162 results
People
Communities
PROJECT NUMBER • 2022-038
PROJECT STATUS:
COMPLETED

Valuing WA smaller commercial fisheries across the supply chain

This study aimed to produce information about the economic contribution of the supply chain of selected small-scale fisheries in Western Australia (WA), as well as a method that can be applied to making these estimates for other fisheries. Substantial research has been completed to estimate the...
ORGANISATION:
BDO EconSearch

Australian Rural Leadership Foundation 30th Anniversary Sponsorship - Silver Package

Project number: 2022-026
Project Status:
Completed
Budget expenditure: $5,000.00
Principal Investigator: Tristan Richmond
Organisation: Australian Rural Leadership Foundation (ARLF)
Project start/end date: 30 Jul 2022 - 26 Oct 2022
Contact:
FRDC

Need

Silver Sponsorship Package Benefits:
- Acknowledgement in the promotion of the Australian Rural Leadership Foundation 30th Anniversary Celebration.
- Opportunities to engage with the ARLF broader network through events, activities, media and communications.
- Your organisation’s logo and link on the Australian Rural Leadership Foundation website, included in relevant social media posts and the ARLF newsletter.
- Onsite signage and recognition (where applicable).
- The right for you to use the ARLF 30th Anniversary brand and logo on relevant promotional material.
- The right to use “Silver Partner of the Australian Rural Leadership Foundation 30th Anniversary Celebration”, your organisation referred as such in all relevant collateral and social media content and use of the ARLF 30th Anniversary brand and logo on promotional printed and digital material.
- Six (6) tickets to the 30th Anniversary Gala Dinner - 26 October 2022

Objectives

1. Recognise and celebrate leadership capability and capacity in fishing and aquaculture
Industry
PROJECT NUMBER • 2022-021
PROJECT STATUS:
COMPLETED

Review of approaches for determining commercial fisheries compensation

The report discusses challenges in compensating fishers for giving up their fishing rights, particularly in small-scale commercial fisheries. These challenges include lack of transparency, data issues, timing problems, and mistrust. Based on past experiences, the report recommends several...
ORGANISATION:
Synergies Economic Consulting
Industry
PROJECT NUMBER • 2022-016
PROJECT STATUS:
COMPLETED

Australian Fisheries and Aquaculture Statistics 2021

The Australian Fisheries and Aquaculture Statistics report contains comprehensive information on commercial fishing and aquaculture in Australia covering fisheries production, trade data and consumption and employment statistics, with data up to and including 2020−21. The report is aimed at...
ORGANISATION:
Department of Agriculture, Fisheries and Forestry (DAFF) ABARES

Trials of oceanographic data collection on commercial fishing vessels in SE Australia

Project number: 2022-007
Project Status:
Completed
Budget expenditure: $347,802.00
Principal Investigator: Ian Knuckey
Organisation: The Trustee for Knuckey Family Trust
Project start/end date: 31 Jul 2022 - 30 May 2025
Contact:
FRDC

Need

Australia’s fisheries span a large area of ocean. Australia has the world’s third largest Exclusive Economic Zone (EEZ), with an area of over 8 million km2. This zone contains mainly Commonwealth managed fisheries, with State jurisdictions mainly in coastal waters up to the 3 nautical mile limit. Australia's total wild-catch fisheries gross value of production is $1.6 billion, of which 28% is from Commonwealth fisheries and 72% from the smaller coastal inshore fisheries managed by state jurisdictions. The wildcatch fisheries sector employs about 10,000 people across Australia (https://www.awe.gov.au/abares/research-topics/fisheries/fisheries-and-aquaculture-statistics/employment).

The commercial fishing industry has a network of thousands of vessels working mainly in inshore waters around Australia. They can supply a potential platform for extensive and fine scale spatial and temporal monitoring of the waters of the continental shelf (0-1200m), from the surface to the ocean floor. Given that their livelihoods depend on it, they have a keen understanding of oceanographic conditions with respect to fish behaviour, feeding and spawning and the various oceanographic factors that may influence this. In some fisheries (e.g. surface tuna longlining), fishers eagerly seek and use readily available fine-scale oceanographic data such as sea surface temperature and sea level, to improve their targeting and achieve higher resultant catch rates. For many other fisheries, however, it is the fine-scale sub-surface oceanographic conditions (feed layers, thermoclines, temperature at depth etc) that have a critical influence on their fishing dynamics. Unfortunately, this type of oceanographic data is far less readily available. Although fishers and scientists know these factors are important, the time series of fine scale spatial and temporal data relevant to fishery operations is not available to include in stock assessments. As a result, it is often assumed that variations in catch rates reflect changing stock abundance, when it may simply be a result of changing oceanographic conditions.

