388 results
Industry
People
PROJECT NUMBER • 2018-168
PROJECT STATUS:
COMPLETED

Custom training and technical support for the fishery stock assessment software ‘stock synthesis’

This is a report on ‘stock synthesis’ software training by CSIRO. Noted are training outputs and learnings, together with an assessment of what role stock synthesis (SS) may play in Department of Agriculture and Fisheries (DAF) fish stock assessments. Findings suggest SS could...
ORGANISATION:
Department of Primary Industries (QLD)
Communities
PROJECT NUMBER • 2018-161
PROJECT STATUS:
CURRENT

National Social and Economic Survey of Recreational Fishers 2019

The NRFS involved three stages of data collection. An overview of the three stages of data collection and the purpose of each, and a guide summarising which chapters draw on data from each stage of data collection, are provided in the next section. Sections 3.4, 3.5 and 3.6 provide a detailed...
ORGANISATION:
University of Canberra
Environment
PROJECT NUMBER • 2018-159
PROJECT STATUS:
COMPLETED

Spawning biomass of Jack Mackerel (Trachurus declivis) in the East sub-area of the Small Pelagic Fishery during summer 2019

Estimates of spawning biomass obtained using the Daily Egg Production Method (DEPM) are the primary biological performance indicator for quota species in the Small Pelagic Fishery (SPF). The objective of this study was to conduct ichthyoplankton and adult trawl surveys that underpin the DEPM in the...
ORGANISATION:
SARDI Food Safety and Innovation
SPECIES
Industry
PROJECT NUMBER • 2018-157
PROJECT STATUS:
CURRENT

Evaluation of Cobia and Giant Groper production and health in multiple growout systems, as an alternative species to farm in WSSV affected areas of South East Queensland

The report details the production performance and health performance of Cobia (Rachycentron canadum) and Giant Groper (Epinephelus lanceolatus) reared in tanks, ponds and cages within a farm in the previously white spot syndrome virus affected region of the Logan River, Queensland. Findings of this...
ORGANISATION:
Rocky Point Aquaculture Company Pty Ltd
SPECIES
Industry
PROJECT NUMBER • 2018-154
PROJECT STATUS:
COMPLETED

A market research-driven and co-management approach to developing an industry strategy for the SA Charter Boat Fishery

This project investigated the South Australian Charter Boat Fishery by conducting analyses to identify potential actions for growth to counter the declining level of activity and profitability in the industry. The SA Charter industry has shown declining in trends in economic returns and...
ORGANISATION:
BDO EconSearch
Environment

Diagnostic detection of aquatic pathogens using real-time next generation sequencing

Project number: 2018-147
Project Status:
Current
Budget expenditure: $216,000.00
Principal Investigator: David Cummins
Organisation: CSIRO Australian Animal Health Laboratory
Project start/end date: 30 Jun 2019 - 28 Oct 2021
Contact:
FRDC

Need

Current diagnostic programs generally rely on highly -specific assays for pathogen detection. While these techniques are invaluable, they are one dimensional and do not provide detailed information critical to a disease investigation. These gaps include the inability to detect unknown pathogens and potential variants of know pathogens and provide no additional genomic or transcriptomic data. Moreover, samples must be shipped to trained personnel in a laboratory, further delaying the time to diagnosis. The MinION, on the other hand, can theoretically detect any pathogen and can potentially be deployed to the field. Moreover, the MinION can rapidly generate full-length genomes, allowing for epidemiological tracking of viral or bacterial strains in near real-time. Such rapid data, which cannot be obtained as quickly using existing methods, are vital if the intention is to intervene in an outbreak and reduce impacts on the productivity and profitability of aquaculture facilities. For example, a rapid, early diagnosis may allow mitigating actions to be taken on-farm, such as the diversion of intake water, movement restrictions of stock and the isolation of infected ponds.
These qualities make the MinION an attractive complimentary platform to fill several gaps in the data obtained during disease outbreak investigations, or routine diagnostics, and potentially for use in the field. However, results from the misuse or lack of understanding of the technology could also have adverse regulatory implications for aquaculture industries. For example, without appropriate guidelines, an inexperienced diagnostician may misinterpret a distant DNA match in a pathogen database as a significant result, this may create unwanted attention to industry and potential stock destruction or changes to disease status that are unjustified. Thus, it is critical that the MinION is evaluated at the Australian Animal Health Laboratory, and guidelines and procedures are developed for accurate diagnostic evaluations. The activities detailed in this application will establish the feasibility of using the MinION for diagnostic applications, and ensure that the data is reliably generated and interpreted appropriately.

