41,874 results

Development of an automated oyster grading and counting line

Project number: 1992-125.20
Project Status:
Completed
Budget expenditure: $32,980.00
Principal Investigator: Michael White
Organisation: Seafood Technologies Pty Ltd
Project start/end date: 29 Oct 1994 - 23 Apr 1999
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence

Aquatic Animal Health Subprogram: the development of media tools to increase the awareness of aquatic animal diseases

Project number: 2003-645
Project Status:
Completed
Budget expenditure: $113,630.00
Principal Investigator: Wayne Tindall
Organisation: Big Time Solutions Pty Ltd
Project start/end date: 29 Jul 2003 - 20 Oct 2005
Contact:
FRDC

Objectives

1. To produce, distribute and promote a comprehensive training and awareness kit for aquatic animal disease emergencies.

Sydney rock oyster genetics programme

Project number: 1981-002
Project Status:
Completed
Budget expenditure: $0.00
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 28 Dec 1986 - 31 Dec 1986
Contact:
FRDC

Objectives

1. Understand life history of the haplosporidian parasite Marteilia sydneyi,
2. identify secondary host & determine incidence of oyster infestation & mortality against environmental factors.
3. Cultivation techniques to reduce mortality. Examine possible of breeding disease-resistant strain

Abalone Aquaculture Subprogram: a national survey of diseases of commercially exploited abalone species to support trade and translocation issues and the development of health surveillance programs

Project number: 2002-201
Project Status:
Completed
Budget expenditure: $214,113.00
Principal Investigator: Judith Handlinger
Organisation: University of Tasmania (UTAS)
Project start/end date: 19 Oct 2002 - 30 Aug 2006
Contact:
FRDC

Need

Abalone Growers Associations in Victoria, Tasmania and South Australia have given their support for the establishment of health monitoring programs of their farm’s stock, and are willing to contribute financially for establishing these and for ongoing monitoring. They see such programs as putting them in a unique position to to enable them to prevent disease in their stock and of meeting future market expectations in relation to health accreditation. This process is threatened by inadequate data on diseases in wild stock, and in some states by limited experience in abalone diagnosis.

Similarly the wild harvest abalone industry recognises vulnerability from a lack of knowledge of the occurrence and distribution of diseases in Australian wild stocks, in a climate where interstate translocation and trade access and quality issues are increasing. They also seek assurances on the health of farmed stock and of stock used for reseeding operations. As a result, the wild abalone sector and fisheries and animal health authorities in these states also strongly support a baseline survey of diseases present in the exploited abalone species, and development of improved surveillance capability.

The project is to acquire this background data on abalone disease, by a health survey covering the natural range of the exploited temperate abalone species. It includes the abalone aquaculture industry and the wild fishery in SA, Victoria, Tasmania, NSW and WA. The project will incorporate associated initial training, permanent presentation on collated results in accessible electronic format (CD and the subprogram’s website), and an abalone disease symposium to develop a net-work of state-based resources for on-going diagnosis, health certification and other shellfish health related functions at reasonable cost to the industry.

Development of the on-going state-based surveillance programs for aquaculture will progress in conjunction with this (without cost to the project), and with consultation with wild fisheries industries and managers, who will also benefit from improved capability for diagnostic and surveillance services.

Objectives

1. To undertake, over approximately one year, a single-round health survey of abalone from representative wild groups of commercial abalone species throughout their range in 5 states, using statistically relevant samples appropriate to maximize the chances of detection of serious diseases and define the disease agents present.
2. To similarly examine equivalent samples from all abalone farms and reseeding operations in these states.
3. From these to develop a database of abalone disease, their location and apparent prevalence (with confidence limits), then to present these findings to the wild and aquaculture industries and State and National government agencies, and to record them pictorially in accessible electronic format.
4. To expand the pool of abalone health expertise by holding an initial training workshop for collaborating pathologists to facilitate the survey, and a national abalone health meeting to present disease and pathology findings to all relevant pathologists and health service providers, to ensure their adoption.
5. Ensure the resulting information and skills are fully utilized by assisting in the development of cost-effective on-going health surveillance programs through collaboration with the abalone aquaculture industry and state authorities.

Recruitment, growth, mortality and habitat use of juvenile banded morwong (Cheilodactylus spectabilis)

Project number: 1995-158
Project Status:
Completed
Budget expenditure: $21,895.00
Principal Investigator: Robert White
Organisation: University of Tasmania (UTAS)
Project start/end date: 28 Jun 1996 - 1 Jan 2002
Contact:
FRDC

Objectives

1. Determine patterns of recruitment from post-larvae to the juvenile stock on reefs.
2. Examine growth, mortality, and habitat use of juvenile fish.
3. Investigate the impact of fishing on behaviour and habitat use and overall population structure through underwater observations.

