopenaeus vannamei. Aquaculture, 234(1), 485–496. https://doi.org/10.1016/j.aquaculture.2003.11.027VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shelfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufrieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.390/v14182786Algae seaweed temsEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Nadal, S. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part 1. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaa	Vannamei	China	Zhu, C., Dong, S., Wang, F., & Huang, G. (2004). Effects of Na/K
Vannameihttps://doi.org/10.1016/j.aquaculture.2003.11.027VannameiChinaZhu, C-B., Dong, S-L., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang, (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:1105Ak]2.0.C0;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufrileva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-terr changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/688_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and chalienges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElnehiry, F., Mahmoud, M. A., & Negm, M. (2008). Combating desertification through fish farming. In C. Lee &			ratio in seawater on growth and energy budget of juvenile
VannameiChinaZhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), IS43-550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang, (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)225[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.390/w14182786Algae seaweed temsEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part 1. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Spri			Litopenaeus vannamei. Aquaculture, 234(1), 485–496.
of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture, 258(1), 543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang, (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agricultura. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-14020-6970-3_46Integrated ISA Agricultur			https://doi.org/10.1016/j.aquaculture.2003.11.027
Vannameirequirement of Litopenaeus vannamei. Aquaculture, 258(1), 543-550. https://doi.org/10.1016/j.qauaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107-112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311-323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71(pp. 21-36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaäf (Eds.), The Future of Drylands (pp. 507-518). Springer, Dordrecht. https://doi.org/10.1007/978-1.4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Touto	Vannamei	China	Zhu, CB., Dong, SL., Wang, F., & Zhang, HH. (2006). Effects
VannameiS43–550. https://doi.org/10.1016/j.aquaculture.2006.03.038VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.C0;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environmental in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1.4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Os			of seawater potassium concentration on the dietary potassium
VannameiChinaZhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufrileva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, Iong-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3930/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainabile agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, V0177. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/078-1-4020-6970-3_a6Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundw			requirement of Litopenaeus vannamei. Aquaculture, 258(1),
interaction of salinity and NA/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, Jong-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/wt14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agria aquaculture in the desert using groonwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper E			543–550. https://doi.org/10.1016/j.aquaculture.2006.03.038
nutrient retention and food conversion of juvenile Litopenaeus vannamei. Journal of Shellfish Research, 25(1), 107–112. http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and chailenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating descritification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries, <td>Vannamei</td> <td>China</td> <td>Zhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The</td>	Vannamei	China	Zhu, Chang-Bo, Dong, Shuang-Lin, & Wang. (2006). The
Image: Search and			interaction of salinity and NA/K ratio in seawater on growth,
http://dx.doi.org/10.2983/0730- 8000(2006)25[107:TIOSAK]2.0.CO;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311-323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptEllewiishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agria aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			nutrient retention and food conversion of juvenile Litopenaeus
Crustaceans (not penaeids)CrimeaS00(2006)25[107:TIOSAK]2.0.C0;2Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/v14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
Crustaceans (not penaeids)CrimeaYakovenko, V., Shadrin, N., & Anufriieva, E. (2022). The prawn Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-14020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
penaeids)Palaemon adspersus in the hypersaline Lake Moynaki (Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecth. https://doi.org/10.1007/078-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
(Crimea): Ecology, long-term changes, and prospects for aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/078-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agria aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,		Crimea	
aquaculture. Water, 14(18), 2786. https://doi.org/10.3390/w14182786Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agriaquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	penaeids)		
Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
Algae seaweedEgyptEl Semary, N. A. (2017). Algae and chain aquaculture: An approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agriaquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egypt:" Egyptian Journal of Aquatic Biology and Fisheries,			
approach towards sustainable agriculture. In A. Negm & M. Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egypt." Egyptian Journal of Aquatic Biology and Fisheries,		_	
Abu-hashim (Eds.), Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agriaquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	Algae seaweed	Egypt	
in Egypt: Part II. The Handbook of Environmental Chemistry (pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I. The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
(pp. 311–323). Springer, Vol 77. https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I . The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
https://doi.org/10.1007/698_2017_161Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I . The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
Resourcespolicysys temsEgyptElbehiry, F., Mahmoud, M. A., & Negm, A. M. (2018). Land use in Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I . The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
temsin Egypt's coastal lakes: Opportunities and challenges. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I . The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	Deseurospolieveve	Faunt	
Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian Coastal Lakes and Wetlands: Part I . The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,		Едурі	
and Wetlands: Part I . The Handbook of Environmental Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	tems		
Chemistry, Vol 71 (pp. 21–36). Springer, Cham. https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
https://doi.org/10.1007/698_2018_250Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
Resourcespolicysys temsEgyptElnwishy, N. H., Ramadhane, M. S., & Zalat, S. M. (2008). Combating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
temsCombating desertification through fish farming. In C. Lee & T. Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	Resourcespolicysys	Fgynt	
Schaaf (Eds.), The Future of Drylands (pp. 507–518). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6970-3_46Integrated ISA AgricultureEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,		-8164	
Integrated ISAEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. E D. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
Integrated ISAEgyptFarrag, M. M. S., Toutou, M. M. M., Sedik, F. Sh., Mursy, E. EAgricultureD. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
AgricultureD. I. A., & Osman, A. G. M. (2021). Towards the integrated agri- aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	Integrated ISA	Egypt	
aquaculture in the desert using groundwater reservoirs for plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	-	5/1	
plants and Nile tilapia farming "Evaluating study in upper Egypt." Egyptian Journal of Aquatic Biology and Fisheries,	-		
Egypt." Egyptian Journal of Aquatic Biology and Fisheries,			
Penaieds (not Egypt Ishak, M. M., Alsayes, A. A., & Abdel Razek, F. A. (1980).	Penaieds (not	Egypt	Ishak, M. M., Alsayes, A. A., & Abdel Razek, F. A. (1980).
vannamei) Bionomics of Penaeus kerathurus transplanted into Lake	vannamei)		Bionomics of Penaeus kerathurus transplanted into Lake
Quarun (Egypt). Aquaculture, 21(4), 365–374.			Quarun (Egypt). Aquaculture, 21(4), 365–374.
https://doi.org/10.1016/0044-8486(80)90072-1			https://doi.org/10.1016/0044-8486(80)90072-1
Crustaceans (not Egypt M. Heneash, A. M., Al-Rahman, K. A., & Y. Omer, M. (2021).			
penaeids) Effect of different diets on the growth rate of the rotifer,	Crustaceans (not	Egypt	M. Heneash, A. M., Al-Rahman, K. A., & Y. Omer, M. (2021).
Brachionus plicatilis under 40 g L-1 Salinity Stress. Asian		Egypt	
Journal of Environment & Ecology, 16(4), 263–271.		Egypt	Effect of different diets on the growth rate of the rotifer,
https://doi.org/10.9734/ajee/2021/v16i430276		Egypt	Effect of different diets on the growth rate of the rotifer, Brachionus plicatilis under 40 g L-1 Salinity Stress. Asian

Tilapia	Egypt	Magouz, F. I., Radwan, I. A., Soltan, H. O., & El-Keredy, A. (2022). Synbiotic Lactic Dry [®] enhanced the growth performance, growth-related genes, intestinal health, and immunity of Nile tilapia reared in inland brackish groundwater. Annals of Animal Science. https://doi.org/10.2478/aoas-2022- 0066
Resourcespolicysys tems	Egypt	Nasr-Allah, A. M. (2022). Expansion prospects of integrated agriculture-aquaculture systems (IAAS) in new lands in Egypt workshop presentations merged. Digitalarchive.worldfishcenter.org. https://hdl.handle.net/20.500.12348/5452
Freshwater fish (not carp)	Egypt	Nawareg, M. M., Bahnasawy, M. H., El-Sisy, D. M., & Abdel- Rahim, M. M. (2020). Does the polyculture system of thinlip grey mullet, Chelon ramada (Risso, 1827) have positive impacts on water quality, fish performance, and hematological analyses of hybrid red tilapia, Oreochromis mossambicus × O. urolepis reared in concrete tanks with underground brackish water? Aquaculture, Aquarium, Conservation & Legislation, 13(6), 3360–3375. https://www.proquest.com/docview/2495514639?pq- origsite=gscholar&fromopenview=true
Resourcespolicysys tems	Egypt	Sadek, S. (2013). Aquaculture site selection and carrying capacity estimates for inland and coastal aquaculture in the Arab Republic of Egypt. In L. Ross, T. Telfer, L. Falconer, D. Soto, & J. Aguilar-Manjarrez (Eds.), Site Selection and Carrying Capacities for Inland and Coastal aquaculture, pp. 183–196. FAO/Institute of Aquaculture, University of Stirling, Expert Workshop, 6–8 December 2010. https://www.fao.org/fishery/docs/CDrom/P21/root/11.pdf
Economics	Egypt	Sallam, G., Abdel, G., & Sallam, H. (2017). Comparative analysis of using aquaculture versus agriculture land reclamation in saline-sodic clayey soils in tina plain area of Egypt. International Journal of Agricultural Sciences and Natural Resources, 4(5), 32–42. https://www.researchgate.net/publication/343700533
Resourcespolicysys tems	Egypt	Sallam, G., Abdel, G., & Sallam, H. (2017). Comparative analysis of using aquaculture versus agriculture land reclamation in saline-sodic clayey soils in tina plain area of Egypt. International Journal of Agricultural Sciences and Natural Resources, 4(5), 32–42. https://www.researchgate.net/publication/343700533_Gehan _Abdel_Hakeem_Sallam_Comparative_Analysis_of_Using_Aqu aculture_Versus_Agriculture_Land_Reclamation_in_Saline- Sodic_Clayey_Soils_in_Tina_Plain_Area_of_Egypt
General status and opportunities	Egypt	Soliman, N. F., & Yacout, D. M. M. (2016). Aquaculture in Egypt: Status, constraints and potentials. Aquaculture International, 24(5), 1201–1227. https://doi.org/10.1007/s10499-016-9989-9
Integrated ISA Agriculture	Egypt	Suloma, A., & Ogata, H. Y. (2006). Future of rice-fish culture, desert aquaculture and feed development in Africa: The case of Egypt as the leading country in Africa. Japan Agricultural Research Quarterly: JARQ, 40(4), 351–360. https://doi.org/10.6090/jarq.40.351
Integrated ISA Agriculture	Egypt	Van Der Heijden, P., Roest, K., Farrag, F., Elwageih, H., & Sadek, S. (2014). Integrated agri-aquaculture with brackish waters in Egypt; Mission Report (March 9 – March 17, 2014). Wageningen, Alterra Wageningen UR (University & Research centre), Alterra report 2526. 52 pp. https://edepot.wur.nl/307733

	-	
Algae seaweed	Europe	Fitzner, M., Fricke, A., Schreiner, M., & Baldermann, S. (2021). Utilization of regional natural brines for the indoor cultivation of Salicornia europaea. Sustainability, 13(21), 12105. https://doi.org/10.3390/su132112105
Resourcespolicysys tems	Europe, Asia	Zadereev, E., Lipka, O., Karimov, B., Krylenko, M., Elias, V., Pinto, I. S., Alizade, V., Anker, Y., Feest, A., Kuznetsova, D., Mader, A., Salimov, R., & Fischer, M. (2020). Overview of past, current, and future ecosystem and biodiversity trends of inland saline lakes of Europe and Central Asia. Inland Waters, 10(4), 438–452. https://doi.org/10.1080/20442041.2020.1772034
Algae seaweed	France	Gagneux-Moreaux, S., Cosson, R. P., Bustamante, P., & Moreau, C. (2006). Growth and metal uptake of microalgae produced using salt groundwaters from the Bay of Bourgneuf. Aquatic Living Resources, 19(3), 247–255. https://doi.org/10.1051/alr:2006025
Integrated ISA Agriculture	Germany	Buhmann, A., & Papenbrock, J. (2013). Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environmental and Experimental Botany, 92, 122–133. https://doi.org/10.1016/j.envexpbot.2012.07.005
General research	Greece	Tsertou, M. I., Antonopoulou, E., & Katharios, P. (2022). Chronic diseases of the lateral line organ in fish. In F. S. B. Kibenge, B. Baldisserotto, & R. SM. Chong (Eds.), Aquaculture Pathophysiology. Volume 1. Finfish Diseases (pp. 721–725). Academic Press. https://imbbc.hcmr.gr/wp- content/uploads/2022/10/2022-Tsertou-EUD-preprint-67- 1.pdf
General research	India	Abisha, R., Krishnani, K. K., Sukhdhane, K., Verma, A. K., Brahmane, M., & Chadha, N. K. (2022). Sustainable development of climate-resilient aquaculture and culture- based fisheries through adaptation of abiotic stresses: a review. Journal of Water and Climate Change, 13(7). https://doi.org/10.2166/wcc.2022.045
Resourcespolicysys tems	India	Abishag, M. M., Betsy, C. J., & Sampath Kumar, J. S. (2019). Resources and productivity of Indian aquaculture – status and prospects. Agricultural Reviews, 40(03). https://doi.org/10.18805/ag.r-1889
Vannamei	India	Affarin Tinku, D. M., Xavier, K. A. M., Nayak, B. B., Krishna, V. H., Krishna, G., & Balange, A. K. (2021). Comparative evaluation of patties prepared from Pacific white shrimps (Litopenaeus vannamei) grown in inland saline water and brackish water regimes during frozen storage. Journal of Aquatic Food Product Technology, 30(7), 826–834. https://doi.org/10.1080/10498850.2021.1949653
General status and opportunities	India	Aklakur, M. (2017). Nutritional intervention for sustainable production in inland saline aquaculture: A Budding Perspective in India. Journal of Aquaculture & Marine Biology, 6(6). https://doi.org/10.15406/jamb.2017.06.00172
General research	India	Amirtharaj, K. S. V., Ahilan, B., Rajagopalsamy, C. B. T., George, R. M., & Jawahar, P. (2022). Effects of different substrates on the growth and composition of periphyton in the low saline groundwater system. ScienceAsia, 48(1), 82. https://doi.org/10.2306/scienceasia1513-1874.2022.005
Resourcespolicysys tems	India	Anand, A., Krishnan, P., Suryavanshi, A. S., Choudhury, S. B., Kantharajan, G., Srinivasa Rao, Ch., Manjulatha, C., & Babu, D. E. (2020). Identification of suitable aquaculture sites using large-scale land use and land cover maps factoring the prevailing regulatory frameworks: A case study from India.

		Journal of the Indian Society of Remote Sensing, 49(4), 725–745. https://doi.org/10.1007/s12524-020-01211-7
Carp	India	Anand, G., dar, S., Srivas, P. P., Varghese, T., & Gupta, S. (2022). Rearing in hypersaline inland ground saline water affect growth and osmoregulatory responses of Common carp (Linnaeus 1758). Research Square. https://doi.org/10.21203/rs.3.rs-1164718/v2
Carp	India	Anand, G., Srivastava, P. P., Varghese, T., Sahu, N. P., Harikriskna, V., Xavier, M., Jahan, I., & Patro, D. (2020). Sesbania aculeata leaf meal as replacer of de-oiled rice bran in aquaculture feed: Growth, IGF-1 expression, metabolic and biochemical responses in Cyprinus carpio (Linnaeus 1758). Aquaculture Research, 51(6), 2483–2494. https://doi.org/10.1111/are.14591
General status and opportunities	India	Ansal, M. D., & Singh, P. (2019). Development of inland saline- water aquaculture in Punjab, India. Global Aquaculture Advocate. https://www.researchgate.net/profile/Prabjeet- Singh/publication/333161512_Development_of_inland_saline - water_aquaculture_in_Punjab_India/links/5fc5c8534585152e 9be822eb/Development-of-inland-saline-water-aquaculture-
Carp	India	in-Punjab-India.pdf Ansal, M. D., Dhawan, A., Singh, G., & Kaur, K. (2016). Species selection for enhancing productivity of freshwater carps in inland saline water of Punjab-A field study. Indian Journal of Ecology, 43(Special Issue-1), 45–49. https://www.researchgate.net/profile/Dhara- Gurjar/publication/320245522_Spatial_Variation_of_Groundw ater_Quality_of_IARI_Farm_New_Delhi/links/5a9cca4da6fdcc 3cbacd5c67/Spatial-Variation-of-Groundwater-Quality-of-IARI- Farm-New-Delhi.pdf#page=57
Marine finfish	India	Antony, J., Reddy, A. K., Sudhagar, A., Vungurala, H. K., & Roy, L. A. (2020). Effects of salinity on growth characteristics and osmoregulation of juvenile cobia, Rachycentron canadum (Linnaeus 1766), reared in potassium-amended inland saline groundwater. Journal of the World Aquaculture Society, 52(1), 155–170. https://doi.org/10.1111/jwas.12741
Penaieds (not vannamei)	India	Antony, J., Sandeep, K. P., Aravind, R., Panigrahi, A., & Balasubramanian, C. P. (2019). Growth, survival, and osmoregulation of Indian white shrimp Penaeus indicus juveniles reared in low salinity amended inland saline groundwater and seawater. Journal of Coastal Research, 86(sp1), 21. https://doi.org/10.2112/si86-004.1
Penaieds (not vannamei)	India	Antony, J., Vungurala, H., Saharan, N., Reddy, A. K., Chadha, N. K., Lakra, W. S., & Roy, L. A. (2015). Effects of salinity and Na+/K+ ratio on osmoregulation and growth performance of black tiger prawn, Penaeus monodon fabricius, 1798, juveniles reared in inland saline water. Journal of the World Aquaculture Society, 46(2), 171–182. https://doi.org/10.1111/jwas.12179
General research	India	Aralappanavar, V. K., Bharti, V. S., Mukhopadhyay, R., Prakash, S., Harikrishna, V., Bhuvaneswari, G. R., Tripathi, G., Krishna, G., & Sarkar, B. (2021). Inland saline aquaculture increased carbon accumulation rate and stability in pond sediments under semi-arid climate. Journal of Soils and Sediments, 22(2), 672–681. https://doi.org/10.1007/s11368-021-03101-y

Vannamei	India	Aruna, S., & Felix, S. (2017). The effect of ionic concentration
		of low saline waters on growth characteristics of Penaeus vannamei. International Journal of Fisheries and Aquatic Studies 2017; 5(3): 73-76. https://www.fisheriesjournal.com/archives/2017/vol5issue3/P
		artB/5-2-58-548.pdf
General research	India	Ayyappan, S., & Gopalakrishnan, A. (2008). Resilience in fisheries and sustainability of aquaculture. 8th Indian Fisheries Forum, Kolkata 22-26 November, 2008, 1–8. http://eprints.cmfri.org.in/8850/
Tilapia	India	Barman, U. K., & Garg, S. (2013). Effect of inland water salinity on growth performance and nutritive physiology in Nile tilapia: Field and laboratory studies. Journal of Nature Science and Sustainable Technology, 7(1), 29–43. https://www.proquest.com/docview/1627151167?pq- origsite=gscholar&fromopenview=true
Marine finfish	India	Barman, U. K., Jana, S. N., Garg, S. K., Bhatnagar, A., & Arasu, A. R. T. (2005). Effect of inland water salinity on growth, feed conversion efficiency and intestinal enzyme activity in growing grey mullet, Mugil cephalus (Linn.): Field and laboratory studies. Aquaculture International, 13(3), 241–256. https://doi.org/10.1007/s10499-004-2479-5
Marine finfish	India	Barman, U., Garg, S., & Bhatnagar, A. (2012). Effect of different salinity and ration levels on growth performance and nutritive physiology of milkfish, chanos chanos (forsskal) - field and laboratory studies. Fisheries and Aquaculture Journal, Annual 2012, 1–12. https://go.gale.com/ps/i.do?id=GALE%7CA357969026&sid=go ogleScholar&v=2.1⁢=r&linkaccess=abs&issn=21503508&p=A ONE&sw=w&userGroupName=anon%7E37b06018
Molluscs Echinoderms	India	Belsare, S., Ghatge, S., Rathod, R., & Sukhdahane, K. (2018). Preliminary study on suitability of saline ground water of Purna River basin for development inland saline aquaculture. Contemporary Research in India, 104–108. https://www.researchgate.net/profile/Shashikant- Meshram/publication/323656107_Proximate_Composition_a nd_Growth_study_of_Green_Mussel_Perna_viridis_L_From_ Mirya_Creek_in_Ratnagiri_MaharshtraIndia/links/5cdbad0192 851c4eaba061bb/Proximate-Composition-and-Growth-study- of-Green-Mussel-Perna-viridis-L-From-Mirya-Creek-in- Ratnagiri-Maharshtra-India.pdf#page=110
Freshwater fish (not carp)	India	Bhatt, D., Kaur, V. I., Ansal, M. D., & Kumar, P. (2014). Salinity tolerance of freshwater Shubunkin gold fish, Carassius auratus (Linn.): Suitability for rearing in inland saline water. Indian Journal of Ecology, 45(4), 876–880. https://www.indianjournals.com/ijor.aspx?target=ijor:ije1&vol ume=45&issue=4&article=035
Crustaceans (not penaeids)	India	Chadha, N. K., Kumar, A., Agrahari, R. K., Raizada, S., Hasan, J., Rahaman, M., Kumar, S., Fielder, D. S., Kumar, D., & Maheshwari, U. K. (2007). Commercial production of giant freshwater prawn Macrobrachium rosenbergii in inland saline ground water. Fisheries and Aquaculture: Strategic Outlook for Asia. Book of Abstracts., 118. https://www.afsconferences.net/wp- content/uploads/2019/10/8AFF-Abstract- Book_20141016063123.pdf
General research	India	Chakraborty, P., & Krishnani, K. K. (2022). Climate smart eco- management of water and soil quality as a tool for fish productivity enhancement. In A. Kumar, P. Kumar, S. Singh, B. H. Trisasongko, & M. Rani (Eds.), Agriculture, Livestock

		Production and Aquaculture (pp. 277–290). Springer. https://doi.org/10.1007/978-3-030-93262-6_14
Vannamei	India	Chuphal, N., Sardar, P., Sahu, N. P., Shamna, N., Harikrishna, V., Maiti, M. K., Mannur, V. S., Jana, P., Paul, M., & Krishna, G. (2021). Effects of graded dietary lipid levels on growth, feed utilization, body composition and metabolism in juvenile white leg shrimp, Penaeus vannamei (Boone, 1931) reared in inland saline water of 10 g/L salinity. Aquaculture Nutrition, 27(6), 1811–1824. https://doi.org/10.1111/anu.13319
General status and opportunities	India	Dagar, J. (2005). Salinity research in India: An overview. Bulletin of the National Institute of Ecology, 15, 69–80. https://d1wqtxts1xzle7.cloudfront.net/72762908/Salinity_res earch_in_India_An_overview20211015-28008- 9wmt9r.pdf?1634355844=&response-content- disposition=inline%3B+filename%3DSalinity_Research_in_Indi a_An_Overview.pdf&Expires=1677549804&Signature=PL8TvlK 8ypZXz6CKJZcRCUI1vvAiEovV6B1YF6EJCYRm5Rvdm4i3Dpfqf~E DMEFrSEwwCLtm3oUsOsvcxmXVygG1uoIElv04C- oPVC5pDIyEm~26RssYHqI144REejw9BZFfVnTTdrzRsNOLR4vkL- 6XSoRit-x3TLDXAU37YKK1vtl- PI1CCMf9ysr1CcnR5PoHxIrsEpH728xG8i5vFPCFOqfRgURWTYy 2V- ID1q1vbj41mRbmkALv0IBJJu3BopCHMybTmToXF0jSWNZoUED Pns5HCEkcvQZ6AomRRKnilbpDSqV-85BEr~AR~WfvZrS- UtftZ0IAs6gpq5rkLg&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
Resourcespolicysys tems	India	Das, S. K., Mandal, A., & Khairnar, S. O. (2022). Aquaculture resources and practices in a changing environment. In P. Kumar, A. Pandey, S. Kumar Singh, S. Singh, & V. Singh (Eds.), Sustainable Agriculture Systems and Technologies (pp. 169– 199). https://doi.org/10.1002/9781119808565.ch8
Tilapia	India	Datta, A. N., Garg, S., & Bhatnagar, A. (2015). Effects of dietary calcium and phosphorus on growth performance and nutritive physiology of Chanos chanos (Forsskal) and Nile tilapia, Oreochromis niloticus (Linn.), kept in inland saline water. Journal of Nature Science and Sustainable Technology, 9(1). https://www.proquest.com/docview/1769723739?pq- origsite=gscholar&fromopenview=true
Freshwater fish (not carp)	India	Debroy, S., Chadha, N. K., Prakash, S., Sawant, P. B., Harikrishna, V., Pathan, M. A., Haque, R., Jana, P., & Roy, U. (2022). Effect of salinity on growth, survival, haemato- biochemical and antioxidative status of Anabas testudineus (Bloch, 1792) juveniles reared in inland saline water. Aquaculture Research, 53(18), 6832–6845. https://doi.org/10.1111/are.16149
Vannamei	India	Debroy, S., Paul, T., & Biswal, A. (2020). Shrimp culture in inland saline waters of India: A step towards sustainable aquafarming. In Food and Scientific Reports 1 (4) (pp. 84–88). https://foodandscientificreports.com/assets/uploads/issues/1 588089094shrimp_culture_in_inland_saline_waters_of_india. pdf
Economics	India	Devaraj, M., Pillai, V. K., Appukuttan, K. K., Suseelan, C., Murty, V. S., Kaladharan, P., Rao, G. S., Pillai, N. G. K., Pillai, N. N., Balan, K., Chandrika, V., George, K. C., & Sobhana, K. S. (1999). Packages of practices for sustainable, ecofriendly mariculture (land-based saline aquaculture and seafarming). In M. Mohan Joseph (Ed.), Aquaculture and the Environment (pp. 33–70). Asian Fisheries Society. http://eprints.cmfri.org.in/8589/

