In Tasmania, farming of Atlantic salmon (Salmo salar L) has developed rapidly since the first trials in 1985 and has grown progressively to the current 60,000 tonnes produced in 2020
Budget expenditure: $3,683,627.70
Project Status:
Principal Investigator: Jeff Ross
Organisation: University of Tasmania (UTAS)
Project start/end date: 15 Nov 2019 - 30 Dec 2024
Atlantic Salmon


The expansion of the Tasmanian Salmonid Industry in new growing areas, such as Storm bay, is contingent on demonstrating that further development is done in a responsible and sustainable way. This is central to maintaining public confidence in the salmon industry. Demonstrating best practice in environmental sustainability requires that the environmental footprint of the industry is well understood and contained within acceptable levels. An environmental monitoring program that assesses the environmental performance of farming at both local and system wide scales will provide this understanding, enabling appropriate regulatory responses. The development and validation of a biogeochemical model that can estimate the natural systems capacity to assimilate salmonid derived nutrient inputs at both local and broader system scales provides the capacity to both understand current environmental conditions and forecast the environmental responses under alternate management responses. This combination of a reliable and “fit for purpose” environmental monitoring and modelling program will help meet the needs and expectations of a science based adaptive management framework necessary for the proposed development of salmonid farming in Storm Bay.


1. Develop a robust monitoring program
2. Provide a comprehensive map of benthic habitats and bathymetry of the Storm Bay region and assessment of change at key focus areas
3. Develop and apply a lease scale model for assessing the environmental footprint of dissolved and particulate farm inputs
4. Assess the interactions between farming and the receiving environment
5. Evaluate and review the monitoring program

Related research