149 results
Industry

Identifying population connectivity of shark bycatch species in NT waters

Project number: 2020-036
Project Status:
Completed
Budget expenditure: $66,430.00
Principal Investigator: Sam Banks
Organisation: Charles Darwin University (CDU)
Project start/end date: 3 Dec 2020 - 9 Dec 2021
Contact:
FRDC

Need

This project is needed for three main reasons:

1. It directly addresses a NT RAC priority in the 2019 call for funding applications relating to improving sustainable yield estimates to inform stock assessment programs for undefined target species and protected species in the Offshore Net and Line Fishery. The project will support sustainable fishing practices for important commercial fisheries in the NT and the development of new commercial opportunities within these fisheries: The impacts of fishery activities on these species, either through bycatch or targeted harvest, are difficult to assess in the absence of information on population connectivity and stock structure.

2. The project will develop capacity for fisheries research and monitoring in NT waters. Genetics methods are widely applied to fisheries research and monitoring and training of an early career fisheries scientist in the application and interpretation of genetic data will be a key outcome of this project.

3. The project will provide key information to support the transition of these species from bycatch to a harvested byproduct species, including an evaluation of leading-edge genetic techniques in fisheries assessment and monitoring.

Objectives

1. To develop population connectivity model for Whitecheek and Milk Shark
2. To develop capacity for research and monitoring of shark species within the Northern Territory
3. To evaluate the utility of genetic techniques in fisheries monitoring

Final report

ISBN: 978-1-922684-78-3 (Print), 978-1-922684-79-0 (Web)
Authors: Sam Banks Amy Kirke Fernanda Alves Grant Johnson and David Crook
Final Report • 2024-10-01 • 1.08 MB
2020-036-DLD.pdf

Summary

Charles Darwin University and the Northern Territory (NT) Department of Industry, Tourism and Trade (DITT) Fisheries Division used genetic data to investigate the population structure of two small tropical shark species (Milk Shark [Rhizoprionodon acutus] and Australian Blackspot Shark [Carcharhinus coatesi]), which are caught as bycatch from commercial fisheries in the NT. 
 
The aim of this study was to gain information on the genetic stock structure to inform the future management of these two species in the NT. This project was conducted in parallel with a PhD project investigating the biology and ecology of both species for applications to fisheries management. There is motivation by the NT Government to develop these two shark species into a commercial product. This project used genetic analysis to understand the patterns of connectivity of populations of these two shark species in NT waters and adjacent regions, including northern Western Australia and Papua New Guinea.
 
These two shark species that are captured as bycatch in the NT Demersal Fishery have the potential to be developed into a byproduct to add value to that fishery. A sustainable commercial harvest of these two species could greatly reduce the waste from fisheries, where they are currently abundant and caught in relatively large numbers. We address current knowledge gaps in biological information about populations of R. acutus and C. coatesi to inform the potential development of a byproduct fishery for these two species in the NT.
 
Genetic data from R. acutus and C. coatesi strongly suggest that each species exists as a single, highly connected population in the NT. Genetic differentiation among the sampling locations for each species was low, and genetic clustering analyses provided strong support for a single population of each species in the region. Sharks of both species captured within a single location (within 50 km of one another) were more genetically related than those further apart; however, this does not constitute evidence for multiple, spatially discrete populations of either species in NT waters. Preliminary applications of effective population size estimators were used, but further work is needed to determine if these can be used to indicate trends in abundance. 
 
The immediate implications of our research are for fisheries scientists and managers. Our results indicate that these two shark species can be monitored and managed in the NT under the assumption that each species occurs as a single population in this region. Parasite and vertebral chemistry data collected as part of a PhD project conducted in parallel with this project suggest that, for C. coatesi, individuals may be resident within certain regions (eastern versus western NT waters) but the genetic data collected here suggest that, on a generational timescale, both species occur as highly-connected populations across in the NT region. 
 
