15 results

Understanding water quality risk for the sustainable and efficient production of Pacific and Sydney Rock Oysters

Project number: 2021-075
Project Status:
Current
Budget expenditure: $85,791.00
Principal Investigator: Shauna Murray
Organisation: University of Technology Sydney (UTS)
Project start/end date: 11 Dec 2021 - 6 Jan 2026
Contact:
FRDC

Need

The Macleay River is a typical oyster farming estuary in that it is impacted by poor water quality from time to time. In particular, the Macleay is an example of the range of water quality issues that can impact oyster farming, as in the past 2 years, it has been effected by: flooding, bushfire runoff, acid sulphate runoff, de-oxygenated water, QX disease, low salinity, and sewage spills. As in all NSW estuaries, it also has fluctuating levels of potentially harmful algal species occasionally.

Little water quality data exists yet for this estuary, despite the fact that it has suffered recent severe ‘black water’ events. This project will represent the first time that very detailed water quality information will be collected and analysed from this estuary, in order to determine predictive models to improve the ability of oyster farmers to respond to poor water quality events.

For this reason, this estuary will serve as a case study for the range of issues that can impact oyster farming in Australia. This site will be used as an example of an approach to managing water quality using high quality data. In addition, the Georges River estuary and the Hawkesbury estuary experience other issues and have active growth of Pacific oysters rather than Sydney Rock oysters. The Hawkesbury has experienced a large scale POMs outbreak which devastated industry. The Georges River has been an experimental site for oyster research by the NSW DPI and Universities for decades, and has an extensive collection of metadata associated with it.

Data from these three estuaries is appropriate and can be useful to oyster growers in Tasmania and South Australia, as we will examine the impact on water quality impacting a Pacific Oyster growing estuary, and because water quality issues such as impact these estuaries are typical examples of the issues impacting this industry nationally. Tasmanian and South Australian oyster farmers will benefit from the information about how a real time sensor network and associated biological data collection can be used to model water quality issues of concern to industry, as well as being used for industry regulatory purposes.

Objectives

1. Collect new biological and physical data from the Macleay estuary using a real time temperature and salinity sensor, oysters and water samples.
2. Conduct modelling and analysis of real time sensor data from estuaries in comparison to biological data, showing the impact of water quality variables, rainfall and disease on oysters in estuaries farming Sydney rock oysters and Pacific oysters.
3. Discuss outcomes with oyster farmers, regulators, government, researchers, councils other industry groups. Discuss outcomes with app developers able to incorporate the models outcomes of the project into their products.
4. Produce a guidance document outlining the way in which real time environmental sensing data is acceptable and applicable for use by shellfish safety regulators.
Industry
PROJECT NUMBER • 2019-208
PROJECT STATUS:
COMPLETED

2020-2025 Strategic Plan for the Australian Oyster Industry

The primary purpose of this plan is to coordinate oyster industry research, development, and extension (RD&E) across Australia to ensure that usable outputs are provided to oyster businesses. The plan outlines a set of RD&E programs and a list of priority projects for which research...
ORGANISATION:
Oysters Australia Ltd

South Australian Pacific Oyster selective breeding program: Building POMS resistance to reduce risk for the South Australian oyster industry

Project number: 2019-039
Project Status:
Completed
Budget expenditure: $936,428.00
Principal Investigator: Xiaoxu Li
Organisation: University of Adelaide
Project start/end date: 30 Jun 2019 - 29 Jun 2022
Contact:
FRDC

Need

Due to the recent detection of POMS in wild Pacific Oysters in the Port River, the SA industry urgently need POMS resistant oysters. Having POMS resistant oysters stocked onto farms prior to any potential outbreak will be critical for protecting the industry from significant losses and financial impacts.

To achieve a resistance level of over 90% for ≥ one year old oysters, the SA Pacific Oyster selective breeding program will need to establish at least three more generations of families for genetic improvement after the completion of the Future Oysters CRC-P project in 2019.

