258 results

Use of archival tags for studying the movement and swimming behaviour of school sharks

Project number: 1996-128
Project Status:
Completed
Budget expenditure: $257,962.00
Principal Investigator: John Stevens
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 16 Oct 1996 - 5 Apr 2001
Contact:
FRDC

Objectives

1. To determine the frequency and extent of movements of individual school sharks within the fishery leading to an improved understanding of spatial structure required for regional assessment of school shark stocks.
2. To determine whether the total population of mature female school sharks migrate to Tasmania and Victorian waters to pup and consequently whether recruitment is dependent on south-eastern pupping areas. Answering this question will also address the effectiveness of the current rolling fishery closures (aimed at protecting aggregating pregnant females) which are based on an eastward pupping migration.
3. To provide information on the swimming depth of school sharks and to estimate the amount of time they spend off the bottom and unavailable to commercial fishing gear. This information is required in assessing the relative impact of current fishing effort directed at school and gummy shark.

Final report

ISBN: 0-643-06226-2
Author: John Stevens
Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Final Report • 2001-02-12 • 11.90 MB
1996-128-DLD.pdf

Summary

There has been serious concern over the status of the school shark fishery for many years, and it has been the subject of numerous stock assessments (Punt & Walker 1998). It is a well researched species: Olsen (1954) showed that school shark can make extensive migrations, and that females moved to pupping grounds in the south-east of Australia to give birth. However, despite their apparent ability to move freely through the fishery, there are regional differences in size, age and reproductive condition, together with different catch-rate trends in different regions of the fishery. Originally stock assessment models were based on the assumption of a single freely-mixing stock, in light of the ability of the species to move long distances. However, Prince (1992) argued that the biological and catch data was incompatible with the assumption of a single stock, and was instrumental in having spatial structure in the fishery taken into account. Punt et al. (2000) developed a model that takes account of the spatial structure of the population, allows for multiple stocks and which uses catch-rate data and information from tagging studies to derive values for the parameters of the model.

In this study it was the longitudinal movements of the fish that were of greatest interest, and although daily longitude estimates from the archival tags were highly variable, weekly median estimates appeared reliable. Latitude estimates were based on bathymetry except around Tasmania where none were possible. One fish appeared to move to New Zealand, but the clock in the archival tag was found to be seriously defective when tested upon its return. Although conventional tagging shows movements of school shark between Australia and New Zealand, we conclude that there was no evidence of any movement of archival-tagged fish further east than 149–150° E. No school shark migrated across the entire range of the Australian fishery in the time they were at liberty (<1.5 y), and there was limited mixing between the eastern and western regions of the fishery in this time frame. The restricted movement shown by the archival-tagged sharks provides additional support for the move to spatially-structured stock assessments. Although these results seemed at odds with the impression of wide-ranging movements shown by earlier conventional tagging, re-analysis of tag returns from the 1947–56 tagging program (Olsen 1954) provided support for restricted longitudinal movements. For school sharks ≥ 95 cm total length at release tagged in Victoria and Tasmania, the percentage recaptured in South Australia did not peak until after 4–6 y at liberty for females (~70%) and 12–14 y for males (~40%). These results however depend upon the relative fishing effort in these two areas at the time.

Environment
PROJECT NUMBER • 1996-109
PROJECT STATUS:
COMPLETED

Evaluating the costs and benefits of research on stock structure for management of the orange roughy fishery

This report describes a procedure for objectively comparing the likely returns from research programs, particularly those designed for fisheries management purposes. This procedure requires that the management objectives for the fishery are well defined, and that the research is directed at...
ORGANISATION:
CSIRO Oceans and Atmosphere Hobart
Industry
Industry
PROJECT NUMBER • 1995-080.80
PROJECT STATUS:
COMPLETED

BCA: DNA microsatellite variation in Atlantic salmon

This report carries out ex-post cost/benefit analysis on three Tasmania Atlantic salmon research projects carried out by CSIRO Marine Research, Hobart. The three projects are analysed together as all are concerned with examining genetic diversity in Tasmanian Atlantic salmon. In addition to the...
ORGANISATION:
CSIRO Oceans and Atmosphere Hobart
Industry
PROJECT NUMBER • 1995-080
PROJECT STATUS:
COMPLETED

DNA microsatellite variation in Atlantic salmon

The aquaculture of Atlantic salmon began in Australia in the mid-1960' s with an importation of ova from Canada to New South Wales. Anecdotal evidence suggested that the Australian population went through a severe bottleneck event during the early years due to poor survival and subsequent small...
ORGANISATION:
CSIRO Oceans and Atmosphere Hobart
Environment
PROJECT NUMBER • 1995-058
PROJECT STATUS:
COMPLETED

Seamount fauna off southern Tasmania: impacts of trawling; conservation and role within the fishery ecosystem

In September 1995, the deepwater trawl fishing industry agreed not to trawl in an area of 370 km2 on the continental slope south of Tasmania for three years, as stated in a Memorandum of Understanding between the former Australian Nature Conservation Agency (now Environment Australia) (EA) and the...
ORGANISATION:
CSIRO Oceans and Atmosphere Hobart
View Filter

Organisation