Marine scientists collect a vast range of oceanographic data using satellites, subsurface drones, and static and drifting buoys. Sea surface data, however, is much easier and more cost-effective to collect at high spatial and temporal resolutions than sub-surface data. Hence, understanding of sub-surface oceanographic conditions tends to be derived from modelling more than actual measurement. This may be sufficient at a wide-scale global or continental level, but it is not adequate at the fine-scale spatial and temporal resolution required for fisheries management.

The use of commercial fishing gear as a research data platform has been increasing in popularity internationally (https://www.frontiersin.org/articles/10.3389/fmars.2020.485512/full). A number of groups in Europe have been doing this for a decade (e.g Martinelli et al 2016), and New Zealand are also now involved (https://www.moanaproject.org/te-tiro-moana). However, this approach has yet to be implemented in Australia in a coordinated way. In particular, our approach dictates open access data served through the IMOS Australian Ocean Data Network (www.aodn.org.au) that can be collected once and used many times.

In this project we intend to instrument seafood sector assets (e.g Trawl Nets, longlines, pots) with fit-for- purpose quality-controlled (QC'd) temperature/pressure sensors to increase the sub-surface temperature data coverage around Australia’s shelf and upper slope regions (0-800m) at low cost. Not only will this assist in the collection of data at relevant spatial and temporal scales for use by fishers, but it will also provide a far more extensive level of QC’d data to oceanographers in near real time (NRT) for evaluation and ingestion into data-assimilating coastal models that will provide improved analysis and forecasts of oceanic conditions. In turn, this will also be of value to the fishing sector when used to standardise stock assessments.

Martinelli, M., Guicciardi, S., Penna, P., Belardinelli, A., Croci, C., Domenichetti, F., et al. (2016). Evaluation of the oceanographic measurement accuracy of different commercial sensors to be used on fishing gears. Ocean Eng. 111, 22–33. doi: 10.1016/J.OCEANENG.2015.10.037

Objectives

1. Effective installation and operation of oceanographic data collection equipment on network of commercial fishing vessels using a range of common fishing gear
2. To provide QC’d data direct to fishers in near real-time to assist in habitat characterisation and the targeting of effort
3. To cost-effectively increase the spatial resolution of sub-surface physical data collected in Australia’s inshore, shelf, upper-slope, and offshore waters by fitting commercial fishing equipment from a variety of gear types with low-cost temperature/pressure sensors
4. To make the QC’d temperature depth data publicly available through the IMOS-AODN portal for uptake and use in ways that support safe maritime operations the sustainable management of marine resources, and improves understanding of drivers of change.

Article

Final Report • 2024-11-07 • 7.45 MB
2022-007-DLD.pdf

Summary

Working with IMOS and oceanographers at the University of New South Wales (UNSW), Fishwell Consulting engaged its established networks across the Australian commercial fishing community to harness the capacity of commercial fishing vessels in environmental data acquisition. Deployment of temperature/depth sensors on commercial fishing vessels was shown to augmentand complement more expensive data collection platforms (e.g. ocean gliders, remote operated vehicles, Argo floats, dedicated research vessels) to provide much needed sub-surface temperature data to improve ocean circulation models and forecasting capacity. In proof-of-concept trials conducted over twelve months (from May 2023), more than 30 fishing vessels and their fishing gear were equipped with temperature sensors and data transmission equipment. These trials yielded more than 2.8 million data points from the sea surface to 1,214m depth considerably expanding existing data records. In particular, waters previously poorly observed, including the Great Australian Bight, Joseph Bonaparte Gulf, and the Gulf of Carpentaria, yielded valuable sub-surface temperature data.
Environment
Environment
PROJECT NUMBER • 2021-119
PROJECT STATUS:
COMPLETED

Improving bycatch reduction strategies and escape vents in Queensland Mud Crab fisheries

The Queensland Crab Fishery is an iconic fishery, which encompasses the harvest of mud crabs (Scylla serrata, the Giant Mud Crab, and Scylla olivacea, the Orange Mud Crab) and Blue Swimmer Crabs (Portunus armatus and Portunus pelagicus), predominately using baited crab pots of various designs. The...
ORGANISATION:
Department of Primary Industries (QLD)
SPECIES
Communities
PROJECT NUMBER • 2021-117
PROJECT STATUS:
COMPLETED

A global review on implications of plastic in seafood

Microplastics are commonly consumed by seafood species however, there is still limited understanding of the effects and implications that microplastics may have on the fishing and aquaculture industry. This project summarises research on the effects that microplastic may be having on seafood...
ORGANISATION:
University of Adelaide
View Filter

Species

Organisation