Vannamei	India	Dorothy, M. S., Vungarala, H., Sudhagar, A., Reddy, A. K., &
		Rani Asanaru Majeedkutty, B. (2021). Growth, body
		composition and antioxidant status of Litopenaeus vannamei
		juveniles reared at different stocking densities in the biofloc
		system using inland saline groundwater. Aquaculture
		Research, 52(12), 6299–6307.
Concerned attactives are d	lu alta	https://doi.org/10.1111/are.15493
General status and	India	Dubey, S. K., Trivedi, R. K., & Chand, B. K. (2021). Culture possibilities of certain brackishwater species at freshwater: A
opportunities		climate change adaptation strategy for salinity intrusion prone
		areas of Indian Sundarban delta. Aquaculture Studies, 22(2).
		https://www.aquast.org/abstract.php?lang=en&id=534
General status and	India	Dubey, S. K., Trivedi, R. K., Chand, B. K., Mandal, B., & Rout, S.
opportunities		K. (2017). Farmers' perceptions of climate change, impacts on
		freshwater aquaculture and adaptation strategies in climatic
		change hotspots: A case of the Indian Sundarban delta.
		Environmental Development, 21, 38–51.
		https://doi.org/10.1016/j.envdev.2016.12.002
General research	India	Dubey, S., Singh, A., Kumar, B. T. N., Singh, N. K., & Tyagi, A.
		(2021). Isolation and characterization of bacteriophages from
		inland saline aquaculture environments to control Vibrio
		parahaemolyticus contamination in shrimp. Indian Journal of Microbiology, 61(2), 212–217.
		https://doi.org/10.1007/s12088-021-00934-6
Carp	India	Ezhilarasi, V., Verma, A. K., Babitha Rani, A. M., Harikrishna, V.,
		Chandrakant, M. H., Ahmad, I., & Nageswari, P. (2019). Effect
		of different carbon sources on growth, non-specific immunity
		and digestive enzyme activity of amur carp (Cyprinus
		rubrofuscus Lacepede 1803) fingerlings in biofloc based
		rearing system using inland saline groundwater. Indian Journal
		of Fisheries, 66(3).
Tilereie	ladia	https://doi.org/10.21077/ijf.2019.66.3.86206-11
Tilapia	India	Garg, C. K., Sardar, P., Sahu, N. P., Maiti, M. K., Shamna, N., Varghese, T., & Deo, A. D. (2023). Effect of graded levels of
		dietary methionine on growth performance, carcass
		composition and physio-metabolic responses of genetically
		improved farmed tilapia (GIFT) juveniles reared in inland saline
		water of 10 g L-1. Animal Feed Science and Technology,
		115602. https://doi.org/10.1016/j.anifeedsci.2023.115602
Tilapia	India	Garg, C. K., Sardar, P., Sahu, N. P., Maiti, M. K., Shamna, N.,
		Varghese, T., Deo, A. D., & Harikrishna, V. (2022). Dietary
		lysine requirement of genetically improved farmed tilapia
		(GIFT) juvenile reared in inland saline water of 10 g L-1 salinity.
		Aquaculture, 555, 738223.
General research	India	https://doi.org/10.1016/j.aquaculture.2022.738223 Garg, S. (2006). Chapter 21 - Development of sustainable
General research	inula	aquaculture technology for inland saline groundwater: Role of
		periphyton. In B. Pandey (Ed.), Ecology and Environment. APH
		Publishing.
		https://books.google.com.au/books?hl=en&lr=&id=5XmnKkVi
		ZrUC&oi=fnd&pg=PA195&dq=inland+saline+water+aquacultur
		e&ots=T6xf9_2TEi&sig=wJdfbnNa1-dP2gXxRRZbA-
		sgrAY#v=onepage&q=inland%20saline%20water%20aquacultu
		re&f=false
Carp	India	Garg, S. K. (1996). Brackishwater carp culture in potentially
		waterlogged areas using animal wastes as pond fertilizers. Aquaculture International, 4(2), 143–155.
		https://doi.org/10.1007/bf00140595
		100010001000100010001

Tilenie	India	Care C. K. 8 Dhatmager C. (2017) Effects C.
Tilapia	India	Garg, S. K., & Bhatnagar, S. (2017). Effect of cow dung and poultry droppings on periphyton development and growth performance of Nile tilapia, Oreochromis niloticus (L) in inland saline groundwater ponds. Asian Journal of Experimental Science, 31(2), 1–16. http://www.ajesjournal.com/PDFs/2017- 2/PP1.pdf
Marine finfish	India	Garg, S., Barman, U., & Bhatnagar, A. (2013). Optimization of fertilization rate for maximizing periphyton production on additional substrate and growth performance of milkfish in inland saline groundwater ponds. Journal of Nature Science and Sustainable Technology, 7(2), 139–157. https://www.proquest.com/docview/1626716726?pq- origsite=gscholar&fromopenview=true
Tilapia	India	Garg, S., Bhatnagar, S., Sudhir, C., & Garg, K. (2016). Influence of periphyton substrate density on hydrobiological characteristics and growth performance of Nile tilapia, Oreochromis niloticus (Linnaeus 1758) stocked in inland saline groundwater ponds. International Journal of Fisheries and Aquatic Studies, 4(4), 444–452. https://www.fisheriesjournal.com/archives/2016/vol4issue4/P artF/4-4-13-471.pdf
Economics	India	Giri, S., Daw, T. M., Hazra, S., Troell, M., Samanta, S., Basu, O., Marcinko, C. L. J., & Chanda, A. (2022). Economic incentives drive the conversion of agriculture to aquaculture in the Indian Sundarbans: Livelihood and environmental implications of different aquaculture types. Ambio, 51(9), 1963–1977. https://doi.org/10.1007/s13280-022-01720-4
General status and opportunities	India	Gopakumar, K. (2003). Indian aquaculture. Journal of Applied Aquaculture, 13(1-2), 1–10. https://doi.org/10.1300/j028v13n01_01
Carp	India	Iffat, J., Tiwari, V. K., Pavan-Kumar, A., Verma, A. K., Harikrishna, V., Babitha Rani, A. M., Chadha, N. K., & Anand, G. (2020). The effect of inland saline groundwater on growth, maturation, and osmoregulation of common carp. North American Journal of Aquaculture, 83(1), 15–25. https://doi.org/10.1002/naaq.10165
Carp	India	Iffat, J., Tiwari, V. K., Verma, A. K., & Pavan-Kumar, A. (2020). Effect of different salinities on breeding and larval development of common carp, Cyprinus carpio (Linnaeus, 1758) in inland saline groundwater. Aquaculture, 518, 734658. https://doi.org/10.1016/j.aquaculture.2019.734658
Vannamei	India	Jaffer, Y. D., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D. S., & Sharma, P. C. (2020). Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture, 515, 734561. https://doi.org/10.1016/j.aquaculture.2019.734561
Vannamei	India	Jahan, I., Ahmad Dar, S., Anand, G., Singh, S., Reddy, A. K., Sudhagar, A., Harikrishna, V., & Srivastava, P. P. (2017). Enzymatic alterations in Litopenaeus vannamei (Boone, 1931) juveniles exposed to different levels of dietary potassium and magnesium reared in inland saline water. International Journal of Current Microbiology and Applied Sciences, 6(11), 773–780. https://doi.org/10.20546/ijcmas.2017.611.091
Vannamei	India	Jahan, I., Reddy, A. K., Srivastava, P. P., Harikrishna, V., S. Sudhagar, A., & Singh, S. (2017). Histo-Architectural changes in the selected tissues of Litopenaeus vannamei (Boone, 1931) juveniles reared in inland ground saline water (IGSW) fed with graded levels of potassium (K+) and magnesium (Mg2+) through feed. International Journal of Current Microbiology

		and Applied Sciences, 6(11), 1739–1752. https://doi.org/10.20546/ijcmas.2017.611.210
Vannamei	India	Jahan, I., Reddy, A. K., Sudhagar, S. A., Harikrishna, V., Singh, S., Varghese, T., & Srivastava, P. P. (2018). The effect of fortification of potassium and magnesium in the diet and culture water on growth, survival and osmoregulation of Pacific white shrimp, Litopenaeus vannamei reared in inland ground saline water. Turkish Journal of Fisheries and Aquatic Sciences, 18(10). https://doi.org/10.4194/1303-2712- v18_10_10
Carp	India	Jahan, I., Tiwari, V., & Ranjan, A. (2020). Effect of salinity on lipid profile of Cyprinus carpio reared in inland saline water. Journal of Environmental Biology, 41, 228–233. http://www.jeb.co.in/journal_issues/202003_mar20/paper_1 2.pdf
Crustaceans (not penaeids)	India	Jain, A. K., Raju, K. D., Kumar, G., Ojha, P. K., & Reddy, K. (2007). Strategic manipulation of inland saline groundwater to produce Macrobrachium rosenbergii (De Man) post larvae. Journal of Biological Research-Thessaloniki, 8, 151–157. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf &doi=3f815f784139425151549891a8db819510cad11b
Crustaceans (not penaeids)	India	Jain, K., Gupta, R., & Singh, B. (2008). Specific growth rate and proximate carcass composition of fresh-water prawn cultured in different salinity conditions in fresh water ponds of Haryana. Livestock Research for Rural Development, 20(7). http://www.lrrd.cipav.org.co/lrrd20/7/jain20111.htm
General status and opportunities	India	James, C. (2000). Potential of marine fish farming in India. http://library.enaca.org/Grouper/E- Newsletter/Potential_of_marine_fish_farming_in_India.pdf
Vannamei	India	Jana, P., Prasad Sahu, N., Sardar, P., Shamna, N., Varghese, T., Dharmendra Deo, A., Harikrishna, V., Paul, M., Panmei, H., Gupta, G., Nanda, C., & Krishna, G. (2021). Dietary protein requirement of white shrimp, Penaeus vannamei (Boone, 1931) juveniles, reared in inland ground water of medium salinity. Aquaculture Research, 52(6), 2501–2517. https://doi.org/10.1111/are.15100
Vannamei	India	Jana, P., Sahu, N. P., Sardar, P., Varghese, T., Deo, A. D., Shamna, N., Harikrishna, V., Paul, M., Chuphal, N., & Krishna, G. (2022). Dietary lipid requirement of juvenile white-leg shrimp, Penaeus vannamei (Boone, 1931) reared in inland ground saline water of 15 g L-1. Aquaculture Research, 53(15), 5270–5286. https://doi.org/10.1111/are.16012
Marine finfish	India	Jana, S. N., Garg, S. K., & Patra, B. C. (2004). Effect of periphyton on growth performance of grey mullet, Mugil cephalus (Linn.), in inland saline groundwater ponds. Journal of Applied Ichthyology, 20(2), 110–117. https://doi.org/10.1046/j.1439-0426.2003.00530.x
Marine finfish	India	Jana, S. N., Garg, S. K., & Patra, B. C. (2006). Effect of inland water salinity on growth performance and nutritional physiology in growing milkfish, Chanos chanos (Forsskal): field and laboratory studies. Journal of Applied Ichthyology, 22(1), 25–34. https://doi.org/10.1111/j.1439-0426.2006.00698.x
Marine finfish	India	Jana, S. N., Garg, S. K., Barman, U. K., Arasu, A. R. T., & Patra, B. C. (2006). Effect of varying dietary protein levels on growth and production of Chanos chanos (Forsskal) in inland saline groundwater: laboratory and field studies. Aquaculture

		International, 14(5), 479–498. https://doi.org/10.1007/s10499-006-9050-5
Marine finfish	India	Jana, S. N., Garg, S. K., Thirunavukkarasu, A. R., Bhatnagar, A., Kalla, A., & Patra, B. C. (2006). Use of additional substrate to enhance growth performance of milkfish,chanos chanos(Forsskal) in inland saline groundwater ponds. Journal of Applied Aquaculture, 18(1), 1–20. https://doi.org/10.1300/j028v18n01_01
Vannamei	India	Jarwar, A. (2015). Water quality in inland saline aquaculture ponds and its relationships to shrimp survival and production [PhD]. In etd.auburn.edu (pp. 1–87). http://etd.auburn.edu/handle/10415/4915
Vannamei	India	Jateen, S., Bharti, V. S., Prakash, S., Krishnan, S., Paul, T., & Kumar, S. (2023). Sugarcane bagasse biochar-amended sediment improves growth, survival, and physiological profiles of white-leg shrimp, Litopenaeus vannamei (Boone, 1931) reared in inland saline water. Aquaculture International. https://doi.org/10.1007/s10499-023-01077-9
Vannamei	India	Javith, M. A., Balange, A. K., Xavier, M., Hassan, Md. A., Sanath Kumar, H., Nayak, B. B., & Krishna, G. (2020). Comparative studies on the chemical composition of inland saline reared Litopenaeus vannamei. Journal of Culinary Science & Technology, 20(4), 336–349. https://doi.org/10.1080/15428052.2020.1840474
Vannamei	India	Joshi, V. (2019). Production of white leg shrimp (Litopenaeus vannamei) in inland saline waters of India. Advanced Agricultural Research & Technology Journal, 3(2), 157–162. http://www.isasat.org/Volume-iii,issue-2-July- 2019/5_AARJ_III_2_2019_Joshi_157-162.pdf
Environmental	India	Kagoo, E., & Rajalakshmi, N. (2002). Environmental and social conflicts of aquaculture in Tamilnadu and Andhra Pradesh. Journal of Social and Economic Development, 13–26. http://www.isec.ac.in/JSED/JSED_V4_I1_13-26.pdf
Environmental	India	Kamra, S.K. (2014). An overview of subsurface drainage for management of waterlogged saline soils of India. Water and Energy International, 58r(6), 46–53. https://www.indianjournals.com/ijor.aspx?target=ijor:wei&vol ume=58r&issue=6&article=008
General status and opportunities	India	Koshy, N. E. (2021). A case for a human rights-based approach to Indian aquaculture systems: A literature review. In aquadocs.org. International Collective in Support of Fishworkers (ICSF). https://aquadocs.org/handle/1834/42134
Resourcespolicysys tems	India	Krishnakumar, P., Lakshumanan, C., Kishore, V. P., Sundararajan, M., Santhiya, G., & Chidambaram, S. (2013). Assessment of groundwater quality in and around Vedaraniyam, South India. Environmental Earth Sciences, 71(5), 2211–2225. https://doi.org/10.1007/s12665-013-2626- 2
Vannamei	India	Kuldeep, K. L. (2022). Training manual on shrimp culture and disease management in inland saline areas. ICAR-Central Institute of Brackishwater Aquaculture. https://ciba.icar.gov.in/wp-content/uploads/2022/12/Final- Training-Manual-shrimp-culture-and-disease- managment_c.pdf#page=52

Freshwater fish (not carp)	India	Kumar, A., Bhatnagar, A., & Garg, S. (2009). Growth performance, carcass composition and digestive enzyme activity of pearlspot, Etroplus suratensis (Bloch) reared in
		inland saline groundwater ponds providing substrate or feed. Livestock Research for Rural Development, 21(Article #180). http://www.lrrd.cipav.org.co/Irrd21/10/kuma21180.htm
General research	India	Kumar, A., Datta, N., Garg, S., & Bhatnagar, A. (2013). Role of Azotobacter, Pseudomonas and Gluconacetobacter in managing nutrient status and fish growth in inland saline groundwater ponds. Journal of Nature Science and Sustainable Technology, 7(2), 161–181. https://www.proquest.com/docview/1626715943?pq-
Freshwater fish	India	origsite=gscholar&fromopenview=true Kumar, A., Harikrishna, V., Reddy, A., Chadha, N., & Babitha
(not carp)		Rani, A. (2016). Effect of salinity on proximate composition of Pangasianodon hypophthalmus reared in inland saline water. International Journal of Zoological Studies, 1(3), 19–21. https://www.researchgate.net/publication/327339396_Effect _of_salinity_on_proximate_composition_of_Pangasianodon_h ypophthalmus_reared_in_inland_saline_water
Freshwater fish (not carp)	India	Kumar, A., Harikrishna, V., Reddy, A., Chadha, N., & Babitha Rani, A. (2017). Salinity tolerance of Pangasianodon hypophthalmus in inland saline water: Effect on growth, survival and haematological parameters. Eco. Env. & Cons, 23(1), 475–482. https://www.researchgate.net/publication/312777447_Salinit y_Tolerance_of_Pangasianodon_hypophthalmus_in_Inland_Sa line_Water_Effect_on_Growth_Survival_and_Haematological_ Parameters
Vannamei	India	Kumar, A., Reddy, A., Babita Rani, A., Rathore, G., & Lakra, W. (2018). Growth and digestive enzymatic activity of Litopenaeus vannamei raised in bio floc systems with different C/N ratios in ground saline water. Journal of Entomology and Zoology Studies, 6(4), 1166–1171. https://www.researchgate.net/profile/Appidi-Krishna- Reddy/publication/327051103_Growth_and_digestive_enzym atic_activity_of_Litopenaeus_vannamei_raised_in_bio_floc_sy stems_with_different_CN_ratios_in_ground_saline_water/link s/5b7518aba6fdcc87df8041ac/Growth-and-digestive- enzymatic-activity-of-Litopenaeus-vannamei-raised-in-bio- floc-systems-with-different-C-N-ratios-in-ground-saline- water.pdf
General research	India	Kumar, A., Reddy, A., Rani, A. B., Rathore, G., Lakra, W., & Jayant, M. (2019). Water quality and nutrient dynamics of biofloc with different C/N ratios in inland saline water. Journal of Animal Research, 9(5). https://www.indianjournals.com/ijor.aspx?target=ijor:jar&vol ume=9&issue=5&article=023
Integrated ISA Agriculture	India	Kumar, M. S. (2002). Integrated farming for sustainable primary industry: Water and nutrient recycling through integrated aquaculture. In K. Warburton, U. Pillai-Mcgarry, & D. Ramage (Eds.), Integrated biosystems for sustainable development Proceedings of the InFoRM 2000 National Workshop on Integrated Food Production and Resource Management. RIRDC Publication No 01/174. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf &doi=0e24fa77a494929f5cca103ea563643a6dd5f26e#page=7 0

Carp Integrated ISA Agriculture	India India	Kumar, M. U., Ansal, M. D., & Kaur, V. I. (2014). Salinity tolerance and survival of freshwater carp, Labeo rohita Ham. (rohu) in inland saline water. Indian Journal of Ecology, 45(4), 872–875. https://www.indianjournals.com/ijor.aspx?target=ijor:ije1&vol ume=45&issue=4&article=034 Kumar, N., Kumar, A., Marwein, B. M., Kumar Verma, D., Jayabalan, I., Kumar, A., & Ramamoorthy, D. (2021). Agricultural activities causing water pollution and its mitigation -a review. International Journal of Modern Agriculture, 10(1), 590–609. https://www.researchgate.net/profile/Agam-Kumar- 2/publication/350276392_AGRICULTURAL_ACTIVITIES_CAUSI NG_WATER_POLLUTION_AND_ITS_MITIGATION A_REVIEW/links/60583d59a6fdccbfeaf84b4a/AGRICULTURAL-
		ACTIVITIES-CAUSING-WATER-POLLUTION-AND-ITS- MITIGATION-A-REVIEW.pdf
General status and opportunities	India	Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.533781
Economics	India	Kumar, P., Kaur, H., & Sharma, S. K. (2017). Aquaculture for doubling the farmer's income. Agro-Economist, 4(2), 99. https://doi.org/10.5958/2394-8159.2017.00017.2
Economics	India	Kumari, A., Ansal, M. D., Singh, P., & Holyappa, S. A. (2014). Evaluation of aquaculture units established in inland salt affected areas of district Fazilka, Punjab. Indian Journal of Ecology, 46(1), 196–200. https://www.indianjournals.com/ijor.aspx?target=ijor:ije1&vol ume=46&issue=1&article=034
Tilapia	India	Kumari, S., Harikrishna, V., Surasani, V. K. R., Balange, A. K., & Babitha Rani, A. M. (2021). Growth, biochemical indices and carcass quality of red tilapia reared in zero water discharge based biofloc system in various salinities using inland saline ground water. Aquaculture, 540, 736730. https://doi.org/10.1016/j.aquaculture.2021.736730
General status and opportunities	India	Lakra, W. S., & Gopalakrishnan, A. (2021). Blue revolution in India: Status and future perspectives. Indian Journal of Fisheries, 68(1). https://doi.org/10.21077/ijf.2021.68.1.109283-19
Economics	India	Lakra, W. S., & Krishnani, K. K. (2022). Circular bioeconomy for stress-resilient fisheries and aquaculture. In S. Varjani, A. Pandey, T. Bhaskar, S. V. Mohan, & D. C. W. Tsang (Eds.), Biomass, Biofuels, Biochemicals. Circular Bioeconomy: Technologies for Biofuels and Biochemicals (pp. 481–516). Elsevier. https://www.sciencedirect.com/science/article/pii/B97803238 98553000108
Marine finfish	India	Linga Prabu, D., Ebeneezar, S., Chandrasekar, S., Anikuttan, K. K., Sayooj, P., & Vijayagopal, P. (2021). Culture of snubnose pompano, Trachinotus blochii (Lacepede, 1801) in indigenous re-circulatory aquaculture system using low cost fishmeal- based diet. Indian Journal of Geo Marine Sciences, 50(10), 787–794. http://eprints.cmfri.org.in/15839/
Vannamei	India	Maiti, M. K., Sahu, N. P., Sardar, P., Garg, C. K., Varghese, T., Shamna, N., Deo, A. D., & Harikrishna, V. (2022). Dietary lysine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone, 1931) reared in inland saline water of 10 g L-1 salinity. Animal Feed Science and Technology, 291, 115378. https://doi.org/10.1016/j.anifeedsci.2022.115378

