29 results

Novel fishery independent, biological and economic-processing methods to underpin expansion of Australia's fastest growing fishery, the Western Rock Octopus

Project number: 2023-052
Project Status:
Current
Budget expenditure: $650,260.00
Principal Investigator: Lachlan Strain
Organisation: Department of Primary Industries and Regional Development (DPIRD) Hillarys
Project start/end date: 31 Aug 2024 - 30 Aug 2026
:
SPECIES

Need

The Western Rock Octopus fishery has become Australia’s fastest growing fishery, with a 5-year average growth of 50% per annum between 2017 and 2022. Despite this expansion, there are still significant gaps in knowledge and practice that do not allow this fishery to grow and develop in an optimum sustainable and socio-economic manner. This project will fill the information gaps and develop pro-active management and economic policy settings that facilitate a comprehensive development of the fishery to its natural capacity. It meets FRDCs two main outcomes of the 2020-2025 R&D plan; growth for enduring prosperity, best practices and production systems, and also meets Enabling Strategy IV: Building capacity and capability.

Objectives

1. Quantify species mix, growth, population connectivity, and reproduction of the unexplored South Coast and deep-water West Coast stocks of Octopus djinda.
2. Develop and test an octopus trap mounted camera system as fishery independent survey tool for density, bycatch, habitat, and environmental data.
3. Develop a bioeconomic model for octopus fishery management and expansion in Australia.
People
Industry
PROJECT NUMBER • 2016-802
PROJECT STATUS:
COMPLETED

Future Oysters CRC-P: Accelerated Sydney Rock Oyster (SRO) Breeding Research

This project focussed on increasing genetic resistance of Select Oyster Company (SOCo) breeding program Sydney rock oyster (Saccostrea glomerata, SRO) families to QX disease and winter mortality (WM) disease. NSW DPI has worked collaboratively with SOCo to develop a SRO family-based breeding program...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Industry
PROJECT NUMBER • 2018-121
PROJECT STATUS:
COMPLETED

Sex reversal and sex differentiation in Atlantic salmon (Salmo salar)

The Tasmanian Atlantic Salmon (Salmo salar) aquaculture industry strives to produce all-female fish, as male Atlantic Salmon are subject to precocious maturation and consequently reduced flesh quality and increased disease susceptibility when reared in high water temperatures. Several fish species,...
ORGANISATION:
Deakin University Warrnambool Campus
Adoption
PROJECT NUMBER • 2017-049
PROJECT STATUS:
COMPLETED

Monitoring abalone juvenile abundance following removal of Centrostephanus and translocation

A new system of Abalone recruitment modules (ARMs) have proven to be successful in collecting juvenile abalone in Tasmanian waters. This design was subsequently transferred to the Eastern Zone, Victoria, where IMAS staff and Eastern Zone Abalone Industry Association (EZIZA) members installed ARMs at...
ORGANISATION:
University of Tasmania (UTAS)

Evaluating the Effects of Seismic Energy on Pinctada maxima Pearl Oysters

Project number: 2019-170
Project Status:
Completed
Budget expenditure: $12,103.20
Principal Investigator: Mark Meekan
Organisation: Australian Institute Of Marine Science (AIMS)
Project start/end date: 19 Mar 2020 - 30 Dec 2021
:

Need

Recent studies into the effects of seismic energy on molluscs have demonstrated a number of cumulative and sub-lethal impacts that indicated impairment of immune systems, cellular damage and adverse changes in behaviour. In scallops, cumulative exposure to seismic energy resulted in increased rates of mortality after 120 days (R Day et al. (2017)). These findings are of critical importance to the pearling industry, which relies on the harvest and husbandry of pearl oysters in coastal shelf water . Pearl oyster crops are typically 2 years duration, so long term effects will have a chronic sub-lethal effect on pearl production. In addition, as the oysters were still not fully recovered at the day 180 sampling, there is concern that the long recovery time may result in a reduction of the reproductive output for up to one year. Energetically compromised oysters will have a reduced reproductive output, and a higher proportion of male oysters, as egg production is more energy intensive.

This would have major ramifications for recruitment into the wildstock pearl oyster fishery and the pearling industry it underpins.

To these ends it became apparent that a 4th sampling round was critical in order to provide a condition data from the oyster sample set after 360 days; so that the responses of the oysters to seismic treatment may be better understood after the completion of one year – bearing in mind that at different times of the year oysters do different things.

The overarching objective of this experiment is to measure the impact of seismic surveys on wild harvested pearl oysters in a way that provides information that is useful to stakeholders in the pearl production and oil and gas industries and to the managers of these resources. The uncertainty surrounding the long-term impacts of seismic surveys on the health of pearl oysters and their pearl production capacity is the key driver of this study.

Objectives

1. Assess the impact seismic operations have on mortality of P. maxima: (a) The ranges at which these impacts occur and (b) the time period these impacts occur.
2. Assess the impact seismic operations have the on growth and health of P. maxima with increasing range and time from exposure to a seismic source (with respect to a. Immunology
b. Physiology
c. Morphology
d. Gene expression
e. Growth and f. Mortality
3. Whether there are long-term health impacts that could reduce the reproductive capacity of the oysters, potentially affecting recruitment. This will be achieved by visual observation and categorisation according to photographic standards of: (a) Gonad index & (b) Sex
Industry
PROJECT NUMBER • 2016-803
PROJECT STATUS:
COMPLETED

Future oysters CRC-P: New Technologies to Improve Sydney Rock Oyster Breeding and Production

Hatchery production of Sydney Rock Oysters (SROs, Saccostrea glomerata) is a costly and high risk activity for the breeding program and industry exacerbated by factors such as: reliance on hatchery conditioning, low fertilisation success using strip-spawned gametes, extended larval rearing period...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Industry
Environment
Environment
PROJECT NUMBER • 2017-148
PROJECT STATUS:
COMPLETED

NCCP: identifying synergistic genetic bio control options for Cyprinus carpio in Australia

This study was undertaken by Wedekind Gutachten, Switzerland. Potentially synergistic genetic biocontrol technologies can be grouped into those that do not involve engineered DNA sequences and those that do. The former include the “sterile male” and the “Trojan Y...
ORGANISATION:
Wedekind Gutachten