Project number: 2011-004
Project Status:
Completed
Budget expenditure: $305,561.00
Principal Investigator: Nick Gudkovs
Organisation: CSIRO Australian Animal Health Laboratory
Project start/end date: 21 Sep 2011 - 29 Aug 2014
Contact:
FRDC

Need

Improved diagnostic methods for endemic and exotic pathogens of aquatic animals have been identified as a Key Research Area in the 2009-12 FRDC AAHS R&D plan (6.2.3 Endemic and exotic aquatic animal disease diagnostics).

Since Perkinsus olseni was first described in Australian abalone by Lester and Davies in 1981, histology and culture in Ray’s medium have been the most commonly applied diagnostic procedures for detection of Perkinsus sp.. Although these tests are relatively straight forward and practical, they are general in nature and neither identifies or differentiates specific species of Perkinsus. Despite a well developed framework for the molecular characterization of Perkinsus and modern PCR based molecular tests for some of the more commercially important Perkinsus species, these have rarely been applied in Australia. The first attempts to apply molecular methods to a small number (n=40) of Perkinsus infected abalone from disease outbreaks in NSW have already revealed a new variant which probably represents a new previously unrecognized species in Australia (Reece et al. 2010). This fact and the apparent variation in pathogenicity observed with Perkinsus in different areas, has raised several questions about which Perkinsus sp. are present in commercial mollusc populations.

Given that a significant depletion of blacklip abalone (Haliotis rubra) stocks in NSW over the last 20 years has been attributed to infection with Perkinsus (FRDC Project 2004/084) and localized areas of infection occur in a number of Australian states, from South Australia to northern Western Australia, the development and implementation of highly sensitive and rapid PCR based molecular methods to identify specific species of Perkinsus is essential. The development and application of such tests is necessarily underpinned by a detailed understanding of the molecular makeup of Perkinsus in these populations which is the subject of this application.

Objectives

1. Undertake a targeted molecular, histological and cultural examination of known Perkinsus infected wild abalone populations from NSW, SA and WA to compare existing methods of detection.
2. Establish representative axenic (single species) cultures of Perkinsus sp. from infected abalone.
3. Use established PCRs and DNA sequencing methods to confirm the presence of P. olseni and determine the genetic diversity, including other Perkinsus sp. from these populations.
4. Develop and validate qPCR methods for the detection and identification of P. olseni in infected abalone.
5. Compare and evaluate the performance of the Objective 4 qPCR with existing conventional PCR methods for detection of P. olseni.

Final report

ISBN: 978-1-4863-0691-6
Author: Nick N. Godkovs

Related research

Industry
Industry
PROJECT NUMBER • 2021-047
PROJECT STATUS:
CURRENT

Harnessing the aquaculture potential of Queensland’s native rock oysters

1. Overall:Provide an assessment of the most regionally appropriate oyster species and associated production protocols capable of improving oyster farm productivity and achieving broad industry expansion within and beyond SEQ.
ORGANISATION:
Department of Agriculture and Fisheries Brisbane
Industry