126,240 results
Environment
Industry
PROJECT NUMBER • 2020-094
PROJECT STATUS:
COMPLETED

Improving the availability of safe and effective veterinary medicines for Australia's seafood industry

In this project we documented how off-label use in aquaculture can be efficiently and effectively regulated. We did this by describing South Australia’s off-label regulatory framework (the off-label framework) used by the Department of Primary Industries and Regions (PIRSA). PIRSA uses the...
ORGANISATION:
University of Adelaide
Industry
PROJECT NUMBER • 2020-093
PROJECT STATUS:
COMPLETED

Discussion Papers on seafood traceability and labelling

All food sold in Australia must comply with the Food Standards Code. Food label claims are subject to Australian Consumer Law, prohibiting false, misleading or deceptive behaviour. Australian seafood consumers face existing risks and confusion regarding species, nomenclature, and...
ORGANISATION:
Intuitive Food Solutions
Industry

Energy use and carbon emissions assessments in the Australian fishing and aquaculture sectors: Audit, self-assessment and guidance tools for footprint reduction

Project number: 2020-089
Project Status:
Completed
Budget expenditure: $98,500.00
Principal Investigator: Robert A. Bell
Organisation: Blueshift Consulting
Project start/end date: 21 Feb 2021 - 23 Jul 2021
Contact:
FRDC

Need

As identified in the EOI scope and from previous FRDC and other research, there are multiple needs for further information on energy use and greenhouse gas (GHG) emissions in the Australian fisheries and aquaculture sectors (F&A).
Firstly, at the top-level, a national account of these sector’s performance is necessary to provide a clear determination of the overall F&A contribution within the Agriculture, Forestry & Fishing Industry classification (AFF Industry) classification within National Inventory Data. The AFF Industry is second largest emissions sector and there is a need to disaggregate the F&A sector from the broader agricultural data, and to also develop industry baselines against which further performance can be measured (and potentially benchmarked against other sectors).
Second, there is a need for sub-sectors (specific managed fisheries or industry groups) as well as individual companies to be able measure, assess and then potentially manage their own energy use and emissions.
Finally, once companies, subsectors and the F&A sectors have data, there is a need for education and tools to assist them to improve energy efficiency and profitability, lower emissions and related risks but also importantly how to create positive engagement with stakeholders, particularly customers becoming more discerning in product selection based on carbon footprint, to maintain competitiveness in consumer protein selection decision-making.

Objectives

1. Program 1: Establish energy use and GHG profile of Australian F&A sectors
2. Program 2: Develop and self-assessment tool for Australian F&A sectors energy efficiency and GHG
3. Program 3: Develop a toolbox and examples for emissions reduction opportunities in the fisheries & aquaculture sectors

Final report

ISBN: 978-0-646-86114-2
Author: Robert A. Bell
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.

Project products

Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Communities
PROJECT NUMBER • 2020-088
PROJECT STATUS:
COMPLETED

Quantifying inter-sectoral values within and among the Indigenous, commercial and recreational sectors

This study explored the extent to which values are shared (or not shared) by fishers across three key sectors (i.e., Indigenous, commercial and recreational). The study was run online using Q-Method Software (https://qmethodsoftware.com), a semi-quantitative technique used to explore human...
ORGANISATION:
Natural Capital Economics
Environment
PROJECT NUMBER • 2020-078
PROJECT STATUS:
COMPLETED

Circular Economy Opportunities for Fisheries and Aquaculture in Australia

The aim of this project was to understand current circular economy (CE) activities, opportunities and barriers in the fisheries and aquaculture sector in Australia through extensive stakeholder engagement. This research and consultation project has found that there are many CE activities occurring...
ORGANISATION:
University of Technology Sydney (UTS)
View Filter

Species

Organisation