Integrated ISA Agriculture	India	Meena, L. L., Verma, A. K., Bharti, V. S., Nayak, S. K., Chandrakant, M. H., Haridas, H., Reang, D., Javed, H., & John, V. C. (2022). Effect of foliar application of potassium with aquaculture wastewater on the growth of okra (Abelmoschus esculentus) and Pangasianodon hypophthalmus in recirculating aquaponic system. Scientia Horticulturae, 302, 111161. https://doi.org/10.1016/j.scienta.2022.111161
Tilapia	India	Menaga, M., & Fitzsimmons, K. (2017). Growth of the tilapia industry in India. World Aquaculture, 49–52. https://www.researchgate.net/profile/Kevin-Fitzsimmons- 4/publication/319681169_Growth_of_the_tilapia_industry_in _India/links/59b9501d458515bb9c486c4f/Growth-of-the- tilapia-industry-in-India.pdf
Carp	India	Murmu, K., Rasal, K. D., Rasal, A., Sahoo, L. D., Nandanpawar, P. C., Udit, U. K., Patnaik, M., Mahapatra, K. D., & Sundaray, J. K. (2019). Effect of salinity on survival, hematological and histological changes in genetically improved rohu (Jayanti), Labeo rohita (Hamilton, 1822). Indian Journal of Animal Research, 54(6), 673–678. https://doi.org/10.18805/ijar.b- 3801
Resourcespolicysys tems	India	Nageswara Rao, K., Swarna Latha, P., & Ramesh Kumar, P. V. (2021). Groundwater quality assessment for irrigation use in the Godavari delta region of east coast India using IRWQI and GIS. Water Supply, 22(3), 2612–2629. https://doi.org/10.2166/ws.2021.454
Freshwater fish (not carp)	India	Nageswari, P., Verma, A. K., Gupta, S., Jeyakumari, A., & Chandrakant, M. H. (2022). Optimization of stocking density and its impact on growth and physiological responses of Pangasianodon hypophthalmus (Sauvage, 1878) fingerlings reared in finger millet based biofloc system. Aquaculture, 551, 737909. https://doi.org/10.1016/j.aquaculture.2022.737909
Crustaceans (not penaeids)	India	Nair, C. M., & Salin, K. R. (2012). Current status and prospects of farming the giant river prawn Macrobrachium rosenbergii (De Man) and the monsoon river prawn Macrobrachium malcolmsonii (H.M. Edwards) in India. Aquaculture Research, 43(7), 999–1014. https://doi.org/10.1111/j.1365- 2109.2011.03074.x
General research	India	Nalle, D. A., Deshmukh, A. R., & Shembekar, V. S. (2021). Effective utilization of Azotobacter chroococcum, Pseudomonas and Gluconacetobacter diazotrophicus on fish growth status in freshwater and inland saline water. International Journal for Innovative Research in Multidisciplinary Field Specila Issue - 22, 96–102. https://www.researchgate.net/profile/Rajkumar-Pawar- 2/publication/350958088_International_Web_Conference_on _Recent_Advances_in_Freshwater_Aquaculture_Special_Issue /links/607c5668907dcf667bab3da1/International-Web- Conference-on-Recent-Advances-in-Freshwater-Aquaculture- Special-Issue.pdf#page=97
Vannamei	India	Nathaniel, T. Paul., Varghese, T., Sahu, N. P., Panmei, H., Krishna, G., & Dasgupta, S. (2023). The effects of non-lethal heat-shock-induced cross-protection on survival and growth of Pacific whiteleg shrimp, Litopenaeus vannamei in response to ionic stress in inland saline waters. Aquaculture, 568, 739287. https://doi.org/10.1016/j.aquaculture.2023.739287
Vannamei	India	Nesapriyam, P. J., Mathew, R., Vidya, A., Rajalekshmi, M., Kaippilly, D., & Geeji, M. T. (2022). Mineral supplementation in low saline culture of Pacific white shrimp—Effects on growth and water quality. Aquaculture Research, 53(6), 2501–2508. https://doi.org/10.1111/are.15767

Vannamei	India	Pandey, A., Pathan, M. A., Ananthan, P. S., Sudhagar, A., Krishnani, K. K., Sreedharan, K., Kumar, P., Thirunavukkarasar, R., & Harikrishna, V. (2023). Stocking for sustainable aqua- venture: optimal growth, yield and economic analysis of Penaeus vannamei culture in inland saline water (ISW) of India. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-02993-9 Patel, R. K., Verma, A. K., Krishnani, K. K., Sreedharan, K., &
Carp	па	Chandrakant, M. H. (2022). Growth performance, physio- metabolic, and haemato-biochemical status of Labeo rohita (Hamilton, 1822) juveniles reared at varying salinity levels using inland saline groundwater. Aquaculture, 559, 738408. https://doi.org/10.1016/j.aquaculture.2022.738408
Marine finfish	India	Pathak, M. S., Lakra, W. S., Reddy, A. K., Chadha, N., Tiwari, V., & Srivastava, P. (2019). Growth and survival of silver pompano Trachinotus blochii (Lacepede, 1801) at different salinities in inland saline ground water. Indian Journal of Animal Sciences, 89(5). https://doi.org/10.56093/ijans.v89i5.90033
Vannamei	India	Pathak, M., Reddy, A. K., Kulkarni, M., Harikrishna, V., Srivastava, P. P., Chadha, N., & Lakra, W. S. (2018). Histological alterations in the hepatopancreas and growth performance of Pacific white shrimp (Litopenaeus vannamei, Boone 1931) reared in potassium fortified inland saline ground water. Article in International Journal of Current Microbiology and Applied Sciences, 7(4). https://doi.org/10.20546/ijcmas.2018.704.398
Carp	India	Patro, D., Srivastava, P. P., Varghese, T., Gupta, S., Kumar, P., & Prabhakaran, A. (2021). Evaluation of growth and biochemical responses of Cyprinus carpio reared in freshwater and inland saline water. Journal of the Marine Biological Association of India, 63(1), 25–30. https://doi.org/10.6024/jmbai.2021.63.1.2150-04
Vannamei	India	Pattusamy, A., Hittinahalli, C. M., Chadha, N. K., Sawant, P. B., Krishna, H., & Verma, A. K. (2022). Water budgeting for culture of Penaeus vannamei (Boone, 1931) in earthen grow-out ponds using inland saline groundwater. Aquaculture Research, 53(12), 4521–4530. https://doi.org/10.1111/are.15949
Tilapia	India	Paul, M., Sardar, P., Sahu, N. P., Deo, A. D., Varghese, T., Shamna, N., Jana, P., & Krishna, G. (2022). Effect of dietary protein level on growth and metabolism of GIFT juveniles reared in inland ground saline water of medium salinity. Journal of Applied Aquaculture, 1–27. https://doi.org/10.1080/10454438.2022.2054672
Tilapia	India	Paul, M., Sardar, P., Sahu, N. P., Jana, P., Deo, A. D., Harikrishna, V., Varghese, T., Shamna, N., Kumar, P., & Krishna, G. (2022). Effect of dietary lipid level on growth performance, body composition, and physiometabolic responses of genetically improved farmed tilapia (GIFT) juveniles reared in inland ground saline water. Aquaculture Nutrition, 2022, 1–15. https://doi.org/10.1155/2022/5345479
Tilapia	India	Paul, M., Sardar, P., Sahu, N. P., Varghese, T., Shamna, N., Harikrishna, V., Deo, A. D., Jana, P., Singha, K. P., Gupta, G., Kumar, M., & Krishna, G. (2022). Optimal dietary protein requirement of juvenile GIFT tilapia (Oreochromis niloticus) reared in inland ground saline water. Journal of Environmental Biology, 43(2), 205–215. https://doi.org/10.22438/jeb/43/2/mrn-1905
General status and opportunities	India	Pillai, N., & Katiha, P. K. (2004). Evolution of fisheries and aquaculture in India (p. 240). Central Marine Fisheries

		Research Instiute, Kochi - 18, India. http://eprints.cmfri.org.in/23/2/Editors_Page.pdf
Vannamei	India	Prabu, E., Felix, N., Ahilan, B., Uma, A., & Manikandan, K. (2020). Culture of Pacific white shrimp, Penaeus vannamei in low saline waters through water adaptations and diet modifications. Journal of Aquaculture in the Tropics, 34(3-4), 171–179. http://dx.doi.org/10.32381/JAT.2019.34.3-4.4
Algae seaweed	India	Pravesh, K. O., Bharti, V., Vennila, A., Shukla, S., Harikrishna, V., Gladston, Y., & Aravind, R. (2017). Efficacy of an integrated system incorporated with Eichhornia crassipes in phytoremediation of calcium from inland saline water. Nature Environment and Pollution Technology, 16(3), 687–694. https://neptjournal.com/upload-images/NL-61-4-(2)B- 3434.pdf
Environmental	India	Prayag, A. G., Zhou, Y., Srinivasan, V., Stigter, T., & Verzijl, A. (2023). Assessing the impact of groundwater abstractions on aquifer depletion in the Cauvery Delta, India. Agricultural Water Management, 279, 108191. https://doi.org/10.1016/j.agwat.2023.108191
Penaieds (not vannamei)	India	Purushothaman, C. S., Raizada, S., Sharma, V. K., Harikrishna, V., Venugopal, G., Agrahari, R. K., Rahaman, M., Hasan, J., & Kumar, A. (2014). Production of tiger shrimp (Penaeus monodon) in potassium supplemented inland saline sub- surface water. Journal of Applied Aquaculture, 26(1), 84–93. https://doi.org/10.1080/10454438.2014.882214
General status and opportunities	India	Puthucherril, T. G. (2016). Sustainable aquaculture in India: Looking back to think ahead. Aquaculture Law and Policy, 289– 312. https://doi.org/10.4337/9781784718114.00022
Vannamei	India	Raghuvaran, N., Sardar, P., Sahu, N. P., Shamna, N., Jana, P., Paul, M., Bhusare, S., & Bhavatharaniya, U. (2023). Effect of L- carnitine supplemented diets with varying protein and lipid levels on growth, body composition, antioxidant status and physio-metabolic changes of white shrimp, Penaeus vannamei juveniles reared in inland saline water. Animal Feed Science and Technology, 296, 115548. https://doi.org/10.1016/j.anifeedsci.2022.115548
Crustaceans (not penaeids)	India	Raizada, S., Javed, H., Ayyappan, S., Mukhergee, S. C., Maheshwari, U. K., & Fielder, D. S. (2013). Hatchery seed production of giant freshwater prawn, Macrobrachium rosenbergii using inland ground saline water in India. Aquaculture Research, 46(1), 49–58. https://doi.org/10.1111/are.12158
Crustaceans (not penaeids)	India	Raizada, S., Kumar, A., Hasan, J., Kumar, S., Chadha, N. K., Rahaman, M., Agrahari, R. K., Fielder, D. S., Maheshwari, U. K., & Kumar, D. (2007). The growth and survival of giant freshwater prawn Macrobrachium rosenbergii in potassium amended inland saline water. Fisheries and Aquaculture: Strategic Outlook for Asia. Book of Abstracts., 135. https://www.afsconferences.net/wp- content/uploads/2019/10/8AFF-Abstract- Book_20141016063123.pdf
Penaieds (not vannamei)	India	Raizada, S., Purushothaman, C. S., Sharma, V. K., Harikrishna, V., Rahaman, M., Agrahari, R. K., Hasan, J., Venugopal, G., & Kumar, A. (2014). Survival and growth of tiger shrimp (Penaeus monodon) in inland saline water supplemented with potassium. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(2), 491–497. https://doi.org/10.1007/s40011-014-0372-1

Resourcespolicysys tems	India	 Raju, P., Reddy, M., Raghuram, P., Suri Babu, G., Rambabu, T., Kumar, J., Reddy, P., Raghuram, G., Suri Babu, T., Rambabu, J., & Kumar. (2014). Alkalinity and hardness variation in ground waters of east Godavari district due to aquaculture. International Journal of Fisheries and Aquatic Studies, 1(6), 121–127. https://www.researchgate.net/profile/Golla/publication/3466
		70362_Alkalinity_and_Hardness_Variation_in_Ground_Waters _of_East_Godavari_District_due_to_Aquaculture/links/5fcdbd 34299bf188d4fd7fb0/Alkalinity-and-Hardness-Variation-in- Ground-Waters-of-East-Godavari-District-due-to- Aquaculture.pdf
Vannamei	India	Rao, D. V., Borana, K., Shrivastava, P., Rao, K., Borana, P., &
		Shrivastava. (2022). Litopenaeus vannamei (whiteleg shrimp) farming in Indian inland saline ecosystem. ~ 68 ~ International Journal of Fauna and Biological Studies, 9(3), 68–72. https://www.faunajournal.com/archives/2022/vol9issue3/Par tA/9-3-10-775.pdf
Environmental	India	Raul, C., Bharti, V. S., Dar Jaffer, Y., Lenka, S., & Krishna, G. (2020). Sugarcane bagasse biochar: Suitable amendment for inland aquaculture soils. Aquaculture Research, 52(2), 643– 654. https://doi.org/10.1111/are.14922
General research	India	Raul, C., Prakash, S., Lenka, S., & Bharti, V. S. (2021). Sugarcane bagasse biochar: A suitable amendments for inland saline pond water productivity. Journal of Environmental Biology, 42(5), 1264–1273. https://doi.org/10.22438/jeb/42/5/mrn- 1702
General status and opportunities	India	Raul, C., Priyadarshi, S., Bharti, V. S., & Prakash, S. (2019). Biochar: An emerging solution for sustainable aquaculture. World Aquaculture, 64–65. https://www.researchgate.net/profile/Chittaranjan- Raul/publication/337759327_Biochar_An_Emerging_Solution_ for_Sustainable_Aquaculture/links/5de8d1d1299bf10bc34067 64/Biochar-An-Emerging-Solution-for-Sustainable- Aquaculture.pdf
Vannamei	India	S, M. A. J., Xavier, K. M., Nayak, B. B., Kumar, H. S., & Balange, A. K. (2023). Comparative quality evaluation of frozen stored Litopenaeus vannamei reared in inland saline water and brackish water. Fishery Technology, 60, 48–54. https://www.researchgate.net/publication/368477851
Vannamei	India	Sahadevan, P. (2022). Studies on shrimp aquaculture in Kerala (p. 515) [PhD Thesis]. http://117.232.76.121/bitstream/handle/20.500.12818/765/1 605.pdf?sequence=1&isAllowed=y
Environmental	India	Saini, J., & Pandey, S. (2022). Environmental threat and change detection in saline lakes from 1960 to 2021: Background, present, and future. Environmental Science and Pollution Research, 30(1), 78–89. https://doi.org/10.1007/s11356-022-23981-y
Vannamei	India	Salunke, M., Kalyankar, A., Khedkar, C. D., Shingare, M., & Khedkar, G. D. (2020). A review on shrimp aquaculture in India: Historical perspective, constraints, status and future implications for impacts on aquatic ecosystem and biodiversity. Reviews in Fisheries Science & Aquaculture, 28(3), 1–20. https://doi.org/10.1080/23308249.2020.1723058
Vannamei	India	Samadan, G., Rustadi, & Djumanto. (2018). Production performance of whiteleg shrimp Litopenaeus vannamei at different stocking densities reared in sand ponds using plastic mulch. Aquaculture, Aquarium, Conservation and Legislation, 11(4), 1213–1221. http://www.bioflux.com.ro/aacl

Vannamei	India	Sanathkumar, H., Ravi, C., Padinhatupurayil, S. B., Mol, M.,
		Prasad, J. K., & Nayak, B. B. (2014). Microbiological investigation of persistent mortalities in Litopenaeus vannamei grown in low saline waters in India. Journal of Aquatic Animal
		Health, 26(3), 154–159. https://doi.org/10.1080/08997659.2014.902875
Algae seaweed	India	Sandeep, K. P., Shukla, S. P., Harikrishna, V., Muralidhar, A. P.,
-		Vennila, A., Purushothaman, C. S., & Ratheesh Kumar, R.
		(2013). Utilization of inland saline water for Spirulina
		cultivation. Journal of Water Reuse and Desalination, 3(4), 346–356. https://doi.org/10.2166/wrd.2013.102
Penaieds (not	India	Shakeeb-Ur-Rahman, Jain, A. K., Reddy, A. K., Kumar, G., &
vannamei)		Raju, K. D. (2005). Ionic manipulation of inland saline
		groundwater for enhancing survival and growth of Penaeus
		monodon (Fabricius). Aquaculture Research, 36(12), 1149–
General status and	India	1156. https://doi.org/10.1111/j.1365-2109.2005.01322.x Sharma, D. K., & Singh, A. (2015). Salinity research in India -
opportunities	inula	achievements, challenges and future prospects. Water and
		Energy International, 58(6), 35–45.
		https://krishi.icar.gov.in/jspui/handle/123456789/3367
Environmental	India	Sharma, D., & Singh, A. (2017). Reclamation and management
		strategies under salty soils. In 5th National Seminar - Climate Resilient Saline Agriculture: Sustaining Livelihood Security
		2017.
		https://krishi.icar.gov.in/jspui/bitstream/123456789/3859/1/R
		eclamation%20and%20Management%20Strategies%20under
Com	La alta	%20Salty%20Soils.pdf
Carp	India	Sharma, K., Dey, A., Kumar, S., Chaudhary, B. K., Mohanty, S., Kumar, T., Prasad, S. S., & Bhatt, B. P. (2020). Effect of salinity
		on growth, survival and biochemical alterations in the
		freshwater fish Labeo rohita (Hamilton 1822). Indian Journal of
		Fisheries, 67(2). https://doi.org/10.21077/ijf.2019.67.2.86894-
Carp	India	06 Sharma, M., Kaur, V. I., & Ansal, M. D. (2017). Physiological
Carp	inula	responses of freshwater ornamental fish koi carp, Cyprinus
		carpio (L.) in inland saline water: Growth and hematological
		changes. Indian Journal of Ecology, 44(4), 864–868.
		https://www.researchgate.net/profile/Vaneet-Kaur-
		3/publication/322930435_Physiological_Responses_of_Fresh water Ornamental Fish Koi Carp Cyprinus carpio L in Inla
		nd_Saline_water_Growth_and_Hematological_Changes/links/
		5c52e25292851c22a39d9e33/Physiological-Responses-of-
		Freshwater-Ornamental-Fish-Koi-Carp-Cyprinus-carpio-L-in-
General research	India	Inland-Saline-water-Growth-and-Hematological-Changes.pdf
General research	India	Singh, B., Tyagi, A., Billekallu Thammegowda, N. K., & Ansal, M. D. (2018). Prevalence and antimicrobial resistance of vibrios of
		human health significance in inland saline aquaculture areas.
		Aquaculture Research, 49(6), 2166–2174.
		https://doi.org/10.1111/are.13672
Environmental	India	Singh, G. (2009). Salinity-related desertification and management strategies: Indian experience. Land Degradation
		& Development, 20(4), 367–385.
		https://doi.org/10.1002/ldr.933
Carp	India	Singh, G., Ansal, M. D., & Kaur, V. I. (2018). Salinity tolerance
		and survival of freshwater carp, Cyprinus carpio linn. in inland
		saline water. Indian Journal of Ecology, 45(3), 598–601. https://www.indianjournals.com/ijor.aspx?target=ijor:ije1&vol
		ume=45&issue=3&article=030

Vannamei	India	Singh, P., Tyagi, A., & Kumar, B. N. (2020). Impact of shrimp farming technology for economic upliftment of rural societies in inland saline areas of Punjab. Journal of Krishi Vigyan, 9(si), 172–179. http://dx.doi.org/10.5958/2349-4433.2020.00100.2
Carp	India	Singh, S., & Srivastava, P. (2019). Influence of different salinity on carcass composition of Amur carp (Cyprinus carpio haematopterus) reared in semi-arid region of India. Journal of Experimental Zoology India, 22(1), 633–637. https://www.researchgate.net/profile/Appidi-Krishna- Reddy/publication/332671760_INFLUENCE_OF_DIFFERENT_S ALINITY_ON_CARCASS_COMPOSITION_OF_AMUR_CARP_CYPR INUS_CARPIO_HAEMATOPTERUS_REARED_IN_SEMI- _ARID_REGION_OF_INDIA/links/5cc2cc25299bf120977fbdab/I NFLUENCE-OF-DIFFERENT-SALINITY-ON-CARCASS- COMPOSITION-OF-AMUR-CARP-CYPRINUS-CARPIO- HAEMATOPTERUS-REARED-IN-SEMI-ARID-REGION-OF- INDIA.pdf
General status and opportunities	India	Singh, S., Jahan, I., Sharma, A., & Misra, V. K. (2017). Inland saline aquaculture-a hope for farmers. International Journal of Global Science Research, 4(2). https://doi.org/10.26540/ijgsr.v4.i2.2017.80
Carp	India	Singh, S., Reddy, A., Harikrishna, V., Srivastava, P., & Lakra, W. (2020). Growth and osmoregulatory response of Cyprinus carpio haematopterus (Amur carp) reared in inland saline water. Indian Journal of Animal Sciences, 90(1), 120–124. https://www.researchgate.net/profile/Shashank-Singh- 24/publication/339363213_Growth_and_osmoregulatory_res ponse_of_Cyprinus_carpio_haematopterus_Amur_carp_reare d_in_inland_saline_water/links/5e8dd76f92851c2f528890dd/ Growth-and-osmoregulatory-response-of-Cyprinus-carpio- haematopterus-Amur-carp-reared-in-inland-saline-water.pdf
Integrated ISA Agriculture	India	Singh, S., Singh, R., Kumar, S., Narjary, B., Kamra, S., & Sharma, D. (2014). Productive utilization of sodic water for aquaculture-led integrated farming system: A case study. Journal of Soil Salinity and Water Quality, 6(1), 28–35. https://www.researchgate.net/profile/Bhaskar_Narjary/public ation/270280947_Productive_Utilization_of_Sodic_Water_for _Aquaculture- led_Integrated_Farming_System_A_Case_Study/links/54a663c 00cf267bdb90843cd.pdf
Tilapia	India	Singha, K. P., Shamna, N., Sahu, N. P., Sardar, P., Harikrishna, V., Thirunavukkarasar, R., Chowdhury, D. K., Maiti, M. K., & Krishna, G. (2021). Optimum dietary crude protein for culture of genetically improved farmed tilapia (GIFT), Oreochromis niloticus (Linnaeus, 1758) juveniles in low inland saline water: Effects on growth, metabolism and gene expression. Animal Feed Science and Technology, 271, 114713. https://doi.org/10.1016/j.anifeedsci.2020.114713
Tilapia	India	Singha, K. P., Shamna, N., Sahu, N. P., Sardar, P., HariKrishna, V., Thirunavukkarasar, R., Kumar, M., & Krishna, G. (2020). Feeding graded levels of protein to genetically improved farmed tilapia (GIFT) juveniles reared in inland saline water: Effects on growth and gene expression of IGFI, IGF-IR and IGF- BPI. Aquaculture, 525, 735306. https://doi.org/10.1016/j.aquaculture.2020.735306
Vannamei	India	Sudan, P., Tyagi, A., Dar, R. A., Sharma, C., Singh, P., B. T., N. K., Chandra, M., & Arora, A. K. (2023). Prevalence and antimicrobial resistance of food safety related Vibrio species in inland saline water shrimp culture farms. International Microbiology. https://doi.org/10.1007/s10123-023-00323-7

Resourcespolicysys tems	India	Surinaidu, L., Nandan, M., Prathapar, S., Gurunadha Rao, V., & Rajmohan, N. (2016). Groundwater evaporation ponds: A viable option for the management of shallow saline waterlogged areas. Hydrology, 3(3), 30. https://doi.org/10.3390/hydrology3030030
Marine finfish	India	Talukdar, A., Deo, A. D., Sahu, N. P., Sardar, P., Aklakur, M., Prakash, S., Shamna, N., & Kumar, S. (2020). Effects of dietary protein on growth performance, nutrient utilization, digestive enzymes and physiological status of grey mullet, Mugil cephalus L. fingerlings reared in inland saline water. Aquaculture Nutrition, 26(3), 921–935. https://doi.org/10.1111/anu.13050
Freshwater fish (not carp)	India	Talukdar, A., Dharmendra Deo, A., Prasad Sahu, N., Sardar, P., Aklakur, M., & Prakash, S. (2021). Effects of different suboptimal dietary protein levels on growth, nutrient utilization and physio-metabolic status of Anabas testudineus fingerlings in inland saline water. Aquaculture Nutrition, 27(6), 2673–2689. https://doi.org/10.1111/anu.13394
Vannamei	India	Talukdar, A., Dharmendra Deo, A., Prasad Sahu, N., Sardar, P., Aklakur, M., Harikrishna, V., Prakash, S., Shamna, N., & Jana, P. (2020). Effects of different levels of dietary protein on the growth performance, nutrient utilization, digestive enzymes and physiological status of white shrimp, Litopenaeus vannamei juveniles reared in inland saline water. Aquaculture Nutrition, 27(1), 77–90. https://doi.org/10.1111/anu.13166
Tilapia	India	Thirunavukkarasar, R., Kumar, P., Sardar, P., Sahu, N. P., Harikrishna, V., Singha, K. P., Shamna, N., Jacob, J., & Krishna, G. (2022). Protein-sparing effect of dietary lipid: Changes in growth, nutrient utilization, digestion and IGF-I and IGFBP-I expression of genetically improved farmed tilapia (GIFT), reared in Inland Ground Saline Water. Animal Feed Science and Technology, 284, 115150. https://doi.org/10.1016/j.anifeedsci.2021.115150
Integrated ISA Agriculture	India	Thomas, R. M., Verma, A. K., Krishna, H., Prakash, S., Kumar, A., & Peter, R. M. (2021). Effect of salinity on growth of Nile tilapia (Oreochromis niloticus) and spinach (Spinacia oleracea) in aquaponic system using inland saline groundwater. Aquaculture Research, 52(12), 6288–6298. https://doi.org/10.1111/are.15492
Integrated ISA Agriculture	India	Thomas, R. M., Verma, A. K., Prakash, C., Krishna, H., Prakash, S., & Kumar, A. (2019). Utilization of inland saline underground water for bio-integration of Nile tilapia (Oreochromis niloticus) and spinach (Spinacia oleracea). Agricultural Water Management, 222, 154–160. https://doi.org/10.1016/j.agwat.2019.06.001
Carp	India	Tyagi, A., & Singh, B. (2017). Microbial diversity in rohu fish gut and inland saline aquaculture sediment and variations associated with next-generation sequencing of 16S rRNA gene. Journal of Fisheries and Life Sciences, 2(1), 1–8. https://www.fishlifesciencejournal.com/download/2017/v2.i1 /8/8.pdf
General research	India	Tyagi, A., Dubey, S., Sharma, C., Sudan, P., Rai, S., Kumar, B. T. N., Chandra, M., & Arora, A. K. (2022a). Complete genome sequencing and characterization of single-stranded DNA Vibrio parahaemolyticus phage from inland saline aquaculture environment. Virus Genes, 58(5), 483–487. https://doi.org/10.1007/s11262-022-01913-9

