Future Oysters CRC-P Communication and Adoption
Risk from Diarrhetic Shellfish Toxins and Dinophysis to the Australian Shellfish Industry
SOCo Financial Strategy Workshop 17 November 2017
Future Oysters CRC-P: Income from ASI; FRDC OA PIRSA Contributions; and uncommitted extension funds management project
Future oysters CRC-P: Species diversification to provide alternatives for commercial production
The establishment of a new native oyster and/or western rock oyster aquaculture sectors in SA and the former in Tasmania will not only diversify the business risk of the existing Pacific oyster sector, but has the potential to become a multi-million dollar industry itself. As native oysters would be more suited to subtidal or low intertidal culture while western rock oysters are an ideal alternative species to mitigate POMS, the successful development of these aquaculture sectors will strengthen the confidence of existing/new growers and investors in Pacific, western rock and native oysters; thereby encouraging further expansion of the industry. In addition, supporting species diversification is one of the high strategic priorities in the Oysters Australia Strategic Plan 2014-2019.
Final report
Future Oysters CRC-P: Advanced aquatic disease surveillance for known and undefined oyster pathogens
During the February 2016 OsHV-1 outbreak in Tasmania, tracing activities in Tasmania and South Australia required substantial follow-up and surveillance to define diseased areas and prove that response measures had prevented entry of OsHV-1. This surveillance was expensive, and PIRSA and DPIPWE developed a strategy to decrease cost for future surveillance. Cost estimates for ongoing surveillance for early detection have been prohibitive, and both the Australian Pacific oyster aquaculture industries and State governments have expressed a need for more cost effective surveillance options for monitoring disease in affected areas and early detection in currently unaffected regions.
Winter mortality is a major cost impost on the Sydney Rock Oyster industry. Its current status as a syndrome of unknown cause prevents methods from being developed to minimise losses, and an improved understanding of its cause is required to begin to develop management strategies. Mitigating losses will increase profitability for the Sydney rock oyster industry.
SA oyster mortality syndrome (SAMS) is a sporadic, regionally concentrated occurrence of high mortality that is not associated with readily detectable pathogens. The use of the terms SAMS implies that these mortalities have commonalities but this is not proven. This project will aim to provide a focused approach to developing a case definition for SAMS and as a result help direct mitigation strategies to reduce or remove the problem. If a cause can be isolated, an on farm decision tool swill be developed to allow better ‘trigger point’ identification for when farm managers need to engage diagnosticians or instigate identified mitigations strategies.
Final report
This project improved understanding of methods for surveillance for several diseases of farmed oysters. Surveillance is a critical component of biosecurity and aquatic animal health activities. Surveillance supports understanding health status of populations of animals, provides evidence to support claims of freedom or understanding prevalence and increases the likelihood that a new or emergent disease can be controlled.
Mollusc diseases are less well understood than terrestrial animal and many finfish diseases and this project sought to develop understanding of three oyster diseases of substantial economic impact in the Australilan edible oyster aquaculture industries:
Pacific Oyster mortality syndrome (POMS), South Australian mortality syndrome (SAMS), and winter mortality (WM).
Future oysters CRC-P: Polymicrobial involvement in OsHV outbreaks (and other diseases)
During the last two decades a number of disease outbreaks have led to mass oyster mortalities and the closure of several oyster-harvesting regions, resulting in multi-million dollar losses. These outbreaks mirror a global pattern of increased aquaculture disease, with disease emergence potentially linked to environmental degradation (pollution) and climate change related processes, such as rising seawater temperature. Within NSW estuaries, multiple microbiological agents have been implicated in oyster diseases, but a clear understanding of the ecological and environmental drivers of disease outbreaks has remained elusive. This means we cannot predict when outbreaks will occur, making it very difficult to manage infection events and develop strategies to mitigate future oyster disease events.
Since 2008, Pacific Oyster fisheries in several parts of the world have been decimated by the influence of Pacific Oyster Mortality Syndrome (POMS), resulting in high (>95%) rates of juvenile oyster mortality. Recent evidence indicates that POMS is a polymicrobial syndrome, that is not only caused by the OsHV-1 virus, but includes the involvement of pathogenic bacteria from the Vibrio genus, a bacterial group comprising species that cause disease in a diverse range of marine animals and which is responsible for significant mortality in a variety of aquaculture industries. However, our understanding of this complex interaction is limited.
This project will provide valuable insights into the microbial communities associated with oysters, how those communities vary and how they might influence the course of other diseases. The project will also indicate whether breeding influences the microbial communities associated with oysters and whether this is influencing the impact diseases like OsHV is having on different Pacific oyster families.
Final report
future efforts hoping to employ the oyster microbiome for diagnostic purposes.
Future oysters CRC-P: New Technologies to Improve Sydney Rock Oyster Breeding and Production
The hatchery sector for SRO is still developing and any assistance with its underlying operating challenges or potential increases to its seed market significantly improve the prospects for its continued development.
Tetraploid SRO: Triploid SRO can grow up to 30% faster than normal SRO and commonly have a significantly longer marketability window. Accordingly, many framers have eagerly awaited the supply of more triploid seed. In order for this to occur new techniques that overcome the shortcomings of direct induction are required - techniques that don't involve the direct application of harmful chemicals to what will eventually be a foodstuff.
Gamete preservation: Currently techniques for strip spawning SRO gametes typically results in the destruction of valuable broodstock and the collection of many more gametes than are required immediately. The capacity to simply and cheaply store gametes for relatively short periods of time offers a number of advantages. Once the hatchery operator is satisfied with the performance of gametes (usually apparent within hours to days) gametes could be shared with other hatcheries. This is particularly valuable where brood stock are scarce because of time of year or they are from a limited population in a breeding program. If problems occur, stored gametes could be used to commence a second batch without the need to continue to hold and feed broodstock, or to recreate a particular cross (or new crosses) within a breeding program.
Maturation: SRO broodstock can take up to 10 weeks to bring into condition within a hatchery and can consume up to 80% of the algae required for a hatchery production run - this is both time consuming and expensive. Technology that accelerates reproductive condition and then stimulates spawning on demand could significantly reduce these costs.