Human Dimensions Research Coordination Program 2021-24
The operating environment within which Australian fisheries and aquaculture are positioned is complex, comprising economic, social and political institutions and organisations that are continuously being re-shaped by multiple external and internal drivers.
Addressing these specific drivers requires understanding of the human dimensions of fisheries and aquaculture, along with the biophysical. Human dimensions refers to the social, economic and cultural factors that affect outcomes for both the seafood community and in terms of public good. This includes the attitudes, processes and behaviours of individual people, companies, management agencies, communities, organisations, consumers, and markets. Human dimensions research has been successfully applied to understand how to enable better outcomes for Australia's fisheries and aquaculture (e.g. improved social acceptability, resilience through shocks, inclusive growth, economic productivity), and what are the effective strategies to achieve this (e.g. market based mechanisms, behavioural approaches). It brings together research capability from a broad range of disciplines.
Historically, achieving the level of coordinated investment required to effectively deliver against this need has been hampered by a range of factors, which have included:
• effective integration of human dimensions RD&E with biophysical sciences; and
• research capability and expertise capable of undertaking such research to ensure end user needs are met.
The FRDC has invested substantively in human dimensions R&D capability in recognition of this need. Ongoing coordination and strategic development of human dimensions R&D activities will support the FRDC to deliver its Fish Forever 2030 vision: Collaborative, vibrant fishing and aquaculture, creating diverse benefits from aquatic resources, and celebrated by the community.
The FRDC considers Coordination Programs as critical to delivering relevant outcomes of the R&D Plan. With respect to Human Dimensions, it is evident that a planned R&D outcome can be achieved more successfully if expertise and related activities are developed and managed in a coordinated manner.
Larval dispersal for Southern Rock Lobster and Longspined sea urchin to support management decisions
Examining the potential impacts of seismic surveys on Octopus and larval stages of Southern Rock Lobster
Storm Bay Observing System: Assessing the Performance of Aquaculture Development
Opportunities and impacts of range extending scalefish species: understanding population dynamics, ecosystem impacts and management needs
Species-level responses to ocean warming is a priority research area as they underpin the structure and function of marine ecosystems and the productivity of fisheries that operate within them.
There are a number of range extending species that have become increasingly abundant in Tasmanian waters, providing new fishing opportunities for recreational and, to a lesser extent, commercial fishers. Species in this group include Pink Snapper, King George Whiting and Yellowtail Kingfish. While King George Whiting are known to spawn off the north coast it is unclear as to whether the other species have or are likely to become established as self-sustaining populations in Tasmanian waters or simply persist as spill-over from populations that are centered off mainland Australia. If the former is the case, it will be especially important to consider population attributes such as growth, mortality and reproductive dynamics relevant to the Tasmanian populations when developing and refining management arrangements to maximise the opportunities these 'new' species bring.
In addition, the broader ecosystem impacts of such range extending species, including competition with resident species at similar trophic levels, are unknown but could have consequences for other recreationally and commercially important species. Understanding these relationships will have benefits for the assessment and management of the Tasmanian recreational fishery more generally.
Final report
This work set out to quantify the biology and diet of three key range-shifting species in Tasmania with both recreational and commercial fishery value. The project was heavily reliant on engagement from the recreational fishing community and multiple citizen science initiatives, as well as historical data.
The information collected was used in modelling to predict how suitable habitats for each species may shift under future climate change projections. The work also indicated the potential changes to the ecosystem (such as food web) if these species’ ranges were to move.