Our research has potential implications for commercial fishers, particularly from the NT Demersal Fishery. The information from our research will flow through to the industry by contributing to the information required to develop a byproduct fishery for the two species, by utilising bycatch and increasing economic return. 
Industry

Design of a fishery independent longline survey for chondrichthyans in Northern Australia

Project number: 2023-063
Project Status:
Current
Budget expenditure: $82,125.00
Principal Investigator: Ian Knuckey
Organisation: Fishwell Consulting Pty Ltd
Project start/end date: 4 Feb 2024 - 29 Aug 2024
Contact:
FRDC

Need

Catch Per Unit Effort (CPUE) from commercial logbooks is often used as an index of abundance in stock assessments. However, the use of commercial CPUE as an indicator of relative abundance can be problematic as the underlying assumption that commercial catch rates change linearly with abundance is often compromised. Although some factors that are reported in logbooks can be used to standardise CPUE, there are other sources of variation including:
• Modified fishing practices to target or avoid species to suit quota availability, meet market demands, or to comply with management arrangements.
• Differences in selectivity of fishing gear and use of bycatch-reduction devices.
• The combined impacts of multiple management restrictions on a fishery.
For example, gillnet operations in what was once the Northern Territory’s Shark Fishery now almost exclusively target Grey Mackerel. This change in practice has resulted in an index that is losing its relevance in assessing shark species.

Over 140 elasmobranchs are listed on CITES Appendix II, with the likely-hood that more species will be added in the future. Of the 11,082t of shark landed by the fishery since 2000, CITES listed Hammerheads comprise 17.25% of the shark catch. Other sharks caught by the fishery that were recently added to CITES Appendix II at the Nineteenth meeting of the Conference of the Parties Panama City (Panama), 14 – 25 November 2022 include: Grey Reef Shark, Dusky Whaler, Sandbar Shark, Lemon Shark, Whitecheek shark and all other members of the family Carcharhinidae (which include the Blacktip Shark complex that is the main shark species caught by the fishery - 4688t or 42% since 2000). These species will require a positive Non-Detriment Finding (NDF) and CITES export permit in order to be exported following the 12-month delay in implementation (i.e., December 2023). The fishery also catches Threatened, Endangered and Protected Elasmobranchs, some of which are also CITES listed.

Gillnet and longline effort has decreased since 2000 and there is significant latent effort in the fishery. There is a desire to utilise this latent effort, however, the CITES listing of the majority of sharks species caught in the fishery will increase scrutiny from State, Commonwealth and International environmental agencies, as well as NGOs. This heightened scrutiny will provide greater impetus to demonstrate that shark stocks are at sustainable levels and that fishing is being undertaken sustainably.

There is a strong need for independent survey methods to gain a better understanding of the abundance patterns of shark species over time that can contribute to the development of appropriate management of these species that meets environmental, fisheries, and conservation needs.

Surveying Northern Australia using longlining methods would provide a fishery independent estimate of relative abundance for sharks that would improve economic security and public confidence in sustainability. However, to make an informed decision of the feasibility of a survey a full understanding of the scope of work and cost required is needed. There is a need to look at existing long line surveys undertaken worldwide (e.g. in the USA and Bahamas), to understanding the methods undertaken and the time period required to develop accurate abundance estimates.

Objectives

1. Analysis of commercial logbook data to inform fishery independent survey design
2. Conduct a literature review to determine potential design of longline fishery independent survey
3. Hold a workshop to discuss options for a NT shark longline survey
4. Develop final design and costs for a NT shark longline survey
Environment
Environment
PROJECT NUMBER • 2021-114
PROJECT STATUS:
COMPLETED

Water abstraction impacts on flow dependent fisheries species of the Northern Territory, Australia - a synthesis of current knowledge and future research needs

This project synthesised information that could be used to help guide decision making around the protection of fisheries species that may be impacted by water abstraction. This review was led by Griffith University and conducted in collaboration with the University of Western...
ORGANISATION:
Griffith University Nathan Campus
Blank
View Filter

Species

Organisation