14 results
Environment
Environment
Environment
PROJECT NUMBER • 2019-103
PROJECT STATUS:
COMPLETED

Strategic Planning Workshop for Yellowtail Kingfish Stock Assessment in South-Eastern Australia

The project facilitated cross-jurisdictional and cross-sectoral discussions on aspects of the Eastern Australia biological stock of Yellowtail Kingfish. Several knowledge gaps relating to biological and life-history parameters, as well as reliable data on the recreational fishery across all...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Environment
PROJECT NUMBER • 2019-027
PROJECT STATUS:
COMPLETED

Improving and promoting fish-trawl selectivity in the Commonwealth Trawl Sector (CTS) and Great Australian Bight Trawl Sector (GABTS) of the Southern and Eastern Scalefish and Shark Fishery (SESSF)

This project sought to produce the first-ever review of technical options for improving fish-trawl selectivity around the planet and then use this information to address a deficit in experimental work quantifying the utility of industry-developed and new selective-gear modifications in the...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Environment
PROJECT NUMBER • 2019-021
PROJECT STATUS:
CURRENT

Integrating recreational fishing information into harvest strategies for multi-sector fisheries

This interim report provides an update on workshops with recreational fishers, scientists and managers to investigate recreational fishing objectives for three stocks of recreational importance in NSW – Mulloway, Yellowtail Kingfish, and Snapper. The study forms part of a broader research...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Environment
PROJECT NUMBER • 2019-016
PROJECT STATUS:
CURRENT

Estimating the biomass of fish stocks using novel and efficient genetic techniques

This project represents the first detailed study exploring the relationship between eDNA concentrations and the biomass and/or abundance of some economically and ecologically important (primarily freshwater) fish species in Australia. The work was conducted over four-and-a-half-years as part of a...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)

Evaluation of practical technologies for Perfluoroalkyl (PFA) remediation in marine fish hatcheries

Project number: 2018-125
Project Status:
Completed
Budget expenditure: $60,000.00
Principal Investigator: Wayne O'Connor
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 29 Apr 2019 - 30 Jan 2020
Contact:
FRDC

Need

Per- and poly-fluoroalklys (PFASs) are now emerging as pollutants with potentially catastrophic impact on aquaculture facilities. Two key research institutes have already demonstrated the presence of PFASs in marine fish broodstock and have observed impacts on offspring that are consistent with those observed in
literature studies. As testing continues there is the expectation that the number of facilities affected will increase. To compound the challenge our understanding of the impacts of PFASs on aquatic species is limited. In order to further assess these impacts, PFASs must be introduced into experimental systems in a
controlled fashion and therefore we must have the capacity to remove those pollutants before release. To protect our facilities and permit PFAS impacts research there is a need to rapidly assess available PFAS treatment technologies.

Objectives

1. confirm the effectiveness of ozofractionation and linseed infused polypropylene in the removal of PFAS from seawater,
2. investigate the impacts of flow rate through fractionation chambers on PFAS removal
3. test fractionation PFA removal efficiency without ozone and with ozone at addition levels compatible with aquaculture practices.*

Final report

ISBN: 978-1-76058-392-7
Authors: Wayne O’Connor Gavin Partridge Stewart Fielder Lindsey Woolley Thava Palanisami
Final Report • 2020-06-01 • 1.29 MB
2018-125-DLD.pdf

Summary

Per- and poly-fluoroalkly substances (PFASs) are now emerging as pollutants with potentially catastrophic impact on aquaculture facilities. Two key research institutes, Port Stephens Fisheries Institute (PSFI) in NSW and Australian Centre for Applied Aquaculture Research (ACAAR) in Western Australia have discovered the presence of PFASs in their influent seawater sources and in their broodstock fish. PFASs are proven Endocrine Disrupting Chemicals of fish and can cause reduction in fecundity, and deformity, abnormal development and increased mortality of fish larvae. Both research institutes have observed impacts on larvae that are broadly consistent with those observed for PFASs in literature studies. As testing for PFASs continues we expect that the number of facilities affected in Australia, and indeed globally, may increase. Further, to assess impacts, PFASs must be introduced into experimental systems in a controlled fashion and therefore we must have the capacity to remove those pollutants before release of effluent water. To protect our facilities and permit PFASs impacts research there was a need to assess available treatment technologies for removal of PFASs in seawater.
View Filter

Organisation