Establishing the SA Pacific Oyster selective breeding program requires specific techniques and skills. SARDI is the only organisation in SA that has the purpose-built hatchery facility for this species and has produced target numbers of Pacific Oyster families over the last three seasons. SARDI also has a well-established team in oyster genetics and bivalve hatchery technologies.

To support the Stage 2 development of the SA selective breeding program, Flinders Ports, in partnership with the Fisheries Research and Development Corporation (FRDC), ASI, SAOGA and PIRSA-SARDI will jointly fund this project for the SA oyster industry to address POMS risks, and further mitigate the risk factors associated with the spread of POMS outside the Port River related to dredging activities in the Outer Harbour.

Objectives

1. Develop selective families with 90% POMS disease resistance for ≥ one year old Pacific Oysters
2. Support the SA industry by provision of high POMS resistant broodstock for commercial spat production

Final report

Authors: Penny Miller-Ezzy Mark Gluis Kathryn Wiltshire Marty Deveney and Xiaoxu Li
Final Report • 2024-07-01 • 2.76 MB
2019-039-DLD.pdf

Summary

A total of 221 new selectively bred families were produced at the South Australian Research and Development Institute (SARDI), West Beach, between 2019 and 2023, meeting project objectives. The 2019-year class was challenge tested in the Port River, SA for POMS resistance, after which the imported Tasmanian broodstock were incorporated into the program and the objective changed to improve both POMS resistance and POSS in SA. Details of the POSS field challenge tests and results will be available in the final report of FRDC project 2020-064. In the 2022 families, the last year class produced at SARDI, the average EBV of the top five POMS resistant families was 100% and the average EBV of the top five POSS families was 90%.
Environment
PROJECT NUMBER • 2019-005
PROJECT STATUS:
COMPLETED

Risk analysis to identify and minimise biosecurity risks arising from recycling bivalve mollusc shell waste during shellfish reef restoration projects in Australia

The assessment indicated that heating recycled mollusc shells in water to 80°C for at least 5 minutes would meet the ALOP for all diseases (despite uncertainly for some disease agents due to lack of information, as indicated by ?), and was within the ALOP for all pests of concern. This method...
ORGANISATION:
DigsFish Services Pty Ltd
Adoption
PROJECT NUMBER • 2018-127
PROJECT STATUS:
COMPLETED

Validation and implementation of rapid test kits for detection of OsHV-1

Following the outbreak of Pacific Oyster Mortality Syndrome (POMS) in the Port River, South Australia in summer 2017-18, a need was identified for rapid diagnostic technology for OsHV-1, the causative agent of POMS. During the February 2016 OsHV-1 outbreak in Tasmania, tracing activities in...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
PROJECT NUMBER • 2018-102
PROJECT STATUS:
COMPLETED

Understanding Ostreid herpesvirus type 1 risk: alternative hosts and in situ hybridisation

South Australia (SA) has a large edible oyster industry primarily growing Pacific oysters (Crassostrea gigas). The industry is regionally-based, an important employer and a substantial contributor to regional economies. Pacific oyster mortality syndrome (POMS) is a serious infectious disease of C....
ORGANISATION:
Flinders University
Industry
PROJECT NUMBER • 2018-097
PROJECT STATUS:
COMPLETED

Survey of Enterprise-level Biosecurity across the Australian Aquaculture Industry

The Australian Government Department of Agriculture and Water Resources (the department) commissioned the independent research company Instinct and Reason to conduct a survey aimed at farm owners/managers in the Australian aquaculture industry. The survey aimed to investigate the level of...
ORGANISATION:
Instinct and Reason

Improving early detection surveillance and emergency disease response to Pacific Oyster Mortality Syndrome (POMS) using a hydrodynamic model for dispersion of OsHV-1

Project number: 2018-090
Project Status:
Completed
Budget expenditure: $70,168.00
Principal Investigator: Shane D. Roberts
Organisation: Department of Primary Industries and Regions South Australia (PIRSA)
Project start/end date: 31 Jul 2018 - 31 Oct 2019
Contact:
FRDC

