9 results
Communities
PROJECT NUMBER • 2021-117
PROJECT STATUS:
COMPLETED

A global review on implications of plastic in seafood

Microplastics are commonly consumed by seafood species however, there is still limited understanding of the effects and implications that microplastics may have on the fishing and aquaculture industry. This project summarises research on the effects that microplastic may be having on seafood...
ORGANISATION:
University of Adelaide
Industry
PROJECT NUMBER • 2019-147
PROJECT STATUS:
COMPLETED

Risk factors and management strategies associated with summer mortality in Australian abalone

In this project, we reviewed the scientific literature and collaborated with Australian abalone growers to develop a case definition for summer mortality. The case definition developed for summer mortality is as follows: i. Chronic mortality of unknown cause (if in doubt take this to mean...
ORGANISATION:
University of Adelaide
Industry
PROJECT NUMBER • 2019-106
PROJECT STATUS:
COMPLETED

Minor use permit for oxytetracycline in non-salmonid finfish

There are no registered or permitted antimicrobial products approved by the Australian Pesticide and Veterinary Medicine Authority (APVMA) for treatment of bacterial infections in finfish. This project developed an application for a minor-use permit (MUP) for the use of oxytetracycline (OTC) to...
ORGANISATION:
University of Adelaide

Development of a national sector-specific biosecurity plan guideline and template for the sea-cage finfish (non-salmonid) industry of Australia.

Project number: 2019-088
Project Status:
Completed
Budget expenditure: $25,000.00
Principal Investigator: Shane D. Roberts
Organisation: University of Adelaide
Project start/end date: 1 Oct 2019 - 29 Jun 2020
Contact:
FRDC

Need

The sea-cage aquaculture industry (tuna, kingfish and cobia) currently does not have a set of nationally consistent biosecurity guidelines and templates to assist farmers with the development of their on-farm biosecurity plans. The development of a sector-specific national biosecurity plan for the sea-cage aquaculture industry would ensure a common level of biosecurity risk management to support specific enterprise and whole of industry productivity. Biosecurity plans underpin disease prevention, preparedness and rapid emergency response to secure and future proof the industry.
An industry-wide biosecurity plan is a crucial component of health accreditation programs to facilitate inter-state and international trade in aquatic animals. Any health accreditation program of minimum biosecurity standard must meet the importing jurisdiction or countries requirements, so it is vital that these plans are recognised by state government authorities and implemented by industry.
Furthermore, many jurisdictions now require (or will require) those applying for a new aquaculture permit to develop an aquaculture biosecurity plan as part of the application process. Also, work is underway to develop industry-government emergency aquatic animal disease response arrangements which would require industry biosecurity plans.

Objectives

1. Development of an industry endorsed, national sector-specific biosecurity plan guideline and template for the Australian sea-cage aquaculture industry (includes tuna, kingfish and cobia).

Final report

ISBN: 978-1-876007-31-7
Authors: Shane Roberts Matthew Bansemer Matt Landos
Final Report • 2020-06-01 • 3.99 MB
2019-088-DLD.pdf

Summary

In this project, we developed guidelines to provide the Australian sea-cage finfish (non-salmonid) industry with the tools and templates to create an auditable farm biosecurity plan. Consideration was given to the current farming of yellowtail kingfish (Seriola lalandi), southern bluefin tuna (Thunnus maccoyii) and cobia (Rachycentron canadum). There were two components to this project. Firstly, an industry-government workshop was held on the 7 November 2019 in Adelaide. Attendees included representatives from the sea-cage finfish industry (peak body industry representatives, farm managers, hatchery representatives) and relevant state government representatives across Australia. Attendees discussed disease risks for sea-cage finfish farms, existing biosecurity guidelines, policy, risk assessments, and the appropriate content of a sea-cage finfish (non-salmonid) biosecurity plan. Based on these discussion, attendees workshopped best practice and practical biosecurity management for sea-cage finfish (non-salmonid) farms.
The second component of the project was to develop biosecurity plan guideline and template for the sea-cage finfish (non-salmonid) industry of Australia. These guidelines are based on information from the industry workshop and related reference material. In these guidelines, we highlight the potential routes for disease transmission, including disease spread onto, with-in and off of the farm to facilitate associated risk assessments for disease transmission. Risk pathways and associated mitigation processes identified in the workshop, included water, animals, equipment, vessels, vehicles, feed and people. These pathways were included in the biosecurity plan guidelines. In addition, templates for suggested supporting documents are also provided in the guideline to develop a comprehensive plan.

South Australian Pacific Oyster selective breeding program: Building POMS resistance to reduce risk for the South Australian oyster industry

Project number: 2019-039
Project Status:
Completed
Budget expenditure: $936,428.00
Principal Investigator: Xiaoxu Li
Organisation: University of Adelaide
Project start/end date: 30 Jun 2019 - 29 Jun 2022
Contact:
FRDC

Need

Due to the recent detection of POMS in wild Pacific Oysters in the Port River, the SA industry urgently need POMS resistant oysters. Having POMS resistant oysters stocked onto farms prior to any potential outbreak will be critical for protecting the industry from significant losses and financial impacts.

To achieve a resistance level of over 90% for ≥ one year old oysters, the SA Pacific Oyster selective breeding program will need to establish at least three more generations of families for genetic improvement after the completion of the Future Oysters CRC-P project in 2019.

Establishing the SA Pacific Oyster selective breeding program requires specific techniques and skills. SARDI is the only organisation in SA that has the purpose-built hatchery facility for this species and has produced target numbers of Pacific Oyster families over the last three seasons. SARDI also has a well-established team in oyster genetics and bivalve hatchery technologies.

To support the Stage 2 development of the SA selective breeding program, Flinders Ports, in partnership with the Fisheries Research and Development Corporation (FRDC), ASI, SAOGA and PIRSA-SARDI will jointly fund this project for the SA oyster industry to address POMS risks, and further mitigate the risk factors associated with the spread of POMS outside the Port River related to dredging activities in the Outer Harbour.

Objectives

1. Develop selective families with 90% POMS disease resistance for ≥ one year old Pacific Oysters
2. Support the SA industry by provision of high POMS resistant broodstock for commercial spat production

Final report

Authors: Penny Miller-Ezzy Mark Gluis Kathryn Wiltshire Marty Deveney and Xiaoxu Li
Final Report • 2024-07-01 • 2.76 MB
2019-039-DLD.pdf

Summary

A total of 221 new selectively bred families were produced at the South Australian Research and Development Institute (SARDI), West Beach, between 2019 and 2023, meeting project objectives. The 2019-year class was challenge tested in the Port River, SA for POMS resistance, after which the imported Tasmanian broodstock were incorporated into the program and the objective changed to improve both POMS resistance and POSS in SA. Details of the POSS field challenge tests and results will be available in the final report of FRDC project 2020-064. In the 2022 families, the last year class produced at SARDI, the average EBV of the top five POMS resistant families was 100% and the average EBV of the top five POSS families was 90%.

Exploring the occurrence and potential associated risk factors for Pilchard Orthomyxovirus (POMV) in Tasmanian farmed Atlantic Salmon

Project number: 2017-182
Project Status:
Completed
Budget expenditure: $209,295.62
Principal Investigator: Charles Caraguel
Organisation: University of Adelaide
Project start/end date: 28 Feb 2018 - 30 Aug 2019
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence
View Filter

Organisation