Metazoan parasites threaten the sustainability and profitability of the Australian finfish aquaculture industry. It is critical, therefore, to identify local parasite species and determine which are potentially harmful. There have been many studies assessing metazoan parasite fauna of wild fish and fish farmed in sea-cages in the northern hemisphere, but such research is notably absent in the Australia. With current low stocking densities and dispersed farm locations in Australia, the potential for parasitic disease problems in sea-cage aquaculture may not yet be realised.
In the sea-cage environment farmed fish can acquire infections found in local populations of wild fish. The natural occurrence of wild fish near sea-cage farms provides an opportunity for transfer of parasites between wild and farmed populations. The parasite assemblage of the wild fish species and the potential risks of these parasites for sea-cage aquaculture are largely unknown. By gathering biological data about parasites, we will gain a better understanding of how to manage and control them on fish in captivity.
Parasite identification, knowledge of parasite biology, diagnostic tools and how parasites impact on their host is critical for effective parasite management. This project will use a powerful combination of morphological and molecular genetic techniques to provide a comprehensive understanding of copepod, monogenean and trematode parasites infecting selected aquaculture, recreational and commercial finfish species in southeastern Australia, plus barramundi in the northwest.
This research will enable proactive parasite management and rapid identification of pathogenic parasite species. It will also identify appropriate site selection for expansion of the industry away from infection sources. Appropriate husbandry practices and management practices can be put in place to control parasite infections thereby reducing morbidity and mortality in fish stocks.