General research	India	Tyagi, A., Dubey, S., Sharma, C., Sudan, P., Rai, S., Kumar, B. T. N., Chandra, M., & Arora, A. K. (2022b). Correction to: Complete genome sequencing and characterization of single- stranded DNA Vibrio parahaemolyticus phage from inland saline aquaculture environment. Virus Genes, 58(5), 488–489. https://doi.org/10.1007/s11262-022-01920-w
Resourcespolicysys tems	India	Tyagi, N. K., Agrawal, A., Sakthivadivel, R., & Ambast, S. K. (2005). Water management decisions on small farms under scarce canal water supply: A case study from NW India. Agricultural Water Management, 77(1-3), 180–195. https://doi.org/10.1016/j.agwat.2004.09.031
Tilapia	India	Velselvi, R., Dasgupta, S., Varghese, T., Sahu, N. P., Tripathi, G., Panmei, H., Singha, K. P., & Krishna, G. (2022). Taurine and/or inorganic potassium as dietary osmolyte counter the stress and enhance the growth of GIFT reared in ion imbalanced low saline water. Food Chemistry: Molecular Sciences, 4, 100058. https://doi.org/10.1016/j.fochms.2021.100058
General status and opportunities	India	Vijayan, K., Balasubramanian, C., Gopal, C., & Kailasam, N. (2016). Diversification of brackishwater aquaculture: Options and strategies. National Seminar on Aquaculture Diversification: The Way Forward for the Blue Revolution 01- 03 December, 2016: ICAR-CIFA, Bhubaneswar. https://krishi.icar.gov.in/jspui/handle/123456789/47699
Crustaceans (not penaeids)	India	Vikas, P. A., Sajeshkumar, N. K., Thomas, P. C., Chakraborty, K., & Vijayan, K. K. (2011). Aquaculture related invasion of the exotic Artemia franciscana and displacement of the autochthonous Artemia populations from the hypersaline habitats of India. Hydrobiologia, 684(1), 129–142. https://doi.org/10.1007/s10750-011-0976-x
Vannamei	India	Zaffar, I., Varghese, T., Dasgupta, S., Sahu, N. P., Srivastava, P. P., Harikrishna, V., Mushtaq, Z., Dar, S. A., Prakash, S., & Krishna, G. (2021). Dietary potassium partially compensates the requirement of aqueous potassium of P. vannamei reared in medium saline inland groundwater. Aquaculture Research, 52(9), 4094–4104. https://doi.org/10.1111/are.15248
Vannamei	Indonesia	Abrori, M., Soegianto, A., & Winarni, D. (2022). Survival, osmoregulatory and hemocyte changes in Litopenaeus vannamei postlarvae acclimated to different intervals of salinity reduction. Aquaculture Reports, 25, 101222. https://doi.org/10.1016/j.aqrep.2022.101222
Economics	Indonesia	Ariadi, H., Fadjar, M., & Mahmudi, M. (2019). Financial feasibility analysis of shrimp vannamei (Litopenaeus vannamei) culture in intensive aquaculture system with low salinity. Economic and Social of Fisheries and Marine Journal, 007(01), 81–94. https://doi.org/10.21776/ub.ecsofim.2019.007.01.08
General research	Indonesia	Novriadi, R. (2016). Vibriosis in aquaculture. Omni-Akuatika, 12(1). https://doi.org/10.20884/1.oa.2016.12.1.24
Environmental	Indonesia	Purnama, S., & Aris Marfai, M. (2011). Saline water pollution in groundwater: Issues and its control. Journal of Natural Resources and Development, 2. http://dx.doi.org/10.5027/jnrd.v2i0.06
Resourcespolicysys tems	Indonesia	Purnama, S., & Aris Marfai, M. (2011). Saline water pollution in groundwater: Issues and its control. Journal of Natural Resources and Development, 2. https://doi.org/10.5027/jnrd.v2i0.06
Economics	Indonesia	Supono, S. (2021). Current status of technical and economic analysis of inland shrimp culture in Lampung Province, Indonesia. AACL Bioflux, 14(1), 218–226. http://repository.lppm.unila.ac.id/id/eprint/33719

-		
Economics	International	Aharon, O., Deng, T., Shadrin, N. V., Zheng, M., & Zadereev, E. S. (2018). Preface: Value and dynamics of salt lakes in a
		changing world. Journal of Oceanology and Limnology, 36(6),
		1901–1906. https://doi.org/10.1007/s00343-018-8301-4
Resourcespolicysys	International	Alcocer, J., & Escobar, E. (1994). Athalassohalinity (on the
tems		concept of salinity in inland waters). HIDROBIOLÓGICA, 3(1, 2),
		81–88. https://hidrobiologica.izt.uam.mx/hidrobiologica/index.php/re
		vHidro/article/view/547
Resourcespolicysys	International	Anufriieva, E. V. (2018). How can saline and hypersaline lakes
tems		contribute to aquaculture development? A review. Journal of
		Oceanology and Limnology, 36(6), 2002–2009.
Environmental	International	https://doi.org/10.1007/s00343-018-7306-3 Ayyam, V., Palanivel, S., & Chandrakasan, S. (2019). Land and
		water conservation: dealing with agriculture and aquaculture
		conflicts. Coastal Ecosystems of the Tropics - Adaptive
		Management, 391–406. https://doi.org/10.1007/978-981-13-
Economics	International	8926-9_17 Brugere, C., & Little, D. (2000). An approach to valuing ponds
Leonomies	international	within farming systems for aquaculture (p. 37). Institute of
		Aquaculture, University of Stirling.
		http://hdl.handle.net/1834/20688
General status and opportunities	International	Crespi, V., & Lovatelli, A. (2011). Global desert aquaculture at a glance. In V. Crespi & A. Lovatelli (Eds.), Aquaculture in Desert
opportunities		and Arid lands: Development Constraints and opportunities.
		FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico.
		FAO Fisheries and Aquaculture Proceedings No. 20. Rome,
		FAO. 2011. pp. 25-37.
Integrated ISA	International	https://www.fao.org/3/ba0114e/ba0114e00.htm Custódio, M., Villasante, S., Cremades, J., Calado, R., & Lillebø,
Agriculture		A. (2017). Unravelling the potential of halophytes for marine
		integrated multi-trophic aquaculture (IMTA)— a perspective
		on performance, opportunities and challenges. Aquaculture
		Environment Interactions, 9, 445–460. https://doi.org/10.3354/aei00244
Integrated ISA	International	Fierro-Sañudo, J. F., Rodríguez-Montes de Oca, G. A., & Páez-
Agriculture		Osuna, F. (2020). Co-culture of shrimp with commercially
		important plants: A review. Reviews in Aquaculture, 12(4),
Algae seaweed	International	2411–2428. https://doi.org/10.1111/raq.12441 García-Poza, S., Leandro, A., Cotas, C., Cotas, J., Marques, J. C.,
Albae Seaweed	international	Pereira, L., & Gonçalves, A. M. M. (2020). The evolution road
		of seaweed aquaculture: Cultivation technologies and the
		industry 4.0. International Journal of Environmental Research
		and Public Health, 17(18), 6528. https://doi.org/10.3390/ijerph17186528
General status and	International	Gunning, D., Maguire, J., & Burnell, G. (2016). The
opportunities	-	development of sustainable saltwater-based food production
		systems: A review of established and novel concepts. Water,
Integrated ISA	International	8(12), 598. https://doi.org/10.3390/w8120598 Ibrahim, L. A., Abu-Hashim, M., Shaghaleh, H., Elsadek, E.,
Agriculture	memational	Hamad, A. A. A., & Alhaj Hamoud, Y. (2023). A comprehensive
Ŭ		review of the multiple uses of water in aquaculture-integrated
		agriculture based on international and national experiences.
Conoral status as -	International	Water, 15(2), 367. https://doi.org/10.3390/w15020367
General status and opportunities	International	Jellison, R. (2005). IX international conference on salt lake research: Research opportunities and management
		challenges. Saline Systems, 1(1), 12.
		https://doi.org/10.1186/1746-1448-1-12

al Katarzyna Negacz, Vellinga, P., Barrett-Lennard, E., Redouane
Choukr-Allah, & Elzenga, T. (2021). Future of sustainable agriculture in saline environments. CRC Press.
https://doi.org/10.1201/9781003112327
al Lavens, P., & Sorgeloos, P. (2000). The history, present status
and prospects of the availability of Artemia cysts for
aquaculture. Aquaculture, 181(3-4), 397–403.
https://doi.org/10.1016/s0044-8486(99)00233-1
al Liao, I. C., & Chien, YH. (2011). The Pacific white shrimp,
Litopenaeus vannamei, in Asia: The world's most widely
cultured alien crustacean. In B. Galil, P. Clark, & J. Carlton
(Eds.), In the Wrong Place - Alien Marine Crustaceans:
Distribution, Biology and Impacts. Invading Nature (pp. 489–
519). Springer Series in Invasion Ecology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0591-3_17
al Lothmann, R., & Sewilam, H. (2022). Potential of innovative
marine aquaculture techniques to close nutrient cycles.
Reviews in Aquaculture. https://doi.org/10.1111/raq.12781
al Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan,
N. S. (2021). Soil salinity under climate change: Challenges for
sustainable agriculture and food security. Journal of
Environmental Management, 280, 111736.
https://doi.org/10.1016/j.jenvman.2020.111736
al Ottaviani, D. (n.d.). Food and agriculture of the UN SEEA for
inland capture fisheries & aquaculture working document.
Retrieved February 26, 2023, from
https://seea.un.org/sites/seea.un.org/files/5_23.pdf
al Person, M. A., & Sazeed, N. (2022). Continental brackish groundwater resources. In M. Qadir, V. Smakhtin, S. Koo-
Oshima, & E. Guenther (Eds.), Unconventional Water
Resources (pp. 111–128). Springer, Cham.
https://doi.org/10.1007/978-3-030-90146-2_6
al Perthuisot, JP. (1995). Inland saline lakes with lagoonal biota:
Some reflections on the concept and nature of athalassic (non-
marine), paralic and marine saline waters. International
Journal of Salt Lake Research, 4(2), 79–94.
https://doi.org/10.1007/bf01990797
al Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., &
Karajeh, F. (2007). Non-conventional water resources and
opportunities for water augmentation to achieve food security in water scarce countries. Agricultural Water Management,
87(1), 2–22. https://doi.org/10.1016/j.agwat.2006.03.018
al Ragaza, J. A., Hossain, Md. S., Meiler, K. A., Velasquez, S. F., &
Kumar, V. (2020). A review on Spirulina: Alternative media for
cultivation and nutritive value as an aquafeed. Reviews in
Aquaculture, 12(4), 2371–2395.
https://doi.org/10.1111/raq.12439
al Robertson, S. M., Lyra, D. A., Mateo-Sagasta, J., Ismail, S., &
Akhtar, M. J. U. (2019). Financial analysis of halophyte
cultivation in a desert environment using different saline
water resources for irrigation. In M. Hasanuzzaman, K. Nahar, & M. Öztürk (Eds.), Ecophysiology, Abiotic Stress Responses
and Utilization of Halophytes (pp. 347–364). Springer.
https://doi.org/10.1007/978-981-13-3762-8_17
al Saoud, I. P. (2017). Ensuring food security by improving
"freshwater use efficiency" or by farming the seas. In S.
Murad, E. Baydoun, & N. Daghir (Eds.), Water, Energy & Food
Sustainability in the Middle East (pp. 341–360). Springer,
Champ. https://doi.org/10.1007/978-3-319-48920-9_15

Resourcespolicysys	International	Shadrin, N., Anufriieva, E., & Gajardo, G. (2023). Ecosystems of
tems		inland saline waters in the world of change. Water, 15(1), 52.
		https://doi.org/10.3390/w15010052
General status and	International	Shearer, T., Wagstaff, S., Calow, R., Stewart, J., Muir, J., Haylor,
opportunities		G., & Brooks, A. (1997). The potential for aquaculture using
		saline groundwater. BGS Technical Report WC/97/58.
		https://nora.nerc.ac.uk/id/eprint/505138/1/WC_97_58.pdf
Resourcespolicysys	International	Thangarajan, M., & Singh, V. P. (Eds.). (2016). Groundwater
tems		assessment, modeling, and management. CRC Press.
		https://doi.org/10.1201/9781315369044
Crustaceans (not	International	Van Stappen, G., Sui, L., Hoa, V. N., Tamtin, M., Nyonje, B.,
penaeids)		Medeiros Rocha, R., Sorgeloos, P., & Gajardo, G. (2019).
<u> </u>		Review on integrated production of the brine shrimp Artemia
		in solar salt ponds. Reviews in Aquaculture, 12(2), 1054–1071.
		http://dx.doi.org/10.1111/raq.12371
WaterResources	International	Van Weert, F., Van Der Gun, J., & Utrecht, J. (2009). Global
Waternesources	international	overview of saline groundwater occurrence and genesis.
		http://www.indiaenvironmentportal.org.in/files/salineground
		water.pdf
General status and	International	
	International	Vo, T. T. E., Je, SM., Jung, SH., Choi, J., Huh, JH., & Ko, HJ.
opportunities		(2022). Review of photovoltaic power and aquaculture in
		desert. Energies, 15(9), 3288.
		https://doi.org/10.3390/en15093288
Integrated ISA	International	Webb, J. M., Quintã, R., Papadimitriou, S., Norman, L., Rigby,
Agriculture		M., Thomas, D. N., & Le Vay, L. (2012). Halophyte filter beds
		for treatment of saline wastewater from aquaculture. Water
		Research, 46(16), 5102–5114.
		https://doi.org/10.1016/j.watres.2012.06.034
General status and	International	Williams, W. D. (1981). Problems in the management of inland
opportunities		saline lakes. SIL Proceedings, 1922-2010, 21(1), 688–692.
		https://doi.org/10.1080/03680770.1980.11897069
Resourcespolicysys	International	Williams, W. D. (1981a). Problems in the management of
tems		inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688-
		inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069
	International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of
tems		692. https://doi.org/10.1080/03680770.1980.11897069
tems Resourcespolicysys		692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of
tems Resourcespolicysys		692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688–
tems Resourcespolicysys tems	International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069
tems Resourcespolicysys tems	International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste:
tems Resourcespolicysys tems	International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of
tems Resourcespolicysys tems	International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348.
tems Resourcespolicysys tems Environmental General status and	International International	 692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global
tems Resourcespolicysys tems Environmental	International International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11
tems Resourcespolicysys tems Environmental General status and	International International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of
tems Resourcespolicysys tems Environmental General status and	International International	 692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations.
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish	International International International	 692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of
tems Resourcespolicysys tems Environmental General status and opportunities	International International International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish	International International International	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish	International International International	 692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688–692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal Environment, 1(4), 57–70.
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish (not carp)	International International International Iran	 692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688–692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal Environment, 1(4), 57–70. http://www.aejournal.ir/m/article_103107.html?lang=en
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish (not carp) Freshwater fish	International International International	 692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688–692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal Environment, 1(4), 57–70. http://www.aejournal.ir/m/article_103107.html?lang=en Alizadeh, M., Dadgar, S., & Hafezieh, M. (2016). Review on
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish (not carp)	International International International Iran	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal Environment, 1(4), 57–70. http://www.aejournal.ir/m/article_103107.html?lang=en Alizadeh, M., Dadgar, S., & Hafezieh, M. (2016). Review on rainbow trout (Oncorhynchus mykiss) farming in desert
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish (not carp) Freshwater fish	International International International Iran	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal Environment, 1(4), 57–70. http://www.aejournal.ir/m/article_103107.html?lang=en Alizadeh, M., Dadgar, S., & Hafezieh, M. (2016). Review on rainbow trout (Oncorhynchus mykiss) farming in desert underground brackish water in Iran. Journal of Survey in
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish (not carp) Freshwater fish	International International International Iran	 692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal Environment, 1(4), 57–70. http://www.aejournal.ir/m/article_103107.html?lang=en Alizadeh, M., Dadgar, S., & Hafezieh, M. (2016). Review on rainbow trout (Oncorhynchus mykiss) farming in desert underground brackish water in Iran. Journal of Survey in Fisheries Sciences, 3(1), 21–35.
tems Resourcespolicysys tems Environmental General status and opportunities Freshwater fish (not carp) Freshwater fish	International International International Iran	692. https://doi.org/10.1080/03680770.1980.11897069 Williams, W. D. (1981b). Problems in the management of inland saline lakes. SIL Proceedings, 1922-2010, 21(1), 688– 692. https://doi.org/10.1080/03680770.1980.11897069 Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341–348. https://doi.org/10.12714/egejfas.39.4.11 Zhou, X. (2017). An overview of recently published global aquaculture statistics. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bs235e/bs235e.pdf Alizadeh, M. (2010). A review on research achievements of rainbow trout (Oncorhynchus mykiss) aquaculture in inland brackish water in central area of Iran. Journal of Animal Environment, 1(4), 57–70. http://www.aejournal.ir/m/article_103107.html?lang=en Alizadeh, M., Dadgar, S., & Hafezieh, M. (2016). Review on rainbow trout (Oncorhynchus mykiss) farming in desert underground brackish water in Iran. Journal of Survey in

Freshwater fish	Iran	Alizadeh, M., Dadgar, S., & Masaeli, S. (2017). Review on
(not carp)		rainbow trout desert farming using underground brackish water. In P. Berillis (Ed.), Trends in Fisheries and Aquatic Animal Health. Bentham Science Publishers.
		https://books.google.com.au/books?hl=en&lr=&id=G4xCDwA AQBAJ&oi=fnd&pg=PA227&dq=inland+saline+water+aquacult
		ure&ots=0gcirPsR6N&sig=wXnx4D2dEybfETaGb1aoZYkjMQ0#v =onepage&q=inland%20saline%20water%20aquaculture&f=fal
		se
Resourcespolicysys tems	Iran	Bemani, A., Alizadeh, M., Rahimian, M. H., & Nowrouzi, M. (2021). Site selection for agri-aquaculture in the arid area
		using GIS techniques based on groundwater quality (case study: Yazd-Ardakan plain, Iran). Iranian Journal of Fisheries
		Sciences, 20(3), 710–730.
		https://jifro.ir/browse.php?a_id=4362&slc_lang=en&sid=1≺ intcase=1&hbnr=1&hmb=1
Crustaceans (not penaeids)	Iran	Keshtkar, A. R., Oros, Z., Mohammadkhan, Sh., Eagdari, S., & Paktinat, H. (2016). Multi-criteria analysis in Artemia farming
		site selection for sustainable desert ecosystems planning and management (case study: Siahkouh Playa, Iran).
		Environmental Earth Sciences, 75(16).
Integrated ISA	Iran	https://doi.org/10.1007/s12665-016-5998-2 Khorsandi, F. (2016). Haloculture: Strategy for sustainable
Agriculture		utilization of saline land and water resources. Khorsandi /
		Iranian Journal of Earth Sciences, 8, 164–172. https://www.researchgate.net/profile/Anoop-
		Srivastava/post/Why-do-salt-affected-soils-continue-to-pose-
		potential-threats-to-food- security/attachment/59d64ef479197b80779a833d/AS%3A495
		299148107776%401495099927491/download/Haloculture-
		+Strategy+for+Sustainable+Utilization+of+Saline+Land+and+W
Resourcespolicysys	Iran	ater+Resources+-+2016+-+IJES.pdf Khorsandi, F. (2016). Haloculture: Strategy for sustainable
tems		utilization of saline land and water resources. Khorsandi /
		Iranian Journal of Earth Sciences, 8, 164–172. https://www.researchgate.net/publication/316961316_Haloc
		ulture_Strategy_for_sustainable_utilization_of_saline_land_a
		nd_water_resources?enrichId=rgreq-
		31199c2636e7f882a242823d8f669f97- XXX&enrichSource=Y292ZXJQYWdlOzMxNjk2MTMxNjtBUzo0O
		TQ5NjQ4Nzg4NTYxOTJAMTQ5NTAyMDIzMTE0NA%3D%3D⪙
Integrated ISA	Iran	=1_x_2&_esc=publicationCoverPdf Khorsandi, F. (2017). Environmental capabilities and
Agriculture		constraints of haloculture: Alternative strategy to use saline
		waters in marginal lands. 13th International Drainage Workshop of ICID, Ahwaz, Iran 4-7 March 2017.
		https://www.researchgate.net/profile/Farhad-
		Khorsandi/publication/316990263_ENVIRONMENTAL_CAPABI
		LITIES_AND_CONSTRAINTS_OF_HALOCULTURE_ALTERNATIVE _STRATEGY_TO_USE_SALINE_WATERS_IN_MARGINAL_LANDS
		/links/591c34b60f7e9b7727da05b9/ENVIRONMENTAL-
		CAPABILITIES-AND-CONSTRAINTS-OF-HALOCULTURE- ALTERNATIVE-STRATEGY-TO-USE-SALINE-WATERS-IN-
		MARGINAL-LANDS.pdf
Tilapia	Iran	Mohammadi, M., Sarsangi Aliabad, H, Mashaii, N., Bitaraf, A.,
		Haghighi, T., Rajabipour, F., & Hafeziyeh, M. (2013). Determine optimal diet for rearing black tilapia (Oreochromis niloticus) in
		Bafgh brackish water. Iranian Fisheries Science Research
		Institute, 54. http://hdl.handle.net/1834/14040

