Project number: 2008-768
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Mark Tamplin
Organisation: University of Tasmania (UTAS)
Project start/end date: 31 Dec 2008 - 30 Dec 2011
Contact:
FRDC

Need

Microbial species negatively impact animal health, product spoilage and safety. The best approach to reduce these unwanted effects is to precisely define the species that reduce product quality, determine the sources of contamination, and then target the best intervention strategy(s) where it is required. The reason this research is needed is that the historical approach to solving these problems has been to isolate and identify bacteria using culture-based methods, based on the assumption that all bacteria that reduce product quality can be isolated on agar media. We now know that culture methods only show a small percentage of the bacteria that are present in food and other environments. Therefore we propose to use a well-tested direct-detection DNA-based method that will provide a more complete profile of microbial contamination, identify the species that cause the problem, and assist in designing strategies to produce a solution.

Final report

ISBN: 978-1-925983-31-9
Author: Shane M Powell & Mark L Tamplin
Final Report • 2011-12-31 • 783.17 KB
2008-768-DLD.pdf

Summary

Until the 1990s, when it became possible to access and analyse DNA directly from the environment, the study of microbiology was limited to studying microbes that were able to be grown in artificial culture. The advent of DNA-based methods provided a way to access and study the enormous diversity of microbes that actually exist. Some fields of microbiology were quicker to take up this technology than others. Microbiological analyses carried out in industrial settings have, although this is changing, remained culture-based because they are standard methods required by regulators. They tend to be technically straight-forward and inexpensive. The goal of the Seafood Molecular Biologist position was to apply DNA-based techniques to a range of existing problems within the seafood industry. The three projects developed covered shellfish aquaculture, the processing of Atlantic Salmon and supply chains in the wild prawn fishery.

Related research

Industry
People
People