Project number: 2011-726
Project Status:
Completed
Budget expenditure: $37,401.80
Principal Investigator: Valeria Torok
Organisation: SARDI Food Safety and Innovation
Project start/end date: 14 Jun 2015 - 29 Jan 2016
Contact:
FRDC

Need

Regulatory agencies in major seafood markets are increasingly requiring testing for viruses. Enforcement using current PCR methods has potential to cost Australian seafood businesses millions of dollars through trade disruptions and product detention. PCR methods have one serious drawback – they detect non infectious viruses of negligible human health consequence, resulting in the risk of “false positives”.

Norovirus cannot be cultured in cells, despite years of intensive effort; therefore we propose a different approach to resolving the problem. This proposal is to utilise existing knowledge about norovirus cell surface receptors to develop state-of-the-art optical sensing technology to better estimate the infectivity of noroviruses, thereby reducing risk of “false positives” and punitive regulatory action.

This demanding project brings together high calibre, internationally renowned scientists. People committed are:
Professor Tanya Monro (Director, Institute of Advanced Sensing) who recently won the SA Scientist of the Year award for creation of new tools and innovative solutions; and
Assoc. Prof. TuckWeng Kok and Dr Rod Ratcliff (SA Pathology), eminent virologists.

The new technology and international collaboration proposed, will create a platform to detect and effectively manage other viruses and foodborne hazards in seafood and other food, environmental and biological products – and has significant commercialisation potential.

This project is strongly supported by CRC participants, industry and regulators. It addresses Seafood CRC Output 2.2 ‘Diagnostic systems to assure seafood quality and integrity’, which needs greater effort for milestones (2.2.2. and 2.2.6) to be met.

Objectives

1. Develop sensor surface functionality of the SPR technology to improve discrimination between infectious and non-infectious NoV viruses

Final report

ISBN: 978-1-876007-06-5
Authors: Valeria A Torok Kate Hodgson Alison Turnbull and Catherine McLeod
Final Report • 2017-04-01 • 1.73 MB
2011-726-DLD.pdf

Summary

Noroviruses are common causes of gastroenteritis in humans. As with all pathogens with an oral – faecal transmission path, food can easily become contaminated. Oysters in particular can become contaminated with norovirus due to effluent flows into estuaries. Hence, the importance of fast and accurate tests for the presence of norovirus in oysters is constantly increasing. Currently, testing for foodborne viruses are laboratory based molecular methods, which although sensitive, do not discriminate between infective and non-infective viral particles.  Biosensors (biological sensors) may be able to overcome this barrier and might be suitable for real-time sensing and on-site monitoring. This project aimed to develop a functional biosensor for the detection of norovirus in shellfish.

Related research

Industry
Environment
PROJECT NUMBER • 2023-087
PROJECT STATUS:
CURRENT

Macquarie Harbour oxygenation trial

1. Develop plume model and run scenarios to inform injection depth, flow volume, concentration, and distribution of injection points for oxygenation trials.
ORGANISATION:
University of Tasmania
Industry
PROJECT NUMBER • 2023-082
PROJECT STATUS:
CURRENT

Australian Fisheries and Aquaculture Statistics 2022

1. To maintain and improve the data base of production, gross value of production and trade statistics for the Australian fishing industry, including aquaculture.
ORGANISATION:
Department of Agriculture, Fisheries and Forestry (DAFF) ABARES