Tilapia	Iran	Mohammadi, M., Sarsangi, A., Haghighi, T., Webster, C., Rajabipour, F., Mashaii, N., Bitaraf, A., & Hafeziyeh, M. (2014). Optimization of dietary protein in all male Nile tilapia (Oreochromis niloticus) reared in inland saline water. Animal Nutrition and Feed Technology, 14(1), 91–99. https://www.indianjournals.com/ijor.aspx?target=ijor:anft&vo lume=14&issue=1&article=010
Freshwater fish (not carp)	Iran	Mohammadi, M., Sarsangi, H., Askari, M., Bitaraf, A., Mashaii, N., Rajabipour, F., & Alizadeh, M. (2011). Use of underground brackish water for reproduction and larviculture of rainbow trout, Oncorhynchus mykiss. Journal of Applied Aquaculture, 23(2), 103–111. https://doi.org/10.1080/10454438.2011.581569
Marine finfish	Iran	Mohammadi, M., Sarsangi, H., Askari, M., Bitaraf, A., Mashaii, N., Rajabipour, F., & Alizadeh, M. (2016). Use of underground brackish water for reproduction and larviculture of rainbow trout, Oncorhynchus mykiss. In R. E. Brummett (Ed.), Aquaculture Technology in Developing Countries. Routledge. https://books.google.com.au/books?hl=en&lr=&id=yarsCwAA QBAJ&oi=fnd&pg=RA1- PA17&dq=Use+of+underground+brackish+water+for+reprodu ction+and+larviculture+of+rainbow+trout,+Oncorhynchus+my kiss&ots=XTWUMndYSg&sig=MLgAYxBEeOTXkWUYfpdJ8TL6tt U
Tilapia	Iran	Morady, Y., Mashaeii, N., Karami, B., & Zare Ghasti, G. (2012). Investigation on proximate composition, fatty acid profile and sensory evaluation of Nile (Oreochromis niloticus) and Hybrid Red Tilapia fillet farmed in brackish ground water of Bafgh, Yzad. ISFJ, 21(2), 125–132. https://doi.org/10.22092/ISFJ.2017.110061
Tilapia	Iran	Rajabipour, F., Hassannia, M. R., Mashaei, N., Sarsangi, H., Mohmmadi, M., Behmanesh, S., Akhgian, V., Shafiei mobarake, J., Najjar, M., & Jafari, M. (2016). Cage culture of tilapia in some water resources (farm and agriculture ponds) of Bafq, Iran. Aquadocs.org; Iranian Fisheries Science Research Institute. https://aquadocs.org/handle/1834/13935
Tilapia	Iran	Rajabipour, F., Saresangi, H., Mashaii, N., Bitaraf, A., Mohammadi, M., Alizadeh, M., Rahmati, M., & Hossein-Zadeh, H. (2014). An investigation on feasibility of introduction of tilapia to aquaculture industry of inland brackish waters at desert areas of Iran. Aquadocs.org; Iranian Fisheries Science Research Institute. https://aquadocs.org/handle/1834/14003
Resourcespolicysys tems	Iraq	Awadh, S. M., & Al-Ghani, S. A. (2013). Assessment of sulfurous springs in the west of Iraq for balneotherapy, drinking, irrigation and aquaculture purposes. Environmental Geochemistry and Health, 36(3), 359–373. https://doi.org/10.1007/s10653-013-9555-6
General status and opportunities	Iraq	Jawad, L. A., & Abdulsamad, S. M. S. (2021). How possible to use the desert area in Iraq for aquaculture industry: Basic facts and recommondations. Tigris and Euphrates Rivers: Their Environment from Headwaters to Mouth, 1047–1052. https://doi.org/10.1007/978-3-030-57570-0_47
Marine finfish	Israel	Appelbaum, S., & Arockiaraj, A. (2009). Cultivation of gilthead sea bream (Sparus aurata Linnaeus, 1758) in low salinity inland brackish geothermal water. AACL Bioflux, 2(2), 197–203. http://www.bioflux.com.ro/docs/2009.2.197-203.pdf
Marine finfish	Israel	Appelbaum, S., & Jesuarockiaraj, A. (2009). Salt incorporated diets for enhancing growth performance and survival in gilthead sea bream Sparus aurata L. juveniles reared in low

		saline brackish water. Scientia Marina, 73(S1), 213–217. https://doi.org/10.3989/scimar.2009.73s1213
Marine finfish	Israel	Appelbaum, S., & Raj, A. S. J. A. (2009). Salt incorporated diets for enhancing growth performance and survival in gilthead sea bream Sparus aurata L. juveniles reared in low saline brackish water. Sci. Mar., 73S1, 213–217. doi: 10.3989/scimar.2009.73sl213
Marine finfish	Israel	Appelbaum, S., Raj, A. J. A., & Raj, C. I. (2008). Promoting the culture of gilthead sea bream (Sparus auratus L.) in low saline inland water: A novel way to farm saltwater fish in freshwater. Secretariat, Southeast Asian Fisheries Development Center. https://www.researchgate.net/profile/Jesu- Arockiaraj/publication/277667632_Promoting_the_culture_of _gilthead_Fish_for_the_People/links/556feaf208aec226830ab 989/Promoting-the-culture-of-gilthead-Fish-for-the-People.pdf
General research	Israel	Applebaum, S. (2011). Aquaculture experiences in the Negev Desert in Israel. In V. Crespi & A. Lovatelli (Eds.), Aquaculture in desert and arid lands: development constraints and opportunities. FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No. 20. Rome, FAO. 2011. pp. 113–118. https://www.academia.edu/download/31569880/aquaculture .pdf#page=125
Marine finfish	Israel	Cnaani, A., Stavi, A., Smirnov, M., & Harpaz, S. (2012). Rearing white grouper (Epinephelus aeneus) in low salinity water: Effects of dietary salt supplementation. The Israeli Journal of Aquaculture - Bamidgeh, IJA, 64. http://hdl.handle.net/10524/23300
General research	Israel	Gross, A., Nemirovsky, A., Zilberg, D., Khaimov, A., Brenner, A., Snir, E., Ronen, Z., & Nejidat, A. (2003). Soil nitrifying enrichments as biofilter starters in intensive recirculating saline water aquaculture. Aquaculture, 223(1-4), 51–62. https://doi.org/10.1016/s0044-8486(03)00067-x
General status and opportunities	Israel	Hulata, G., & Simon, Y. (2011). An overview on desert aquaculture in Israel. In V. Crespi & A. Lovatelli (Eds.), Aquaculture in desert and arid lands: development constraints and opportunities. FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No. 20. Rome, FAO. (Vol. 20, pp. 85–112). https://www.fao.org/3/ba0114e/ba0114e05.pdf
Marine finfish	Israel	Klas, S., Perlberg-Banet, A., Smirnov, M., Zivan, A., Ophek, L., Friedlander, Y., & Lahav, O. (2014). A procedure for adjusting grey mullet (Mugil cephalus Lin.) fingerlings to low-salinity, low-hardness waters for economic and environmentally friendly inland culture. Aquacultural Engineering, 59, 55–63. https://doi.org/10.1016/j.aquaeng.2014.03.001
Resourcespolicysys tems	Israel	Mires, D. (2000). Development of inland aquaculture in arid climates: Water utilization strategies applied in Israel. Fisheries Management and Ecology, 7(1-2), 189–195. https://doi.org/10.1046/j.1365-2400.2000.00186.x
Integrated ISA Agriculture	Israel	Oron, G., Appelbaum, S., & Guy, O. (2023). Reuse of brine from inland desalination plants with duckweed, fish and halophytes toward increased food production and improved environmental control. Desalination, 549, 116317. https://doi.org/10.1016/j.desal.2022.116317
Vannamei	Israel	Parnes, S., Mills, E., Segall, C., Raviv, S., Davis, C., & Sagi, A. (2004). Reproductive readiness of the shrimp Litopenaeus vannamei grown in a brackish water system. Aquaculture,

		236(1), 593–606.
		https://doi.org/10.1016/j.aquaculture.2004.01.040
Tilapia	Israel	Schlechtriem, C., Bresler, V., Fishelson, L., Rosenfeld, M., & Becker, K. (2004). Protective effects of dietary l-carnitine on tilapia hybrids (Oreochromis niloticus x Oreochromis aureus) reared under intensive pond-culture conditions. Aquaculture Nutrition, 10(1), 55–63. https://doi.org/10.1046/j.1365- 2095.2003.00283.x
General research	Israel	Yogev, U., Sowers, K. R., Mozes, N., & Gross, A. (2017). Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system. Aquaculture, 467, 118–126. https://doi.org/10.1016/j.aquaculture.2016.04.029
Molluscs Echinoderms	Japan	Unuma, T., Sakai, Y., Agatsuma, Y., & Kayaba, T. (2015). Sea Urchin Aquaculture in Japan. In N. P. Brown & S. D. Eddy (Eds.), Echinoderm Aquaculture (pp. 75–126). https://doi.org/10.1002/9781119005810.ch5
Tilapia	Kuwait	Al-Ahmad, T. A., Ridha, M., & Al-Ahmed, A. A. (1988). Reproductive performance of the tilapia Oreochromis spilurus in seawater and brackish groundwater. Aquaculture, 73(1), 323–332. https://doi.org/10.1016/0044-8486(88)90065-8
Economics	Kuwait	Kitto, M. R., & Bechara, G. P. (2004). Business aquaculture in Kuwait: Challenges and solutions. World Aquaculture, 58–61. https://www.researchgate.net/profile/Kitto_Mr/publication/3 03520439_Business_Aquaculture_in_Kuwait _Problems_and_constraints/links/574ea36d08ae6028daa27d8 d/Business-Aquaculture-in-Kuwait-Problems-and- constraints.pdf
Marine finfish	Lebanon	Mourad, N., S. Kreydiyyeh, & J. Ghanawi. (2012). Aquaculture of marine fish in inland low salinity well water: potassium is not the only limiting element. Fisheries and Aquaculture Journal, 16–28. https://www.longdom.org/open- access/aquaculture-of-marine-fish-in-inland-low-salinity-well- water-potassium-is-not-the-only-limiting-element-43057.html
Crustaceans (not penaeids)	Lebanon	Rida, R., Zein-Eddine, R., Kreydiyyeh, S., Garza de Yta, A., & Saoud, I. P. (2021). Influence of salinity on survival, growth, hemolymph osmolality, gill sodium potassium ATPase activity, and sodium potassium chloride co-transporter expression in the redclaw crayfish Cherax quadricarinatus. Journal of the World Aquaculture Society, 52, 466–474. https://doi.org/10.1111/jwas.12762
Vannamei	Malaysia	Lim, Y. S., Ganesan, P., Varman, M., Hamad, F. A., & Krishnasamy, S. (2021). Effects of microbubble aeration on water quality and growth performance of Litopenaeus vannamei in biofloc system. Aquacultural Engineering, 93, 102159. https://doi.org/10.1016/j.aquaeng.2021.102159
Integrated ISA Agriculture	Malaysia	Sulaiman, A., & Al-Jughaiman, A. (2008). Development of an intelligent water blending system for irrigation of crops with various salinity tolerance and aquaculture [PhD Thesis]. https://core.ac.uk/download/pdf/42992641.pdf
Resourcespolicysys tems	Mekong Delta	Wagner, F., Tran, V. B., & Renaud, F. G. (2012). Groundwater resources in the Mekong delta: Availability, utilization and risks. In F. Renaud & C. Kuenzer (Eds.), The Mekong Delta System. (pp. 201–220). Springer Environmental Science and Engineering. https://doi.org/10.1007/978-94-007-3962-8_7
Integrated ISA Agriculture	Mexico	Baiyin, B., Tagawa, K., & Gutierrez, J. (2020). Techno-Economic feasibility analysis of a stand-alone photovoltaic system for combined aquaponics on drylands. Sustainability, 12(22), 9556. https://doi.org/10.3390/su12229556

Vannamai	Movies	Castilla Cariana E. Ibarra lunguara M. Oliver Ortic A
Vannamei	Mexico	Castillo-Soriano, F., Ibarra-Junquera, V., Olivos-Ortiz, A., Barragán-Vázquez, F., & Meyer-Willerer, amp; (2010). Influence of water supply chemistry on white shrimp
		(Litopenaeus vannamei) culture in low-salinity and zero-water exchange ponds. Pan-American Journal of Aquatic Sciences, 5(3), 376–386.
		http://panamjas.org/pdf_artigos/PANAMJAS_5(3)_376- 386.pdf
Vannamei	Mexico	DeCook, K. J., Ince, S., Popkin, B. P., Schreiber, J. F., & Sumner, J. S. (1980). Exploration for saltwater supply for shrimp aquaculture, Puerto Penasco, Sonora, Mexico. Hydrology and
		Water Resources in Arizona and the Southwest. https://repository.arizona.edu/handle/10150/301198
Integrated ISA	Mexico	Fierro-Sañudo, J. F., Rodríguez-Montes de Oca, G. A., León-
Agriculture		Cañedo, J. A., Alarcón-Silvas, S. G., Mariscal-Lagarda, M. M.,
		Díaz-Valdés, T., Páez-Osuna, F., Fierro-Sañudo, J. F., Rodríguez-
		Montes de Oca, G. A., León-Cañedo, J. A., Alarcón-Silvas, S. G.,
		Mariscal-Lagarda, M. M., Díaz-Valdés, T., & Páez-Osuna, F. (2018). Production and management of shrimp (Penaeus
		vannamei) in co-culture with basil (Ocimum basilicum) using
		two sources of low-salinity water. Latin American Journal of
		Aquatic Research, 46(1), 63–71.
		https://doi.org/10.3856/vol46-issue1-fulltext-8
Penaieds (not vannamei)	Mexico	Gullian, M., Aramburu, C., Sanders, B., & Lope, R. (2010). Viability of culturing pink shrimp Farfantepenaeus duorarum in
varinamerj		low-salinity groundwater from the Yucatán Peninsula (SE,
		México). Aquaculture, 302(3-4), 202–207.
		https://doi.org/10.1016/j.aquaculture.2010.02.019
Vannamei	Mexico	Gutiérrez-Salazar, G. J., Molina-Garza, Z. J., Hernández-Acosta,
		M., García-Salas, J. A., Mercado-Hernández, R., & Galaviz-Silva,
		L. (2011). Pathogens in Pacific white shrimp (Litopenaeus vannamei Boone, 1931) and their relationship with
		physicochemical parameters in three different culture systems
		in Tamaulipas, Mexico. Aquaculture, 321(1), 34–40.
		https://doi.org/10.1016/j.aquaculture.2011.08.032
Vannamei	Mexico	Hurtado, M. A., Racotta, I. S., Arjona, O., Hernández- Rodríguez, M., Goytortúa, E., Civera, R., & Palacios, E. (2006).
		Effect of hypo- and hyper-saline conditions on osmolarity and
		fatty acid composition of juvenile shrimp Litopenaeus
		vannamei (Boone, 1931) fed low- and high-HUFA diets.
		Aquaculture Research, 37(13), 1316–1326.
Integrated ISA	Movico	https://doi.org/10.1111/j.1365-2109.2006.01568.x Kaburagi, E., Yamada, M., Baba, T., Fujiyama, H., Murillo-
Integrated ISA Agriculture	Mexico	Amador, B., & Yamada, S. (2020). Aquaponics using saline
		groundwater: Effect of adding microelements to fish
		wastewater on the growth of Swiss chard (Beta vulgaris L. spp.
		cicla). Agricultural Water Management, 227, 105851.
Vannamei	Mexico	https://doi.org/10.1016/j.agwat.2019.105851 León-Cañedo, J. A., Alarcón-Silvas, S. G., Fierro-Sañudo, J. F.,
Varmanier	IVICALU	Mariscal-Lagarda, M. M., Díaz-Valdés, T., & Páez-Osuna, F.
		(2017). Assessment of environmental loads of Cu and Zn from
		intensive inland shrimp aquaculture. Environmental
		Monitoring and Assessment, 189(2).
General status and	Mexico	https://doi.org/10.1007/s10661-017-5783-z Llanes-Cárdenas, O., Campos, M. N., Sevilla, P. M., & Guerrero,
opportunities	IVIENCO	R. R. (2016). Groundwater: Alternative aquaculture in
		Northwest Mexico. Revista AquaTIC, 38, 10–20.
		http://www.revistaaquatic.com/ojs/index.php/aquatic/article/
		view/83/72

Vannamei	Mexico	Mariscal-Lagarda, M. M., & Páez-Osuna, F. (2014). Mass
		balances of nitrogen and phosphorus in an integrated culture of shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: A short communication. Aquacultural Engineering, 58, 107–112. https://doi.org/10.1016/j.aquaeng.2013.12.003
Integrated ISA Agriculture	Mexico	Mariscal-Lagarda, M. M., Páez-Osuna, F., Esquer-Méndez, J. L., Guerrero-Monroy, I., del Vivar, A. R., & Félix-Gastelum, R. (2012). Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: Management and production. Aquaculture, 366-367, 76–84. https://doi.org/10.1016/j.aquaculture.2012.09.003
Integrated ISA Agriculture	Mexico	Mariscal-Lagarda, M. M., Páez-Osuna, F., Esquer-Méndez, J. L., Guerrero-Monroy, I., Del Vivar, AR., Brito-Solano, K. Y., López-Pérez, D. N., & Alonso-Rodríguez, R. (2013). Water quality in an integrated culture of white shrimp (Litopenaeus vannamei)-tomato (Lycopersicon esculentum) using low salinity groundwater in Sonora, Mexico. Experimental Agriculture, 50(2), 306–319. https://doi.org/10.1017/s0014479713000690
Integrated ISA Agriculture	Mexico	Nuwa, A., Yamada, M., Kuzasa, I., Endo, M., & Yamada, S. (2022, September 6). Aquaponics combined with field culture using saline groundwater makes effective use of water and reduces environmental pollution. Papers.ssrn.com. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=421114 2
Vannamei	Mexico	Sánchez-Barajas, M., Liñán-Cabello, M. A., & Mena-Herrera, A. (2008). Detection of yellow-head disease in intensive freshwater production systems of Litopenaeus vannamei. Aquaculture International, 17(2), 101–112. https://doi.org/10.1007/s10499-008-9183-9
Integrated ISA Agriculture	Mexico	Sijtsma, L., Boedijn, A., & Appelman, W. (2020). Stimulating the circular economy for food production in central Mexico: Integration of greenhouse cultivation, land-based aquaculture and microalgae production systems (p. 38). Wageningen University & Research. https://doi.org/10.18174/544656
General status and opportunities	Mexico	Sosa-Villalobos, C., Castañeda-Chávez, M. del R., Amaro- Espejo, I. A., Galaviz-Villa, I., & Lango-Reynoso, F. (2016). Diagnosis of the current state of aquaculture production systems with regard to the environment in Mexico. Latin American Journal of Aquatic Research, 44(2), 193–201. https://doi.org/10.3856/vol44-issue2-fulltext-1
Marine finfish	Mexico	Vela, M. A., Villarreal, H., Araneda, M., & Espinosa-Faller, F. J. (2018). Growth and survival of juvenile red drum, Sciaenops ocellatus, acclimated to freshwater at three different stocking densities in a partial recirculation system. Journal of the World Aquaculture Society, 50(1), 87–103. https://doi.org/10.1111/jwas.12546
Crustaceans (not penaeids)	Mexico	Walsh, E. J., Schröder, T., Wallace, R. L., Ríos-Arana, J. V., & Rico-Martínez, R. (2008). Rotifers from selected inland saline waters in the Chihuahuan Desert of México. Saline Systems, 4(1), 7. https://doi.org/10.1186/1746-1448-4-7
General status and opportunities	Near East	El Gamal, A. R. (2001). Status and development trends of aquaculture in the near east. Digitalarchive.worldfishcenter.org; NACA. https://digitalarchive.worldfishcenter.org/handle/20.500.1234 8/2369

• • •		
Integrated ISA	Netherlands	De Lange, H. J., & Paulissen, M. P. C. P. (2016). Efficiency of
Agriculture		three halophyte species in removing nutrients from saline
		water: A pilot study. Wetlands Ecology and Management,
		24(5), 587–596. https://doi.org/10.1007/s11273-016-9489-8
Integrated ISA	Netherlands	De Lange, H. J., Paulissen, M. P. C. P., & Slim, P. A. (2012).
Agriculture		"Halophyte filters": The potential of constructed wetlands for
		application in saline aquaculture. International Journal of
		Phytoremediation, 15(4), 352–364.
		https://doi.org/10.1080/15226514.2012.702804
Algae seaweed	Netherlands	Michels, M. H. (2015). Microalgae for aquaculture.
		Wageningen University, Wageningen, NL [PhD Thesis].
		https://www.proquest.com/openview/e354ce5bcab06ba8638
Basaursaspaliausus	Netherlands	e5d478ab0ac39/1?pq-origsite=gscholar&cbl=2026366&diss=y
Resourcespolicysys tems	Nethenanus	van der Hiele, T., Rijstenbil, J. W., Creemers, J., & Heringa, J. (2014). Composition, treatment and use of saline groundwater
tems		for aquaculture in the Netherlands. World Aquaculture, 23–27.
		https://www.researchgate.net/profile/J-
		Rijstenbil/publication/268520497
Integrated ISA	Netherlands	Winkel, T. te, Velstra, J., Rijsselberghe, M. van, Laansma, K., &
Agriculture	Netherlands	Oterdoom, T. (2021). Saline farming in the Wadden Sea region
Agriculture		of the Netherlands. In K. Negacz, P. Vellinga, E. Barrett-
		Lennard, R. Choukr-Allah, & T. Elzenga (Eds.), Future of
		Sustainable Agriculture in Saline Environments (pp. 259–262).
		CRC Press. https://doi.org/10.1201/9781003112327-15
Integrated ISA	Netherlands	Wolters, W., Sadek, S., Van Der Heijden, P., Roest, K., Wagieh,
Agriculture		H., & Schram, E. (2014). Preparations for a community for
0		development and exchange of knowledge (CDEK) on
		integrated agriculture – aquaculture (IAA) with brackish water;
		report of the workshop on 30 November 2014. Wageningen,
		Alterra Wageningen UR (University & Research centre), Alterra
		report 2625. 34 pp.
		https://library.wur.nl/WebQuery/wurpubs/fulltext/338145
Environmental	Norway	Soldal, O., & Rye, N. (1995). Hydrogeology of a fjord delta
		aquifer, Sunndalsøra, Norway. Norsk Geologisk Tidsskrift, 75,
		169–178.
		https://foreninger.uio.no/ngf/ngt/pdfs/NGT_75_2&3_169-
		178.pdf
Environmental	Oman	Ahmed, M., Hussain, N., & Al-Rawahy, S. A. (2012).
		Management of saline lands in Oman: Learning to live with
		salinity. In S. Shahid, M. Abdelfattah, & F. Taha (Eds.),
		Developments in Soil Salinity Assessment and Reclamation
		(pp. 265–281). Springer, Dordrecht.
Conoral status and	Dakistan	https://doi.org/10.1007/978-94-007-5684-7_17
General status and	Pakistan	Asghar, M., Qureshi, A. S., & Fitzsimmons, K. M. (2004). Socio-
opportunities		ecology of saline groundwater: Drainage for a secure
		environment and food supply: 9th International Drainage Workshop. In C. J. de Zeeuw & W. F. Vlotman (Eds.), 9th
		International Drainage Workshop. IDW9 (pp. 128 & CD).
		https://researchoutput.csu.edu.au/en/publications/socio-
		ecology-of-saline-groundwater-integration-of-aquaculture-wi
Integrated ISA	Pakistan	Ashraf, M., Rasul, A., & Mahmood, K. (2012). Rehabilitation of
Agriculture		saline ecosystems through cultivation of salt tolerant plants.
		Pak. J. Bot, 44, 69–75.
		https://www.pakbs.org/pjbot/PDFs/44(SI2)/10.pdf
Carp	Pakistan	Chughtai, M., & Mahmood, K. (2012a). Semi-intensive Carp
	-	Culture in Saline Water-Logged Area: A Multi- Location Study
		in Shorkot (District Jhang), Pakistan. Pakistan J. Zool, 44(4),
		1065–1072. https://hdl.handle.net/20.500.12348/5389
L	1	

Carp	Pakistan	Chughtai, M., & Mahmood, K. (2012b). Semi-intensive carp culture in saline water-logged area: A multi-location study in Shorkot (district Jhang), Pakistan. Pakistan J. Zool, 44(4), 1065– 1072. http://zsp.com.pk/pdf44/1065-1072%20_25_%20PJZ- 802-11%20Revised%20Manuscript%20_PJZ-802-11pdf
Marine finfish	Pakistan	Hassan, H. U., Ali, Q. M., Ahmed, A. E., Gabol, K., Swelum, A. A., Masood, Z., Mushtaq, S., Saeed, Gul, Y., Rizwan, S., Zulfiqar, T., & Siddique, M. a. M. (2022). Growth performance and survivability of the Asian seabass Lates calcarifer (Bloch, 1790) reared under hyper-saline, hypo-saline and freshwater environments in a closed aquaculture system. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.254161
Economics	Pakistan	Haylor, G., & Bhutta, M. S. (1997). The role of aquaculture in the sustainable development of irrigated farming systems in Punjab, Pakistan. Aquaculture Research, 28(9), 691–705. https://doi.org/10.1046/j.1365-2109.1997.00912.x
General status and opportunities	Pakistan	Rossignoli, C., Obi, C., & Ali, S. A. (2022). Exploring the potential and constraints of smallholder aquaculture in marginalized saline areas in Pakistan. Digitalarchive.worldfishcenter.org. https://hdl.handle.net/20.500.12348/5389
Integrated ISA Agriculture	Pakistan	Yasin Ashraf, M., Awan, A. R., Anwar, S., Khaliq, B., Malik, A., & Ozturk, M. (2020). Economic utilization of salt-affected wasteland for plant production. In M. Grigore (Ed.), Handbook of Halophytes (pp. 1–24). Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_87-1
Vannamei	Philippines	Cuvin-Aralar, M. L. A., Lazartigue, A. G., & Aralar, E. V. (2009). Cage culture of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) at different stocking densities in a shallow eutrophic lake. Aquaculture Research, 40(2), 181–187. https://doi.org/10.1111/j.1365-2109.2008.02081.x
Tilapia	Philippines	 Watanabe, W., Ellingson, L., Wicklund, R., & Olla, B. (1988). The effects of salinity on growth, food consumption and conversion in juvenile, monosex male Florida red tilapia. In R. Pullin, T. Bhukaswan, K. Tonguthai, & J. Mclean (Eds.), The Second International Symposium on Tilapia in Aquaculture. ICLARM Conference Proceedings 15, 623 p (pp. 515–523). Department of Fisheries, Bangkok, Thailand, and International Centre for Living Aquatic Resources Management, Manila, Philippines. https://www.sciencedirect.com/science/article/pii/004484869 390392C
Algae seaweed	Portugal	Araujo, G. S., Cotas, J., Morais, T., Leandro, A., García-Poza, S., Gonçalves, A. M. M., & Pereira, L. (2020). Calliblepharis jubata cultivation potential—a comparative study between controlled and semi-controlled aquaculture. Applied Sciences, 10(21), 7553. https://doi.org/10.3390/app10217553
Integrated ISA Agriculture	Portugal	Jerónimo, D., Lillebø, A. I., Cremades, J., Cartaxana, P., & Calado, R. (2021). Recovering wasted nutrients from shrimp farming through the combined culture of polychaetes and halophytes. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-85922-y
General status and opportunities	Portugal	Rosa, R., Marques, A., & Nunes, M. L. (2013). Mediterranean aquaculture in a changing climate. In S. Goffredo & Z. Dubinsky (Eds.), The Mediterranean Sea (pp. 605–616). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_37
General research	Saudi Arabia	Al Asgah, N. A., & Bedawi, R. M. (1984). Preliminary investigations on the suitability of ground water for aquaculture in Saudi Arabia. Aquaculture, 36(4), 387–390. https://doi.org/10.1016/0044-8486(84)90331-4

