9 results
Communities
PROJECT NUMBER • 2021-117
PROJECT STATUS:
COMPLETED

A global review on implications of plastic in seafood

Microplastics are commonly consumed by seafood species however, there is still limited understanding of the effects and implications that microplastics may have on the fishing and aquaculture industry. This project summarises research on the effects that microplastic may be having on seafood...
ORGANISATION:
University of Adelaide

Tropical fish traps – addressing ghost fishing impacts and refinements to catch reporting/sampling

Project number: 2022-164
Project Status:
Current
Budget expenditure: $150,000.00
Principal Investigator: John Wakeford
Organisation: Austral Fisheries Pty Ltd
Project start/end date: 31 May 2023 - 31 May 2025
Contact:
FRDC

Need

The negative impacts of lost fish traps ghost fishing are well documented and of concern to all parties involved with the sustainable harvest of seafood from the aquatic environment (Macfadyen et al 2009; Newman et al 2011; Vadziutsina & Rodrigo 2020). Essentially, lost fishing gears that continue to kill/harm fish represent an inefficiency in the fish production process, and in essence are a form of waste associated with the harvesting process, that ultimately reduces the yield and casts a bad light on the fishery itself. This project does not meet any specific FRDC priority in the current round, hence the lodgment under (Other), although because of what it attempts to address and minimise, it is likely to gain strong support from those concerned with appropriate management of fisheries i.e., minimising the wasteful use of renewable food resources at a time when there is a food crisis in the world, with parties including the FRDC, AFMA, ENGO's and the fishing industry.

Objectives

1. Quantification of fish trap (various designs) loss rates, both in the distant past and more recently, together with the main factors influencing the loss rate.
2. Quantification of how well “dumped” or unattended traps catch fish, together with the main factors affecting the performance (including the presence of trap disabling mechanisms).
3. Apply refinements* to fishing practices/gear to address loss rates and ghost fishing and assess performance (*utilising observations made in the first year of project).
4. Apply refinements to fishing activity reporting to assist with the management of effort creep, trap loss, and ascertaining appropriate harvest levels for the target species.
Blank
PROJECT NUMBER • 2018-125
PROJECT STATUS:
COMPLETED

Evaluation of practical technologies for Perfluoroalkyl (PFA) remediation in marine fish hatcheries

Per- and poly-fluoroalkly substances (PFASs) are now emerging as pollutants with potentially catastrophic impact on aquaculture facilities. Two key research institutes, Port Stephens Fisheries Institute (PSFI) in NSW and Australian Centre for Applied Aquaculture Research (ACAAR) in Western Australia...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)

Cumulative Impact Risk Assessment Tool for Aquaculture in Australia

Project number: 2018-145
Project Status:
Current
Budget expenditure: $172,999.00
Principal Investigator: Belinda Yaxley
Organisation: Nautilus Collaboration Pty Ltd
Project start/end date: 1 May 2019 - 30 May 2021
Contact:
FRDC

Need

Difficulties with current legislation in Australia at State and Federal level make it challenging for marine farms to protect themselves, but equally for the community to have faith that aquaculture development is not harming the marine environment. An example from Tasmania is the recent contamination of Macquarie Harbour, whereby tailings from Copper Mines Tasmania (CMT) dam in Queenstown entered the harbour and undoubtedly caused environmental harm to salmon and other species. Because CMT and salmon farmers operate under different Acts CMT was not responsible for the incident but rather the government. Consequently, no investigation or clean-up ensued.

Additionally, the scope of statutory tools, such as EIS under the Tasmanian Marine Farm Planning Act 1995, is not regional and does not consider the compound interactions of and on production activities. A good example is the recent Storm Bay salmon farming expansion; while the EPBC listed handfish species in Tasmania were listed in the marine farming development plan, with a brief context, management of these species was not considered in the EIS because that process only includes direct impact of the lease position. Arguably, cumulative impacts from all development in the area will have varying impacts on the species, impacts which are not being considered under current government legislation, but are potentially the source of public ire.

For aquaculture to pursue sustainable efforts environmentally, economically and socially in the increasingly crowded near shore space requires proactive planning and transparency that is not currently possible given existing assessment tools. In particular, assessment of cumulative impacts must be addressed. Cumulative impact assessments (CIA) are gaining momentum across multiple industries due to a recognised need to apply them in the pursuit of sustainable management. CIAs are being undertaken with the protection of marines resources at front of mind, but so far there has been little consideration of aquaculture. An approach to CIA that makes aquaculture the centre point is required if we are to consider its impacts or conversely, its effectiveness.

Objectives

1. Identify the risks of multiple actions or impacts on the environment and social values of a marine production matrix in Australian waters. In order to do this a comprehensive literature review is required to develop the CIA approach and ensure the methods and gaps in aquaculture CIA are addressed to meet the needs of Australian aquaculture, the community and the consumer.
2. Develop a risk assessment tool that can be utilised by the public realm (governments at all levels, NFPS, community) to better understand the complexities of regional marine waters and user impacts to maximise current and future economic, social and environmental benefits. To do this requires identification of valued environmental and social components first, whereby such components are characterised, from this a framework is build on each valued component.
3. Assess aquaculture in the context of broader social and environmental issues within the marine production matrix, by performing an aquaculture specific cumulative impacts assessment for regional Australia
Industry
Environment
PROJECT NUMBER • 2019-101
PROJECT STATUS:
CURRENT

Investigation of the direct and indirect role of submarine groundwater discharge (SGD) on Western Rock Lobster settlement processes: with consideration of the potential role of contaminants

The influence of Submarine Groundwater Discharge (SGD) on coastal ecosystems of the West Coast Bioregion of Western Australia, and particularly its impact on the Western Rock Lobster (WRL) and the West Coast Rock Lobster Managed Fishery (WCRLMF), is poorly understood. This is despite that the...
ORGANISATION:
University of Western Australia (UWA)