People development program: Aquatic Animal Health Training Scheme - Josiah Pit

Project number: 2009-315.22
Project Status:
Completed
Budget expenditure: $10,127.00
Principal Investigator: Josiah Pit
Organisation: Aquarium Industries Pty Ltd
Project start/end date: 24 Jun 2012 - 30 Sep 2012
Contact:
FRDC

Need

The ornamental fish industry in Australia, valued at over $200 million (FRDC 2007) is comprised of more than 200 licensed fish breeders, collectors and importers who through a network of wholesalers supply over 2000 pet shops and specialist aquarium outlets distrubuted around the country.

The majority of fish traded within Australia are sourced from imports (around 15 million fish annually), which comprises mostly freshwater finfish, while local production from breeding varies between 5-10 million per annum.

Like all animals, aquarium fish can carry and transmit disease. This includes parasites, bacteria and viruses. These 'diseases' could seriously affect the growth of the ornamental industry in Australia and therefore gaining a better understanding in terms of identification, treatment and management is impecable to allow this industry to flourish.

The project will identify existing and emerging Ornamental Fish Diseases as well as discuss the methodology for diagnosis and treatment of parasitic, bacterial, viral, as well as nutritional, and environmental diseases of warmwater food fish and aquarium species.

Objectives

1. Improved knowledge and skills in identifying existing and emerging diseases impacting the Aquarium Sector
2. Increased knowledge on existing and emerging disease treatments and their management
3. Establish a network of Ornamental fish professionals dealing in Aquatic Diseases

Aquatic Animal Health Subprogram: Pacific oyster mortality syndrome (POMS) - risk mitigation, epidemiology and OsHV-1 biology

Project number: 2012-032
Project Status:
Completed
Budget expenditure: $783,045.00
Principal Investigator: Richard Whittington
Organisation: University of Sydney (USYD)
Project start/end date: 18 Jun 2012 - 6 Sep 2015
Contact:
FRDC

Need

There is a disturbing pattern of diseases in commercial molluscs nationally. They have required a succession of government/industry responses, with no clear solutions:QX disease, Sydney rock oysters, NSW and QLD; NSW; Pacific oyster mortality syndrome, NSW; Abalone viral ganglioneuritis, VIC; Oyster oedema disease, pearl oysters, WA; Winter mortality, Sydney rock oyster, NSW.

Economic impacts have been substantial or devastating. Wild fisheries and aquaculture have been impacted. In NSW, the primary impact of QX disease led to replacement of Sydney rock oysters by triploid Pacific oysters to reestablish the industry in some estuaries, but this is now threatened by POMS.

In every case the new disease has spread. It has not been possible to devise an intervention strategy that would halt disease spread or ensure the recovery of the industry. Investigating the behaviour of POMS during its recrudescence in summer 2011/2012 in FRDC project 2011-053 afforded a unique insight into the disease, and these observations need to be extended over time to identify factors which may be used to reduce the impact of the infection.

This project seeks to address 6 specific research priorities identified by FRDC and will concurrently investigate the effect of host, environment and husbandry factors on POMS prevalence and mortality rate in Pacific oysters with the objective of discovering aspects of epidemiology which can be manipulated by oyster growers. If POMS spreads beyond its current limited distribution in NSW, commercial scale production of Pacific oysters in the face of POMS will be essential for the viability of the industry pending development of technical solutions such as genetically resistant lines.

FRDC strategic R&D theme 1 - biosecurity and aquatic animal health, and Aquatic Animal Health Subprogram priority - Nature of disease and host-pathogen interaction - immunology of aquatic invertebrates.

Objectives

1. To determine/confirm the identity of the one or more variant(s) of Ostreid herpesvirus associated with the recent outbreaks of POMS
2. To determine the mechanism(s) of transmission of disease
3. To determine the major risk factors that contribute to precipitation of disease outbreaks thereby identifying potential risk-mitigation management practices
4. To identify the natural reservoir(s) for the virus
5. To determine the stability of the virus in the environment
6. To identify physical and chemical means for viral inactivation
7. To develop an infecitivity model for POMS suitable for selection of resistant oysters and pathogenesis/environmental research
8. To address future shortages of technical expertise through the training and supervision of at least 1 PhD student

Project products

Journal • 2013-12-17

Summary

Abstract:

Mortality of farmed triploid Pacific oysters (Crassostrea gigas) associated with Ostreid herpesvirus-1 (OsHV-1) was first recorded in Australia in the Georges River/Botany Bay estuary (New South Wales) in late 2010. Two years later, the first sign of possible inter-estuarine spread was observed when commercial triploid Pacific oysters in the Hawkesbury River estuary, located 50 km north of Botany Bay, were affected by mass mortality.

