15 results
Industry
PROJECT NUMBER • 2021-129
PROJECT STATUS:
COMPLETED

Understanding of spatial extent, infection window and potential alternative hosts for the oyster disease QX in Port Stephens

This report details an investigation by the NSW Department of Primary Industries into QX disease in Sydney Rock Oysters (Saccostrea glomerata; SROs) in Port Stephens during the 2022. This followed from the first incursion of this disease in this estuary in August of 2021. QX disease has...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)

Understanding water quality risk for the sustainable and efficient production of Pacific and Sydney Rock Oysters

Project number: 2021-075
Project Status:
Current
Budget expenditure: $85,791.00
Principal Investigator: Shauna Murray
Organisation: University of Technology Sydney (UTS)
Project start/end date: 11 Dec 2021 - 6 Jan 2026
Contact:
FRDC

Need

The Macleay River is a typical oyster farming estuary in that it is impacted by poor water quality from time to time. In particular, the Macleay is an example of the range of water quality issues that can impact oyster farming, as in the past 2 years, it has been effected by: flooding, bushfire runoff, acid sulphate runoff, de-oxygenated water, QX disease, low salinity, and sewage spills. As in all NSW estuaries, it also has fluctuating levels of potentially harmful algal species occasionally.

Little water quality data exists yet for this estuary, despite the fact that it has suffered recent severe ‘black water’ events. This project will represent the first time that very detailed water quality information will be collected and analysed from this estuary, in order to determine predictive models to improve the ability of oyster farmers to respond to poor water quality events.

For this reason, this estuary will serve as a case study for the range of issues that can impact oyster farming in Australia. This site will be used as an example of an approach to managing water quality using high quality data. In addition, the Georges River estuary and the Hawkesbury estuary experience other issues and have active growth of Pacific oysters rather than Sydney Rock oysters. The Hawkesbury has experienced a large scale POMs outbreak which devastated industry. The Georges River has been an experimental site for oyster research by the NSW DPI and Universities for decades, and has an extensive collection of metadata associated with it.

Data from these three estuaries is appropriate and can be useful to oyster growers in Tasmania and South Australia, as we will examine the impact on water quality impacting a Pacific Oyster growing estuary, and because water quality issues such as impact these estuaries are typical examples of the issues impacting this industry nationally. Tasmanian and South Australian oyster farmers will benefit from the information about how a real time sensor network and associated biological data collection can be used to model water quality issues of concern to industry, as well as being used for industry regulatory purposes.

Objectives

1. Collect new biological and physical data from the Macleay estuary using a real time temperature and salinity sensor, oysters and water samples.
2. Conduct modelling and analysis of real time sensor data from estuaries in comparison to biological data, showing the impact of water quality variables, rainfall and disease on oysters in estuaries farming Sydney rock oysters and Pacific oysters.
3. Discuss outcomes with oyster farmers, regulators, government, researchers, councils other industry groups. Discuss outcomes with app developers able to incorporate the models outcomes of the project into their products.
4. Produce a guidance document outlining the way in which real time environmental sensing data is acceptable and applicable for use by shellfish safety regulators.
Industry
PROJECT NUMBER • 2019-208
PROJECT STATUS:
COMPLETED

2020-2025 Strategic Plan for the Australian Oyster Industry

The primary purpose of this plan is to coordinate oyster industry research, development, and extension (RD&E) across Australia to ensure that usable outputs are provided to oyster businesses. The plan outlines a set of RD&E programs and a list of priority projects for which research...
ORGANISATION:
Oysters Australia Ltd
Environment
PROJECT NUMBER • 2019-005
PROJECT STATUS:
COMPLETED

Risk analysis to identify and minimise biosecurity risks arising from recycling bivalve mollusc shell waste during shellfish reef restoration projects in Australia

The assessment indicated that heating recycled mollusc shells in water to 80°C for at least 5 minutes would meet the ALOP for all diseases (despite uncertainly for some disease agents due to lack of information, as indicated by ?), and was within the ALOP for all pests of concern. This method...
ORGANISATION:
DigsFish Services Pty Ltd
Industry
PROJECT NUMBER • 2018-102
PROJECT STATUS:
COMPLETED

Understanding Ostreid herpesvirus type 1 risk: alternative hosts and in situ hybridisation

South Australia (SA) has a large edible oyster industry primarily growing Pacific oysters (Crassostrea gigas). The industry is regionally-based, an important employer and a substantial contributor to regional economies. Pacific oyster mortality syndrome (POMS) is a serious infectious disease of C....
ORGANISATION:
Flinders University
Industry
PROJECT NUMBER • 2018-097
PROJECT STATUS:
COMPLETED

Survey of Enterprise-level Biosecurity across the Australian Aquaculture Industry

The Australian Government Department of Agriculture and Water Resources (the department) commissioned the independent research company Instinct and Reason to conduct a survey aimed at farm owners/managers in the Australian aquaculture industry. The survey aimed to investigate the level of...
ORGANISATION:
Instinct and Reason
Adoption
PROJECT NUMBER • 2017-233
PROJECT STATUS:
COMPLETED

Future Oysters CRC-P Communication and Adoption

The Future Oysters CRC-P project (CRC-P 2016-553805; Future Oysters) was funded by the Australian Government’s Business Cooperative Research Centres (CRC) Program, which is managed by the Department of Industry, Innovation and Science (DIIS). The Future Oysters CRC-P project was developed to...
ORGANISATION:
Australian Seafood Industries Pty Ltd (ASI)
Industry
PROJECT NUMBER • 2017-203
PROJECT STATUS:
COMPLETED

Risk from Diarrhetic Shellfish Toxins and Dinophysis to the Australian Shellfish Industry

This study first examined DSTs in spiked and naturally contaminated shellfish - Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS ...
ORGANISATION:
University of Technology Sydney (UTS)
View Filter

Species