Economics	Taiwan	Chou, PY., & Ting, CS. (2007). Feasible groundwater allocation scenarios for land subsidence area of Pingtung Plain,
		Taiwan. Water Resources, 34(3), 259–267.
		https://doi.org/10.1134/s0097807807030037
Molluscs	Taiwan	Lee, AC., Lin, YH., Lin, CR., Lee, MC., & Chen, YP. (2007).
Echinoderms		Effects of components in seawater on the digging behavior of
		the hard clam (Meretrix lusoria). Aquaculture, 272(1-4), 636–
		643. https://doi.org/10.1016/j.aquaculture.2007.06.013
Marine finfish	Taiwan	Lin, M. C., & Liao, C. M. (2008). Assessing the risks on human
		health associated with inorganic arsenic intake from
		groundwater-cultured milkfish in southwestern Taiwan. Food and Chemical Toxicology, 46(2), 701–709.
		https://doi.org/10.1016/j.fct.2007.09.098
Integrated ISA	Taiwan	Lin, YF., Jing, SR., Lee, DY., & Wang, TW. (2002). Nutrient
Agriculture		removal from aquaculture wastewater using a constructed
-		wetlands system. Aquaculture, 209(1-4), 169–184.
		https://doi.org/10.1016/s0044-8486(01)00801-8
Vannamei	Taiwan	Lin, YF., Jing, SR., Lee, DY., Chang, YF., Chen, YM., &
		Shih, KC. (2005). Performance of a constructed wetland
		treating intensive shrimp aquaculture wastewater under high
		hydraulic loading rate. Environmental Pollution, 134(3), 411– 421. https://doi.org/10.1016/j.envpol.2004.09.015
Crustaceans (not	Taiwan	Pan, YJ., Souissi, A., Souissi, S., & Hwang, JS. (2016). Effects
penaeids)	lawan	of salinity on the reproductive performance of Apocyclops royi
····/		(Copepoda, Cyclopoida). Journal of Experimental Marine
		Biology and Ecology, 475, 108–113.
		https://doi.org/10.1016/j.jembe.2015.11.011
Environmental	Taiwan	Wang, SW., Kuo, YM., Kao, YH., Jang, CS., Maji, S. K.,
		Chang, FJ., & Liu, CW. (2011). Influence of hydrological and
		hydrogeochemical parameters on arsenic variation in shallow
		groundwater of southwestern Taiwan. Journal of Hydrology, 408(3), 286–295.
		https://doi.org/10.1016/j.jhydrol.2011.08.017
Crustaceans (not	Tanzania	Mlingi, F. T., Lamtane, H. A., Chenyambuga, S. W., & Lund, I.
penaeids)		(2019). First biogeographical survey of Artemia in Tanzania.
		Journal of Applied Aquaculture, 32(3), 278–290.
		https://doi.org/10.1080/10454438.2019.1660753
Vannamei	Thailand	Wudtisin, I., & Boyd, C. E. (2011). Possible potassium and
		magnesium limitations for shrimp survival and production in
		low-salinity, pond waters in Thailand. Journal of the World
		Aquaculture Society, 42(6), 766–777. https://doi.org/10.1111/j.1749-7345.2011.00530.x
Vannamei	Thailand	Yano, Y., Hamano, K., Tsutsui, I., Aue-umneoy, D., Ban, M., &
vannamer	manana	Satomi, M. (2015). Occurrence, molecular characterization,
		and antimicrobial susceptibility of Aeromonas spp. in marine
		species of shrimps cultured at inland low salinity ponds. Food
		Microbiology, 47, 21–27.
		https://doi.org/10.1016/j.fm.2014.11.003
General research	Turkey	Çanak, Ö., & Timur, G. (2020). An initial survey on the
		occurrence of staphylococcal infections in Turkish marine
		aquaculture (2013–1014). Journal of Applied Ichthyology, 36(6), 932–941. https://doi.org/10.1111/jai.14141
Marine finfish	Turkey	Hamzaçebi, S. (2018). Embryonic development stages of pink
		Dentex dentex gibbosus (Rafinesque, 1810) eggs in
		aquaculture conditions. Turkish Journal of Fisheries and
		Aquatic Sciences, 19(4), 297–303.
		https://www.trjfas.org/abstract.php?lang=en&id=1334
Crustaceans (not	Uganda	Sserwadda, M., Kagambe, E., & Van Stappen, G. (2018). The
penaeids)		brine shrimp Artemia survives in diluted water of Lake

		Bunyampaka, an inland saline lake in Uganda. Water, 10(2), 189. https://doi.org/10.3390/w10020189
Integrated ISA Agriculture	United Arab Emirates	Lyra, DA., Lampakis, E., Al Muhairi, M., Mohammed, F., Tarsh, B., Abdel, M., Dawoud, H., Al Khawaldeh, B., Moukayed, M., Plewa, J., Cobre, L., Saleh, O., Masjedi, A., Mohammed, K., Marzouqi, A., Ahmadzai, H., Khamees, M., Tamimi, A., Abdelwahid, W., & Dahr, A. (2021). From desert farm to fork value chain development for innovative Salicornia- based food products in the United Arab Emirates. In K. Negacz, P. Vellinga, E. Barrett-Lennard, R. Choukr-Allah, & T. Elzenga (Eds.), Future of Sustainable Agriculture in Saline Environments. CRC Press. https://doi.org/10.1201/9781003112327-11
Vannamei	USA	Abdelrahman, H. A., Abebe, A., & Boyd, C. E. (2018). Influence of variation in water temperature on survival, growth and yield of Pacific white shrimp Litopenaeus vannamei in inland ponds for low-salinity culture. Aquaculture Research, 50(2), 658–672. https://doi.org/10.1111/are.13943
Vannamei	USA	Atwood, H. L., Young, S. P., Tomasso, J. R., & Browdy, C. L. (2003). Survival and growth of Pacific white shrimp Litopenaeus vannamei postlarvae in low-salinity and mixed- salt environments. Journal of the World Aquaculture Society, 34(4), 518–523. https://doi.org/10.1111/j.1749- 7345.2003.tb00091.x
Algae seaweed	USA	Barclay, W. R., Terry, K. L., Nagle, N. J., Weissman, J. C., & Goebel, R. P. (1987). Potential of new strains of marine and inland saline-adapted microalgae for aquaculture. Journal of the World Aquaculture Society, 18(4), 218–228. https://doi.org/10.1111/j.1749-7345.1987.tb01031.x
Vannamei	USA	Boyd, C. (2006). Investigations of water supply and water quality issues related to inland shrimp farming in western Alabama - ProQuest [PhD Thesis]. In www.proquest.com. https://www.proquest.com/openview/7267bef7607ce63c148 8c11e59731b79/1?pq-origsite=gscholar&cbl=18750&diss=y
General research	USA	Boyd, C. (2018). Aquaculture pond fertilization. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13(002). https://doi.org/10.1079/pavsnnr201813002
Vannamei	USA	Boyd, C. A., Boyd, C. E., & Rouse, D. B. (2007). Potassium budget for inland, saline water shrimp ponds in Alabama. Aquacultural Engineering, 36(1), 45–50. https://doi.org/10.1016/j.aquaeng.2006.06.002
Vannamei	USA	Boyd, C. A., Boyd, C. E., McNevin, A. A., & Rouse, D. B. (2006). Salt discharge from an inland farm for marine shrimp in Alabama. Journal of the World Aquaculture Society, 37(4), 345–355. https://doi.org/10.1111/j.1749-7345.2006.00047.x
Resourcespolicysys tems	USA	Boyd, C. A., Chaney, P. L., Boyd, C. E., & Rouse, D. B. (2009). Distribution of ground water suitable for use in saline-water aquaculture in Central and West-Central Alabama. Journal of Applied Aquaculture, 21(4), 228–240. https://doi.org/10.1080/10454430903114048
Vannamei	USA	Boyd, C. E. (2009). Better management practices for marine shrimp aquaculture. In C. S. Tucker & J. A. Hargreaves (Eds.), Environmental Best Management Practices for Aquaculture. John Wiley & Sons. https://books.google.com.au/books?hl=en&lr=&id=q0GUV4Te mgcC&oi=fnd&pg=PA227&dq=saline+groundwater+aquacultur e&ots=d5qNHhf3K8&sig=4lc6DIpFGvlc6h2MGyOKsU1_RSI#v= onepage&q=saline%20groundwater%20aquaculture&f=false

General research	USA	Boyd, C. E. (2017). General relationship between water quality and aquaculture performance in ponds. In G. Jeney (Ed.), Fish Diseases: Prevention and Control Strategies (pp. 147–166). Academic Press. https://www.sciencedirect.com/science/article/pii/B97801280 45640000065
Vannamei	USA	Boyd, C. E., & Jescovitch, L. N. (2020). Penaeid shrimp aquaculture. In G. Lovrich & M. Thiel (Eds.), Fisheries and Aquaculture: Volume 9. Oxford University Press. https://books.google.com.au/books?hl=en&Ir=&id=yvPuDwAA QBAJ&oi=fnd&pg=PA233&dq=inland+saline+water+aquacultur e&ots=Us-0NJhHIv&sig=4dEXXOSbqi6vSzxH0g8- HkeL8AE#v=onepage&q=inland%20saline%20water%20aquac ulture&f=false
Marine finfish	USA	Brown, B. (2007). Evaluation of three fish species for culture using low salinity groundwater in the black belt region of Alabama [Master of Science Thesis]. In etd.auburn.edu. https://etd.auburn.edu/handle/10415/169
General research	USA	Chainark, S., & Boyd, C. E. (2010). Evaluation of a meter for testing potassium concentration in low-salinity aquaculture ponds. Journal of the World Aquaculture Society, 41(s1), 102– 106. https://doi.org/10.1111/j.1749-7345.2009.00338.x
Vannamei	USA	Clark, J. L., Weldon, R. N., Adams, C. M., & Wirth, F. F. (2010). Risk assessment of a shrimp aquaculture investment in Florida. Aquaculture Economics & Management, 14(4), 332–357. https://doi.org/10.1080/13657305.2010.526023
Vannamei	USA	Davis, D. A., Boyd, C. E., Rouse, D. B., & Saoud, I. P. (2007). Effects of potassium, magnesium and age on growth and survival of Litopenaeus vannamei post-larvae reared in inland low salinity well waters in west Alabama. Journal of the World Aquaculture Society, 36(3), 416–419. https://doi.org/10.1111/j.1749-7345.2005.tb00346.x
Vannamei	USA	Davis, D. A., Samocha, T. M., & Boyd, C. (2004). Acclimating Pacific white shrimp, Litopenaeus vannamei, to inland, low- salinity waters. Southern Region Aquaculture Centre, Publication 2601, 1–8. http://fisheries.tamu.edu/files/2013/09/SRAC-Publication- No2601-Acclimating-Pacific-White-Shrimp-Litopenaeus- vannamei-to-Inland-Low-Salinity-Waters.pdf
Vannamei	USA	Davis, D., Saoud, I., Mcgraw, W., & Rouse, D. (2002a). Considerations for Litopenaeus vannamei reared in inland low salinity waters. In L. Cruz-Suárez, D. Ricque-Marie, M. Tapia- Salazar, M. Gaxiola-Cortés, & N. Simoes (Eds.), Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México. https://nutricionacuicola.uanl.mx/index.php/acu/article/down load/229/227
Vannamei	USA	Davis, D., Saoud, I., Mcgraw, W., & Rouse, D. (2002b). Considerations for Litopenaeus vannamei reared in inland low salinity waters. In L. Cruz-Suárez, D. Ricque-Marie, M. Tapia- Salaza, M. Gaxiola-Cortés, & N. Simoes (Eds.), Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México. https://scholar.google.com.au/scholar?start=190&q=inland+sa line+aquaculture&hl=en&as_sdt=0,5

Conordatat		
General status and	USA	Enciso-López, A. R., & García-Trejo, J. F. (2019). Challenges of
opportunities		inland finfish aquaculture in arid regions in North America.
		Coniin XV International Engineering Congress.
		https://www.researchgate.net/profile/Auryn- Enciso/publication/335524555 Challenges of inland finfish
		aquaculture_in_arid_regions_in_North_America/links/5d6a9f
		7192851c8538833d35/Challenges-of-inland-finfish-
		aquaculture-in-arid-regions-in-North-America.pdf
Tilapia	USA	Ernst, D. H., Watanabe, W. O., Ellingson, L. J., Wicklund, R. I., &
mapia	00h	Olla, B. L. (1991). Commercial-scale production of Florida red
		tilapia seed in low- and brackish-salinity tanks. Journal of the
		World Aquaculture Society, 22(1), 36–44.
		https://doi.org/10.1111/j.1749-7345.1991.tb00714.x
Marine finfish	USA	Forsberg, J. A., & Neill, W. H. (1997). Saline groundwater as an
		aquaculture medium: physiological studies on the red drum,
		Sciaenops ocellatus. Environmental Biology of Fishes, 49(1),
		119–128. https://doi.org/10.1023/a:1007350726184
Marine finfish	USA	Forsberg, J. A., Dorsett, P. W., & Neill, W. H. (1996). Survival
		and growth of red drum Sciaenops ocellatus in saline
		groundwaters of west Texas, USA. Journal of the World
		Aquaculture Society, 27(4), 462–474.
		https://doi.org/10.1111/j.1749-7345.1996.tb00631.x
Vannamei	USA	Galkanda-Arachchige, H. S. C., Roy, L. A., & Davis, D. A.
		(2020a). Evaluation of an alternative salt mixture to culture
		Pacific white shrimp (Litopenaeus vannamei) in inland
		aquaculture. Aquaculture Research, 51(9), 3540–3550.
		https://doi.org/10.1111/are.14691
Vannamei	USA	Galkanda-Arachchige, H. S. C., Roy, L. A., & Davis, D. A.
		(2020b). The effects of magnesium concentration in low-
		salinity water on growth of Pacific white shrimp (Litopenaeus
		vannamei). Aquaculture Research, 52(2), 589–597.
Economics		https://doi.org/10.1111/are.14916
	USA	Ganguly, S., Quagrainie, K., Rajagopalan, N., & Small, B. (2013). Feasibility study: Establishing a saline aquaculture industry in
		Illinois. Illinois Indiana Sea Grant. https://iiseagrant.org/wp-
		content/uploads/2019/01/Rajagopalan2013.pdf
Vannamei	USA	Gong, H., Jiang, DH, Lightner, D. V., Collins, C., & Brock, D.
		(2004). A dietary modification approach to improve the
		osmoregulatory capacity of Litopenaeus vannamei cultured in
		the Arizona desert. Aquaculture Nutrition, 10(4), 227–236.
		https://doi.org/10.1111/j.1365-2095.2004.00294.x
Marine finfish	USA	Gorman, J., Adrian, J., & Chappell, J. (2009). Economic
		feasibility of utilizing west Alabama saline groundwater to
		produce Florida pompano and hybrid striped bass in a
		recirculating aquaculture system (p. 19). Alabama Agricultural
		Experiment Station Auburn University Special Report No 8.
		http://aurora.auburn.edu/bitstream/handle/11200/3950/SPE
		C0008.pdf?sequence=1
Vannamei	USA	Green, B. W. (2007). Stocking strategies for production of
		Litopenaeus vannamei (Boone) in amended freshwater in
		inland ponds. Aquaculture Research, 39(1), 10–17.
		https://doi.org/10.1111/j.1365-2109.2007.01849.x
Vannamei	USA	Hernández, D. P., Abdelrahman, H. A., Galkanda-Arachchige, H.
		S. C., Kelly, A. M., Butts, I. A. E., Davis, D. A., Beck, B. H., & Roy,
		L. A. (2023). Evaluation of aqueous magnesium concentration
		on performance of Pacific white shrimp (Litopenaeus
		vannamei) cultured in low salinity water of West Alabama,
		USA. Aquaculture, 565, 739133.
	l	https://doi.org/10.1016/j.aquaculture.2022.739133

Freshwater fish (not carp)	USA	Jacquez, R. B., Turner, P. R., El-Reyes, H., & Lou, CM. (n.d.). Characterization and treatment of wastewater generated from saline aquaculture of channel catfish. Proceedings of the 41st Industrial Waste Conference May 1986, Purdue University. https://www.taylorfrancis.com/chapters/edit/10.1201/97813 51069380-63/characterization-treatment-wastewater- generated-saline-aquaculture-channel-catfish-ricardo-jacquez- paul-turner-hamdy-ei-reyes-chih-ming-lou
Vannamei	USA	Jayasankar, V., Jasmani, S., Nomura, T., Nohara, S., Huong, D. T. T., & Wilder, M. N. (2009). Low salinity rearing of the Pacific white shrimp Litopenaeus vannamei: Acclimation, survival and growth of postlarvae and juveniles. Japan Agricultural Research Quarterly: JARQ, 43(4), 345–350. https://doi.org/10.6090/jarq.43.345
Resourcespolicysys tems	USA	Jensen, R. (1993). Can aquaculture thrive in Texas? Texas Water Resources Institute Spring 1993 19(1). http://riogrande.tamu.edu/newsletters/texaswaterresources/ twr-v19n1.pdf
Integrated ISA Agriculture	USA	King, C. E. (2005). Integrated agriculture and aquaculture for sustainable food production [PhD Thesis]. In www.proquest.com. https://www.proquest.com/openview/71e3a72a14db8b6a426 a6e3ac057712f/1?cbl=18750&diss=y&pq- origsite=gscholar&parentSessionId=sN41gtMgVvHZdpTUNjj%2 FuTHCRoINB%2Fcc%2FsZ98F4atSE%3D
Vannamei	USA	Kuhn, D. D., Smith, S. A., Boardman, G. D., Angier, M. W., Marsh, L., & Flick, G. J. (2010). Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: Impacts on survival, growth, antennae length, and pathology. Aquaculture, 309(1-4), 109–114. https://doi.org/10.1016/j.aquaculture.2010.09.014
Vannamei	USA	Laramore, S., Laramore, C. R., & Scarpa, J. (2001). Effect of low salinity on growth and survival of postlarvae and juvenile Litopenaeus vannamei. Journal of the World Aquaculture Society, 32(4), 385–392. https://doi.org/10.1111/j.1749- 7345.2001.tb00464.x
Vannamei	USA	Le, P. T. (2011). Evaluation of flavor of Pacific white shrimp Penaeus vannamei cultured in low salinity water [Master of Science]. In etd.auburn.edu. https://etd.auburn.edu/handle/10415/2791
Integrated ISA Agriculture	USA	Martizez-Gomez, R. (2010). Physiological studies of the halophyte Salicornia bigelovii: A potential food and biofuel crop for integrated aquaculture-agriculture systems [PhD Thesis]. https://books.google.com.au/books/about/Physiological_Stud ies_of_the_Halophyte_S.html?id=NhgjnQAACAAJ&redir_esc=y
Resourcespolicysys tems	USA	Maupin, M. A., Ivahnenko, T. I., & Bruce, B. (2018). Estimates of water use and trends in the Colorado River Basin, southwestern United States, 1985–2010. In U.S. Geological Survey Scientific Investigations Report 2018–5049, (p. 75). https://pubs.er.usgs.gov/publication/sir20185049?utm_sourc e=WRRC+Summer+Wave%2C+Vol.+6%2C+Issue+6+%287%2F2 7%2F18%29+&utm_campaign=WW-7-27- 18&utm_medium=email
General status and opportunities	USA	Maupin, M. A., Kenny, J. F., Hutson, S. S., Lovelace, J. K., Barber, N. L., & Linsey, K. S. (2014). Estimated use of water in the United States in 2010. US Geological Survey Circular 1405, 56. https://doi.org/10.3133/cir1405

Vannamei	USA	McGraw, W. J., & Scarpa, J. (2003). Minimum environmental potassium for survival of Pacific white shrimp Litopenaeus vannamei (Boone) in freshwater. Article in Journal of Shellfish Research, 55(1), 893. https://www.researchgate.net/profile/John- Scarpa/publication/287486764
Vannamei	USA	McGraw, W. J., Davis, D. A., Teichert-Coddington, D., & Rouse, D. B. (2002). Acclimation of Litopenaeus vannamei postlarvae to low salinity: Influence of age, salinity endpoint, and rate of salinity reduction. Journal of the World Aquaculture Society, 33(1), 78–84. https://doi.org/10.1111/j.1749- 7345.2002.tb00481.x
Environmental	USA	McIntosh, D. M. (2002). Reducing the environmental impact of aquaculture [PhD Thesis]. In https://www.proquest.com/openview/ee35c63fb95c99cecbb 00e65cce39147/1?cbl=18750&diss=y&pq- origsite=gscholar&parentSessionId=yUUByq25%2Fj37YKbOCD ul3qAiMyoCSuUAc9QXs27aaSA%3D
Resourcespolicysys tems	USA	McIntosh, D. M. (2002). Reducing the environmental impact of aquaculture [PhD Thesis]. In www.proquest.com. https://www.proquest.com/openview/ee35c63fb95c99cecbb 00e65cce39147/1?cbl=18750&diss=y&pq- origsite=gscholar&parentSessionId=rtCSb9msaeF026OzOeP73 ekyPoGnhjwAImaApgqQzUM%3D
Vannamei	USA	McIntosh, D., & Fitzsimmons, K. (2003). Characterization of effluent from an inland, low-salinity shrimp farm: what contribution could this water make if used for irrigation. Aquacultural Engineering, 27(2), 147–156. https://doi.org/10.1016/s0144-8609(02)00054-7
Integrated ISA Agriculture	USA	Mcintosh, D., & Fitzsimmons, K. (n.d.). Shrimp aquaculture & olive production -sustainable integration. Retrieved February 27, 2023, from https://www.researchgate.net/profile/Kevin- Fitzsimmons- 4/publication/266465969_SHRIMP_AQUACULTURE_OLIVE_PR ODUCTION SUSTAINABLE_INTEGRATION/links/54c626920cf219bbe4f6848 8/SHRIMP-AQUACULTURE-OLIVE-PRODUCTION-SUSTAINABLE- INTEGRATION.pdf
Vannamei	USA	McIntosh, D., Fitzsimmons, K., Collins, C., & Stephens, C. (2006). Phytoplankton community composition and chlorophyll-a levels of inland, low salinity shrimp ponds. World Aquaculture. https://agris.fao.org/agris- search/search.do?recordID=US201301073790
Vannamei	USA	McNevin, A. A., Boyd, C. E., Silapajarn, O., & Silapajarn, K. (2004). Ionic supplementation of pond waters for inland culture of marine shrimp. Journal of the World Aquaculture Society, 35(4), 460–467. https://doi.org/10.1111/j.1749- 7345.2004.tb00111.x
Resourcespolicysys tems	USA	Miyamoto, S. (1993). Potentially beneficial uses of inland saline waters in the southwestern USA. In H. Lieth & A. Al Masoom (Eds.), Towards the Rational Use of High Salinity Tolerant Plants (Vol. 2, pp. 407–422). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-011-1860-6_47
Integrated ISA Agriculture	USA	Miyamoto, S. (1996). Growth, water use and salt uptake of four halophytes irrigated with highly saline water. Journal of Arid Environments, 32(2), 141–159. https://doi.org/10.1006/jare.1996.0013