Journal • 2015-03-09

Summary

Abstract:

In Australia, the spread of the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) threatens the Pacific oyster industry. There is an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus under controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1μVar strain.

Journal • 2014-11-21

Summary

Abstract:

 

The microvariant genotype of Ostreid herpesvirus-1 (OsHV-1 μVar) has severely disrupted the production of Pacific oysters Crassostrea gigas in Europe, New Zealand, and Australia since its first detection in France in 2008. The disease occurs in the warmer months, recurs annually, and requires new management strategies. Larvae and spat are the most susceptible life history stages, which poses a threat to hatchery production.

 

Journal • 2015-01-06

Summary

Abstract:

Management of mass mortality events associated with Ostreid herpesvirus-1 microvariant (OsHV-1 μVar) is vital for aquaculture of Crassostrea gigas. As a consequence, the understanding of transmission mechanisms and risk factors enabling husbandry solutions to be developed constitutes an international research priority. In this context, a longitudinal intervention study was set up in Woolooware Bay, Australia, during summer in 2012–2013.

Journal • 2013-07-29

Summary

Abstract:

In 2010 Ostreid herpesvirus-1 (OsHV-1) was detected in Australia and had a disastrous impact on Pacific oyster Crassostrea gigas aquaculture and coastal communities. The acronym POMS (Pacific Oyster Mortality Syndrome) was created in Australia to refer to mass mortalities due to OsHV-1. While management of this disease mainly involves active surveillance, rigorous biosecurity protocols and mollusc breeding  programs targeting production of resistant animals, the effects of aquaculture practices on mortality outbreaks are still poorly understood. The present study aimed to determine the effect of growing heights on OsHV-1 associated mortality in C. gigas in Woolooware Bay (Australia) during the summer 2011/2012.

Journal • 2014-10-05

Summary

Abstract:

Ostreid herpesvirus-1 (OsHV-1) is responsible for massive mortality events in commercially farmed Pacific oysters (Crassostrea gigas) in Australia, New Zealand, Europe and the USA. Economic losses have been severe in many countries since 2008, associated with a strain known as OsHV-1µ-var. Despite intensive studies of the virus itself, there is almost no information on its detection in natural seawater, how it is spread over wide geographic distance in water or on how it is transmitted from oyster to oyster via seawater.

Journal • 2013-12-17

Summary

Abstract:

Mortality of farmed triploid Pacific oysters (Crassostrea gigas) associated with Ostreid herpesvirus-1 (OsHV-1) was first recorded in Australia in the Georges River/Botany Bay estuary (New South Wales) in late 2010. Two years later, the first sign of possible inter-estuarine spread was observed when commercial triploid Pacific oysters in the Hawkesbury River estuary, located 50 km north of Botany Bay, were affected by mass mortality.

Journal • 2015-03-09

Summary

Abstract:

In Australia, the spread of the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) threatens the Pacific oyster industry. There is an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus under controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1μVar strain.

Journal • 2014-11-21

Summary

Abstract:

 

The microvariant genotype of Ostreid herpesvirus-1 (OsHV-1 μVar) has severely disrupted the production of Pacific oysters Crassostrea gigas in Europe, New Zealand, and Australia since its first detection in France in 2008. The disease occurs in the warmer months, recurs annually, and requires new management strategies. Larvae and spat are the most susceptible life history stages, which poses a threat to hatchery production.

 

Journal • 2015-01-06

Summary

Abstract:

Management of mass mortality events associated with Ostreid herpesvirus-1 microvariant (OsHV-1 μVar) is vital for aquaculture of Crassostrea gigas. As a consequence, the understanding of transmission mechanisms and risk factors enabling husbandry solutions to be developed constitutes an international research priority. In this context, a longitudinal intervention study was set up in Woolooware Bay, Australia, during summer in 2012–2013.

Journal • 2013-07-29

Summary

Abstract:

In 2010 Ostreid herpesvirus-1 (OsHV-1) was detected in Australia and had a disastrous impact on Pacific oyster Crassostrea gigas aquaculture and coastal communities. The acronym POMS (Pacific Oyster Mortality Syndrome) was created in Australia to refer to mass mortalities due to OsHV-1. While management of this disease mainly involves active surveillance, rigorous biosecurity protocols and mollusc breeding  programs targeting production of resistant animals, the effects of aquaculture practices on mortality outbreaks are still poorly understood. The present study aimed to determine the effect of growing heights on OsHV-1 associated mortality in C. gigas in Woolooware Bay (Australia) during the summer 2011/2012.

