Tactical Research Fund: Nutrient and phytoplankton data from Storm Bay to support sustainable resource planning
SCRC: CoolFish - Traceability and product sensor technologies to manage seafood cool chains APPROVAL FOR PHASE 1 ONLY FOR $14,600
SCRC: PDRS - Seafood Molecular Biologist: Mapping Microbial Communities in Seafood Production and Processing Environments to Improve Targeting Intervention Strategies (Dr Shane Powell)
Microbial species negatively impact animal health, product spoilage and safety. The best approach to reduce these unwanted effects is to precisely define the species that reduce product quality, determine the sources of contamination, and then target the best intervention strategy(s) where it is required. The reason this research is needed is that the historical approach to solving these problems has been to isolate and identify bacteria using culture-based methods, based on the assumption that all bacteria that reduce product quality can be isolated on agar media. We now know that culture methods only show a small percentage of the bacteria that are present in food and other environments. Therefore we propose to use a well-tested direct-detection DNA-based method that will provide a more complete profile of microbial contamination, identify the species that cause the problem, and assist in designing strategies to produce a solution.
Final report
Until the 1990s, when it became possible to access and analyse DNA directly from the environment, the study of microbiology was limited to studying microbes that were able to be grown in artificial culture. The advent of DNA-based methods provided a way to access and study the enormous diversity of microbes that actually exist. Some fields of microbiology were quicker to take up this technology than others. Microbiological analyses carried out in industrial settings have, although this is changing, remained culture-based because they are standard methods required by regulators. They tend to be technically straight-forward and inexpensive. The goal of the Seafood Molecular Biologist position was to apply DNA-based techniques to a range of existing problems within the seafood industry. The three projects developed covered shellfish aquaculture, the processing of Atlantic Salmon and supply chains in the wild prawn fishery.
SCRC: PhD : Increasing Oyster Spat Production Through Management of Microbiological Contamination
Vibrio species are a notorious pest in all aquaculture systems, producing significant losses in productivity. However, the problem still persists today because the causative agents and associated virulence factors have not been adequately identified and, because little is known about environmental conditions that cause the pathogen(s) to proliferate. Supply of oyster spat is currently failing to meet demand consistently in Australia, with Australian hatcheries only producing seed for the local market of approximately 250 million a year compared to a world market in excess of 10 billion oyster seed. Solving this problem will allow Australian oyster hatcheries to design and implement effective risk management systems, thus increasing supply to expand national and international markets. In addition, the aquaculture industry needs greater human capability and capacity to manage disease in aquaculture operations.
Relevance to industry priorities and Seafood CRC milestones
The associated Program and theme is within Production Innovation – Program Manager Dr Graham Mair - Outcome: Increased profitability and industry value through production innovation.
Specific output and associated milestones include:
1.3 Output: Removal or reduction of key production constraints in selected aquaculture systems
1.3.3 Milestone: Strategic disease management approaches and technologies developed for at least two aquaculture species
1.3.5 Milestone: Production efficiency gains from genetic, health management and nutritional interventions quantified to inform long-term strategies and estimate commercial benefits