10 results

A global review on implications of plastic in seafood

Project number: 2021-117
Project Status:
Completed
Budget expenditure: $60,513.00
Principal Investigator: Bronwyn M. Gillanders
Organisation: University of Adelaide
Project start/end date: 31 May 2022 - 30 Jul 2023
Contact:
FRDC

Need

The project will review and synthesise available global data on the potential effects and implications that plastic is causing in seafood species in the context of the impacts they generate to fishing and aquaculture sectors. Concurrently, using published literature on sources of marine pollution, the abundance of plastic entering aquatic systems from seafood related sources will be quantified, with particular focus to the Australian context. Ultimately, this will give the fisheries sector, particularly in an Australian setting, the knowledge to evaluate where appropriate mitigation strategies are necessary and reduce the presence and impacts of microplastics in seafood.

This project aligns with FRDC R&D Plan Outcome 1: Growth and Enduring prosperity; In particular, it targets the priorities of:
- Improving the understanding of the cause and extent of impacts to aquatic systems and what is needed to improve them
- Promote a circular economy to remove waste from the processing system, keep products and materials in use and promote the repair of natural systems

Providing information on how marine pollution may affect the seafood industry and seafood species fished will guide the urgency of future research and allow management and mitigation strategies that support the seafood sector to be developed. Ultimately, quantifying the amount of plastic contributed by the seafood sector to marine plastics will allow us to advance with solutions and uncover where plastic alternatives are most needed.

Objectives

1. Undertake a systematic review, collating, synthesising and analysing global data on the effects and implications of plastic pollution in seafood species and the seafood industry
2. Identify potential sources of plastic in marine environments, including the percentage coming through fishing and aquaculture
3. Highlight key knowledge gaps, opportunities and threats of plastic in the seafood sector
4. Disseminate findings and information on effects and implications of plastic pollution on seafood species to fishers and managers

Final report

Authors: Nina Wootton Patrick Reis-Santos and Bronwyn M Gillanders
Final Report • 2023-09-27 • 3.65 MB
2021-117-DLD.pdf

Summary

Microplastics are commonly consumed by seafood species however, there is still limited understanding of the effects and implications that microplastics may have on the fishing and aquaculture industry. This project summarises research on the effects that microplastic may be having on seafood species and the contribution that the seafood industry is having to marine plastic pollution. Global literature on microplastic effects in seafood species revealed 1) that 93% of all species were negatively affected by plastics, although many studies used increased levels of microplastic contamination that are not environmentally relevant (i.e., generally do not reflect environmental conditions); and 2) 23% of plastic pollution in the marine and coastal environment originates from fishing and aquaculture sources. This
report provides clear-sighted recommendations on the threats and opportunities that plastics hold for the seafood sector, as well as avenues for potential mitigation and reduction.

Bursary to attend the 2022 Microplastics and Seafood: Human Health Symposium in the United Kingdom - Bronwyn Gillanders

Project number: 2022-054
Project Status:
Completed
Budget expenditure: $8,885.00
Principal Investigator: Bronwyn M. Gillanders
Organisation: University of Adelaide
Project start/end date: 30 Aug 2022 - 29 Nov 2022
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence

Bursary to attend the 2022 Microplastics and Seafood: Human Health Symposium in the United Kingdom - Nina Wootton

Project number: 2022-055
Project Status:
Completed
Budget expenditure: $9,400.00
Principal Investigator: Nina Wootton
Organisation: University of Adelaide
Project start/end date: 30 Aug 2022 - 30 Jan 2023
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence
Industry
Industry
Industry

Optimisation of treatment of Cryptocaryon irritans in Barramundi aquaculture

Project number: 2018-100
Project Status:
Current
Budget expenditure: $415,057.00
Principal Investigator: Marty R. Deveney
Organisation: University of Adelaide
Project start/end date: 30 Sep 2021 - 29 Aug 2024
Contact:
FRDC

Need

Significant losses of farmed barramundi have occurred in coastal marine aquaculture sites utilising marine water sources due to Cryptocaryon irritans infestations. The disease costs have had substantial impacts on commercial aquaculture operations. Cryptocaryon irritans has a direct life cycle with an adult in the skin or gills of the fish and asexual reproduction in the environment away from the fish. The life cycle of C. irritans is temperature and host dependant and treatment must be timed with critical phases of the life history to maximise efficacy. This project will establish this timing to provide guidelines for optimised treatment.

The existing treatments have substantial costs ($3K+/treatment) and a sub-optimal profile for environmental release with high toxicity and environmental persistence. This project will optimise doses of existing treatments, and identify and assess new treatments. Products identified as effective and safe will have optimised guidelines developed for delivery to ensure the best outcome for farms and the environment. Such improvements will support further expansion of the finfish aquaculture industry in Northern Australia.

Objectives

1. Describe the life cycle of Australian C. irritans isolates from Barramundi aquaculture, and describe relevant treatment intervals for different temperatures for C. irritans to maximise benefit from each treatment
2. Screen candidate treatments to identify new products for further assessment
3. Establish efficacy and safety of optimised doses for current treatments and selected candidate treatments in laboratory and small-scale field trials
4. Optimise delivery under field conditions for delivery of new treatments
View Filter