Journal • 2014-10-05

Summary

Abstract:

Ostreid herpesvirus-1 (OsHV-1) is responsible for massive mortality events in commercially farmed Pacific oysters (Crassostrea gigas) in Australia, New Zealand, Europe and the USA. Economic losses have been severe in many countries since 2008, associated with a strain known as OsHV-1µ-var. Despite intensive studies of the virus itself, there is almost no information on its detection in natural seawater, how it is spread over wide geographic distance in water or on how it is transmitted from oyster to oyster via seawater.

Journal • 2013-12-17

Summary

Abstract:

Mortality of farmed triploid Pacific oysters (Crassostrea gigas) associated with Ostreid herpesvirus-1 (OsHV-1) was first recorded in Australia in the Georges River/Botany Bay estuary (New South Wales) in late 2010. Two years later, the first sign of possible inter-estuarine spread was observed when commercial triploid Pacific oysters in the Hawkesbury River estuary, located 50 km north of Botany Bay, were affected by mass mortality.

Journal • 2015-03-09

Summary

Abstract:

In Australia, the spread of the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) threatens the Pacific oyster industry. There is an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus under controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1μVar strain.

Journal • 2014-11-21

Summary

Abstract:

 

The microvariant genotype of Ostreid herpesvirus-1 (OsHV-1 μVar) has severely disrupted the production of Pacific oysters Crassostrea gigas in Europe, New Zealand, and Australia since its first detection in France in 2008. The disease occurs in the warmer months, recurs annually, and requires new management strategies. Larvae and spat are the most susceptible life history stages, which poses a threat to hatchery production.

 

Journal • 2015-01-06

Summary

Abstract:

Management of mass mortality events associated with Ostreid herpesvirus-1 microvariant (OsHV-1 μVar) is vital for aquaculture of Crassostrea gigas. As a consequence, the understanding of transmission mechanisms and risk factors enabling husbandry solutions to be developed constitutes an international research priority. In this context, a longitudinal intervention study was set up in Woolooware Bay, Australia, during summer in 2012–2013.

Journal • 2013-07-29

Summary

Abstract:

In 2010 Ostreid herpesvirus-1 (OsHV-1) was detected in Australia and had a disastrous impact on Pacific oyster Crassostrea gigas aquaculture and coastal communities. The acronym POMS (Pacific Oyster Mortality Syndrome) was created in Australia to refer to mass mortalities due to OsHV-1. While management of this disease mainly involves active surveillance, rigorous biosecurity protocols and mollusc breeding  programs targeting production of resistant animals, the effects of aquaculture practices on mortality outbreaks are still poorly understood. The present study aimed to determine the effect of growing heights on OsHV-1 associated mortality in C. gigas in Woolooware Bay (Australia) during the summer 2011/2012.

Journal • 2014-10-05

Summary

Abstract:

Ostreid herpesvirus-1 (OsHV-1) is responsible for massive mortality events in commercially farmed Pacific oysters (Crassostrea gigas) in Australia, New Zealand, Europe and the USA. Economic losses have been severe in many countries since 2008, associated with a strain known as OsHV-1µ-var. Despite intensive studies of the virus itself, there is almost no information on its detection in natural seawater, how it is spread over wide geographic distance in water or on how it is transmitted from oyster to oyster via seawater.

Aquatic Animal Health Subprogram: development of a database for Australian laboratory diagnostic expertise for diseases of aquatic organisms

Project number: 2003-647
Project Status:
Completed
Budget expenditure: $36,244.00
Principal Investigator: Iain East
Organisation: Department of Agriculture Fisheries and Forestry
Project start/end date: 12 Jul 2003 - 31 Dec 2005
Contact:
FRDC

Need

During emergency disease incidents, rapid diagnosis of the pathogen involved is critical to mounting an effective response. Because each laboratory does not have a complete range of diagnostic capability, often a specialist laboratory needs to be identified to assist in the diagnosis. Currently, there is no database of laboratories or their diagnostic abilities. Identification of alternative laboratories is done on an ad hoc basis, and often when the information is required rapidly, the best alternative laboratory is not identified.
In recent times, there have been actual examples of diagnosis being delayed by samples being sent to an inappropriate laboratory. This project will result in a readily accessible database with an up-to-the-minute listing of laboratories, their diagnostic capabilities and capacities, the range of techniques that they have available to diagnose each pathogen and their level of accreditation.
In Australia, each aquatic animal health laboratory has limited resources and it is not cost-effective to have all laboratories develop the full range of diagnostic capability. However,it is not desirable to send samples to overseas laboratories especially in the case of suspect exotic disease. The solution to this resource dilemma is to create a network of diagnostic laboratories within Australia. The first step in achieving this network is to conduct a stocktake of current capability and capacity and subsequently making the information gathered available to all laboratories.

Objectives

1. To develop a readily accessible and easy to use database that provides information on the location of diagnostic laboratories, their capability and capacity in the diagnosis of a range of pathogens and disease conditions.

Final report

View Filter

Species

Organisation