Need

Pacific Oyster Mortality Syndrome (POMS) is a disease caused by Ostreid Herpesvirus type 1 (OsHV-1) microvariant, which causes rapid high mortalities (up to 100%) in Pacific oysters. POMS has caused significant economic impacts to the oyster growing industry in parts of NSW and Tasmania where it occurs. On 28 February 2018 OsHV-1 was first detected in Port Adelaide River feral oyster populations. PIRSA and industry mounted an immediate emergency response aimed at containing the virus to the Port and preventing spread to the nearby oyster industry (>25km away).

In the absence of accurate information, surveillance designs and emergency response plans (including translocation protocols) assume a disease spread distance of 5NM (10km) to define epidemiological units for all water bodies (see Figure 1). That uncertainty causes policy makers to take a conservative approach. Consequently there is a need to improve the accuracy of predictive information used to manage such aquatic disease incursions.

Aim: Model the dispersal of Ostreid herpesvirus (OsHV-1) particles from various locations around South Australia to determine epidemiological units aimed at improving surveillance, biosecurity zoning and future emergency responses.

This project aligns with two key objectives of Australia’s National Strategic Plan for Aquatic Animal Health (AQUAPLAN 2014-2019): (1) Enhance surveillance, and (2) Strengthen emergency disease preparedness and response capability. See http://www.agriculture.gov.au/animal/aquatic/aquaplan.

A recent FRDC project (2006/005) demonstrated how various oceanographic data can be incorporated into a hydrodynamic model (e-SA marine system) to map past, present and future ocean conditions. This project proposal will provide a case study for how such a model can predict pathogen spread to underpin improved surveillance designs, effective emergency disease response and appropriate biosecurity zoning for translocation protocols.

Objectives

1. To model viral particle dispersal at key locations around the State, including commercial oyster growing areas, known feral oyster populations and ports, and incorporating seasonal oceanographic parameters
2. Using hydrodynamic model outputs, identify epidemiological units to inform surveillance, disease management and emergency disease response activities
3. Demonstrate how hydrodynamic model outputs of predicted viral particle dispersal can be used to develop a risk-based surveillance design for the detection of OsHV-1

Final report

ISBN: 978-1-876007-22-5
Authors: Shane Roberts Charles James Matthew Bansemer Frank Colberg Saima Aijaz Kaine Jakaitis Eric Schulz and John Middleton
Final Report • 2020-01-01 • 6.85 MB
2018-090-DLD.pdf

Summary

Rapid predictive capability of viral spread through water during an aquatic disease outbreak is an epidemiologist’s dream, and up until now has not been achievable. A biophysical particle tracking model for Ostreid herpesvirus 1 microvariant (OsHV-1) that causes POMS was developed to determine virus spread during disease outbreaks in South Australian coastal waters. Model outputs from 23 hypothetical outbreaks across the State have provided valuable information for PIRSA to review and update current Disease Management Areas (DMAs) for POMS. Outputs from this project will greatly enhance future disease surveillance programs and emergency responses.
Adoption
PROJECT NUMBER • 2017-233
PROJECT STATUS:
COMPLETED

Future Oysters CRC-P Communication and Adoption

The Future Oysters CRC-P project (CRC-P 2016-553805; Future Oysters) was funded by the Australian Government’s Business Cooperative Research Centres (CRC) Program, which is managed by the Department of Industry, Innovation and Science (DIIS). The Future Oysters CRC-P project was developed to...
ORGANISATION:
Australian Seafood Industries Pty Ltd (ASI)
Industry
PROJECT NUMBER • 2017-203
PROJECT STATUS:
COMPLETED

Risk from Diarrhetic Shellfish Toxins and Dinophysis to the Australian Shellfish Industry

This study first examined DSTs in spiked and naturally contaminated shellfish - Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS ...
ORGANISATION:
University of Technology Sydney (UTS)
View Filter

Species