Objectives

1. Evaluate if MinION data meets or exceeds the data obtained using established laboratory-based NGS platforms. Objectives (1) and (2) align with Methods section (1).The first objective of this project is to demonstrate if the MinION can obtain quality genome assemblies of known pathogens, such as WSSV, AHPND, OsHV-1 and HaHV that have been created using existing NGS technology. Moreover, determine if the MinION is capable of producing a diagnostic result more rapidly and with greater confidence than traditional techniques. STOP/GO POINT: If MinION data does not produce reliable genome assemblies, no improvement in genome quality, or is significantly more laborious to set-up/run or analyse than existing NGS technologies, do not proceed with objective 2.
2. Evaluate the performance of the MinION using existing diagnostic extraction techniques and produce robust methods and protocols for sample preparation, sequencing and data analysis. This objective will optimise MinION protocols for sample pre-processing, optimal sequencing conditions, and data post-processing. We will then evaluate the MinION data produced from a range of aquatic organisms against data produced using traditional techniques from the same samples. STOP/GO POINT: If after these optimisations, the MinION cannot detect pathogens as reliably as traditional techniques, do not proceed with objective 3.
3. Compare the applicability of MinION to standard molecular assays for identification of pathogens in diagnostic samples. Objective (3) is aligned with Methods section (2).In this objective, diagnostic samples will be tested using existing diagnostics tools (qPCR, cPCR) and MinION sequencing. Analysis between the methods will be detailed, including time to result, pathogen identity and genomic information. This objective will not only provide an insight into real-time sequencing for diagnostics, but in addition the feasibility of MinION technology for field application in the future.

Cumulative Impact Risk Assessment Tool for Aquaculture in Australia

Project number: 2018-145
Project Status:
Current
Budget expenditure: $172,999.00
Principal Investigator: Belinda Yaxley
Organisation: Nautilus Collaboration Pty Ltd
Project start/end date: 1 May 2019 - 30 May 2021
Contact:
FRDC

Need

Difficulties with current legislation in Australia at State and Federal level make it challenging for marine farms to protect themselves, but equally for the community to have faith that aquaculture development is not harming the marine environment. An example from Tasmania is the recent contamination of Macquarie Harbour, whereby tailings from Copper Mines Tasmania (CMT) dam in Queenstown entered the harbour and undoubtedly caused environmental harm to salmon and other species. Because CMT and salmon farmers operate under different Acts CMT was not responsible for the incident but rather the government. Consequently, no investigation or clean-up ensued.

Additionally, the scope of statutory tools, such as EIS under the Tasmanian Marine Farm Planning Act 1995, is not regional and does not consider the compound interactions of and on production activities. A good example is the recent Storm Bay salmon farming expansion; while the EPBC listed handfish species in Tasmania were listed in the marine farming development plan, with a brief context, management of these species was not considered in the EIS because that process only includes direct impact of the lease position. Arguably, cumulative impacts from all development in the area will have varying impacts on the species, impacts which are not being considered under current government legislation, but are potentially the source of public ire.

For aquaculture to pursue sustainable efforts environmentally, economically and socially in the increasingly crowded near shore space requires proactive planning and transparency that is not currently possible given existing assessment tools. In particular, assessment of cumulative impacts must be addressed. Cumulative impact assessments (CIA) are gaining momentum across multiple industries due to a recognised need to apply them in the pursuit of sustainable management. CIAs are being undertaken with the protection of marines resources at front of mind, but so far there has been little consideration of aquaculture. An approach to CIA that makes aquaculture the centre point is required if we are to consider its impacts or conversely, its effectiveness.

Objectives

1. Identify the risks of multiple actions or impacts on the environment and social values of a marine production matrix in Australian waters. In order to do this a comprehensive literature review is required to develop the CIA approach and ensure the methods and gaps in aquaculture CIA are addressed to meet the needs of Australian aquaculture, the community and the consumer.
2. Develop a risk assessment tool that can be utilised by the public realm (governments at all levels, NFPS, community) to better understand the complexities of regional marine waters and user impacts to maximise current and future economic, social and environmental benefits. To do this requires identification of valued environmental and social components first, whereby such components are characterised, from this a framework is build on each valued component.
3. Assess aquaculture in the context of broader social and environmental issues within the marine production matrix, by performing an aquaculture specific cumulative impacts assessment for regional Australia
Industry
PROJECT NUMBER • 2018-134
PROJECT STATUS:
COMPLETED

Australian Fisheries and Aquaculture Statistics 2017

The research undertaken in this project (2018/134) produced data on the volume and value of production from Commonwealth, state and Northern Territory fisheries, and the volume and value of Australian fisheries trade, by destination, source and product, covering the years 2006-07 to 2016-17. The...
ORGANISATION:
Department of Agriculture Fisheries and Forestry
View Filter

Species

Organisation