60,782 results

Seafood CRC: securing and enhancing the Sydney rock oyster breeding program

Project number: 2006-226
Project Status:
Completed
Budget expenditure: $444,862.81
Principal Investigator: Wayne O'Connor
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 30 Jul 2006 - 31 Jan 2010
Contact:
FRDC

Need

The SRO industry has the potential to exploit new export initiatives and increase production. Any resurgence in the industry will depend on SOCo’s ability to manage the development and supply of selectively bred oysters. FRDC has fostered this process by supporting breeding programs and hatchery research, whilst encouraging industry management of technology. The Benzie Report, Oyster Research Advisory Committee (ORAC) R&D Strategic Plan and the Action Plan developed at the FRDC-funded QX workshop in June 2005 have all indicated that effective management strategies for the SRO industry must be underpinned by; 1) the continued development of oyster husbandry techniques to secure QX resistant breeding lines, and, 2) the identification of genes associated with QX disease resistance that can be used for marker-assisted selection. These complementary research goals represent a critical step in “QX proofing” NSW estuaries against ongoing and catastrophic QX disease outbreaks. Continued research may also allow farming to be re-established in areas abandoned because of QX disease. Integration of genetic markers and single pair mating into the hatchery-based breeding program will increase the efficiency of selection, and decrease the number of generations required to establish true breeding resistant lines. Without marker assisted selection, the breeding program may not reach its full potential in time to prevent further losses.

A comprehensive presentation on the SRO industry will be given during the FRDC board’s visit to Port Stephens in July 2006.

Objectives

1. To establish pair mating protocols necessary for the development of selectively bred oyster lines
2. To confirm the association between PO and QX resistance using pair matings and test the performance of PO-selected family lines in QX-prone estuaries
3. To identify and characterise additional genetic markers of disease resistance
4. To assess the value of cryopreservation to secure family lines for later use
5. To assess the use of non-chemical means for the induction of triploidy in SRO
6. To make the family lines produced in this research available to SOCo for incorporation in future breeding plans

Final report

Authors: Wayne A. O’Connor David A. Raftos Michael C. Dove Alison Kan and Kyle Johnston
Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

Final Report • 2011-06-28 • 4.55 MB
2006-226-DLD.pdf

Summary

The Select Oyster Company breeding plan has been amended to include a comprehensive manual of protocols for pair mating Sydney rock oysters (4.1). The association between phenoloxidase (PO) and QX resistance has been confirmed and a sensitive test for PO genotypes has been developed so that the breeding program has a tool to genotype parents and large numbers of their progeny to assist breeding (4.2-4.8). Protocols for cryopreservation of gametes have been developed and documented as a potential strategy to reduce SOCo’s overall maintenance costs for the lines and increase genetic security (4.9). Non-chemical means of triploidy induction in SRO (temperature and pressure shock) were tested (4.10). While these techniques were not as effective as existing chemical induction techniques, they have formed the basis of ongoing research to see if efficacy can be increased. A total of 60 pair mated family lines, including 31 lines with differing PO phenotypes, have been produced and are undergoing performance assessment in the field. These families will be made available to SOCo for incorporation in the industry breeding program.

SCRC: Development of germ cell transplantation technology for the Australian aquaculture industry

Project number: 2011-730
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Abigail Elizur
Organisation: University of the Sunshine Coast (USC)
Project start/end date: 14 Sep 2011 - 29 Jan 2014
Contact:
FRDC

Need

Currently SBT is being bred in an expensive on-shore facility at Arno Bay, where a single tank holds a limited number of broodstock, which spawn for a limited period of time. In order to expand on the
production of SBT seed, additional facilities/tanks at the costs of millions of dollars will be required and
sourcing additional 12 year old broodstock. Therefore there is a need to look at alternative approaches
for SBT broodstock management. This proposal explores the application of a highly innovative
approach - that is the use of fish surrogates to produce SBT. By identifying the right surrogate for SBT
and developing the specific know-how with respect to optimal germ cell management, SBT seed could
be produced in a fast maturing small host. This would completely overcome the need for large,
expensive broodstock facilities and long term holding of broodstock, while ensuring a continuous
supply of SBT seed, which is much needed for larval rearing R&D and commercialization. This
application relates to the overall investment in closing of the life-cycle of SBT.

Final report

ISBN: 978-0-9804744-3-5
Authors: Abigail Elizur Erin Bubner Ido Bar Andre Smith Scott Cummins Luke Dutney and Peter Lee
Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

View Filter

Species

Organisation