Molluscs Echinoderms	USA	Nelson, S. M., & Flickinger, S. A. (1992). Effects of geothermal saline spring water on white shrimp, eastern oyster, and freshwater prawn. The Progressive Fish-Culturist, 54(1), 28– 34. https://doi.org/10.1577/1548- 8640(1992)054%3C0028:EOGSSW%3E2.3.CO;2
Freshwater fish (not carp)	USA	O'Neal, C. C., & Weirich, C. R. (2001). Effects of low levels of salinity on production characteristics of fingerling channel catfish reared from fry. North American Journal of Aquaculture, 63(2), 156–160. https://doi.org/10.1577/1548- 8454(2001)063%3C0156:eollos%3E2.0.co;2
Freshwater fish (not carp)	USA	O'Neal, C., & Weirich, C. (2004). Effect of low levels of salinity on production characteristics of channel catfish Ictalurus punctatus reared in multiple-crop ponds. Journal of the World Aquaculture Society, 35(2), 284–290. https://www.ars.usda.gov/research/publications/publication/ ?seqNo115=161257
Vannamei	USA	Parmenter, K. J., Bisesi, J. H., Young, S. P., Klaine, S. J., Atwood, H. L., Browdy, C. L., & Tomasso, J. R. (2009). Culture of Pacific white shrimp Litopenaeus vannamei in a mixed-ion solution. North American Journal of Aquaculture, 71(2), 134–137. https://doi.org/10.1577/a08-015.1
Vannamei	USA	Perez-Velazquez, M., Davis, D. A., Roy, L. A., & González-Félix, M. L. (2012). Effects of water temperature and Na+:K+ ratio on physiological and production parameters of Litopenaeus vannamei reared in low salinity water. Aquaculture, 342-343, 13–17. https://doi.org/10.1016/j.aquaculture.2012.02.008
Marine finfish	USA	Phelps, R. P., Daniels, W. H., Sansing, N. R., & Brown, T. W. (2010). Production of gulf killifish in the Black Belt region of Alabama using saline groundwater. North American Journal of Aquaculture, 72(3), 219–224. https://doi.org/10.1577/a09- 025.1
Vannamei	USA	Pine, H. J., & Boyd, C. E. (2010). Adsorption of magnesium by bottom soils in inland brackish water shrimp ponds in Alabama. Journal of the World Aquaculture Society, 41(4), 603–609. https://doi.org/10.1111/j.1749-7345.2010.00400.x
Vannamei	USA	Pine, H. J., & Boyd, C. E. (2011). Magnesium budget for inland low-salinity water shrimp ponds in Alabama. Journal of the World Aquaculture Society, 42(5), 705–713. https://doi.org/10.1111/j.1749-7345.2011.00506.x
Environmental	USA	Pine, H. J., & Boyd, C. E. (2011). Stream salinization by inland brackish-water aquaculture. North American Journal of Aquaculture, 73(2), 107–113. https://doi.org/10.1080/15222055.2011.545580
Vannamei	USA	Prapaiwong, N. (2023). Water quality in inland ponds for low- salinity culture of Pacific white shrimp Litopenaeus vannamei [PhD Thesis]. In Auburn.edu. https://etd.auburn.edu/bitstream/handle/10415/2883/Napar at%20Prapaiwong- Dissertation.pdf.txt?sequence=3&isAllowed=y
Vannamei	USA	Prapaiwong, N., & Boyd, C. E. (2012a). Effluent volume and pollutant loads at an inland, low-salinity, shrimp farm in Alabama. Aquacultural Engineering, 48, 1–5. https://doi.org/10.1016/j.aquaeng.2011.12.004
Vannamei	USA	Prapaiwong, N., & Boyd, C. E. (2012b). Effects of major water quality variables on shrimp production in inland, low-salinity ponds in Alabama. Journal of the World Aquaculture Society, 43(3), 349–361. https://doi.org/10.1111/j.1749- 7345.2012.00572.x

Vannamei	USA	Prapaiwong, N., & Boyd, C. E. (2012c). Trace elements in
Valillalliel	USA	waters of inland, low-salinity shrimp ponds in Alabama.
		Aquaculture Research, 45(2), 327–333.
		https://doi.org/10.1111/j.1365-2109.2012.03230.x
Vannamei	USA	Prapaiwong, N., & Boyd, C. E. (2012d). Water temperature in
		inland, low-salinity shrimp ponds in Alabama. Journal of
		Applied Aquaculture, 24(4), 334–341.
		https://doi.org/10.1080/10454438.2012.731479
Marine finfish	USA	Ramee, S. W. (2015). Low salinity tolerance in gulf killifish
		Fundulus grandis with relevance to aquaculture [Master of Science]. In www.proquest.com.
		https://www.proquest.com/openview/5f2bb8b411b7e6cad80
		ab8a44d21d7d4/1?cbl=18750&pq-
		origsite=gscholar&parentSessionId=Ho%2FtSz5g3%2F%2FbhyC
		%2BBYwD35nXDr%2B7SKGv3uRNNPPXC6E%3D
Marine finfish	USA	Ramee, S., Patterson, J. T., Ohs, C. L., & DiMaggio, M. (2016).
		Candidate species for Florida aquaculture: Gulf killifish,
		Fundulus grandis. In EDIS (Vol. 2016, Issue 2, p. 6). IFAS
		Extension University of Florida. https://doi.org/10.32473/edis-
Company laterture and		fa190-2016
General status and opportunities	USA	Reach, J. (1985). Biomass production from inland brines [PhD Thesis]. In www.osti.gov.
opportunities		https://www.osti.gov/biblio/5364406
Marine finfish	USA	Riche, M. (2015). Nitrogen utilization from diets with refined
		and blended poultry by-products as partial fish meal
		replacements in diets for low-salinity cultured Florida
		pompano, Trachinotus carolinus. Aquaculture, 435, 458–466.
		https://doi.org/10.1016/j.aquaculture.2014.10.001
General status and	USA	Riche, M. A., Pfeiffer, T. J., Wills, P. S., Amberg, J. J., &
opportunities		Sepulveda, M. S. (2012). Inland marine fish culture in low
		salinity recirculating aquaculture systems. Bull. Fish. Res. Agen., 35, 65–75.
		https://www.fra.affrc.go.jp/bulletin/bull/bull35/35-8.pdf
Vannamei	USA	Roy, L. A., Davis, D. A., & Saoud, I. P. (2006). Effects of lecithin
		and cholesterol supplementation to practical diets for
		Litopenaeus vannamei reared in low salinity waters.
		Aquaculture, 257(1-4), 446–452.
		https://doi.org/10.1016/j.aquaculture.2006.02.059
Vannamei	USA	Roy, L. A., Davis, D. A., & Whitis, G. N. (2009). Pond-to-pond
		variability in post-larval shrimp, Litopenaeus vannamei,
		survival and growth in inland low-salinity waters of west Alabama. Aquaculture Research, 40(16), 1823–1829.
		https://doi.org/10.1111/j.1365-2109.2009.02287.x
Vannamei	USA	Roy, L. A., Davis, D. A., & Whitis, G. N. (2012). Effect of feeding
		rate and pond primary productivity on growth of Litopenaeus
		vannamei reared in inland saline waters of west Alabama.
		North American Journal of Aquaculture, 74(1), 20–26.
		https://doi.org/10.1080/15222055.2011.638416
Vannamei	USA	Roy, L. A., Davis, D. A., Nguyen, T. N., & Saoud, I. P. (2009).
		Supplementation of chelated magnesium to diets of the Pacific
		white shrimp, Litopenaeus vannamei, reared in low-salinity waters of west Alabama. Journal of the World Aquaculture
		Society, 40(2), 248–254. https://doi.org/10.1111/j.1749-
		7345.2009.00247.x
Vannamei	USA	Roy, L. A., Davis, D. A., Saoud, I. P., & Henry, R. P. (2007a).
-		Effects of varying levels of aqueous potassium and magnesium
		on survival, growth, and respiration of the Pacific white
		shrimp, Litopenaeus vannamei, reared in low salinity waters.
		Aquaculture, 262(2-4), 461–469.
		https://doi.org/10.1016/j.aquaculture.2006.10.011

Vannamei	USA	Roy, L. A., Davis, D. A., Saoud, I. P., & Henry, R. P. (2007b). Supplementation of potassium, magnesium and sodium chloride in practical diets for the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters. Aquaculture Nutrition, 13(2), 104–113. https://doi.org/10.1111/j.1365-2095.2007.00460.x
Vannamei	USA	Roy, L. A., Davis, D. A., Saoud, I. P., Boyd, C. A., Pine, H. J., & Boyd, C. E. (2010). Shrimp culture in inland low salinity waters. Reviews in Aquaculture, 2(4), 191–208. https://doi.org/10.1111/j.1753-5131.2010.01036.x
Vannamei	USA	Roy, L. A., Teichert-Coddington, D., Beck, B. H., Dahl, S., James, J., Guo, J., & Davis, D. A. (2020). Evaluation of stocking density and dietary fish meal inclusion for intensive tank production of Pacific white shrimp Litopenaeus vannamei cultured in low-salinity waters of western Alabama. North American Journal of Aquaculture, 82(3), 345–353. https://doi.org/10.1002/naaq.10150
Vannamei	USA	Roy, L. A., Teichert-Coddington, D., Dahl, S., Beck, B. H., Shoemaker, C. A., Whitis, G. N., & James, J. (2019). On-farm evaluation of three different hatchery sources of Pacific white shrimp (Litopenaeus vannamei) cultured in on-levee tanks in low-salinity waters of west Alabama. Journal of Applied Aquaculture, 32(3), 193–204. https://doi.org/10.1080/10454438.2019.1614510
Crustaceans (not penaeids)	USA	Roy, L. A., Whitis, G. N., & Walton, W. C. (2012). Demonstration of blue crab culture in inland low-salinity waters of west Alabama. North American Journal of Aquaculture, 74(4), 453–456. https://doi.org/10.1080/15222055.2012.676006
Vannamei	USA	Roy, L., & Davis, D. (2020). Tank systems on shrimp farms are effective for extension demonstrations in aquaculture. The Journal of Extension, 58(6). https://tigerprints.clemson.edu/joe/vol58/iss6/29/
Vannamei	USA	Samocha, T. M., Hamper, L., Emberson, C. R., Davis, A. D., McIntosh, D., Lawrence, A. L., & Van Wyk, P. M. (2002). Review of some recent developments in sustainable shrimp farming practices in Texas, Arizona, and Florida. Journal of Applied Aquaculture, 12(1), 1–42. https://doi.org/10.1300/j028v12n01_01
Vannamei	USA	Samocha, T. M., Lawrence, A. L., & Pooser, D. (n.d.). Growth and survival of juvenile Penaeus vannamei in low salinity water in a semi-closed recirculating system. The Israeli Journal of Aquaculture - Bamidgeh, 50(2), 55–59. https://www.academia.edu/download/7406468/37563.pdf
Vannamei	USA	Samocha, T. M., Lawrence, A. L., Collins, C. A., Castille, F. L., Bray, W. A., Davies, C. J., Lee, P. G., & Wood, G. F. (2004). Production of the Pacific white shrimp,litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. Journal of Applied Aquaculture, 15(3-4), 1–19. https://doi.org/10.1300/j028v15n03_01
Vannamei	USA	Saoud, I. P., Davis, D. Allen., & Rouse, D. B. (2003). Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture, 217(1-4), 373–383. https://doi.org/10.1016/s0044-8486(02)00418-0
Vannamei	USA	Saoud, I. P., Roy, L. A., & Davis, D. A. (2007). Chelated potassium and arginine supplementation in diets of Pacific white shrimp reared in low-salinity waters of west Alabama. North American Journal of Aquaculture, 69(3), 265–270. https://doi.org/10.1577/a06-045.1

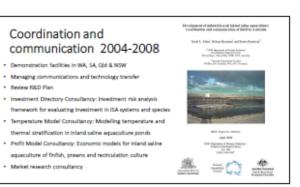
Economics	USA	Small, B., Rajagopalan, N., & Quagrainie, K. (2014). On the
		feasibility of establishing a saline aquaculture industry in Illinois. In TR Series (Illinois Sustainable Technology Center);
		051 (pp. 1–46). Illinois Sustainable Technology Centre. https://www.ideals.illinois.edu/items/47435
Vannamei	USA	Sowers, A. D., Gatlin, D. M., Young, S. P., Isely, J. J., Browdy, C.
		L., & Tomasso, J. R. (2005). Responses of Litopenaeus
		vannamei (Boone) in water containing low concentrations of
		total dissolved solids. Aquaculture Research, 36(8), 819–823. https://doi.org/10.1111/j.1365-2109.2005.01270.x
Integrated ISA	USA	Spradlin, A., & Saha, S. (2022). Saline aquaponics: A review of
Agriculture		challenges, opportunities, components, and system design.
		Aquaculture, 555, 738173. https://doi.org/10.1016/j.aquaculture.2022.738173
Integrated ISA	USA	Stevenson, K. T. (2003). Integrative aquaculture and
Agriculture		agriculture: Nitrogen and phopshorous recycling in Maricopa,
		Arizona [Master of Science]. In repository.arizona.edu.
Vannamei	USA	http://hdl.handle.net/10150/191288 Sun, W. (2012). Phosphorus and nitrogen budget for inland,
		saline water shrimp ponds in Alabama. [MSc Thesis.].
		http://etd.auburn.edu/handle/10415/3397
Vannamei	USA	Suplee, M. W., & Cotner, J. B. (1996). Temporal changes in oxygen demand and bacterial sulfate reduction in inland
		shrimp ponds. Aquaculture, 145(1-4), 141–158.
		https://doi.org/10.1016/s0044-8486(96)01339-7
Freshwater fish	USA	Weirich, C. R., & Tiersch, T. R. (1997). Effects of environmental
(not carp)		sodium chloride on percent hatch, yolk utilization, and survival
		of channel catfish fry. Journal of the World Aquaculture Society, 28(3), 289–296. https://doi.org/10.1111/j.1749-
		7345.1997.tb00645.x
Vannamei	USA	Whetstone, J. M., Treece, G. D., Browdy, C. L., & Stokes, A. D.
		(2002). Opportunities and Constraints in Marine Shrimp Farming. Southern Regional Aquculture Centre. SRAC
		Publication No. 2600.
		https://www.researchgate.net/publication/242488906_Oppor
Vannamai		tunities_and_Constraints_in_Marine_Shrimp_Farming
Vannamei	USA	Yao, S. Q. (2018). Assessment and modeling of whiteleg shrimp production in a low-salinity recirculating aquaculture system
		[Master of Science Thesis]. In deepblue.lib.umich.edu.
		https://deepblue.lib.umich.edu/handle/2027.42/145428
Integrated ISA Agriculture	USA, Canada	de Dezsery, A. S. (2010). Commercial integrated farming of aquaculture and horticulture (p. 62). International Specialised
Agriculture		Skills Institute.
		http://byap.backyardmagazines.com/Travis/ISSI%20-
Deserverset		%20REPORT.pdf
Resourcespolicysys tems	Uzbekistan	Crootof, A. B. (2011). Assessing water resources in Khorezm, Uzbekistan for the development of aquaculture [Master of
		Science]. https://scholarworks.unr.edu/handle/11714/3922
Resourcespolicysys	Uzbekistan	Crootof, A., Mullabaev, N., Saito, L., Atwell, L., Rosen, M. R.,
tems		Bekchonova, M., Ginatullina, E., Scott, J., Chandra, S.,
		Nishonov, B., Lamers, J. P. A., & Fayzieva, D. (2015). Hydroecological condition and potential for aquaculture in
		lakes of the arid region of Khorezm, Uzbekistan. Journal of Arid
		Environments, 117, 37–46.
Resourcespolicysys	Vietnam	https://doi.org/10.1016/j.jaridenv.2015.02.012 Pham Dieu, L., Cong-Thi, D., Thibaut, R., Paepen, M., Segers, T.,
tems	viculati	Thi Huyen, D., Ho Huu, H., Nguyen, F., & Hermans, T. (2020).
		Geochemical characterization of groundwater and saltwater
		intrusion processes along the Luy River, Binh Thuan, Vietnam.

	Young Researchers' Overseas Day, 4th Edition, Abstracts, 32– 32, 32–32. https://biblio.ugent.be/publication/8689467
--	--

Appendix 2. Presentations -Inland Saline Aquaculture Session WA23

Inland Saline Aquaculture Session, World Aquaculture 2023	, Darwin N	1ay/June 2023	
INLAND SALINE AQUACULTURE IN AUSTRALIA: PAST PROGRESS CHALLENGES AND OPPORTUUNITIES	Geoff	Allan	NSW DPI
TWO DECADES OF RESEARCH AND DEVELOPMENT IN INLAND SALINE AQUACULTURE IN INDIA: PRESENT STATUS AND PROSPECTS	Tincy	Varghese	CIFI, India
INLAND SALINE AQUACULTURE IN NSW: 10 YEARS OF RESEARCH & DEVELOPMENT	Stewart	Fielder	NSW DPI
PAST RESEARCH AND BARRIERS TO COMMERCIAL AQUACULTURE UTILISING SALINE GROUNDWATER FROM SALT INTERCEPTIONS SCHEMES IN SOUTH AUSTRALIA	Wayne	Hutchinson	FRDC (ex SARDI, SA)
INLAND SALINE AQUACULTURE IN VICTORIA – A RETROSPECTIVE VIEW AND FUTURE OPPORTUNITIES	Brett	Ingram	VFA, Victoria
INLAND SALINE AQUACUTLURE IN WESTERN AUSTRALIA; PAST, PRESENT AND FUTURE?	Gavin	Partridge	Harvest Road (ex- Challenger TAFE, WA)
INLAND SALINE AQUACULTURE - USA AND ISRAEL PERSPECTIVES	Kevin	Fitzsimmons	University Arizona USA)
INLAND SALINE AQUACULTURE IN AUSTRALIA: PANEL DISCUSSION	Geoff	Allan	NSW DPI

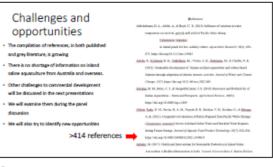
INLAND SALINE AQUACULTURE IN AUSTRALIA: PAST PROGRESS, CHALLENGES AND OPPORTUNITIES. Geoff Allan, NSW DPI.



INUAND SALINE AQUACULTURE IN AUSTRALIA: PAST PROGRESS CHALLENGES AND OPPORTUNITIES		
	Geoff	Alian
TWO DECADES OF RESEARCH AND DEVELOPMENT IN INLAND SAUNE AQUADUTURE IN INDIA- RESERT STATUS AND PROSPECTS	Time	Varghese
INLAND SALINE AQUACULTURE IN NSWI: 10 YEARS OF RESEARCH Barry, DEVELOPMENT	Stewart	Fielder
HAST RESEARCH AND RARRERS TO COMMERCIAL AQUACULTURE UTUSING SALINE GROUNDWATER FROM SALT INTERCEPTIONS SCHEMES IN SOUTH AUSTRALIA		
	Wayne	Hutchinson
INLAND SALINE AQUACULTURE IN VICTORIA – A RETROSPECTIVE VIEW AND FUTURE OPPORTUNITIES	avers	ingram
NLAND SAUNE AQUACUTURE IN WESTERN AUSTRALIA; MIST, PRESENT AND FUTURE?	(and a	Partildae
INLAND SAUNE AQUACULTURE - USA AND ISPAEL PERSPECTIVES		a trape
	Kevin	Fitadimenent
INLAND SALINE AQUACULTURE IN AUSTRALIA: PRIVEL DISCUSSION		
	Geoff	Allan

Developing Commercial Infant Saline Again offices in increasing Part 1, EAD Plan Developing Commercial Indust Saline Aspansitum in Anotheline Parth. Because Researce and Recommend C. Alm. Int Incent? Alterna 1871. Allan', Addus Tayasa' & Server Fictor 2001 Rouse Buy L Mature Buy Work and Annual Buy L Mature Buy Work and Annuals hard follows, for inpluse house of function, from the L. Souther WILL DO Antoine Parla Although Change Art 1987 Annuals Photoso Stanovice Pry Lat. Local I Board V. Nach Uplace) Mill 1998 Terry office: Research Internet Advancements Concil: 17 Concentration Statistics of CTART Consulta athlese how Atech A. FREE Propert Vo. 98104 June 200. HER: Pages No. 98105 June 2014 e 40 WW Energy Partleps State 5 2011 and 104

6



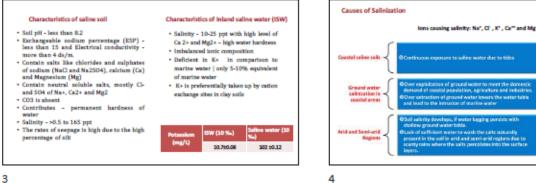
Why hasn't commercial inland saline aquaculture in Australia developed?

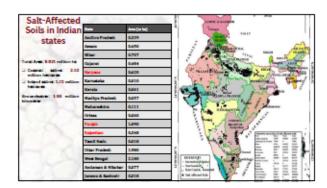
There is some new interest in commercial development but potential investors claim they are unaware of previous work

Are there new opportunities for commercial inland saline aquaculture in Australia and what more is needed to help realise them?

TRACT No.	many talena	tios os Trás	ng Adari	ty-Counted 1	dame.(a	a abo Tiga	(I 88						
Advan.	terthe	Second Dates	Copied Cold TextBox	Specifics' State Trust Selfice 118	int. Sectors	Congrad Videos Videos	Takin and	1.1	Nation Nation Take regime	Associated Disposed	Nambus of Paratics Data	larber des ba	14 191
mulpude.	Conception in the local division of the loca	Walken 1/s	31.0	4.83	1401	208	200	10.000	-	Sastyni Pas Dywyllinis	+-	10-01	L.I.
Makerin.	Complete the second sec	mileic to	14	8.58	1993	4,000	1,00	or here.	-	Depend Fee	87	101400	10
Seat. 14	Chinese .	Ret-Looks.	15.20	0.14	1994	2/06	10,000	-	angelen -	Sec-Oper-		2011.000	
Adulton, TEN	Consilioners anticipation	Warnesh. 30W	22	4.28	1.004	3.64	2000	pings.	-	Robalizer-Supral Neuro	P.		9
Mildow Sile	Oracle de	hilden, Tit	15.84	114	1490.6	3,04 (8)	2000.000	tif hom.	Selected and the second	Lain Kashalu il Tanan hasini	1(LA)	10-631	
Torono Artis	The second secon	REAL FO.	14	111	1000	3,88	1.00	man	-	Manager Program.	L	181	8
1010-100	Construction of the local division of the lo	Silder, To	18.2	648	1894	208	3000	7.00	-	Main Children	•	1.12	14
Rectant. TX	dader canif à granders	Deng, To	8	4.14	1998	2,90	2.89	*	-	Later Fasteria. Later Fasteria. Tuttori		1.00	1
Promittill. TX	Gales greaters arrents	Desg. To	-11	4:3	189	37-18	300	11 mile	-	Industry and constrained ad- later only produ-	Ð	0	41-18
Nited.207	Walks geneliste services	Desilipatio NAM	21.5	418	1921.6	10.00	308	14 mills	-	crisco baies desired any criscalization and balling peak	-	1,401	4
tikpen, tir	Sales president	Radopton, To	-	8.00	1987	-	10,701		-	Graner bein K. Deuko Han Reik	1	-	11

TWO DECADES OF RESEARCH AND DEVELOPMENT IN INLAND SALINE AQUACULTURE IN INDIA: PRESENT STATUS AND PROSPECTS. Tincy Varghese. CIFI, India.

