4,038 results

Identifying population connectivity of shark bycatch species in NT waters

Project number: 2020-036
Project Status:
Completed
Budget expenditure: $66,430.00
Principal Investigator: Sam Banks
Organisation: Charles Darwin University (CDU)
Project start/end date: 3 Dec 2020 - 9 Dec 2021
Contact:
FRDC

Need

This project is needed for three main reasons:

1. It directly addresses a NT RAC priority in the 2019 call for funding applications relating to improving sustainable yield estimates to inform stock assessment programs for undefined target species and protected species in the Offshore Net and Line Fishery. The project will support sustainable fishing practices for important commercial fisheries in the NT and the development of new commercial opportunities within these fisheries: The impacts of fishery activities on these species, either through bycatch or targeted harvest, are difficult to assess in the absence of information on population connectivity and stock structure.

2. The project will develop capacity for fisheries research and monitoring in NT waters. Genetics methods are widely applied to fisheries research and monitoring and training of an early career fisheries scientist in the application and interpretation of genetic data will be a key outcome of this project.

3. The project will provide key information to support the transition of these species from bycatch to a harvested byproduct species, including an evaluation of leading-edge genetic techniques in fisheries assessment and monitoring.

Objectives

1. To develop population connectivity model for Whitecheek and Milk Shark
2. To develop capacity for research and monitoring of shark species within the Northern Territory
3. To evaluate the utility of genetic techniques in fisheries monitoring

Final report

ISBN: 978-1-922684-78-3 (Print), 978-1-922684-79-0 (Web)
Authors: Sam Banks Amy Kirke Fernanda Alves Grant Johnson and David Crook
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Industry
PROJECT NUMBER • 2020-020
PROJECT STATUS:
COMPLETED

Determining the spatial distribution and abundance indices for Moreton Bay Bugs, Thenus parindicus and Thenus australiensis in Queensland to improve stock assessment and management

We report on the first comprehensive investigation into the spatial distribution of Moreton Bay Bugs within the Queensland East Coast Otter Trawl Fishery. This research was a collaboration between the Queensland Department of Agriculture and Fisheries and James Cook University, applying...
ORGANISATION:
Department of Primary Industries (QLD)
SPECIES
Blank
Industry
PROJECT NUMBER • 2019-214
PROJECT STATUS:
COMPLETED

Survey for WSSV vectors in the Moreton Bay White Spot Biosecurity Area

The objective of this project was to undertake opportunistic plankton sampling and collect small non-commercial species of decapod crustaceans in northern Moreton Bay and near the intakes of the three prawn farms which remained operating on the Logan River during April and May 2020, at a time when...
ORGANISATION:
DigsFish Services Pty Ltd
Industry
PROJECT NUMBER • 2019-213
PROJECT STATUS:
COMPLETED

Tackle Box - Fishing at home during Covid 19

This project examined the impact of Covid-19 on recreational fishing using a citizen science approach. The Australian Recreational Fishing Foundation (ARFF) teamed up with Infofish Australia Pty Ltd to use recaptures of tagged fish in Queensland and fishing competitions around Australia in novel...
ORGANISATION:
Australian Recreational Fishing Foundation (ARFF)
Environment
PROJECT NUMBER • 2019-212
PROJECT STATUS:
COMPLETED

Compilation of information for the US Marine Mammal Protection Act Comparability Finding process

Recent changes to legislation in the United States (US) requires that nations importing seafood must demonstrate that they have a regulatory program for reducing marine mammal bycatch that is comparable in effectiveness to the US standards under the ‘Fish and Fish Product Import...
ORGANISATION:
Alice Ilona Mackay
Industry
PROJECT NUMBER • 2019-210
PROJECT STATUS:
COMPLETED

Oyster Industry Response to the COVID19 Crisis

This project was conducted by Oysters Australia (OA) to identify ways of supporting the industry during the COVID-19 pandemic. The research was initiated in April 2020 at a time when oyster sales across the nation had dropped 95%. Oysters Australia staff and subcontractors conducted the...
ORGANISATION:
Oysters Australia Ltd
Environment
Industry
PROJECT NUMBER • 2019-208
PROJECT STATUS:
COMPLETED

2020-2025 Strategic Plan for the Australian Oyster Industry

The primary purpose of this plan is to coordinate oyster industry research, development, and extension (RD&E) across Australia to ensure that usable outputs are provided to oyster businesses. The plan outlines a set of RD&E programs and a list of priority projects for which research...
ORGANISATION:
Oysters Australia Ltd
Industry
PROJECT NUMBER • 2019-207
PROJECT STATUS:
COMPLETED

Developing a value proposition and future track for the National Aquaculture Council (NAC)

Following a decline in its membership, the board of the National Aquaculture Council (NAC) initiated this project to gain an understanding of the needs and expectations of industry stakeholders in terms of industry representation. The two core objectives being: 1. To determine the ideal value...
ORGANISATION:
National Aquaculture Council (NAC)
View Filter

Species

Organisation