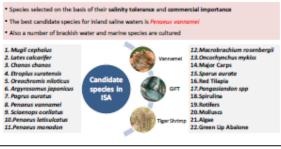



1

Origin of Research on Inland Saline Aquaculture in India

- In 1983, the Central Institute of Fisheries Education (ICAR-CIFE) established a small centre for research on ISA.
- In ISA, the survival rates of tiger shrimp, milkfish, grey mullet, and pearispot for farming were very low. 4
- ÷ Attempts to rear glant freshwater prawn larvae (Macrobrachium rosenbergii) were resolut
- ÷ In 1996, a research center was shifted to Rohtak district, Haryana.
- Survival trials with prawns, shrimps, and brackishwater finfishes were conducted, but except for milkfish, the survival results were not sufficient for commercial ÷ farming
- The major progress was achieved from 2004 onwards with L runname/farming. A bilateral research project between ICAR-CIFE and NSW Fisheries (DPI) funded by the ACIAR Later, grants from ICAR-funded projects -Niche Area Excellency and NAHEP Projects. ÷

2



Constraints in Inland Saline Aquaculture	Reme	
L Imbalanced ionic composition Low K+ concentration In EW occurs due to adsorption of the K+ on to the day	 K" fortificat Mineral fort dist 	
 Proper potassium and sodium ion balance - regulate the cell volume and hydration 	ideal water qua	By for inland
Energy demand triggered by Na+/ K+ ATPase - additional camotic stress	caline shrin Saliniy (ppt)	10-20 7.5-8.5
L Hardness	Dissolved oxygen (ppm)	>5.0
Water hardness Index - (Ca+Mg): (Na+K)	Alkalinity (ppm)	100 - 130
Hardness Index	Transparency (cm)	40-50
 'normal seawater' - 0.13, most of groundwater between 0.25 and 0.30 	Water depth (m)	15-18
Difference in water hardness - physiological effects	Carr: Mgr ratio	1:25-80
water hardness by chloride and sulphate - influence the homeostasis of ions in the body	Potaesken	SO % level of sea water

(mg/l)	15 ppt ISW	15 PPT SW	10ppt ISW	10 PPT SW	S PPT ISW	S PPT SW
Na*	4450	4567	3290	3045	1900	1523
K*	23	160.5	17.2	107	7	53.5
Cath	220	174	144	116	104	58
Mg ²⁺	352	593	244	395	140	195
Na"/K"	193:1	28:1	192-1	28:1	271:1	28:1
Ca ³ '/Mg ³ '	1:1.6	1:3.4	1: 1.69	1:3.4	1:1.34	1:3.4

Species Recognized for ISA on a Global Scale

Grow-out Production of Scampi (*M. rosenbergil*) in ISW

Sutable for culture in different salisities of ISW (0-10 ppt).

Commercially famed up to 5 ppt salisity in salise bore-well water under experimental and hemen's ponds.

Sutable for culture is mono and polyculture systems.

High demaid in domentic and export markets.

Production of 1250 kg/ha/6 months in monoculture.

Production of 1250 kg/ha/6-7 months of scampi and 32000 kg/ha/pr IMC under polyculture system

Sutable for culture systems.

Supervised Statements of the system of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

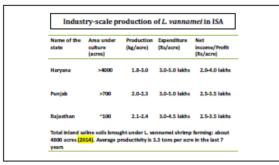
Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

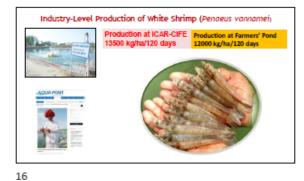
Supervised Statements of Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system


Supervised Statements of scampi and Statements of scampi and 32000 kg/ha/pr IMC under polyculture system


Supervised Statements of Statements of scampi and 32000 kg/ha/pr IMC under polyculture system

Supervised Statements of scampi and Statements of scampi and scampi and 32000 kg/ha/pr IMC und

13

17

GIFT (Oreochromis niloticus)

Fast growing species

- First growing species
 Potassium supplementation is not required in water
 Culture of GIFT tilapia in Inland ground sallne water (5-10 ppt).- achieved 3D torny/ha/7 months
 Breeding/Seed Production India, Rajiv Gandhi Centre for Aquacuture (IRGCA) is the pioneer body to already has a cutting-redge GIFT breeding mackeus.
 The RGCA has maintained genetic purity by adhering to a pedigree-based breeding programme
 The breeding rundeus was formed in 2011 with assistance from WorldPish.

Marketable size : 400-500 g

I

Areas ((H))	0.02-0.03
Dapelli (m)	- 4
Scocking weight of fails	10 gen
Numbring domaity (New):	57 m ²
Culture Period(Mariles)	5-6

18

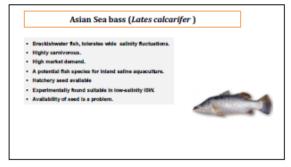
20

Silver Pompano (Trachinotus blochii)

- Pompano seeds procured from CMFRI Regional Center, Mandapam, Tamil Nadu and alrifted to CIFF Rohtak Centre.
 Preliminary laboratory experiments have shown that Pompano need potassium fortification in inland ground saline water for their survival.
- their survival.

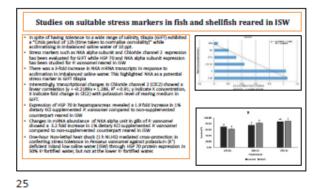
 Complete mortality in raw inland ground saline water with in 3 days of stocking.
- Pompano survive as low as 5 ppt in inland ground saline water.
- In Indoor fishes have grown to an average weight of 15.6 g, 20.5 g and 26.7 g from an initial average weight of 0.85 g at 5, 10 and 15 ppt at 50 % K fortification in 60 days

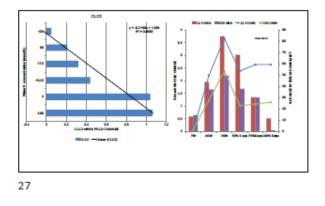
21

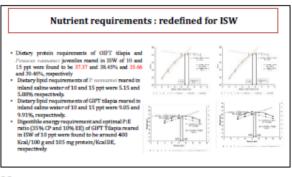


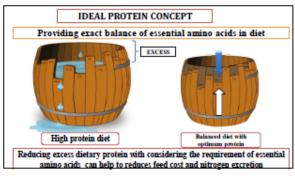
Amur carp (Cyprinus carpio haematopterus)

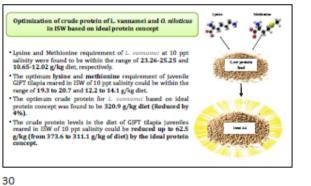
- Indoor experiments
- Tolenstes salinity up to 15 ppt in raw inland saline water.
 But less feed intake and reduced growth rate seen at higher salinities.
- Potassium amendment didn't have any affect on the performance Amur carp at all the tested salinities (5, 10 & 15 ppt.)
- Outdoor pond experiments
- Stocked in low saline water ranging 3-Sppt.
 Reached an average weight of 600 g in 7 months.
- Reached an average weight of 600 g in 7 months.
 Variable growth was observed (75 g -600 g).
- Able to attain sexual maturity in low inland saline water
- Deperiment in progress.


22

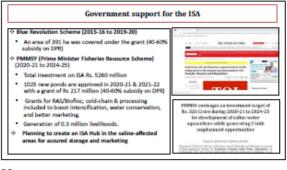



23





Supplementation of inorganic ions	Supplementing organic osmolytes					
. 50% reduction in the potassium fortification in water	Second Se	-	in the second	-		
could be achieved by 1% supplementation of potassium chloride in feed in <i>P. research</i> . Potassium incorporation in the dist (§) 0.6% ameliorated	Sarine .	ferena i	158	Growth anhancement Growth anhancement (Britances) 1627 20 appression reduction in 1628 anticky)		
oridative stress in GDT tilapia Dietary organic magnesium (0.3% magnesium chelate)	laurine	art .	12KB contractor with 1.0K pression	Invariable provin Improvement and sites		
improved growth and survival of P. vannamei reared in ISW of 10 ppt and 100% potassium fortification	leaine	Penseus		Grouth antanoment Stress millipation		
Distary calcium chelator (0.45% potassium citrats) also improved growth and survival of P. vannamei reared in ISW of 10 ppt and 50% potassium fortification	Laster	reneral		Grouth scharcement Singu miligeter		
	Negration	renne us venneme i	1.3%	longes on Nigotion and Improvement in growth and writed		



Organic osmolytes supplementation with ISW						
Nutraceutical	Species	Domge	Died			
Alanine	Penaeus van namel	0.5%	Growth enhancement Stress mitigation (Enhanced HEP 70 expression, reduction in NGA activity)			
Taurine	GIFT	0.2% in combination with 0.0% potassium	Remarkable growth improvement and stress mitigation			
Betaine	Penaeus van namel	15	Growth enhancement Stress mitigation			
L-serine	Penaeus van namel	18	Growth enhancement Stress mitigation			
Magnesium chelator (potassium citrate)	Penaeus vannamei	0.3%	Stress mitigation and improvement in growth and survival			

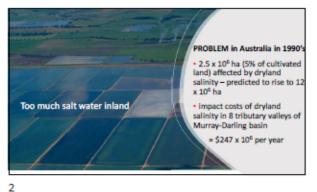
Additives	Best performing dose	Protein and lipid levels	Authors	A State A
L-camitine	0.05%	33% CP, IN EE	Raghuvaran, 2021	
Teurine	0.5%	33N CP, BN EE	Bhavetharaniya, 2021	
Berberine	0.005%	33% CP, 7% EE	Nanda, 2023	w C
Quercetin	0.025%	33% CP, 7% EE	Nanda, 2023	
Glycerol Monolaurate	0.1%	33% CP, 7% EE	Das, 2023	UNE O
Leonardite	0.12%	33% (P. 7% EE	Des, 2023	-HOREES-

÷

33

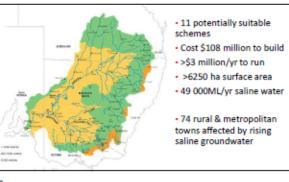
31

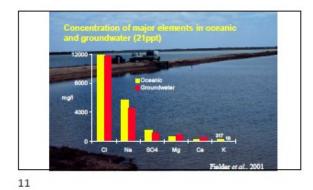
35

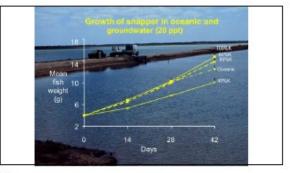

Conclusion and Way forward

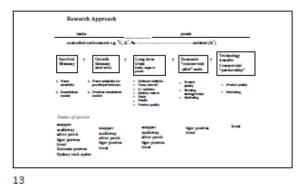
- Hatchery seed production of suitable species for ISA to increase availability and cut down input costs.
- ÷ Development of feed mills in the vicinity using locally available feed ingredients to cut down input costs.
- Research on to minimize potassium addition in water
- ٠
- Research on minimizing temperature and salinity variation stress on species to be farmed in ISA. Expansion of exclusive research facilities for the ISA sector
- ٠
- Organized marketing for a stable price ٠ Development of value-addition and cold chain facilities nearby for local consu and export.
- Referral lab for disease monitoring ÷
- Regular monitoring of secondary salinization in non-affected areas

34


INLAND SALINE AQUACULTURE IN NSW: 10 YEARS OF RESEARCH & DEVELOPMENT. Stewart Fielder, NSW DPI.

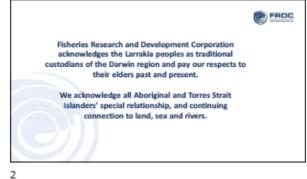


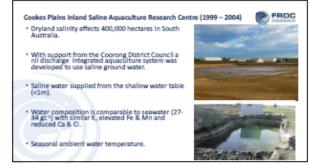




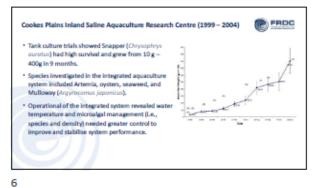
- Help ensure scientific methodology is "world best-

- Present the project at Australissian Aquaculture 2004
- Establish demonstration facilities at key locations

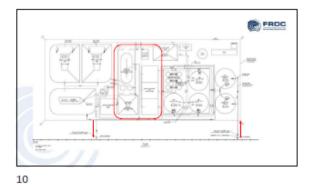


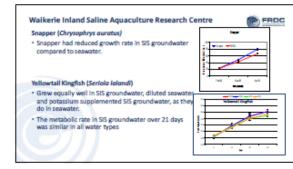


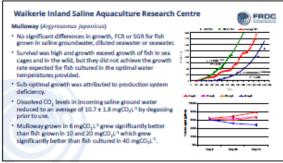
PAST RESEARCH AND BARRIERS TO COMMERCIAL AQUACULTURE UTILISING SALINE GROUNDWATER FROM SALT INTERCEPTIONS SCHEMES IN SOUTH AUSTRALIA. Wayne Hutchinson. FRDC (ex SARDI, SA).



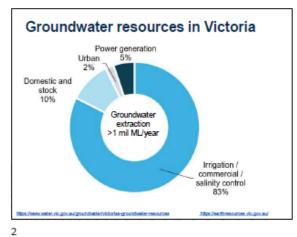


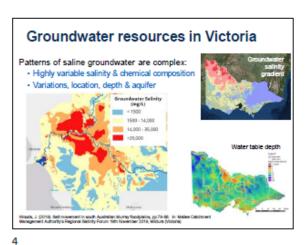




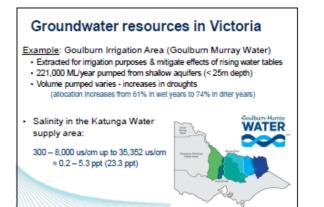


14



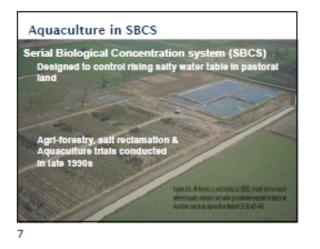

C FRDC à, 榆 愈 action Thank you Carlos for Manual Ad Real ۲ 20 frdc.com.au 18

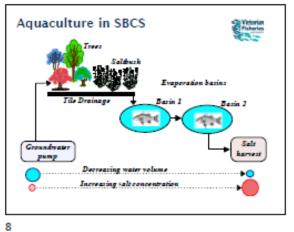
INLAND SALINE AQUACULTURE IN VICTORIA – A RETROSPECTIVE VIEW AND FUTURE OPPORTUNITIES. Brett Ingram, VFA, Victoria.

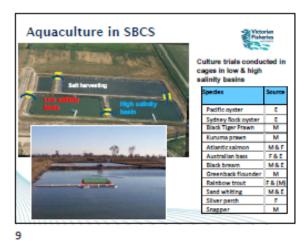


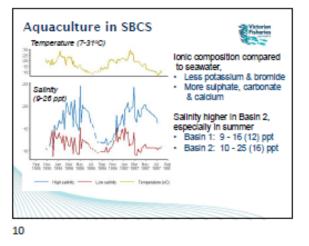
3

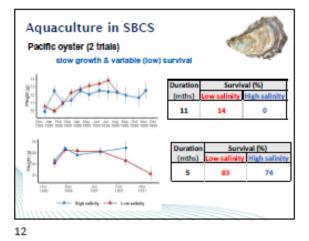
Saline groundwater aquaculture

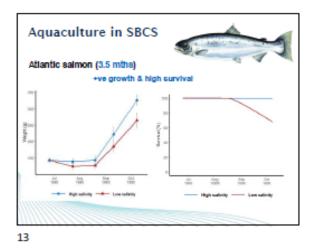

There is substantial saline ground water for aquaculture purposes in Victoria

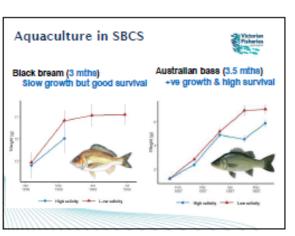

In this presentation:

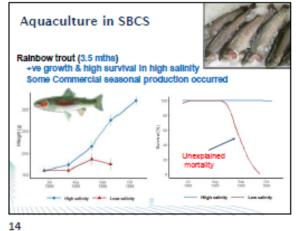

- Look back at several projects/activities
- Use inland saline groundwater
- Going back to the 1980s
- Various agencies & organisations
- Multiple production scenarios
 Multiple species
- (algae, mollusos, crustaceans and fish)

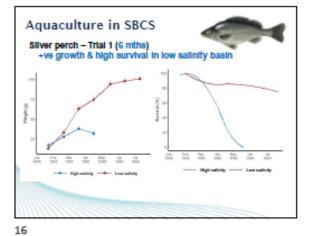

Touch on further opportunities

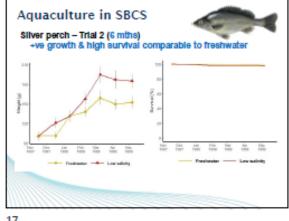


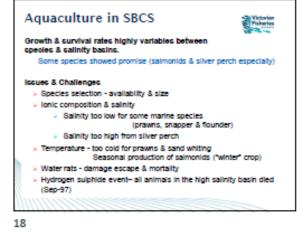


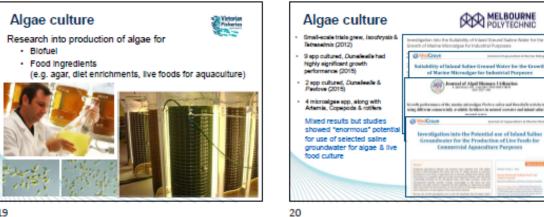


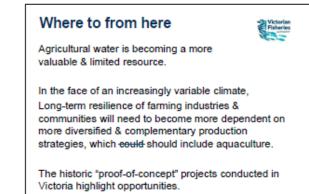




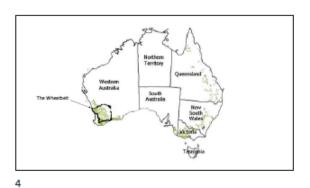


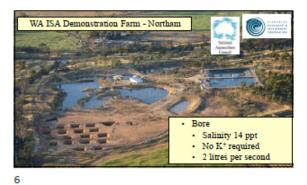





100 Brine shrimp production ----Business plan developed & some market assessment undertaken. Production focused on 125 g frozen blocks sold into the aquarium . trade (Melbourne) over 2 years. Harvested at a length of 8-10 mm after a culture period of 2 weeks (Yield 2.5 kg/m³) Castra F.B. 3. Notation N. (2007). Approximate tables proceedings respond based Anapol for Son Son Industries Research and Development Conjugation (2012). Anapol for Straffic Son Son Industries Research and Development Conjugation (2012).

23

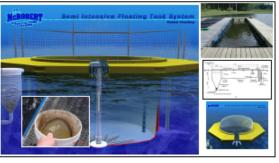

INLAND SALINE AQUACUTLURE IN WESTERN AUSTRALIA; PAST, PRESENT AND FUTURE? Gavin Partridge, Harvest Road and Challenger TAFE, WA.



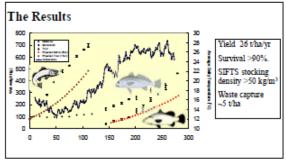
History of ISA R&D in WA

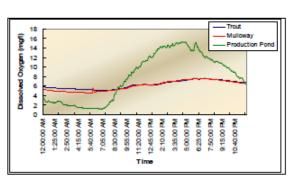
Identification of Suitable Water Sources
Species Selection
Production Systems & Technology Development

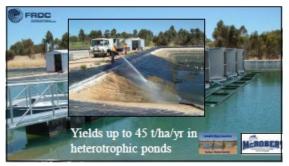
5

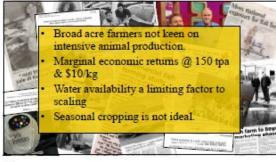


Production Systems in WA


- Focus on open ponds
 Cheap, free-hold had
 Existing taline water bodies.
 Extensive, low yielding (<1 tha)
 Attempts to increase yield
 Increased faceling and service
 Cage culture

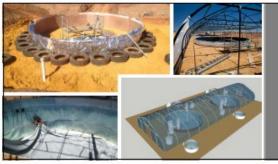

Eutrophication/algal blooms.
 Ponds couldn't be drained
 Low yielding bores





15

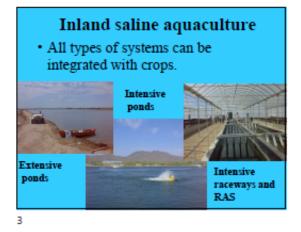
16

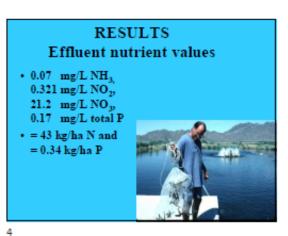

17

Recirculating Aquaculture Systems (RAS)

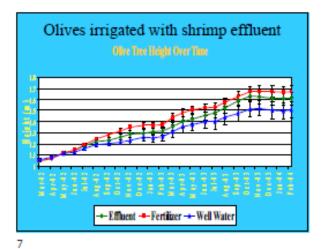
- High capital cost. - High operating cost.

Greater complexity - technical and biological knowledge required.


INLAND SALINE AQUACULTURE: USA AND ISRAEL PERSPECTIVES. Kevin Fitzsimmons. University of Arizona USA.


2

Introduction


- Aquaculture integrated with irrigated agriculture achieves multiple use of water and aquaculture effluents contribute nitrogen, phosphorus and organic matter.
- Many inland saline waters are not used for irrigation as potable quality water is available.
- Saline waters can be used to rear high value marine species and then used for irrigation.

Shrimp Sludge Characteristics

Sample	Total N	Total PO ₄ P	Total K	NO ₅ -N	Olsen P	Soluble K	EC
	% dry matter	% dry matter	% dry matter	µø∕ø	μ g/g	µg/g	dS/m
1	0.13	0.10	0.23	1497.4	22.60	27.3	
2	0.48	0.21	0.20	4.36	73.50	53.6	8.5

Total N, PO₄-P and K show total plant macronutrients NO₃-N, Olsen P and soluble K show plant available nutrients EC provides a measurement of soil salinity

10

Research Design

- Treatments of 5, 10 and 20% sludge application by volume, 402, 805 and 1,610 g/plant
- Mechanically mixed shrimp sludge and potting soil mix (concrete sand, mulch, vermiculite)
- Randomly transplanted and arranged 28 'Roma' tomato starts in a greenhouse, one plant per pot
- Each plant received 4 L of water daily, over four applications by drip irrigation
- Response measured in mass of tomatoes produced

Tomato Production Results						
Treatment	Tomato Mass (g/plant)	SEM				
0% (Control)	39.2*	11.54				
5% Sludge/potting mix	65.1*	11.14				
10% Sludge/potting mix	141.1 ⁶	20.73				
20% Sludge/potting mix	113.6%	19.9				

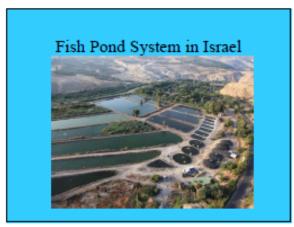
Conclusions

- Applications of 10% and 20% increased plant production
- Suggests land application will benefit crop production while providing a disposal mechanism
- Large, field scale application experiment suggested to verify results
- Soil salinity must also be monitored, given high evaporation rates
- Sludge is highly variable, depending on pond management

14

Shrimp and irrigation of Halophytes

- Many families of plants have halophytic representatives.
- Grasses, bushes, trees
- Many are from arid regions
- Native species are usually available
- Some have edible portions or can be used for forage, biomass, habitat, landscaping, and dust control

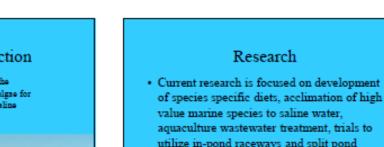

15

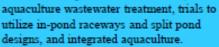
Shrimp and halophytes

16

Saline Aquaculture in Israel

- Use of saline aquifers for extensive culture of euryhaline species including tilapia, carp, flathead mullet (*Mugil cephalus*) and to a lesser extent: European seabass, red drum barramundi and gilthead sea bream (*Sparus aurata*) have operated for many years.
- Most of these operations use extensive methods such as earthen or cement ponds with paddle wheels for aeration but some have been using intensive methods (RAS) with variable degrees of success.


Inland RAS Aquaculture The largest RAS facility in Israel is capable of producing around 1000 tons of barramundi per year. AUATE


20

21

Research

 high value broodstock and hatchery for ocean spawners are planned or underway.

22

Integrated Aquaculture · Various applications for use of aquaculture effluent are being researched including aquaponics and larger scale irrigation of plantations. Journal of Cleaner Production e.

Optimization of nitrogen use efficiency by means of fertigation management in an integrated aquaculture-agriculture system omas Greenveld 6.¹, Yair Y. Rohn ¹, Amit Gross ⁴, Naltali Lazarovitch ¹

23

Conclusions

- Inland saline production has grown slowly but steadily in Israel.
- In Arizona, many of the initial farms have closed as the prices of farmed shrimp from Northern Mexico were lower with only a few more hours for delivery
- One Arizona farm switched from shrimp to tilapia and then to barramundi

24

.

Conclusions

Barramundi have been produced and sold at much higher prices in California than shrimp or tilapia

in Addoord, UKA With the destrict the destriction will be not on the particular of Contract production applies of bananue's equal to growing pertrain of eacets to now include domain production